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u1. I 

ABSTRACT 

The process of encoding information for transmission .from one source to 

another is a vital process in many areas of .science and te.cbnoJogy. Whenever 

coded information is sent, there arises a certain possibility that an error will occur, 

either during transmisson or in decoding. Therefore, it is imperative to develop 

methods to detect and correct errors in a code. The study of coding theory is a 

"new" area of mathematics which is relatively undeveloped. 

This paper focuses on the properties of linear codes -and their 

corresponding methods of error-correction. To simpJify the issue, only binary 

block codes are studied; hence all digits are either O or 1. The operation of 

addition is defined over modulo .2. In the decoding process, the principle of 

"maximum likelihood decoding" is used. This principle assumes that a minimum 

number of errors will occur in each codeword, since the overall probability of error 

decreases exponentially with the total number of errors. 

Whenever a string of digits is encoded, the digits are multiplied by a 

generator matrix, which returns the original digits and a specified number of 

check digits. The check digits are helpful in detecting and correcting errors. The 

parity check matrix, H, is also determined from the generator matrix. If the 

product of Hand the transpose of the received word is O, then the received word 

.· is indeed a codeword. If the product is not o, but is in fact the ith column of H, 

then an error occurs in the ith digit of the received string. The Hamming codes 

are specific linear codes which contain a maximum number of distinguishable 

columns. Therefore, the Hamming codes are ideal for error-correction, provided 

that only one error occurs in each codeword. 



IV. 

It has been speculated that Hadamard matrices are ideal for the coding 

process, due to the mutual distinguishability of every row and column of the 

matrix. An Hadamard matrix is a square matrix of order n whose entries are 1 

and -1 , and which satisfies the equation HHT = nl, where I is the identity matrix of 

order n. It is known that Hadamard matrices exist only for orders n = 1, n = 2 or 

n=O(mod 4). The rows and columns of-the -Hadamard matrix are orthogonal and 

linearly independent, which makes them ideal generator -matrices. Hadamard 

matrices can be constructed using several different methods. 

In his paper Hadamard Matrices and Doubly Even Self-Dual Error­

Correcting Codes, Michio Ozeki proposed that if the rows of the generator matrix 

for a binary [n, k] code C all have weights divisible by 4 and are also orthogonal, 

then C is a doubly even self-dual code. Furthermore, when C is generated by a 

Hadamard matrix, the result is a doubly even self-dual linear [2n, n] code. 

It is now necessary to determine whether two codes will be equivalent if 

their corresponding -Hadamard matrices are equivalent. The remainder of the 

paper will be devoted finding unique [56, 28] Hadamard codes. It is not known 

how many different Hadamard matrices exist of order 28. The method of integral 

equivalence will be used to determine the relationship between t'No distinct 

Hadamard matrices. A computer program will generate au of the individual 

· codes. 
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Introduction: 

LINEAR CODING AND ERROR-CORRECTION 

KAREN S. BROWN 

In many areas of science and technology, it becomes necessary to 

-transmit information from one source to another, as in the transfer of data from 

one computer to another. Such was the case with the photographs taken of Mars 

by Mariner 9. In order to transmit information, it must first be converted into some 

type of code, which can easily be decoded by the receiver. Upon transmission, 

however, the code may possibly be modified due to human or random err.or. 

Usually, if an error occurs a code can be re-transmitted, and the error correcte_d. 

However, many times messages cannot be sent again. Therefore, it is necessary 

to determine a process for detecting and correcting errors in a code. In 1950, 

Robert W. Hamming published a paper on error..:correction for linear codes, which 

pioneered the further study of coding theory. The purpose of this paper •.vi!! be to 

study the general properties of codes, discuss simple linear codes and their 

corresponding methods of error-correction, and analyze a specific type of linear 

code, namely that generated by Hadamard matrices. 

This paper will focus on binary block codes, in which all information is 

· transmitted as a string of zeros and ones. A codeword is such a string of n O's 

and 1 's, which consists of k (k<n) message digits and r (r = n-k) check digits. 

The total number of possible combinations of strings of length n using on1y O's 

and 1 's as digits is 2n . For example, the total number of strings of length 6 is 26, 

or 64. Of these 64 strings, not all are codewords, but only a certain few. 

Suppose that the previous string contained only 3 message d;gits and 3 check 

digits. Since the check digits are determined by the message dig:ts, the actual 

number of codewords will only be 23, or 8. Hence, not all possible strings of 
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number of codewords will only be 23, or 8. Hence, not all possible strings of 

length 6 are codewords, and therefore a method of error-detection must be found 

that will determine actual codewords from random strings of digits. It must also 

be noted that binary coding is defined over addition modulo 2. Hence, 1 + 1 = 0. 

Properties of Codes: 

Before studying specific types of codes, a general overview of basic 

properties of codes and error correction must be reviewed. The Hamming 

distance - named after R. W. Hamming - is defined as the number of digits that 

are different between two strings. For example, if d(x,y) is the symbol denoting 

the Hamming distance between x and y, then: 

d(011010, 000110) = 3 

because the second, third and fourth digits differ. In the first string, these digits 

are 1, 1 and O respectively; in the second string, they are 0,0, and 1 respectively. 

The first, fifth and sixth digits in both sets do not differ; they are 0, 1 and 0 

respectively in both strings. Therefore, since three digits differ, the Hamming 

distance is three. This can be rewritten as 
n 

d(x,y) = I: i=1 lxi - Yil, 

for all strings x and y of length n. This is obvious, because the only time the sum 

is incremented is if the digits between x and y differ. 

The Hamming distance is in fact a metric, in that it satisfies the four basic 

properties of metrics. 

PROOF: 

Property 1: d(x,y) ~ 0 for all x, y. 

Since d(x,y) is defined in terms of absolute value, d(x,y) is always positive. 
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Property 2: d(x,y) = 0 if and only if x = y. 

If d(x,y) = 0, then xi = Yi for all i. Thus, x must equal y. 

Property 3: d(x,y) = d(y,x) for all x,y. 

Now d(x,y) = ri~1 lxi - Yil. By properties of absolute value, this is 

equivalent to r r:1 ly; - xii. Therefore, by definition of distance, this 

becomes d(y,x) . Hence, d(x,y) = d(y,x). 

Property 4: d(x,z) $ d(x,y) + d(y,z) for all x,y,z. 

d(x, z) = Li~1 IXj - Zil 

n 
= L j: 1lxi - Yi + Yi - Zjl 

$. ri~1 (lxi -y;I +ly; +zil) by the Triangle Inequality. 

< r ·!l1 lx·-y·I + L·~1 IY·-z·I - I- I I I- I I 

But then L·~1 Ix- - z·I .s. L r:,__1 Ix· - y·I + L '2-1 IY· - z-1. • I- I I I- I I I- I I 

Hence, d(x,z) .s. d(x,y) + d(y,z) . 

Therefore, since d satisfies all properties of metrics, the Hamming distance is a 

metric. 

Q.E.D. 

Now in order to detect an error, the error must convert a codeword to a 

non-codeword. Therefore, there must be a minimum number of digits that are 

different between each individual codeword . This is called the minimum 

Hamming distance, or d. If d = 1, then codewords only differ in one digit, so 

errors would be impossible to detect. For example, suppose that the digit string 

001010 was sent, and the string 001011 was received. If d = 1, then 001011 

would also be a codeword , and the error would not be discovered. The greatest 

number of errors that can be detected in a code is (d-1) . This is obvious, 
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because if there are d number of errors in a codeword, then the original word 

would be received as a different codeword. 

Detecting errors and correcting them are two very different matters. 

Although (d-1) errors can be detected, even fewer can be corrected. The type of 

decoding used in this paper is called "maximum likelihood decoding," which 

minimizes the probability of an error occurring. For example, when using strings 

of length 6, assume that each of the six digits has an equal probability of error p. 

Suppose p = 0.01 , so that the probability of each digit being correct is 0.99. 

Since addition is defined modulo 2, each digit can be thought of as an 

independent set of Bernoulli trials. Therefore, the probability of the string being 

entirely correct would be (8)(0.99)6, or 0.9415. Similarly, the probability for one 

error would be (t)(0.01 )(0.99)5 , or 0.057. The probability for two errors would .be 

(~)(0.01 )2(0.99)4, or 0.00144. Since the probability decreased with the number of 

errors, it is assumed that fewer errors are made. Using a code with two words, 

namely 000000 and 111111 , d = 6, since the minimum Hamming distance 

between the two "words" is 6. Therefore, up to 5 errors can be detected. 

