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Proton Orbits in a Small Cyclotron 1 

RONALD w. MOSES, JR.2 

. Abstract. In the the~reti~al .study of a cyclotron, it is pos­
sible to make many srmphfymg approximations and obtain 
satisfactory results. For example, off-center orbits may be 
considered as circular in some cases. A method was de­
veloped to simulate cyclotron operation by calculating the 
trajectories of proton motion in cylindrical coordinates: Re­
sults of the calculations were then used to determine where 
simpler calculations may or may not be used. The conclusion 
is that resonant couplings between axial and radial oscillations 
should be studied by the calculation of proton trajectories. It 
is unnecessary to study electric decelerations with this method 
since circular orbit approximations appear to be suffi:cient. 

To study the operation of a cyclotron it is often unnecessary 
to calculate the position of a proton as a function of time. In­
stead one may approximate orbits as a series of discontinuously 
connected semicircles with increasing radii. Studies of this type 
were carried out by Rose1. Mueller2 performed a theoretical 
study of the ISU Cyclotron using these methods. 

In studying the ISU Undergraduate Physics Cyclotron it be­
came apparent that it would be useful to calculate the coordi­
nates of a proton as functions of time. The magnetic field in this 
cyclotron is assumed to be azimuthally symmetric with its cen­
ter at that of the dee box. Protons may begin orbits over a centi­
meter from the center of the field. Since the field decreases ra­
pidly near the maximum radius of ll.25cm, circular approxima­
tions of these orbits may introduce significant errors that would 
not appear for protons starting closer to the center or moving in a 
larger machine with a more uniform field. Also a resonant coupl­
ing between radial and axial motions in the region of 10. lcm 
radius causes many protons to lose the positive effects of mag­
netic focussing and strike the dees. The purpose of this report 
is to briefly discuss and analyze a method developed to solve 
the equations of motion of a proton in the cyclotron by using 
numerical integration. 

THE METHOD OF ORBIT CALCULATIONS 

The azimuthally. symmetric magnetic field is defined as 
B = -BZ" + B,. 1; where B and Br are functions of r 
and z. If a proton with speed v is to travel in a circular orbit 
about the center of the field in the median plane, the orbital 

1 The project was assisted by a National Science Foundation Undergraduate Research 
Participation grant. 
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404 IOWA ACADEMY OF SCIENCE [Vol. 70 

radius will be r0 = ;7 ) This is called the equilibrium orbit. 
e ro . 

The proton encounters no radial field and the same axial field 
at all times; therefore, it must have an angular velocity 

¢ = e B ( ro). All other protons with speed v will have their 
m 

coordinates oscillate about r = r0 and z = 0. Here the effects 
of the electric accelerating field are not considered. 

z 

COORDINATE SYSTEM IN THE CYCLOTRON 

Figure 1. Coordinate system in the cyclotron. 

A first order approximation gives the angular frequency ot 
radial oscillations as Wr = ·cj, 'V 1 - n and that Of axial oscilla-

• r a B h' h tions as wz = cp \fllwhere n = - -B--. The degree to w ic ' or 
an orbit is off-center is defined as the displacement, 8 r = rA -ro, 
where rA is the maximum orbital radius. Note that throughout 
this report the radius of the equilibrium orbit (ro) is related to 
proton speed by the equation 

(1) ;_ eB(ro) 
v t:- ro m 

The calculation of a proton's position as a function of time is 
the most complete method of anaylzing proton motion, but this 
requires the largest amount of calculation. This study is de­
signed to use said calculations to determine where thev are 
necessary and where simpler methods may be used. ' 

Calculations in this paper deal mainly with the actions of 
off-center orbits with a r :::;;; lcm. The study should indicate 
whether or not ar changes significantly as proton ·energy in­
creases. Studies of magnetic focussing by Rose1 and Mueller2 
predict that the amplitudes of axial oscillations will decrease as 
orbital radii increase. A resonant coupling between the radial 
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1963] PROTON ORBITS 405 

and axial oscillations occurs where Wr = 2 Wz, at r = 10.lcm 
with n = 0.2. This study should indicate the effects of resonance 
on the axial motions. Also considered in this paper is the 
functional relationship between or and the maximum enugy 
a proton may obtain before being electrically dece~erated. 

