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Abstract 

The purpose of this study was to build a statistical model of the economic damage that arises 

from earthquakes in order to better predict losses from future earthquakes. Though earthquakes 

are essentially a random event and cannot be fully anticipated, analyzing historical data and 

creating a statistical model can provide researchers with a more accurate estimate of future 

losses. The data set from which this model was built incorporated earthquakes occurring 

worldwide from 1915-2015 in which the total damage was recorded. The final model was a 

multiple linear regression model explaining total damage resulting from an earthquake through 

four independent variables: whether or not a tsunami occurred (tsunami_dummy), whether or not 

the earthquake occurred in a developed nation (developed_dummy), intensity (intensity), and 

number of injuries (total_injuries). Statisticians, specifically those at insurance companies, can 

use these results to provide rough estimates of potential losses after an earthquake occurs. This 

model is just a starting point for statisticians, however; more accurate and representative models 

can be created from insurance companies’ historical losses in order to better estimate future 

losses. 
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Statistical Modeling of Earthquake Damage 

 Catastrophes, though rare events, often hit unexpectedly, destroying buildings, leaving 

homes in ruins, and tearing communities apart. Many catastrophes, such as earthquakes, are 

unpredictable, but steps have been taken throughout history in order to prepare for these events. 

Buildings have been reinforced, weather monitoring has greatly improved, and past catastrophes 

have been meticulously studied in order to model, or predict, what the next catastrophe will 

bring. Statisticians create models of catastrophes—earthquakes, hurricanes, even terrorist 

attacks—in order to simulate the potential effects of such events. But with all the different 

variables of a catastrophic event, how can statisticians be confident in their models? How will 

the intensity of an earthquake impact the degree of economic damage in a city? How will the 

number of fatalities in an earthquake impact the total claim amount an insurance company may 

face? These kinds of questions are constantly scrutinized by modelers when developing and 

modifying catastrophe models. 

 The biggest problem with creating catastrophe models is the lack of credible data. The 

infrequency of catastrophic events leaves little data for statisticians to analyze. Also, catastrophes 

dating too far back often result in outdated data which is no longer relevant in the present day. 

However, does this mean catastrophe models cannot be created? Can a set of useful models to 

predict economic damage resulting from earthquakes be generated from a single data set? If so, 

what elements of an earthquake will prove to have the greatest impact on total economic 

damage? This study examined these questions and explored the field of earthquake catastrophe 

modeling further. 

 The purpose of this study was to build a statistical model of the economic damage that 

arises from earthquakes in order to better predict losses from future earthquakes. Though 
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earthquakes are essentially a random event and cannot be fully anticipated, analyzing historical 

data and creating a statistical model can provide researchers with a more accurate estimate of 

future losses. Though many questions arose throughout the data analysis process, there were two 

initial research questions: 

1. What impact do the number of deaths, injuries, or missing people resulting from an 

earthquake have on economic loss? 

2. What impact does the intensity of an earthquake have on economic loss? 

These questions shifted to reflect the data used in this study, but the original goal remained 

intact. This study was significant because it quantified the effect that variables related to 

earthquakes, such as intensity, number of deceased, and economic condition of the country in 

which the event occurs, have on the total economic loss from an earthquake. 

Literature Review 

 Catastrophe modeling has been studied in great detail in order to better estimate future 

events and the potential losses associated with them. However, this is not an easy task; since 

catastrophes are rare events, there is limited data from which to build models of losses (Cristina 

& Alexandria, 2013). Catastrophe models are designed to estimate the potential frequency and 

severity of a catastrophic event, not to predict when an event of a particular severity will occur. 

This is especially the case in regards to earthquakes. Earthquakes are one of the most 

unpredictable natural phenomena because there are few warning signs of a potential seismic 

event, unlike those related to hurricanes or floods (Vere-Jones, 1995). Another caveat of 

catastrophe modeling is the constantly-changing landscape of insured properties, or exposures. 

