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Selected Problems Involving the Probability of Ruin 
for an Insurance Company 

Andrew J. Schafer 
Department of Mathematics 
University of Northern Iowa 

Cedar Falls, IA 50614 

Abstract 

In the actuarial science literature, an insurance company is said to be ruined if, at 

some time t > 0, the aggregate claims up to time t exceed the sum of the initial surplus 

and the total premium collected up to time t. The calculation and/or estimation of the 

probability of ruin is of fundamental importance. In this paper we use computer 

simulation to estimate the probabilities of ruin over a finite horizon of time when the 

aggregate claims process is Compound Poisson and the distribution of the claim sizes is: 

(i) Weibull, and (ii) exponential with a random parameter. The obtained estimates are 

compared with the case of exponential claim sizes and it is found that, in all but the 

increasing failure rate Weibull case, the probability of ruin, assuming exponential claims, 

overestimates the actual probability of ruin. Thus, one should be extremely careful in 

using the exponential claim formula uncritically. 

Key Words and Phrases : Adjustment coefficient, Classical model of risk theory, 
Compound Poisson process, Gamma distribution, Pareto distribution, Probability of ruin, 
Relative security loading, Weibull distribution 

1. Introduction 

1.1 Definition of the probability of ruin 

The probability of ruin is a concept used to describe the risk an insurance 

company faces . The risk consists of the possibility that the company's initial surplus and 

premium income may prove insufficient to meet the cumulative claims. In order to 
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understand the concept more fully, the following definitions and notations are necessary 

(See Bowers, et al., 1986, 345-347). Let 

t = point in time 

c = rate at which premiums are received (hitherto, assumed constant over time) 

u = initial surplus of the insurer 

S(t) = aggregate claims up to time t 

U(t) = surplus of the insurer at time t 

U(t) is defined as : 

U(t) = u + ct - S(t) , t 2:. 0 

Figure 1 gives a graphical depiction of U(t) when the successive claims arrive at 

time points T 1, T 2, .. . The graph of U(t) is increasing up until T 1. At this point a claim 

is filed by a client, and some of the surplus is removed to account for this. Similarly, 

claims are also filed at times T 2 through T 4· Note what occurs at T 4· At this point, the 

surplus drops below zero. It is at this point that we say the insurer has been ruined , since 

adequate funds no longer exist with which to pay premiums. 

We refer to this time of ruin as T, and are interested in the probability of the event 

'T < oo' . More precisely, 

T = \O < t < oo 
'1_+00 

, if U(t) < 0 for some t > 0 
, if U(t) 2:. 0 for all t > 0 

The probability of ruin is then defined as: 

\l'(u) = Pr(T < 00) 

The notation of \l'(u) emphasizes that the probability of ruin depends on the initial surplus 

u, as well. 

1.2 Classical model of risk theory 

The probability of ruin depends on the process of aggregate claims as well as on u 

and c. The classical model of risk theory assumes that the process {S(t), t 2:. 0} is a 
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Compound Poisson process with S(t) = X 1 + . . . + XN(t), where {N(t), t :::::_ 0} is a Poisson 

Process with rate 11. and X 1, x 2, ... are independent and identically distributed (i.i.d.) 

random variables . N(t) denotes the number of claims made by time t, while Xi denotes 

the size of the ith claim. We refer to Bowers, et al. ( 1986) for the necessary definitions 

and other details. 

It is easy to see that E[S(t)] = AtE(X) when X denotes the magnitude of a random 

claim against the insurer. For later use, we note that the arrival of claims follows a 

Poisson process of rate 11. if and only if the time between claims follows an exponential 

distribution with mean I /11. . This relationship between the Poisson distribution and the 

exponential distribution is useful for simulating the times at which claims arrive. 

1.3 Probability of ruin for the classical model 

It is well known (See Bowers, et al., 1986, 352-353) that, for the classical model 

described above; the probability of ruin is given by 

\jf(u) = exp {-Ru} . 
E[ exp {-RU(T)} I T < oo] 

where the "adjustment coefficient" R satisfies the equation 11. + cR = 11.Mx(R). Here 

Mx(R) denotes E[exp(RX)] . The denominator in the above expression for \jf(u) is 

calculated with respect to the distribution of negative surplus, given that ruin occurs. 