Since the magnetic field is approximately uniform up to 5cm 
radius, orbits in this region will be considered as circular and as 
having constant displacement (or). These orbits will not be 
discussed here since problems concerning them are basically 
related to the electric field. Many of the problems involving ef­
fects of the electric field on the small orbits have been studied 
by Cohen3 • . 

i'1agnetic Field Approximations 
It has been assumed that the field is azimuthally symmetric 

with respect to the center of the dee box. That is, the field has 
no angular component and is independent of angular position. 
Since the pole faces are symmetric with respect to one another, 
there is no radial field component ( B,. = 0) on the median 
plane (z = 0). Neglecting the electric field of the <lees, Max­
well's equations in the dee box are V X B = 0 and \l · B = 0. 

F th d . 0 B c Br d Br 0 Br rom ese one may enve -.:::;-- = ---:::.-- an - + --:::.--= 
ur uZ r vr 

_Q.!!_. Since Br is equal to zero on the median plane, the follow­o z 
ing approximation is valid for small axial displacements: 

B, = - z~. In the present study, the axial displacements are a r 
considered to be small, and ~is equal to zero on the median 

0 z 
plane. Hence, it was approximated that B is independent of z. 
Then the magnetic field approximation is B = - B(r)Z" - z 
dB~ 
~r. 

A magnetic field approximation developed by Dr. D. E. Hud­
son was used in this study. This relationship is shown graphically 
in Figure 2; the mathematical expression is: 

(2 ) B(r) = [17,000 + 0.25cm-2r2 + 0.232cm-3r3 - 0.0118cm4r4 

+ 6.2lcm-1LG1Q- 10 ~1 1.6] gauss. 

Equations of Angular and Radial Motion 
Since the axial displacements are considered small and have 

oscillation frequencies lower than the revolution frequency, the 
axial component of v is neglected in solving for r(t) and <f>(t). 
This is equivalent to solving for the angular and radial compon-
ents only, on the median plane. 
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Figure 2. Approximation of the azimuthally symmetric magnetic field. 
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Figure 3. Definition of /3 (t). 
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1963] PROTON ORBITS 407 

To solve the equations of motion on the median plane by 
numerical integration, the calculations are simplified by trans­
forming r and cp into (3, the ~gle between the velocity vector 
(v) and the tangential vector (cp). 

By projecting v on a line parallel to "$', one may see that the 
tangential velocity of the proton is r~ = v cos (3. The angular 

•• ( /3 sin,B i- cos,B ) 
acceleration is cp = -v C · r + r2 ) • Likewise, the radial 

velocity and acceleration are i- = v sin,B and i- = v~ cos}} re­
spectively. The force on a proton is F =1° v e B cos (3 + q; v e 
B sin,B. After transforming the acceleration terms to cylindrical 
coordinates, the equations of motion may be written as follows: 

-v e B(r)cos (3 ~ m (r-r ~2), and 
v eB(r)sin,8 = m (r ¥ + 2 r cb ). 

The above equations yield the following differential equation: 

( 3 ) iJ = v cos(3 _ eB ( r) 
r m rt 

By integration we have r = I v sinf3 dt' + r1 where r1 is the 
Jo I 

radius at t = 0. Note that (3 =0 when ri is either a maximum or 
minimum, then consider r1 to be a maximum. Then we have 

(4) a(t) =ft vc~s/3 . _ eB(.f0~'v.sin,8dt"+r1 ) dt' 
,., fVv sm(3 dt" + r, ro . , . . . 

0 • . 

This equation gives (3 as a function of'.time. A simplified Runge­
Kutta method was used to solve for .fi· by numerical integration. 

