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Abstract 

Cadherin-11 (cad-11) is primarily a mesenchymal cadherin that appears in delaminating neural crest cells. Its 
expression correlates with morphogenetic events and the pattern has been studied in mouse, rat and Xenopus 
embryos, but not during avian organogenesis. Our purpose was to investigate this pattern in the chick embryo 
during organogenesis using immunolocalization and in situ hybridization. Cad-11 was expressed in mesenchyme 
around the pharynx and aortic arches, eyes, auditory vesicles, lung buds, stomach, and nasal placodes. Neural 
expression included some cranial ganglia and also new neuroepithelium within the tail bud region undergoing 
secondary neurulation. We also found expression in epithelia of the developing circulatory and digestive organs. 
The limb buds, pineal rudiment and mesonephros were also positive. Cad-11 expression became more 
widespread with development. Our findings support the role of cad-11 as a mesenchymal cadherin, but provide 
evidence for a wider role that includes epithelial morphogenesis and secondary neurulation. 

Keywords: Cadherin, Chick embryo, Organogenesis, Immunolocalization, In situ hybridization, Secondary 
neurulation  

1. Introduction 

Although it is found in non-mesenchymal tissues, Cad-11 is primarily a mesenchymal (Type II) cadherin. 
Mesenchymal cells require a mechanism to maintain contact, and the abundance of cad-11 among some of them 
suggests that it may mediate weak adhesions, allowing them to maintain loose connections. In morphogenetic 
zones where cells reside in undifferentiated masses, they can migrate without forming strong adhesions to cells 
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with a different fate. Thus cad-11 could have a role in cell sorting and communication (Takeichi, 1994; Kimura 
et al., 1995; Ellerington et al., 1996; Shin et al., 2000; Gumbiner et al., 2005). Cad-11 and N-cadherin serve as 
markers for cells differentiating into osteoblasts, chondroblasts, myoblasts or adipocytes, all of which stem from 
a common mesenchymal propagator (Grigoriadis et al., 1988; Grigoriadis et al., 1990; Yamaguchi and Khan, 
1991; Kawaguchi et al., 1999; Oberlender and Tuan, 1994; Shin et al., 2000; Kii et al., 2004). Studies of cad-11 
knockout in mouse embryos have shown that the embryos were viable and appeared normal, but they had a 
distinct phenotype: slight reduction of calcification, craniofacial changes and an abnormal shape of the long 
bones (Kawaguchi et al., 1999; Kawaguchi et al., 2001). 

Neural crest cells (NCCs) utilize several cadherins for their distinctive adhesive properties. Cad-11 endows these 
cells with a property important for migration. During the epithelial-to-mesenchymal transition (EMT) in neural 
tube, they emerge from this epithelium dorsally and then migrate along specific pathways to destinations 
throughout the developing embryo where they differentiate into a diverse array of tissues. During EMT they 
must disengage from their junctions with other cells. The junctions are dynamically regulated at the time of 
neurulation. During closure of the neural tube in the mouse, one of the tight junction proteins, occludin, is 
downregulated, causing the tight junctions to become non-functional (Aaku-Saraste et al., 1996). When tight 
junctions thus disconnect, cadherin-based adherens junctions remain, but alter their cadherin-specific 
composition for NCCs disengaging from the neural tube, at least in Xenopus, chicken, mouse and rat. In the 
chicken embryo, premigratory NCCs express N-cadherin and cadherin-6B, but as EMT occurs and migration 
begins, Ca2+-related adhesion decreases and those cadherins are downregulated (Revel and Brown, 1976; 
Newgreen and Gooday, 1985; Akitaya and Bronner-Frasier, 1992; Nakagawa and Takeichi, 1995; Nakagawa and 
Takeichi, 1998). In their place cadherins associated with migration and the mesenchymal phenotype, cadherin-7 
and cad-11, are upregulated (Tanihara et al., 1994; Hoffman and Balling, 1995; Nakagawa & Takeichi, 1995; 
Simonneau, 1995; Inoue et al., 1997; Hadeball et al., 1998; Nakagawa and Takeichi, 1998; Vallin et al., 1998; 
Chalpe et al., 2010). 