However, if the string 010111 is transmitted, errors can be detected, but cannot 

be corrected, because it cannot be determined which of the codewords was 

meant to be sent. By using maximum likelihood decoding, it can be assumed that 

. since d(OOOOOO, 010111) = 4 and d(111111, 010111) = 2, the string to be sent 

was 111111 . 

This "error-correcting" method is called the nearest-neighbor rule. Using 

this rule, all errors which occur in fewer than (d/2) digits can be corrected. If 

fewer than (d/2) errors are made, then there is exactly one codeword to which the 

incorrect word is closest, and to which it can therefore be corrected. If there are 

(d/2) or more errors, many codewords are of equal distance from the incorrect 

word . Therefore, the string received cannot be corrected. Using the example 



5 

above, it is assumed that 010111 has less than (d/2) errors that are detected; it 

can be corrected to 111111 . Suppose instead that 010101 was received . This 

string has (d/2) or 3 detectable errors. It is clear that this cannot be corrected, 

since it is of equal distance from both 000000 and 111111 . The number of errors 

whicrrcani>e corrected from the nearest neighbor rule is: 

t = f(d/2)-11 . where rxl is the least integer greater than or equal to x. 

From this principle comes the following theorem: 

THEOREM 1: Suppose that d is the minimum Hamming distance between 

two codewords in the binary code C. Then no error-detecting rule can detect 

more than (d -1) errors and no error-correcting rule can correct more than 

t = l(d/2) - 11 errors. [13] 

PROOF: From the discussion above, it is clear that no error-detecting rule 

can detect more than (d - 1) errors. However, the error-correction conclusion is a 

bit more difficult to explain. 

Suppose an error-correction rule R exists, which can correct up to (t+1) 

errors. Let a and p be two codewords, with d(a, P) = d, or the minimum 

Hamming distance. Now let y be a received word with d(a, y) less than or equal 

to t+1 . Also, d(P, y) is less than or equal to t+1. Then R(y) must be either a or p . 

. Now without loss of generality, let a codeword be transmitted as a and received 

as y. Then this codeword might possibly be corrected to a or p, because there 

are t+1 or fewer errors. Therefore, the correction rule does not accurately correct 

errors, and is therefore not valid. Hence, there is no accurate rule that can 

correct more than t = l{d/2) - 1' errors. 

Q.E.D 
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Now that the groundwork has been established, the paper can proceed to 

the discussion of different types of codes and their corresponding error-correction 

methods. 

Types of Codes: 

It has already been stated that the check digits are determined by the 

message digits; therefore there must be some rule for ascertaining what these 

will be. This is known as the encoding problem. Ideally, an encoding technique 

should send as many message digits as possible, while subsequently limiting the 

number of check digits. The information rate of a code is calculated by dividing 

the number of message digits by the total number of digits in the string. 

Obviously, a higher information rate is desired. 

The first type of codes to be studied are repetition codes. The check digits 

are simply the message digits repeated a pre-determined number of times. For 

example, when k = 1 and n = 6, the two possible codewords would be 000000 

and 111111 . If k = 2 and n = 6, then the four possible codewords would be 

000000, 010101 , 101010, and 111111 . These codes could generally be easily 

corrected using the nearest neighbor rule. However, repetition codes have a 

very low information rate which will never be greater th.an one-half. 

A type of code which has an extremely high information rate is the single­

parity-check code. To find the one parity check digit, the message digit string is 

added modulo 2, and the parity check digit is given the resulting sum. Hence, the 

sum of the digits in every codeword is 0. (This can also be done having the sum 

always equal 1.) Because of this trait, one error is extremely easy to detect, by 

simply adding the digits in the string. If there are two or any even number of 

errors, though, the errors would not be detected, and the string might pass for an 

intentionally transmitted word. Moreover, it would be impossible to find the error, 
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as all of the digits have an _equal probability of error. Despite the high information 

rate, the single-parity-check code has many disadvantages. 

The compromising solution is to find a method of encoding which has both 

a moderate information rate and reasonable level of correctability. Suppose a 

message digit string of length k is encoded by multiplying it by a matrix, Which 

consists of the (k x k) identity matrix augmented by a (k x (n-k)) matrix to 

generate parity check digits. This matrix will be known as the generator matrix, 

or M. For example, if 01 O is a string of message digits, and M is: 

~

.00110~ 
010011 
001101 

the codeword received would be: 

Obviously, wh.en k message digits are multiplied by a generator matrix, the first k 

digits of the resultin~ string are the message digits, because of the presence of 

the identity matrix in the generator matrix. Hence, to determine the original string, 

the parity digits only need to be dropped. However, the parity check digits are 

extremely useful in locating and correcting errors. 

Detecting Errors: 

The generator matrix has already been shown to be [ lk G] with G as an 

(n x k) matrix. Now let GT be the transpose of the matrix G. Also, let H be called 

the parity check matrix where H is the transpose of G augmented by the (n-k) 

identity matrix, or [GT 1(n-k)1- In the previous example, the transpose of G is: 
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to~ GT 110 
011 

which makes the parity check mat~r~
0
~~ Ou 

H = 110010 
011001 

From this comes the following definition: 

A code is said to be a linear code or a group code if and only if its 

codewords are the set of vectors C which satisfy an equation HCT= 0. [4] 

In fact, the repetition codes and single·parity~check codes are linear codes with 

corresponding parity check matrices. For the repetition code of length n, 

H = [11 .. .. 1 ], where 1 is repeated an n number of times. The single-parity-check 

codes' parity check matrix is the k x n matrix consisting of a column of 1 's 

augmented by a k x k identity matrix. For example, if n = 4, H is: 

[

11001 
1010 
1001 

The parity check matrix can be used to identify codewords, and therefore 

determine if an error has been made. 

THEOREM 2: In a linear code, a block a = a1a2,,,ak is encoded as 

x = x1x2 .. . xn if and only if ai = xi for all i less than or equal to k and Hx T = 0. (It 

must be noted that O is the bit string consisting of all zeros.) [ 13] 

PROOF: By the definition of encoding, a is multiplied by the generator 

matrix to get x, so, as explained above; the first k digits of x will be the same as 

the first k digits of a. Therefore, ai = xi for all i less than or equal to k. 

Secondly, H times the transpose of x, or Hx T is equal to H(a[tkG])T, by 

definition. 
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Now, H(a[lkG]) T = H[lkG]T a T_ 

= [GTl(n-k)l [ ~~J a T. 

Since [GTl(n-k~ is an (n-k) x (k+(n-k}}, or an (n-k) x n matrix, and [~"..] is a 

(k x (n-k)) x k, or an n x k matrix, they can be multiplied together. Since both 

contain an identity matrix, it can be proven that their product results in (GT+ GT). 

Therefore, Hx T = (GT + GT)a T_ Since addition is modulo two, then the sum is 

0, so Hx T = Oa T = 0. 

Conversely, suppose that ai = xi for all i less than or equaJ to k, and 

HxT = 0. Suppose further that a is encoded as y = Y1Y2 --- Yn· Then as proven 

above, ai = Yi for all i less than or equal to k, and further Hy T = 0. But HxT = O is 

also true. 

If follows that x = y. 

Q .E.D. 

Therefore, it has been proven that in order for a string of digits x to be a 

codeword, Hx T must equal 0. Now the syndrome is defined as sT = HRT, where 

-Risa word that has been received. Therefore, xis a codeword if and only if the 

syndrome of xis 0. To exemplify this, we again turn to the previous example. 

Case 1: Suppose that the string of digits received using the given 

generator matrix is 000101 . This is x. Then the transpose xT is: 
0 
0 
0 
1 
0 
1 

When x T is multiplied to H, the s ndrome is: 

U
01100u ~ 
10010 • 0 

011001 1 
0 
1 

= [fJ 
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Since this is not equal to 0, then 000101 must not be a codeword. 