('t 
J oV sin(3 dt' +r; and 

Since it was known that r = I 
</> = f; v c;s f3dt', and these valu~s are contained in equatio~ 4, 

it is now possible to compute the radial and angular coordinates 
of a proton as functions of time. ~ · 

Equation of Axial Motion 
From the relation ma = e v X B, one may derive the equation 

of motion in the axial direction, m 'i = - r ¢ e B,. If r cf> i~ 
approximated as v, only second order accuracy is lost since ~ </> 
= v (cos f3) (cos 6 ), where 6 is the angle between the velocity 
vector and the median plane. Since f3 and 6 are of the order of 
O 1 radian the error is considered insignificant. When the ap­
p~oximatl~n of the radial magnetic field is used, the equation of 
axial motion becomes ., 

( 5) z - ~ ddB z = 0. m r 

5
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To solve this equation of axial motion, it was combined with 
the solution of the equations of angular and radial motion. Then 
a numerical integration was performed to obtain z along with 
rand cp. 
Electric Accele1'ations 

In order to simulate the operation of the cyclotron, it is neces­
sary to sh1dy the effects of the dee-to-dee electric field. For the 
present study, the electric field is considered as concentrated in 
a region of zero width at the center of the dee gap. The dee-to­
dee voltage is defined as V; therefore, a proton will receive 
a boost of energy, 6E = e V, when it crosses the dee gap. It is 
assumed that the momentum is altered only in the direction per­
pendicular to the d~ gap and parallel to the median plane. 
From the above, appf?ximations for the changes in v and (J were 
derived using Taylor's series expansions: 

(6) 6E ( l\E) 2 (6E) 8 
f::...v= -- + and mv 2m2v8 2msvli ' 

(7) 

During this instantaneous acceleration r, z and z are not alter­
ed. Hence, if the coordinates and velocities of a proton are known 
just before acceleration, they may be determined for the instant 
directly afterwards. 

The electric field oscillates at an angular frequency of w. 
The angular position of the electric vector is dyfined as wt +00 • 

The voltage drop at the dee gap is defined as V0 cos( wt+ 00 ) 

where V 0 is the maximum dee-to-dee voltage. The angle from r 
to the electric vector is defined as (J = wt - cp + 00 • The number 

of half-revolutions is defined as v =!/!__; therefore, V = V0 cos 
' 7T 

( e + riv). Since 1TV is approximately an integral multiple of 
7T when the proton is at the dee gap, it is possible to state that 
the potential drop in the direction of proton motion across the 
dee gap is V = V0 cosfJ. 

If () becomes greater than ; or less than - ; , the proton will 

be decelerated. If an orbital radius were to exceed that of an 
initial decelen\tion, the proton energy would increase since ve­
locity and radius are proportional; however, this contradicts the 
loss of energy in deceleration. Hence, it is assumed that once a 
proton suffers an electric deceleration it will never reach a 
greater energy. 

6
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ARRANGEMENT OF CALCULATIONS FoR COMPLETE SOLUTION 

A series of programs were written to study off-center orbits 
using the Cyclone Computer at Iowa State Universitv. The ini­
tial conditions of position and velocity are specified; and then 
the computer takes over to simulate cyclotron operation by 
calculating the coordinates of a proton as functions of time. The 
equations used during the computations are mainly Equations 
4, 5, 6 and 7. The maximum dee-to-dee voltage (V0 ) and the 
magnetic field approximation must be supplied for the program 
to operate. 

Initial Conditions 

It is most convenient to start an orbit at an apogee. The ini­
tial speed (vi), phase lag ( 80 ), orbital displacement ( Bri) and 
angular position of the apogee ( CTri) are specified. Also the initial 
axial position and velocity ( z; and i;) are entered. 

Figure 4. Vector representation of initial axial displacement and velocity. 

For a general study of axial motion, a uniform distribution 
of z1 and i 1 must be considered. The angular frequency of axial 
motion is approximated as Wz = ¢'\/fl(rJ. Note that z1 and Z; 
may be represented in a two dimensional vector space by z,, as 
in Figure 4. The magnitude of Za is the amplitude of the axial 
oscillations. Note that Equation 5 is linear; therefore, the units 
of Za are arbitrary. Hence, only the direction of Za is significant 
in forming a uniform distribution. The angular position of Za is 
defined as CTz'. Then we have Z; = Zacos CTz' and Z; = Wz Za sin 
CTz'. To study a uniform distribution of z1 and z1, values of CTz' 
were chosen to be CTz' = 

7
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N ; where N = 0, 1, 2, · · · 7. Eight calculations were performed 

while only o-z' was varied. Other integral values of N would give 
the same results with a possible reversal in sign. The true axial 
motion is not quite simple harmonic, but this gives a reasonable 
distribution approximation. 

