
University of Northern Iowa
UNI ScholarWorks

Presidential Scholars Theses (1990 – 2006) University Honors Program

1994

Linear codes and error-correction
Karen Brown
University of Northern Iowa

Follow this and additional works at: https://scholarworks.uni.edu/pst

Part of the Computer Sciences Commons, and the Mathematics Commons

Let us know how access to this document benefits you

This Open Access Presidential Scholars Thesis is brought to you for free and open access by the University Honors Program at UNI ScholarWorks. It
has been accepted for inclusion in Presidential Scholars Theses (1990 – 2006) by an authorized administrator of UNI ScholarWorks. For more
information, please contact scholarworks@uni.edu.

Recommended Citation
Brown, Karen, "Linear codes and error-correction" (1994). Presidential Scholars Theses (1990 – 2006). 44.
https://scholarworks.uni.edu/pst/44

https://scholarworks.uni.edu?utm_source=scholarworks.uni.edu%2Fpst%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/pst?utm_source=scholarworks.uni.edu%2Fpst%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/uhp?utm_source=scholarworks.uni.edu%2Fpst%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/pst?utm_source=scholarworks.uni.edu%2Fpst%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.uni.edu%2Fpst%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.uni.edu%2Fpst%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/feedback_form.html
https://scholarworks.uni.edu/pst/44?utm_source=scholarworks.uni.edu%2Fpst%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu

LINEAR CODING AND ERROR-CORRECTION

KAREN BROWN

Presidential Scholar's Senior Thesis
Presented April 13, 1994
Submitted May 9, 1994

ii.

TABLE OF CONTENTS

Table of Contents II.

Abstract Ill.

Acknowledgments V.

Introduction 1

Properties of Codes 2

Types of Codes 6

Detecting-Errors 7

Correcting an Error 12

Hamming Codes 14

Hadamard Matrices 15

·constructing Hadamard Matrices 17

Hadamard Codes 23

Determining Equivalent Codes 27

Hadamard Matrices of Order 28 29

Conclusion 30

Works Cited 31

Appendices 33

... I
u1. I

ABSTRACT

The process of encoding information for transmission .from one source to

another is a vital process in many areas of .science and te.cbnoJogy. Whenever

coded information is sent, there arises a certain possibility that an error will occur,

either during transmisson or in decoding. Therefore, it is imperative to develop

methods to detect and correct errors in a code. The study of coding theory is a

"new" area of mathematics which is relatively undeveloped.

This paper focuses on the properties of linear codes -and their

corresponding methods of error-correction. To simpJify the issue, only binary

block codes are studied; hence all digits are either O or 1. The operation of

addition is defined over modulo .2. In the decoding process, the principle of

"maximum likelihood decoding" is used. This principle assumes that a minimum

number of errors will occur in each codeword, since the overall probability of error

decreases exponentially with the total number of errors.

Whenever a string of digits is encoded, the digits are multiplied by a

generator matrix, which returns the original digits and a specified number of

check digits. The check digits are helpful in detecting and correcting errors. The

parity check matrix, H, is also determined from the generator matrix. If the

product of Hand the transpose of the received word is O, then the received word

.· is indeed a codeword. If the product is not o, but is in fact the ith column of H,

then an error occurs in the ith digit of the received string. The Hamming codes

are specific linear codes which contain a maximum number of distinguishable

columns. Therefore, the Hamming codes are ideal for error-correction, provided

that only one error occurs in each codeword.

IV.

It has been speculated that Hadamard matrices are ideal for the coding

process, due to the mutual distinguishability of every row and column of the

matrix. An Hadamard matrix is a square matrix of order n whose entries are 1

and -1 , and which satisfies the equation HHT = nl, where I is the identity matrix of

order n. It is known that Hadamard matrices exist only for orders n = 1, n = 2 or

n=O(mod 4). The rows and columns of-the -Hadamard matrix are orthogonal and

linearly independent, which makes them ideal generator -matrices. Hadamard

matrices can be constructed using several different methods.

In his paper Hadamard Matrices and Doubly Even Self-Dual Error­

Correcting Codes, Michio Ozeki proposed that if the rows of the generator matrix

for a binary [n, k] code C all have weights divisible by 4 and are also orthogonal,

then C is a doubly even self-dual code. Furthermore, when C is generated by a

Hadamard matrix, the result is a doubly even self-dual linear [2n, n] code.

It is now necessary to determine whether two codes will be equivalent if

their corresponding -Hadamard matrices are equivalent. The remainder of the

paper will be devoted finding unique [56, 28] Hadamard codes. It is not known

how many different Hadamard matrices exist of order 28. The method of integral

equivalence will be used to determine the relationship between t'No distinct

Hadamard matrices. A computer program will generate au of the individual

· codes.

V.

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Professor Tim Hardy for all the help

he has given me for the past three years in researching this topic. I would also

like to thank the College of Natural Sciences for the research grant I received t'lis

year, as well as the University of Northern Iowa for allowing me to be part of the

Presidential Scholar's Program. To all those who have supported me throughout

the last four years, I am deeply-grateful. THANK YOU!

Introduction:

LINEAR CODING AND ERROR-CORRECTION

KAREN S. BROWN

In many areas of science and technology, it becomes necessary to

-transmit information from one source to another, as in the transfer of data from

one computer to another. Such was the case with the photographs taken of Mars

by Mariner 9. In order to transmit information, it must first be converted into some

type of code, which can easily be decoded by the receiver. Upon transmission,

however, the code may possibly be modified due to human or random err.or.

Usually, if an error occurs a code can be re-transmitted, and the error correcte_d.

However, many times messages cannot be sent again. Therefore, it is necessary

to determine a process for detecting and correcting errors in a code. In 1950,

Robert W. Hamming published a paper on error..:correction for linear codes, which

pioneered the further study of coding theory. The purpose of this paper •.vi!! be to

study the general properties of codes, discuss simple linear codes and their

corresponding methods of error-correction, and analyze a specific type of linear

code, namely that generated by Hadamard matrices.

This paper will focus on binary block codes, in which all information is

· transmitted as a string of zeros and ones. A codeword is such a string of n O's

and 1 's, which consists of k (k<n) message digits and r (r = n-k) check digits.

The total number of possible combinations of strings of length n using on1y O's

and 1 's as digits is 2n . For example, the total number of strings of length 6 is 26,

or 64. Of these 64 strings, not all are codewords, but only a certain few.

Suppose that the previous string contained only 3 message d;gits and 3 check

digits. Since the check digits are determined by the message dig:ts, the actual

number of codewords will only be 23, or 8. Hence, not all possible strings of

2

number of codewords will only be 23, or 8. Hence, not all possible strings of

length 6 are codewords, and therefore a method of error-detection must be found

that will determine actual codewords from random strings of digits. It must also

be noted that binary coding is defined over addition modulo 2. Hence, 1 + 1 = 0.

Properties of Codes:

Before studying specific types of codes, a general overview of basic

properties of codes and error correction must be reviewed. The Hamming

distance - named after R. W. Hamming - is defined as the number of digits that

are different between two strings. For example, if d(x,y) is the symbol denoting

the Hamming distance between x and y, then:

d(011010, 000110) = 3

because the second, third and fourth digits differ. In the first string, these digits

are 1, 1 and O respectively; in the second string, they are 0,0, and 1 respectively.

The first, fifth and sixth digits in both sets do not differ; they are 0, 1 and 0

respectively in both strings. Therefore, since three digits differ, the Hamming

distance is three. This can be rewritten as
n

d(x,y) = I: i=1 lxi - Yil,

for all strings x and y of length n. This is obvious, because the only time the sum

is incremented is if the digits between x and y differ.

The Hamming distance is in fact a metric, in that it satisfies the four basic

properties of metrics.

PROOF:

Property 1: d(x,y) ~ 0 for all x, y.

Since d(x,y) is defined in terms of absolute value, d(x,y) is always positive.

3

Property 2: d(x,y) = 0 if and only if x = y.

If d(x,y) = 0, then xi = Yi for all i. Thus, x must equal y.

Property 3: d(x,y) = d(y,x) for all x,y.

Now d(x,y) = ri~1 lxi - Yil. By properties of absolute value, this is

equivalent to r r:1 ly; - xii. Therefore, by definition of distance, this

becomes d(y,x) . Hence, d(x,y) = d(y,x).

Property 4: d(x,z) $ d(x,y) + d(y,z) for all x,y,z.

d(x, z) = Li~1 IXj - Zil

n
= L j: 1lxi - Yi + Yi - Zjl

$. ri~1 (lxi -y;I +ly; +zil) by the Triangle Inequality.

