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INTRODUCTION 

Using mathematics to solve a problem does not always 

y ield a perfect or absolute answer but may instead yield an 

appro x imate solution. We can try to approximate the solution as 

precisely as possible by using the mathematical tools and skills 

that are available to us or we could try to discover new methods 

which would enable us to find good approximations. It is 

important that we have precise approximating tools to begin 

with, so that we may preserve as much accuracy as possible. 

We can find such problems in the world around us. 

For instance, if we try to construct a topographical map of a 

mountainous region, first we gather data by measuring some 

elevations and locations. The data is then used to contruct 

the map. We now realize that because measuring every dip and 

valley of the area would be an impossible task, the map must be 

constructed from a set of random points. The next step is 

either to guess about the elevations between the data points, if 

there are enough points close enough together, or to estimate 

these elevations mathematically. 

S i nce we would like to f inish constructing the map by 

ta ki ng small regions around the known data points and finding 

appro x imat i ng function s which, when g ra phed, will represent as 

Th i s wor k was s uppo r t ed in part b y t he National Center for 
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precisely as possible the surface of the reg i on, an entirely new 

problem arises. These surfac e~ aroun d the kn o wn points cannot 

be easily calculated by use of simple functions. We now need to 

use these few, random data point to find an approximating 

surface by means of an interpolation method. 

INTERPOLATION METHODS 

The scenario above leads to an interpolation problem in 

R3 • We expect that interpolation methods in R3 can be developed 

by generalizing interpolation methods appropriate for R2 • We 11 

known and commonly used methods in the plane include Lagrange 

interpolatory polynomials, Taylor polynomials and cubic splines. 

We shall outline a general interpolation method appropriate for 

Rn called Multiquadric Interpolation and we shall compare 

Multiquadric Interpolation (MO) with the classic methods by 

e xamining a specific problem in the plane. 

Since we do not know the true elevation function, but 

only some point values of the function; the mathematical model 

is derived from the behavior of the approximating function. 

Thus, the accuracy of the approximation is an important factor 

in selecting a method to derive the estimated function from 

the given data. 

Many interpolatory methods exist, such a.;' the classical 

ones named above, and each has its strengths and its weaknesses. 

Some of these strengths and weaknesses depend upon the function 

itself, therefore some functions are easily interpolated because 

they do not change much, while others are not so easily 

estimated because their behavior is unpredictab le . The problem .. 



is to find interpolation methods which can predict such behavior 

even in difficult instances. 

We offer an example of interpolation in R2 using the 

previously mentioned methods. We shall consider a known 

function, obtain data points b y evaluating the function at 

specified abscissas and graph both the interpolating function 

the true function. By considering the difference between these 

functions, we can measure the accuracy of our technique. We 

consider Runge's function and seven specified data points. 

f(x) = 1 
1 + x 2 

Figure 1: Lagrange approximation of f( x) . 

Figure 2: Taylor approximation of f(x). 

F i gure 3: Cubic Spline approximation of f( x) . 

These figures were created on MATLAB using Nevi lle ' s 

Algorithm for the Lagrange Polynomial, a simple program for the 

Taylor Polynomial and the Natural (Free) Cubic Spline algorithm 

found in Burden and Faires's Numerical Analysis, 5th ed. [2]. 

As we can see in these figures some methods are more accurate 

than others, but we want more precision than these methods 

allow. Thus, we shall need to look for a more precise 

interpolation method. 

MULTIQUADRIC INTERPOLATION 

The above three classical methods of interpolation use 

polynomials in the Cartesian plane to derive approximating 

functions, so it seems that we could use polynomials of degree 

one in the form of linear combinations calculated from the given 

ordered pairs for interpolation in the Cartesian plane. The 



following discussion leads to t he formation o f an interpolatory 

method called Multiquadric In t e r polation, or MQ . 

Suppose we are dealing with one independent variable and 

we are given the following data: 

,f(Xn)• The problem is to find an approximate 

F(x) such that F(x.s.)=f(x.s.) for i=l,2, ,n and F( x ) accurately 

describes the behavior of f(x) in between these points. 

Throughout this report we shall use F to denote our 

interpolatory approximation to the function f with given data 

points. A reasonable function to try is the following: 

M 

F(x)= Z c.s.: x - x.s.: for i=l,2, ... ,n 
.1.-.1 where the c.s. · s are constants . 