Computation 
As the calculations are carried out, the computer outputs r 

and cf> at apogees and perigees in radial positions. It gives z and 
cf> at maxima of izl. It also outputs r, cf> and 0 at selected dee gap 
crossings. Note that nowhere is t mentioned. Even though r, cf> 
and z are functions of t, their relations to one another are more 
useful to study sill!ce these have more experimental significance. 
The basic results of the calculations may be graphed as in Figure 
5. The overlapping plots of z vary only in the initial condition 
o-z'. Since the approximations of the magnetic field and the solu­
tions for radial and angular motion give r and cf> as independent 
of z, only one graph of r versus cf> is needed when variations in 

a-'L.' are considered. Here a-z' = N ~ where N = 0, 1, 2, and 3. 

AXIAL OSCILLATIONS IN THE 1.S.U. CYCLOTRON 

r0 i :: 9.0 cm. 

8r1 = 0.5 cm. 

4 6 8 ~ ~ ~ ~ IB W H M U n ~ ~ M ~ ~ ~ 

ANGULAR POSITION 

(<f>hr) rad/.,,. 

Figure 5. Orhit plot, as calculated on the Cyclone Computer at Iowa State University. 

Checks on the Computational Method 

Since the process of numerical integration is an approximation 
itself, it is necessary to be certain that it yields the desired ac-

8

Proceedings of the Iowa Academy of Science, Vol. 70 [1963], No. 1, Art. 67

https://scholarworks.uni.edu/pias/vol70/iss1/67



1963] PROTON ORBITS 411 

curacy. Since the solution of the actual cyclotron problem is not 
known, a problem was devised for which a solution could be 
found simply. The program calculates the angular and radial 
coordinates of a proton in a magnetic field unaffected by an elec­
tric field. It was checked by entering a uniform magnetic field. 

The results should be circular motion with r0 = :~There should 

be no change in the coordinates of the apogees and perigees (no 
precession), and the average angular velocity should be that 

predicted by the cyclotron equation ( 'j _ ~ ) . The program for 

axial motion was checked by entering a constant term for the 

gradient ( ~ ) . The maximum of lzl should be constant and the 

~equency of oscillations should be thiit predicted ( wz= 
~ 'V_ n(ro) ) . The 12rogrnm that simulates the electric accelerations 
was checked by entering it many times, as in a lengthy orbit 
study. The results of each acceleration were used as initial condi­
tions for the next. Then the cyclotron equation and momentum 
transfer hypotheses were used to predict the :final results in one 
step. The two sets of results were then compared for accuracy. All 
of the tests made on the program indicated that the errors result­
ing from computational methods would not be as significant as 
those due to the experimentally determined quantities such as 
field values. This does not include the errors resulting from the 
magnetic field approximation for points away from the median 
plane of the dee box. These errors can be studied when more is 
known about the magnetic field shape. 

RESULTS 

Figure 5 gives a general picture of proton motion. Note the 
amplitude expansion of axial oscillations in the region of 10. lcrn. 
This is the predicted resonance at n = 0.2. Also at r = 10.3cm 
where n = 0.215 ( Wz """ 2~) there is a coupling due to the shifting 
of the orbit as a result of the electric accelerations. Since the two 
resonances are only about 0.2crn apart, the amplitude expansion 
cannot be considered as a result of only one of the two factors. In 
one plot of z the coupling had the opposite effect by reducing 
the amplitude of axial oscillation. 

At the left of Figure 5 each axial oscillation is approximately 
one-eighth of an oscillation out of phase with respect to the next 

one, since er.,,' varies by : . At the region of resonance, some of 

the oscillations have encountered phase localization; that is, all 
but the reduced oscillations are very nearly in phase. 

