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Abstract

The 2004 article, “On 3-cutwidth critical graphs”, by Yixun Lin and Aifeng Yang, 

characterized the set of 3-cutwidth critical graphs by five specified elements. In this project 

we extend this idea to 4-cutwidth critical graphs. We will demonstrate the methods used in 

finding these graphs and also illustrate some of the things they have in common. Unlike the 

3-cutwidth critical case we verify that there are infinitely many 4-cutwidth critical graphs. 

We also provide a dictionary of the 4-cutwidth critical graphs.
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Chapter 1

Introduction

1.1 Background

Graphs are useful tools for analyzing situations involving a set of elements in which 

various pairs of elements are related by some property. They are used to solve problems in 

many fields. We can distinguish between two chemical compounds with the same molecular 

formula but different structures using graphs. Examples of graphs that have physical links 

are electrical networks, where the electrical components are the vertices and connecting 

wires are the edges. Graphs can also be seen as sets with logical sequencing, such as 

computer flow charts, where the instructions are the vertices and the logical flow from 

one instruction to other successor instruction(s) defines the edges. Other examples can be 

evolutionary trees in biology, computer data structures, street maps, telephone networks 

and the scheduling of tasks in a complex project.[ROS91]

In a theoretical aspect, graph labeling plays a major role in understanding and 

interpreting graphs. The bandwidth, pathwidth, treewidth and cutwidth problems are 

problems in which one must number, or label, the vertices of a given graph in order to 

optimize some parameter. This paper will concentrate on the cutwidth of graphs, which 

involves finding a labeling of the vertices of a graph so that the maximum number of edges
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between consecutive vertices is minimized.

1.2 General Graph Theory Definitions

The following set of definitions will be used throughout this paper. The actual 

picture we draw of a graph is called a graph diagram. A graph is called connected if we can 

get from any vertex to any other vertex by traveling along the edges of the graph. [TUC95]

Definition 1.1. A graph, G, is a structure with a set of vertices, V, and a set of edges, E, 

which join pairs of distinct vertices.

Let G = (V, E) be denote the graph with vertex set V, |Vj =  n. and edge set E. 

For example, let Ai be a graph with 11 vertices and 12 edges,see Figure 1.1.

Figure 1.1: Ai

This paper will be restricted to simple graphs. That is, we do not allow our graphs 

to have more than one edge connecting two vertices, ie, multiple edges. Further, an edge 

cannot “loop” so that both ends terminate at the same vertex. All graphs in this project 

are simple graphs. For example, the graph shown in Figure 1.2 is not part of this project 

because it has a loop and multiple edges.[FS96]

Definition 1.2. A path is a sequence of edges where successive edges share a vertex.

Definition 1.3. A labeling of a graph, G — (y ,E ) with |Vj =  n, is a bijection f  : V  

{1 ,... , n}, which can be regarded as an embedding of G onto a path Pn .
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Figure 1.2: Graph with loop and multiple edges

A possible labeling for A i is shown below in Figure 1.3:

Figure 1.3: A i with a labeling

Definition 1.4. The degree of vertex = x, denoted deg (x), is the number of edges incident 

to the vertex.

For example, in Figure 1.3, the vertex of highest degree is d because it has 7 

incident edges. So, in A i, deg(d) =  7.

Definition 1.5. A subgraph is a graph formed by a subset of vertices and edges of a graph.

In Figure 1.4 we have a subgraph of Ai, call it A \.

1.3 C utwidth

The cutwidth problem is one of several types of graph labeling problems studied 

in combinatorics. In general, a graph labeling problem is concerned with finding an optimal
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AA
Figure 1.4: A\

way to label the vertices of a graph. [TUC95]

Definition 1.6. For a given labeling f  ofG , the cutwidth o fG  with respect to f  is

<G, f )  = ^ <n \u v E E :  f(u )  < i < / ( u ) | ,

which represents the congestion of the linear embedding.

Since a labeling f  of a graph G is a bijection, then f  is a one-to-one and onto 

function. So, each vertex on the domain graph G has a corresponding vertex on the range 

graph, or linear embedding of G. Similarly, each edge has a corresponding path.

For example, in the linear embedding of Aj the c (A i,/) — 6, where f  is the 

labeling from Figure 1.3. The linear embedding can be seen in Figure 1.5.