Property values may fluctuate along with building structures and designs (Grace, Klein, 

 



STATISTICAL MODELING OF EARTHQUAKE DAMAGE 3 
 

Kleindorfer, & Murray, 2003). Advanced technology and a thorough understanding of the 

geophysics behind seismic events have allowed engineers to analyze the movement of a building 

in the event of an earthquake. These movements are then accounted for in the design of buildings 

in areas with high seismic-risk (Bolt, 1993). Because of the ever-changing nature of the insured 

landscape, data from the past may no longer be relevant. 

 In order to start forming these catastrophe models, researchers must fully understand the 

variables of the catastrophic events. Earthquake loss models often include measures of the 

magnitude and intensity (Cristina & Alexandria, 2013). Magnitude, historically measured using 

the Richter scale, is defined as “the logarithm to base ten of the maximum seismic-wave 

amplitude (in thousandths of a millimeter) recorded on a standard seismograph at a distance of 

100 kilometers from the earthquake epicenter” (Bolt, 1993, p. 118). Various other measures of 

magnitude arose from Richter’s original scale, most notably the moment magnitude scale (Bolt, 

1993). A moment is the product of the size of a force and the distance between that force and the 

force opposite to it. In terms of earthquakes, the moment is the measure of a rupturing fault and 

the rebounding effect along that fault (Bolt, 1993). Because these moment values are often hard 

concepts to grasp mathematically, they are correlated with magnitude and measured on the 

moment magnitude scale. This scale is often used as a superior measurement because of its 

consistency across all sizes of earthquakes, unlike the original Richter scale. 

 Intensity is another measure of earthquake severity which is commonly measured by 

assessing the degree of damage a seismic event causes. This includes damage to structures, 

ground disturbances, and animal reactions to the earthquake (Bolt, 1993). The Modified Mercalli 

Intensity scale (MMI) is commonly used to measure earthquake intensity. This is a Roman 

numeral scale that provides a description of the degree to which an earthquake is felt or the 

 



STATISTICAL MODELING OF EARTHQUAKE DAMAGE 4 
 

damage caused by an earthquake. For example, an earthquake with an MMI of IX indicates an 

earthquake with violent shaking and resulting in “damage considerable in specially designed 

structures; well-designed frame structures thrown out of plumb. Damage great in substantial 

buildings, with partial collapse. Buildings shifted off foundations” (United States Geological 

Survey, 2015). Classification on the MMI is often done through questionnaires distributed to 

residents of the affected region, which provides a more qualitative measurement of earthquake 

severity as opposed to magnitude measurements, which are quantitative in nature.  

 Once researchers have a full grasp of the measurements involved in seismic analysis, they 

can begin to build models to estimate damages or loss from these catastrophic events. This 

damage arises from homes and buildings destroyed in an earthquake, lives lost, injuries 

sustained, and other physical effects resulting from the event. Insurance companies are often 

those most interested in these catastrophic models in order to estimate the potential claims they 

may need to pay out in the event of a catastrophe. These models are often developed by 

statistical modeling teams using historical losses within the company as well as industry data. 

These models are usually proprietary in order to protect any classified information from 

competitors or the public. Though the specific models are not published, researchers have 

discussed what types of statistical analyses are used to create these models. 

 AIR Worldwide, a catastrophe modeling firm, developed catastrophe modeling 

technology in the late 1980s that broke catastrophe modeling into three components: hazard, 

engineering, and financial (Grace et al., 2003). First, the hazard component simulates a 

catastrophic event and its intensity. Next, the engineering component estimates the amount of 

damage resulting from that simulated event. Lastly, the financial component assesses the 

economic value of the damage from the event. Figure 1 provides a flow chart of the AIR 
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catastrophe modeling process. The output of this model includes probability distributions of 

losses over a certain time period or in terms of cumulative distribution functions (Grace et al., 

2003).  

 

 

 Statisticians also use a combination of two models to simulate a catastrophic event: one 

to estimate frequency and one to estimate severity. Frequency is a measure of when and how 

often an event occurs. Yilmaz, Erisoglu, and Celik (2004) suggested using Weibull distribution 

to model the time between two successive earthquakes. Weibull distribution is often used to 

measure “time-to-failure” or in the context of this study, the time until the next seismic event. 