In an orbit study which began with r0 1 = 5cm and 8 ri = 
9
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0.5cm, the phase distribution remained approximately constant 
until the radius entered the region of resonance. Then the axial 
motions obtained were very much like those graphed here. This 
indicates that phase localization of axial oscillations at radii 
greater than 5 cm is generally caused by resonances. 

The study beginning with r0 ; = 5cm also indicated that 8 r in­
creased to approximately 0.7cm at maximum radius; therefore, 
off-center orbits do not become circular as their radii increase. 
Improved field approximations entering dependence of r and cfJ 
on z may alter this statement. 

1-­
z 
LU 
:::?: 7 
w 
u 6 
<t "' ...J +-
g;·~ 5 
0:::1 
..J >-4 
<( .. _o 
x ... 5 
<(.:!:: 

2-e 
:::> Cl 2 
::!!: . 

x 
<( 

:a 
~2 ~4 ~6 ~8 

INITIAL ORBITAL 
DISPLACEMENT AT r. ~ 9 cm. 

01 
<Sr1) cm. 

Figure 6. Maximum axial displacement and maximum energy obtainable as functions 
of initial orbital displacement. 

Amplitudes of Axial Oscillations 

To obtain Figure 6, a series of calculations was perf01med 

with r0 ; = 9cm, 60 = 0, <rz' = N ; and 8 r1 varying from O.lcm 

to l.Ocm. For each value of 8 ri the maximum value of lzl was 
obtained. For example, if a proton entered the orbit with 8 r1 = 

0.5cm, its axial amplitude should be less than 6~1times the height 

of the dees if there is to be 100% certainty that the proton will not 
strike the dees. 

Maximum Energies 

The graph of maximum energies in Figure 6 was made from 
the same calculations as the graph of maximum JzJ except that 
the axial motion was neglected in the former case. The orbits 
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Proceedings of the Iowa Academy of Science, Vol. 70 [1963], No. 1, Art. 67

https://scholarworks.uni.edu/pias/vol70/iss1/67



1963] PROTON ORBITS 413 

were discontinued at maximum energies because () became 
'TT 

greater than 2 ; this caused an electric deceleration in each case. 

Note that the maximum energy decreased by about 3% as 8 ri in­
creased from O.lcm to lcm. 

CONCLUSION 

A study by the author indicated that the average angular ve­
locities of off-center orbits are lower than those of centered orbits 
of the same energy. Since () = wt - cf> + ()0 , () will reach ; 

sooner for off-center orbits and will terminate them at lower 
energies. The variations in $ due to changes in 8 r1 are much 
more pronounced at large radii in the less uniform portion of the 
field. Therefore, it is expected that orbits with r0i~ 9cm would 
show only slightly greater variations in maximum energy than 
those of Figure 6. 

An orbit is considered prematurely terminated if the proton 
does not reach the maximum energy obtained by another proton 
with the same initial conditions except 8 ri = 0. On comparing 
the two graphs in Figure 6 it was concluded that resonances 
have far more effect on premature termination of off-center orbits 
than do electric decelerations. 

The results of this study indicate that the resonant conditions 
must be considered in making studies of proton motions in the 
region of 10.lcm radius. The effects of off-center orbits on the 
energies at which electric decelerations occur appear to be negli­
gible. For nonresonant orbits it would be advisable to develop 
a simpler method for studying off-center orbits. 

In the case of a centered orbit, the proton will strike the tar­
get when r0 exceeds rt, the target radius. Target energies would 
be approximately single-valued for centered orbits for which 

mv2 [r e B(r )]2 . 
E = 2 = · 0 2m 0 · • However, off-center protons may strike 

the target whenever r0 + 8 r exceeds rt. It is then possible to 
have heterogeneous target energies since r0 , and consequently E, 
may vary. Therefore, any simplified method of off-center orbit 
study must include a means for considering heterogeneous target 
energies. 

The approximations of the magnetic field and the axial motion 
studies are valid for small axial displacements. It would be wise 
to determine the maximum amplitude of axial oscillations that 
this method can handle before significant errors arise. It is neces­
sary to have a more accurate means of approximating the mag­
netic field before this can be done. 

11
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