Proceedings of the Iowa Academy of Science

Volume 69 Annual Issue

Article 85

1962

An Analysis of Mite Populations in Muskrat Houses

Robert A. Buckley Lincoln High School

Ellis A. Hicks *Iowa State University*

Copyright © Copyright 1962 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias

Recommended Citation

Buckley, Robert A. and Hicks, Ellis A. (1962) "An Analysis of Mite Populations in Muskrat Houses," *Proceedings of the Iowa Academy of Science*: Vol. 69: No. 1, Article 85. Available at: https://scholarworks.uni.edu/pias/vol69/iss1/85

This Research is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

1962]

SPIDERS OF DUBUOUE COUNTY

541

ACKNOWLEDGEMENTS

The author is indebted to Professor Emmett Polder for assistance in this research and to Doctor Herbert Levi for examination and verification of specimens. Space prohibits expression of appreciation to several relatives and fellow sudents who donated their time and services in gathering specimens for this collection.

Literature Cited

Comstock, J. H. 1948. The Spider Book. Comstock Publishing Co., Ithaca, N. Y. Kaston, B. J. 1953. How to Know the Spiders. Wm. C. Brown Co., Du-

buque, Iowa.

Levi, H. W., and Field, H. 1954. Am. Midland Naturalist 51:444-467. Stiles, K. 1938. Proc. Iowa Acad. Sci. 45:285-207.

Stiles, K. 194**0**. Proc. Iowa Acad. Sci. 47:333-342.

Stiles, K. 1944. Proc. Iowa Acad. Sci. 54:473-484.

Worly, L., and Pickwell, G. 1927. Univ. of Nebr. Studies 27:1-129.

An Analysis of Mite Populations in Muskrat Houses¹

ROBERT A. BUCKLEY² AND ELLIS A. HICKS³

Abstract. During the summers of 1960 and 1961, samples of material from muskrat houses in Goose Lake, Hamilton County, Iowa, were analyzed for their acarine content to ob-tain information on the factors influencing the composition of mite populations. Representatives of 18 different families or groups were obtained. Their ecology is discussed from the following relationships: (1) immediately available flora and composition of muskrat houses, (2) size of houses and occurrence of mites, (3) utility of houses and occurrence of mites, (4) sampling area of houses and occurrence of mites, and (5) the mite nonulations themselves and (5) the mite populations themselves.

INTRODUCTION

Houses for the muskrat, Ondatra zibethicus (L.), afford opportunities for studying an interesting complex of mite populations. The profuse organic material, both of plant and animal origins and in varying degrees of decay and wetness, constitutes an abundant food supply for detritus feeders. These are utilized by predaceous mites, some of which, in turn, are preved upon by other mites.

The area chosen for study was Goose Lake, located one-half mile east of Jewell, Iowa, in Hamilton County. This lake, private-

 ¹ This study was supported in part by the National Science Foundation in its 1960 and 1961 Summer Institutes for Research Participation for Teacher Training.
 ³ Biology Instructor, Lincoln High School, Webster City, Iowa.
 ³ Department of Zoology and Entomology, Iowa State University, Ames, Iowa.

IOWA ACADEMY OF SCIENCE [Vol. 69

ly owned, covers an area of approximately 80 acres. Hunting is restricted to the fall season, and, since the lake is not open to the public, it is relatively free of disturbances from boating, fishing, hunting and bathing. These factors, together with the proximity of the area to the Iowa State University campus, constituted a desirable situation for conducting field work.

The houses chosen for sampling were distributed as shown in Fig. 1. Selection of those near the middle of the lake resulted in a degree of isolation impossible to obtain with those near the periphery. Consequently, some sites were chosen near the shoreline of the islands rather than along the outer lake shore.

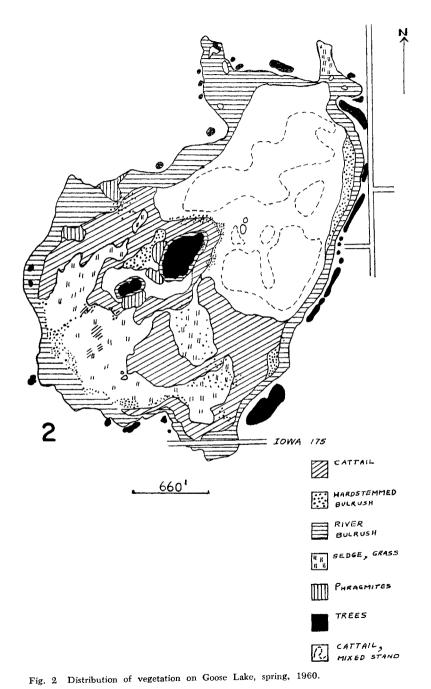

Figures 2 and 3 show the distribution of vegetation in Goose Lake in the springs of 1960 and 1961 respectively. Immediately

Fig. 1 Map of Goose Lake showing location of muskrat houses sampled.

