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ABSTRACT 

Among semi-terrestrial fiddler crabs, three species from the subgenus Uca (sensu stricto) 

appear to be basal in the phylogeny of the genus: Uca major (Herbst 1782-1804), Uca 

maracoani (Latreille 1802-1803) and Uca tangeri (Eydoux 1835).  These species evolved 

vicariantly as tectonic plates separated to form the Atlantic Ocean.   Currently, the three species, 

found in Africa, South America, and the Caribbean, exhibit a high affinity for their respective 

tectonic plates.   Inter- and intra-specific variation in carapace shape was assessed using 

geometric morphometrics to analyze 12 surface landmarks in the three species.  In 314 female 

specimens, surficial coordinates were superimposed, standardized, and subjected to canonical 

variance (CVA) and principal component (PCA) analysis, after which the three species form 

distinct clusters.  Within each species, there are clear differences among populations from 

northern to southern latitudes.  In Uca maracoani, there is a significant correlation between 

carapace shape and certain environmental factors, such as biotope, salinity, and substrate.  As it 

has not been demonstrated that there is extensive, structured geographic variation in the 

population genetics for Uca, this polymorphism is likely a result of environmental pressures, i.e., 

ecophenotypy. 
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INTRODUCTION 

 Fiddler crabs (genus Uca) are crustaceans found world-wide in habitats along the coast 

line of most temperate and tropical regions (Crane 1975).  Planktonic larval stages consisting of 

several zoea and megalopae reside in bays and coastal oceans until they reach maturity (Hyman 

1922).  Then the juveniles seek an appropriate environment to settle and transform into small 

crabs (O’Connor and Judge 2004, Behum et al. 2004, Borgianini et al. 2012).  Adults occupy 

burrows on sand or muddy beaches, marshes, and mangroves. In the temperate-tropical Atlantic 

Ocean alone there are 21 described species (Bienlich & von Hagen 2006), including Uca major 

(Herbst 1782), Uca maracoani (Latreille 1802), and Uca tangeri (Eydoux 1835).   

Since the drift of tectonic plates over many millions of years can drive the isolation of 

populations within a single species (Cox and Moore 2010), ancestors are expected to have 

diverged as they separated and experienced different environmental pressures or genetic drift 

(i.e. vicariant evolution).  “Narrow-fronted” fiddler crabs, including species studied here, of the 

Atlantic Ocean may have evolved from a common ancient progenitor (Strumbauer et al. 1996, 

Rosenberg 2001).  In addition, they appear limited in distribution to different tectonic plates 

(Figure 1).  U. major (Figure 2A) is found in the Caribbean Sea and overlaps marginally with U. 

maracoani (Figure 2B), which is found along the eastern South American coast from Venezuela 

to southern Brazil (Thurman et al. 2013).  In the eastern Atlantic, U. tangeri (Figure 2C) ranges 

from southern Portugal to Angola. Across their ranges, remote populations of each species live in 

a wide variety of environments with very different physical and biological composition.  It is 

generally appreciated that variation in biological structure is a product of both genetic and 

environmental factors.  Alone, the impact of environmental pressure(s) on shape or morphology 

is known as ecophenotypic variation.   
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Figure 1.  A map of current tectonic plate positions.   
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Figure 2A.  Uca major 

 

 

Figure 2B.  Uca maracoani 

 

 

Figure 2C.  Uca tangeri 
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 “Ecophenotypy” is a likely cause of carapace variance across geographically separated 

populations in several species of fiddler crabs (Hopkins and Thurman 2010, Hampton et al. 

2014, Wieman et al. 2014).   

The object of this study was to analyze carapace shape in the narrow-fronted fiddler crab 

species from the Atlantic Ocean using geometric morphometrics.  Using only females, carapace 

shape was compared among three closely-related species from the subgenus Uca (sensu stricto); 

U. major, U. maracoani, and U. tangeri.  In addition, variation was examined across the 

geographic distribution in each species.  Specimens of U. major were compared from 

populations in Mexico, the Bahamas, Jamaica, Colombia, and Trinidad and Tobago.  

Additionally, U. maracoani specimens from Trinidad and Tobago, Guyana, and Brazil were used 

in this analysis.  Specimens of U. tangeri originated in populations from Portugal, Nigeria, and 

Angola.  Based on carapace shape analysis, all three species were morphologically distinct, 

indicating significant interspecific variation.  Although some degree of variation within each 

species is related to size (i.e. allometric variation), most intraspecific divergence correlated with 

latitude in the three species (i.e. environmental variation).  In the case of U. maracoani, habitat 

data describing salinity, substrate, and biotope were available for each site of collection in Brazil.  

In part, morphological divergence among U. maracoani populations appears to be associated 

with specific environmental pressures.  Since genetic variation among populations in several 

species of fiddler crabs (including U. maracoani) is known to be very low and geographically 

unstructured (Silva et al. 2010, Wieman et al. 2014), variation observed within species is most 

likely related to habitat pressure.   
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LITERATURE REVIEW 

Fiddler crabs (genus Uca Leech 1814) have been studied extensively.  Based on a Google 

Scholar search there are more than 11,300 articles and books describing various aspects of these 

crabs.  Currently, approximately 100 species are known to inhabit protected bays, lagoons, and 

riverbanks around the world.  Crabs of this genus are considered amphibious because the adult 

and larval stages are spent in different habitats.  After fertilization, female fiddler crabs carry the 

developing embryos on their abdomen (Hyman 1922).  The zoea larvae are released into a bay or 

ocean during high tides and carried away by coastal and oceanic currents.  After a few weeks in 

the plankton, the zoeae transform into shrimp-like megalopae.  The megalopae return to the 

estuary seeking an appropriate habitat where they become young crabs and grow into adults.  

Most frequently, the juveniles mature in environments inundated daily by the tides (Forward et 

al. 2001; Borgianini et al. 2012).  Consequently, parents and their immediate offspring are not 

likely to occupy the same location. 

Several conflicting phylogenies exist for genus Uca (sensu lato).  Sturmbauer et al. 

(1996) place U. tangeri at the base of the Uca phylogeny.  Levinton et al. (1996) agreed that 

subgenus Uca and subgenus Afruca (i.e. U. tangeri) are the most ancestral clades and rejected an 

Indo-Pacific center of origin theory, proposed by Crane (1975).  Later, Rosenberg (2001) also 

placed U. tangeri at the base of the phylogeny, with U. major and U. maracoani being more 

closely related.  He moved U. tangeri into the subgenus Uca (sensu stricto) eliminating the 

subgenus Afruca.  Using the fossil record, Dominguez-Alonso (2008) also supports a basal 

position of U. tangeri.  Nine subgenera represent all species in the genus Uca (sensu lato) 

(Rosenberg 2001).  Historically, the genus is considered to be divided among two forms based 

on carapace shape (Rathbun 1918).  If the intraocular distance (between eyestalks) is less than 
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25% of the carapace width, the species is considered “narrow-fronted”.  On the other hand, if the 

intraocular distance is greater than 25%, the species is called “broad-fronted”.  Among the 

subgenera, the subgenus Uca (sensu stricto) appears to have the most archaic species (Rosenberg 

2001; Dominguez-Alonso 2008) three of which are endemic to tropical shores of the Atlantic.   