Poisson models have also been used to model earthquake frequency (Weimer, n.d.). However, 

the Poisson distribution is more commonly used to model the number of events occurring in a 

specific area during a specific time period. Severity, on the other hand, is a measure of the 

potential damage or losses arising from a catastrophic event. One of the most common methods 

of modeling the severity of an earthquake is using a tapered Pareto distribution called modified 

Gutenberg-Richter law (Kagan & Schoenberg, 2001). This law models the relationship between 

Figure 1. Catastrophe modeling framework. This figure provides a flow chart of the 
various steps AIR takes when creating a catastrophe model. Adapted from “About 
Catastrophe Modeling,” by AIR Worldwide, n.d. (http://www.air-
worldwide.com/Models/About-Catastrophe-Modeling/) 
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earthquake magnitude and number of seismic events of at least that magnitude in a specified area 

during a given time period (Kagan & Schoenberg, 2001).  The tapered Pareto distribution is 

designed to assign lower probabilities to earthquakes of extremely high magnitudes than the 

typical Pareto distribution. All in all, these models have their advantages and disadvantages, and 

they are often used in conjunction with each other for catastrophe modeling purposes. 

Methodology 

Data Selection 

 The first step in this study was to find a data set from which the model would be built. 

The National Oceanic and Atmospheric Administration (NOAA) has a group called the National 

Centers for Environmental Information which maintains a Global Significant Earthquake 

Database dating back to 2150 BCE (National Geophysical Data Center, 2016). The database 

allows a user to specify a date range, region, and country from which they want the records of 

the significant earthquakes meeting those specifications. All the earthquakes occurring 

worldwide between 1915 and 2015 were examined. Earthquakes without the damage in millions 

of dollars recorded were excluded from the data set. The results of that database search were 

exported to Excel for further modifications to better fit the design of this study. 

 The database provided estimates for damage in millions of dollars, and it also included an 

estimate for total damage in millions of dollars, which included damage from subsequent events 

such as a tsunami or another earthquake. Since the total economic effect of a seismic event was 

of interest in this study, only the total damage in millions of dollars was examined. After the 

earthquakes without total damage recorded were deleted, 360 entries remained. These 

earthquakes made up the final data set that was used in the modeling process. 
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Variable Selection 

 Next, the different variables were examined to determine whether or not they would be 

included as potential regressors. Some variables were excluded because they were irrelevant (e.g. 

latitude and longitude, region code, and state name), and others were not included because there 

were too many missing values to provide substantial analysis (e.g. houses destroyed and 

damaged, missing people, and various measures of magnitude). Other variables were 

transformed into more useful regressors, specifically economic development status and total 

damage scaled. 

 The original data set provided the country where the event occurred, but this was not 

relevant to the questions around which this study was focused. Instead, the country variable was 

transformed into a measure of economic development status, i.e. developed, economies in 

transition, or developing. This was done using a country classification table produced by the 

Development Policy and Analysis Division of the United Nations (2014). Thus, each of the 

earthquakes was classified as occurring in a location that was either developed, an economy in 

transition, or developing depending on the classification provided by the United Nations. This 

variable provided a way to compare the effect on total economic damage of various economic 

states, therefore enriching the analysis. 

 Another variable that required transformation was the total damage in millions of dollars. 

These dollar amounts were recorded in the value at the time of the event, so they needed to be 

scaled to current dollars, or 2015 dollars, for consistency. This was done using the Consumer 

Price Index (CPI) provided by the U.S. Department of Labor Bureau of Labor Statistics (US 

Inflation Calculator, n.d.). The average CPI of 2015 was divided by the CPI of years dating back 

to 1915 in order to produce a scaling factor for the non-current dollars. Then, the nominal dollar 
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amounts for each of seismic events were multiplied by the corresponding scaling factor; the 

resulting dollar amount was coined as the variable total damage scaled. 