Kimura et al. (1995) have studied the cell binding properties and pattern of expression of cad-11 mRNA in the 
early mouse embryo. Via whole-mount in situ hybridization they were able to examine embryos up to stage E9.5. 
More mature specimens could not be studied since hybridization probes do not penetrate large samples. However, 
they also examined superficial tissues such as limb buds in embryos up to stage E13.5. They reported that the 
earliest expression of cad-11 was found in the head mesoderm and in mesodermal layers of the tail during the 
mid-to-late primitive streak stages (Kimura et al., 1995). Cad-11 expression was seen in many regions known to 
be derived from neural crest cells, such as the mandibular and maxillary processes, and the mesenchymal cells 
that underlie the ectoderm in the pharynx and the periocular mesenchyme. In the trunk region cad-11 was found 
to be expressed in somites during formation, appearing initially at the caudal end and spreading through each 
somite, ending with expression only in the sclerotome and core cells. The lateral plate mesoderm was found to 
express cad-11 in the tail region. It was not found in the notochord, in the outer ectoderm of the entire body, nor 
in the early cranial or dorsal root ganglia. Cad-11 expression was found to be most intense in mesenchyme and in 
tissues or structures derived from neural crest cells. Simonneau et al. (1995) also studied cad-11 mRNA 
expression. They studied expression in the rat from pregastrula to very late embryonic stage. They found cad-11 
expression in all NCC-derived mesenchyme and also in other mesenchyme, including early expression in the 
prechordal and paraxial mesoderm, and in the somite sclerotomes. During organogenesis they found expression 
in mesenchyme throughout the embryonic body whether NCC-derived or otherwise. They reported strong 
expression in mesenchyme associated with and condensing near epithelial tissues such as the corneal surface 
epithelium, optic cup, nasal placode, genital epithelium, lung and kidney. In the limb buds, tail and genitalia they 
observed proximo-distal and antero-posterior mesenchymal gradient expression. And in the ventricle and outflow 
regions of the heart, invading mesenchyme within the trabeculae expressed cad-11 strongly. Mesenchymal 
condensations that eventually differentiate into membranous or endochondral bone, and around blood vessels 
were positive, but epithelia such as the vessel endothelium, endoderm of the foregut, stomach and intestine, 
dermamyotome, nasal placode, and lung endothelium, were negative (Simonneau et al.,1995). 

This cadherin expression pattern is distinctive and draws attention to the need to investigate the pattern of 
expression in the chick embryo. Recently, Chalpe et al. (2010) reported cad-11 expression in the in migrating 
neural crest of the avian embryo but this analysis was focused on regulation of expression in that particular cell 
type. The chick embryo is a longstanding vertebrate model of staged development, needed for comparison 
purposes, and it remains one of the primary reference models for NCC migration and morphogenesis. In addition, 
its pattern of primary and secondary neurulation zone overlap more closely resembles the human than does the 
mouse. We describe here the protein level expression of cad-11 in the chick embryo during organogenesis, with 
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some confirmation by in situ hybridization showing mRNA expression. 

2. Materials and Methods 

This study was carried out in laboratories within the Department of Biology at the University of Northern Iowa, 
and within the Biology Department and Neuroscience Group at the University of South Dakota, between 2006 
and 2009. The work described here complied with protocols approved by the University of Northern Iowa 
Animal Care Committee and adhered to the legal requirements of the United States of America. 

2.1 Embryos 

Fertile eggs from the crossed strains Black Astralorps and New Hampshire Red chickens were obtained from 
Sun Ray Chicks Hatchery, Hazelton, IA. Younger embryos were removed by placing a Whatman 3MM filter 
paper ring over the blastoderm and cutting around it with scissors. Older embryos were removed by placing 
curved forceps under the embryo and cutting around it. Four embryos were studied at each stage, one as a control 
with omission of primary antibody. Embryos were rinsed in chick Ringer’s saline solution to remove yolk and 
determine the developmental stage according to the Hamburger and Hamilton (1951) staging series. We 
examined stages from 13 (about two days of development) to 22 (3.5-4 days of development), with study up to 
stage 25 by whole mount in situ hybridization. 

2.2 Tissue processing, microwave antigen retrieval and immunostaining 

Embryos were extracted from eggs at various stages and placed in fixative (4% formaldehyde, freshly prepared 
from paraformaldehyde, in PBS, pH 7.4) on ice for 30 minutes or more. Fixed embryos were washed twice in 50% 
ethanol (Et-OH) for 30 minutes at room temperature and then transferred to 70% Et-OH. Extraembryonic 
membranes were dissected away and embryos were placed in a shallow plastic container filled with 500 ml of 
100mM Tris buffer, pH 10. They were then irradiated with microwaves in a Tappan microwave oven (model 
number 56-9431) twice at 640 watts for five minutes each, alongside two liters of water in separate plastic 
beakers to absorb excess heat. After cooling to room temperature the embryos were incubated in 0.5% bovine 
serum albumen, 1% Tween-20, and 1% non-fat dry milk in PBS (blocking solution) for 30 minutes. 

To immunostain, the embryos were incubated in mouse monoclonal anti-human cad-11 (0.5 mg/ml, Invitrogen, 
32-1700/clone 5B2H5) diluted 1:400, in blocking solution at 5C overnight. This is a mouse IgG1-kappa antibody 
directed against recombinant protein derived from an intracellular sequence of human cad-11 (aa 651-796) and 
has not been found to cross-react with other cadherins (Akins et al., 2007). After binding, the primary antibody 
was removed and the embryos were washed twice in PBS for 15 minutes each at room temperature. To detect 
primary antibody binding Alexa Fluor 488 tagged anti-mouse IgG (2 mg/ml, Molecular Probes, Inc.) diluted 
1:500 in blocking solution was added to the embryos for 30 minutes at room temperature. Embryos were washed 
in PBS for 15 minutes and stored in 70% Et-OH until observation. 