However, such an analysis of \jf(u) is not practical since E[ exp {-RU(T)} I T < 00] cannot 

be evaluated explicitly (except for the case of exponential claims). Since the latter must 

exceed 1, we find that \jf(u) < exp {-Ru} . This relationship is commonly referred to as 

Lundberg's inequality. 

1.4 Relative security loading and ·rate of premium collection 

The relative security loading (See Bowers, et al. , 1986, 37) specifies the extra 

amount of premium that an insurer must collect from policy holders in order to make a 

profit while still paying the numerous claims filed against them. For obvious reasons, 
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simply collecting premiums that are equal to the expected amount of claims will not yield 

a profit or generate surplus funds for the insurer. Thus, the premium amount collected 

must exceed the expected aggregate claims. Recall that the premium amount collected up 

to time t is ct. Expected aggregate claims in a Poisson process may be stated as AtE(X). 

We th~n define the relative security loading, 8, as follows: 

e = premium collected - expected aggregate claims 
expected aggregate claims 

Or symbolically as: 

e = ct - 2'.tE(X) 
11,tE(X) 

This expression can then be rewritten as follows : 

c = 11,E(X)(l + 8) 

1.5 Probability of ruin for exponential claim sizes 

The probability of ruin is mathematically tractable when X, the magnitude of a 

randomly selected claim, has the exponential distribution. The probability density 

function for the exponential distribution is as follows: 

f(x) = Pexp {-Px} , x > 0; P > 0 

In this case the expression: 

E[exp {-RU(T)} I T < oo] 

reduces to: 

P-R 

and the probability of ruin is found to be: 

\Jf(U) = rn - R)exp {-Ru} 
~ 
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Further analysis of the exponential distribution shows that R may be written in terms of p 

and 9 (the relative security loading) as: 

R = __BJL 
1+9 

Substituting this value of R into the previous equation for probability of ruin yields: 

\V(u) = exp{-0u / (1 + 0)E(X)} 
1 + e 

This equation can now directly be used to compute the probability of ruin when claims 

follow an exponential distribution with mean lip. It should be noted, however, that the 

above is the probability of ruin over an infinite time horizon. 

1.6 Simulation of finite time horizon probability of ruin for exponential claim sizes 

Probability of ruin is the probability that ruin will occur sometime in the interval 

(0, 00). However, one may be interested in the probability that ruin will occur sometime 

in the finite interval (0, t]. The objective of this subsection is to indicate how simulation 

may be used to estimate: 

\V(u, t) = the probability that ruin will occur sometime in the interval (0, t] 

The simulation entails generating values from an exponential distribution with a 

given mean, and then using these values as data for determining an insurer's surplus. As 

was mentioned earlier, when claim times follow a Poisson process, the time in between 

claims follows an exponential distribution with parameter A. Thus, we can simulate these 

claim times by generating a set of these numbers with an application such as MINIT AB. 

In a similar fashion, the claim amounts can also be simulated since they follow an 

exponential distribution with parameter p. 

In addition to simulating times and claims with the MINITAB software, we have 

written a short C program to analyze the data (See Appendix A). Observe that the 

program reads in the data generated by MINIT AB, and then uses the values to simulate 
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the probability of ruin. This is accomplished by computing the insurers' surplus as time 

progresses, and continually checking to see if ruin has occurred or not. Each simulation 

involved running 1000 separate trials to test for ruin occurring. These results were 

continually printed to the screen for analysis as the program ran. 

For the purpose of simulation, the following assumptions were made: 

u = initial surplus of insurer = 100 

c = rate of premium collection = 1.1 

l /11. = meantime between successive claims= 5 

Initially, 8 = 0.15, lip= 4.78, and the time horizon (0, t] = (0, 500] was 

considered. The computer read the data and analyzed whether or not ruin occurred in 

1000 separate trials (Note: 1000 trials were used for each separate simulation). In 28 of 

these trials, ruin occurred. Thus the simulated probability of ruin was 28/1000 = 0.028. 