< r ·!l1 lx·-y·I + L·~1 IY·-z·I - I- I I I- I I

But then L·~1 Ix- - z·I .s. L r:,__1 Ix· - y·I + L '2-1 IY· - z-1. • I- I I I- I I I- I I

Hence, d(x,z) .s. d(x,y) + d(y,z) .

Therefore, since d satisfies all properties of metrics, the Hamming distance is a

metric.

Q.E.D.

Now in order to detect an error, the error must convert a codeword to a

non-codeword. Therefore, there must be a minimum number of digits that are

different between each individual codeword . This is called the minimum

Hamming distance, or d. If d = 1, then codewords only differ in one digit, so

errors would be impossible to detect. For example, suppose that the digit string

001010 was sent, and the string 001011 was received. If d = 1, then 001011

would also be a codeword , and the error would not be discovered. The greatest

number of errors that can be detected in a code is (d-1) . This is obvious,

4

because if there are d number of errors in a codeword, then the original word

would be received as a different codeword.

Detecting errors and correcting them are two very different matters.

Although (d-1) errors can be detected, even fewer can be corrected. The type of

decoding used in this paper is called "maximum likelihood decoding," which

minimizes the probability of an error occurring. For example, when using strings

of length 6, assume that each of the six digits has an equal probability of error p.

Suppose p = 0.01 , so that the probability of each digit being correct is 0.99.

Since addition is defined modulo 2, each digit can be thought of as an

independent set of Bernoulli trials. Therefore, the probability of the string being

entirely correct would be (8)(0.99)6, or 0.9415. Similarly, the probability for one

error would be (t)(0.01)(0.99)5 , or 0.057. The probability for two errors would .be

(~)(0.01)2(0.99)4, or 0.00144. Since the probability decreased with the number of

errors, it is assumed that fewer errors are made. Using a code with two words,

namely 000000 and 111111 , d = 6, since the minimum Hamming distance

between the two "words" is 6. Therefore, up to 5 errors can be detected.

However, if the string 010111 is transmitted, errors can be detected, but cannot

be corrected, because it cannot be determined which of the codewords was

meant to be sent. By using maximum likelihood decoding, it can be assumed that

. since d(OOOOOO, 010111) = 4 and d(111111, 010111) = 2, the string to be sent

was 111111 .

This "error-correcting" method is called the nearest-neighbor rule. Using

this rule, all errors which occur in fewer than (d/2) digits can be corrected. If

fewer than (d/2) errors are made, then there is exactly one codeword to which the

incorrect word is closest, and to which it can therefore be corrected. If there are

(d/2) or more errors, many codewords are of equal distance from the incorrect

word . Therefore, the string received cannot be corrected. Using the example

5

above, it is assumed that 010111 has less than (d/2) errors that are detected; it

can be corrected to 111111 . Suppose instead that 010101 was received . This

string has (d/2) or 3 detectable errors. It is clear that this cannot be corrected,

since it is of equal distance from both 000000 and 111111 . The number of errors

whicrrcani>e corrected from the nearest neighbor rule is:

t = f(d/2)-11 . where rxl is the least integer greater than or equal to x.

From this principle comes the following theorem:

THEOREM 1: Suppose that d is the minimum Hamming distance between

two codewords in the binary code C. Then no error-detecting rule can detect

more than (d -1) errors and no error-correcting rule can correct more than

t = l(d/2) - 11 errors. [13]

PROOF: From the discussion above, it is clear that no error-detecting rule

can detect more than (d - 1) errors. However, the error-correction conclusion is a

bit more difficult to explain.

Suppose an error-correction rule R exists, which can correct up to (t+1)

errors. Let a and p be two codewords, with d(a, P) = d, or the minimum

Hamming distance. Now let y be a received word with d(a, y) less than or equal

to t+1 . Also, d(P, y) is less than or equal to t+1. Then R(y) must be either a or p .

. Now without loss of generality, let a codeword be transmitted as a and received

as y. Then this codeword might possibly be corrected to a or p, because there

are t+1 or fewer errors. Therefore, the correction rule does not accurately correct

errors, and is therefore not valid. Hence, there is no accurate rule that can

correct more than t = l{d/2) - 1' errors.

Q.E.D

6

Now that the groundwork has been established, the paper can proceed to

the discussion of different types of codes and their corresponding error-correction

methods.

Types of Codes:

It has already been stated that the check digits are determined by the

message digits; therefore there must be some rule for ascertaining what these

will be. This is known as the encoding problem. Ideally, an encoding technique

should send as many message digits as possible, while subsequently limiting the

number of check digits. The information rate of a code is calculated by dividing

the number of message digits by the total number of digits in the string.

Obviously, a higher information rate is desired.

The first type of codes to be studied are repetition codes. The check digits

are simply the message digits repeated a pre-determined number of times. For

example, when k = 1 and n = 6, the two possible codewords would be 000000

and 111111 . If k = 2 and n = 6, then the four possible codewords would be

000000, 010101 , 101010, and 111111 . These codes could generally be easily

corrected using the nearest neighbor rule. However, repetition codes have a

very low information rate which will never be greater th.an one-half.

A type of code which has an extremely high information rate is the single­

parity-check code. To find the one parity check digit, the message digit string is

added modulo 2, and the parity check digit is given the resulting sum. Hence, the

sum of the digits in every codeword is 0. (This can also be done having the sum

always equal 1.) Because of this trait, one error is extremely easy to detect, by

simply adding the digits in the string. If there are two or any even number of

errors, though, the errors would not be detected, and the string might pass for an

intentionally transmitted word. Moreover, it would be impossible to find the error,

7

as all of the digits have an _equal probability of error. Despite the high information

rate, the single-parity-check code has many disadvantages.

The compromising solution is to find a method of encoding which has both

a moderate information rate and reasonable level of correctability. Suppose a

message digit string of length k is encoded by multiplying it by a matrix, Which

consists of the (k x k) identity matrix augmented by a (k x (n-k)) matrix to

generate parity check digits. This matrix will be known as the generator matrix,

or M. For example, if 01 O is a string of message digits, and M is:

~

.00110~
010011
001101

the codeword received would be:

Obviously, wh.en k message digits are multiplied by a generator matrix, the first k

digits of the resultin~ string are the message digits, because of the presence of

the identity matrix in the generator matrix. Hence, to determine the original string,

the parity digits only need to be dropped. However, the parity check digits are

extremely useful in locating and correcting errors.

Detecting Errors:

The generator matrix has already been shown to be [lk G] with G as an

(n x k) matrix. Now let GT be the transpose of the matrix G. Also, let H be called

the parity check matrix where H is the transpose of G augmented by the (n-k)

identity matrix, or [GT 1(n-k)1- In the previous example, the transpose of G is:

8

to~ GT 110
011

which makes the parity check mat~r~
0
~~ Ou

H = 110010
011001

From this comes the following definition:

A code is said to be a linear code or a group code if and only if its

codewords are the set of vectors C which satisfy an equation HCT= 0. [4]

In fact, the repetition codes and single·parity~check codes are linear codes with

corresponding parity check matrices. For the repetition code of length n,

H = [11 1], where 1 is repeated an n number of times. The single-parity-check

codes' parity check matrix is the k x n matrix consisting of a column of 1 's

augmented by a k x k identity matrix. For example, if n = 4, H is:

[

11001
1010
1001

The parity check matrix can be used to identify codewords, and therefore

determine if an error has been made.

THEOREM 2: In a linear code, a block a = a1a2,,,ak is encoded as

x = x1x2 .. . xn if and only if ai = xi for all i less than or equal to k and Hx T = 0. (It

must be noted that O is the bit string consisting of all zeros.) [13]

PROOF: By the definition of encoding, a is multiplied by the generator

matrix to get x, so, as explained above; the first k digits of x will be the same as

the first k digits of a. Therefore, ai = xi for all i less than or equal to k.

Secondly, H times the transpose of x, or Hx T is equal to H(a[tkG])T, by

definition.

9

Now, H(a[lkG]) T = H[lkG]T a T_

= [GTl(n-k)l [~~J a T.

Since [GTl(n-k~ is an (n-k) x (k+(n-k}}, or an (n-k) x n matrix, and [~"..] is a

(k x (n-k)) x k, or an n x k matrix, they can be multiplied together. Since both

contain an identity matrix, it can be proven that their product results in (GT+ GT).