2.3 Synthesis of probes and in situ hybridization 

Embryos were fixed overnight in 4% formaldehyde prepared from paraformaldehyde (pH 8.0) at 4C, dehydrated 
in the increasing methanol-PBS + Tween- 20 (PBT) series (75% PBT-25% methanol, 50% PBT-50% methanol, 
25% PBT-75% methanol and 100% methanol) and stored in 100% methanol at -20C. Antisense and sense 
cadherin-11 EC3 (bp 1438-1815) RNA probes were synthesized with UTP-digoxigenin (Roche) label. The probe 
was detected with anti-digoxigenin antibody conjugated to alkaline phosphatase (Roche, used at 1:2000 and 
diluted in 5% goat serum with Tris buffered saline with 0.1% Tween 20 and 0.5% Triton X 100 (TBSTT) 
followed by the color reaction with the substrate Nitro-Blue Tetrazolium Chloride (NBT; Fisher Biotech) and 
5-Bromo-4-Chloro-3-Indolyl Phosphate p-toluidine salt (BCIP; Fisher Biotech). All probes were used at 1 mg/ml 
diluted in the pre-hybridization buffer (50% formamide, 5 X SSC-pH 4.5, 50 mg/ml yeast RNA, 1% SDS and 50 
mg/ml heparin). The antisense probe (377 bases) was synthesized using SP6 polymerase (Promega) and the 
sense probe (377 bases) synthesized using T7 polymerase (Promega), the plasmid being linearized with NotI 
(Promega) and BamHI, respectively. Embryos were embedded in paraffin and sectioned at 18 μm. 

2.4 Western blotting 

Stage 19 embryos were homogenized in 15 mM Tris, 1 mM EDTA, 1% Triton-X100 with 1X Protease Inhibitor 
Cocktail (Sigma) and sonicated. Following homogenization the protein concentration was determined by 
Bio-Rad protein assay (Bio-Rad, Richmond, CA), and the homogenate was mixed with an equal volume of 2X 
Laemmli sample buffer. The mixture was boiled 5 min and loaded into lanes of a 10% polyacrylamide-SDS gel 
for electrophoresis and subsequent transfer to PVDF (Bio-Rad) membrane. Following transfer the membrane 
was pre-incubated in Aqua block (EastCoast Bio) for 1 hr at RT. It was then incubated in monoclonal anti-cad-11 
antibody (Invitrogen, 32-1700) 2 μg/mL for 1 hr. Following washing in 1X TBSTT, binding of the primary 
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antibody was detected using the IRDye 680 nm-labeled goat anti-mouse secondary antibody, (1:5,000, LI-COR) 
for detection with the Odyssey infrared imaging system (LI-COR). Ladder: Precision Plus Protein Standards 
(Bio-Rad). 

2.5 Photography 

Whole mount embryos were placed in a dish on the stage of a Leica MZ16 dissecting microscope (Leica 
Microsystems, Wetzlar, Germany). Images were captured using an Optronics CCD digital camera (SN 
BG602210-H) with Magnafire© computer software (Optronics Inc., Goleta, CA). Images of embryo sections 
were captured using a Leica DMIRE2 inverted microscope with FITC filter set (Leica Microsystems, Wetzlar, 
Germany) using the same camera and software. The in situ hybridization images were taken with the Leica 
MZ16F stereomicroscope, but using a QICAM 12-bit Color Fast 1394 Cooled camera, Model: 
QIC-F-CLR-12-C. 

2.6 Histology 

Embryos were dehydrated in an Et-OH series, cleared in xylene and embedded in paraffin. They were sectioned 
at 7μm thickness and the sections were transferred onto slides coated with Histogrip (Invitrogen) and allowed to 
dry. Sections were rehydrated and mounted in 9.6% Mowiol 40-88 (Farbwerke Hoechst, AG) made up in 24% 
glycerol-0.1M Tris buffer, pH 8.5). 

2.7 Analysis 

Averages of 450 sections for larger embryos, and 250 sections for smaller embryos, were viewed and analyzed. 
Based on direct observation tissues were assigned as having negative, low intensity or high intensity staining 
compared to control tissue sections where the primary antibody was omitted. 

3. Results 

We studied cad-11 expression in whole chick embryos and sections during Hamburger-Hamilton (1951) stages 
13-25. We used a monoclonal antibody directed against a unique intracellular segment of the protein for 
immunolocalization. A western blot of stage 19 homogenized embryonic chick tissue is shown in Figure 1A. The 
blot revealed a band recognized by the monoclonal antibody to cad-11, of approximately 115 kDa. We also 
studied its mRNA expression via in situ hybridization in whole embryos and sections using a riboprobe 
complementary to cad-11 mRNA. A complete list of tissues analyzed is displayed in Table 1.  

3.1 Cad-11 expression viewed in whole mount embryos 

The immunolocalization of cad-11 in whole mount embryos revealed positive staining from stage 13 onward. 
The staining reached high intensity by stage 18 (Figure 1B) in the head mesenchyme, especially near the eyes, 
nasal pits, and around the telencephalon, but eventually also around the diencephalon and mesencephalon. The 
pharynx region also stained with high intensity from early stages, including and especially the branchial arches 
(Figure 1B). The strong staining in the pharynx was apparent posteriorly to include the lung buds, esophagus, 
stomach, and liver rudiments. Staining in the heart did not appear until stage 18 and was then intense only in the 
loop of the ventricle. Low intensity staining was easily discernible in the auditory vesicles and semilunar ganglia 
as they developed in the head, and in a segmental pattern along the body axis that reflected the periodicity of the 
somites, apparently between them. The limb buds, as they developed, also stained with low intensity in whole 
embryos, and increased in intensity somewhat with development to stage 22. Based on this increase and on their 
appearance in sections they were classified as having high intensity staining (Table 1).   