 The final data set included eight potential regressors: tsunami, economic development 

status, focal depth, eq primary, intensity, total deaths, total injuries, and total damage scaled. 

 Tsunami. The tsunami_dummy variable is a dummy variable that takes the value 1 if an 

earthquake resulted in a tsunami and 0 otherwise. 

 Economic development status. This variable, as mentioned before, is a transformation 

of the country in which a seismic event occurred. The variable is actually treated as two separate 

dummy variables: developed_dummy and transition_dummy. The first takes the value 1 if the 

country is developed and 0 otherwise, while the second takes the value 1 if the country is an 

economy in transition and 0 otherwise. There is no need for a third dummy variable for 

developing countries because this is accounted for if both developed_dummy and 

transition_dummy take the value 0.  

Focal depth. The variable focal_depth is a measure of the depth of an earthquake, and it 

is given in kilometers. 

 Eq primary. The variable eq_primary was the most consistently recorded measure of 

magnitude in the data set. Magnitude is a measure of seismic energy of an earthquake taking the 

value 0 to 10; the higher the number, the more seismic energy an earthquake produced. The type 

of magnitude measure used was not noted, so this value could be the surface-wave magnitude, 

moment magnitude, compressional body wave magnitude, or another measure. However, these 

values are all measures of the magnitude and are similar, so they can be compared. 
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 Intensity. The variable intensity is measured on the Modified Mercalli Intensity scale. 

Typically, the scale is given in Roman Numerals, but these were converted into values from 1 to 

12 in the database. The scale is defined based on physical effects of an earthquake, such as 

damage to the frames of buildings, with 1 being a minor earthquake and 12 being the most 

damaging. 

 Total deaths. The variable total_deaths is the total number of deaths resulting from the 

earthquake and any secondary effects that may have occurred, such as a tsunami. 

 Total injuries. The variable total_injuries is the total number of injuries resulting from 

the earthquake and any secondary effects that may have occurred, such as a tsunami. 

 Total damage scaled.  The variable total_damage_scaled, as mentioned before, is a 

transformation of the total damage variable originally included in the data set. This value is 

recorded in millions of dollars, scaled to 2015 dollars.  

Results 

Exploratory Analysis 

 The first step in model creation is to perform exploratory data analysis, which includes 

examining summary statistics and possible relationships between the regressors. SAS was used 

as the computer program for this study. Summary statistics of the eight independent variables 

and the sole dependent variable were calculated and can be seen in Figure 2. There is, on 

average, $3.251 billion dollars in damage for each earthquake, with a standard deviation of 

$16.661 billion. The high value for standard deviation for total_damage_scaled, total_deaths, 

and total_injuries can be explained by the great variability in earthquake effects. Some 

earthquakes can barely be felt by humans, while others completely decimate towns. For the three 
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dummy variables, the most meaningful statistic is the sum, which would be equivalent to the 

number of values equal to 1. Of the 360 earthquakes, 117 were in developed nations, 21 were in 

economies in transition, and the remaining 222 were in developing nations. Another important 

note is that 94 of the 360 earthquakes also had a tsunami associated with them.  

 

 

 In addition to the simple statistics, the relationship between potential variables also 

revealed a lot about the data set. The relationship between regressors is measured by the Pearson 

correlation coefficient (rho), which measures the strength and direction of a relationship. These 

values range from -1 to +1, with -1 being a perfectly negative relationship and +1 being a 

perfectly positive relationship. The correlation coefficient matrix can be seen in Figure 3. The 

scatterplot matrix in Figure 4 (p. 12) is a visual interpretation of the relationships between 

variables. The most highly correlated regressors were total_deaths and total_injuries (rho = 

0.79911). This strong positive relationship is intuitively sound; one would expect that the more 

deaths resulting in an earthquake, the more injuries there would be as well. Another relatively 

strong relationship existed between tsunami_dummy and eq_primary (magnitude), with a rho of 

0.52983. This relationship can also be justified through logic; the higher the magnitude of an 

earthquake, the greater likelihood that a tsunami will develop. The variables intensity and 

Figure 2. Simple statistics of full data set. 
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eq_primary also had a moderately strong positive relationship (rho = 0.50181). One would 

expect intensity to move in the same direction. 