These c.s. ' s are calculated by solving the linear equation 

Ac=b, where c is the unknown vector, bis the vector of length n 

matrix of size nxn whose components are given by a.s.J = :x.s. - xJ : . 

From this definition we can easily observe that A is a symmetric 

matrix with a principal diagonal of zeroes. 

In order to find the constant vector c of unknown 

coefficients, matrix A must be nonsingular; accordingl y Ac = b 

will have a unique solution. Example 1, along with Figure 4 

shows such an interpolation with one independent~ variable. Here 

the matrix is invertible; therefore the c.s. ' s may be calculated 

uniquely. Figure 4 depicts graphically the interpolation method 

of Example 1 which finds a single appro x imating fun c tion f r om 

the data given. 



In Example 1 the matri x wa s nonsingula ~ , we can prove 

that in general the multiquad ri c mat rix A will be nonsingular. 

We shall do this by developing an explicit formula for each of 

the C.s.• We shall need the following three cases: first we 

develop a formula for C.s. where 1 < i < n, next we develop a 

formula for Cn and finally we develop a formula for Ci. 

case we have ordered our data points so that Xi< X2 < 

and f(x) is the vector of known data points, 

,Xi-Xi, IX .l.. -x,., t 

,x~-x,., 

'><1.-1.-x:::?: , ><.:t. -i-Xn, 

A= 

1
X1.+.i-X2! 

1 X,.,-.1.-x2: ,X,.,- 1 -x,., 1 

:x,.,-x:::: : x,.,-xn: 

As a linear system the matrix equation Ac=f(x) becomes: 

In each 

= f(xi) 

ci:x.s.-i-xi: + c 2 :x.s.-i-x2: + ••• + C.s.-.2.,X.s.-.2.- X.s.-.2., + c.s.:X.s.-i-x.s.: + 
C1.+1.:X1.-i-X.1.+1. + .•. + Cn: X.:1.. -.1.-Xn = f(Xi-.1.) 

Ci x.s.-x.2., + c2:x.s.-x2: + ••• + C.s.-.2.:x.s.-X.s.-.2.' + c.s. :x.s.-x.1.: + 
C.s.+.2.: x .s.- X.s. +.2. + .•• + Cn X.s.-Xn = f ( X.s.) 

C.1. ,X 1.+i-x.1., + c2:x1.+.1.-x2: + ••• + C.1.-i:><1.+.1.- >< 1.-1.: + c.1..: x .:i. ..... .1..- x i: + 



C.1. 1 Xn-.1.-X.1.! + c~:Xn-1-x2: + •• + Ci-1:Xn-1-Xi-1 : + C.1.:Xn-1- X .:1. + 
C.1.+1:Xn - ~ - x .:L~.1. : + ••• + Cn : Xn -1- X n 1 = f( Xn-.1. ) 

c 1 !x,...-x.1.! + C2!x,,-x2! + ••• + C.1.-1:xn-Xi-.1.: + C.1. !x ,,- x .1.: + 
C.1.+.1.:x,.,-x.1. ... 1 : + •.. + c,.,:x,.,-x,.,: = f ( x,.,). 

Proof(Case 1): We shall prove that C.1. have unique solutions for 

l <i<n. We subtract the (i-l)•t equation from the ith equation 

in Ac=f(x), giving us 

c 1 ( :x.1.-x 1 :-:x.1.-.1.-x.1.:) + c 2 ( :x.1.- x:=:-:x.1.-.1.- x:=:) + ... + 
C.1.-.1.( :x.1.-X.1.-.1.:-:x.1.-.1.-X.1.-.1.:) + c.1.( :x.1.-x.1.:-:x.1.-.1.- x .1.:) + 

c.:L+.1.C !x.:L-x1. .. .1.!-:x1.-1-x.:L .... .1.:) + ••• + c,,( !x.:1.- x ,,!-! X.:1.-.1.- x ,,:) = 

We simplify, 

is the distance between X.1. and X.1.-.1., 

If n-i 

the difference is zero; if n > i the difference is negati v e, 

so the negative sign precedes the c,., for n > i. 