1962]

MITES IN MUSKRAT HOUSES

IOWA ACADEMY OF SCIENCE

Blue joint-grass Water sedge Arrowhead Smartweed Broad-leaved cattail Common reed grass Algae Calamagrastis inexpansa Carex aquatilis Sagittaria cuneata Polygonum natans Typha latifolia Phragmites communis several genera and species

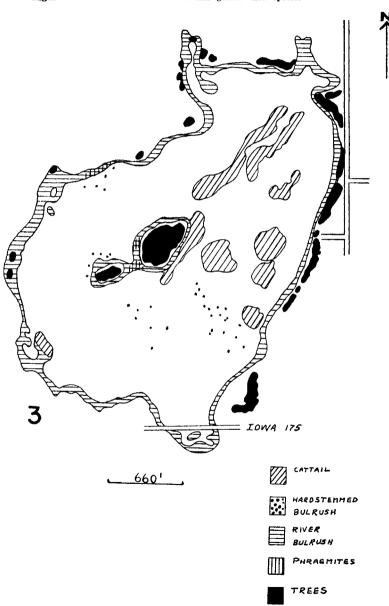


Fig. 3 Distribution of vegetation on Goose Lake, spring, 1961.

1962] MITES IN MUSKRAT HOUSES

apparent is the substantial decrease in emergent vegetation from that present in 1960. According to unpublished information received from Milton W. Weller, Iowa State University, the major factor contributing to the sparse vegetation in 1961 was a high population of muskrats in 1960, using much of the vegetation for construction of houses.

Analysis of the houses revealed they were composed of the following plant materials:

Lesser duckweed Greater duckweed Dotted wolffia Narrow-leaved cattail Large bur-reed Hard-stemmed bulrush River bulrush

Lemna minor Spirodela polyrhiza Wolffia punctata Typha angustifolia Spanganium euryca**rpum** Scirpus acutus Scirpus fluviatilis

PROCEDURES

Field. Fifty muskrat houses were chosen for sampling. Each house was marked by piercing it vertically with a three-eighths inch steel reinforcing rod 12 feet long. The rod was secured by pushing it through the muskrat house into the lake bottom. Each rod was marked by crimping around it an ordinary chicken legband at approximately two feet from the upper end of the rod. Upon each band was stamped a number serving to identify that particular muskrat house.

Initially a sample of one cubic decimeter of material was taken from each of three different regions of each muskrat house. The three regions were at waterline, at an area halfway between waterline and the top of the house, and at the top of the house.

The sampling tool consisted of a metal cylinder with a volume of one cubic decimeter. A bandsaw blade was welded on the bottom, and two three-foot lengths of strap iron were bolted onto the sides of the cylinder so that the two lengths of iron were diametrically opposed. A three-quarter inch pipe was welded across the top of the strap irons thus making a handle. It was hoped that manipulation of this tool in a way similar to use of a soil-testing apparatus would yield a comparatively undisturbed sample. Henderson (1960) used this same type of tool successfully to acquire wheat mite samples. However, the coarseness and toughness of the vegetation comprising the house precluded efficient sampling by this method. The sampling device might have been more effective if a blade with smaller teeth had been used. A reliable method of turning the device faster than is possible by hand might also have added to its efficiency.

The majority of samples were taken by removing a measured cubic decimeter by hand from the muskrat houses. The samples were placed in plastic bags for transport to the laboratory. The number and region of the muskrat house from which each sam-

IOWA ACADEMY OF SCIENCE

[Vol. 69

ple was taken were recorded in permanent ink on a waterproof tag inserted inside the plastic bag. Size and composition of each muskrat house were also recorded at the time samples were taken.

Laboratory. To speed up analysis of the samples, each sample was mixed thoroughly in a container. One-tenth of the original sample was then placed in water and examined by the aid of a dissecting microscope. All arthropods were removed and placed in 70 per cent alcohol. Mites were then removed from the alcohol and placed in chloral hydrate clearing solution. This meticulous and time-consuming method was used in the summer of 1960. However, in 1961, samples were placed in 8er-lese funnels from which the arthropods were collected in 70 per cent alcohol, then cleared in chloral hydrate. After adequate clearing, the mites were mounted on microscope slides by using methyl cellulose for the lightly sclerotized specimens, and modified Hoyer's for the more heavily sclerotized ones.

Analysis

The following five types of relationships were considered:

- 1. Immediately available flora and composition of muskrat houses.
- 2. Size of muskrat house and occurrence of mites.
- 3. Type of muskrat house and occurrence of mites.
- 4. Sampling areas (waterline, middle, or top) and occurrence of mites.
- 5. Mite populations occurring in respective houses.

