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On the Construction of the Measurable Sets 

DONOVAN F. SANDERSON1 

Abstract. Whenever we have a measure function a defined 
on some set M of subsets of a set T, we may determine a 
binary relation Q between the elements of M by defining, for 
all members A and B of M, AQB if and only if a (A)~" ( B). 
Using such a binary relation, we may derive certain measure 
theoretic properties independently of the real number system. 
In particular, if we use what might be termed a process of 
completion, we may construct, from a system of Borel sets, 
not only a system of Lebesgue measurable sets, but, in general, 
a somewhat larger system. 

In the following paper, we shall state certain measure theoretic 
results, without proof, which can be derived using a binary re
lation rather than a measure function. For typographical reasons, 
we shall denote the intersection and union of two sets, A and B, 
by A · B and A + B respectively. If A is a subset of B, we shall 
write A < B. The empty set will be denoted by (). 

A measure function a on a set T induces a partial order Q on 
the set of measurable subsets M of T, if we define, for all A and 
BeM, AQB if and only if a(A)~a(B). Such a binary relation can 
easily be shown to satisfy the following axioms. 

Axiom 1. If A and BeM, then either AQB or BQA or both. 
Axiom 2. If A and BeM and A<B, then AQB. 
Axiom 3. If A,B, and CeM, AQB, and BQC, then AQC. 
Axiom 4. If A,B, and OeM and AQO, then (A+B)QB. 
Axiom 5. If A1 and OeM and A1QO, for all positive integers i, 

then~ A1eM and (~A1)QO. 
i i 

A binary relation which satisfies the above axioms will be 
termed a measure relation. 

In the remainder of the paper, we shall assume that M is 
closed under countable unions and set differences, and contains 
0. We note this implies that M is closed under countable inter
sections. \Ve shall also suppose that a measure relation Q is 
defined on M. 

Definition 1. If A and BeM, then A(=)B if and only if AQB 
and BQA. 

Definition 2. If A and B<T, then A(=) 1B if and only if there 
is a DeM such that DQO and (A-B)+(B-A)<D. 

A(=)B corresponds to saying that A and B have the same 
measure. A(=)iB is analogous to saying that A and B are equal 
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almost everywhere, that is, except on a set of measure zero. 
We may now prove the following theorem. 
Theorem 1. (i) (=)and (=)1 are equivalence relations on their 

respective domains. 
(ii) If A and BeM and A(=)iB, then A(=)B. 

In general, however, we may have A(=)iB without having 
A(=)B, even though A is a member of M. To eliminate this pos
sibility, we shall now extend the domain of definition of Q. 
Definition 3. (i) H(M)=i A I There is a BeM such that A<B. r· 

(ii) If AeH(M), then P(A)=1 BIA<B and BeM. ~· 
(iii) If AeH(M), then P(A)=1 BIB<A and BeM. ~· 

Definition 4. Ai:L(M) if and only iC::S B(=)i7TB. 

BeP(A) BeP(A) 
L(M) will be called the set of Q-measurable sets with respect 

to M. 
Theorem 2. L(~'I) is closed with respect to countable unions 

and set differences. 
\Ve will now impose a measure relation on L( M ), with the aid 

of the following definition. 
Definition .5. If A and BeL(M), thenAQB if and only if for 

every CeP(B) there is a DeP(A) such that DQC. 
Theorem 3. (i) Q is a measure relation on L(M). 

(ii) Q corresponds with Q on M. 
The following theorem is now derivable. 
Theorem 4. If A(=) 1B and AeL(M), then BeL(M) and A( )B. 

( ( ) is the equivalence relation corresponding to Q.) 
At this point, we shall note a few things. If Q had been induced 

by a Borel measure a on a set M of Borel sets of a topological 
space T, then a set A<T would be Lebesgue measurable if and 
only if there existed a set BeM such that A(=) 1B. Thus, by the 
previous theorem, L( M) would contain the Lebesgue measurable 
sets. However, in general, L( M) will be somewhat larger. 

Also, one might ask whether it is possible to extend L(M) by 
using the above procedure. The answer is contained in the fol
lowing "closure" theorem. 

Theorem 5. L(M)=L(L(M) ). 
Needless to say, the previous paragraphs left many questions 

unanswered. Some of these questions are answered in (1) and, 
it is hoped, a subsequent series of papers will answer many 
more. 
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