The in situ hybridization of whole embryos is shown in Figure 1, D-F and Figure 3, E-G). In early embryos 
cad-11 mRNA was apparent in the head mesenchyme and pharynx, and segmentally along the body axis. The 
posterior end of the neural tube was clearly stained though there was no staining anterior to this (Figure 1D). The 
pattern of cad-11 mRNA expression was the same as that seen in immunolocalization generally, except that by 
stage 18 the heart appeared to be negative (penetration of riboprobe into this dense tissue may have been limited), 
and staining was visible in the aortic sack. In addition, the limb buds and periodic staining of intersomitic tissue 
were relatively more intense (Figure 1E, F). By stage 20 it was possible to clearly see strong staining of the 
secondary neural tube, and this remained only in the caudal-most area of the tail (shown in Figure 3, D-G). By 
contrast, the primary neural tube remained negative (Figure 1E and Figure 3, F and G). As the pharyngeal arches 
developed the expression of cad-11 there became stronger and more defined (Figure 1, D-F). 

3.2 Cadherin-11 expression viewed in transverse sections 

Immunostaining for cad-11 in cross-sections was analyzed developmentally and organized according to tissue 
type in the developing organ rudiments of the nervous, circulatory, and digestive systems, and the limb buds. We 
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describe the expression developmentally within each system and refer to labeled images in Figure 2, which show 
many but not all tissues. However, images showing cad-11 expression during secondary neurulation are 
displayed in Figure 3. 

3.2.1 Developing nervous system and associated mesenchyme 

Components of the nervous system that were positive for cad-11 expression were limited to some ganglia and 
sense organs. Of the major ganglia in the head only two pairs, the semilunar and jugular were strongly positive. 
Anti-cad-11 antibody stained the semilunar ganglia with high intensity in stage 17-22 embryos, but the jugular 
ganglia were initially positive beginning at stage 22. The acousticofacialis ganglia were positive and showed low 
intensity staining during these same stages. The epibranchial placodes, which later contribute to the facialis 
portion of the acousticofacialis ganglia, however, did stain with high intensity at stages 17-20. In sections 
containing the superior ganglia and the dorsal root ganglia it was not possible to detect any immunostaining of 
these tissues.  

During the early stages of brain development the mesenchyme surrounding brain segments appeared positive for 
cad-11. At stage 15 the mesenchyme near the telencephalon became positive and at stage 16 the mesenchyme 
around the mesencephalon was positive. These areas remained positive at low intensity. The mesenchyme near 
the diencephalon became positive at low intensity later, beginning between stages 18 and 20. The mesenchyme 
near the myelencephalon appeared to remain negative. At stage 22 the pineal epithelial rudiment on the dorsal 
side of the diencephalon stained positive and appeared to stain most intensely at curvatures where cells are 
wedge-shaped (Figure 2G). The mesenchyme directly overlying the pineal evagination was not positive. 
However near its edges, where the epithelium of the pineal gland was most positive, the mesenchyme did stain 
for cad-11.  

The auditory vesicles were also positive for cad-11 but staining was mainly localized to the basal and especially 
the apical ends of the long, narrow cells (Figure 2B). In this epithelium a distinct line of bright staining could be 
seen near the lumen that resembled a line of adherens junctions. The cornea stained with high intensity although 
it was variable and stained with low intensity at stages 20 and 21. The lens epithelium and optic cup near it 
stained with low intensity, but the medial (deeper) aspects of the eye were negative. However, the periocular 
mesenchyme did stain positive at stages 14-22, the brightest signal appearing near the edges of the optic cup and 
in a few cells very near the pigmented retina (Figure 2E). The ectodermal epithelium of the nasal placodes, 
visible by stages 16-17, as well as the mesenchyme adjacent to them, stained positive for cad-11. The somites 
stained positive at low intensity for cad-11 during early formation. As they became epithelial we observed low 
intensity expression throughout except for somewhat higher expression in the dermamyotome (Figure 3B). As 
they matured staining became fainter and eventually disappeared. 

Although the primary neural tube was unstained through the length of the embryo at stages 15-22, the small 
secondary neural tubes that formed and coalesced in the tail bud did transiently stain positive for cad-11 as 
shown at stage 15-16 (Figure 3B and C) and were positive for cad-11 mRNA as shown at stage 13 (along with 
the lateral plate mesoderm, Figure 3A) and at stage 20 (Figure 3D). 