Case 2: Now take x = 001101. The transpose of xis then: 

0 
0 
1 
1 
0 
1 

When multiplied by H, the syndrome is 0, so the string is actually a codeword . 
0 

[

101100u 0 
110010 • 1 
011001 1 

0 
1 

rn 
In fact, the set of strings of tength n is actually an Abelian grnup with respect tc, 

addition, and the set of codewords is a subgroup of that group. 

PROOF: (the set of strings of length n is an Abelian group) 

(1) Closure: 

Let a, b£S (the set of strings of length n). 

Since addition is defined over modulo two, a + b is also an element of S. 

(2) Associativity: 

Since addition is associative in modulo 2, then associativity holds over 

the elements of S. 

(3) Identity: 

The identity will be the string of O's of length n which is an element of S. 
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(4) Inverse: 

In modulo 2 addition, each element will be the inverse of itself. 

Hence S is a group. 

(5) Commutativity (Abelian group): 

Since addition is commutative in modulo 2, S is also commutative. 

Hence S is an Abelian group. 

PROOF: (the codewords are a subgroup.) 

Let C denote the set of all codewords. Then C sS. Now C is associative, 

since S is associative. Also, the identity element is contained in C. Since each 

element of C is its own inverse, it suffices to show that C is closed. 

Let a, bEC. Then, as a and bare codewords, 

HaT = HbT = 0. 

HaT - HbT = 0 

H(aT - bT) = 0 

H(a - b)T = 0 

By definition, (a - b) €. C. Since the subgroup is defined over addition 

modulo 2, (a - b) = (a+ b). Hence (a+ b) E.. C. Therefore, C is a subgroup of S. 

Q.E.D. 

In fact, the set of strings of length n can be partitioned into cosets with 

respect to their corresponding syndrome. The coset leader is the string in the 

group with the fewest number of 1 's. The table for strings of length 6 having the 

generator matrix of the above example is provided below. The coset leaders are 

the first strings in each row. 
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TABLE 1: 

Message: 000 001 010 100 -1Q1 _jj_Q _Qll -111 Syndrome: 

Code: 000000 001101 010011 100110 101011 110101 011110 111000 (OOO)T 

Coset 1: 100000 101101 110011 000110 001011 010101 111110 011000 (110)T 

Coset 2: 010000 011101 000011 110110 111011 100101 001110 101000 (011) T 

Coset 3: 001000 000101 011011 101110 100011 111101 010110 110000 (101)T 

Coset 4: 000100 001001 010111 100010 101111 110001 011010 111100 (100)T 

Coset 5: 000010 001111 010001 100100 101001 110111 011100 111010 (010)T 

Coset 6: 000001 001100 010010 100111 101010 110100 011111 111001 (001)T 

Coset 7: 001010 000111 011001 101100 100001 111111 010100 110010 (111 )T 

Correcting an Error: 

Now the following theorem can be explained and proven. 

THEOREM 3: Suppose that the columns of the parity check matrix H are 

all nonzero and all distinct. Suppose that a codeword y is transmitted and x is 

received . If x differs from y only on the ith digit, then Hx T is the ith column of H. 

[13] 

PROOF: Since y is a codeword, then it follows that Hy T = 0. Since x 

differs from y, then there is a string e, such that x + y = e. (Every digit in e is a 

zero, except on the digits where x and y differ.) 

Then Hx T = H(y + e)T 

= H(yT + eT) 

= HyT + HeT 

= 0 + HeT 

= HeT 



13 

Therefore, if exactly one error is made, then when the string is multiplied by the 

parity check matrix, the result must be one of the columns of the matrix. The 

number of the column corresponds to the digit which is incorrect in the string. 

Q.E.D. 

Using Case 1 of the example, since the result was [ ~ ] then that 

matches with the third column of the matrix. Therefore, the third digit of the 

original string is incorrect and can be corrected to 001101, which as shown by 

Case 2 is indeed a codeword. Errors can also be corrected by using the coset 

table, such as is shown in Table 1. Again using Case 1, 0001 O 1 is found in the 

fourth row of the table; its corresponding coset leader is 001000. This means 

that one error has occurred, and it is in the third digit. The correct string appears 

at the top of the column. Although this method might appear easier than 

multiplying by the parity check matrix, when codes become large, these tables 

· are extremely inefficient. 

Suppose on the other hand that Hx T is not one of the jth columns of H. · 1n 

this case, more than one error has occurred, and the string cannot be corrected 

using this code. Again using the example, suppose instead of receiving 001101, 

000111 is received. This obviously has two errors. Then x Tis: 

0 
0 
0 
1 
1 
1 
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and HxT is: 

~

0110~ 
10010 • 

011001 

0 

~ =[1] 
1 
1 

Since [ ! ] is not one of the columns of H, then 000111 has more than two errors 

and cannot be corrected. Referring back to Table 1, the string 000111 has a 

coset leader of 001 O 1 O, and there are two errors in the third and fifth digits. 

Using the given generator matrix for codewords of length three with three 

check digits added, the minimum Hamming distance is also three. By Theorem 1, 

this means that up to f{d/2) - 11 , or one digit can be corrected. Hence, the 

example satisfies Theorem 1 also. The information rate for the example used is 

1 /2, since the six digit string only had 3 message digits; however, this number 

will vary depending upon the size of the generator matrix used. 

Hamming Codes: 

One standard form of code which facilitates a generator matrix is the 

Hamming code. In the Hamming codes, there are k message digits and 

2k - 1 digits in the string. Because of this, each column of the parity check matrix 

is non-zero and distinct, which means that each syndrome will correspond to 

exactly one of the columns of H. An example of a Hamming code with three 

message digits is the following: 

~ 11010TI 
H= 1101010 

1011001 
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Clearly, this uses maximum likelihood decoding, since it assumes that only one 

error occurs and can be corrected. With an individual probability of error of 0.01 

for each digit, this code can correct errors in a string of length 7 (3 message 

digits) with a 97.5% accuracy. However, due to the large number of check digits, 

this percentage will decrease as the number of message digits increases. The 

information rate for these codes becomes extremely low as the codes become 

large. 

Hadamard Matrices: 

Another type of coding which has received more and more research in the 

past few years is coding generated by Hadamard matrices. Hadamard matrices 

are named for the French mathematician Jaques Hadamard (1865 - 1963), who 

was prominent during the late nineteenth and early twentieth centuries. [1 O] 

According to Solomon W. Golomb and Leonard D. Baumert of the Jet Propulsion 

Laboratory at the California Institute of Technology, "Several years ago, at the Jet 

Propulsion Laboratory of Caltech, we became interested in the problem of the 

optimum codes for communicating through space. The rows of an Hadamard 

matrix form an ideal set of 'code words' for this purpose, because of the high 

degree of mutual distinguishability (as many disagreements as agreements) 

between any two such rows." [8] It appears that Hadamard matrices may be the 

ideal solution to the problems of coding theory. 

An Hadamard matrix H is a square matrix of order n '.·:hose entr:es nrc 1 

and -1 and which satisfies the equation HHT = nl, where I is the identity matrix of 

order n. In order for this to occur, Hadamard matrices only exist for n = 1, n = 2, 

and n = O(mod 4). It is not known whether Hadamard matrices exist for all 

multiples of 4. In 1933, RE.AC. Paley found Hadamard matrices for all possible 

orders less than or equal to 200, with the exception of 92, 116, 156, 172, 184, 
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and 188. Since his work was published, they have been found for all orders less 

than 268. [11] Hadamard matrices have a variety of special properties, which 

make them perfect for coding. All of the rows and columns of an Hadamard 

matrix are orthogonal to one another; in other words, the entries in a row or 

column coincide in exactly half of their positions. An example of an Hadamard 

matrix of order 4 is the following : (To simplify notation, + will be used for +1 , and 

- will be used for -1 .) 

[

+++ +J + + - -
+ - + -
+ - - + 

An Hadamard matrix is said to be in "normal form" if it has its first row and first 

column consisting entirely of +1's. The number of -1's in the remainder of the 

columns will be n/2, and the number of +1 'swill be (n/2-1 ). 

The determinant of an Hadamard matrix H is + nn/2 . Since the 

determinant is non-zero, and henceforth the columns are linearly independent, 

and the columns (or rows) of the matrix span then-dimensional space determined 

by the field F2, the matrix forms a basis for this space. By the self-orthogonality 

of the rows and columns, the Hadamard matrix is an orthogonal basis for the 

n-dimensional space determined by F2. This ensures that the product of an 

Hadamard matrix with a unique string will also be unique. 