Figure 1.5: Linear Embedding of Ai

To get a better understanding of cutwidth we introduce the following. A vertex 1 

is adjacent to 2 when there is an edge from 1 to 2. We also say that neighboring vertices are
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vertices that are listed or drawn next to each other on the linear embedding of a graph G, 

whether they are connected by an edge or not. For example, in Figure 1.5, vertices 2 and 

3 are both adjacent and neighbor vertices. This is because they are both connected by an 

edge and are also drawn next to each other on the linear embedding. Vertices 2 and 9 are 

adjacent vertices because of the edge that connects them, but they are not neighbor vertices 

since they are not drawn next to each other on the linear embedding of A i . Vertices 8 and 

9 are neighbor vertices on the linear embedding, but they are not adjacent because there 

does not exist and edge from vertex 8 to vertex 9. The cut of a graph is given between 

any neighboring vertices. The cutwidth of a graph with respect to a particular labeling, f ,  

is the maximum cut. The cutwidth of a graph is the minimum of the cutwidths over all 

numberings. More precisely the cutwidth of a graph is defined below.

Definition 1.7. The cutwidth ofG , c(G), is defined by

c(G) = f nc(G, f f i

where the minimum is taken over all labelings f .

A labeling f  attaining the above minimum value is called an optimal labeling. 

The labeling of A i, or any graph, is not unique. By changing the labeling of the

vertices of a graph, we may change the cutwidth. We can relabel Ai, as shown in Figure 

1.6, to obtain a minimum value for the cutwidth. Let g represent the new labeling.

Figure 1.7 shows the linear embedding of Ai under the new relabeling, g. Using 

this figure we clearly see that c(Ai ,g) = 4 .

1.4 C utwidth Critical

In this project we will are looking for graphs that are 4-cutwidth critical. Before 

we look at those properties, let’s look at the general case of what it means for a graph to
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Figure 1.6: Ai relabeled

Figure 1.7: Linear embedding of A i after relabeling

be k — cutwidth critical. First, the following definitions are required.

Definition 1.8. A graph G' is a subdivision ofG  if  they can both be obtained from the same 

graph by inserting new vertices of degree 2.

For example, in Figure 1.8 we have a graph G and two subdivisions, say G' and 

G".

Definition 1.9. A graph G is said to be k — cutwidth critical if:

1. c(G) = k;

2. for every proper subgraph G' of G, c(G') < k;

3. G is homeomorphically minimal, that is, G is not a subdivision of any simple graph.
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G

G' G’

Figure 1.8: G and two subdivisions

When we show that a graph is k — cutwidth critical, we need to satisfy all three 

properties. For the first property, we will need to show that a graph has a cutwidth of k. 

For the second property we will need to show that any proper subgraph has a cut strictly 

less than k. Recall, that a subgraph is formed by a subset of vertices and edges of a given 

graph. For example, Figure 1.9 shows A i and a proper subgraph, say A'x.

Figure 1.9: Graphs A i and a proper subgraph A^

It is understood that a proper subgraph is just a proper subset of vertices or 

edges of a larger graph. So, we can remove several edges and vertices to obtain any proper 

subgraph. When verifying the second property of k — cutwidth critical it suffices to show the 

case of removing just one edge because removing multiple edges is a subgraph of removing
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one edge.

Note that it is possible to remove an edge without removing a vertex, as shown in 

Figure 1.10. This will still result in a proper subgraph, but this type of subgraph does not

effect the cutwidth.

Figure 1.10: Removing edges but vertex remains

And last, for the third property we will need to show that a graph is homeomor- 

phically minimal. Using Definition 1.8, a graph is homeomorphically minimal if it is not a 

subdivision of any simple graph.

So, a graph is homeomorphically minimal if it does not contain an unnecessary 

vertex of degree 2. For example, Ai is not homeomorphically minimal, since deg(10) =  2, 

see Figure 1.11. Removing the vertex does not change the structure of the graph.

Figure 1.11: Removing vertex 10 from Ai

One thing we must be careful with is to make sure we do not change the structure
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of the graph when removing the degree 2 vertex. For example, in A i, deg(3)=2. However, 

if We remove vertex 3, then we get multiple edges, as shown in Figure 1.12.

We cannot get multiple edges because we want our graphs to remain simple. So, 

vertex 3 is necessary and vertex 10 is not.