Jocelyn Crane (1975) described the three species from the subgenus Uca (sensu stricto) 

in her extensive tome on the genus Uca (sensu lato).  For fiddler crabs in the Atlantic Ocean, 

Uca major, found across the Caribbean and Mexico (Barnwell and Thurman 1984, Utrera-López 

and Capistrán-Barradas 2013), appears to be “uncommon,” and no large population of the 

species has ever been recorded.  This narrow-fronted species ranges across the West Indies, 

Panama, Venezuela, and, perhaps, French Guiana living just above the low tide mark on 

substrates ranging from muddy sand to sandy mud.  It is usually found on salt flats that are 

nearly cut off from open water (Crane 1975).  The description of this species is credited to 

Herbst in 1782.  Another species, Uca maracoani, is also narrow-fronted but is found 

predominately along the Brazilian coastline in low-tide mud near mangroves.  U. maracoani was 

first described by Latreille in 1802.  The third narrow-fronted Atlantic species, Uca tangeri, is 

found along the eastern Atlantic coastline from southern Spain and Portugal to Angola.  It has 

recently been reported in the Canary Islands (Castro 2012).  This species lives near mouths of 

streams and rivers on muddy sand.  It is the only member of the genus found in Europe and West 

Africa.  The first accurate description of this fiddler crab originates from Eydoux in 1835.   

 The description and naming of the three narrow-fronted fiddler crabs cannot go without 

comment.  Although these are among the oldest fiddler crabs known to taxonomists, their history 

is fraught with error and confusion.  The first described species called Cancer vocans major by 

Herbst (1782) was considered by Leech (1814) as the type species for the genus Uca (sensu 

http://www.researchgate.net/researcher/2043176863_M_E_Utrera-Lopez
http://www.researchgate.net/researcher/2043217112_A_Capistran-Barradas
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lato).  Their descriptions were based, in part, on an illustration of a specimen called Cancer Uka 

una, Brasiliensibus published by Seba in 1759 (Locupletissimi Rerum Narutalium Thesauri 3: 

44, pl.  18, fig, 8).  Later, Bott (1973) argued effectively that the figures of Seba are not Uca 

major as the early carcinologist believed but rather Uca tangeri from the Atlantic coast of Africa.  

The origin of the Seba specimen, Brazil, was apparently a clerical error perpetuated by the 

museum curators.  Since the original specimens of both Seba and Herbst have been lost to 

science, Holthuis (1979) designated an “appropriate” specimen at the Muséum National 

d’Histoire Naturelle (MNHN), Paris, as the new type-example for the species (neotype) for U. 

major.  Unfortunately, the specimen was allegedly collected at Cayenne, French Guiana, in 1837 

where U. major is not known to occur at the present.  In 1648, Marcgrave presented a drawing of 

Cancer palustris cunicolas, maracoani from the northeast coast of Brazil in a manuscript on his 

1638-1644 expedition to South America.  Later Latreille (1802-1803) described it as what we 

now call Uca maracoani which is distributed only along the Atlantic coast of South America.  

Coincidently, the type specimen at MNHN was also collected at Cayenne in 1837.  The original 

illustration and location for this species are clearly accurate, but previous reports of the species in 

Jamaica (Sloane 1725, Rathbun 1918) appear to be misidentified U. major (Barnwell 1986).  

And finally, due to the original misidentification of the Seba specimen, Uca tangeri should 

actually be known as Uca major.  Thankfully, this confusing situation was resolved by Holthuis 

(1979) and the current status of U. major and U. tangeri was established by the International 

Commission on Zoological Nomenclature, London (1983).  Obviously, it has been difficult even 

for professional taxonomists to correctly distinguish preserved specimens of the three narrow-

fronted species from each other.   
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Based on analysis of 16s ribosomal DNA, Strumbauer et al. (1996) found the subgenus 

Uca (sensu stricto) to be the most ancestral clad among the nine subgenera proposed by Crane 

(1975).  Due to the degree of genetic divergence of U. tangeri from the other “American” 

members of the subgenus, trans-Atlantic migration of American species to Africa by plankton in 

the ocean currents seems unlikely.  Thus based on the current global distribution of the subgenus, 

the authors suggested that the ancestors of all fiddler crabs probably arose in the “proto-Atlantic” 

and their descendants separated by continental drift.  Since the oldest fossils of Uca (sensu lato) 

are from strata in the Americas (Rathbun 1926, Brito 1993, Dominguez-Alonso 2008), their 

hypothesis is supported by paleontology.  Further, the derived clads (subgenera) appear to have 

diverged from the ancestral subgenus Uca (sensu stricto) by the Early Miocene, more than 25 

million years ago (MYA).  The more recently derived American-Indo-Pacific clades appear to 

have split from each other by the middle Miocene, 17 MYA.  Consequently, the first fiddler 

crabs probably appeared as a component in primitive mangrove communities appearing during 

the early Eocene, about 58 MYA.  Fossil records for close relatives to the fiddler crabs are 

known from Paleocene, 65-60 MYA (Beinlich and von Hagen 2006).  We suspect, over 

sufficient time, ancestral populations on different plates could diverge into distinct species if 

gene flow is limited or blocked (i.e. evolution by vicariance).  Beinlich and von Hagen (2006) 

postulate a primary center of dispersal as a combination of the Indo-West Pacific region, the 

Tethys Sea and proto-Atlantic Ocean from the Upper Mesozoic to Lower Miocene (Salmon and 

Zucker 1987), and the Americas (Levinton et al. 1996 and Sturmbauer et al. 1996).  

Consequently, patterns of evolution among the early Uca (sensu lato) in the proto-Atlantic may 

be related to the separation and spread of continental plates. 
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 An understanding of tectonic movement is essential to predicting evolutionary 

trajectories among the Uca (sensu stricto).  Formation of the Atlantic Ocean began around 140 

million years ago (Rayment and Tait 1972).  Formation of the Atlantic Ocean via seafloor 

spreading between the American and African/Eurasian tectonic plates (Figure 1) began around 

185 million years ago.  According to Keigwin (1982), the “salinity of the Caribbean surface 

waters began increasing four million years ago… in concert with changing tectonic, climatic, and 

biogeographic patterns.”  This correlates with Ibaraki’s (1997) assertion that the closing of the 

Central American Seaway 3.7-3 million years ago caused an increase in coastal upwelling in the 

Southeast Pacific and an abrupt cooling of Ecuador’s coastal surface waters.  In addition, the 

slow closing of the Panamanian seaway seems to have stimulated an increase in mollusk 

diversity on the Caribbean plate as opposed to a mass extinction as previously proposed (Jackson 

et al. 1993).  These high extinction rates were balanced by accelerated evolutionary rates 

following the Pliocene era (Allmon et al. 1993).  Others have suggested that the seaway closure 

caused staggered or progressive isolation rather than an instantaneous isolation of trans-

Panamanian biota.  This has been confirmed by genetic analysis (Knowlton et al. 1993).   

There is an extensive literature on size variation in Uca (sensu lato).  Fiddler crabs have 

been studied morphologically since 1901 when Robert Yerkes published a study on Gelasimus 

pugilator (now known as Uca (Leptuca) pugilator Bosc).  Male fiddler crabs are characterized 

by their asymmetry between their major and minor claws.  As such, much of the earlier research 

revolves around claw variation.  Thomas Morgan published numerous papers about secondary 

characteristics and asymmetrical variation in fiddler crabs (1920, 1923a, 1923b).  In this same 

time period, Julian Huxley was also writing about variation within species (1924).  This was 

instrumental in the development of Huxley’s famous allometric equation (y = kx
a
).  Nearly fifty 
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years later, Miller (1973) continued to study fiddler crab asymmetry.  In 1997, Michael 

Rosenberg described the evolutionary differences between the major and minor claws in fiddler 

crabs and found that the larger claw is not simply an allometric projection of the smaller claw.  