3.2.2 Cad-11 expression in the developing circulatory system and associated mesenchyme 

We observed cad-11 expression in the chick embryo developing circulatory system and found that staining 
became more widespread in later stages. Sections showing the dorsal mesocardium, through which new cells 
enter the heart, stained positive for cad-11 consistently, indicating expression in precardiac migrating cells 
throughout stages 13-22. However, areas of the heart myocardium appeared positive only in the later stages. 
Beginning at stage 18 the myocardial wall of the ventricle loop was positive although the endocardium in all 
segments was negative. The ventricle remained positive with low intensity staining at stage 22 (shown at stage 
19 in Figure 2C). The conotruncus was positive at stage 21, and the aortic sac stained at stage 22. In agreement 
with staining seen in whole mount embryos, the heart tissue seen in sections did not stain during the earlier 
stages of development, but once staining appeared, it gradually increased in extent and intensity with 
development. Overall, the positive areas of the heart seen in sections stained with low intensity, but the ventricle 
showing high intensity at the inner curvature of its loop (Figure 2C). The mesenchyme surrounding the aortic 
arches, derived from neural crest cells, stained with high intensity through all the stages of development studied. 

3.2.3 Expression of cad-11 in the digestive tract and associated tissues  

The digestive system tissues consistently stained positive for cad-11. The mesenchyme surrounding the pharynx 
expressed cad-11 through all of the stages examined, especially in the mandibular and maxillary processes 
(Figure 2G). The endoderm of the pharynx, though negative from stages 13-18, became positive during stage 19 
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and remained so through stage 22. A similar pattern and sequence was seen in other parts of the digestive tract. 
The mesenchyme surrounding the laryngotracheal groove, the esophagus and the stomach were identified as 
positive earlier, from stages 16-22, and then the endoderm of each of these became positive as the embryo 
developed, appearing at stages 20-22 (Figure 2A and C). Mesenchyme surrounding the lung buds also appeared 
positive from an early stage (stage 16) and remained positive throughout the period studied. The endothelium of 
the lung buds became positive during stage 17 (Figure 2A). The mesenchyme of the dorsal mesogaster was 
positive for cad-11 during stages 17-22, and from the time of its appearance at stage 14 the cranial liver rudiment 
showed high intensity staining (Figure 2C). 

In the urogenital tissues, we observed that the endoderm and mesenchyme of the cloaca stained positively with 
low intensity for cad-11 during stages 17-22. The pattern was the same for the hindgut. The mesonephric ducts 
(Figure 3B) and tubules stained positive for cad-11 as soon as they appeared, and with high intensity from stage 
16 onward. 

3.2.4 Expression of cad-11 in the developing limb buds 

The wing and leg buds stained positive for cad-11 from stages 18 through 22. The mesenchyme of the limb bud 
stained with high intensity (though not as high as some tissues) and fairly uniformly throughout the limb bud 
(Figure 2F). A taper in intensity from the interior to the exterior edge (brighter), and a slight taper from 
proximal-to-distal (brighter brighter) of the limb bud was perceptible. But the background fluorescence in 
unstained limb buds (control sections stained using no primary antibody) showed a similar taper suggesting that 
the pattern is partly the result of changing cell density through the wing and leg buds or incomplete antibody 
penetration. The ectodermal covering of the limb buds was negative except for the apical ectodermal ridges 
(AER), which stained with high intensity for cad-11 during stages 20-22 (Figure 2F). Localization of cad-11 
mRNA in stage 22-25 limb buds revealed the entire ectodermal covering as negative, and the mesenchyme as 
positive, with a more definite proximal-to-distal gradient than seen with immunostaining, especially in the 
anterior distal region (Figure 1, E and F, and Figure 3, F and G). 

4. Discussion 

By studying the expression of cad-11 we are better able to understand its functional role in embryonic 
development. Our results provide evidence that not only supports the known feature of cad-11 as an adhesion 
molecule in mesenchyme, but also its potential involvement in morphogenetic events such as epithelial 
rearrangements. 

For the developing nervous system, our results show that in the chick embryo some major ganglia in the head 
express cad-11 whereas the dorsal root ganglia do not. These results differ from the findings of Kimura et al. 
(1995) and Simonneau et al. (1995) who did not find cad-11 expression in cranial or dorsal root ganglia for the 
early stages of development in the mouse or rat. Our observation of cad-11 expression in the semilunar and other 
cranial ganglia is not surprising, however, since they receive contributions of NCCs, which express cad-11 as 
they begin to migrate. Kimura et al. (1995) also reported mRNA expression in the neural tube. We found 
expression of cad-11 protein in the primary neural tube only in the posterior end early, at stage 13. However, we 
found expression of cad-11 during secondary neurulation during stages 13 through 25 (Figure 3, A-G). 
Expression in tissues undergoing secondary neurulation (Schoenwolf and De Longo, 1980; Saraga-Babic et al., 
1996; Yang et al., 2003) is interesting because these cells are going through a mesenchyme-to-epithelial 
transition, forming a neural tube through the process of cavitation of tailbud mesenchyme rather than elevation, 
apposition, and fusion of neural folds. This conversion is important for the cells that will help to form the caudal 
end of the neural tube in a process that follows a schedule of differentiation independent from that of the primary 
neural tube (Chung et al., 2008). A recent study has established the identity of the cells that originate formation 
of the secondary neural tube in the caudo-medial region of Hensen’s node at stage 8 (Shimokita and Takahashi, 
2011). In this region the basal lamina disappears from the epiblast epithelium as cells become mesenchymal, and 
then they express N-cadherin as they begin to associate again in the tailbud (Shimokita and Takahashi, 2011). 
Our finding that expression of cad-11 in the cells during the subsequent cavitation process suggests that it is also 
involved in the organization of those cells. The pattern of these transitions appears to differ from that in the 
mouse (Nievelstein et al., 1993; Catala et al., 1995). It will be important to examine these early stages for cad-11 
expression. 