1.5 Sum mary of 3-cutwidth critical graphs

This is a summary of the 3-cutwidth critical graphs that were characterized in the 

journal article “On 3-cutwidth critical graphs” by Yixun Lin and Aifeng Yang [LY04]. In 

the article, they concluded that the set of five graphs, denoted as 7?i, ffa, ^3 , and 

in Figure 1.12, are the only 3-cutwidth critical graphs. They did so by first proving 

four lemmas, then summarized their findings in a theorem. For example, the first lemma 

(Lemma 3.1 pg. 343) states, “A tree T  is 3-cutwidth critical if and only if T  is either Hi 

or H2” ■ The diagrams of all 3-cutwidth critical graphs are shown below in Figure 1.13, the

numbers on the vertices of each graph represent an optimal labeling.

From this article we have several basic properties that will be used in the project. 

One is the following proposition:

Proposition 1.10. 1. I f  G' is a subgraph ofG , then c(G') <  c(G).
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Figure 1.13: 3-cutwidth critical graphs

2. I f  G' is homeomorphic to G,(i.e, they can both be obtained from the same graph by 

inserting new vertices of degree two into its edges, called a subdivision of the graph), 

then the c(G1') = c(Gf)

This proposition is useful because we can look at the cutwidths of subgraphs, 

which can be easier. It is easier because we are in a sense minimizing the the number of 

graphs in our investigation. The following is another proposition that we used in several 

proofs.

Proposition 1.11. For any caterpillar T, c(T) = \deg(T')/‘2'\. In particular, c(K^n) =

For example, Hi is a star of degree 5. It is also denoted as Ah ,5, since the maximum 

degree is 5 and the edges all come from a vertex. By Proposition 1.11, is the next

integer larger than the degree of Hi divided by two, ie, the cfH i) = ["5/2"| =  3. This is 

because when we put the vertex of highest degree in the center of the linear embedding,



11

the edges get split two ways, otherwise the cut will not be minimal. We shall use this 

proposition in the proof of one of our 4-cutwidth critical trees, Fi.

The end result, appearing on page 345[LY04], which we find the most useful, is 

stated below.

Theorem 1.12. All 3-cutwidth critical graphs are H i, H2, H3, H±, and H$.

This theorem is useful because in the start of this investigation, we used H i, H2, 

H3, and H$ to find 4-cutwidth critical graphs.
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Chapter 2

Methods Used To Find 4-Cutwidth 
Critical Graphs

In this project, we consider graphs that satisfy the following properties.

D efinition 2.1. A graph G is said to be A: — cutwidth critical if:

1. c(G) = 4;

2. for every proper subgraph G' ofG , c(G>') < 4;

3. G is homeomorphically minimal, that is, G is not a subdivision of any simple graph.

There were five 3-cutwidth critical graphs that were characterized in [LY04], The 

five specified elements are the only graphs that are 3-cutwidth critical, by Theorem 1.12. 

This fact was very useful in finding 4-cutwidth critical graphs in several ways. All diagrams 

of the graphs mentioned in the remainder of the paper can be found in the appendix. Also, 

in the following sections the methods are outlined, the proofs show up later in the text.

2.1 M ethod 1

One can naturally assume that we should be able to attach edges to a graph that 

is 3-cutwidth critical and end up with something that is cutwidth 4. The first graph we
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looked at was Hi, which is also denoted as K i^ .

We can add two edges at vertex 4 to get Fi or K i j ,  shown below in Figure 2.1.

Note that deg(4) =  5, which is the maximum degree of Hi.

Figure 2.1: Using Hi to get Fi

As a result Fi a 4-cutwidth critical graph, which is verified in Chapter 3. We can 

again apply a similar step to H i to get F2, the difference is the type of edges we attach, 

see Figure 2.2. But again, we must be careful of where we attach the edges. The maximum 

degree for H2 is 3, but this occurs in 3 places. We must attach the edges at vertex 6, 

otherwise we would not get a 4-cutwidth critical graph.

h2 f2

Figure 2.2: Using H2 to get F2

Similarly, we use II3 to get Fjo, H& to get F n, and we use H$ to get F15 and Fig.

(See figures in the Appendix).
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2.2 M ethod 2

The second method we used was to take the 3-cutwidth critical graphs and attach 

them to the ends of K  1,3, see Figure 2.3.

For example, Hi is 3-cutwidth critical. We can attach Hi to the ends of K i^  to 

get F3. By ends we mean attach at the pendant vertices. The diagrams are shown in Figure

2.4.