He proposed that the major cheliped was a product of sexual-selection to enhance courtship and 

combat effectiveness.   

One source of variation in any population may be derived from genetics.  The few 

available papers on this subject relevant to fiddler crabs reject this hypothesis.  Using molecular 

techniques, Silva et al (2010) determined that there appeared to be “extensive gene flow among 

mangroves along the coast” resulting in low gene diversity and a lack of genetic structure across 

populations of U.  annulipes in east Africa.  More recently, Laurenzano (2012, 2013) found a 

similar lack of gene diversity and phylogeographic structure in two species of fiddler crabs (Uca 

Minuca rapax and Uca Leptuca uruguayensis) from the Atlantic coast of South America.  

However, Caribbean populations of Uca rapax diverged genetically from South American 

populations.  In an extensive molecular study of U. maracoani, Wieman et al. (2013) found little 

genetic diversity across it geographic range in Brazil.  Consequently, genetic diversity does not 

appear to contribute significantly to geographic variation in any species of fiddler crab. 

Few published studies have addressed intraspecific morphological variation in fiddler 

crabs.  Rosenberg (1997) studied variation in cheliped shape in a population of Uca Minuca 

pugnax from New England.  Silva et al (2010) examined carapace and cheliped shape along with 

molecular genetic variation in Uca Austrauca annulipes.  They found no significant intraspecific 

variation across the species’ range in east Africa.  On the other hand, Hopkins and Thurman 

(2010) studied carapace morphology is eight species of fiddler crabs from the Gulf of Mexico.  

They found different species to display various degrees of intraspecific variation.  In a more 
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recent study, Hampton et al. (2013) found distinct intraspecific differences in carapace shape for 

population along the northern and southern coast of Brazil.  Consequently, Uca (sensu stricto) 

from the Atlantic Ocean appear to be an excellent species for both studies of interspecific and 

intraspecific phylogeographic patterns of variation.   

 For this project, carapace structural variation was analyzed in three narrow-fronted 

fiddler crabs from the subgenus Uca (sensu stricto) using geometric morphometrics.  Specimens 

were obtained from several locations across the geographic range of each species in the Atlantic 

Ocean.  From this study, each Uca is clearly distinct in morphospace.  The structural relation 

among the three species appears to be predicted by phylogeny.  Within each species, allometric 

variation due to size and/or growth could be distinguished from variation associated with 

distribution.  Since a complete series of environmental measurements is available for U. 

maracoani, carapace shape appears to vary with certain physical factors in this species.  This is 

the first study to document quantitatively both intra- and inter- specific variation in the basal 

clade of fiddler crabs from the Atlantic Ocean. 
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MATERIALS AND METHODS   

SAMPLING 

According to the literature, Uca major is known to range throughout the Caribbean into 

the southern Gulf of Mexico (Crane 1975, Barnwell and Thurman 1984, Utera-Lopez and 

Capistran-Barradas 2013).  Uca maracoani is a South American species, with some overlap with 

U. major in Venezuela and Trinidad in the north (von Hagen 1970), and throughout Brazil along 

the eastern coastline of the continent.  Uca tangeri is found on the West African coast as far 

north as Spain and Portugal to as far south as Angola.  To represent the distributions of the three 

species, crab specimens were collected from twenty-six localities along the coasts of Brazil, 

Mexico, Angola, Nigeria, Portugal, and the Caribbean (Figure 3).  Field work in Brazil was 

authorized by the Instituto Brasileiro do Meio Ambiente e dos Recursos Natuais Renováveis 

(IBAMA, permit nos. 2009/185559-1 and 2010/23976-1) for localities between Amapá (AP) and 

Santa Catarina (SC).  Fifteen locations were sampled across the states of Amapá, Bahia (BA), 

Ceara (CE), Espirito Santo (ES), Maranhão (MA), Paraná (PR), Pernambuco (PE), Rio de 

Janiero (RJ), and São Paulo (SP).  Sites were chosen by convenience of littoral habitats by road, 

track, or boat, which may allow for sampling bias.  Additionally, habitat characteristics were 

recorded at time of collection (salinity and substrate).   

Samples were also borrowed from the Smithsonian Institution National Museum of 

Natural History (Table 1).  Localities for U. major were Trinidad, Campeche Bay, and Kingston.  

U. maracoani samples from the Smithsonian came from Trinidad and Georgetown, while 

specimens of U. tangeri came from Angola, Nigeria, and Portugal.  Additional samples of Uca 

major (Isla San Andres, Colombia), U. tangeri (Spain and Morocco) and U. maracoani (Pará 

and BA, Brazil) provided by Frank H.  Barnwell, University of Minnesota (Table 1).   
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Figure 3.  Map of the Atlantic Ocean showing the collection sites for samples utilized in 

this study.   
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Species Collection Location Country Latitude Longitude N 

 

USMN 

     

Major 137748 

Trinidad, Diego Martin River, 

Holes in Tidal mud flats Trinidad 10.674 -61.559 1 

Major 180184 

Campeche Bay, Puerto Ceiba, 

Rio Seco, near Coconut grove Mexico 18.422 -93.169 1 

Major 210461 

Kingston, St.  Albans, S 

Causeway, E Side, Tidal Flat Jamaica 17.9705 -76.8461 3 

Maracoani 138579 Trinidad, Cocorite Trinidad 10.7812 -60.9466 16 

Maracoani 138581 

Georgetown, Foot of Kitty 

Village Guyana 6.8211 -58.1656 13 

Tangeri 138109 Luanda, Samba Angola -8.829 13.214 25 

Tangeri 138111 Luanda, Ilya de Caba Angola -8.778 13.247 25 

Tangeri 138107 

Lagos, Tarkwa Bay, Behind 

Breakwater Nigeria 6.399 3.393 14 

Tangeri 138105 Faro, Algarve Portugal 36.99 -7.903 40 

 
USP-ZM 

     Maracoani 23190 Amapa 4 Brazil 2.1364 -50.69782 1 

Maracoani 23192 Amapa 6 Brazil 2.13643 -50.69782 11 

Maracoani 20977-80 Bahia, Madre Deus Brazil -12.73657 -38.60433 7 

Maracoani 23188 Ceara, Rio Ceara Brazil -3.70214 -38.5965 18 

Maracoani 20927 Espirito Santo, San Antonio Brazil -20.30778 -40.35543 2 

Maracoani 20981-2 Espirito Santa, Santa Cruz Brazil -19.9532 -40.16842 10 

Maracoani 23183 Maranhao, Rio Munin Brazil -2.77549 -44.06629 26 

Maracoani 20929 Parana, Baxio Mirim Brazil -25.873875 -48.60771 9 

Maracoani 20973-76 Parana, Garcinhas Brazil -25.87136 -48.63449 10 

Maracoani 20726 Parana, Rio Fundo Brazil -25.8403 -48.58309 4 

Maracoani NA Pernambuco, Maracaipe Brazil -8.53787 -35.008 1 

Maracoani 20967 Pernamubuco, Orange Creek Brazil -7.81045 -34.84285 6 

Maracoani 20983-85 Pernambuco, Rio Santa Cruz Brazil -7.81853 -34.86131 25 

Maracoani 20968-72 Rio de Janerio, Paraty Brazil -23.20164 -44.7219 18 

Maracoani 20926 Sao Paulo, Araca Brazil -23.81261 -45.40833 1 

       Major Thurman San Salvador, Bahamas Bahamas 23.981 -74.484 26 

Major Barnwell Isla San Andres Colombia 12.525 -81.729 1 

 

Table 1.  A list of locations, latitude, and number of specimens per site for each species.  