We divide both sides by the common factor and obtain 

* c,., = _f_(_x_i~)~--f~(_x_i_--i~) 

Similarly we subtract the (i+l)•t equation from the ith 

- cz:x.:L-x.:L-+1! 
C.1.+.1.: X.1.-X.1.+.1. I + ••• + 

C.1.-.1.:x.1.-X.1.+.1.' 
Cn:x.1.- X.1.+.1.: = 

-c .1.: X .1. - X.1.+.1. + 
f( X.1. ) -f( X.1.+.1. ) 

and for n < i or n=i, this difference is negative, a negative 

sign precedes C.1. and the distance is written as an absolute 

value. For n > i the difference is positive, so C.1. is positive . 

We simplify 

+ ... + c,., = _f_(~x_i_) ___ f~(_x~i--~i~l 



We add * and ** 
-2c1 = f { X ~ ) f { X~- . .) + f (xd f{x~ .... d 

X 1 X1-.1. X1 X1-+-.1. 

C1 = =-!.__ * C '! ,.1 f(x~-.d + f { X ~ ) fl xa-71 7 
2 1 X1 X1-.1. X1 Xi+1 1 

and therefore each c 1 is determined uniquely. 

Proof (Case 2): We shall prove that c,., is determined uniquely. 

We add the last equation (nth) to the first equation for Ac=f(x) 

C.1.( :x.1.-x.1.: + :x,.,-x.1.:) + C2( :x.1.-x2: + :x,.,-xz: + ••• + 
Cn( :x.i-xn: + :x,..,-x,..,: = f(x 1 ) + f( x,.,). 

We simplify, disregard :x 1 _x 1 : since it is zero, and get 

+ cn:xi-x,..,: = f(x 1 ) + f(x,.,) 

We factor :x 1 -x,.,: from the left and divide: 

# C.1. + C2 + 

Next we subtract the (n-l)•t equation from the nth equation: 

:x,...,-.1.-xi:) + c 2 ( :x,..,-x:2! + ••. + 
Cn-l. ( ! X,..,-X,-,-1: : X,-,-.1. -X,..,-.1.: ) + Cr, ( : x,..,-x,..,: : X,-,-.1.-Xn:) 

= f( x) -f( X,., -1)• 

The difference of this equation represents the distance between 

x,., and X,-,-.1., x,., > x,.,- 1 , the coefficient of c,., will be -1: 

f (x ,., )- f (X ,.,-.1.) 

We factor :x,.,-x,.,-1: from the left, then divide by this factor: 

## C1 + C2 + ••• + Cn-.1. - C,., = _f_{~X~0~) ___ f~{_X~o~-~i~) 
X,., X,-,-.1. 

Now we subtract the equation## from# and obtain the following: 

f{x 0 ) 

c,., = -1. * e ! Xe I + f { X 1) f(X 0 ) f(Xq-1) ). 2 I X,-, X.1. x,., X n- J. 

Therefore c,., is also uniquely determined. 



P r oof (Case 3): We shall pro v e that Ci is de t e r mined unique ly . 

First we add the ntn equation to the first eq u ation: 

C.1( :x 1 -x 1 : + :x,.,-x 1 :) + c 2 (! x 1 - x 2 : + : xn-x=:: 
c,....(:x.1.- x ,,: + :xn- x n : 

+ •.• + 
= f (X i) + f (x ,.,) 

We simplify the sums since the Xi are linearly ordered: 

+ cn:x.1..-x,., : = f(Xi) + f( x,.,) . 

Next we factor :xi-x,.,: from the left and divide: 

@ + c,., = f(xi) + f (x,., ) 
Xi X ,., 

We s u btract the 2nd equation from the 1•t equation as fo l lows: 

Ci(: x i-xi: :x::.:-xi:) + c::.:(:xi- x ::.:: 
Cn-i ( : Xi -Xn-i: : X::;;:-Xn-i: ) 

So, the differences of this equation represent the di s tance 

between Xi and x::.:, and since x::.: is greater than Xi, Ci wi l l ha v e 

a coefficient of -1: 

We factor :xi-x 2 : from the left side, then di vi de b y i t: 

@@ + Cn-i + C,., = _f_(~X-i~)~ __ f_(~x_;_)~ 

Finally we subtract@@ from@ 

f(X1) f( x;) 
Xi 

= -!_ *( ;<x 0 ) + f( x 1) 
2 , x,., - Xi 

Therefore, Ci is uniquely determined. 