Figure 2.4: Using Hi to get F3

This method requires extra precaution. We must be careful when attaching edges 

to K 1j3 because we could end up with a graph that is not homeomorphically minimal. In 

Figure 2.5 we show Hi attached to We can see that the vertices labeled a, b and c

are of degree 2. These vertices do not effect the cutwidth of the graph. If we left them then 

we would not have a graph that is homeomorphically minimal. So, in F3 the unnecessary 

vertices are removed, which is also shown in Figure 2.5.
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Figure 2.5: H\ attached to

Not only do we have to be careful when attaching the 3-cutwidth critical graphs 

to K i’3, we must also look at the different ways we can attach them. We get F4 from H2 

and F7 from H4 in the same way we got F3. However, when we use H3 and H5 we get 

more than one 4-cutwidth critical graph. For example we get F5 and Fq from H3, and F% 

and Fq, from H&. The difference between F$ and Fq is that when we attached them to 

K it3 we attached different parts of H3. For example, we attached a vertex from one of the 

cycles to get F5, shown in Figure 2.6. For Fq we attached one of the vertices that is not 

part of a cycle, shown in Figure 2.7. Similar to the case of getting F3, we needed to remove 

unnecessary vertices for Fq. In both cases we ended up with two 4-cutwidth critical graphs, 

Fq and Fq, from H3.

This method of attaching a 3-cutwidth critical graphs more than one way to get a 

4-cutwidth critical graph can also be done with H5. As shown in Figures 2.8 and 2.9, using 

Hq we get Fq and Fg, which are both 4-cutwidth critical.

2.3 M ethod 3

In this section we shall discuss a method used to find the rest of our graphs. It is 

in a sense a combination of the previous two methods. After methods 1 and 2, we had a set 

of 4-cutwidth critical graphs. We decided to look at the graphs we had and simply checked
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Figure 2.6: H% attached to K-^3 to get F5

Figure 2.7: H3 attached to to get Fq

to see if there was something we can change about them that would result in another 4- 

cutwidth critical graph, which is similar to what we did in Method 1. The first graph we 

found was F12, see Figure 2.10.

This graph came from Fa- We looked at the linear embedding of F a  and replaced 

the edges at the ends of each triangle by a cycle, which can be seen in Figure 2.11.

The next thing we looked at was taking a combination of F a  and F12 to get a 

4-cutwidth critical graph. For example, instead of replacing all the edges at the ends of 

each triangle, we replaced just one. We can also replace just two of the edges. The result
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Figure 2.8: Hz attached to to get Fq

Figure 2.9: Hz attached to to get Fq

is two more 4-cutwidth critical graphs shown in Figure 2.12.

We then continued taking combinations of graphs, but this time we used the same 

idea as in Method 2. The graphs shown in Figure 2.13 have a couple of things in common. 

One is that they are all 4-cutwidth critical and the other is that they all contain JCi,3.

We took combinations of these 4-cutwidth critical graphs to obtain more. Since 

these graphs all contain K i ;3, we can interchange or exchange the attachments. For example, 

in Figure 2.14, we interchange the ’’ends” of on F7 and F3. The resulting graphs are

4-cutwidth critical.
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Figure 2.10: F12

Figure 2.11: Using F n  to get F12

Similarly, we can take combinations of all the graphs shown in Figure 2.13. In 

the previous example, we took combinations of just two graphs, but we can also take 

combinations of three graphs. In Figure 2.15, we show several examples of the resulting 

4-cutwidth critical graphs.

2.4 M ethod 4

The graphs in this section were not found using any of the previous methods. 

Although they are the last graphs mentioned, they were not the last ones found. When 

I started the project, I simply started to play around with graphs so that I can become 

familiar with finding their cutwidth. These 4-cutwidth critical graphs were discovered by 

trial and error and are shown in Figure 2.16.



19

Figure 2.13: All 4-cutwidth critical graphs that contain K^t3



20

Figure 2.14: 4-cutwidth critical graphs from F7 and F3

Figure 2.15: Combinations of 4-cutwidth critical graphs



Figure 2.16: More 4-cutwidth critical graphs
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Chapter 3

4-Cutwidth Critical Trees

A particular type of graph that we see a lot of in this project is trees.

Definition 3.1. A graph is a tree if it is a connected graph with no circuits, where a circuit 

is a simple closed path.

Since a tree cannot have a circuit, a tree cannot contain multiple edges or a loop. 

So, any tree must be a simple graph. Here we will prove that the trees we have, Fi, F2, 

F3, and F4 shown in Figure 3.1, are indeed 4-cutwidth critical. These graphs can be seen 

in Figure 3.1. We begin with the proof of Fi.