 The relationship between the dependent variable and the various regressors were also of 

importance. Six regressors had positive relationships with the dependent variable, 

total_damage_scaled: developed_dummy, tsunami_dummy, eq_primary, intensity, total_deaths, 

and total_injuries. On the other hand, transition_dummy and focal_depth were negatively 

correlated with the dependent variable. With this knowledge, signs of coefficients could be 

predicted for the regressors; positive correlations correspond with positive signs, while negative 

correlations correspond to negative signs. 

 

Figure 3. Pearson correlation coefficient matrix with notable relationships highlighted. 
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Model Selection 

 The next step in creating this catastrophe model was experimenting with different 

variable combinations to design the model that best explained the data set. Three different 

selection processes were utilized in this project: forward, backward, and stepwise selection. 

Figure 4. Scatterplot matrix output.  This matrix displays the same information from the 
Pearson Correlation Coefficient matrix but in a visual manner. 
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Forward selection begins with no variables in the model. During each step, SAS examines the F-

statistic, a measure of significance of the model, for each of the independent variables. SAS then 

chooses the variable with the largest F-statistic, as long as the variable has a p-value lower than a 

set level (0.5), and enters it into the model.  This process continues until no variables remain or 

no p-value is lower than the set level, and once a variable is added, it cannot be removed. 

Backward selection, on the other hand, begins with all of the variables in the model. The F-

statistic for each of the variables is calculated, and the variables are deleted one at a time from 

the model if their p-values are greater than a specified level (0.1), beginning with the least 

significant. This process is repeated until all variables are significant at that level. Stepwise 

selection is a variation of the forward selection process. The main difference is that models may 

be removed from a model if their F-statistic is not significant at a specified level (0.1). 

 These three selection processes provided two distinct models; backward and stepwise 

produced the same model, while forward had an additional variable included. Backward and 

stepwise selection included developed_dummy, tsunami_dummy, intensity, and total_injuries. 

The only difference with the forward selection was that total_deaths was also included as a 

regressor. However, due to the strong positive correlation between total_deaths and 

total_injuries, it seemed unnecessary to use both variables in the same model in fear of 

multicollinearity, or in other terms, redundancy. Thus, the model chosen to move forward with 

further modifications included only total_injuries. 

 A multiple regression was conducted using the aforementioned regressors to model the 

dependent variable, total_damage_scaled. All of the variables were significant at a 5% level 

except for developed_dummy, which had a p-value of 0.1033. Typically, variables included in a 

model are significant at least at the 10% level, so the variable was dropped, and the results were 
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examined. Dropping this dummy variable lowered the r-squared of the model from almost 20% 

to 18%, so the researcher decided to include the variable even though it was seemingly 

insignificant. This was done because of the meaningful interpretations that could arise from the 

inclusion of the economic nature of a location of a seismic event in the modeling of resulting 

economic damage. The variables total_injuries and total_deaths were swapped to see what effect 

it had on the model. The results led to a lower r-squared and lower significance levels of other 

regressors, so total_injuries remained in the model. Thus, the final model included those 

variables selected in the stepwise and backward processes. 

Assessing Influential Points 

 Once the model was chosen, potentially influential points and outliers were examined to 

determine whether or not they should be included in the data set. The four measures used to 

assess influence in this project were the student residual, DFITS, DFBETAS, and Cook’s D. The 

student residual is a measure of the difference in an observation’s actual value and its predicted 

value, scaled by its standard deviation. These values are considered potentially overly influential 

if they have a value greater than 2. DFITS measures the change in an observation’s predicted 

value if that observation is deleted from the data set; large values indicate influence, especially 

those greater than 2. DFBETAS is the change in the coefficient of each regressor if an 

observation is deleted. A value of 2 is also used as a cutoff for this measure, and those exceeding 

that cutoff may have undue influence on the value of the coefficients. Lastly, Cook’s D is a 

measure of difference in the predicted values of a model before and after the deletion of an 

observation. In practice, a value greater than 1 is evidence that an observation is overly 

influential.  
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 In examining these four measures, a few observations stood out as they raised concerns in 

at least two of the four tests. Observation 83 failed each of the four tests, while observation 241 

failed three of the four. Observation 323 was also noteworthy because it failed two of the four 

tests. In order to test whether or not the observation should be included in the model, Akaike’s 