Therefore, Hx T = (GT + GT)a T_ Since addition is modulo two, then the sum is

0, so Hx T = Oa T = 0.

Conversely, suppose that ai = xi for all i less than or equaJ to k, and

HxT = 0. Suppose further that a is encoded as y = Y1Y2 --- Yn· Then as proven

above, ai = Yi for all i less than or equal to k, and further Hy T = 0. But HxT = O is

also true.

If follows that x = y.

Q .E.D.

Therefore, it has been proven that in order for a string of digits x to be a

codeword, Hx T must equal 0. Now the syndrome is defined as sT = HRT, where

-Risa word that has been received. Therefore, xis a codeword if and only if the

syndrome of xis 0. To exemplify this, we again turn to the previous example.

Case 1: Suppose that the string of digits received using the given

generator matrix is 000101 . This is x. Then the transpose xT is:
0
0
0
1
0
1

When x T is multiplied to H, the s ndrome is:

U
01100u ~
10010 • 0

011001 1
0
1

= [fJ

~o

Since this is not equal to 0, then 000101 must not be a codeword.

Case 2: Now take x = 001101. The transpose of xis then:

0
0
1
1
0
1

When multiplied by H, the syndrome is 0, so the string is actually a codeword .
0

[

101100u 0
110010 • 1
011001 1

0
1

rn
In fact, the set of strings of tength n is actually an Abelian grnup with respect tc,

addition, and the set of codewords is a subgroup of that group.

PROOF: (the set of strings of length n is an Abelian group)

(1) Closure:

Let a, b£S (the set of strings of length n).

Since addition is defined over modulo two, a + b is also an element of S.

(2) Associativity:

Since addition is associative in modulo 2, then associativity holds over

the elements of S.

(3) Identity:

The identity will be the string of O's of length n which is an element of S.

11

(4) Inverse:

In modulo 2 addition, each element will be the inverse of itself.

Hence S is a group.

(5) Commutativity (Abelian group):

Since addition is commutative in modulo 2, S is also commutative.

Hence S is an Abelian group.

PROOF: (the codewords are a subgroup.)

Let C denote the set of all codewords. Then C sS. Now C is associative,

since S is associative. Also, the identity element is contained in C. Since each

element of C is its own inverse, it suffices to show that C is closed.

Let a, bEC. Then, as a and bare codewords,

HaT = HbT = 0.

HaT - HbT = 0

H(aT - bT) = 0

H(a - b)T = 0

By definition, (a - b) €. C. Since the subgroup is defined over addition

modulo 2, (a - b) = (a+ b). Hence (a+ b) E.. C. Therefore, C is a subgroup of S.

Q.E.D.

In fact, the set of strings of length n can be partitioned into cosets with

respect to their corresponding syndrome. The coset leader is the string in the

group with the fewest number of 1 's. The table for strings of length 6 having the

generator matrix of the above example is provided below. The coset leaders are

the first strings in each row.

12

TABLE 1:

Message: 000 001 010 100 -1Q1 _jj_Q _Qll -111 Syndrome:

Code: 000000 001101 010011 100110 101011 110101 011110 111000 (OOO)T

Coset 1: 100000 101101 110011 000110 001011 010101 111110 011000 (110)T

Coset 2: 010000 011101 000011 110110 111011 100101 001110 101000 (011) T

Coset 3: 001000 000101 011011 101110 100011 111101 010110 110000 (101)T

Coset 4: 000100 001001 010111 100010 101111 110001 011010 111100 (100)T

Coset 5: 000010 001111 010001 100100 101001 110111 011100 111010 (010)T

Coset 6: 000001 001100 010010 100111 101010 110100 011111 111001 (001)T

Coset 7: 001010 000111 011001 101100 100001 111111 010100 110010 (111)T

Correcting an Error:

Now the following theorem can be explained and proven.

THEOREM 3: Suppose that the columns of the parity check matrix H are

all nonzero and all distinct. Suppose that a codeword y is transmitted and x is

received . If x differs from y only on the ith digit, then Hx T is the ith column of H.

[13]

PROOF: Since y is a codeword, then it follows that Hy T = 0. Since x

differs from y, then there is a string e, such that x + y = e. (Every digit in e is a

zero, except on the digits where x and y differ.)

Then Hx T = H(y + e)T

= H(yT + eT)

= HyT + HeT

= 0 + HeT

= HeT

13

Therefore, if exactly one error is made, then when the string is multiplied by the

parity check matrix, the result must be one of the columns of the matrix. The

number of the column corresponds to the digit which is incorrect in the string.

Q.E.D.

Using Case 1 of the example, since the result was [~] then that

matches with the third column of the matrix. Therefore, the third digit of the

original string is incorrect and can be corrected to 001101, which as shown by

Case 2 is indeed a codeword. Errors can also be corrected by using the coset

table, such as is shown in Table 1. Again using Case 1, 0001 O 1 is found in the

fourth row of the table; its corresponding coset leader is 001000. This means

that one error has occurred, and it is in the third digit. The correct string appears

at the top of the column. Although this method might appear easier than

multiplying by the parity check matrix, when codes become large, these tables

· are extremely inefficient.

Suppose on the other hand that Hx T is not one of the jth columns of H. · 1n

this case, more than one error has occurred, and the string cannot be corrected

using this code. Again using the example, suppose instead of receiving 001101,

000111 is received. This obviously has two errors. Then x Tis:

0
0
0
1
1
1

14

and HxT is:

~

0110~
10010 •

011001

0

~ =[1]
1
1

Since [!] is not one of the columns of H, then 000111 has more than two errors

and cannot be corrected. Referring back to Table 1, the string 000111 has a

coset leader of 001 O 1 O, and there are two errors in the third and fifth digits.

Using the given generator matrix for codewords of length three with three

check digits added, the minimum Hamming distance is also three. By Theorem 1,

this means that up to f{d/2) - 11 , or one digit can be corrected. Hence, the

example satisfies Theorem 1 also. The information rate for the example used is

1 /2, since the six digit string only had 3 message digits; however, this number

will vary depending upon the size of the generator matrix used.

Hamming Codes:

One standard form of code which facilitates a generator matrix is the

Hamming code. In the Hamming codes, there are k message digits and

2k - 1 digits in the string. Because of this, each column of the parity check matrix

is non-zero and distinct, which means that each syndrome will correspond to

exactly one of the columns of H. An example of a Hamming code with three

message digits is the following:

~ 11010TI
H= 1101010

1011001

15

Clearly, this uses maximum likelihood decoding, since it assumes that only one

error occurs and can be corrected. With an individual probability of error of 0.01

for each digit, this code can correct errors in a string of length 7 (3 message

digits) with a 97.5% accuracy. However, due to the large number of check digits,

this percentage will decrease as the number of message digits increases. The

information rate for these codes becomes extremely low as the codes become

large.

Hadamard Matrices:

Another type of coding which has received more and more research in the

past few years is coding generated by Hadamard matrices. Hadamard matrices

are named for the French mathematician Jaques Hadamard (1865 - 1963), who

was prominent during the late nineteenth and early twentieth centuries. [1 O]

According to Solomon W. Golomb and Leonard D. Baumert of the Jet Propulsion

Laboratory at the California Institute of Technology, "Several years ago, at the Jet

Propulsion Laboratory of Caltech, we became interested in the problem of the

optimum codes for communicating through space. The rows of an Hadamard

matrix form an ideal set of 'code words' for this purpose, because of the high

degree of mutual distinguishability (as many disagreements as agreements)

between any two such rows." [8] It appears that Hadamard matrices may be the

ideal solution to the problems of coding theory.

An Hadamard matrix H is a square matrix of order n '.·:hose entr:es nrc 1

and -1 and which satisfies the equation HHT = nl, where I is the identity matrix of

order n. In order for this to occur, Hadamard matrices only exist for n = 1, n = 2,

and n = O(mod 4). It is not known whether Hadamard matrices exist for all

multiples of 4. In 1933, RE.AC. Paley found Hadamard matrices for all possible

orders less than or equal to 200, with the exception of 92, 116, 156, 172, 184,

16

and 188. Since his work was published, they have been found for all orders less

than 268. [11] Hadamard matrices have a variety of special properties, which

make them perfect for coding. All of the rows and columns of an Hadamard

matrix are orthogonal to one another; in other words, the entries in a row or

column coincide in exactly half of their positions. An example of an Hadamard

matrix of order 4 is the following : (To simplify notation, + will be used for +1 , and

- will be used for -1 .)