The Smithsonian number is included where relevant.   
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SPECIES IDENTIFICATION 

Each specimen was identified to species before landmark digitization.  The three species 

of fiddler crabs analyzed in this study were identified using traditional morphological 

characteristics (Rathbun 1918, Chase and Hobbs, 1969).  Specimens were identified by one 

investigator (C.L.T.), photographed by another (M.J.H.), while analysis was performed by yet 

another (K.S.T.).   

 

SPECIMEN PREPERATION  

Brazilian samples of U. maracoani, after collection, were transported to a laboratory at the 

Centro de Biologia Marinha (CEBIMar/USP), Sao Sebastiao, Sao Paulo, Brazil, for use in 

physiological experiments.  Following this, crabs were quickly euthanized by chilling and 

preserved in 80% ethanol (Rufino et al. 2004).  Species were divided into lots based on location 

and stored at the Museu de Zoologia of the Universidade de São Paulo (Table 1).  Male 

carapaces are often asymmetric because of a biomechanical response to the single large cheliped.  

For methodological reasons, the asymmetric component of variation must be analyzed separately 

from the symmetrical component.  As this study focused only on the symmetric component, it 

was limited to females (Bookstein 1996, Klingenberg et al. 2002).  Though there is asymmetrical 

variation within individuals, such as that which results from developmental instability, the 

symmetrical component reveals shape variation among individuals.  Only female specimens 

(n=314) were used to focus our study of geographic variation rather than sexual selection.   

Each specimen was photographed individually, oriented so that the carapace was 

horizontal in frontal view and its anterior- and posterior-most edges lay on the same horizontal 

plane.  Error due to orientation and digitization were assessed by repeatedly mounting and 
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digitizing a single random specimen of each species (Hopkins & Thurman 2010).  All 

photographs were taken by a single investigator while all digitization was performed by another.   

 

DATA COLLECTION 

Twenty one landmarks, as well as two on a ruler for size comparison, were identified on 

each photograph and digitized using the program tpsDig (Rohlf 2010).  The landmarks were 

specifically chosen because they accurately summarize the general carapace shape, as well as 

internal features of the individual crab.  Landmark positions can be viewed in Figure 4 (Hopkins 

& Thurman 2010).  The last two for size were placed one centimeter apart on the photograph in 

the ruler to scale each configuration.   

Statistical analyses were performed with Integrated Morphometrics Package (IMP) 

software by Sheets (2001-2007).  Paired landmarks were averaged across the 1-3 center line and 

then averaged, as they are not independent and the carapace is symmetrical.  The 

superimposition reduces the number of landmarks to eleven, as shown in Figure 5.  Data were 

compiled into a single file, which was processed by the PCAgen6 program to check for outliers.   
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Figure 4.  A representation of anatomical regions and locations of 21 landmarks on the 

female carapace.  Closed circles show the configuration of landmarks after averaging across the 

midline (points 1, 2, and 3), while open circles indicate original landmark points. 
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Figure 5.  (A)  A representation of anatomical regions after averaging across the midline, 

resulting in 12 total landmarks.  (B)  Landmarks represented on the crab carapace itself as 

performed on the 314 samples.   
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HABITAT/ENVIRONMENTAL GROUPING 

Using the latitude of collection (Table 1), specimens each three species were divided into 

northern and southern populations.  In addition Brazilian samples of U. maracoani specimens 

were also divided into groups according to high/low salinity (i.e. above or below 620 mosm/Kg 

H2O), substrate (muddy or sandy), and biotope (Thurman et al. 2013).  Based on hydrology and 

climate, the Brazilian shore between AP and SC can be divided into four distinct biomes: I - 

humid tropical, II - mixed, dry, tropical, III - humid, tropical, and IV – subtropical.  The 

geographic distribution of these habitat parameters (Table 2) were used to localized the factors 

promoting carapace variation.   
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State   Site designation      Georeference         Habitat osmolality    Habitat type 
 (municipality/feature)            (latitude, longitude)          (mosm/kg H2O) 

AP Calçoene, Goiabal, river 02.59653, -50.84833      105      sandy-mud  

            Amapá, Amapá R.  02.14724, -50.69581      463   open mud flat, mngv 

            Amapá, Amapá R.  02.13643, -50.69782      270     clay flat 

 Amapá, Amapá R.  02.08035, -50.76265        75     low tide bar 

MA Raposa, Caêma R.         -02.41575, -44.10077      930    exposed sand 

 São José do Ribamar         -02.56377, -44.05370      825     exposed sandy mud

 Icatu, Munim R.    -02.77549, -44.06629        80    humus, mngv  

CE Fortaleza, Ceará R.  mouth -03.70214, -38.59650      590     mngv, open 

flat Fortaleza, upper Cocó R. -03.76818, -38.45075        60     mngv mud  

PE Itamaracá, Sta.  Cruz R.  channel -07.81853, -34.86131      716    open sand-mud flat

 Itamaracá, Ft.  Orange Creek -07.81045, -34.84285      960     mngv mud 

BA Madre de Deus, Baía Santos   -12.73657, -38.60433      951            open sand/mud 

 Maragogipe, Iguape bay      -12.78070, -38.90875      827     sand, mngv 

 Salvador, Aratu bay, marina -12.81383, -38.45294      675       mngv, humus mud 

ES Santa Cruz, Sta.  Cruz R. -19.95320, -40.16842      791     mngv mud 

 Vitória, Joana D’arc  -20.28357, -40.31325      675     mngrv mud 

 Vitória, Santo Antônio -20.30778, -40.35543      675   open mud flat 

 Rio de Janeiro, Guaratiba -23.02868, -43.56275        33     sandy mud 

 Paraty, Jabaquara beach          -23.20164, -44.72115                 800     mngv, mud 

SP São Sebastião, Araçá beach    -23.81261, -45.40833    1010        sand beach, mngv 

PR Guaratuba, bay, Ilha Garcinhas-25.87136, -48.63449     328         mngv roots, mud 

 Guaratuba, bay, Baixio-mirim  -25.87388, -48.60798     650     sand flat 

 Guaratuba, bay, Rio Fundo       -25.84030, -48.58309     715       shelly sand 

 

Table 2.  Site localities and principal habitat characteristics for Uca collected along the 

Atlantic coast of Brazil between May 2009 and August 2010.  Habitat abbreviations: mangrove - 

mngv.   
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DATA ANALYSIS 

Visualizations of morphological variation were created with principal components 

analysis (PCA) and canonical variates analysis (CVA) of the partial warp scores (Figure 6).  In 

PCA, all of the images are superimposed and standardized, then rotated in multivariate space to 

express the most variations on a few axes, ignoring any group affiliation.  While CVA is similar, 

it transforms data to maximize the variation between the groups.  Each specimen is given a score 

for each axis, first on the horizontal axis (PC1 and CV1, respectively) which explains the most 

variance while each latter axis explains less and less variance.  The distribution of specimens or 

groups in morphospace may be visualized by plotting the first two axes against one another in a 

bivariate plot.   

Morphological differences between specimens along these axes may be visualized using 

deformation plots.  These deformation plots use a grid combined with vectors to show not only 

the extent of the variance, but also the direction and location on the carapace.  As differences do 

occur among groups, a resampled F-Test which used the Procrustes coordinates was used to 

determine significance (Sheets 2001-2007).  This resulted in two values, including the distance 

between the means, which indicates space between a pair of samples in morphospace.  This 

reveals which groups have more common morphology and which groups have more differences.  