Information Criteria (AIC) was calculated. AIC is a measure of goodness-of-fit of a model, in 

which the model with the lowest AIC is considered the best model. The formula for AIC utilizes 

various measures included in the SAS output: 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛 × ln �𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛
� + 2𝑝𝑝, where n is the number 

of observations, SSE is the sum of squared errors, and p is the number of parameters in the 

model (including the intercept). The AIC of the model with all observations included was 

3040.51. When observation 83 was deleted, however, the AIC dropped to 2995.37; since the AIC 

without the observation was lower, that observation was permanently deleted from the data set. 

The AICs of the models without the other notable points were calculated, but they were either 

only slightly lower or higher than the model excluding observation 83. Because of this, only 

observation 83 was removed from the data set due to its extreme influence on the parameter 

estimates and predicted values.  

Examining Potential Multicollinearity 

 With the data set and model finalized, the next step was to check for potential 

multicollinearity by examining the variance inflation factors and collinearity diagnostics of the 

model. Variance inflation factors (VIF) measure how much the variance of a parameter estimate 

is inflated due to collinearity. Values greater than 2 signify collinearity issues; however, all VIFs 

for the parameters were less than 2 and did not raise any concerns. Another measure of 

collinearity can be seen in the collinearity diagnostics produced by SAS (Figure 5). When the 
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condition index of an eigenvalue is greater than 30 and the corresponding proportions of 

variation are also large, extreme collinearity is suspected. However, as seen in Figure 5, none of 

the condition indices are greater than 30, so no issues are suspected. 

 

 

Model Validation 

 Model validation was approached differently for this model than most linear regression 

models. Model validation is a process where the predictive power of a model is assessed. 

Typically, a data set is split into two parts: a training set and a test set. The training set is a subset 

of the data set used to build the model, while the test set is the remainder of the data set used to 

test the reliability of the model created with the training set. Fifty-fifty and 75-25 splits are 

common for the training and testing sets, respectively. However, since the sample size of this 

study was already relatively small when excluding observations with missing values, breaking 

the data set into two would limit the results too much. 

 Because of this, the model was built using the full data set. Thus, the predicted residual 

error sum of squares (PRESS) and sum of squares due to error (SSE) were compared to assess 

the predictive ability of this model. SSE measures the fit of a model by examining the difference 

in the observed and the predicted value for each observation. The SSE for this model was 

28,447,762,129.  The PRESS statistic is also a measure of fit, but it examines the difference 

Figure 5. Collinearity diagnostics table. 
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between an observed value and the predicted value of that observation provided by a model 

created without that observation; thus, the model used to predict is not built with the observation 

it is predicting. The PRESS of this model was 32,710,880,547. These values are much higher 

than statisticians normally see, but this is due to the size and scale of the dependent variable, 

total_damage_scaled, which was in millions. If total_damage_scaled is expressed in billions 

instead, the PRESS and SSE are scaled down by 100,000 to 32,711 and 28,448, respectively. 

Since the large values are simply a result of scaling, they do not pose an issue. The PRESS/SSE 

ratio for this model was about 1.15, which is close to 1, verifying that this model has predictive 

value. Another test of model validation is to examine a graph of the predicted values against the 

observed values. Figure 6 is a plot of the predicted value of damage against the observed 

total_damage_scaled. The line in the figure represents when the predicted and observed values 

are the same. Since there is no clear pattern of points consistently above or below the line, there 

is no observable issue with the model’s predictive ability. 