Two Hadamard matrices are said to be Hadamard equivalent (or 

H-equivalent) if one can be formed from the other by ( 1) exchanging two rows, (2) 

exchanging two columns, or (3) multiplying some rows or columns by -1. 

Hadamard-equivalence is in fact an equivalence relation , in that it is reflexive, 
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symmetric and transitive. H-equivalence may also be helpful in determining 

whether or not two codes are equivalent. 

An Hadamard matrix is not uniquely determined by its order. Although 

Hadamard matrices of orders 1,2,4 and 8 are all H-equivalent, order 16 produces 

five inequivalent Hadamard matrices, and order 20 yields three. According to 

Technical Report No. 32-761 from the Jet Propulsion Laboratory, "Certain 

theoretical considerations make it plausible to expect more classes of Hadamard 

matrices of order n when n":=O(mod 8) than when n=4(mod 8)." [9] With the 

case of 16 and 20, this appears to be true. However, not enough research has 

been done with higher orders which would provide proof to this hypothesis. 

Constructing Hadamard Matrices: 

There are several different methods for generating Hadamard matrices, a 

few of which will be discussed in this paper. Some methods yield Hadamard 

matrices which are H-equivalent to others, while some produce untque examples. 

The first method is to derive higher order matrices from smaller ones by using the 

tensor product(*). The 2 x 2 elementary Hadamard matrix is substituted into an 

n x n Hadamard matrix for each + 1 , and the negative of the 2 x 2 for each -1 . 

This will yield a 2n x 2n Hadamard matrix. For example, when substituting the 

2 x 2 matrix into a 4 x 4 matrix, the result would be an 8 x 8 Hadamard matrix. 

+ + .:t + 

+ + 

+ - + -

+ - - + 
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I ..... + 
I 

+ + + + + + + 
I 

+ .f. ,. + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

This tensor product could also be used by substituting 4 x 4 matrices, 8 x 8 

matrices, or any order. Thus, the set of Hadamard matrices is closed under the 

operation of the tensor product. 

The Sylvester matrices are formed in a way similar to the tensor product. 

Given an Hadamard matrix Hn of order n, the Sylvester matrix is the H2n matrix of 

order 2n formed from the original matrix by the rule 

[H HJ 
H2n = H: -H~ 

This type of construction will produce Hadamard matrices of all powers of 2. 

A third type of Hadamard matrix is the Williamson type, vvhich was first 

used to find Hadamard matrices cf order 116, 156 and 172. V\Ji!!iamson 

discovered that if four symmetric circulant t x t matrices A, B, C, and D can be 

found , then there will exist an Hadamard matrix of order 4t in the form 

A 8 C D 

-B A -D C 

H = -C D A -B 

-0 -C B A 

BA - AB+ DC - CD = 0, CA - AC + BD - DB= 0, and Dl\ - ,6,D + CB - BC = 0. A 

symmetric circulant matrix is a matrix in which each row is a cycl ic permutation of 
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the previous row. An elementary example of the Williamson type is the 12 x 12 

Hadamard matrix where 

A = [: : :J and B = C = D = [ ~ J 
The resulting matrix would be: 

+ + + + - + + 
+++-+ -+ + 
+++ -+ -+ + 

+++++ -+++ 
+ -+++++ -+ -+ 
++ -+++++ -+ 

+++ -+++ -++ 
+ - + +-+++ +-+ 

+ -++++ ++-
++ +++ +++ 

+ -+ + -+- + -+++ 
+ + - + + + + + + -

It can also be -shown that A2 + 92 + c2 +D2: 

= 
[
+ + +]2 l+ - - ]2 [+ - -~2 [+ - J 2 + + ++ - + -+ - + - + - + -
+++ - + - - + - + 

= [3 3 3j l3 - -1 [3 - -1 [3 - -1 333+ -3-+-3-+-3 -
333 - 3 - 3 - 3 
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Similarly, A, B, C, and D are commutative in pairs. This Williamson type 

Hadamard matrix is not in normal form, but can be changed into normal form by 

applying the same operations used in the section on Hadamard equivalence. 

The final method of construction exemplified in this paper is the Paley 

construction. This method facilitates the use of quadratic residues to form the 

rows of the Hadamard matrix. 

Definition: 

Let p be an odd prime. The nonzero squares modulo p, i.e. , the numbers 

12, 22, 32, ... reduced mod p, are called the quadratic residues mod p, or 

simply the residues mod p. [11] 

Those integers which are not quadratic residues are called nonresidues. It is 

sufficient to consider the integers 1 to (p-1) to find the quadratic residues, since 

any other integer can be reduced (mod p) to an integer a, such that O.$aS(p-1). 

Additionally, let a~(p-1 )/2. Then (p-a) ~ (p-1 )/2. Using properties of congruence 

modulo p, (p-a)2 = (-a)2 =a2(mod p). Hence, it is sufficient to consider only the 

integers between 1 and (p-1 )/2 to find the quadratic residues. For example, let 

p = 13. The quadratic residues are: 

12=1 , 22=4, 32:9, 42:16 3, 52:25 12, 62=36 10. 

Hence, the nonresidues are 2,5,6, 7,8 and 11. 

Three properties of quadratic residues must also be explained. 

(Q1) The product of two quadratic residues or of two nonresidues is a 

quadratic residue, and the product of a quadratic residue and a nonresidue is a 

non residue. 

(02) If p is of the form 4k + 1, -1 is a quadratic residue mod p. If p is of 

the form 4k + 3, -1 is a nonresidue mod p. 



21 

(Q3) Let p be an odd prime. The function X, called the Legendre symbol , 

is defined on the integers by 

x(i) = o 

x(i) = 1 

x(i) = -1 

if i is a multiple of p, 

if the remainder when i is divided by p is a 

quadratic residue mod p, and 

~f the remainder is a nonresidue. 

The Legendre symbol will be used to form the Paley matrices. 

The following Theorem must be stated and proved before the Paley matrices can 

be formed . 

THEOREM 4: 

For any c,fO(mod p), 
p-1 

rb=o x(b)x(b + c) = -1. (11] 

PROOF: 

From (01), it can be shown that x(xy) = x(x)x(Y) for Osx,y.sp -1 . 

If b = 0, then the sum is not incremented, since zero is a multiple of every 

number. Therefore, the sum can start with b = 1. Now when b f 0, then let 

z ::: (b + c)/b (mod p), where z is a unique integer between O and (p - 1) and 

varies between all possible values of b where 1sbs(p -1 ). Clearly, z f 1, 

because then C=O(mod p) which contradicts the hypothesis. Then 

r b=o x(b)x(b + c) = rt:~ x(b)x(bz) 
p-1 

= rb=1 x(b)2x(z) 
p-1 

= Lz=O x(z) = 0 - x(1) = -1. 
-z_;,t1 

Q.E.D. 

Now the Paley construction can be described. It will yield an Hadamard 

matrix of order n = p + 1, where p is an odd prime and n is divisible by 4. First, 

the Jacobsthal matrix Q = (qij) must be formed . This p x p matrix has rows and 

columns labeled 0, 1, ... p-1 , where the corresponding entries am detcrm:ned as 

follows: qij = x(i - j) . An example for the case of p = 7 is given below. 
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012 34 56 

0 0 1 1 - 1 

1-011-1 -

2--011-1 

31- - 011-

4-1--011 

5 1 - 1 0 1 

611-1--0 

Note that Q is skew-symmetric, so QT = -Q. 

LEMMA 1: QQT = pl - J, and QJ = JQ = 0, where J is the matrix all of whose 

-entries are 1. [11] 

PROOF: 

1.et P = (Pij) = QQT. Then 

(Pii) = Lf=ci qik2 = p-1 , 

(Piµ = L:;J qikqik = rt;J x(k-i)x(k-j) , for i 1 j, 
= Lg;b x(b)x(b + c), where b = k - i and c = i - j , 

= -1 by the previous theorem. 

The diagonal of QQT consists of the i_nteger (p - 1 ), and all of the other entries are 

-1. Hence, QQT = pl - J. Also, since each row and column of Q contains the 

same number of positive and negative 1 's, QJ = JQ = 0. 

