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Introduction and Motivation
Why study Titan?

Why study isotopes on Titan?

Are aerosols a sink for stable isotopes?

Why study aromatic compounds?

• Titan is the largest satellite of Saturn and has 
atmosphere composed of nitrogen and a few 
percent methane (CH4).

• The atmosphere is believed to be similar to that 
of early Earth. 

• The haze layer of Titan is rich in organic 
chemistry and can give new insights into 
prebiotic chemistry and planetary habitability. 

Figure 1. Images from the Cassini-Huygens mission. 
Titan is shown in orbit around Saturn (left) and the 
haze layer of Titan’s atmosphere is observed as a 
hazy halo around the planet.
Images courtesy of JPL-NASA

• The measurements of stable isotope 
ratios give information on the history 
and evolution of the atmosphere. 

• Measurements from Titan indicate 
that the 12C/13C ratio in CH4 is similar 
to the protosolar ratio, which 
suggests that the CH4 is relatively 
young.1

• The 14N/15N is similar to the 
protosolar value of NH3 based on 
comet measurements.2,5

Figure 2. Known and unknown pathways to explain the isotopic 
fractionation occurring in Titan atmosphere. 

• Current models of the observed isotope 
ratios on Titan do not incorporate isotopic 
fractionation resulting from organic 
aerosol formation and subsequent 
deposition onto the surface of Titan (Figure 
2).

• Initial studies have shown that 
fractionation direction and magnitude are 
dependent on the initial bulk composition 
of the gas mixture3 (Figure 3).

Figure 4. Far-infrared spectra from the Cassini 
spacecraft as compared to the spectra of laboratory 
aerosols produced from aromatic compounds. 
Image courtesy of JPL-NASA.

• Cassini-borne instruments have detected 
benzene in Titan’s atmosphere.

• Aromatics, such as benzene (below, left), has 
been shown to be an important pathway in 
aerosol formation.

• Far-IR spectral feature of Titan’s haze layer is 
similar to that of aerosols produced from 
aromatic compounds.3 (Figure 4)

• Though not observed in situ, pyridine (N-
containing aromatic, below) is a likely product of 
Titan chemistry and produces laboratory aerosol 
with a strong Far-IR feature.

Materials and Methods
Aerosol Production

Isotope Ratio Mass Spectrometry (IRMS)

Results

• Titan aerosol analogs are produced in the laboratory to study their fractionation. 
• Gas mixtures used are trace gases (CH4, benzene (C6H6), and pyridine (C5H5N) with nitrogen (N2)) in mixing chamber as shown in 

Figure 6.
• The gas mixture is irradiated with far-UV light (115-400 nm) that leads to aerosol production. a quartz filter (Figure 7).
• Aerosol samples are collected in an inert, ex situ environment (Ar, N2 or vacuum) and processed for Isotope Ratio Mass Spectrometry 

(IRMS) Analysis

Figure 6. Left: Setup for generating Titan aerosol analogs. Right: Actual system for generating the aerosols. Note that the 
tanks of the reactant gases (N2 and CH4) are not shown in the picture. 

• IRMS is used to measure the relative abundance of isotopes in a given sample.
• The sample is combusted and is converted into CO2 and N2. 
• Carbon and nitrogen stable isotope values are reported in standard δ notation in per mil (%) as defined by:

δ(‰)= [(Rsample ÷ Rstandard)-1] · 1000
where Rsample is the ratio of the heavy to light isotope (13C/12C or 15N/14N) and Rstandard is the isotopic ratio 
of the standard.

• To determine the isotope fractionation induced by the aerosol production, the isotope ratios of the products and 
reactants  are compared using the equation: 

Δ13C = δ13Cproducts -δ13Creactants or       Δ15N = δ15Nproducts - δ15Nreactants

Mixture
Pressure

(Torr)
Collection Time

(Hours) Δ13C Δ15N

50 ppm Benzene 100 ~60 -4.3 9.6

50 ppm Benzene; 0.1% CH4 100 ~120 13 -9.1

50 ppm Pyridine 100 ~60 20 2.1

50 ppm Pyridine; 0.1% CH4 100 ~120 30 2.1

• Significant differences in the isotopic ratios between the aerosols 
generated by the two different aromatic compounds (benzene and 
pyridine). 

• The addition of methane to the mixture significantly increases the 
aerosol production time

• The uncertainties of the data are still being assessed.
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• The aerosols generated with the pyridine/N2 gas mixture are enriched in the 13C isotope, while the aerosols generated by benzene/N2 gas mixture are depleted in 
the 13C isotope.

• Methane significantly increases the Δ13C ratio for the aerosols generated by both aromatic compounds. This consistent previous research where methane 
generated aerosols, which were enriched in the 13C isotope.4

• The Δ15N ratio for the benzene/N2 generated aerosol seems to be significantly higher than the pyridine/N2 generated aerosol but low amount of nitrogen in the 
sample could induce large uncertainties.

• The addition of methane to the benzene/N2 gas mixture caused an enrichment in the 14N isotope over the 15N isotope in the generated aerosols.
• Methane addition to the pyridine/N2 gas mixture did not significantly change the Δ15N ratio for the generated aerosols. This could be because the primary 

contribution to the N in the aerosol is from pyridine

Figure 8. Comparison of the 
Δ13C and Δ13C values for the 
four different aerosol 
samples generated by 
aromatic gas mixtures in N2.

Figure 7. Image of laboratory 
produced aerosol before IRMS 
processing.

Conclusions
• The aerosols produced in 

the laboratory setting 
demonstrate a change in 
isotopic ratio for 13C and 15N 
from the starting products.

• The addition of methane to 
a gas mixture appears to 
partially inhibit aerosol 
formation and increase 
collection time.

• Further work will need to 
be done to asses the effects 
of temperature and 
pressure on aerosol 
formation and isotopic ratio 
for 13C/12C, 15N/14N and 
D/H.  
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