[

+++ +J + + - -
+ - + -
+ - - +

An Hadamard matrix is said to be in "normal form" if it has its first row and first

column consisting entirely of +1's. The number of -1's in the remainder of the

columns will be n/2, and the number of +1 'swill be (n/2-1).

The determinant of an Hadamard matrix H is + nn/2 . Since the

determinant is non-zero, and henceforth the columns are linearly independent,

and the columns (or rows) of the matrix span then-dimensional space determined

by the field F2, the matrix forms a basis for this space. By the self-orthogonality

of the rows and columns, the Hadamard matrix is an orthogonal basis for the

n-dimensional space determined by F2. This ensures that the product of an

Hadamard matrix with a unique string will also be unique.

Two Hadamard matrices are said to be Hadamard equivalent (or

H-equivalent) if one can be formed from the other by (1) exchanging two rows, (2)

exchanging two columns, or (3) multiplying some rows or columns by -1.

Hadamard-equivalence is in fact an equivalence relation , in that it is reflexive,

17

symmetric and transitive. H-equivalence may also be helpful in determining

whether or not two codes are equivalent.

An Hadamard matrix is not uniquely determined by its order. Although

Hadamard matrices of orders 1,2,4 and 8 are all H-equivalent, order 16 produces

five inequivalent Hadamard matrices, and order 20 yields three. According to

Technical Report No. 32-761 from the Jet Propulsion Laboratory, "Certain

theoretical considerations make it plausible to expect more classes of Hadamard

matrices of order n when n":=O(mod 8) than when n=4(mod 8)." [9] With the

case of 16 and 20, this appears to be true. However, not enough research has

been done with higher orders which would provide proof to this hypothesis.

Constructing Hadamard Matrices:

There are several different methods for generating Hadamard matrices, a

few of which will be discussed in this paper. Some methods yield Hadamard

matrices which are H-equivalent to others, while some produce untque examples.

The first method is to derive higher order matrices from smaller ones by using the

tensor product(*). The 2 x 2 elementary Hadamard matrix is substituted into an

n x n Hadamard matrix for each + 1 , and the negative of the 2 x 2 for each -1 .

This will yield a 2n x 2n Hadamard matrix. For example, when substituting the

2 x 2 matrix into a 4 x 4 matrix, the result would be an 8 x 8 Hadamard matrix.

+ + .:t +

+ +

+ - + -

+ - - +

18

I +
I

+ + + + + + +
I

+ .f. ,. +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

This tensor product could also be used by substituting 4 x 4 matrices, 8 x 8

matrices, or any order. Thus, the set of Hadamard matrices is closed under the

operation of the tensor product.

The Sylvester matrices are formed in a way similar to the tensor product.

Given an Hadamard matrix Hn of order n, the Sylvester matrix is the H2n matrix of

order 2n formed from the original matrix by the rule

[H HJ
H2n = H: -H~

This type of construction will produce Hadamard matrices of all powers of 2.

A third type of Hadamard matrix is the Williamson type, vvhich was first

used to find Hadamard matrices cf order 116, 156 and 172. V\Ji!!iamson

discovered that if four symmetric circulant t x t matrices A, B, C, and D can be

found , then there will exist an Hadamard matrix of order 4t in the form

A 8 C D

-B A -D C

H = -C D A -B

-0 -C B A

BA - AB+ DC - CD = 0, CA - AC + BD - DB= 0, and Dl\ - ,6,D + CB - BC = 0. A

symmetric circulant matrix is a matrix in which each row is a cycl ic permutation of

19

the previous row. An elementary example of the Williamson type is the 12 x 12

Hadamard matrix where

A = [: : :J and B = C = D = [~ J
The resulting matrix would be:

+ + + + - + +
+++-+ -+ +
+++ -+ -+ +

+++++ -+++
+ -+++++ -+ -+
++ -+++++ -+

+++ -+++ -++
+ - + +-+++ +-+

+ -++++ ++-
++ +++ +++

+ -+ + -+- + -+++
+ + - + + + + + + -

It can also be -shown that A2 + 92 + c2 +D2:

=
[
+ + +]2 l+ - -]2 [+ - -~2 [+ - J 2 + + ++ - + -+ - + - + - + -
+++ - + - - + - +

= [3 3 3j l3 - -1 [3 - -1 [3 - -1 333+ -3-+-3-+-3 -
333 - 3 - 3 - 3

20

Similarly, A, B, C, and D are commutative in pairs. This Williamson type

Hadamard matrix is not in normal form, but can be changed into normal form by

applying the same operations used in the section on Hadamard equivalence.

The final method of construction exemplified in this paper is the Paley

construction. This method facilitates the use of quadratic residues to form the

rows of the Hadamard matrix.

Definition:

Let p be an odd prime. The nonzero squares modulo p, i.e. , the numbers

12, 22, 32, ... reduced mod p, are called the quadratic residues mod p, or

simply the residues mod p. [11]

Those integers which are not quadratic residues are called nonresidues. It is

sufficient to consider the integers 1 to (p-1) to find the quadratic residues, since

any other integer can be reduced (mod p) to an integer a, such that O.$aS(p-1).

Additionally, let a~(p-1)/2. Then (p-a) ~ (p-1)/2. Using properties of congruence

modulo p, (p-a)2 = (-a)2 =a2(mod p). Hence, it is sufficient to consider only the

integers between 1 and (p-1)/2 to find the quadratic residues. For example, let

p = 13. The quadratic residues are:

12=1 , 22=4, 32:9, 42:16 3, 52:25 12, 62=36 10.

Hence, the nonresidues are 2,5,6, 7,8 and 11.

Three properties of quadratic residues must also be explained.

(Q1) The product of two quadratic residues or of two nonresidues is a

quadratic residue, and the product of a quadratic residue and a nonresidue is a

non residue.

(02) If p is of the form 4k + 1, -1 is a quadratic residue mod p. If p is of

the form 4k + 3, -1 is a nonresidue mod p.

21

(Q3) Let p be an odd prime. The function X, called the Legendre symbol ,

is defined on the integers by

x(i) = o

x(i) = 1

x(i) = -1

if i is a multiple of p,

if the remainder when i is divided by p is a

quadratic residue mod p, and

~f the remainder is a nonresidue.

The Legendre symbol will be used to form the Paley matrices.

The following Theorem must be stated and proved before the Paley matrices can

be formed .

THEOREM 4:

For any c,fO(mod p),
p-1

rb=o x(b)x(b + c) = -1. (11]

PROOF:

From (01), it can be shown that x(xy) = x(x)x(Y) for Osx,y.sp -1 .

If b = 0, then the sum is not incremented, since zero is a multiple of every

number. Therefore, the sum can start with b = 1. Now when b f 0, then let

z ::: (b + c)/b (mod p), where z is a unique integer between O and (p - 1) and

varies between all possible values of b where 1sbs(p -1). Clearly, z f 1,

because then C=O(mod p) which contradicts the hypothesis. Then

r b=o x(b)x(b + c) = rt:~ x(b)x(bz)
p-1

= rb=1 x(b)2x(z)
p-1

= Lz=O x(z) = 0 - x(1) = -1.
-z_;,t1

Q.E.D.

Now the Paley construction can be described. It will yield an Hadamard

matrix of order n = p + 1, where p is an odd prime and n is divisible by 4. First,

the Jacobsthal matrix Q = (qij) must be formed . This p x p matrix has rows and

columns labeled 0, 1, ... p-1 , where the corresponding entries am detcrm:ned as

follows: qij = x(i - j) . An example for the case of p = 7 is given below.

22

012 34 56

0 0 1 1 - 1

1-011-1 -

2--011-1

31- - 011-

4-1--011

5 1 - 1 0 1

611-1--0

Note that Q is skew-symmetric, so QT = -Q.

LEMMA 1: QQT = pl - J, and QJ = JQ = 0, where J is the matrix all of whose

-entries are 1. [11]

PROOF:

1.et P = (Pij) = QQT. Then

(Pii) = Lf=ci qik2 = p-1 ,

(Piµ = L:;J qikqik = rt;J x(k-i)x(k-j) , for i 1 j,
= Lg;b x(b)x(b + c), where b = k - i and c = i - j ,

= -1 by the previous theorem.

The diagonal of QQT consists of the i_nteger (p - 1), and all of the other entries are

-1. Hence, QQT = pl - J. Also, since each row and column of Q contains the

same number of positive and negative 1 's, QJ = JQ = 0.

