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Abstract

The purpose of this study was to build a statistical model of the economic damage that arises
from earthquakes in order to better predict losses from future earthquakes. Though earthquakes
are essentially a random event and cannot be fully anticipated, analyzing historical data and
creating a statistical model can provide researchers with a more accurate estimate of future
losses. The data set from which this model was built incorporated earthquakes occurring
worldwide from 1915-2015 in which the total damage was recorded. The final model was a
multiple linear regression model explaining total damage resulting from an earthquake through
four independent variables: whether or not a tsunami occurred (tsunami_dummy), whether or not
the earthquake occurred in a developed nation (developed_dummy), intensity (intensity), and
number of injuries (total_injuries). Statisticians, specifically those at insurance companies, can
use these results to provide rough estimates of potential losses after an earthquake occurs. This
model is just a starting point for statisticians, however; more accurate and representative models
can be created from insurance companies’ historical losses in order to better estimate future

losses.
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Statistical Modeling of Earthquake Damage

Catastrophes, though rare events, often hit unexpectedly, destroying buildings, leaving
homes in ruins, and tearing communities apart. Many catastrophes, such as earthquakes, are
unpredictable, but steps have been taken throughout history in order to prepare for these events.
Buildings have been reinforced, weather monitoring has greatly improved, and past catastrophes
have been meticulously studied in order to model, or predict, what the next catastrophe will
bring. Statisticians create models of catastrophes—earthquakes, hurricanes, even terrorist
attacks—in order to simulate the potential effects of such events. But with all the different
variables of a catastrophic event, how can statisticians be confident in their models? How will
the intensity of an earthquake impact the degree of economic damage in a city? How will the
number of fatalities in an earthquake impact the total claim amount an insurance company may
face? These kinds of questions are constantly scrutinized by modelers when developing and

modifying catastrophe models.

The biggest problem with creating catastrophe models is the lack of credible data. The
infrequency of catastrophic events leaves little data for statisticians to analyze. Also, catastrophes
dating too far back often result in outdated data which is no longer relevant in the present day.
However, does this mean catastrophe models cannot be created? Can a set of useful models to
predict economic damage resulting from earthquakes be generated from a single data set? If so,
what elements of an earthquake will prove to have the greatest impact on total economic
damage? This study examined these questions and explored the field of earthquake catastrophe
modeling further.

The purpose of this study was to build a statistical model of the economic damage that

arises from earthquakes in order to better predict losses from future earthquakes. Though
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earthquakes are essentially a random event and cannot be fully anticipated, analyzing historical
data and creating a statistical model can provide researchers with a more accurate estimate of
future losses. Though many questions arose throughout the data analysis process, there were two

initial research questions:

1. What impact do the number of deaths, injuries, or missing people resulting from an
earthquake have on economic loss?

2. What impact does the intensity of an earthquake have on economic loss?

These questions shifted to reflect the data used in this study, but the original goal remained
intact. This study was significant because it quantified the effect that variables related to
earthquakes, such as intensity, number of deceased, and economic condition of the country in

which the event occurs, have on the total economic loss from an earthquake.

Literature Review

Catastrophe modeling has been studied in great detail in order to better estimate future
events and the potential losses associated with them. However, this is not an easy task; since
catastrophes are rare events, there is limited data from which to build models of losses (Cristina
& Alexandria, 2013). Catastrophe models are designed to estimate the potential frequency and
severity of a catastrophic event, not to predict when an event of a particular severity will occur.
This is especially the case in regards to earthquakes. Earthquakes are one of the most
unpredictable natural phenomena because there are few warning signs of a potential seismic
event, unlike those related to hurricanes or floods (Vere-Jones, 1995). Another caveat of
catastrophe modeling is the constantly-changing landscape of insured properties, or exposures.

Property values may fluctuate along with building structures and designs (Grace, Klein,
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Kleindorfer, & Murray, 2003). Advanced technology and a thorough understanding of the
geophysics behind seismic events have allowed engineers to analyze the movement of a building
in the event of an earthquake. These movements are then accounted for in the design of buildings
in areas with high seismic-risk (Bolt, 1993). Because of the ever-changing nature of the insured

landscape, data from the past may no longer be relevant.