Expression of cad-11 in parts of the circulatory system was evident. Other studies have found cad-11 mRNA 
expression in vascular smooth muscle cells (Monahan et al., 2007), endocardial cushion (Shelton and Yutzey, 
2008) and other mesenchymally derived cells including cells among the ventricular trabeculae (Simonneau et al., 
1995), likely NCCs. But our finding that the embryonic heart does express cad-11 in the ventricular wall is 
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distinctive. We found expression at stage 13 in the dorsal mesocardium where precardiac mesodermal cells enter, 
and a later progression of expression in the myocardium of the ventricle (Figure 2C), conotruncus, and the aortic 
sac. We did not see expression in the atrium. Increasingly wider expression in older embryos suggests that 
cad-11 is upregulated as the heart becomes more complex. Cad-11 was consistently expressed in the pharynx 
near the aortic arches throughout all stages of development. Much of this expression in the outflow region of the 
heart and vessels likely reflects the contributions of cardiac NCCs.  

The mesenchyme of the pharynx region stained positive for cad-11 throughout all the stages of development that 
we examined, including mesenchyme within the mandibular and maxillary processes. This is consistent with 
findings for the mouse by Kimura et al. (1995) who found these particular tissues to be the most intensely 
stained. Similar expression of cad-11 in the branchial arches was found in the rat (Simonneau et al., 1995) and in 
Xenopus (Vallin et al., 1998). Our results, as well as those by Kimura et al. (1995), show that expression of 
cad-11 in this region gradually decreases as the embryos develop. This mesenchyme is contributed by NCCs.  

Cad-11 is known as a mainly mesenchymal cadherin and our results for the chick embryo provide much 
supporting evidence. The periocular, corneal, and auditory vesicle mesenchymes were particularly interesting as 
these NCC-derived tissues stained at every stage studied except stage 13. Our results support the findings of 
Kimura et al. (1995) in the mouse and Simonneau et al. (1995) in the rat. However, we have found that in the 
chick embryo, cad-11 expression was considerably more intense in the periocular mesenchyme than in the 
auditory vesicle mesenchyme (compare Figure 2B and E), in contrast with the results of Kimura et al. (1995), 
which show more cad-11 mRNA expression in auditory vesicle mesenchyme. Positive mesenchyme was also 
observed near the nasal placodes, lung buds and stomach, and in the dorsal mesogaster. The function of cad-11 
expression in mesenchyme is likely to be that of allowing cells to maintain a loose connectivity with one another 
while promoting migration and shape-changing. Its expression was most intense in areas actively undergoing 
morphogenesis. These masses of undifferentiated cells may use cad-11 during the processes of migration, sorting 
and communicating with other cells without creating strong adhesions to them.  

As in other mesenchymal tissues in the embryo, cad-11 is expressed in the limb bud mesenchyme. The mRNA 
expression pattern is a distinct gradient of expression increasing from proximal-to-distal with highest expression 
at the distal tip and within condensing mesenchyme (Figure 3G) and cartilage condensations (Kimura et al., 
1995; Simonneau et al., 1995). Our in situ hybridization in whole mount embryos (Figure 1E, F) and on sections 
through limb buds (not shown), confirm the gradient patterns. However, our observations of avian cad-11 protein 
expression during limb bud development differ somewhat from findings for mRNA in mouse by Kimura et al. 
(1995) and in the rat by Simonneau et al. (1995). Through stage 23 we found positive cad-11 expression in the 
core of the limb where cavitations were appearing, and no readily apparent increasing concentration toward the 
periphery. In addition, the proximal-to-distal expression gradient is not as distinct at the protein level. Our results 
for protein also contrast with those for mRNA with regard to the AER, which we observed to be positive, though 
the limb ectoderm was otherwise negative. Cadherins, including cad-11, are subject to a variety of transcriptional 
and post-transcriptional regulation (Halbleib & Nelson, 2006; Farina et al., 2009) and these differences between 
protein and mRNA expression patterns suggest that cad-11 may indeed be differentially regulated at the 
transcript and protein levels, including the possibility of a regional mechanism of translation or transport control. 
It is also plausible that the mRNA pattern of expression is quite transient or dynamic, but protein accumulation is 
more even. 