Since we obtained explicit formulae for each of t he c 1 , 

we know that the matrix equation Ac=f has a unique s olution, and 

therefore A is a nonsingular matri x . 



It can be noted that in the interpolato ry equation 

* F ( ) -hM' I I x - C.1 1 x-x.1, :x-x.1: is the distance between x and X.1. 
-.1 

The definition of Euclidean 

distance in higher dimensional s paces can be represented 

similarly, only more variables are added. Knowing this fact, 

now we can generalize the interpolation method (*) in R,., by 

arguing in the following manner: 

Let X.1 be any given data point in then 

F(x) = t c.1 d(x,x.1) where dis the distance . 
.1-.1 

Beginning in three dimensional space, the equation has 

two independent variables, the data is ordered triples, and the 

distance equation is d((x,y),(x.1,Y.1)) =i (x-x.1) 2 + (y-y,1.) 2 for 
,., 

i=1,2, •.. ,n. F(x) = ?- C.1 d( (x,y), (x.1,Y.1)) is the approximating 
.1-.1 

function. So the nxn matrix A is 

:-~~~ F -x2) 2 +(y,1-y2) 2 ... 11( X.1-Xn ) 2 +(y 1 -y,... ) 2 

' ( X2-X.1) 2 + ( Y2-Y.1) 2 ")~ x2-x2) 2 + ( Y=-Y=) 2 • • • i< X-:;;:-x,.,) =+ ( y=:-Yn) -:;;: 

I 

: _ {< x~ -x .1~ + ( y,.,-y .1 );- /< x,.,-x2) 2 + ( y,.,-y2) 2 • •• I( x,.,-xn) 2 + ( y ~-yn) = 

In order to solve Ac=f(x,y), A must be nonsingular. Since it 

has a principal zero diagonal and for all other entries 

a.1.~=a~.1.>0, the matrix A is nonsingular as Blumenthal apparently 

knew in the 1930's when he obtained this result by use of 

Cayley-Menger Determinants [1]. It was some fifty years 

later, in the 1980 ' s, that this fact was deemed important in 

approximation theory. 



Now, A is invertible, so the unknown c~ · s may be 

calculated. In Figure 4 the of addition of absolute 

value functions that yielded a piecewise linear approximating 

function was shown, the interpolatory function maybe visualized 

as a li near combinati ons of frustrums of right circular cones 

which are added pointwise to form the approximating surface. 

If these frustrums lie on the x-axis, then projection of 

interpolation using one independent variable in the x-z plane 

may be visualized as sliding a sheet through the x-z axis. We 

see the result is a plane of absolute value functions as was 

shown in Example 1 and the accompanying Figure 4. So, in the 

general case when the frustrums do not lie on the x-axis and we 

slide a sheet along the x-z plane, the result is a plane of 

half-hyperbolas. It follows that an approximating function may 

be calculated using a linear combination of half-hyperbolas. 

Now we generalize in R3 to construct the approximating 

surface using two independent variables. This can be visualized 

in Figure 5 which shows two cones with origins x 1 and x 2 • A 

random x, y pair is selected, then the corresponding z values 

from the frustrum of each cone are added to obtain the z values, 

Zi and z2, of the appro ximating function. This is similar to 

the pointwise addition of functions as was seen in Example 1. 

Here the resulting approximat i on will be a surface which 

estimates the surface of the given data. Since the equation 

of absolute v alue was t he first inter ~ol ation method that we 

evaluated and in examination of its n a tural generalization in Rn 

resulted in graph of hal f-hyperbolas, we now examine the 



equation of a hyperbola: 

(x-a) 2 = r:;;: 
' 

can be written 

finally, 
y 

We may use this to form each term of our approximating 

function. Thus the term ( x-xi) 2 + r 2 can substitute for 

(x-xi) 2 or : x - x i: in our previous development. Thus, the new 

function for the interpolation will be the following: 

** F(x) = 2 ci-( (x-xi):;;: + r 2
-

i-.1. 