Q.E.D 

Now let 

Then 

(

1 1 \( 1 1 \ (P + 1 0 \ 

HHT = 1T Q-1} 1T QT-1} -l O J + (Q-l)(QT-1)) 

From the previous lemma and fact that Q is skew symmetric, 
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J + (Q-l)(QT-1) = J + (pl - J) - Q - QT+ I= (p + 1)1. 

Therefore, HHT = (p + 1 )I. Hence H is a normalized Hadamard matrix of order 

(p+1 ). The Hadamard matrix formed is called a Paley matrix. An example of a 

Paley matrix of order 8 is given below. 

1 1 1 1 1 1 1 1 

1 - 1 1 - 1 

1 - - 1 1 - 1 

1 - - - 1 1 - 1 

1 1 1 1 

1 1 - 1 1 

1 1 1 - - - 1 

1 1 1 - 1 -

Now that several different constructions have been explored, the theory of 

Hadamard codes can be drscussed. 

Hadamard Codes: 

In 1986, Michio Ozeki published a paper in the Journal of Combinatorial 

Theory, Series A, which provided much insight into Hadamard matrices and linear 

codes. For simplification of his own methods, Ozeki uses Hadamard matrices in 

which the first entry is -1 while the remaining entries in the first row and column 

are +1 . He calls this normal form, in contradiction with the previous definition 

provided. From now on, matrices of Ozeki type will be said to be in Ozeki-normal 

form, while the traditional matrices will be in Klaessy-normal form. A matrix in 

Klaessy form may be transformed into one of Ozeki form by (1) multiplying the first 

row by -1 and then (ii) multiplying all columns except the first by -1. Similarly, an 

Ozeki-normal Hadamard matrix may be transformed into a Klaessy-normal matiiX 

through the same process. 
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A code is said to be an [n, k] binary linear code if it is a vector subspace 

of Vn of dimension k over the field F2. Essentially, this means that the code will 

have words of length n with k message digits. Some of the following definitions 

will prove to be useful later in the paper. The Hamming weight wt(x) of the vector 

x is the regular Hamming distance between x and 0, or d(x, 0). A linear code is 

even if the weight of every element x is divisible by 2; if it is divisible by 4, then 

the code is called doubly even. For any two elements x and y in a code, the inner 

product (x, y) is the following: 

(x, y) = I:i~1 XiYi · 

The dual code of the linear code [n, k] is [n, k].L, where [n, k].L= {YE. Vn : (x, y) = O 

for all x t [n, k] }. A linear code is self-orthogonal if [n, k] ~ [n, kf If [n, k] = [n, k]:1-

then the code is said to be self-dual. 

An Ozeki-normal Hadamard matrix NHn = (sij) of order n is of the form 

NHn = 
-1 1 1 1 .. ... 1 

1 

1 * 

1 

Let ~i be the ith row vector of NHn, and let v1(i) be the number of 1's in the last 

n -1 entries of ~i- Let v2(i) be the number of -1 's in the last n -1 entries of ~i-

Now v1(1) is n - 1, since all the entries following the first -1 are 1. Similarly, v2(1) 

is 0. Therefore, for each i, v1 (i) + v2(i) = n -1 . Now each of the rows of an 

Hadamard matrix differ in exactly half of their digits. In comparing any row or 

column with the first row or column, the first digits in each will differ. Therefore, of 

the remaining digits in the strings, n/2 of these will be the same, while (n/2 -1) will 

differ. Since the first row and column consist entirely of 1 's, except for the first 



25 

digit, it follows that there must be n/2 1's and (n/2 -1) -1's. Hence for any row or 

column i, v1 (i) = n/2 and v2(i) = (n/2 -1 ). 

Ozeki now forms his type of code. Let NHn = (sij) be an Ozeki-normalized 

Hadamard matrix of order n, arn:I iet Jn be the square matrix of order n consisting 

entirely of 1 's. The matrix Kn is now formed in the following manner. 

Kn = 1 /2(NHn + Jn) 

It follows directly that Kn is a matrix consisting entirely of O's and 1 's. VVe now-iet 

Cn = (In Kn), so that Cn is an n x 2n matrix, and let x1, x2, ... x0 be the row vectors 

of Cn. From this, the vector subspace C(NHn) of the vector space V2n can _be 

formed from the xi's over F2. By the definition of an Hadamard matrix, all of the 

rows are linearly independent, which makes all of the xi's linearly independent, so 

the dimension of C(NHn) is n. The rows xi will be denoted as xi = (ei , Yi) , where 

ei is the ith row of the identity matrix and Yi is the ith row of the converted 

Hadamard matrix. The weight of each row xi, wt(xi) , is equal to 1 + wt(yi), since 

the identity matrix adds only 1 to the weight of each row of Kn. It is clear that 

Yij = 1 if and only if sij = 1 in the original Hadamard matrix. Similarly, Yij = O if and 

only if sij = -1 . Hence, wt(x1) = n, since y1 is (n -1) . Also, wt(xi) = (n/2 + 2) for 

each i, 2<i<n. This comes from the fact that there are n/2 1's in the last n -1 

entries of the Hadamard matrix, a one as the first digit, and a one in the ;th digit of 

· the identity matrix. 

Since the rows of the identity matrix are themselves self-orthogonal , the 

inner product (xi, .l<tl) can be -defined as 

(xi, xh) = L i:;1 YijYhj· 

Now for each i, h, (xi , xh) = 0. Trivially, the inner product of any two distinct 

rows of an identity matrix is zero. Additionally, any two rows of an Hadamard 

matrix differ in exactly one-half of their digits. If either the ith or hth row is the first 

row, then it is easy to see that the inner product will be 0. Now suppose that 
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neither the ith or hth row is the first. The number of + 1 's in the last n -1 digits of 

each row is n/2. Since the number of digits differ in exactly half of their places, 

then the number of corresponding +1 's in the ith and hth rows is n/4. The sum of 

the inner product will only be incremented when the +1 's have corresponding 

digits in the two rows. Hence, the inner product will be (n/4 + 1) because the first 

·digits will also correspond. Now it is known that 

n=.4(mod 8). Then n/4::. 1 (mod 2), so (n/4 + 1) :O(mod 2). Therefore, in binary 

addition, the inner product of any two rows will always be zero. From this fact 

Ozeki provided the following proposition. 

PROPOSITION ~: 

If the rows of a generator matrix Cn for a binary [n, k] code C have weights 

divisible by 4 and are orthogonal to each other, then C is self-orthogonal and all 

weights in C are divisible by 4. [12] 

Ozeki proceeded with the next theorem. 

THEOREM 5: 

Let the notations be as above. When n =4(mod 8), then C(NHn) is a 

doubly even self-dual linear [2n,n] code. [12] 

PROOF: 

There are two parts to this proof. First, it will be shown that C(NHn) is 

doubly even; then it will be shown that it is self-dual. 

Part 1: It is given that n::.4(mod 8). It has been shown that vvt(x1) = n. Also, for 

all i, 2Si~n. wt(xi) = (n/2 + 2) . But since n -=:4(mod 8), then n/2-== 2(mod 4) and 

furthermore (n/2 + 2) = O(mod 4). Hence, for each i, wt(xi) is divisible by 4_ 

Therefore C(NHn) is doubly even. 

Part 2: For any i, h (1 <i,h<n}, it has been proven that (xi, xh) = 0. Therefore, 

the rows of the generator matrix are orthogonal to each other. By the afore­

mentioned proposition, this implies that C(NHn) is self-orthogonal. 
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Hence, C(NHn) is a doubly even self-dual linear [2n,n] code. 

Q.E.D. 

Determining Equivalent Codes: 

Ozeki now has a basis for constructing special types of linear codes. 

However, due to the various numbers of Hadamard matrices of different orders, it 

becomes necessary to find a method of determining whether or not two codes are 

equivalent. Ozeki makes a broad statement. 

THEOREM 6: 

We assume that n = 4(mod 8). Suppose NHn(1) and NHn(2) are two 

normalized and H-equivalent Hadamard matrices of order n; then the codes 

C(NHn(1)) and C(NHn(2)) are equivalent codes. [13] 

Ozeki's proof of this theorem is extremely long; unfortunately, his findings are 

disputed by Vladimir D. Tonchev in a paper in the Journal of Combinatorial 

Theory, Series A. Tonchev states, "An interesting theorem from [Ozeki] states 

that designs arising from equivalent Hadamard matrices yield equivalent codes. 