Lemma 3.2. F\ is 4-cutwidth critical.

Proof. We will need to show the Fj satisfies all three properties of 4-cutwidth critical graphs.

1. The first property states that Fi must have a cutwidth of 4. Fi is a star, K i j .  By 

Proposition 1.11, c(Fi) =  c ^ i j )  =  [7/2] = 4. Thus the c(Fi) =  4, as desired.

2. The next property we will satisfy is that every proper subgraph of F2 has a cutwidth 

strictly less than four. It suffices to consider the case of removing one edge. Without 

loss of generality, we may remove (4,5), which results in the proper subgraph, F[, 

shown in Figure 3.2.
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Figure 3.1: 4-cutwidth critical trees

Figure 3.2: F[
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F[ is homeomorphic to a star of degree 6. So, by Proposition 1.11, c (F f  =  c(Afy6) =  

["6/2] = 3 . Therefore, any proper subgraph of F\ has cutwidth strictly less than 4.

3. Now, we know that Fi satisfies the third property of being homeomorphically minimal 

because it does not contain a vertex of degree 2.

All three properties are satisfied, therefore, F± is 4-cutwidth critical. □

The format of the proofs for F?, F3, and F± are similar to each other, so we will 

show the proof of one tree, F2. This proof is more interesting than the proof of F\ because 

we can not use Proposition 1.11.

Lemma 3.3. F2 is 4-cutwidth critical.

Proof. We will show F2 satisfies all three properties of a 4-cutwidth critical graph.

1. The first property we will verify is that cfFf) = 4. Denote the vertex of degree 5 in 

by x, and denote its neighbors by a, b, c, d and e. In addition, let al and a2 be 

adjacent to a, 61 and 62 be adjacent to 6; similarly for c, d and e. Now, F2 has the

following labeling, shown in Figure 3.3:

Recall that f  is a labeling of G is a bijection f  : V  —> { 1 ,2 ,... ,n}, so the following 

is a set of natural numbers. Let x  be the median of {/(#), f(a ) , f ( b f  f(c), f(d), /(e)}
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such that the maximum {/(o),/(6 )}  < f (x )  < minimum { /(c ) ,/(d ) ,/(e )} . Let /(c) 

be the vertice adjacent to f(x ) .  Now, there are two cases to consider:

Case (i): I f /(c i)  < /(c) < /(C2) then the cut of F2 at [ci, c] is given by {cci, xc, xd, xe} 

as shown in Figure 3.4:

This shows that the maximum size of all the cuts is 4, when /(c l)  < /(c) < /(c2).

Case(ii): If /(c ) < /(c l)  < / (c2), then the cut of F2 at [ci, c] is given by {cci, xc, xd, xe} 

as shown in Figure 3.5:

Figure 3.5: Linear Embedding of F2 (case (ii))

Again we have that the cut of F2 is 4. So, in either case, when x  is the median, the 

cut cannot be < 4.

Now, if x  is not the median of F2, then the cut of F2 > 4. Therefore, c(F2)=4.
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2. Next we will show that any proper subgraph of F2 has a cutwidth < 4. There are also 

two cases we need to consider, since any other subgraphs of F2 will be subgraphs of 

the following:

Case (i): We can remove an edge coming from the center, ie, (2, 7), (5, 7), (9, 7), (12, 

7) or (15, 7) to obtain a proper subgraph of F2. Without loss of generality, we can 

remove (12, 7). We now have a subgraph, F ^  shown in Figure 3.6.

Figure 3.6: F%

Then the c(Fg) is given by the following linear embedding, shown in Figure 3.7.

Figure 3.7: Linear Embedding of Fj

This shows c(F£) < 3.

Case (ii): We can also remove a “dangling edge” to get a proper subgraph. A “dangling 

edge” is an edge connected to a pendant vertex. So removing one of the following 

edges, (1, 2), (2, 3), (4, 5), (5, 6), (8, 9), (9, 10), (11,12), (12 ,13), (14, 15) or (15, 16),
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results in a proper subgraph of F2. Without loss of generality we may remove (8, 9). 

We now have the following subgraph, F^' in Figure 3.8.

Figure 3.8: Fg

The c(F2) is given by the linear embedding shown in Figure 3.9.

Figure 3.9: Linear Embedding of F^

This shows c^F^) <  3. So, any proper subgraph of F2 has a cutwidth of at most 3, 

which is strictly less than 4.