In solving the system Ac=f(x), we must first know that there is 

a unique solution. Micchelli proved the following result: 

Given any distinct points x 1 , ••• ,x,.., in the plane 

(-1),..., det ~ l + :xi-xJ : 2 > O 
This theorem says, in particular, that there is a 
unique surface f(x) = c 1 1 + :x-x 1 : 2 + ••• + 

c,., 1 + : x-x,..,;:;;: 
which interpolates (data) Y.1.,•·•,Yn at x.1., ••• ,x,..,. [4] 

Thus, the function (**) will work as an interpolatory function 

which will provide us with an approximating function for the 

known data. This approximating function, when graphed, will 

give an approximation to the true graph as the addition of 

hyperbolas, given that the parameter r 2 is greater than zero. 

We were able to move from one variable to two variables 

and even n variables with the distance as the means of 

interpolation, so we ma y now move fro m o ne to two ton variables 

using absolute values, hyperbolas, th ~n hyperboloids. 



The equation of a hype r boloid of two s heets is the 

following: w=-(x-a) 2 -(y-b) 2 = c=, 

Ther-efor-e w= = (x-a) 2 + (y- b) 2 + c= 

,--- -----------
finally, w = (x-a) 2 + (y-b) 2 + c= 

By r-estr-icting our attention t o one case, we recognize this to 

be the equation for one sheet of a hyperboloid of two sheets; 

w = ( x-a) 2 + (y-b) 2 + c= is one sheet of this hyperboloid. 

We substitue this equation to form a new inter-pol Ll tory 

function which is the following equation: 

F ( x) = 2J r. ±"ff;:. X.s.) 2 + (y-y.s.) 2 + r=. 
1.-.1. -:-1 , .. ~ 

This interpolatory function will find an appro x imation 

function for two independent variable which may be represented 

graphically as a surface. Now the linear equation Ac=f( x ,y) 

must have a unique solution so that c is a vector of constants 

and interpolation using F(x) will be possible. Micchelli ' s 

theorem also guarentees the uniqueness of the C.s. coefficients 

for i=1,2, ••. ,n. Therefore, we have an interpolator-y function. 

Micchelli's theorem says that inter-polation is also possible for-

any finite number of independent variables, 
n 

F( x ) = Z:! c.s. ..J(x-x.s.) 2 + (y-y.s.) 2 + ••• + (z- z .s. ) ""'­
.s.-.1. ' 

Although we certainly do not e x pect to be able to visual iz e the 

resulting hyper-surface in any space of greater than dimens i on 
~ 

thr-ee. 

ACCURACY OF MULTIQLJADRIC INTERPOLATION 

As we can see in Figures 1-3, interpolation method s are 

not perfect. But we hope to demonstrate that the MO met ho d 

pr-oves to interpolate Runge's function far better than the 



classical methods, although not infallibly. Richard Franke 

reali z ed a need to evaluate the accuracy as well as other 

factors of known methods of interpolation of scattered data [3). 

In h i s evaluation he rated these methods with letter grades 

A,A-, ... ,F, on the basis of many characteristics that he 

considered important for analyzing the techniques. The method 

developed above, called MQ, or Multiquadric Interpolation, 

rece i ved A' s in Complexity, Accuracy, and Visual and received B-

IC- in time evaluation. Still, this is merely Franke ' s idea of 

what criteria are necessary to receive an A grade. 

We find it necessary as well as worthwhile to test our 

newly found interpolatory method to discover its advantages and 

limitations. Taking a closer loo k at our MQ formula, we would 

like to find reasonable values for the parameter r=. 

Although a graph of an MQ approximation function may 

c l osely resemble that of the actual function, it does not 

necessaril y mean it is the best or most precise interpolation; 

espec i ally since we do not fully understand the unkown r= 

parame t er i n the equation. 

Even if we find a value for r= which yields an 

appro x imating function whose graph is close to the graph of the 

true function, it does not mean that we have found an optimal 

r 2 . In fact, it is a current topic of mathematical research in 

the area of interpolato ry methods, but there is currently no 

s i ngle theory for det e r mining an r= p a rameter for all cases. 



OPTIMIZING r= 

Now we direct our exami nation of MQ t o the search fo r an 

optimal parameter, r=. Referring to Franke ' s work with 

interpolation, Audry Ellen Tarwater points out that Franke ' s 

evaluation clearly states that MQ is far better than all other 

methods evaluated, but "by optimizing r=, the results obtained 

are significantly improved, indicating that MQ can be far better 

than previously expected" [5]. A few possibilities for 

optimizing the r= parameter include finding a set numerical 

value from the given data, finding a variable r= such that r= is 

some function or optimizing r= with information other than the 

data points. 