The p-value was also generated, which is the probability that the differences between groups 

could occur by pure chance.  In this study, p-values less than 0.05 were determined to be 

significant.   
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Figure 6.  Visual representation of Canonical Variance and Principal Components 

Analyses.  Both analyses rotate the data to maximize differences between groups and reduce the 

number of variables to study.  CVA alters data and is based on an assumption of equal variance 

while PCA does not alter the original data.   
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RESULTS 

ALLOMETRIC VARIATION 

From geometric morphometric analysis of the fiddler crab carapace, the twelve surficial 

landmarks can be used to calculate centroid position and size based on the square root of the 

summed squared distance from the centroid to each landmark.  Since size is a major component 

of morphological variation, allometric growth of the carapace was examined in the three fiddler 

crab species.  Figures 7, 8, and 9 illustrate the relationship between log centroid size and distance 

in morphospace for each species, respectively.  Morphological distance on the Y axis is partial 

Procrustes distance between the mean of the smallest three specimens sampled and each of the 

other specimens for that species.  "Partial Procrustes distance" refers to the method of 

superimposition.  The mean value of the smallest three specimens can be thought of as the 

"expected" most-juvenile form.  The distances represent the difference in shape between the 

expected juvenile form and each of the larger specimens.   

Significant positive allometry is expressed as a result of carapace enlargement in all three 

Uca (sensu lato).  As the carapace centroid size (logarithm) increases from 2.75 to 3.4 in U. 

major (n = 32), the Procrustes distance increases from 0.025 to 0.060 (Figure 7).  Likewise, in U. 

maracoani (n = 178) as the logarithm of centroid size increases from 2.30 to 3.70, the Procrustes 

distance increases from 0.025 to 0.093 (Figure 8).  For U. tangeri, as the logarithm centroid 

increases from 2.4 to 3.8 (n = 104), the Procrustes distance increases from 0.020 to 0.145 (Figure 

9).  For subsequent analysis, allometric growth was removed by regressing shape against 

centroid size using Regress (Sheets 2001-2007). 
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Figure 7.  Regression analysis of allometric growth in Uca major (N=32).  Morphospace 

distance is estimated by averaging the smallest three specimens of each species and comparing 

the rest of the samples against them.  The equation of the regression line is Y = 0.034x + 0.064; 

correlation coefficient 0.55 (r
2
 = 0.3025) where x is the log of the centroid size and y is the 

distance in morphospace. 
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Figure 8.  Regression analysis of allometric growth in Uca maracoani (N = 178).  

Morphospace distance is estimated by averaging the smallest three specimens of each species 

and comparing the rest of the samples against them.  The equation of the regression line is Y = 

0.029x - 0.041; correlation coefficient 0.59  (r
2
 = 0.3481) where x is the log of the centroid size 

and y is the distance in morphospace. 
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Figure 9.  Regression analysis of allometric growth in Uca tangeri (N = 104).  

Morphospace distance is estimated by averaging the smallest three specimens of each species 

and comparing the rest of the samples against them.  The equation of the regression line is Y = 

0.063x - 0.12; correlation coefficient 0.91 (r
2
 = 0.8281) where x is the log of the centroid size 

and y is the distance in morphospace. 
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INTERSPECIFIC VARIATION 

 After removing allometric variation, PCA reveals that 57.51% of carapace variation is 

associated with PC1 and 10.11% with PC2.  Together the two account for 67.62% of the 

variation.  Using either CVA or PCA, the three species exhibit no overlap in morphospace 

(Figure 10, Figure 11, Table 3).  Based on PC1 and PC2, each species is distinct in morphospace 

(Fig 10).  Using the canonical variates analysis, CV1 shows some separation between U. tangeri 

and U. maracoani while U. major is more distinct, and CV2 shows more equal distances 

between the three species (Figure 11).  From Table 3, U. major and U. tangeri are separated by 

the largest mean partial Procrustes distance of 0.155 while U. major and U. maracoani are 

separated by a mean partial Procrustes distance of 0.150.  Carapace shape in U. tangeri and U. 

maracoani are more similar with a mean partial Procrustes distances of 0.070.  By resampled 

Goodall’s F-test, the carapace shapes of all three species are statistically significant (Table 3; 

P≤0.0001).   
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Figure 10.  Principal components analysis of all 314 specimens.  Symbol colors indicate 

different species.  PC1 and PC2 scores denote variance accounted for by that axis.  All three 

species are clearly distinct on the horizontal PC1 axis, but are less distinct when viewed on the 

vertical PC2 axis.   
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Figure 11.  Canonical variance analysis plot (CV1 vs CV2) of all 314 specimens of U. 

major, U. maracoani, and U. tangeri.  When viewed on the horizontal CV1 axis, U. tangeri and 

U. maracoani are quite close together while U. major is quite isolated.  When viewed on the 

vertical CV2 axis, U. major is more closely placed between the two continental species.   
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Table 3.  Goodall’s F-test comparison from Procrustes coordinates of landmark data, 

which compares the difference in mean shape between two samples relative to the shape 

variation found within the samples.  All three comparisons yielded highly significant results, 

with p<0.001.  The distances between the means of U. major and U. tangeri were the greatest.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison F-score p value Distance Between Means 

U. major - U. maracoani 247.52 <0.0001 0.105 

U. major - U. tangeri 348.87 <0.0001 0.1555 

U. maracoani - U. tangeri 220.75 <0.0001 0.07 
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INTRASPECIFIC VARIATION 

IMPACT OF LATITUDE ON CARAPACE SHAPE IN SUBGENUS UCA 

For museum specimens, little information on habitat other than location of collection is 

available.  Consequently, carapace variation was analyzed in regards to latitudinal distribution.  

On the other hand, since U. maracoani were collected specifically for this project (Thurman et 

al. 2013), carapace variation in this species can be correlated with latitude, soil type, salinity and 

biotope (Table 2).   

Northern and southern populations of all three species were compared in morphospace 

and subjected to statistical analysis.  U. major was divided into northern or southern populations 

based on country of origin (Bahamas were defined as north with a latitude of 22° degrees north, 

all others were south).  The Ponta do Calcanhar in Brazil divided U. maracoani at a latitude of 7° 

degrees, while the equator divided the populations of U. tangeri at a latitude of 0° degrees.  

Deformation plots were used to analyze variation with latitude when comparing all three species.  

These plots illustrate which regions of the carapace are experiencing morphological distortion.  

The most significant area of morphological variation in the carapace, shown in the Procrustes 

deformation plots, differed among the species.  In U. major, the largest variation was seen in the 

branchial region (Figure 12).  The frontal and hepatic regions showed the most variation in U. 

maracoani (Figure 13).  U. tangeri had the most variation in the meso-gastric and hepatic 

regions (Figure 14).  Procrustes deformation plots from Canonical Variates Analysis (CVA) 

showed more diverse variation throughout many regions of the carapace than seen after PCA.  