3. We know that F2 is homeomorphically minimal because it does not contain a vertex 

of degree 2.

The three properties are satisfied, therefore, F2 is 4-cutwidth critical.

□
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Chapter 4

Proving graphs are 4-cutwidth 
critical

In this chapter we will show a few proofs of our other 4-cutwidth critical graphs. 

The proofs are similar in that we must show that the graphs satisfy all three conditions of 

a 4-cutwidth critical graph. The first proof we will show is of F\q. This proof is slightly 

different than the ones previously mentioned because Fio contains one cycle. We will also 

show a proof of Fis- We decided to show the proof of because it contains more than 

one cycle with shared edges. It is also different because we verify the second property of 

cutwidth critical by using a 3-cutwidth critical graph.(See Appendix for graphs)

Lemma 4.1. Fio is ^.-cutwidth critical.

Proof. We will show that Fio satisfies all three conditions of 4-cutwidth critical graphs.

1. The first property we will verify is that the c(Fio) =  4. The labeling of Fio asserts 

c(Fio) <  4. We will show that we cannot get a cut less than 4. Denote the vertex 

of degree six by x  and denote its neighbors by a, b, c, d, y, and z, where , x, y, z, 

forms the cycle (triangle). In addition, let oj and 02 be adjacent to a; let 61 and 62 

be adjacent to b and similarly for c and d (See Figure 4.1).
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Figure 4.1: Fio relabeled

For a labeling f  of Fw, if /(a;) is not the median of

/ ( a ) , / ( 6 ) , / ( i / ) , / ( c ) , t h e n  it is clear that c(F10, / )  >  4. Let x  be

the median of { f(x ) ,f{a ') ,f(b ') ,f(y ) ,f(z ) ,f(c ) ,f(d ')} , then there are two cases to 

consider.

Case (i): Let max { /(a ) ,/(b ) ,/(y )}  <  f(x )  < min { f(z ) , f(c), A  linear em­

bedding is shown in Figure 4.2. In this case the cutwidth is given by {xz, xc, xd, yz}. 

So, c(F iq, / )  >4.

Figure 4.2: Linear Embedding of Fio, (case (i))

Case (ii): Let /(a )  <  /(b) < /(c) < f (x )  < f(y )  < f ( z )  < /(d ). Let i  =  /(c). If 

max{/(ci),/(C2)} >  i, say /(c i)  > i, then {ax, bx, ex, c, c%} give the cutwidth of F ^ . 

Otherwise, /(c j)  and /(C2) < i then {ax, bx, cci, CC2} give the cutwidth of Fio- Both 

linear embeddings are shown in Figure 4.3. So, c(F io ,/) > 4.
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Figure 4.3: Linear Embedding of Fio, (case (ii))

We have shown that the c(Fio) > 4 when x  is the median. Therefore, c(F10) — 4.

2. Now that we have shown the c(Fio) =  4, the next property we will verify is that every 

proper subgraph has cutwidth strictly less than 4. There are four cases to consider, 

since any other subgraphs of Fio will be subgraphs of the following:

Case (i): First we consider removing a “dangling edge”, where a dangling edge is an 

edge connected to a pendant vertex. So, removing one of the following edges: (ai, a), 

(a.2, a)> (bi, b), (&2,6), (ci, c)> (c2, c), (di, d) and (e^, d) results in a proper subgraph of 

Fio- Without loss of generality, we can remove (ci,e). We now have the subgraph, 

F/o, shown in Figure 4.4. Now, c(F110) is given by the linear embedding, also shown 

in Figure 4.4.

Case (ii): Next we consider the case of removing an edge from the center, but that 

is not part of the cycle, to obtain a proper subgraph. We can remove either (a, x ), 

(b, x), (c, x), or (d, x). Without loss of generality, we may remove (a, x). We now have 

the following subgraph, shown in Figure 4.5. Then c(Ff0) is given by the linear
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Figure 4. 4: n  and Linear Embedding, (case (i))

embedding, also in Figure 4.5. This shows ^ F J q) < 3.

Figure 4.5: Fp0 and Linear Embedding, (case (ii))

Case (iii): Here we remove an edge coming from the center, but is part of the cycle. 

So, we can remove (y,x) or (z,x). Say we reomve (z,x). Then we have the following 

proper subgraph, Ffg, shown in Figure 4.6. Then c(F30) is given by the following 

linear embedding, shown in Figure 4.7. Note that we again have to rearrange the 

labeling to obtain the cutwidth. This shows c(F130) < 3.