In order to start forming these catastrophe models, researchers must fully understand the
variables of the catastrophic events. Earthquake loss models often include measures of the
magnitude and intensity (Cristina & Alexandria, 2013). Magnitude, historically measured using
the Richter scale, is defined as “the logarithm to base ten of the maximum seismic-wave
amplitude (in thousandths of a millimeter) recorded on a standard seismograph at a distance of
100 kilometers from the earthquake epicenter” (Bolt, 1993, p. 118). Various other measures of
magnitude arose from Richter’s original scale, most notably the moment magnitude scale (Bolt,
1993). A moment is the product of the size of a force and the distance between that force and the
force opposite to it. In terms of earthquakes, the moment is the measure of a rupturing fault and
the rebounding effect along that fault (Bolt, 1993). Because these moment values are often hard
concepts to grasp mathematically, they are correlated with magnitude and measured on the
moment magnitude scale. This scale is often used as a superior measurement because of its

consistency across all sizes of earthquakes, unlike the original Richter scale.

Intensity is another measure of earthquake severity which is commonly measured by
assessing the degree of damage a seismic event causes. This includes damage to structures,
ground disturbances, and animal reactions to the earthquake (Bolt, 1993). The Modified Mercalli
Intensity scale (MMI) is commonly used to measure earthquake intensity. This is a Roman

numeral scale that provides a description of the degree to which an earthquake is felt or the
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damage caused by an earthquake. For example, an earthquake with an MMI of IX indicates an
earthquake with violent shaking and resulting in “damage considerable in specially designed
structures; well-designed frame structures thrown out of plumb. Damage great in substantial
buildings, with partial collapse. Buildings shifted off foundations” (United States Geological
Survey, 2015). Classification on the MMI is often done through questionnaires distributed to
residents of the affected region, which provides a more qualitative measurement of earthquake

severity as opposed to magnitude measurements, which are quantitative in nature.

Once researchers have a full grasp of the measurements involved in seismic analysis, they
can begin to build models to estimate damages or loss from these catastrophic events. This
damage arises from homes and buildings destroyed in an earthquake, lives lost, injuries
sustained, and other physical effects resulting from the event. Insurance companies are often
those most interested in these catastrophic models in order to estimate the potential claims they
may need to pay out in the event of a catastrophe. These models are often developed by
statistical modeling teams using historical losses within the company as well as industry data.
These models are usually proprietary in order to protect any classified information from
competitors or the public. Though the specific models are not published, researchers have

discussed what types of statistical analyses are used to create these models.

AIR Worldwide, a catastrophe modeling firm, developed catastrophe modeling
technology in the late 1980s that broke catastrophe modeling into three components: hazard,
engineering, and financial (Grace et al., 2003). First, the hazard component simulates a
catastrophic event and its intensity. Next, the engineering component estimates the amount of
damage resulting from that simulated event. Lastly, the financial component assesses the

economic value of the damage from the event. Figure 1 provides a flow chart of the AIR
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catastrophe modeling process. The output of this model includes probability distributions of

losses over a certain time period or in terms of cumulative distribution functions (Grace et al.,

2003).
HAZARD
EVENT LOCAL INTENSITY
GENERATION  CALCULATION ENGINEERING FINANCIAL
DAMAGE INSURED LOSS
ESTIMATION CALCULATION

Figure 1. Catastrophe modeling framework. This figure provides a flow chart of the
various steps AIR takes when creating a catastrophe model. Adapted from “About
Catastrophe Modeling,” by AIR Worldwide, n.d. (http://www:.air-
worldwide.com/Models/About-Catastrophe-Modeling/)

Statisticians also use a combination of two models to simulate a catastrophic event: one
to estimate frequency and one to estimate severity. Frequency is a measure of when and how
often an event occurs. Yilmaz, Erisoglu, and Celik (2004) suggested using Weibull distribution
to model the time between two successive earthquakes. Weibull distribution is often used to
measure “time-to-failure” or in the context of this study, the time until the next seismic event.
Poisson models have also been used to model earthquake frequency (Weimer, n.d.). However,
the Poisson distribution is more commonly used to model the number of events occurring in a
specific area during a specific time period. Severity, on the other hand, is a measure of the
potential damage or losses arising from a catastrophic event. One of the most common methods
of modeling the severity of an earthquake is using a tapered Pareto distribution called modified

Gutenberg-Richter law (Kagan & Schoenberg, 2001). This law models the relationship between
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earthquake magnitude and number of seismic events of at least that magnitude in a specified area
during a given time period (Kagan & Schoenberg, 2001). The tapered Pareto distribution is
designed to assign lower probabilities to earthquakes of extremely high magnitudes than the
typical Pareto distribution. All in all, these models have their advantages and disadvantages, and

they are often used in conjunction with each other for catastrophe modeling purposes.