The texts used for identification of specimens were Baker and Wharton (1952), and Baker et al. (1958).

Relationship of Immediately Available Flora and Composition of Muskrat Houses. An approximate relationship of marsh flora and muskrat house composition has already been noted. Figures 2 and 3 show the distribution of the major types of emergent marsh vegetation. The number of muskrat houses composed of these different types of vegetation is shown in Table 1. A combination of cattail and river bulrush was the material most often used for building by muskrats. The second most used category for building was cattail alone. Figures 1 and 2 suggest that the composition of a house should be approximately the same as the immediately available vegetation. Since little new vegetation was available to the muskrats for building purposes in 1961, the houses consisted for the most part of 1960 flora. In 1961 the house materials were much more decayed and contained a greater per cent of water than in 1960. 1962]

10			

Table 1. Relationship of immediately availab	le flora and composition of muskrat houses.
Emergent flora	Number of houses composed of flora
Cattail and river bulrush	22
Cattail	13
River bulrush	6
Cattail and hardstem	$\ddot{4}$
River bulrush and hardstem	î
Cattail and phragmites	ī
Cattail, river bulrush and hardstem	Ĩ
River bulrush and phragmites	ī
Sedge	ĩ
	_
	FO

Relationship of the Size of Muskrat Houses and Occurrence of Mites. Seven groups of mites (Table 2) were taken from 49 different samples in 1960, and 18 groups (Table 3) were taken from 50 different samples in 1961. To correlate the occurrence of these groups with the size of muskrat houses, the latter were categorized as shown in Tables 2 and 3. For each house size is tabulated the number of specimens of the respective groups taken in the samples, the total number of specimens in combined samples for respective house sizes, and the average number of specimens for each sample. Because houses were a year older in 1961, the average house size was smaller. Thus, no house with a diameter from 116" to 157" was sampled. Progressive decay seemed to be the major factor in reduction of house size. From the evidence provided by the 1960 study, houses with diameters of 95"-115" and 137"-157" had larger mite populations. Houses with diameters ranging from 95"-157" contained higher populations of mites per unit volume than did smaller houses. The 1961 data indicate that houses with ranges of 32"-52" and 95"-115" contained higher mite populations.

Table 2.	Relations	up of	the size	ze of	mu	krat	hou	ises	and	occu	rrenc	e of	mites—1960
Diameter of house in inches			sample house size	25			farr	ily ō	r gro	ens c up in nples	ı		Av. no. of specimens per sample
32-52 53-73 74-94 95-115 116-136			7 18 14 6 2		*E 66 29 33 5	T 0 0 2 0	D 2 10 3 0	P 0 13 13 19 1	A 0 4 0 0 0	S 0 5 21 3 4	MN 0 21 20 13 6	Total 99 93 73 16	$\begin{array}{r} .57 \\ 5.50 \\ 6.64 \\ 12.16 \\ 8.00 \end{array}$
137-157			2 19		11 148	$\frac{0}{2}$	8 23	2 36	0 4	<u>0</u> 33	<u>4</u> 64	$\frac{25}{310}$	12.50
•E=Erema T=Trom		D=D	iplogyı arasitid	niidae		A==	Acar		ae		MN=		stigmatid hs

The data for both years show no correlation between house size and quantity or quality of population. It is doubtful that population variations can be explained on the basis of house size alone. Complementary influences such as the usage made of the house (to be considered in the next section) must also be included.

Relationship of the Utility of Muskrat Houses and Occurrence of Mites. Houses were categorized as active, inactive, feeder, and latrine types. The active type contained the living