Q.E.D

Now let

Then

(

1 1 \(1 1 \ (P + 1 0 \

HHT = 1T Q-1} 1T QT-1} -l O J + (Q-l)(QT-1))

From the previous lemma and fact that Q is skew symmetric,

23

J + (Q-l)(QT-1) = J + (pl - J) - Q - QT+ I= (p + 1)1.

Therefore, HHT = (p + 1)I. Hence H is a normalized Hadamard matrix of order

(p+1). The Hadamard matrix formed is called a Paley matrix. An example of a

Paley matrix of order 8 is given below.

1 1 1 1 1 1 1 1

1 - 1 1 - 1

1 - - 1 1 - 1

1 - - - 1 1 - 1

1 1 1 1

1 1 - 1 1

1 1 1 - - - 1

1 1 1 - 1 -

Now that several different constructions have been explored, the theory of

Hadamard codes can be drscussed.

Hadamard Codes:

In 1986, Michio Ozeki published a paper in the Journal of Combinatorial

Theory, Series A, which provided much insight into Hadamard matrices and linear

codes. For simplification of his own methods, Ozeki uses Hadamard matrices in

which the first entry is -1 while the remaining entries in the first row and column

are +1 . He calls this normal form, in contradiction with the previous definition

provided. From now on, matrices of Ozeki type will be said to be in Ozeki-normal

form, while the traditional matrices will be in Klaessy-normal form. A matrix in

Klaessy form may be transformed into one of Ozeki form by (1) multiplying the first

row by -1 and then (ii) multiplying all columns except the first by -1. Similarly, an

Ozeki-normal Hadamard matrix may be transformed into a Klaessy-normal matiiX

through the same process.

24

A code is said to be an [n, k] binary linear code if it is a vector subspace

of Vn of dimension k over the field F2. Essentially, this means that the code will

have words of length n with k message digits. Some of the following definitions

will prove to be useful later in the paper. The Hamming weight wt(x) of the vector

x is the regular Hamming distance between x and 0, or d(x, 0). A linear code is

even if the weight of every element x is divisible by 2; if it is divisible by 4, then

the code is called doubly even. For any two elements x and y in a code, the inner

product (x, y) is the following:

(x, y) = I:i~1 XiYi ·

The dual code of the linear code [n, k] is [n, k].L, where [n, k].L= {YE. Vn : (x, y) = O

for all x t [n, k] }. A linear code is self-orthogonal if [n, k] ~ [n, kf If [n, k] = [n, k]:1-

then the code is said to be self-dual.

An Ozeki-normal Hadamard matrix NHn = (sij) of order n is of the form

NHn =
-1 1 1 1 1

1

1 *

1

Let ~i be the ith row vector of NHn, and let v1(i) be the number of 1's in the last

n -1 entries of ~i- Let v2(i) be the number of -1 's in the last n -1 entries of ~i-

Now v1(1) is n - 1, since all the entries following the first -1 are 1. Similarly, v2(1)

is 0. Therefore, for each i, v1 (i) + v2(i) = n -1 . Now each of the rows of an

Hadamard matrix differ in exactly half of their digits. In comparing any row or

column with the first row or column, the first digits in each will differ. Therefore, of

the remaining digits in the strings, n/2 of these will be the same, while (n/2 -1) will

differ. Since the first row and column consist entirely of 1 's, except for the first

25

digit, it follows that there must be n/2 1's and (n/2 -1) -1's. Hence for any row or

column i, v1 (i) = n/2 and v2(i) = (n/2 -1).

Ozeki now forms his type of code. Let NHn = (sij) be an Ozeki-normalized

Hadamard matrix of order n, arn:I iet Jn be the square matrix of order n consisting

entirely of 1 's. The matrix Kn is now formed in the following manner.

Kn = 1 /2(NHn + Jn)

It follows directly that Kn is a matrix consisting entirely of O's and 1 's. VVe now-iet

Cn = (In Kn), so that Cn is an n x 2n matrix, and let x1, x2, ... x0 be the row vectors

of Cn. From this, the vector subspace C(NHn) of the vector space V2n can _be

formed from the xi's over F2. By the definition of an Hadamard matrix, all of the

rows are linearly independent, which makes all of the xi's linearly independent, so

the dimension of C(NHn) is n. The rows xi will be denoted as xi = (ei , Yi) , where

ei is the ith row of the identity matrix and Yi is the ith row of the converted

Hadamard matrix. The weight of each row xi, wt(xi) , is equal to 1 + wt(yi), since

the identity matrix adds only 1 to the weight of each row of Kn. It is clear that

Yij = 1 if and only if sij = 1 in the original Hadamard matrix. Similarly, Yij = O if and

only if sij = -1 . Hence, wt(x1) = n, since y1 is (n -1) . Also, wt(xi) = (n/2 + 2) for

each i, 2<i<n. This comes from the fact that there are n/2 1's in the last n -1

entries of the Hadamard matrix, a one as the first digit, and a one in the ;th digit of

· the identity matrix.

Since the rows of the identity matrix are themselves self-orthogonal , the

inner product (xi, .l<tl) can be -defined as

(xi, xh) = L i:;1 YijYhj·

Now for each i, h, (xi , xh) = 0. Trivially, the inner product of any two distinct

rows of an identity matrix is zero. Additionally, any two rows of an Hadamard

matrix differ in exactly one-half of their digits. If either the ith or hth row is the first

row, then it is easy to see that the inner product will be 0. Now suppose that

26

neither the ith or hth row is the first. The number of + 1 's in the last n -1 digits of

each row is n/2. Since the number of digits differ in exactly half of their places,

then the number of corresponding +1 's in the ith and hth rows is n/4. The sum of

the inner product will only be incremented when the +1 's have corresponding

digits in the two rows. Hence, the inner product will be (n/4 + 1) because the first

·digits will also correspond. Now it is known that

n=.4(mod 8). Then n/4::. 1 (mod 2), so (n/4 + 1) :O(mod 2). Therefore, in binary

addition, the inner product of any two rows will always be zero. From this fact

Ozeki provided the following proposition.

PROPOSITION ~:

If the rows of a generator matrix Cn for a binary [n, k] code C have weights

divisible by 4 and are orthogonal to each other, then C is self-orthogonal and all

weights in C are divisible by 4. [12]

Ozeki proceeded with the next theorem.

THEOREM 5:

Let the notations be as above. When n =4(mod 8), then C(NHn) is a

doubly even self-dual linear [2n,n] code. [12]

PROOF:

There are two parts to this proof. First, it will be shown that C(NHn) is

doubly even; then it will be shown that it is self-dual.

Part 1: It is given that n::.4(mod 8). It has been shown that vvt(x1) = n. Also, for

all i, 2Si~n. wt(xi) = (n/2 + 2) . But since n -=:4(mod 8), then n/2-== 2(mod 4) and

furthermore (n/2 + 2) = O(mod 4). Hence, for each i, wt(xi) is divisible by 4_

Therefore C(NHn) is doubly even.

Part 2: For any i, h (1 <i,h<n}, it has been proven that (xi, xh) = 0. Therefore,

the rows of the generator matrix are orthogonal to each other. By the afore­

mentioned proposition, this implies that C(NHn) is self-orthogonal.

27

Hence, C(NHn) is a doubly even self-dual linear [2n,n] code.

Q.E.D.

Determining Equivalent Codes:

Ozeki now has a basis for constructing special types of linear codes.

However, due to the various numbers of Hadamard matrices of different orders, it

becomes necessary to find a method of determining whether or not two codes are

equivalent. Ozeki makes a broad statement.

THEOREM 6:

We assume that n = 4(mod 8). Suppose NHn(1) and NHn(2) are two

normalized and H-equivalent Hadamard matrices of order n; then the codes

C(NHn(1)) and C(NHn(2)) are equivalent codes. [13]

Ozeki's proof of this theorem is extremely long; unfortunately, his findings are

disputed by Vladimir D. Tonchev in a paper in the Journal of Combinatorial

Theory, Series A. Tonchev states, "An interesting theorem from [Ozeki] states

that designs arising from equivalent Hadamard matrices yield equivalent codes.

Exploring the concept of a self-orthogonal design, we generalize the construction

of self-dual codes based on Hadamard designs to a construction using (0, 1) -

Hadamard matrices. The general construction can produce inequivalent codes

from equivalent Hadamard matrices." [17]

If Ozeki's theorem is indeed false, then there exists no specific manner for

determining whether two matrices are H-equivalent, short of applying all possible

permutations of the three operations defined above. This process, although

exhaustive, will consume an extreme amount of time and resources. Therefore, it

is necessary to find another method which will signify the equivalence or

inequivalence of two Hadamard matrices. It has been found that a test for

28

integral equivalence will help differentiate between inequivalent matrices. Two

matrices are said to be integrally equivalent if one can be obtained from the other

by (1) adding an integer multiple of one row or column to another, (2) negating a

row or column, or (3) permuting the rows and/or columns. Since H-equivalence

merely implies conditions (2) and (3), then H-equivalent matrices will also be

integrally equivalent.