Our results also show cad-11 protein staining in some epithelial tissues. Our results for the optic cup epithelium 
are in close accord with results for the mouse (Kimura et al. 1995) as in both animals the outer region expressed 
more strongly than the inner. The auditory vesicle did not stain generally for cad-11, however, within some areas 
there was strong staining at basal and especially apical sides of the epithelium. Kimura et al. (1995) also reported 
cad-11 mRNA expression in optic vesicle and auditory vesicle for the mouse, and Luo et al. (2007) have reported 
expression in supporting cells and homogene cells of the developing chick cochlea. Our observations of cad-11 
protein expression in the auditory vesicle suggest that it may be involved in the cell-shape-change-driven 
complex morphogenetic events that form the inner ear. We saw similar patterns for the pineal gland rudiment, 
lung buds and the stomach. As the auditory layer cells developed into closed auditory vesicles, a distinct line of 
apical staining became visible, appearing much like a line of adherens junctions. We also detected cad-11 in the 
endothelium of the pharynx, pineal, laryngotracheal groove, lung buds, esophagus, stomach, and liver as the 
embryo developed. The epithelium of the mesonephric ducts and tubules stained positive from stages 16-22 as 
well. 

We observed cad-11 expression in newly formed somites, where apical junctional lines, again, could be seen 
among the cells. Expression was initiated in the somites as they became closed epithelial vesicles, and as they 
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matured cad-11 staining became faint. Our observations of initial expression of cad-11 in the newly formed 
epithelial somitic vesicles are consistent with the results reported by Kimura et al. (1995) for the mouse embryo. 
The expression of cad-11 in epithelial cells suggests that it may be involved in branching morphogenesis 
(Simonneau et al., 1995), perhaps via the signaling events that cause active cell shape changing via activation of 
the actin cytoskeleton during organogenesis (Watanabe et al., 2010).  

Other groups have noted that neural crest cells upregulate cad-11 coincident with migration (Kimura et al., 1995; 
Simonneau et al., 1995; Hadeball et al., 1998; Vallin et al., 1998; Chalpe et al., 2010). Although we did not 
detect neural crest cell streams in this study, we did find that many neural crest cell derivatives stained positive 
for cad-11, suggesting that these cells express cad-11. Failure to detect neural crest cell streams may be due to a 
level of expression too low to be detected as these cells are delaminating and migrating away from the neural 
tube, but which later becomes detectable. Messenger RNA localization by in situ hybridization does show that 
these cells are positive (data not shown), and also positive for protein by immunostaining in explant culture 
(Chalpe et al., 2010). That study also showed that only some but not all neural crest cells, labeled with HNK- 1 
antibody, expressed cad-11.   

We have characterized the expression pattern of cad-11 during early stages of chick development. This is the first 
descriptive study of the expression pattern for chicken. Cad-11 protein expression has a distinctive profile when 
compared to other cadherins. Unlike most, it is expressed broadly throughout the embryo and mainly in 
mesenchyme. But we find there is also expression in certain epithelia, particularly those involved in active 
morphogenesis. By understanding how cad-11 expressing cells interact with other cells, and the properties 
imparted to those cells (i.e. motility or changing shape), we are able to better understand why cad-11 is 
expressed where and when it is. Future studies to understand cad-11 function in these tissues should involve 
blocking expression of cad-11 protein in the chick embryo. 
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Table 1. Tissue assessment for cad-11 expression 

Negative Low Intensity High Intensity 

Superior ganglia Acousticofacialis ganglia Semilunar ganglia 

Infundibulum Aortic sac Jugular ganglia 

Dorsal root ganglia  Ventricle myocardium Epibranchial placode 

Aorta Dorsal mesocardium   Corneas 

Atrium Dorsal mesogaster Aortic arches 

Neural tube (primary) Laryngotracheal groove Cranial liver rudiment 

Occulomotor nerve Trachea Mesonephric duct 

Facial nerve Lung buds Mesonephric tubule 

Spinal nerve Stomach Auditory vesicles 

Tail bud Somites AER 

 Nasal placodes Wing buds 

 Cloaca Leg Buds 

 Hindgut Pineal gland 

 Mesenchyme near… Secondary neural tube 

 Auditory vesicles Mesenchyme near 

  Nasal placodes Eye 

 Pineal rudiment Pharynx 

 Telencephalon Aortic arches 

 Mesencephalon Laryngotracheal groove  

 Diencephalon Lung buds 

  Stomach 

  Dorsal mesogaster 

  Esophagus 
Immunostaining intensity for cad-11 was categorized for embryonic chick tissues observed during 
Hamburger-Hamilton stages 13-22 as absent, low intensity, or high intensity. 
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Figure 1. Western blot and localization of cad-11 in whole mount embryos 