Discrepancies are due to the innate differences of the two programs and how they rotate the data. 
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Figure 12.  CV1 Procrustes deformation plot due to latitude.  Most variation is seen in the 

branchial and frontal regions in U. major.   
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Figure 13.  CV1 Procrustes deformation plot due to latitude.  The frontal and hepatic 

regions had the most variation in U. maracoani.   
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Figure 14.  CV1 Procrustes deformation plot due to latitude.  In U. tangeri, most 

variation is displayed in the meso-gastric and hepatic regions.   
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 In U. major, the specimens collected from the Bahamas were compared by PCA and 

CVA with those from Jamaica, Colombia, Mexico, and Trinidad.  Specimens from the Bahamas 

clustered together in PCA, as seen in Figure 15.  Although only a few specimens were used 

(n=32), intraspecific variation is clearly evident based on PC1.  On the PC1 axis, 26.56% of the 

variation is represented.  Specimens from northern populations show similarity in the variation 

captured by the PC1 axis compared to specimens from southern populations.  Since overlap in 

groups sorted by latitude on the PC2 axis is considerable, it is not useful for documenting 

population variation.  Canonical variance analysis (CVA) produces similar results, though 

separation is seen more clearly (Figure 18).  The F-score, statistical significance, and the distance 

between the means can be seen in Table 4.   

The degree of variation in U. maracoani is broader (Figures 16 and 19).  The PC1 axis 

accounts for 20.80% of the variation (Figure 16).  Populations can be clearly distinguished by the 

variation represented by PC1.  On the other hand, variation in PC2 is similar across all 

populations regardless of latitude,  so variation represented by PC2 is unhelpful in discriminating 

populations.  Populations from each region cluster together, but there is a great deal of overlap.  

The mean shapes of the two latitudinal groups are separated by a mean partial Procrustes 

distance of 0.0175 in morphospace (Table 4).  Again, CV1 produces better separation than PC1. 

Like the other two species, PC1 in U. tangeri shows distinct clustering of populations 

based on latitude regions.  The PC1 axis represents 35.82% of the shape variation in cara pace 

morphology (Figures 17 and 20).  The mean partial Procrustes distance between the northern and 

southern populations is 0.027 (Table 4) and is statistically significant (p = 0.0011).  On the other 

hand, the variance on the PC2 axis among specimens from both regions overlap considerably and 

would not be useful in distinguishing their origin (Figure 17).   



36 

 

 

 

 

 

Figure 15.  Principal components analysis comparing northern and southern populations 

U. major.  Populations are very distinct on the PC1 axis and moderately separate on the PC2 

axis.  Northern populations originated in the Bahamas, while the southern populations originated 

from Colombia, Trinidad, Jamaica, and Mexico.  There is not much separation on either the PC1 

or PC2 axes. 
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Figure 16.  Figure 12.  Principal components analysis comparing northern and southern 

populations U.  maraocoani.  Populations display overlap extensively on the PC1 axis, and to a 

lesser amount on the PC2 axis.  Northern and southern populations were divided by the Ponta do 

Calcanhar.  There is not much separation on either the PC1 or PC2 axes. 
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Figure 17.  Principal components analysis comparing northern and southern populations 

U. tangeri.  Populations display some separation on the PC1 axis and overlap on the PC2 axis.  

Northern and southern populations were divided by the Equator.  There is not much separation 

on either the PC1 or PC2 axes. 

 

 

 

 

 

 

 



39 

 

 

 

 

 

 

 

 

 

Figure 18.  Canonical variates analysis comparing northern and southern populations in 

U. major.  Populations are quite distinct on the CV1 axis.  Northern populations originated in the 

Bahamas, while the southern populations originated from Colombia, Trinidad, Jamaica, and 

Mexico.  There is clear separation on the CV1 axis. 
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Figure 19.  Canonical variates analysis comparing northern and southern populations in 

U. maracoani.  It is mostly separated on the CV1 axis.  Northern and southern populations were 

divided by the Ponta do Calcanhar.  There is clear separation on the CV1 axis. 
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Figure 20.  Canonical variates analysis comparing northern and southern populations U. 

tangeri.  There is minor overlap on the CV1 axis.  There is clear separation on the CV1 axis. 
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Latitude F-score p value Distance Between Means 

U. major 5.68 0.0011 0.0336 

U. maracoani 10.54 0.0011 0.0175 

U. tangeri 11.19 0.0011 0.027 
 

Table 4.  Goodall’s F-test comparison from Procrustes coordinates of landmark data 

contrasting  northern and southern populations in each of the three species.  All three resulted in 

statistically significant values, p≤0.0011 in all species.  Distances between the means of northern 

and southern populations varied the most in U. major.   
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IMPACT OF BIOTOPE REGION ON U. MARACOANI 

U. maracoani lives in four of Brazil’s five recognized Biotopes (Thurman et al. 2013).  

Principal component and canonical variance analyses are shown in Figures 21 and 22, 

respectively.  The PC1 axis represents 21.22% of the carapace shape variance in this species, 

while 16.19% is represented on the PC2 axis.  Based on CVA, CV1 can distinguish crabs 

originating in Biotope 2 and Biotope 4 while CV 2 distinguishes crabs from Biotope 1 from 

those collected in Biotopes 2, 3, and 4 (Fig 22).  Based on CV1, crabs from Biotope 2 are 

intermediate in structure between those from Biotope 2 and 4.  Table 5 shows the statistical 

analyses done for biotope, including a bootstrapped F-test and the distance between the means.  

Goodall’s F-test compares the difference in mean shape between two samples relative to the 

shape variation found within the samples.  Figure 23 shows the Procrustes deformation plot for 

biotope, showing that the area of greatest deformation is constriction in the antero-latero margin 

and constriction of the postero-lateral margin. 
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Figure 21.  Principal components analysis of all U. maracoani samples from Brazil.  

Symbol colors indicate different species.  PC1 and PC2 scores denote variance accounted for by 

that axis.   
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Figure 22.  Canonical variance analysis plot (CV1 vs CV2) of all Brazilian samples of U. 

maracoani.  When viewed on the horizontal CV1 axis, Biotopes 2, 3, and 4 are a gradient while 

Biotope 1 overlaps with Biotope 3.  When viewed on the vertical CV2 axis, Biotope 1 is isolated 

from the overlap in Biotopes 2, 3, and 4.   
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Figure 23.  CV1 Procrustes deformation plot due to different biotopes.  Most variation is 

seen in the antero-lateral margin and the postero-lateral margin.   
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Biotopes F-Score p value Distance Between Means 

Biotope 1-2 7.41 0.0011 0.0287 

Biotope 2-3 8.53 0.0011 0.0196 

Biotope 3-4 3.04 0.0011 0.0138 

Biotope 1-4 8.89 0.0011 0.0319 

Biotope 1,2 - 3,4 12.93 0.0011 0.0201 
 

Table 5.  Goodall’s F-test comparison from Procrustes coordinates of landmark data 

contrasting four biotopes in Uca maracoani.  All comparisons resulted in statistically significant 

values, p≤0.0011 in all biotopes.  Distances between the means of biotopes 1 and 4 were the 

greatest and the means were smallest between biotopes 3 and 4. 
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IMPACT OF HABITAT SALINITY ON U. MARACOANI  

After principal components analysis, CV1 in these specimens form cohesive groups 

based on salinity regime (either above or below 600 mOsm kg
-1

 H2O), supporting the notion that 

osmolality may impact carapace shape (Figure 24).  PC1 and PC2 represent 37.41% of the 

variation in the dataset (Figure 25).  Consequently canonical variates analysis (CVA) provides a 

clearer view distinguishing the two salinity groups.  However, overlap is still visible in in the 

CVA plot (Figure 24).  A resampled F-test (Table 6) yielded a statistically significant value, p = 

0.0011.  Figure 26 is the Procrustes deformation plot for salinity, which reveals that the greatest 

areas of plasticity are similar to those seen due to biotope.  The antero-lateral margin of the 

carapace is constricted and the postero-lateral margin is enlarged.   
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Figure 24.  Canonical variance analysis plot (CV1 vs CV2) of all Brazilian samples of U. 