In order to determine whether two matrices are integrally equivalent, the

profile of each matrix must be computed. The profile is calculated by finding the

absolute value of the generalised inner p roduct of a combination of four distinct

rows i, j , k and I, or

where hij is an entry of the Hadamard matrix Hof order 4n. It can be shown that

Pijkl = 4n(mod8), since each of the four rows will correspond in exactty -half of

their digits. The profile of the Hadamard matrix H, or n(m), is the number of sets

{ i, j, k, I} of four distinct rows such that Pijkl = m, where m34n(mod 8).

THEOREM 7:

Equivalent Hadamard matrices have the same profi,e.

PROOF:

It must be shown that the three operations which may be applied to

H-equivalent Hadamard matrices will not change the profile of the matrix. Since

the profile is determined by computing absolute value, row and column negations

do not affect the profile. Also, interchanging columns will clearly not alter the

value of the profile. Now suppose that row i of matrix A is exchanged with row r

to form matrix B. Then Pijkl of A is Prjkl of B, and Prjkl of A is Pijkl of B.

29

Therefore, the value of the profile will not be changed, since it is computed from

all combinations of four distinct rows.

Q.E.D.

Therefore, if two Hadamard matrices have different profiles, then they are

not H-equivalent. However. the converse is not necessarily true; if two

Hadamard matrices have the same profile, then they might be H-equivalent or

they might not be. The test for integral equivalence is the only "simple" test to

determine whether two matrices are inequivalent.

Hadamard Matrices of Order 28:

The remainder of this paper consists of individual data collected from

Hadamard matrices of order 28. This number was chosen so as to represent the

English alphabet, a blank space, and a period. The only applicable method for

construction of 28x28 Hadamard matrices is the Williamson -construction.

Appendix A contains a computer program written in VAX Pascal which finds all

7x7 symmetric circulant matrices, the results of which are printed in Appendix B.

There are 16 possible combinations of 7x7 matrices. The program which finds

appropriate matrices to form a Williamson Hadamard matrix is shown in Appendix

C. According to the results, there are 52 28x28 Hadamard matrices of the

Williamson type, as is shown in Appendix D. From this data, all 52 matrices were

computed and tested for integral equivalence. Appendices E and F contain these

programs. The results were compatible with those predicted by Baumert and

Hall. [2] Of the 52 combinations, there existed exactly tvv'o distinct profiles.

30

TYPE 1: TYPE 2:

1t(4) = 18200 1t(4) = 18032

1t(12) = 2184 1t(12) = 2436

1t(20) = 91 1t(20) = 7

1t(28) = 0 1t(28) = 0

Exactly 35 of the 52 Hadamard matrices had a profile -of TYPE 1 ; the remaining

17 had a profile of TYPE 2. Therefore, there are at least r.vo distinct

inequivalent Hadamard matrices of order 28. Whether more inequivalent

Hadamard matrices exist is unknown.

Conclusion:

Binary linear coding can be used in many different areas for a variety of

purposes. Due to the availability of methods of error-correction, linear coding is

applicable where transmission of information can occur -only once, such as in the

field of space exploration. Hadamard matrices appear to be the key to a new

world of possibilites in the realm of coding theory. Because of the mutual

distinguishability of each of the rows and columns, Hadamard matrices are

perfect for certain types of error-correction methods. Since so little is known

about Hadamard matrices, their study is sure to play a large role in contemporary

mathematics.

31

WORKS CITED

1. Baumert, L.D., Hadamard Matrices of Orders 116 and 232, Bulletin of the
American Mathematical Society, v. 72:2, (March, 1966), 237.

2. Baumert, L.D., and Hall, Marshall Jr., Hadamard Matrices of the
Williamson Type, Mathematics of Computation, v. 19, (1965) , 442-7.

3. Baumert, L.D. and Hall, Marshall Jr_, A New Construction for Hadamard
Matrices, Bulletin of the American Mathematical Society, v. 71 : 1,
(Jan. , 1965), 169-170.

4. Berlekamp, Elwyn R. , Algebraic Coding Theory, McGraw-Hill Series in
Systems Science, McGraw-Hill Book Company, New York, 1968.

5. Burn, Bob, Messages, Mathematics Teaching (June, 1979), 52-57.

6. Cooper, Joan, Milas, James and Wallis, W .D., Hadamard Equivalence,
Lecture Notes in Mathematics, v. 686, (1978), 126 - 135.

7. Goldberg, K.., Hadamard Matrices of Order Cube Plus One, Proceedings
of the American Mathematical Society, v. 17:3, (June, 1966), 744 - 746.

8. Golomb, Solomon W . and Baumert, Leonard D. , The Search for Hadamard
Matrices, The American Mathematical Monthly, v. 70: 1, (Jan., 1963),
12 - 17.

9. Hall, Marshall Jr. , Hadamard Matrices of Order 20, Technical Report No.
32-761 , Jet Propulsion Laboratory, California Institute of Technology,
National Aeronautics and Space Administration, (Nov. 1, 1965), 1 - 41 .

10. Klaessy, Ann , Hadamard Matrices, unpublished paper, (April 21 , 1993).

11. MacWilliams, F.J. and Sloane, N.J.A. , The Theory of Error-Correcting
Codes, North-Holland Mathematical Library, North-Holland Publishing
Company, New York, 1977.

12. Ozeki, Michie, Hadamard Matrices and Doubly Even Self-Dual
Error-Correcting Codes, Journal of Combinatorial Theory, Series A ,
V . 44, (1987) , 274 - 287.

13. Robert, Fred S., Applied Combinatorics, Prentice-Hall , Inc., Englewood
Cliffs, New Jersey, 1984.

14. Rudin , Walter, Principles of Mathematical Analysis, McGraw-Hill Book
Company, New York, 1964.

32

15. Schmidt, K.W. and Wang, Edward T.H., The Weights of Hadamard Matrices,
Journal of Combinatorial Theory, Series A, v. 23, (1977), 257 - 263.

16. Sloane, N.J.A. , Is There a (72,36) d = 16 Self-Dual Code?, IEEE
·Transactions of Information Theory, (1973) , 251.

17. T onchev, Vladimir D., Self-Orthogonal Designs and Extremal Doubly
Even Codes, Journal of Combinatorial Theory, Series A, v. 52, (1989),
197 - 205.

18. Wallis, Jennifer Seberry, Hadamard Matrices, Lecture Notes in
Mathematics, Combinatorics: Room Squares, Sum-Free Sets, Hadamard
Matrices, Springer-Verlag, Heidelberg, 1972.

33
APPENDIX A

·program Symmetric (Thesis) ;
(* This program computes the 7x7 symmetric matrices. *)

const t=7;

type

var

Matrix=array[l .. t,l .. t] of integer;
Row=array[l .. t] of integer;
List=array[l .. 20] of Row;

v, A2, A2T, Z:Matrix;
R:Row;
I,J,K,L,M,N,P, Counter:integer;
Sym:List;
Thesis:text;

(***)

procedure Form(R:Row; var M:Matrix);
(* Forms the symmetric circulant matrix. *)

var Q, I, J:integer;

begin

end;

for Q:=1 tot do
M [l, Q] : =R [Q] ;

for I:=2 tot do
for J:=l tot do begin

if (J=l) then
M [I , J] : =M [I -1 , t]

else
M [I , J] : =M [I -1 , J -1] ;

end;

(***)

procedure MMult(X,Y:Matrix; var Z:Matrix);
(* Computes the product of two matrices. *)

var I,J,K:integer;

begin
for I:=1 tot do

for J:=1 tot do begin
Z[I,J] :=0;
for K:=1 tot do

34 APPENDIX A

Z[I,-J] :=Z[I,J]+X[I,K]*Y[K,J];
end;

end;

(***)

procedure Transpose(A:Matrix; var AT:Matrix);
(* Computes the . transpose of a matrix. *)

var I,J:integer;

begin
for I:=1 tot do

for J:=1 tot do
AT [I , J] : =A [JI I] ;

end;