This value differed from the theoretical value of 0.057 by quite a large margin. 

The simulation was repeated for various choices of 8, p, and (0, t] = (0, 700]. 

Appendix B shows the results of the eight simulations run, and the various values of 8 

that were used. The last three simulations, where 8 = 0.2 and 1/~ = 4.58 yielded a 

probability of ruin very close to the infinite time horizon theoretical value 

The objective of this paper is to estimate '-l'(u, t) , which denotes the probability of 

ruin over the finite time horizon O to t, for selected t when (i) the claim size distribution is 

Weibull and (ii) the claim size distribution is exponential with parameter p, but~ itself is 

the observed value of a Gamma random variable. 

2. Probability of ruin for Weibull claim sizes 

2.1 The Weibull distribution 

The Weibull distribution's probability density function (See Leemis, 1995, 88-89) 
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may be stated as follows: 

f(x) = k(l/a)kxk-lexp{-(x/a)k} 

Here, k and a are the parameters of the Weibull distribution that will adjust the form of 

the distribution depending on their values. The quantity k(l/a)kxk-1 in the above 

distribution is called the failure rate of the Weibull distribution. lfk > 1, it is increasing 

and if O < k < 1, it is decreasing. The expected value of the Weibull distribution is 

µ = (a/k)[r(l/k)] 

where r(x) is the well known gamma function. The values of r(x) may be found with the 

aid of several readily available mathematical tables (See Jeffrey, 1995, 222-224). 

2.2 Choosing the Weibull Distribution 

Modeling the probability of ruin for the Weibull distribution was chosen for two 

specific reasons. First, the theoretical probability of ruin when claim sizes follow a 

Weibull distribution is not tractable mathematically. Recall that the relationship between 

claim size and claim time is: 

A + cR = AMx(R) 

In the case when claims follow a Weibull distribution, Mx(R) cannot be calculated. 

Thus, simulation is the only tool available for computing the probability of ruin. 

The second reason for examining the Weibull distribution is its close relationship 

to the exponential distribution . Indeed, the exponential distribution is simply a special 

case of the Weibull distribution with k= l. If insurers are assuming that their claim sizes 

follow an exponential distribution, then they are also assuming that claim sizes follow a 

Weibull distribution with k= l since these are equivalent. The interest here is in 

overestimating or underestimating the probability of ruin. What happens if an insurer 

assumes exponential claim sizes, but claims actually follow a Weibull distribution with 

k=0.5 or k=5? Would the insurer be making the grave error of underestimating 

probability of ruin and not have enough surplus on hand? The opposite could also be true 
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if the insurer is overestimating the probability of ruin. In that case, an excess amount of 

surplus would be accumulated that is not altogether necessary. 

2.3 Simulating \Jf(u) when claim sizes follow a Weibull distribution 

The next step in modeling the probability of ruin for the Weibull case is to take 

the mean used for our exponential claim size ( 4.58), and set this value equal to the mean 

of the Weibull distribution ((a/k)[r(l/k)]) over the time horizon (0, t] = (0, 700]. Here 

the values of k and a are unknown. Since our primary interest lies in evaluating the 

probability of ruin as k varies, we have selected various values of k to use, and then 

computed a . These k values range from 0.2 to 5. 

Now that a and k have been computed, we can use MINIT AB to once again 

generate random values, this time from the Weibull distribution. For each separate k 

value, three separate simulations were run. The results are displayed in Appendix C. For 

these simulations, we are still assuming that the time between individual claims follows 

an exponential distribution with a mean of 5. The only change is in the claim size 

distribution. 

2.4 Conclusions 

As can be seen in Appendix C, our simulations reveal that when claims follow a 

Weibull distribution and k is less than 1, the probability of ruin is greatly inflated. Ask 

increases in value, the probability of ruin rapidly decreases in value. When k reaches a 

value of 3 or greater, the probability of ruin is virtually zero. 

By averaging the simulated probability of ruin at each value of k, we now have a 

better estimate of the probability of ruin for each k value. These values have been 

graphed in Figure 2 to show the decreasing trend of the probability of ruin as k increases. 