Exploring the concept of a self-orthogonal design, we generalize the construction 

of self-dual codes based on Hadamard designs to a construction using (0, 1) -

Hadamard matrices. The general construction can produce inequivalent codes 

from equivalent Hadamard matrices." [17] 

If Ozeki's theorem is indeed false, then there exists no specific manner for 

determining whether two matrices are H-equivalent, short of applying all possible 

permutations of the three operations defined above. This process, although 

exhaustive, will consume an extreme amount of time and resources. Therefore, it 

is necessary to find another method which will signify the equivalence or 

inequivalence of two Hadamard matrices. It has been found that a test for 
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integral equivalence will help differentiate between inequivalent matrices. Two 

matrices are said to be integrally equivalent if one can be obtained from the other 

by (1) adding an integer multiple of one row or column to another, (2) negating a 

row or column, or (3) permuting the rows and/or columns. Since H-equivalence 

merely implies conditions (2) and (3), then H-equivalent matrices will also be 

integrally equivalent. 

In order to determine whether two matrices are integrally equivalent, the 

profile of each matrix must be computed. The profile is calculated by finding the 

absolute value of the generalised inner p roduct of a combination of four distinct 

rows i, j , k and I, or 

where hij is an entry of the Hadamard matrix Hof order 4n. It can be shown that 

Pijkl = 4n(mod8), since each of the four rows will correspond in exactty -half of 

their digits. The profile of the Hadamard matrix H, or n(m), is the number of sets 

{ i, j, k, I} of four distinct rows such that Pijkl = m, where m34n(mod 8). 

THEOREM 7: 

Equivalent Hadamard matrices have the same profi,e. 

PROOF: 

It must be shown that the three operations which may be applied to 

H-equivalent Hadamard matrices will not change the profile of the matrix. Since 

the profile is determined by computing absolute value, row and column negations 

do not affect the profile. Also, interchanging columns will clearly not alter the 

value of the profile. Now suppose that row i of matrix A is exchanged with row r 

to form matrix B. Then Pijkl of A is Prjkl of B, and Prjkl of A is Pijkl of B. 
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Therefore, the value of the profile will not be changed, since it is computed from 

all combinations of four distinct rows. 

Q.E.D. 

Therefore, if two Hadamard matrices have different profiles, then they are 

not H-equivalent. However. the converse is not necessarily true; if two 

Hadamard matrices have the same profile, then they might be H-equivalent or 

they might not be. The test for integral equivalence is the only "simple" test to 

determine whether two matrices are inequivalent. 

Hadamard Matrices of Order 28: 

The remainder of this paper consists of individual data collected from 

Hadamard matrices of order 28. This number was chosen so as to represent the 

English alphabet, a blank space, and a period. The only applicable method for 

construction of 28x28 Hadamard matrices is the Williamson -construction. 

Appendix A contains a computer program written in VAX Pascal which finds all 

7x7 symmetric circulant matrices, the results of which are printed in Appendix B. 

There are 16 possible combinations of 7x7 matrices. The program which finds 

appropriate matrices to form a Williamson Hadamard matrix is shown in Appendix 

C. According to the results, there are 52 28x28 Hadamard matrices of the 

Williamson type, as is shown in Appendix D. From this data, all 52 matrices were 

computed and tested for integral equivalence. Appendices E and F contain these 

programs. The results were compatible with those predicted by Baumert and 

Hall. [2] Of the 52 combinations, there existed exactly tvv'o distinct profiles. 
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TYPE 1: TYPE 2: 

1t(4) = 18200 1t(4) = 18032 

1t(12) = 2184 1t( 12) = 2436 

1t(20) = 91 1t(20) = 7 

1t(28) = 0 1t(28) = 0 

Exactly 35 of the 52 Hadamard matrices had a profile -of TYPE 1 ; the remaining 

17 had a profile of TYPE 2. Therefore, there are at least r.vo distinct 

inequivalent Hadamard matrices of order 28. Whether more inequivalent 

Hadamard matrices exist is unknown. 

Conclusion: 

Binary linear coding can be used in many different areas for a variety of 

purposes. Due to the availability of methods of error-correction, linear coding is 

applicable where transmission of information can occur -only once, such as in the 

field of space exploration. Hadamard matrices appear to be the key to a new 

world of possibilites in the realm of coding theory. Because of the mutual 

distinguishability of each of the rows and columns, Hadamard matrices are 

perfect for certain types of error-correction methods. Since so little is known 

about Hadamard matrices, their study is sure to play a large role in contemporary 

mathematics. 
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APPENDIX A 

·program Symmetric (Thesis) ; 
(* This program computes the 7x7 symmetric matrices. *) 

const t=7; 

type 

var 

Matrix=array[l .. t,l .. t] of integer; 
Row=array[l .. t] of integer; 
List=array[l .. 20] of Row; 

v, A2, A2T, Z:Matrix; 
R:Row; 
I,J,K,L,M,N,P, Counter:integer; 
Sym:List; 
Thesis:text; 

(*****************************************************************************) 

procedure Form(R:Row; var M:Matrix); 
(* Forms the symmetric circulant matrix. *) 

var Q, I, J:integer; 

begin 

end; 

for Q:=1 tot do 
M [ l, Q] : =R [ Q] ; 

for I:=2 tot do 
for J:=l tot do begin 

if (J=l) then 
M [ I , J] : =M [ I -1 , t ] 

else 
M [ I , J] : =M [ I -1 , J -1 ] ; 

end; 

(*****************************************************************************) 

procedure MMult(X,Y:Matrix; var Z:Matrix); 
(* Computes the product of two matrices. *) 

var I,J,K:integer; 

begin 
for I:=1 tot do 

for J:=1 tot do begin 
Z[I,J] :=0; 
for K:=1 tot do 
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Z[I,-J] :=Z[I,J]+X[I,K]*Y[K,J]; 
end; 

end; 

(*****************************************************************************) 

procedure Transpose(A:Matrix; var AT:Matrix); 
(* Computes the . transpose of a matrix. *) 

var I,J:integer; 

begin 
for I:=1 tot do 

for J:=1 tot do 
AT [ I , J] : =A [JI I] ; 

end; 

(*****************************************************************************) 

procedure Result(A,B:Matrix; var C:Matrix); 
(* Subtracts one matr i x from anothes. *) 

var I,J:integer; 

begin 
for I:=l tot do 

for J:=1 tot do 
C [ I , J ] : =A [ I , J ] - B [ I , J] ; 

end; 

(*****************************************************************************) 

function IsZero(M:Matrix) :boolean ; 
(* Determines whether a matrix i s the zero matrix. *) 

var I,J:integer; 
Temp:boolean; 

begin 
Temp:=true; 
I:=1; 
J:=l; 
while Temp and (I<=t) do begin 

while Temp and(j <=t) do begin 
Temp:=(M[I,J] = 0); 
J: =J+l; 

end; 
I:=I+l; 

end; 
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IsZero:=Temp; 
end; 

(*****************************************************************************) 

procedure PrintList(L:List; Num:integer); 
(* Prints the results to the file Thesis. *) 

var I,J:integer; 

begin 

end; 

open(Thesis, 'Thesis.dat;l', new); 
rewrite(Thesis); 
for I:=1 to Num do begin 

for J:=1 tot do 

end; 

if (L[I] [J]=l) then 
write(Thesis, L[I] [J] : 3) 

else 
write(Thesis, L[I] [J]-1: 3) ; 

writeln(Thesis); 

(******************************************************************************) 
(******************************************************************************) 

( * MAIN PROGRAM 

begin 
Counter: =1; 
for I:=0 to 1 do 

for J:=0 to 1 
for K:=0 

for 

do 
to 1 
L:=0 

for 

do 
to 1 
M:=0 

for 

PrintList(Sym, Counter-1); 
end. 

do 
to 1 
N: =0 

for 

end; 

do 
to 1 do 
P:=0 to 1 do begin 
R[l] :=I; 
R [ 2] : =J; 
R[3] :=K; 
R [ 4] : =L; 
R [ 5] : =M; 
R [ 6] : =N; 
R[7] :=P; 
Form(R, V ); 
MMult (V, V, A2); 
Transpose(A2, A2T); 
Result(A2, A2T, Z); 
if I sZero(Z) then begin 