Methodology

Data Selection

The first step in this study was to find a data set from which the model would be built.
The National Oceanic and Atmospheric Administration (NOAA) has a group called the National
Centers for Environmental Information which maintains a Global Significant Earthquake
Database dating back to 2150 BCE (National Geophysical Data Center, 2016). The database
allows a user to specify a date range, region, and country from which they want the records of
the significant earthquakes meeting those specifications. All the earthquakes occurring
worldwide between 1915 and 2015 were examined. Earthquakes without the damage in millions
of dollars recorded were excluded from the data set. The results of that database search were

exported to Excel for further modifications to better fit the design of this study.

The database provided estimates for damage in millions of dollars, and it also included an
estimate for total damage in millions of dollars, which included damage from subsequent events
such as a tsunami or another earthquake. Since the total economic effect of a seismic event was
of interest in this study, only the total damage in millions of dollars was examined. After the
earthquakes without total damage recorded were deleted, 360 entries remained. These

earthquakes made up the final data set that was used in the modeling process.
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Variable Selection

Next, the different variables were examined to determine whether or not they would be
included as potential regressors. Some variables were excluded because they were irrelevant (e.g.
latitude and longitude, region code, and state name), and others were not included because there
were too many missing values to provide substantial analysis (e.g. houses destroyed and
damaged, missing people, and various measures of magnitude). Other variables were
transformed into more useful regressors, specifically economic development status and total

damage scaled.

The original data set provided the country where the event occurred, but this was not
relevant to the questions around which this study was focused. Instead, the country variable was
transformed into a measure of economic development status, i.e. developed, economies in
transition, or developing. This was done using a country classification table produced by the
Development Policy and Analysis Division of the United Nations (2014). Thus, each of the
earthquakes was classified as occurring in a location that was either developed, an economy in
transition, or developing depending on the classification provided by the United Nations. This
variable provided a way to compare the effect on total economic damage of various economic

states, therefore enriching the analysis.

Another variable that required transformation was the total damage in millions of dollars.
These dollar amounts were recorded in the value at the time of the event, so they needed to be
scaled to current dollars, or 2015 dollars, for consistency. This was done using the Consumer
Price Index (CPI) provided by the U.S. Department of Labor Bureau of Labor Statistics (US
Inflation Calculator, n.d.). The average CPI of 2015 was divided by the CPI of years dating back

to 1915 in order to produce a scaling factor for the non-current dollars. Then, the nominal dollar
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amounts for each of seismic events were multiplied by the corresponding scaling factor; the

resulting dollar amount was coined as the variable total damage scaled.

The final data set included eight potential regressors: tsunami, economic development

status, focal depth, eq primary, intensity, total deaths, total injuries, and total damage scaled.

Tsunami. The tsunami_dummy variable is a dummy variable that takes the value 1 if an

earthquake resulted in a tsunami and O otherwise.

Economic development status. This variable, as mentioned before, is a transformation
of the country in which a seismic event occurred. The variable is actually treated as two separate
dummy variables: developed_dummy and transition_dummy. The first takes the value 1 if the
country is developed and 0 otherwise, while the second takes the value 1 if the country is an
economy in transition and 0 otherwise. There is no need for a third dummy variable for
developing countries because this is accounted for if both developed_dummy and

transition_dummy take the value 0.

Focal depth. The variable focal _depth is a measure of the depth of an earthquake, and it

is given in kilometers.

Eq primary. The variable eq_primary was the most consistently recorded measure of
magnitude in the data set. Magnitude is a measure of seismic energy of an earthquake taking the
value 0 to 10; the higher the number, the more seismic energy an earthquake produced. The type
of magnitude measure used was not noted, so this value could be the surface-wave magnitude,
moment magnitude, compressional body wave magnitude, or another measure. However, these

values are all measures of the magnitude and are similar, so they can be compared.
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Intensity. The variable intensity is measured on the Modified Mercalli Intensity scale.
Typically, the scale is given in Roman Numerals, but these were converted into values from 1 to
12 in the database. The scale is defined based on physical effects of an earthquake, such as
damage to the frames of buildings, with 1 being a minor earthquake and 12 being the most

damaging.