So what does this mean to insurers? Since the probability of ruin is so much 

greater when k is less than 1, we conclude that an insurer who assumes that claims are 

following an exponential distribution (k= 1) would be grossly underestimating the 
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probability of ruin if claims actually did follow a Weibull distribution and k was actually 

less than 1. Conversely, the insurer is greatly overestimating the probability of ruin if the 

claims follow a Weibull distribution and k is greater than 1. The danger for the insurer 

here is if k is less than 1. Our results suggest that the insurer should take great caution in 

representing claims with an exponential distribution. 

3. Probability of ruin for exponential claims with a random parameter 

We will now assume that the claim sizes X 1, X2, . .. , Xn are i.i.d. exponential 

with probability density function : 

f(x) = Pexp{-Px} , x > O 

where the parameter p is the observed value of a random variable B having the Gamma 

density function: 

fs(P) = (A a /y(a))(pa-1 )exp{-AP} , p > O 

This scenario is realistic when the value of p is not completely known, but fs(P) 

represents our prior partial knowledge about p. 

3.1 Unconditional distribution of claim sizes 

The final section of our analysis lies in once again simulating the probability of 

ruin with the previous computer program. This time we are again assuming that the time 

between claims follows an exponential distribution with a mean of 5. In addition, our 

claim sizes are once again following an exponential distribution, but now some 

information is known about the parameter (P) of the exponential claim distribution. 

Rather than having this parameter remain constant, we are now interested in 

observing what occurs when p is constantly changing. In particular, we are assuming that 

p now follows a Gamma distribution with parameters a and A. This sort of information 

about p is referred to as the conjugate prior. 
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The probability density function of the Gamma distribution is as follows: 

(11.a/r(a))(pa-l)exp{-11.P} 'p > 0 

Further, this distribution has a mean of a/11.. We have chosen to model p with a Gamma 

distribution because this particular distribution is very flexible . What this means is that 

by modifying a and 11. appropriately, it is relatively simple to model a variety of shapes. 

It can b shown that if claim sizes are following an exponential distribution with 

mean lip and P is following a Gamma distribution with parameters a, 11. then the claim 

size has the probability density function : 

f(x) = a(A "a) . 
(11.+x)a+l 

, x > 0 

This effectively means that our claims are now following a Pareto distribution with a 

mean of 11./(a-l) for a>l. 

3.2 Simulating claim size from the Pareto distribution 

We now go about simulating the probability of ruin as before. In this case we are 

interested in setting our new mean of 11./(a-l) equal to 4.58. Ideally a wide range of 

values for a would be considered here. We have, however, limited our analysis to the 

case when a=2 and hence 11.=4.58. These are the parameters for our Pareto claim size 

distribution. 

The next step is to simulate claim sizes from the Pareto distribution using 

MINIT AB. Since MINIT AB does not have a way of simulating values from the Pareto 

distribution, values were generated from a Uniform(O, 1) distribution and then a simple 

transformation was performed on them so that they followed a Pareto distribution with 

a=2 and 11.=4.58 (See Appendix D for an explanation of this transformation) . Our claim 

times were then generated from, once again, an exponential distribution with a mean of 5. 

Finally, three separate simulations were run for these claim sizes and times. The 

following probabilities of ruin were observed: 
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\lf(U) = 0.187 , 0.184, 0.186 

3.3 Conclusions 

These probabilities of ruin are once again extremely high and hence extremely 

risky for this particular case. As a and 'A are modified in the Pareto claim distribution, we 

would expect these values to be altered slightly. However, we conclude that the 

conjugate prior information may have the effect of once again inflating the probability of 

ruin. Insurers need to be cautious of this particular situation and take steps to reduce the 

high risk of ruin that was observed in our simulations. 
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Figure 1 

Graphical Depiction of U(t) 
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Figure 2 

Graphical Representation of \j/(u) when claims follow a Weibull distribution 
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Appendix A 