Case (iv): In the final case, we only need to consider removing the edge of the cycle 

that is not from the center, ie, remove (y,z). Which results in the subgraph, F^o, 

shown in Figure 4.8. The linear embedding of F^o is shown in Figure 4.9. This shows 

<Wo) — 3-

In all four cases, every proper subgraph has a cutwidth strictly less than 4. Therefore,

the second condition is satisfied.
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Figure 4.6: F 30(case (iii))

Figure 4.7: Linear Embedding of Ff0, (case (iii))

3. We know that Fw is homeomorphically minimal because it does not contain an un­

necessary vertex of degree 2.

The three condtions are satisfied, therefore, Fio is 4-cutwidth critical.

□

Lemma 4.2. Fis is 4-cutwidth critical.

Proof. For the proof we need to show Fi8 satisfies all three properties of a 4-cutwidth critical 

graph.

1. The first condition we will satisfy is that c(Fis) — 4. The cut of four is given because 

there are four paths between vertices a and b. Each path will contribute to cutwidth 

on the linear embedding. So, c(Fis) =  4.
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Figure 4.8: F^0(case (iv))

Figure 4.9: F^o and the Linear Embedding of F^o, (case (iv))

2. The next property we will verify is that every proper subgraph has cutwidth strictly 

less than 4. There are only two cases to consider, since any other subgraphs of F^s 

will be subgraphs of the following:

Case(i): We can remove (a, b) to obtain FIs shown in Figure 4.11. F(8 is homeomor- 

phic to H$. By Theorem 1.12 and Proposition 1.10, c(F(8) =  c(H5) =  3.

Case (ii): In this case we can remove any of the other edges to obtain a proper 

subgraph. Without loss of generality, remove (a, x), to obtain -̂ 18, shown in Figure 

4.12 along with the corresponding linear embedding.

So, the cutwidth of every proper subgraph of Fis is strictly less than 4, as desired.

3. We know F i8 is homeomorphically minimal because if the vertex of degree two is
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Figure 4.11: F^g and the Linear Embedding of F"8

removed, then we will have overlapping edges and we are not allowed overlapping 

edges between the same pair of vertices.

The three conditions are satisfied, therefore, Fis is 4-cutwidth critical. □
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Chapter 5

Family of 4-cutwidth critical 
graphs

This chapter brings us to a special type of 4-cutwidth critical graphs. Here we 

show that there exist an infinite family. First, the following definitions and lemma are 

required.

D efinition 5.1. A cycle is a sequence of consecutively linked edges whose starting vertex is 

the ending vertex and in which no edge can appear more than once.

Definition 5.2. A graph is connected if we can get from any vertex to any other vertex by 

traveling along the edges of the graph. The opposite of connected is disconnected.

The following lemma asserts that the cut of any cycle is 2.

Note: A cycle is a connected graph.

Definition 5.3. Let Ci denote the cyclic graph with i vetices, where 3 < i <  oo.

Figure 5.1 contains figures with examples of Ci, where i=3,4,5 and Cj, where 

3 <  j , j  +  1 < i  -  1.

Using the above definition, we can prove the following lemma.
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5 6

Figure 5.1: Examples of Ci

Lemma 5.4. c(Ci) = 2, for all j , j  +  1, where 1 <  j, j  +  1 <  i — 1.

Proof. We need to show that the clCf) = 2 between all neighbors on the linear embedding.

The labeling of Ci asserts that Ci < 2. Now We need to show that c(Cf) can not 

be less than 2.

Assume, by way of contradiction, c(Cf) = 1.

If the c(Cj) =  1, removing an edge, ie, breaking the cycle, results in a disconnected 

graph. It does not matter whether we remove the edge from the ends of the linear embedding 

or anywhere in the center. It will still result in a disconnected graph. This contradicts our 

assumption because we started with a cycle. In a cycle we can remove an edge and still have 

a connected graph. So, c(Cj) 1. Which clearly asserts that the c(Cj) =  2 everywhere.

Therefore, c(C'i) =  2, Vi where, 3< i < oo. □

The following is a definition of our 4-cutwidth critical family.

Definition 5.5. Let Zi, where 1 < i < oo, denote a graph with two edge disjoint cycles, ie,
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they share vertices but do not share edges. The “small” cycle is denoted by black vertices, 

the “big” cycle contains black and white vertices.