maracoani.  When viewed on the horizontal CV1 axis, low and high salinity have marginal 

overlap.    
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Figure 25.  Principal components analysis of all U. maracoani samples from Brazil based 

on high or low salinity.  Symbol colors indicate different species.  PC1 and PC2 scores denote 

variance accounted for by that axis.   
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Salinity F-score p value Distance Between Means 

High/Low 7.48 0.0011 0.0154 
 

Table 6.  Goodall’s F-test comparison from Procrustes coordinates of landmark data 

contrasting high and low salinity in Brazilian Uca maracoani.  The comparison resulted in a 

statistically significant value, p≤0.0011.  Distances between the means were 0.0154. 
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Figure 26.  Procrustes deformation plot from CV1 for salinity.  Most variation is seen in 

the antero-lateral margin and the postero-lateral margin.   
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IMPACT OF HABITAT SUBSTRATE ON U. MARACOANI 

Like salinity, substrate (sand or mud), 21.22% of variation is represented on the PC1 axis, 

Figure 27.  While PC1 illustrates considerable overlap among populations from sandy or muddy 

areas, the morphology of crabs from the different substrates do differ significantly (Figure 28).  

The canonical variates analysis gives similar results, though with a larger degree of separation, 

but with quite a few outliers from each substrate.  Bootstrapped F-tests (Table 7) show that while 

the distance is significant, the mean partial Procrustes distance between the means is only 

0.0133.  Figure 29 illustrates the areas of greatest plasticity as seen in the Procrustes deformation 

plots from CV1, which are a narrowing of the rostrum and an increase of the antero-lateral 

margin.   

Although we are limited to detailed analysis in only one species, it appears that 

morphological variation in all three species varies with latitude.  Based on our analysis of U. 

maracoani, environmental factors such as climatology (Biotope), salinity and substrate have a 

decided influence on carapace shape.  Apparently muddy substrates in high salinity habitats 

produce crabs with a shape differing from those living (or developing) in sandy habitats with 

lower salinity.  Exactly how this influences development awaits exploration.   
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Figure 27.  Principal components analysis of all U. maracoani samples from Brazil based 

on sandy or muddy substrate.  Symbol colors indicate different species.  PC1 and PC2 scores 

denote variance accounted for by that axis.   
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Figure 28.  Canonical variance analysis plot (CV1 vs CV2) of all Brazilian samples of U. 

maracoani.  When viewed on the horizontal CV1 axis, different substrates display some overlap.  

When viewed on the vertical CV2 axis, there is complete overlap between various substrates.   
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Substrate F-score p value Distance Between Means 

mud-sand 5.59 0.0011 0.0133 
 

Table 7.  Goodall’s F-test comparison from Procrustes coordinates of landmark data 

contrasting muddy and sandy substrates in Brazilian Uca maracoani.  The comparison resulted 

in a statistically significant value, p≤0.0011.  Distances between the means were 0.0133. 
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Figure 29.  Procrustes deformation plot from CV1 for substrate.  Most variation is seen in 

the rostrum and the antero-lateral margin.   
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DISCUSSION 

Morphological variation may be related to the influence of several different forces 

working simultaneously on an organism (Williams 1966).  Differences among or within species 

may be the consequence of disruptive natural selection acting on different populations.  On the 

other hand, variation may be due to random variation and bottle necks in communication 

(migration) among those populations.  Within a species, variation may be linked on both habitat 

and genetic diversity.  In this study, interspecific variation appears to have resulted from the 

divergence of Uca major, U. maracoani, and U. tangeri over the last forty to fifty million years.  

Intraspecific variation across the latitudes was significant in all three species.  In the case of U. 

maracoani, where they are known, biotope, salinity, and substrate were examined in detail across 

populations in Brazil to determine which factors impact carapace morphometrics.  It appears that 

intraspecific variation in carapace form, in part, can be related with specific environmental 

conditions, particularly biotope region.  Since it has been established that morphometric variation 

occurs without genetic distinction (Miner et al. 2005), these results suggest phenotypic plasticity 

plays a major role in anatomical acclimation to new habitats.  

 

DISTRIBUTION IN RELATION TO DISPERSAL POTENTIAL 

The distribution of each of the three species studied here is clearly associated with their 

respective tectonic plates (Figures 2 and 3).  Since their zoeae and megalopae spend two to three 

months offshore in the plankton (Hyman 1922), this would imply they are susceptible to 

transport by the oceanic currents.  Based on this potential for long-distance dispersal (Palumbi 

1994), it is surprising that these ancient, basal species are not more widely distributed.  In the 

western Atlantic, the oceanic current flows from northern South America into the Caribbean.  U. 
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maracoani, in particular, has the potential for ranging from the Ponta do Calcanhar to the 

Yucatan and southern Mexico (Thurman et al. 2013).  However, except for a single specimen 

from the Dominican Republic (Crane 1975), the species’ boundary is only as far north as 

Venezuela and Trinidad-Tobago (von Hagen 1970, Crane 1975).  On the other hand, based on 

hydrography, it is unlikely that U. major would be found in northern South America since the 

prevailing current flows north.  Its present distribution lies from Trinidad north to Mexico and 

the Bahamas (von Hagen 1970, Thurman et al. 2010, Utrera-López and Capistrán-Barradas  

2013).  It appears to be mostly an insular species.   

Across the Atlantic, U. tangeri is the only fiddler crab species along the western shores of 

African continent and southwestern Europe.  Due to cold currents converging on the Equator 

from the north and south, this species is not expected at higher latitudes.  In the north, larvae are 

distributed southward from Portugal and Spain toward the Equatorial Current, while in the south 

the current brings larvae from Angola north toward the equator.  Furthermore, U. tangeri does 

not occur frequently off- shore of islands in the eastern Atlantic (i.e. Azores, Madeira, Cape 

Verde, Principe, Tinhosa Pequena, Tinhosa Grande, São Tome, Annobón and St. Helena).  Based 

on a rare specimen, it has only recently has it been documented on Gran Canaria in the Canary 

Islands (Castro 2012).  Like the Uca (sensu lato) in Brazil, the current range of U. tangeri is not 

explained by a combination of oceanographic hydrology and long-distance dispersal potential.  

In spite of their potential, the three species from the subgenus Uca (sensu stricto) are not 

distributed by ocean currents far beyond their “home” tectonics.   

By contrast, some members of the recently evolved “broad-fronted” subgenera (i.e  

Leptuca and Minuca) clearly demonstrate a long-distance dispersal potential using the ocean 

current.  Although several species within each subgenus are endemic to various tectonic plates in 

http://www.researchgate.net/researcher/2043176863_M_E_Utrera-Lopez
http://www.researchgate.net/researcher/2043217112_A_Capistran-Barradas
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the western Atlantic (i.e. North American, Caribbean and South American), five are distributed 

across all three plates: U. burgersi Holthuis1967, U. rapax (Smith 1870), U. vocator (Herbst 

1804), U. leptodactyla (Rathbun 1898) and U. thayeri (Rathbun 1900).  The other thirteen, 

including U. maracoani and U. major, are restricted in distribution to location on each of the 

three plates (Thurman et al. 2013).  Lopez-Duarte at al. (2011) discovered that zoeae of some 

fiddler crabs can adjust their pattern of vertical migration to either catch or avoid select tides.  