#include <stdio.h> 
#include <Stdlib.h> 

main () 
{ 

} 

FILE *inpf; 
FILE *infp; 
int j, counter, ruin count; 
float time, claim, total time, surplus, premium; 

inpf 
infp 

fopen( 11 H:\TIMES.DAT 11
, 

11 r 11
); 

f open ( 11 H : \ CLAIMS . DAT 11 
, 

11 r 11 
) ; 

ruin count= O; 

for (j = 1; j <= 1000; j++) 
{ 
surplus= 100; 
total time= O; 
do { 

fscanf(inpf, 11 %f 11
, &time); 

fscanf(infp, 11 %f 11
, &claim); 

surplus= (surplus+(l.1 * time) - (claim)); 
total time= total time+ time; 
} while ((surplus>= O) && (total time<= 700)); 

if (surplus< 0) 
ruin count= ruin count++; 

printf("Number of ruins= %3d 11
, ruin count); 

printf( 11 Total time= %f 11
, total time); 

printf( 11 Surplus at end time= %I\n 11
, surplus); 

} 

f close ( inpf) ; 
fclose ( infp) ; 
return O; 
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Appendix B 

Simulating probability of ruin during the time interval [O, t] 
when the claim sizes are exponential with mean 1/~ 

8 1/11. 1/~ Theoretical \jf(u) Simulated \jf(u) 

--------------------------------------------------------------------------------------------------
500 0.15 5 4.78 0.057 0.028 

700 0.15 5 4.78 0.057 0.045 

700 0.10 5 5.00 0.148 0.081 

700 0.19 5 4.62 0.027 0.015 

700 0.21 5 4.55 0.018 0.016 

700 0.20 5 4.58 0.022 0.023 

700 0.20 5 4.58 0.022 0.016 

700 0.20 5 4.58 0.022 0.023 



Appendix C 

Simulating probability of ruin during the time interval [O, t] 
when claim sizes are Weibull with mean (a/k)r(l/k) = 4.58 

k 

0.2 
0.2 
0.2 
0.4 
0.4 
0.4 
0.5 
0.5 
0.5 
0.6 
0.6 
0.6 
0.8 
0.8 
0.8 

1.0 
1.0 
1.0 

a 

0.038 
0.038 
0.038 
1.378 
1.378 
1.378 
2.29 
2.29 
2.29 
3.057 
3.057 
3.057 
4.042 
4.042 
4.042 

4.58 
4.58 
4.58 

\lf(U) 

0.364 
0.358 
0.358 
0.276 
0.294 
0.277 
0.182 
0.169 
0.189 
0.108 
0.119 
0.113 
0.042 
0.050 
0.045 

0.023 
0.016 
0.023 

--------------------------------------------------------------------------
1.2 4.854 0.009 
1.2 4.854 0.006 
1.2 4.854 0.004 
1.4 4.999 0.002 
1.4 4.999 0.008 
1.4 4.999 0.003 
1.5 5.096 0.002 
1.5 5.096 0.004 
1.5 5.096 0.004 
1.6 5.145 0.004 
1.6 5.145 0.006 
1.6 5.145 0.002 
2 5.168 0.001 
2 5.168 0.004 
2 5.168 0.004 
3 5.075 0.000 
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Appendix C ( continued) 

Simulating probability of ruin during the time interval (0, t] 
when claim sizes are Weibull with mean (a/k)r(l/k) = 4.58 

k a \Jf(U) 

3 5.075 0.000 
3 5.075 0.000 
4 5.053 0.001 
4 5.053 0.000 
4 5.053 0.000 
5 4.988 0.001 
5 4.988 0.000 
5 4.988 0.000 
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Appendix D 

The Pareto distribution has probability density function: 

f(x) = a(2/'a) . 
(A+xp+l 

, x> 0 

And hence has cumulative density function: 

F(x) = 1 - [A a/(A+x)a] 

lfwe generate a value, U, from a Uniform(0,1) distribution, then F-l(U) will have a 

distribution from F(x) since: 

P(F-1 (U) _s x) = P(U _s F(x)) = F(x) 

Let y = F(x). Then: 

y = I - ["-a l(A+xP] 

Which may be reduced to: 

X = A[(l-yrl /a - I] 

Therefore: 

For our case, A=4.58 and a=2 . 

F- 1cu) = (4.58)[(1-urll2 - 11 

where U is a random value from a Uniform(O, 1) distribution. 
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