Example of graphs that belong to this family are shown in Figure 5.2. We shall 

use Z2 as an example in the context of the proof.

Figure 5.2: Family of 4-cutwidth critical graphs

Theorem  5.6. Z$ is 4-cutwidth critical.

Proof. We need to show Zi satisfies the three conditions of 4-cutwidth critical.

1. First we will show c(Zf) =  4, Vi, where 1< i < 00.

Zi is defined to have two edge independent cycles. Any linear embedding of Zj will 

have a region containing edges from both cycles, which is forced because they share 

vertices, but do not share an edge. For example in the linear embedding of Z2, is 

shown in Figure 5.3. Each of these edge independent cycles contribute a cut of 2,

from Lemma 5.4.
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Therefore, c(Zj) =  4, Vi, where 1< i < oo.

2. Next we will show that any proper subgraph has cutwidth <  4.

Let I, k  be any vertices of Z$, where edge (Z, k')E Zi, Vi, where 1< i < oo. Any proper 

subgraph of Zi, say Z^, is obtained by removing at least one edge, ie, (Z,A:)  ̂ Zi. 

Removing an edge will break one of the cycles. Consider a linear embedding of Z[, 

where we put I, k at ends, then c(Z()= 3.

For example, in Zi we can remove an edge from the ’’big” cycle, say (1,8), to get a 

subgraph, Z' .̂ In the linear embedding of Z'2 we get a cutwidth of 3. This can be seen 

in Figure 5.4.

Figure 5.4: Z'2 and the linear embedding of Z'2

We can also remove an edge from the “small” cycle, say (6,8) to get a subgraph, Z%. 

In the linear embedding of Zj we also get a cut of 3. But we had to put vertices 6 

and 8 at the ends, as shown in Figure 5.5.
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3

Figure 5.5: Z% and the linear embedding of Z'^

Thus, c(Z') <  4, Vi, where Vi, where 1< i <  oo.

3. Show Zi is homeomorphically minimal, Vi, where 1< i < oo.

Assume Zi is not homeomorphically minimal. If a graph is not homeomorphically 

minimal then we should be able to remove a vertex of degree 2 and not change the 

graph. Zi contains vertices of degree 2. Removing a degree 2 vertex from Zi results 

in multiple edges, which is not allowed since we are investigating simple graphs. In 

Z21 we can remove vertex 3, but then we have two edges connecting vertices 2 and 4, 

as shown in Figure 5.6.

Figure 5.6: Removing a vertex of degree 2

Thus, Zi is homeomorphically minimal, Vi, where 1< i < oo.

Zi satisfies the three conditions of 4-cutwidth critical. Therefore, Zi is 4-cutwidth 

critical, Vi, where 1< i < oo.

□
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Chapter 6

Conclusion

In conclusion, we have found infinitely many 4-cutwidth critical graphs. However, 

there are several that are finite in their type of classification. For example, there are only 

four 4-cutwidth critical trees. These can be found in Appendix A and are denoted as Fi, 

F2, F3 and F4.

We also have 4-cutwidth critical graphs that only contain one cycles, but the cycles 

do not share edges. These graphs are denoted F5, Fq, Ft, Fio and F n.

Fs, F9, -F15, and Fis are all 4-cutwidth critical graphs that contain two cycle, but
/

the cycles share one edge. F13 also contains two cycles, but they only share a vertex. There 

were very few graphs that contained three cycles. F14, has three cycles that share a vertex. 

F n  and F13 also have three cycles, but the have a common vertex and edges.

It still remains to be shown that these are indeed the only 4-cutwidth critical 

graphs. But if someone decides to further investigate k-cutwidth critical graphs, the meth­

ods previously mentioned can be used. For example, if we were to look for a 5-cutwidth 

critical graph, we can use method 1 and simply attach two edges at the vertex of highest 

degree. This would result in K1.9. By Proposition 1.11, this is a 5-cutwidth critical graph.
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Appendix A

4-cutwidth critical graphs



Figure A.2: 4-cutwidth critical graphs with one cycle
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Figure A.3: 4-cutwidth critical graphs with multiple cycles that do not share edges

6

Fa

4
1 4

Figure A.4: 4-cutwidth critical graphs with multiple cycles that share edges
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Figure A.5: Combinations of 4-cutwidth critical graphs

3

Figure A.6: Family of 4-cutwidth critical graphs
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