 

 

 

 

 

 

 

Figure 6. Plot of total_damage_scaled (Y) against the predicted value. 
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Interpretations of Final Model 

 The final model included developed_dummy (X1), tsunami_dummy (X2), intensity (X3), 

and total_injuries (X4). The r-squared of the model was 0.3167, which means that 31.67% of 

variability can be explained by the model. This is relatively high when considering the scientific 

nature of the data. The AIC was 2995.37, which was lower than previous models. The model 

itself and all but one of the dependent variables were significant at the 2.5% level, while 

tsunami_dummy was significant at a 10% level. Figure 7 provides the parameter estimates of the 

model. 

 

 

In equation form, the model simply describes total_damage_scaled (Y) as a linear combination 

of the regressors: 

𝑌𝑌 = −19971 + 5335.98𝑋𝑋1 + 4203.51𝑋𝑋2 + 2333.30𝑋𝑋3 + 0.21428𝑋𝑋4  

Note: coefficients are in millions of 2015 dollars 

 The dummy variables and continuous variables must be interpreted differently. Since the 

dummy variables only have two possible values (0 or 1), the additional damage resulting from an 

earthquake will be equal to the coefficient of that variable, or 0. For example, X1 represents 

Figure 7. Parameter estimates for final model. 
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developed_dummy, so if an earthquake occurs in a developed nation, the damage of an 

earthquake will increase by $5335.98 million. The continuous variables are a bit more intuitive. 

For every one unit increase in intensity or total injuries, the damage resulting from an earthquake 

increases by $2333.30 million and $0.21428 million, respectively. In practice, the values of the 

variables would be inputted into the model and summed, and the resulting value would be the 

predicted total damage resulting from an earthquake with those specific characteristics. 

Discussion  

These results are meaningless unless they can be interpreted in the context of seismic 

activity. There are four characteristics that have a significant impact on the total damage 

resulting from an earthquake: whether or not that earthquake occurs in a developed nation, 

whether or not there is a tsunami associated with that earthquake, its intensity, and the total 

number of injuries from the earthquake. The variable that had the largest positive effect on 

damage was whether the nation was developed or not, while number of total injuries had the 

smallest effect. Statisticians, specifically those at insurance companies, can use these results to 

provide rough estimates of potential losses after an earthquake occurs. They can also run 

previous earthquake data through this model to obtain predicted losses, and these can be 

compared to their actual losses to get a gauge for their exposure. This knowledge can be used in 

pricing models, so insurance companies can minimize their losses by pricing insurance more 

accurately. This model is just a starting point for statisticians, however; more accurate and 

representative models can be created from insurance companies’ historical losses in order to 

better estimate future losses. 

 This study had a few limitations in addition to its sole reliance on public, non-company-

specific data. One limitation is that there were many missing data points in the database. Many 
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variables, such as information about damaged houses, had to be excluded from the data set 

because so few observations had recorded values. This raises the concern of improper and 

incomplete data collection methods for seismic activity. One would expect values to be missing 

for some observations but certainly not the majority. This missing data and exclusion of 

variables could have resulted in leaving an influential variable out of the model. 

Conclusion 

 Earthquakes can occur with little to no warning, and they can be detrimental to society by 

destroying buildings, killing and injuring citizens, and leaving towns in ruins. In order to combat 

and prepare for the damage caused by earthquakes, statisticians create catastrophe models to help 

predict the outcomes of these seismic events. The purpose of this study was to use catastrophe 

modeling as a basis to identify the key drivers of economic loss in an earthquake. Using multiple 

linear regression, total damage resulting from an earthquake was explained through four 

characteristics: whether or not a tsunami occurred, whether or not the earthquake occurred in a 

developed nation, intensity of the earthquake, and number of injuries resulting from the 

earthquake. Having these drivers identified provides a starting point for statisticians working in 

the insurance field. This study can be used as a framework to create a similar model using 

proprietary information and actual historical losses, further strengthening its usefulness as a loss 

estimation tool. A model explaining economic loss will give statisticians the information 

necessary to make informed decisions about expected losses from future earthquakes and provide 

insight into the source of those losses. 
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