Sym[Counter] :=R; 
Counter:=Counter+l; 

end; 

*) 
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-1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 1 1 - 1 -1 
-1 -1 1 -1 -1 1 -1 
-1 -1 1 1 1 1 -1 
-1 1 -1 -1 -1 -1 1 
-1 1 -1 1 1 -1 1 
-1 1 1 -1 -1 1 1 
-1 1 1 1 1 1 1 

1 -1 -1 -1 -1 -1 -1 
1 -1 -1 1 1 -1 - 1 
1 -1 1 -1 -1 1 -1 
1 -1 1 1 1 1 -1 
1 1 -1 -1 -1 -1 1 
1 1 -1 1 1 -1 1 
1 1 1 -1 -1 1 1 
1 1 1 1 1 1 1 
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program Williamson(Data, output); 

const 

type 

t = 7; 
Num = 16; 

Matrix= array[l .. t, 1 .. t] of integer; 
Matrixrow = array[l .. t] of integer; 
Holder= array[l .. 20) of Matrixrow; 
Storer= record 

A, B, C, D:integer; 
end; 
Resulttype = array[l .. 100) of Storer; 

var ABCD: Holder; 
Results:Resulttype; 
HMN: integer; 
Data:text; 

(***************************************************************************) 

procedure SkipBlanks(var F:text); 
(* Skips blanks in the data, so that eof won't be read. *) 

var Finished:boolean; 

begin 

end; 

Finished:=false; 
repeat 

if eof(F) then 
Finished:=true 

else if FA= ' then 
get(F) 

else 
Finished:=true; 

until Finished; 

(**************************************************************************) 

procedure Form(Row:Matrixrow; var S:Matrix); 
(* Forms the 7x7 symmetric circulant matrices. *) 

var I, J, K, L:integer; 

begin 
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end; 

for 

for 

J:=l tot do 
S [ l , J] : =ROW [ J] ; 

K:=2 tot do 
for L:= 1 tot do 

if L-1 <>0 then 

APPENDIX C 

S[K,L] :=S[K-1,L-l] 
else 

S[K,L] :=S[K-1, t]; 

{***************************************************************************) 

procedure Sum (A, B, C, D:Matrix; var S:Matrix); 
(* Computes the sum of four matrices. *) 

var G,H:integer; 

begin 
for G:=1 tot do 

for H:=l tot do 
S[G,H] :=A[G,H] + B[G,H] + C[G,H] +D[G,H]; 

end; 

{***************************************************************************) 

procedure MMult(A,B:matrix; var C:Matrix); 
(* Computes the product of two matrices. *) 

var I,J,K: integer; 

begin 

end; 

for I:=l tot do 
for J:=1 tot do begin 

C[I,J] :=0; 
for K:=1 tot do 

C[I,J] :=C[I,J] +A[I,K] * B[K,J]; 
end; 

(**************************************************************************) 

procedure Sum2(W, X, Y, Z:Matrix; var Res:Matrix); 
(* Computes the sum of four matrices, with two negations. *) 

var I, J:integer; 
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begin 
for I:=l tot do 

for J:=l tot do 
Res[I,J] :=W[I,J] - X[I,J] + Y[I,J] - Z[I,J]; 

end; 

(**************************************************************************) 

function IsZero(M:Matrix) :boolean; 
(* Determines whether a matrix is the zero matrix. *) 

var I,J:integer; 
Temp:boolean; 

begin 
Temp: =true; 
I:=l; 
J:=l; 
while Temp and (I <=t) do begin 

while Temp and (J<=t) do begin 
Temp:=(M[I,J]=O); 
J:=J+l; 

end; 
I:=I+l; 

end; 
IsZero:=Temp; 

end; 

(**************************************************************************) 

function Check(Temp:Matrix) :boolean; 
(* Determines whether the matrix is a multiple of the identity matrix. *) 

var I,J:integer; 
Same:boolean; 

begin 
Same:=true; 
I:=l; 
J:=l; 
while Same and (I <=t) do begin 

end; 

while Same and (J<=t) do begin 
if (I=J) then 

Same:=(Temp[I,J] = 4*t) 
else 

end; 

Same:=(Temp[I,J] = O); 
J:=J+l; 

I:=I+l; 
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Check:=Same; 

end; 

(******************************************************************************) 

procedure PrintMat(M:Matrix); 
{* Prints a 7x7 matrix. 

var Q,S:integer; 

begin 

end; 

for Q:=1 tot do begin 
for S:= 1 tot do 

write(M[Q,S] :3); 
writeln; 

end; 
writeln; 

(This was used as a check.) *) 

(************************************************************************) 

procedure ReadMatrices(var Data:text; var ABCD:Holder); 
(* Reads and stores the first row of each matrix. *) 

var Counter, K, L, J, A:integer; 

begin 

end; 

reset (Data); 
Counter: =1; 
SkipBlanks(Data); 
while not eof(Data) do begin 

end; 

for J:=1 to 7 do begin 
read (Data, Al ; 
ABCD[Counter] [J] :=A; 
Skipblanks(Data); 

end; 
Counter:=Counter+l; 
Skipblanks(Data); 

{*************************************************************************) 

procedure Compute(var Results:Resulttype; ABCD:Holder; var HMN:integer); 
{* Determines whether a set of four matrices sat i s fy *) 
(* the qualifications for a Williamson Hadamard matrix. *) 
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var Temp, A2, B2, C2, D2:Matrix; 
A, B, C, D:Matrix; 
One, Two, Three, Four, Coml, Com2, Com3:Matrix; 
Counter, I, J, K, L:integer; 

begin 
Counter: =1; 
for I:=l to Num do 

for J:=I to Num do 
for K:=J to Num do 

for L:=K to Num do begin 
Form(ABCD[I], A); 
Form(ABCD[J], B); 
Form(ABCD[K], C); 
Form(ABCD[L], D); 
MMult (A, A, A2); 
MMult(B, B, B2); 
MMult(C, C, C2); 
MMult(D, D, D2); 
Sum(A2, B2, C2, D2, Temp); 

(* PrintMat(Temp); *) 
if Check(Temp) then begin 

(* Checks whether A2+B2+C2+D2=4tI *) 

MMult(B, A, One); 
MMult(A, B, Two); 
MMult(D, C, Three); 
MMult(C, D, Four); 
Sum2(0ne, Two, Three, Four, Coml); 
if IsZero(Coml) then begin 

(* Checks to see if BA-AB+DC-CD=O. *) 

MMult(C, A, One); 
MMult(A, C, Two); 
MMult(B, D, Three); 
MMult(D, B, Four ) ; 
Sum2(0ne, Two, Three, Four, Com2); 
if IsZero(Com2) then begin 

(* Checks to see if CA-AC+BD-DB=O. *) 

MMult(D, A, One); 
MMult(A, D, Two); 
MMult(C, B, Three); 
MMult(B, C, Four); 
Sum2(0ne, Two, Three, Four, Com3); 
if IsZero(Com3) then begin 

(* Checks to see if DA-AD+CB-BC=O. *) 

end; 

Res ults[Counter] .A:=I; 
Result s [Counter] .B:=J; 
Results[Counter] . C:=K; 
Res ults[Counter] .D:=L; 
Counter:=Counter+l; 
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The number of Williamson Hadamard matrices is 52 . 