			Tab	le 3.	Relatio	onship	of th	ne size	of ma	ıskrat	houses	and o	ccurrenc	e of m	ites—1961	L				
Diameter of house in inches		No. of samples per house size	۰E	т	D	Р	c.	No A S	. of sp H	ecimen L	is of far DE E	nily or g R M	roup in o N ML	ombine ON	d samples OL E	Y AC	м		sp al per	v. no. of ecimens sample
32-52 53-73 74-94 95-115 Total		14 16 13 7 50	193 51 36 241 521	1	1 5 2	18 4	$\begin{array}{cccc} 1 & 0 \\ 1 & 2 \\ 3 & 0 \\ 0 & 0 \\ 5 & 2 \end{array}$	18 9 13	0 0 2 0 2	$\begin{array}{c} 1\\ 0\\ 0\end{array}$		6 21) 13 3 8 1 17	39 18 47 60 164	$\begin{array}{cccc} 11 & 0 \\ 6 & 0 \\ 23 & 3 \\ 16 & 1 \\ 56 & 4 \end{array}$	2 0 0	$\begin{array}{c} 6\\7\\0\\2\\15\end{array}$	391 208 228 384 1211		27.93 13.00 17.54 54.86
	nbidiidae logyniidae sitidae			S= H= L= DE=	Acarida Stigmae Hydrac Laelapt Derma	idae hnellae idae nyssida	e			MN= ML= ON= OL=	=Mesos =Oribat =Oribat	tigmatid tigmatid id Nym id Larv	ae		AC= M=	Erythra Aceose Macro	jidae chelida	ie		
	Type of area of	Tabl	e 5. 1	Relatio	nship c	of the	type	of musk	rat ho	ouse au	nd sam	pling a	rea to ti	ne occui	rrence of	mites-	-1961			
House	muskrat house	۰E	T	D	Р	с	А	S	Н	L	DE	ER	MN	ML	ON	OL	EY	AC	М	Total
Active	Waterline Middle Top	$\begin{array}{c} 44\\72\\142\end{array}$	0 2 0	9 0 1	4 8 5	$\begin{array}{c} 2\\ 1\\ 0\end{array}$	2 0 0	$^{9}_{12}$	0 0 0	$egin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$ \begin{array}{c} 0 \\ 1 \\ 2 \end{array} $	8 8 3	48 45 15	$\begin{array}{c} 7\\12\\14\end{array}$	$\begin{array}{c}8\\3\\52\end{array}$	$\begin{smallmatrix}&3\\&0\\19\end{smallmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	0 0 0	0 0 2	$ \begin{array}{r} 139 \\ 163 \\ \underline{268} \\ 570 \end{array} $
Inactive	Waterline Middle Top	$36 \\ 61 \\ 154$	0 2 0	$egin{smallmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$	$13 \\ 3$	$1\\1\\0$	0 0 0	$\begin{smallmatrix}1\\0\\4\end{smallmatrix}$	$ \begin{array}{c} 2 \\ 0 \\ 0 \end{array} $	0 0 0	${0 \\ 2 \\ 0}$	$2 \\ 5 \\ 1$	$\begin{array}{c}11\\24\\23\end{array}$	$ \frac{3}{7} 8 $	$11 \\ 51 \\ 36$	4 11 17	0 2 0	2 0 0	$1 \\ 5 \\ 5$	$77 \\ 184 \\ 253$
Feeder	Waterline Middle Top	$\frac{2}{4}$ 1	$\begin{array}{c} 1\\ 0\\ 0\end{array}$	0 0 0	0 9 6	0 0 0	0 0 0	0 3 5	0 0 0	0 0 0	0 0 1	0 4 1	6 23 10	$1\\1\\5$	2 0 0	0 0 1	1 0 0	0 0 0	1 0 0	
Latrine	Waterline Middle Top	0 5 0	0 0 0	${}^2_0 \\ 0 \\ 0$	$\begin{array}{c} 1 \\ 4 \\ 0 \end{array}$	0 0 0	0 0 0	$egin{array}{c} 0 \\ 4 \\ 2 \end{array}$	0 0 0	0 0 0	1 0 0	0 2 0	$ \frac{1}{5} 8 $	0 0 1	1 0 0	$\begin{array}{c} 1\\ 0\\ 0\end{array}$	0 0 0	0 0 0	0 1 0	88 7 21 11
TOT	AL.	521	5	15	55	5	2	50	2	1	7	29	219	59	164	56	4	2	15	39 1211
T=Tro D=Dip	maeidae mbidiidae ologyniidae asitidae		A=A S=St	heyleti carida igmaei ydracl	e			DE=D ER=E	reynet	yssida idae	e I Nymj		L=Meso N=Oriba L=Oriba f=Eryth	tid Nyı tid Larv				osejidae crochelid	ae	

1962]

MITES IN MUSKRAT HOUSES

quarters of the muskrat. The inactive house was not used by muskrats for any purpose. The feeder was used as a temporary storage place for food and as a feeding area. The latrine type was used as a defecation site.

In 1960 the active type of house had a much greater mite population than the other types (Table 4). This probably was caused by the presence of muskrats and the addition of new organic materials. One could expect a new inactive type to have a rather sparse mite population, not only because of the relative freshness of the vegetation comprising it, but also from lack of new and varied organic additions. However, houses no longer used by muskrats may commonly be used by birds for perching, preening, and nesting sites; thus, the habitat for mites may be more or less changed. Frequently, feeder and latrine houses are older structures with the bulk of their mass submerged, thus offering substantially less of an actual environment to accommodate large or diversified mite populations.