Total deaths. The variable total deaths is the total number of deaths resulting from the

earthquake and any secondary effects that may have occurred, such as a tsunami.

Total injuries. The variable total_injuries is the total number of injuries resulting from

the earthquake and any secondary effects that may have occurred, such as a tsunami.

Total damage scaled. The variable total_damage_scaled, as mentioned before, is a
transformation of the total damage variable originally included in the data set. This value is

recorded in millions of dollars, scaled to 2015 dollars.

Results

Exploratory Analysis

The first step in model creation is to perform exploratory data analysis, which includes
examining summary statistics and possible relationships between the regressors. SAS was used
as the computer program for this study. Summary statistics of the eight independent variables
and the sole dependent variable were calculated and can be seen in Figure 2. There is, on
average, $3.251 billion dollars in damage for each earthquake, with a standard deviation of
$16.661 billion. The high value for standard deviation for total _damage_scaled, total _deaths,
and total_injuries can be explained by the great variability in earthquake effects. Some

earthquakes can barely be felt by humans, while others completely decimate towns. For the three
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dummy variables, the most meaningful statistic is the sum, which would be equivalent to the
number of values equal to 1. Of the 360 earthquakes, 117 were in developed nations, 21 were in
economies in transition, and the remaining 222 were in developing nations. Another important

note is that 94 of the 360 earthquakes also had a tsunami associated with them.

Simple Statistics

Variable N Mean Std Dev Sum Minimum | Maximum
TOTAL DAMAGE SCALED | 360 3251 16611 1170387 011540 231903
DEVELOPED DUMMY 360 0.32500 0.46903 117.00000 0 1.00000
TRANSITION _DUMMY 360 0.05833 023470 21.00000 0 1.00000
TSUNAMI_DUMMY 360 0.26111 043985 94.00000 0 1.00000
EQ_PRIMARY 359 G6.56435 0.98259 2357 210000 9.50000
FOCAL DEPTH 352 27.40909 25.57426 9645 0 215.00000
INTENSITY 219 8.10959 1.49214 1776 3.00000 12.00000
TOTAL_DEATHS 292 6935 32188 2025083 1.00000 316000
TOTAL_INJURIES 268 93594 58362 2651516 1.00000 799000

Figure 2. Simple statistics of full data set.

In addition to the simple statistics, the relationship between potential variables also
revealed a lot about the data set. The relationship between regressors is measured by the Pearson
correlation coefficient (rho), which measures the strength and direction of a relationship. These
values range from -1 to +1, with -1 being a perfectly negative relationship and +1 being a
perfectly positive relationship. The correlation coefficient matrix can be seen in Figure 3. The
scatterplot matrix in Figure 4 (p. 12) is a visual interpretation of the relationships between
variables. The most highly correlated regressors were total_deaths and total_injuries (rho =
0.79911). This strong positive relationship is intuitively sound; one would expect that the more
deaths resulting in an earthquake, the more injuries there would be as well. Another relatively
strong relationship existed between tsunami_dummy and eq_primary (magnitude), with a rho of
0.52983. This relationship can also be justified through logic; the higher the magnitude of an

earthquake, the greater likelihood that a tsunami will develop. The variables intensity and
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eq_primary also had a moderately strong positive relationship (rho = 0.50181). One would

expect intensity to move in the same direction.

total damoge_scaled  developed _dummy transition_dummy tsunami dummy eq primary focal depth intensity  total deaths total injuries
total_damoage_scaled 1.0000 0.1195 -0.0105 0.1795 0.1921 -0.0404 0.2571 0.1308 0.2075
developed_dummy 1.0000 0.1727 0.0331 -0.1042 -0.1569 -0.0416 -0.0798 -0.0914
transition_dummy 1.0000 -0.0940 -0.1047 -0.0646 -0.0336 0.0250 -0.0351
tsunami_dummy 1.0000 0.5298 0.0337 0.2898 0.1676 0.0647
eq_primary 1.0000 0.1394 0.5018 0.2330 0.1515
focal_depth 1.0000 -0.1960 -0.0385 -0.0399
intensity 1.0000 0.3149 0.2175
total_deaths 1.0000 0.7991
total_injuries 1.0000

Figure 3. Pearson correlation coefficient matrix with notable relationships highlighted.