(***)

procedure Result(A,B:Matrix; var C:Matrix);
(* Subtracts one matr i x from anothes. *)

var I,J:integer;

begin
for I:=l tot do

for J:=1 tot do
C [I , J] : =A [I , J] - B [I , J] ;

end;

(***)

function IsZero(M:Matrix) :boolean ;
(* Determines whether a matrix i s the zero matrix. *)

var I,J:integer;
Temp:boolean;

begin
Temp:=true;
I:=1;
J:=l;
while Temp and (I<=t) do begin

while Temp and(j <=t) do begin
Temp:=(M[I,J] = 0);
J: =J+l;

end;
I:=I+l;

end;

35 APPENDIX A

IsZero:=Temp;
end;

(***)

procedure PrintList(L:List; Num:integer);
(* Prints the results to the file Thesis. *)

var I,J:integer;

begin

end;

open(Thesis, 'Thesis.dat;l', new);
rewrite(Thesis);
for I:=1 to Num do begin

for J:=1 tot do

end;

if (L[I] [J]=l) then
write(Thesis, L[I] [J] : 3)

else
write(Thesis, L[I] [J]-1: 3) ;

writeln(Thesis);

(**)
(**)

(* MAIN PROGRAM

begin
Counter: =1;
for I:=0 to 1 do

for J:=0 to 1
for K:=0

for

do
to 1
L:=0

for

do
to 1
M:=0

for

PrintList(Sym, Counter-1);
end.

do
to 1
N: =0

for

end;

do
to 1 do
P:=0 to 1 do begin
R[l] :=I;
R [2] : =J;
R[3] :=K;
R [4] : =L;
R [5] : =M;
R [6] : =N;
R[7] :=P;
Form(R, V);
MMult (V, V, A2);
Transpose(A2, A2T);
Result(A2, A2T, Z);
if I sZero(Z) then begin

Sym[Counter] :=R;
Counter:=Counter+l;

end;

*)

36 APPENDIX B I

-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 1 1 - 1 -1
-1 -1 1 -1 -1 1 -1
-1 -1 1 1 1 1 -1
-1 1 -1 -1 -1 -1 1
-1 1 -1 1 1 -1 1
-1 1 1 -1 -1 1 1
-1 1 1 1 1 1 1

1 -1 -1 -1 -1 -1 -1
1 -1 -1 1 1 -1 - 1
1 -1 1 -1 -1 1 -1
1 -1 1 1 1 1 -1
1 1 -1 -1 -1 -1 1
1 1 -1 1 1 -1 1
1 1 1 -1 -1 1 1
1 1 1 1 1 1 1

37 APPENDIX C

program Williamson(Data, output);

const

type

t = 7;
Num = 16;

Matrix= array[l .. t, 1 .. t] of integer;
Matrixrow = array[l .. t] of integer;
Holder= array[l .. 20) of Matrixrow;
Storer= record

A, B, C, D:integer;
end;
Resulttype = array[l .. 100) of Storer;

var ABCD: Holder;
Results:Resulttype;
HMN: integer;
Data:text;

(***)

procedure SkipBlanks(var F:text);
(* Skips blanks in the data, so that eof won't be read. *)

var Finished:boolean;

begin

end;

Finished:=false;
repeat

if eof(F) then
Finished:=true

else if FA= ' then
get(F)

else
Finished:=true;

until Finished;

(**)

procedure Form(Row:Matrixrow; var S:Matrix);
(* Forms the 7x7 symmetric circulant matrices. *)

var I, J, K, L:integer;

begin

38

end;

for

for

J:=l tot do
S [l , J] : =ROW [J] ;

K:=2 tot do
for L:= 1 tot do

if L-1 <>0 then

APPENDIX C

S[K,L] :=S[K-1,L-l]
else

S[K,L] :=S[K-1, t];

{***)

procedure Sum (A, B, C, D:Matrix; var S:Matrix);
(* Computes the sum of four matrices. *)

var G,H:integer;

begin
for G:=1 tot do

for H:=l tot do
S[G,H] :=A[G,H] + B[G,H] + C[G,H] +D[G,H];

end;

{***)

procedure MMult(A,B:matrix; var C:Matrix);
(* Computes the product of two matrices. *)

var I,J,K: integer;

begin

end;

for I:=l tot do
for J:=1 tot do begin

C[I,J] :=0;
for K:=1 tot do

C[I,J] :=C[I,J] +A[I,K] * B[K,J];
end;

(**)

procedure Sum2(W, X, Y, Z:Matrix; var Res:Matrix);
(* Computes the sum of four matrices, with two negations. *)

var I, J:integer;

39 APPENDIX _C

begin
for I:=l tot do

for J:=l tot do
Res[I,J] :=W[I,J] - X[I,J] + Y[I,J] - Z[I,J];

end;

(**)

function IsZero(M:Matrix) :boolean;
(* Determines whether a matrix is the zero matrix. *)

var I,J:integer;
Temp:boolean;

begin
Temp: =true;
I:=l;
J:=l;
while Temp and (I <=t) do begin

while Temp and (J<=t) do begin
Temp:=(M[I,J]=O);
J:=J+l;

end;
I:=I+l;

end;
IsZero:=Temp;

end;

(**)

function Check(Temp:Matrix) :boolean;
(* Determines whether the matrix is a multiple of the identity matrix. *)

var I,J:integer;
Same:boolean;

begin
Same:=true;
I:=l;
J:=l;
while Same and (I <=t) do begin

end;

while Same and (J<=t) do begin
if (I=J) then

Same:=(Temp[I,J] = 4*t)
else

end;

Same:=(Temp[I,J] = O);
J:=J+l;

I:=I+l;

APPENDIX C
Check:=Same;

end;

(**)

procedure PrintMat(M:Matrix);
{* Prints a 7x7 matrix.

var Q,S:integer;

begin

end;

for Q:=1 tot do begin
for S:= 1 tot do

write(M[Q,S] :3);
writeln;

end;
writeln;

(This was used as a check.) *)

(**)

procedure ReadMatrices(var Data:text; var ABCD:Holder);
(* Reads and stores the first row of each matrix. *)

var Counter, K, L, J, A:integer;

begin

end;

reset (Data);
Counter: =1;
SkipBlanks(Data);
while not eof(Data) do begin

end;

for J:=1 to 7 do begin
read (Data, Al ;
ABCD[Counter] [J] :=A;
Skipblanks(Data);

end;
Counter:=Counter+l;
Skipblanks(Data);

{***)

procedure Compute(var Results:Resulttype; ABCD:Holder; var HMN:integer);
{* Determines whether a set of four matrices sat i s fy *)
(* the qualifications for a Williamson Hadamard matrix. *)

I
41 : APPENDIX C

var Temp, A2, B2, C2, D2:Matrix;
A, B, C, D:Matrix;
One, Two, Three, Four, Coml, Com2, Com3:Matrix;
Counter, I, J, K, L:integer;

begin
Counter: =1;
for I:=l to Num do

for J:=I to Num do
for K:=J to Num do

for L:=K to Num do begin
Form(ABCD[I], A);
Form(ABCD[J], B);
Form(ABCD[K], C);
Form(ABCD[L], D);
MMult (A, A, A2);
MMult(B, B, B2);
MMult(C, C, C2);
MMult(D, D, D2);
Sum(A2, B2, C2, D2, Temp);

(* PrintMat(Temp); *)
if Check(Temp) then begin

(* Checks whether A2+B2+C2+D2=4tI *)

MMult(B, A, One);
MMult(A, B, Two);
MMult(D, C, Three);
MMult(C, D, Four);
Sum2(0ne, Two, Three, Four, Coml);
if IsZero(Coml) then begin

(* Checks to see if BA-AB+DC-CD=O. *)

MMult(C, A, One);
MMult(A, C, Two);
MMult(B, D, Three);
MMult(D, B, Four) ;
Sum2(0ne, Two, Three, Four, Com2);
if IsZero(Com2) then begin

(* Checks to see if CA-AC+BD-DB=O. *)

MMult(D, A, One);
MMult(A, D, Two);
MMult(C, B, Three);
MMult(B, C, Four);
Sum2(0ne, Two, Three, Four, Com3);
if IsZero(Com3) then begin

(* Checks to see if DA-AD+CB-BC=O. *)

end;

Res ults[Counter] .A:=I;
Result s [Counter] .B:=J;
Results[Counter] . C:=K;
Res ults[Counter] .D:=L;
Counter:=Counter+l;

43 APPENDIXl>

The number of Williamson Hadamard matrices is 52 .