House	Type of area of muskrat house	۰E	Т	D	Р	A	s	MN	Total
Active	Waterline Middle Top	79 13 18	2 0 0	$13 \\ 9 \\ 1$	$1 \\ 22 \\ 8 \\ 8$	0 0 0	$\begin{array}{c} 0\\ 24\\ 7\end{array}$	9 10 33	$ \begin{array}{r} 104 \\ 78 \\ 67 \\ \hline 249 \end{array} $
Inactive	Waterline Middle Top	9 0 1	0 0 0	0 0 0	0 0 1	4 0 0	0 0 0	2 0 0	15 0 2
Feeder	Waterline Middle Top	$\begin{array}{c} 19\\1\\4\end{array}$	0 0 0	0 0 0	2 0 2	0 0 0	0 0 2	2 0 8	$\begin{array}{r} 23\\1\\16\\-40\end{array}$
Latrine	Waterline Middle Top	3 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	3 0 1
	TOTAL	148	2	23	36	4	33	64	310
*E=Erema T=Tromb D=Diplog P=Parasiti	idiidae yniidae		S	==Acari ==Stigm N==Mesc	aeidae	id Ny	mphs		

	Relationship		the	type	of	muskrat	house	and	the	sampling	area	to	the
occurrence	of mites19	5 0											

The houses sampled in 1961 (Table 5) had noticeably large populations in both active and inactive types, their per cent of the total population being 47 and 42 respectively. The latter figure is especially surprising and tends to discount the singular importance of muskrat occupancy in its effect upon mite population. One must include, also, the size of the emergent portion of the house as well as the age and state of decomposition of the contents as complementary factors. The "contaminative" effect Published by UNI ScholarWorks, 1962

of birds is well illustrated here by the occurrence of Ornithonyssus sylviarum (C. & F.) and Pellonyssus passeri (C. & Y.), both dermanyssids parasitic on birds, in active and inactive houses.

Relationship of the Sampling Area of the Muskrat House and Occurrence of Mites. Table 6 lists families of mites represented in samples taken from the three sampling areas. From these data the following observations are made for 1960:

- 1. Waterline samples were dominated by Eremaeidae.
- 2. Middle samples were dominated by Stigmaeidae and Parasitidae.
- 3. Top samples were dominated by mesostigmatid nymphs and Eremaeidae.
- 4. Eremaeidae and Diplogyniidae were most numerous in waterline samples.
- 5. Parasitidae and Stigmaeidae were most numerous in middle and in top samples.
- 6. Mesostigmatid nymphs were most numerous in top samples.

Table 6. Relationship of the sampling area of the muskrat house and occurrence of mites-1960

<u> </u>	Number of	specimens taken	from sampling	areas
Family	Waterline	Middle	Тор	Total
Eremaeidae	110	14	24	148
Trombidiidae	2	0	0	2
Diplogyniidae	13	9	i	23
Parasitidae	-3	22	11	36
Acaridae	4	Ō	Ō	4
Stigmaeidae	Ō	24	9	33
Mesostigmatid nymphs	13	10	41	64
Total	145	79	86	310

Reference to Table 7 suggests the following relationships for 1961:

- 1. Waterline samples were dominated by Eremaeide and mesostigmatid nymphs.
- 2. Middle samples were dominated by Eremaeidae and mesostigmatid nymphs.
- 3. Top samples were dominated by Eremaeidae and oribatid nymphs.
- 4. Eremaeidae were most numerous in top samples.
- 5. Parasitidae were most numerous in middle samples.
- 6. Stigmaeidae were most numerous in top samples.
- 7. Ereynetidae were most numerous in middle samples.
- 8. Mesostigmatid nymphs were most numerous in middle samples, although they were all represented at waterline and top.
- 9. Mesostigmatid larvae were most numerous in top samples, although they were well represented at both middle and waterline.

- 10. Oribatid nymphs were most numerous in top samples, with substantial yet decreasing frequency in middle and water-line samples.
- 11. Oribatid larvae were most numerous in top samples.

Table 7. Relationship of the sampling area of the muskrat house and occurrence of mites-1961

		of specimens	taken from	sampling areas
<u>Family</u>	Waterline	Middle	Тор	Total
Eremaeidae	82	142	297	521
Trombidiidae	1		-0	5
Diplogyniidae	$1\overline{2}$	Ô	š	15
Parasitidae	7	34	14	55
Cheyletidae	S	2	-0	š
Acaridae	2	ō	Ŏ	15 55 5 2
Stigmaeidae	10	17	23	50
Hydrachnellae	2	-Ò	Ō	ž
Laelaptidae	0	0	í	1
Dermanyssidae	1	3	3	7
Ereynetidae	5	19	5	29
Mesostigmatid nymphs	66	97	56	2 19
Mesostigmatid larvae	11	20	28	59
Oribatid nymphs	22	54	88	164
Oribatid larvae	8	11	37	56
Erythraeidae	1	3	0	4
Aceosejidae	2	0	0	4
Macrochelidae	2	6	7	15
Total	237	412	562	1211