The relationship between the dependent variable and the various regressors were also of
importance. Six regressors had positive relationships with the dependent variable,
total_damage_scaled: developed_dummy, tsunami_dummy, eq_primary, intensity, total_deaths,
and total_injuries. On the other hand, transition_dummy and focal_depth were negatively
correlated with the dependent variable. With this knowledge, signs of coefficients could be
predicted for the regressors; positive correlations correspond with positive signs, while negative

correlations correspond to negative signs.
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Figure 4. Scatterplot matrix output. This matrix displays the same information from the
Pearson Correlation Coefficient matrix but in a visual manner.

Model Selection
The next step in creating this catastrophe model was experimenting with different

variable combinations to design the model that best explained the data set. Three different

selection processes were utilized in this project: forward, backward, and stepwise selection.
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Forward selection begins with no variables in the model. During each step, SAS examines the F-
statistic, a measure of significance of the model, for each of the independent variables. SAS then
chooses the variable with the largest F-statistic, as long as the variable has a p-value lower than a
set level (0.5), and enters it into the model. This process continues until no variables remain or
no p-value is lower than the set level, and once a variable is added, it cannot be removed.
Backward selection, on the other hand, begins with all of the variables in the model. The F-
statistic for each of the variables is calculated, and the variables are deleted one at a time from
the model if their p-values are greater than a specified level (0.1), beginning with the least
significant. This process is repeated until all variables are significant at that level. Stepwise
selection is a variation of the forward selection process. The main difference is that models may

be removed from a model if their F-statistic is not significant at a specified level (0.1).

These three selection processes provided two distinct models; backward and stepwise
produced the same model, while forward had an additional variable included. Backward and
stepwise selection included developed _dummy, tsunami_dummy, intensity, and total_injuries.
The only difference with the forward selection was that total_deaths was also included as a
regressor. However, due to the strong positive correlation between total_deaths and
total_injuries, it seemed unnecessary to use both variables in the same model in fear of
multicollinearity, or in other terms, redundancy. Thus, the model chosen to move forward with

further modifications included only total _injuries.

A multiple regression was conducted using the aforementioned regressors to model the
dependent variable, total_damage_scaled. All of the variables were significant at a 5% level
except for developed_dummy, which had a p-value of 0.1033. Typically, variables included in a

model are significant at least at the 10% level, so the variable was dropped, and the results were
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examined. Dropping this dummy variable lowered the r-squared of the model from almost 20%
to 18%, so the researcher decided to include the variable even though it was seemingly
insignificant. This was done because of the meaningful interpretations that could arise from the
inclusion of the economic nature of a location of a seismic event in the modeling of resulting
economic damage. The variables total_injuries and total _deaths were swapped to see what effect
it had on the model. The results led to a lower r-squared and lower significance levels of other
regressors, so total_injuries remained in the model. Thus, the final model included those

variables selected in the stepwise and backward processes.

Assessing Influential Points

Once the model was chosen, potentially influential points and outliers were examined to
determine whether or not they should be included in the data set. The four measures used to
assess influence in this project were the student residual, DFITS, DFBETAS, and Cook’s D. The
student residual is a measure of the difference in an observation’s actual value and its predicted
value, scaled by its standard deviation. These values are considered potentially overly influential
if they have a value greater than 2. DFITS measures the change in an observation’s predicted
value if that observation is deleted from the data set; large values indicate influence, especially
those greater than 2. DFBETAS is the change in the coefficient of each regressor if an
observation is deleted. A value of 2 is also used as a cutoff for this measure, and those exceeding
that cutoff may have undue influence on the value of the coefficients. Lastly, Cook’s D is a
measure of difference in the predicted values of a model before and after the deletion of an
observation. In practice, a value greater than 1 is evidence that an observation is overly