The sets of four matrices are :
A = 2 B = 2 C = 3 D = 6
A = 2 B = 2 C = 3 D = 11
A = 2 B = 2 C = 6 D = 14
A = 2 B = 2 C = 11 D = 14
A = 2 B = 3 C = 6 D = 15
A = 2 B = 3 C = 11 D = 15
A = 2 B = 5 C = 5 D = 7
A = 2 B = 5 C = 5 D = 10
A = 2 B = 5 C = 7 D = 12
A = 2 B = 5 C = 10 D = 12
A = 2 B = 6 C = 14 D = 15
A = 2 B = 7 C = 12 D = 12
A = 2 B = 10 C = 12 D = 12
A = 2 B = 11 C = 14 D = 15
A = 3 B = 3 C = 4 D = 5
A = 3 B = 3 C = 4 D = 12
A = 3 B = 3 C = 5 D = 13
A = 3 B = 3 C = 12 D = 13
A = 3 B = 4 C = 5 D = 14
A = 3 B = 4 C = 12 D = 14
A = 3 B = 5 C = 13 D = 14
A = 3 B = 6 C = 15 D = 15
A = 3 B = 11 C = 15 D = 15
A = 3 B = 12 C = 13 D = 14
A = 4 B = 5 C = 14 D = 14
A = 4 B = 6 C = 7 D = 8
A = 4 B = 6 C = 7 D = 9
A = 4 B = 6 C = 8 D = 10
A = 4 B = 6 C = 9 D = 10
A = 4 B = 7 C = 8 D = 11
A = 4 B = 7 C = 9 D = 11
A = 4 B = 8 C = 10 D = 11
A = 4 B = 9 C = 10 D = 11
A = 4 B = 12 C = 14 D = 14
A = 5 B = 5 C = 7 D = 15
A = 5 B = 5 C = 10 D = 15
A = 5 B = 7 C = 12 D = 15
A = 5 B = 10 C = 12 D = 15
A = 5 B = 13 C = 14 D = 14
A = 6 B = 7 C = 8 D = 13
A = 6 B = 7 C = 9 D = 13
A = 6 B = 8 C = 10 D = 13
A = 6 B = 9 C = 10 D = 13
A = 6 B = 14 C = 15 D = 15
A = 7 B = 8 C = 11 D = 13
A = 7 B = 9 C = 11 D = 13
A = 7 B = 12 C = 12 D = 15
A = 8 B = 10 C = 11 D = 13
A = 9 B = 10 C = 11 D = 13
A = 10 B = 12 C = 12 D = 15
A = 11 B = 14 C = 15 D = 15
A = 12 B = 13 C = 14 D = 14

44 I APPENDIX E

program ComputeHadamard(Data, Thesis);
(* This program form the Williamson type Hadamard matrix. *)

const t=7;

type HMat = array[l .. 4*t, 1 .. 4*t] of integer;
Matrix= array[l .. t, 1 .. t] of integer;
Sorter= array[l .. 4] of Matrix;

var
ABCD:Sorter;
Hadamard:HMat;
Data, Thesis:text;

(***)

procedure ReadMat(var Data:text; var H:Sorter);
(* Reads and stores four 7x7 symmetric circulant matrices . *)

var I, J, Counter:integer;

begin

end;

for Counter:=1 to 4 do begin
for I:=1 tot do begin

for J:=l tot do

end;
end;

read(Data, H[Counter] [I,J]);
readln(Data);

(**)

procedure Compute(A:Sorter; var H:HMat);
(* Computes the Hadamard matrix. *)

var I, J, K, L, M:integer;

begin
for I:=1 tot do begin

for J:=1 tot do
H [I , J] : =A [1] [I , J] ;

for K:=(t+l) to 2*t do
H [I , K] : =A [2] [I , K - t] ;

for L:=(2*t+l) to 3*t do
H [I , L] : =A [3] [I , L - 2 * t] ;

for M:=(3*t+l) to 4*t do
H [I , M] : =A [4] [I , M - 3 * t] ;

end;
for I:=t+l to 2*t do begin

for J:=1 tot do

45

end;

for

for

for

end;

APPENDIX E

H[I,J] :=-(A[2] [I-t,J]);
K:=(t+l) to 2*t do

H [I , K] : =A [1] [I - t , K - t] ;
L:=(2*t+l) to 3*t do

H[I,L] :=-(A[4] [I-t, L- 2 *t]);
M:=(3*t+l) to 4*t do

H [I , M] : =A [3] [I - t , M - 3 * t] ;

for I:=(2*t+l) to 3*t do begin
for J:=1 tot do

H[I,J] : =-(A[3] [I-2*t,J]);
for K:=(t+l) to 2*t do

H [I , K] : =A [4] [I - 2 * t , K - t] ;
for L:=(2*t+l) to 3*t do

H [I , L] : =A [1] [I - 2 * t , L - 2 * t] ;
for M:=(3*t+l) to 4*t do

H[I,M] :=-(A[2] [I-2*t, M-3*t]);
end;

for I:=(3*t+l) to 4*t do begin
for J:=1 tot do

H[I,J] :=-(A[4] [I-3*t,J]);
for K:=(t+l) to 2*t do

H[I,K] :=-(A[3] [I-3*t, K-t]);
for L:=(2*t+l) to 3*t do

H [I , L] : =A [2] [I - 3 * t , L - 2 * t] ;
for M:=(3*t+l) to 4*t do

H [I , M] : =A [1] [I - 3 * t , M - 3 * t] ;
end;

(**)

procedure Print(H:HMat; var Thesis :text);
(* Prints the Hadamard matrix to a specified file. *)

var I, J:integer;

begin ·

end;

for I:=1 to 4*t do begin

end;

for J:=1 to 4*t do
write(Thesis, H[I,J] :3);

writeln(Thesis);

(***)
(***)

(* MAIN PROGRAM *)

46

begin

end.

APPENDIX E '

open(Data, 'Data.Dat;l', old);
reset (Data) ;
ReadMat(Data, ABCD);
Compute(ABCD, Hadamard);
open(Thesis, 'HM.dat;l', new);
rewrite(Thesis);
Print(Hadamard, Thesis);

47 I APPENDIX F

program integral(Data, output);
{* Compute s the profile of a 28x28 Hadamard matrix. *)

canst t = 7;

type Matrix= array[l .. 4*t, 1 .. 4*t] of integer;
Profile= array[0 .. 10] of integer;

var HMat:Matrix;
Pi: Profile;
Data:text;

(***)

procedure ReadMatrix(var M:Matrix);
(* Reads in a 28x28 Hadamard matrix. *)

var I, J: integer;

begin

end;

for I:=1 to 4*t do begin

end;

for J:= 1 to 4*t do
read(Data, M[I, J]);

readln(Data);

{***)

procedure InitializeProfile(var Prof:Profile);
(* Initializes the profile to zero. *)

var Num, I: integer;

begin

end;

Num:=(4*t)div 8;
for I:=0 to Num do

Prof [I] : =0;

(***)

procedure ComputeProfile(M:Matrix; var Pro f:Profile);
(* Computes the profile of the matrix . *)

var I,J,K,L:integer;
X:integer;
P, Temp:integer;

48 APPENDIX F

begin
InitializeProfile(Prof);
for I:=1 to (4*t- 3) do

end;

for J:=(I+l) to (4*t-2) do
for K:={J+l) to {4*t-1) do

for L:=(K+l) to 4*t do begin
P:=0;
for X:= 1 to 4*t do begin

Temp:=M[I,X]*M[J,X]*M[K,X]*M[L,X];
P:=P + Temp;

end;
P:=abs(P);
Prof[P div 8] :=Prof[P div 8] + 1;

end;

(***)

procedure PrintProfile(Prof:Profile);
(* Prints the profile to the s creen. *)

var Num, Q, Count:integer;

begin

end;

Num:=(4*t) div 8;
if (({4*t) mod 8) = 0)

Count:=0
else

Count:=4;

then

for Q:=0 to Num do begin
writeln('Pi(', Count:2, ') =
Count:=Count+8;

end;

Prof [Q] : 7, ' . ') ;

(***)
{***)

(*

begin

end.

MAIN PROGRAM

open(Data, 'HM.dat;l', old);
reset (Data) ;
ReadMatrix(HMat);
ComputeProfile(HMat, Pi);
PrintProfile(Pi);

*)

	University of Northern Iowa
	UNI ScholarWorks
	1994

	Linear codes and error-correction
	Karen Brown
	Recommended Citation

	tmp.1510264346.pdf.U_sDv