This appears to be a behavioral mechanism for regulating dispersal.  If the larvae choose to enter 

the water column on an ebb tide, they will be disbursed over a greater distance than individuals 

selecting to ride the flood tides and remain in the local nursery.  Apparently, the species with 

more cosmopolitan distributions select ebb tides to assure long distance dispersal.  On the other 

hand, species with limited distributions selected flood tides to remain in the estuary inhabited by 

their parents.  Since the duration of larval development does not vary widely between narrow-

fronted and broad-fronted species, the ability for larvae to independently navigate flood or ebb 

tide transport may be a key propensity in long-range dispersal.  It appears to be better developed 

in the more recently evolved taxa than the ancient-basal species.   

 

INTERSPECIFIC VARIATION 

In general, closely-related species resemble each other, superficially.  From Rosenberg’s 

study of 88 with species and 236 discrete morphological character, the subgenus Uca (sensu 

stricto) is basal in the phylogeny of the genus (2001; fig 4; Figure 30).  Uca tangeri, U. major 

and U, maracoani are literally proximal to each other near the bottom of the tree implying 

morphological similarity.  When projected in morphospace the three form quite distinct and 

separate clusters (Figures 10 and 11).  Assuming these species are monophyletic with a common 
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origin on a single tectonic plate, it is likely that time drove their ancestor on at least three 

separate evolutionary trajectories.  As the present tectonics have drifted apart for the last 140 

million years, the distinctness of each species is the result of a vicariant evolutionary processes 

(Cox and Moore 2010).  Since larval dispersal potential in the basal species is limited, over time 

natural selection and genetic drift have produce three species from their progenitor(s) on 

different tectonic plates.  Their morphological distinctness is supported by the statistically 

significant Partial Procrustes distances of the means between the species (Table 3).  In spite of 

their relatedness and similarity, there is little basis for confusing the three taxa as was the case 

historically (Bott 1973, Holthuis 1979).  Currently, these species have been adequately re-

described and there is little chance of taxonomic confusion.   
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Figure 30.  Phylogeny of Uca from Rosenberg (2001) “Strict consensus of 12 most-

parsimonious trees (length = 1,517, CI = 0.161, RI = 0.660) from unconstrained analysis. 

Numbers above branches are bootstrap values.” 
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INTRASPECIFIC VARIATION IN THE THREE SPECIES 

In the absence of large temperature gradients in the tropics, several other environmental 

factors are known to regulate carapace form in fiddler crabs (Hopkins and Thurman 2010, 

Hampton et al. 2014).  From both CV and PC analyses, all three species studied here exhibit 

distinct latitudinal patterns in shape variation (Table 4).  Among the three, the greatest extent of 

divergence is seen in U. major and the least in U. maracoani.  The area with the largest degree of 

variation was the branchial region.  In southern populations of U. major, the frontal region is 

more swollen while the branchial region is compressed.  The areas of greatest deformation in U. 

maracoani are the frontal and hepatic regions.  Southern populations have a narrower hepatic 

and broader frontal region than northern populations, overall.  In U. tangeri, the meso-gastric 

region is more swollen in southern populations, and the hepatic region broader.  Although there 

is significant variation in carapace structure with latitude in each species, the nature of the 

transforming vector is unknown in this analysis.  Alone, latitude has no direct influence.  Rather, 

the analysis implies either gradients in environmental factors or genetic structure to be associated 

with global position.  Among the three Atlantic species from the subgenus Uca (sensu stricto), 

we have genetic and environmental data only for U. maracoani.  From this it is possible to 

examine how carapace shape variation is correlated with each factor.  Using a mitochondrial loci 

for cytochrome oxidase (COX1) and amplified fragment length polymorphisms (AFLP) analysis, 

the populations of U. maracoani along the coast of Brazil exhibit little or no genetic variation 

and structure (Wieman et al. 2014).  Consequently, carapace shape is a result of ecophenotypic 

variation. 

Ecophenotypic plasticity is apparent in the fiddler crabs of Brazil.  Using the Ponto do 

Calcanhar as a barrier to gene flow via oceanic currents, Hampton et al. (2014) found significant 
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variation in the carapace shape of eight “trans-Brazilian” species of Uca (sensu lato) including 

U. maracoani.  In the present study, factors such as biotope, salinity and substrate were found 

influence carapace morphology in U. maracoani.  Both biotope and salinity appear to have 

similar impacts on the morphology of a carapace in female crabs (Tables 5 and 6).  Both are 

associated with constriction of the antero-lateral and the postero-lateral margins.  Substrate, 

however, appears to have a different influence on morphology in that it narrows the rostrum and 

increases the antero-lateral margin in populations found on sandier substrates.  Consequently, it 

is reasonable to suspect that other environmental factors change in a systematic fashion across 

latitudes. From a morphometric perspective, this possibility remains to be investigated in most 

species. 

Geometric morphometrics have been used to study the carapace in several different 

crustaceans including crabs.  Rufino et al (2006) found the carapace of the crab Liocarcinus 

depurator to vary along the Mediterranean coast of Spain.  They attributed this plasticity to 

differences in currents along the shore.  Across the Mediterranean Sea, Black and Spanish 

Atlantic Ocean, the crab Xantho poressa was found to vary in carapace color and shape 

(Reuschel and Schubart 2007).  Since neither feature correlated with genetic differences in 

COX1 among populations, it appears that phenotype variation is due to different habitats across 

the range in the species.  Recently, Lezcano et al. (2012) found the crab Cyrtograpsus affinis 

from two different estuaries on the South Atlantic coast of Argentina to differ significantly in 

carapace shape.  The authors attributed variation to the aquatic variables turbidity, temperature 

and salinity.  On Reunion Island in the Indian Ocean, the carapace of the freshwater prawn 

Macrobrachium austral varies between lentic and lotic stream habitats (Zimmermann et al. 

2012).  Since the island is small and spawning occurs in saltwater, the adults migrate up island 
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streams.  The rostrum grows longer in slower running streams.  In another crab from Argentina, 

Cyrtograpsus angulatus, Idaszkin et al. (2013) found that the carapace is more slender in 

specimens from rock habitats and longer in those from muddy salt marshes.  The authors 

proposed that the slender shape was a modification necessary for living in small spaces along the 

rocky shore.  In fiddler crabs from the Gulf of Mexico, the aridity of the local habitat has a 

greater impact on carapace shape than other environmental factors (Hopkins and Thurman 2010).  

In crabs from sub-arid coastal habitats, the carapace appears to be swollen as a method for water 

conservation preventing desiccation.  Consequently, the impact of salinity and substrate on 

carapace shape of U. maracoani in the absence of genetic variation is not unanticipated.  These 

environment pressures apparently promote structural variation in carapace shape among several 

species of Uca.  Although similar habitat data is unavailable for U. tangeri and U. major, 

ecophenotypic variation in these species is probably associated with one or more habitat 

variables as in U. maracoani.   
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LIMITATIONS 

One of the limitations of this study was the lack of data for environmental factors for all 

specimens other than U. maracoani from Brazil.  For all other samples, only latitude was 

available for comparison.  Additionally, temperature gradients could have been another 

environmental factor worth studying.   

Furthermore, information on genotypic variation is not readily available, which would 

provide details about gene flow in fiddler crabs.  Phenotypic variation is readily influenced by 

many environmental factors as well as genetic factors.   

Lastly, female specimens were very limited for Uca major, with only one specimen each 

coming from Colombia, Mexico, and Trinidad, and only three from Jamaica.  Our largest sample 

population came from the Bahamas, and contained only 26, giving a total sample size of 32 

individuals of U. major.  Small sampling sizes may not reflect the morphology of crabs from this 

region accurately.  A larger sample size may provide a better representation of the region for 

comparison with other species.   
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