influential.
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In examining these four measures, a few observations stood out as they raised concerns in
at least two of the four tests. Observation 83 failed each of the four tests, while observation 241
failed three of the four. Observation 323 was also noteworthy because it failed two of the four
tests. In order to test whether or not the observation should be included in the model, Akaike’s
Information Criteria (AIC) was calculated. AIC is a measure of goodness-of-fit of a model, in

which the model with the lowest AIC is considered the best model. The formula for AIC utilizes
various measures included in the SAS output: AIC = n X In (%) + 2p, where n is the number

of observations, SSE is the sum of squared errors, and p is the number of parameters in the
model (including the intercept). The AIC of the model with all observations included was
3040.51. When observation 83 was deleted, however, the AIC dropped to 2995.37; since the AIC
without the observation was lower, that observation was permanently deleted from the data set.
The AICs of the models without the other notable points were calculated, but they were either
only slightly lower or higher than the model excluding observation 83. Because of this, only
observation 83 was removed from the data set due to its extreme influence on the parameter

estimates and predicted values.
Examining Potential Multicollinearity

With the data set and model finalized, the next step was to check for potential
multicollinearity by examining the variance inflation factors and collinearity diagnostics of the
model. Variance inflation factors (VIF) measure how much the variance of a parameter estimate
is inflated due to collinearity. Values greater than 2 signify collinearity issues; however, all VIFs
for the parameters were less than 2 and did not raise any concerns. Another measure of

collinearity can be seen in the collinearity diagnostics produced by SAS (Figure 5). When the
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condition index of an eigenvalue is greater than 30 and the corresponding proportions of
variation are also large, extreme collinearity is suspected. However, as seen in Figure 5, none of

the condition indices are greater than 30, S0 no issues are suspected.

Collinearity Diagnostics

Condition Proportion of Variation
Number Eigenvalue Index| Intercept DEVELOPED _DUMMY | TSUNAMI_DUMMY | INTENSITY| TOTAL_INJURIES
1 296126 1.00000 0.00261 0.03585 0.03810 0.00255 0.01130
2 1.00165  1.71941 0.00015867 0.10588 0.02020 0.00007230 0.70065
3 0.60115 221945 0.00019178 0.2239N 0.66555 0.00008615 0.22154
4 042333 264485 0.01164 0 63365 0.25155 0.01021 0.05547
5 0.01261 1532237 0.98540 0.00070132 0.02460 0.98708 0.01105

Figure 5. Collinearity diagnostics table.

Model Validation

Model validation was approached differently for this model than most linear regression
models. Model validation is a process where the predictive power of a model is assessed.
Typically, a data set is split into two parts: a training set and a test set. The training set is a subset
of the data set used to build the model, while the test set is the remainder of the data set used to
test the reliability of the model created with the training set. Fifty-fifty and 75-25 splits are
common for the training and testing sets, respectively. However, since the sample size of this
study was already relatively small when excluding observations with missing values, breaking

the data set into two would limit the results too much.

Because of this, the model was built using the full data set. Thus, the predicted residual
error sum of squares (PRESS) and sum of squares due to error (SSE) were compared to assess
the predictive ability of this model. SSE measures the fit of a model by examining the difference
in the observed and the predicted value for each observation. The SSE for this model was

28,447,762,129. The PRESS statistic is also a measure of fit, but it examines the difference
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between an observed value and the predicted value of that observation provided by a model
created without that observation; thus, the model used to predict is not built with the observation
it is predicting. The PRESS of this model was 32,710,880,547. These values are much higher
than statisticians normally see, but this is due to the size and scale of the dependent variable,
total _damage_scaled, which was in millions. If total _damage_scaled is expressed in billions
instead, the PRESS and SSE are scaled down by 100,000 to 32,711 and 28,448, respectively.
Since the large values are simply a result of scaling, they do not pose an issue. The PRESS/SSE
ratio for this model was about 1.15, which is close to 1, verifying that this model has predictive
value. Another test of model validation is to examine a graph of the predicted values against the
observed values. Figure 6 is a plot of the predicted value of damage against the observed
total_damage_scaled. The line in the figure represents when the predicted and observed values
are the same. Since there is no clear pattern of points consistently above or below the line, there

is no observable issue with the model’s predictive ability.
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Figure 6. Plot of total_damage_scaled (Y) against the predicted value.
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Interpretations of Final Model