Relationship of Mite Populations Occurring in Muskrat Houses. A measure of the degree of co-occurrence of mite families may arbitrarily be categorized as high, some, and low or none. A high co-occurrence is represented by a ratio (in the form of a proper fraction) of the two populations being compared and having a value of 75 per cent or more. For example, in Table 8, the co-occurrence of Parasitidae and Stigmaeidae in the middle area is expressed as 22/24, which falls within the high category. A low or none category is indicated by a ratio of less than 50 per cent, and those groups with some co-occurrence are represented by a ratio from 50 to 74 per cent. Tables 8 and 9 list the degrees of co-occurrence of the several groups with each other. The symbols "H", "S", and "L" represent high, some, and low or none categories respectively.

Reference to co-occurrence values in Table 8 suggests the following relationships:

1. Waterline. Predominantly low co-occurrence is indicated for most groups, explained partially by the fact that Eremaeidae comprise 76 per cent of the whole mite population taken at waterline. Some co-occurrence is represented by the Trombidiidae-Parasitidae and Trombidiidae-Acaridae populations; however, in both instances only a few specimens are involved. High co-occurrences are represented by the Diplogyniidae-mesostigmatid nymph and Parasitidae-Acaridae comparisons.

2. *Middle*. Some co-occurrence is characteristic of Eremaeidae in this area, this category being descriptive of their relation-

IOWA ACADEMY OF SCIENCE

[Vol. 69

ship to Diplogyniidae, Parasitidae, Stigmaeidae, and mesostigmatid nymphs. High co-occurrences are indicated by the Diplogyniidae-mesostigmatid nymph and Parasitidae-Stigmaeidae ratios.

Table 8.	Relationship	of mite	populatio	ns occui	rring in 1	muskrat	houses-1	960
Specimens per								
by respectiv sampling are		۹E	т	In cor D	nparison [.] P	with A	S	MN
Eremaeidae	a 3		· · · · · ·			A		
Waterline	110		2L	13L	3L	4L	0	13L
Middle	14		0	95	225	0	245	105
Тор	24		0	1L	11L	0	9L	415
Trombidiidae								
Waterline	2			13L	35	4 S	0	13L
Middle Top	0			$^{9}_{1}$	22 11	0	24 9	10 41
- 1	Ū			1		v	v	
Diplogyniidae Waterline	10				0.7	47	0	13H
Middle	$^{13}_{9}$				3L 22L	4L 0	0 24L	10H
Top	ĭ				ĨĨĹ	ŏ	Ĵ9L	41L
Parasitidae								
Waterline	3					4H	0	13L
Middle	$\frac{22}{11}$					Ð -	24H	10L
Тор	11					0	9H	41L
Acaridae								
Waterline	4						0	13L
Middle	0						24	10
Тор	0						9	41
Stigmaeidae								
Waterline	0							13
Middle Top	24 9							10L 41L
•E=Eremaeidae		· · · · · · · · · · · · · · · · · · ·	Δ	=Acarid	مە			
T=Trombidiid	ae		S	=Stigma	eidae			
D=Diplogyniic	lae		M	V=Meso:	stigmatid	Nymph	s	
P=Parasitidae								

3. *Top.* Co-occurrences in this area are predominantly low, the only exceptions being the "some" ratio of Eremaeidae-meso-stigmatid nymphs and the high ratio of Parasitidae-Stigmaeidae.

Because of the scanty information available on the eremaeids, their preponderant occurrence at waterline can not be explained. These mites are described typically as terrestrial, vegetarian, and negatively phototaxic. This specific environment accommodated the last two characteristics but not the first. It is somewhat surprising to find Diplogyniidae most numerous at waterline unless this indicates a commensal relationship with beetles. These mites are known to occur on beetles and other arthropods. Parasitidae and Stigmaeidae would be expected to occupy a drier habitat as indicated by these findings. Since the mesostigmatid nymphs represent a complex of several families, they could be expected to occur in all three habitats.

From the co-occurrence values given in Table 9 are derived the following interpretations:

1. Waterline. Here, again, the Eremaeidae are most numerous, comprising 35 per cent of the total specimens taken at

MITES IN MUSKRAT HOUSES

waterline as compared with 76 per cent for 1960. Mesostigmatid nymphs, comprising 28 per cent of the total, are the next most numerous group at waterline. Oribatid nymphs with 9 per cent, Diplogyniidae with 5 per cent, mesostigmatid larvae with 5 per cent, and Stigmaeidae with 4 per cent complete the most populous groups in this sampling for 1961. Consequently, we find a high co-occurrence of the following groups: Eremaeidaemesostigmatid nymphs, Diplogyniidae-Stigmaeidae, Diplogyniidae-mesostigmatid larvae. and Stigmaeidae-mesostigmatid larvae. Although high co-occurrence values are present for several other groups, their representation is so small that they are believed to have no particular significance. For example, one each adult dermanyssid and adult erythraeid were taken at waterline, giving a perfect high co-occurence. However, this value is of doubtful significance since the former is a parasite of vertebrates; the latter, free-living.