A: Western blot of stage 19 chick embryo homogenate separated on a 10% polyacrylamide gel, transferred to 
PVDF membrane, and probed with a monoclonal antibody to cad-11. The antibody bound to a band of molecular 
weight 100-120 kDa. B: Stage 18 embryo stained with monoclonal anti-cad-11. Bright fluorescent stain is visible 
in mesenchyme near the diencephalon, telencephalon, and eyes. The auditory vesicles, nasal placodes, 
ventricular loop, pharynx, and liver rudiment also stained intensely. Some staining of the intersomitic spaces 
along body axis and the limb buds can be seen as well. Bar = 650 mm. C: An embryo at stage 19 was 
immunostained with primary antibody incubation omitted and shows only background fluorescence. Bar = 260 
mm. D-F: Series of whole mount embryos stages 13-23 showing developmental profile of cad-11 mRNA 
expression. The embryos were stained by in situ hybridization with an anti-sense probe for cad-11. At stage 13 
there was moderate staining of head mesenchyme and pharynx, periodic staining along the body axis, and 
evident staining of the posterior segment of the primary neural tube. Bar = 500 mm. At stage 18 the staining was 
generally present in the same areas stained by immunolocalization (seen in B), but the limb buds appeared to 
show more definitive and tapered expression, the ventricle was less stained, and the periodic trunk staining was 
recognizable as prominent in the intersomitic spaces. Just visible at the tail’s curvature is a confined region of 
staining near the tailbud. Bar = 650 mm. At stage 23 cad-11 expression became more prominent and resolved in 
each of the pharyngeal arches, intersomitic spaces, and limb buds. Bar = 400 mm. G: Sense probe control stage 
22 embryo. Bar = 260 mm. E: Abbreviations: av, auditory vesicle; d, diencephalon; hm, head mesenchyme; iss, 
intersomitic space; lb, leg bud; lr, liver rudiment; m, mesencephalon; p, pharynx region; pa, pharyngeal arches; 
pnt, posterior neural tube; t, telencephalon; tb, tailbud; v, ventricular loop; wb, wing bud. 
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Figure 2. Immunolocalization of cad-11 in sections 

A: Section through trunk of stage 17 embryo. The endoderm of the pharynx and lung buds shows strong staining, 
especially apically, and the surrounding mesenchyme is also positive. Bar = 850μm. B: Section through auditory 
vesicle of stage 18 embryo. High intensity cad-11 staining is evident at apical and basal sides (arrows) of this 
epithelium. Bar = 100μm. C: Section through trunk of stage 19 embryo. The dorsal mesogaster and stomach, 
both in endothelium and mesenchymal wall, immunostain with low intensity. The cranial liver rudiment stains 
with high intensity. The ventricular myocardium stains with low intensity, but with high intensity at concave side 
of the ventricular loop (arrow). Bar = 1000μm. D: Immunostaining control stage 20 embryo, section through the 
trunk. The primary antibody was omitted during immunostaining. Only background fluorescence is visible. Bar 
= 400μm. E: Section through eye of stage 15 embryo immunostained with antibody to cad-11. The cornea and 
periocular mesenchyme stain intensely. The anterior lens epithelium of the lens vesicle and the edges of the optic 
cup stain with lower intensity. Bar = 100μm. F: Section through wing bud of stage 22 embryo. Cad-11 staining is 
intense in both mesenchyme and apical ectodermal ridge at this stage. Bar = 10μm. G: Section through rostral 
side of eyes and diencephalon of stage 22 embryo. The pineal rudiment shows high intensity immunostaining 
near the lumen of the diencephalon. The first pair of aortic arches stain with high intensity within the mandibular 
arches. Bar = 100μm. Abbreviations: aer, apical ectodermal ridge; c, cornea; clr, cranial liver rudiment; d, 
diencephalon; da, dorsal aorta; dm, dorsal mesogaster; dv, ductus venosus; e, eye; ecv, endocardium of ventricle; 
hg, hindgut; lv, lens vesicle; lb, lung bud; mp, maxillary process; nt, neural tube; p, pineal rudiment; pom, 
periocular mesenchyme; st, stomach; v, ventricle; wbm, wing bud mesenchyme. 
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Figure 3. Localization of cad-11 in stages 13-25 tailbud 

A: cross-section of stage 13 embryo stained by in situ hybridization. The cross-section was taken through the 
secondary neural tube in the tail. The dorsal side of the secondary neural tube stains but the segmental plate 
mesoderm does not. The lateral (extraembryonic) mesoderm shows high levels of cad-11 mRNA. Bar in A = 
100μm. B: Section through a stage 15 embryo showing secondary neurulation cavitations with bright cad-11 
immunostaining dorsal to the notochord. The dorsal aspect of a somite and the mesonephric duct are also 
positive for cad-11. Bar = 100μm. C: Section through the tailbud of a stage 16 embryo showing multiple 
cavitations dorsally. The section is more posterior than the section shown in B. The cells surrounding the small 
lumina are positive for cad-11. Bar = 50μm. D: Section through the tailbud of a stage 20 embryo at higher 
magnification stained by in situ hybridization. The larger two fusing cavitations show cad-11 mRNA expression 
mainly on the dorsal aspect. Bar = 100μm. E-G: Stages 20-25 whole mount embryos stained by in situ 
hybridization and oriented for a caudal view. The secondary neural tube staining becomes smoother and remains 
confined to the caudalmost region. The primary neural tube is unstained, however segmental staining at its lateral 
borders suggests cad-11 positive neural crest cells. Bar = 480μm. Abbreviations: cip, caudal intestinal portal; ctb, 
cavitating tail bud; ect, ectoderm; end, endoderm; lb, leg bud; md, mesonephric duct; pnt, primary neural tube; s, 
somite; sm, somatic mesoderm; snt, secondary neural tube; tb, tail bud; vm, visceral mesoderm. 
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