We can try to optimizer= as a constant in R2 for 

Runge's function, which was exhibited in figures 1,2 and 3 by 

changing the value of r 2 for different trials of approximating 

this function. In Appendix A, figures 6-13, there are some 

examples of varying r 2 between zero and ten. This is a simple 

function in R= ' so it is easy to substitute different values for 

r=, find the L 1 error, and graph each appro ximation on the same 

graph with the true function, all in a reasonable amount of time 

and coding in MATLAB. We discover that Figure 6 with r= as 

zero, that we do not the have smoothness as the original 
' 

function. Now we can refer to Tarwater ' s investigation which 

states that a larger r= increases the waves, and smaller r= 

decreases the smoothness of the graph [5]. In Figure 7 further 

investigation, with r= as ten, shows an undulating graph 

which resembles Lagrange Polynomial interpolation method. 



Trying several values between zero and ten, we find by a 

visual analysis, as well as numerical analysis of the errors, 

that r 2 appears to be between zero and one. In Figure B, where 

r 2 i s two, and Figure 9, where r 2 is one, we see that our 

appro x imation is becoming more accurate, but we know that our 

appro x imation with r= parameter equal to zero is not better than 

the parameter. Further investigation, as seen in Figures 10 and 

11, lea ves the optimal parameter between 0.01 and 0.02. We 

further refined r 2 to 0.013, Figure 12, and 0.0133, Figure 13. 

But we can see very little difference between Figures 12 and 13, 

so it would seem that we optimized the constant parameter as far 

as was possible. 

But this e x ample oversimplifies the problem of 

optimizing the parameter, since all functions do not behave li ke 

Runge ' s function. Multiquadric appro x imations in R3 present an 

even bigger problem. First of all, the immense amount of 

computing time necessary to run trials of the program 

and to graph it, as well as the vast possibilities of parameter 

values make trial and error methods inappropriate for finding 

precise r esults in a reasonable amount of time. 

Although we do not expect to find the optimal r 2 by 

means of trial and error, we can e x plore the behavior of a 

funct i on in R3 and we might also gain some insight into the 

parameter using this method. 

We i nvestiga ted the parameter r 2 as it pertains to 

F r an ke ' s surface: 

f ( x )=9 * (.75 *e x p (- . 2 5 * (( x-3) 2 + (y - 3) 2 ) )+ . 7 5*exp((- x /49)-(y/100 ) ) 
+ .5*e x p( - . 25 * ( ( x - B) =+ ( y-4) 2 )) -. 2 *ex p (-1*( x-5 ) 2 -(y-8) 2 ) ) . 



On the 4-processor Cray Y-MP at NCSA, we ran a series of 

Fortran programs designed to solve the multiquadric matrix 

equation with various values for r 2 • We not only varied r 2 , but 

we also varied the number of data points used, which was 

anywhere from 20 up to 300 randomly selected data points. These 

programs yielded the unknown coefficients of the vector c, which 

were then used to construct the multiquadric interpolatory 

function. We then generated a graphical representation of the 

surface within MATLAB running on a 4-processor Sun 670-MP. We 

found it convenient to dilate the domain uniformly so as to 

present the surface on the domain [O,lOO]x(0,100]. A 

representative sample of the resulting surfaces are included in 

Figures 14a, 14b and 14c through Figures 20a, 20b and 20c. 

In the figures shown, 20 random data points were used, 

while in Figures 14a-20a the surfaces are graphed on using the 

domain of [0,35]x[0,35], and Figures 14b-20b are graphed using 

the domain of [O,lOO]x[0,100]. Figures 14c-20c are the same 

surface as those in 14a-20c, expect they are shaded to aid 

visualization of the elevations in different regions of the 

graph. Here we look at the 1 1 error. In Figures 14a and 14b 

the parameter is zero, we can see the decreased smoothness, not 

only due to the nature of MQ with small parameter values, but 

also due to the small number of data points. The two peaks in 

Figure 14b demonstrate this especiall y ; both would appear to be 

cones if there were le s s known data po i nts on the lower peak. 

But we can see that the higher pe a k a n d the value appear to be 

conical. 