2. *Middle*. The Eremaeidae are again dominant, comprising 34 per cent. They are followed by mesostigmatid nymphs with 24 per cent, oribatid nymphs with 13 per cent, Parasitidae with 8 per cent, mesostigmatid larvae with 5 per cent, Ereynetidae with 5 per cent, and Stigmaeidae with 4 per cent. Of these major representations, high co-occurrences include Stigmaeidae-Ereynetidae, Stigmaeidae-mesostigmatid larvae, Ereynetidae-mesostigmatid larvae.

3. Top. Eremaeidae with 53 per cent of the population are the dominant group, followed by oribatid nymphs with 16 per cent, mesostigmatid nymphs with 10 per cent, oribatid larvae with 7 per cent, mesostigmatid larvae with 5 per cent, and Stigmaeidae with 4 per cent. The eremaeid population is so large that it is precluded from high co-occurrence relationships with other groups. High values involve immature forms and result from Stigmaeidae-mesostigmatid larvae and oribatid larvaemesostigmatid larvae ratios.

Data for 1961 show that eremaeid populations increased from waterline to middle to top in contrast to the almost sequential inverse relationship of 1960. Since the houses marked and sampled in 1960 were also sampled in 1961, considerable change through weathering and decay of the contents could be expected in a year. Decay would be most rapid at waterline, thus affording a more suitable habitat than in the middle or top regions. But with these changes continuing through the year and eventually spreading throughout the emergent portion of the house, the middle and top portions became better habitats for eremaeids. The same explanation can be applied to populations of orbatid nymphs and larvae for 1961.

				Labre	· 9. n	erationsh	10 21		1		ring m		it nouses-							
Specimens per family by respective sampling areas		۰E		<u>D</u>	Р	с	А	S	П	ſ.	DE	In ER	compariso MN	n with ML	ON	OL	EY	AC	M	554
Eremaeidae Waterline Middle Top	$82 \\ 142 \\ 297$		1L 4L 0	12L 0 3L	7L 34 L 14L	3L 2L 0	2L 0 0	10L 17L 23L	2L 0 0	0 0 1L	1L 3L 3L	5L 19L 5L	66H 97S 56L	11L 20L 28L	22L 54L 88L	8L 11L 37L	1L 3L 0	2L 0 0	2L 6L 7L	
Trombidiidae Waterline Middle Top	1 4 0			12L 0 3	7L 34L 14	3L 2S 0	2S 0 0	10L 17L 28	2S 0 0	0 0 1	1H 8H 3	$5L \\ 19L \\ 5$	66L 97L 56	11L 20L 28	22L 54L 88	8L 11L 37	1H 3H 0	2S 0 0	25 65 7	10
Diplogyniidae Waterline Middle Top	12 0 3				7S 34 14L	3L 2 0	2L 0 0	10H 17 23L	2L 0 0	0 0 1L	1L 3 3H	$5L \\ 19 \\ 58$	66L 97 56L	11H 20 28L	22S 54 88L	8S 11 37L	1L 3 0	2L 0 0	2L 6 7L	IOWA A
Parasitidae Waterline Middle Top	$\begin{array}{c} 7\\ 34\\ 14\end{array}$					3L 2L 0	2L 0 0	10S 17S 23S	2L 0 0	0 0 1L	1L 3L 3L	5S 19S 5L	66L 97L 56L	11S 20S 28S	22L 54S 88L	8H 11L 37L	1L 3L 0	2L 0 0	2L 6L 7S	ACADEMY
Chevletidae Waterline Middle Top							2S 0 0	10L 17L 23	2S 0 0	0 0 1	1L 3S 3	58 19L 5	66L 97L 56	11L 20L 28	22L 54L 88	8L 11L 37	1L 3S 0	2S 0 0	2S 6L 7	OF
Acaridae Waterline Middle Top	2 0 0							1 0 L 17 23	2H 0 0	0 0 1	$18 \\ 3 \\ 3 \\ 3$	$5L \\ 19 \\ 5$	66L 97 56	11L 20 28	22L 54 88	${}^{8L}_{11}_{37}$	18 3 0	2H 0 0	2H 6 7	SCIENCE
Stigmaeidae Waterline Middle Top	$\begin{array}{c} 10\\17\\23 \end{array}$								2L 0 0	0 0 1L	1L 3L 3L	55 19H 5L	66L 97L 56L	11H 20H 28H	22L 54L 88L	8H 11S 37S	1L 3L 0	2L 0 0	2L 6L 7L	E
Hydrachnellae Wateline Middle Top	2 0 0									0 0 1	18 3 3	$5L \\ 19 \\ 5$	66L 97 56	11L 20 28	22L 54 88	8L 11 37	15 3 0	2H 0 0	2H 6 7	٧]
Laelaptidae Waterline Middle Top	0 0 1								Continu		1 3 3 L	5 19 5L	66 97 56L	11 20 28L	22 54 88L	8 11 37L	1 3 0	2 0 0	2 6 7L	[Vol. 69