The sets of four matrices are : 
A = 2 B = 2 C = 3 D = 6 
A = 2 B = 2 C = 3 D = 11 
A = 2 B = 2 C = 6 D = 14 
A = 2 B = 2 C = 11 D = 14 
A = 2 B = 3 C = 6 D = 15 
A = 2 B = 3 C = 11 D = 15 
A = 2 B = 5 C = 5 D = 7 
A = 2 B = 5 C = 5 D = 10 
A = 2 B = 5 C = 7 D = 12 
A = 2 B = 5 C = 10 D = 12 
A = 2 B = 6 C = 14 D = 15 
A = 2 B = 7 C = 12 D = 12 
A = 2 B = 10 C = 12 D = 12 
A = 2 B = 11 C = 14 D = 15 
A = 3 B = 3 C = 4 D = 5 
A = 3 B = 3 C = 4 D = 12 
A = 3 B = 3 C = 5 D = 13 
A = 3 B = 3 C = 12 D = 13 
A = 3 B = 4 C = 5 D = 14 
A = 3 B = 4 C = 12 D = 14 
A = 3 B = 5 C = 13 D = 14 
A = 3 B = 6 C = 15 D = 15 
A = 3 B = 11 C = 15 D = 15 
A = 3 B = 12 C = 13 D = 14 
A = 4 B = 5 C = 14 D = 14 
A = 4 B = 6 C = 7 D = 8 
A = 4 B = 6 C = 7 D = 9 
A = 4 B = 6 C = 8 D = 10 
A = 4 B = 6 C = 9 D = 10 
A = 4 B = 7 C = 8 D = 11 
A = 4 B = 7 C = 9 D = 11 
A = 4 B = 8 C = 10 D = 11 
A = 4 B = 9 C = 10 D = 11 
A = 4 B = 12 C = 14 D = 14 
A = 5 B = 5 C = 7 D = 15 
A = 5 B = 5 C = 10 D = 15 
A = 5 B = 7 C = 12 D = 15 
A = 5 B = 10 C = 12 D = 15 
A = 5 B = 13 C = 14 D = 14 
A = 6 B = 7 C = 8 D = 13 
A = 6 B = 7 C = 9 D = 13 
A = 6 B = 8 C = 10 D = 13 
A = 6 B = 9 C = 10 D = 13 
A = 6 B = 14 C = 15 D = 15 
A = 7 B = 8 C = 11 D = 13 
A = 7 B = 9 C = 11 D = 13 
A = 7 B = 12 C = 12 D = 15 
A = 8 B = 10 C = 11 D = 13 
A = 9 B = 10 C = 11 D = 13 
A = 10 B = 12 C = 12 D = 15 
A = 11 B = 14 C = 15 D = 15 
A = 12 B = 13 C = 14 D = 14 
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program ComputeHadamard(Data, Thesis); 
(* This program form the Williamson type Hadamard matrix. *) 

const t=7; 

type HMat = array[l .. 4*t, 1 .. 4*t] of integer; 
Matrix= array[l .. t, 1 .. t] of integer; 
Sorter= array[l .. 4] of Matrix; 

var 
ABCD:Sorter; 
Hadamard:HMat; 
Data, Thesis:text; 

(***************************************************************************) 

procedure ReadMat(var Data:text; var H:Sorter); 
(* Reads and stores four 7x7 symmetric circulant matrices . *) 

var I, J, Counter:integer; 

begin 

end; 

for Counter:=1 to 4 do begin 
for I:=1 tot do begin 

for J:=l tot do 

end; 
end; 

read(Data, H[Counter] [I,J]); 
readln(Data); 

(****************************************************************************) 

procedure Compute(A:Sorter; var H:HMat); 
(* Computes the Hadamard matrix. *) 

var I, J, K, L, M:integer; 

begin 
for I:=1 tot do begin 

for J:=1 tot do 
H [ I , J ] : =A [ 1 ] [ I , J ] ; 

for K:=(t+l) to 2*t do 
H [ I , K ] : =A [ 2 ] [ I , K - t ] ; 

for L:=(2*t+l) to 3*t do 
H [ I , L ] : =A [ 3 ] [ I , L - 2 * t ] ; 

for M:=(3*t+l) to 4*t do 
H [ I , M ] : =A [ 4 ] [ I , M - 3 * t ] ; 

end; 
for I:=t+l to 2*t do begin 

for J:=1 tot do 
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end; 

for 

for 

for 

end; 
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H[I,J] :=-(A[2] [I-t,J]); 
K:=(t+l) to 2*t do 

H [ I , K ] : =A [ 1 ] [ I - t , K - t ] ; 
L:=(2*t+l) to 3*t do 

H[I,L] :=-(A[4] [I-t, L- 2 *t]); 
M:=(3*t+l) to 4*t do 

H [ I , M] : =A [ 3 ] [ I - t , M - 3 * t ] ; 

for I:=(2*t+l) to 3*t do begin 
for J:=1 tot do 

H[I,J] : =-(A[3] [I-2*t,J]); 
for K:=(t+l) to 2*t do 

H [ I , K ] : =A [ 4 ] [ I - 2 * t , K - t ] ; 
for L:=(2*t+l) to 3*t do 

H [ I , L ] : =A [ 1 ] [ I - 2 * t , L - 2 * t ] ; 
for M:=(3*t+l) to 4*t do 

H[I,M] :=-(A[2] [I-2*t, M-3*t]); 
end; 

for I:=(3*t+l) to 4*t do begin 
for J:=1 tot do 

H[I,J] :=-(A[4] [I-3*t,J]); 
for K:=(t+l) to 2*t do 

H[I,K] :=-(A[3] [I-3*t, K-t]); 
for L:=(2*t+l) to 3*t do 

H [ I , L ] : =A [ 2 ] [ I - 3 * t , L - 2 * t ] ; 
for M:=(3*t+l) to 4*t do 

H [ I , M] : =A [ 1 ] [ I - 3 * t , M - 3 * t ] ; 
end; 

(**************************************************************************) 

procedure Print(H:HMat; var Thesis :text); 
(* Prints the Hadamard matrix to a specified file. *) 

var I, J:integer; 

begin · 

end; 

for I:=1 to 4*t do begin 

end; 

for J:=1 to 4*t do 
write(Thesis, H[I,J] :3); 

writeln(Thesis); 

(*****************************************************************************) 
(*****************************************************************************) 

( * MAIN PROGRAM *) 
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begin 

end. 
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open(Data, 'Data.Dat;l', old); 
reset (Data) ; 
ReadMat(Data, ABCD); 
Compute(ABCD, Hadamard); 
open(Thesis, 'HM.dat;l', new); 
rewrite(Thesis); 
Print(Hadamard, Thesis); 
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program integral(Data, output); 
{* Compute s the profile of a 28x28 Hadamard matrix. *) 

canst t = 7; 

type Matrix= array[l .. 4*t, 1 .. 4*t] of integer; 
Profile= array[0 .. 10] of integer; 

var HMat:Matrix; 
Pi: Profile; 
Data:text; 

(*****************************************************************************) 

procedure ReadMatrix(var M:Matrix); 
(* Reads in a 28x28 Hadamard matrix. *) 

var I, J: integer; 

begin 

end; 

for I:=1 to 4*t do begin 

end; 

for J:= 1 to 4*t do 
read(Data, M[I, J]); 

readln(Data); 

{***************************************************************************) 

procedure InitializeProfile(var Prof:Profile); 
(* Initializes the profile to zero. *) 

var Num, I: integer; 

begin 

end; 

Num:=(4*t)div 8; 
for I:=0 to Num do 

Prof [I] : =0; 

(***************************************************************************) 

procedure ComputeProfile(M:Matrix; var Pro f:Profile); 
(* Computes the profile of the matrix . *) 

var I,J,K,L:integer; 
X:integer; 
P, Temp:integer; 



48 APPENDIX F 

begin 
InitializeProfile(Prof); 
for I:=1 to (4*t- 3 ) do 

end; 

for J:=(I+l) to (4*t-2) do 
for K:={J+l) to {4*t-1) do 

for L:=(K+l) to 4*t do begin 
P:=0; 
for X:= 1 to 4*t do begin 

Temp:=M[I,X]*M[J,X]*M[K,X]*M[L,X]; 
P:=P + Temp; 

end; 
P:=abs(P); 
Prof[P div 8] :=Prof[P div 8] + 1; 

end; 

(***************************************************************************) 

procedure PrintProfile(Prof:Profile); 
(* Prints the profile to the s creen. *) 

var Num, Q, Count:integer; 

begin 

end; 

Num:=(4*t) div 8; 
if (({4*t) mod 8) = 0) 

Count:=0 
else 

Count:=4; 

then 

for Q:=0 to Num do begin 
writeln('Pi(', Count:2, ') = 
Count:=Count+8; 

end; 

Prof [ Q] : 7, ' . ' ) ; 

(*****************************************************************************) 
{*****************************************************************************) 

( * 

begin 

end. 

MAIN PROGRAM 

open(Data, 'HM.dat;l', old); 
reset (Data) ; 
ReadMatrix(HMat); 
ComputeProfile(HMat, Pi); 
PrintProfile(Pi); 

*) 
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