Trying r= as 40, yield the results be would expect, as 

Figures 15a and 15b show, the peaks and valley are smooth, but 

the edges which should be flat are wavy. Figures 16 and 17 show 

the parameter as one and two, respectively, which helps us 

determine that the optimal r 2 must be between these values. 

Furthermore, we find as shown in Figures 18-20 that the 

optimal parameter is near 1.3. The further refinements in 

Figures 19 and 20 with the parameter equal to 1.33 and 1.339, 

show little improvement even though r= has more precision. 

Again, we have gone as far as possible with this investigation 

of a constant parameter for this surface. 

CONCLUSIONS 

We found that varying r 2 gave us different graphs in R2 

and different surfaces in R3 • We consistently found that large 

v alues for r= resulted in poor interpolatory graphs and surfaces 

compared to the smaller r= values. 

we f i nd an opt i mal parameter value. 

In neither case did 

In constructing the Franke surface, not only did we 

change but we also varied the number of data points. Since 

we observe that the smaller the parameter value, the better the 

approximated surface; we also consider the number of known data 

points to e x plain the surfaces construc t ed with a small r= which 

are not smooth. The construction of these surfaces involved 

less data points than the smooth sur fa ce interpolation. 

Therefore we can conclude tha t not only does r= seem to 

be a small number in both of our cases, but the accuracy of the 

i nterpola ti o n also d epends upon the n u mber of data points given. 



Furthermore, the location of t hese points of these data points 

are important since some regi o n s of the surface are accurate, 

while other regions are not. We can see this specifically at 

the corners of the surface, which indicates that there are too 

few points, especially along the edges. We can also see this in 

the Figures 14a and 14b and where r= was zero and the surface 

was smoother when specific regions contained more data points. 

Although our MQ approximations proved to be accurate 

when r= was small, they were not always efficient. The Franke 

surface construction required the use of a supercomputer for 

data point computation and the use of MATLAB for generating a 

graphic representation. Although the supercomputer allows us to 

compute in a few minutes what takes two or more hours on our 

usual computer, we do not always have access to such technology. 

So, MQ is not as efficient as it is accurate. 

As Tarwater concludes in her study of the parameter 

"It has been shown that to optimize i.e. to minimize the 

error of the approximation, more factors are involved than the 

data locations" [5], we can also conclude that we are missing 

some information necessary to optimize MQ interpolation. An 

interpolatory method may work well, but it cannot perfectly 

determine every function, so many different techniques are 

necessary tools for the mathematician. Also, analyzing the 

techniques for sensitivity, accuracy or other important traits 

of the interpolatory function cannot be overlooked. In 

conclusion, Multiquadric Interpolation seems to be the best 

interpolation method available to us today. 
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E x ample 1 

Interpolate the function f( x) given the following data: 

f(1)=4, f(2)=3, f(4)=7 

So n=3, F(x)= 

The equation Ac=f(x) is 

:1-1: :1-2: :1-4: Ci 4 

:2-1: :2-2: :2-4; c= = 3 

:4-1: :4-2: :4-4: _C3 _7 -
Solve using linear algebra, Gaussian elimination 

0 1 3 4 Rl<- > R2 1 0 2 3 R3 -> R3-3Rl 

1 0 2 3 0 1 3 4 

3 2 0 7 3 2 0 7 

1 0 2 3 R3 -) R3-2R2 1 0 2 3 

0 1 3 4 0 1 3 4 

0 2 -6 -2 0 0 -12 -10 

Now -12c~ = -10 C::!: = 5/6 
c~ + 3C3 = 4 c= = 3/2 

Ci + Oc= + 2c3 = 3 Ci = 4/3 

F(x) = 4/3:x-1: + 3/2: x- 2: + 5/6:x-4; 

Let g( x) = 4/3:x-1: h(x) = 3/2:x-2:, k(x) = 5/6:x-4;. 

We graph each separate term gives a physical representation 

of the interpolation. Graphing F(x) along with the terms 

illustrates that it piecewise linear. We expect this result 

since the piecewise linear functions are a subspace of C[l,4] 

and the addition of the lines, as s hown in the graph, forms a 

line. The function is not continuous at the data points 

since we onl y requi re that F(x)=f( x ) for the given data. 
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Figure 14c. 



Shape Parameter: 1 l1 Error: 118 
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