Table 9. Relationship of mite populations occurring in muskrat houses-1961

(Continued)

						incy and	THCK5.	1111 11110	19313 01 1	vince i	opulation	113 111 111	uskiat 110u							
Specimens per family by respective sampling areas		۰E	Т	D	Р	С	А	s	н	L	DE	In ER	comparison MN	with ML	ON	OL	EY	AC	<u>M</u>	19
Dennanyssidae Waterline Middle Top	1 3 3											5L 19L 5S	66L 97L 56L	11L 20L 28L	22L 54L 88L	8L 11L 37L	1H 3H 0	2S 0 0	25 65 7L	1962]
Ereynetidae Waterline Middle Top	5 19 5												66L 97L 56L	11L 20H 28L	$^{22L}_{54L}_{88L}$	85 115 37L	1L 3L 0	2L 0 0	2L 6L 7S	
Mesostigmatid Nymphs Waterline Middle Top	66 97 56													11L 20L 28S	22L 54S 88S	8L 11L 37S	1L 3L 0	2L 0 0	2L 6L 7L	MITES
Mesostigmatid Larvae Waterline Middle Top	$11 \\ 20 \\ 28$														22S 54L 88L	85 115 37H	1L 3L 0	2L 0 0	2L 6L 7L	IN
Oribatid Nymp Waterline Middle Top	hs 22 54 88															8L 11L 37L	1L 3L 0	2L 0 0	2L 6L 7L	MUSKRAT
Oribatid Larva Waterline Middle Top	8 11 37																1L 3L 0	2L 0 0	2L 6S 7L	HOUSES
Erythraeidae Waterline Middle Top	$1 \\ 3 \\ 0$																	2S 0 0	2S 6S 7	S
Aceosejidae Waterline Middle Top	2 0 0								~		·····								2H 6 7	
°E=Ercmaeidae T=Trombidiid D=Diplogyniie P=Parasitidae C=Cheyletidae	ae lae			S= H: L=	=Laela	aeid ae achnellae			MN ML: ON:	=Mes =Mes =Orib	netidae ostigmat ostigmati atid Ny: atid Lar	d Larva mphs	ohs ae	AC = A	Erythrae Aceosejia Macroch	lae				555

Buckley and Hicks: An Analysis of Mite Populations in Muskrat Houses

IOWA ACADEMY OF SCIENCE

[Vol. 69

The adult eremaeids, because of their good passive defense by extensive armoring, probably suffer but minor decimation from the predators such as chevletids and stigmaeids. Moisture content undoubtedly is an important, even controlling, factor for some of the groups. Hydrachnellae, being literally water mites, would be expected to occur at waterline rather than in greater numbers in either of the other two regions. Some acarids, although not classified as water mites, are likely to be more successful if surrounded by a film of water. From a knowledge of general habits, one should expect Trombidiidae, Diplogyniidae, Parasitidae, Cheyletidae, Stigmaeidae, Laelaptidae, Ereynetidae, Ervthraeidae. Aceoseiidae. Macrochelidae. and immature mesostigmatids and oribatids to prosper in moist but not saturated environment. The occurrence of some, such as Aceosejidae, is unexplainable.

ACKNOWLEDGEMENTS

Grateful appreciation is expressed to Dr. Milton W. Weller, Department of Zoology and Entomology, Iowa State University, for his advice and counsel on the subject of marsh ecology, and to Mr. Cecil E. Spatcher, biology instructor in the Ames, Iowa, High School for his assistance with field work and laboratory analysis.

Literature Cited

- Baker, Edward W., J. H. Camin, F. Cunliffe, T. A. Woolley and C. E. Yunker. 1958. Guide to the families of mites. Contribution No. 3, Institute of Acarology, Univ. of Maryland, College Park. pp. ix+242.
 Baker, Edward W. and G. W. Wharton. 1952. Introduction to acarology. MacMillan, New York. pp. xiii+465.
 Henderson, C. F. 1960. A sampling technique for estimating populations of small arthropods in soil and vegetation. J. Econ. Ent. 53:115-121
- 121.