The final model included developed_dummy (X1), tsunami_dummy (Xz), intensity (X3),
and total_injuries (Xs). The r-squared of the model was 0.3167, which means that 31.67% of
variability can be explained by the model. This is relatively high when considering the scientific
nature of the data. The AIC was 2995.37, which was lower than previous models. The model
itself and all but one of the dependent variables were significant at the 2.5% level, while

tsunami_dummy was significant at a 10% level. Figure 7 provides the parameter estimates of the

model.
Parameter Estimates
Parameter Standard Variance
Variable D Estimate Error t Value|Pr > |t|| Tolerance Inflation

F
Intercept 1 -19971 683593315 -2.91 0.0041 : 0
DEVELOPED_DUMMY 10 533597889 2290466561 2.33 0.0211 0.97542 1.02520
TSUNAMI_DUMMY 1 4203.50991 2418.43009 1.74| 0.0842  0.93899 1.064397
INTENSITY 1 233330055 845.89335  2.76| 0.0065  0.93538 1.06908
TOTAL_INJURIES 1 0.21428 0.03224  6.65 <.0001 0.94273 1.06075

Figure 7. Parameter estimates for final model.

In equation form, the model simply describes total damage_scaled (Y) as a linear combination

of the regressors:
Y = —19971 + 5335.98X; + 4203.51X, + 2333.30X5 + 0.21428X,
Note: coefficients are in millions of 2015 dollars

The dummy variables and continuous variables must be interpreted differently. Since the
dummy variables only have two possible values (0 or 1), the additional damage resulting from an

earthquake will be equal to the coefficient of that variable, or 0. For example, X1 represents
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developed_dummy, so if an earthquake occurs in a developed nation, the damage of an
earthquake will increase by $5335.98 million. The continuous variables are a bit more intuitive.
For every one unit increase in intensity or total injuries, the damage resulting from an earthquake
increases by $2333.30 million and $0.21428 million, respectively. In practice, the values of the
variables would be inputted into the model and summed, and the resulting value would be the

predicted total damage resulting from an earthquake with those specific characteristics.

Discussion

These results are meaningless unless they can be interpreted in the context of seismic
activity. There are four characteristics that have a significant impact on the total damage
resulting from an earthquake: whether or not that earthquake occurs in a developed nation,
whether or not there is a tsunami associated with that earthquake, its intensity, and the total
number of injuries from the earthquake. The variable that had the largest positive effect on
damage was whether the nation was developed or not, while number of total injuries had the
smallest effect. Statisticians, specifically those at insurance companies, can use these results to
provide rough estimates of potential losses after an earthquake occurs. They can also run
previous earthquake data through this model to obtain predicted losses, and these can be
compared to their actual losses to get a gauge for their exposure. This knowledge can be used in
pricing models, so insurance companies can minimize their losses by pricing insurance more
accurately. This model is just a starting point for statisticians, however; more accurate and
representative models can be created from insurance companies’ historical losses in order to
better estimate future losses.

This study had a few limitations in addition to its sole reliance on public, non-company-

specific data. One limitation is that there were many missing data points in the database. Many
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variables, such as information about damaged houses, had to be excluded from the data set
because so few observations had recorded values. This raises the concern of improper and
incomplete data collection methods for seismic activity. One would expect values to be missing
for some observations but certainly not the majority. This missing data and exclusion of

variables could have resulted in leaving an influential variable out of the model.

Conclusion

Earthquakes can occur with little to no warning, and they can be detrimental to society by
destroying buildings, killing and injuring citizens, and leaving towns in ruins. In order to combat
and prepare for the damage caused by earthquakes, statisticians create catastrophe models to help
predict the outcomes of these seismic events. The purpose of this study was to use catastrophe
modeling as a basis to identify the key drivers of economic loss in an earthquake. Using multiple
linear regression, total damage resulting from an earthquake was explained through four
characteristics: whether or not a tsunami occurred, whether or not the earthquake occurred in a
developed nation, intensity of the earthquake, and number of injuries resulting from the
earthquake. Having these drivers identified provides a starting point for statisticians working in
the insurance field. This study can be used as a framework to create a similar model using
proprietary information and actual historical losses, further strengthening its usefulness as a loss
estimation tool. A model explaining economic loss will give statisticians the information
necessary to make informed decisions about expected losses from future earthquakes and provide

insight into the source of those losses.
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