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ABSTRACT

Algebra and algebraic thinking have been cornerstones 

of problem solving in many different cultures over time. 

Since ancient times, algebra has been used and developed in 

cultures around the world, and has undergone quite a bit of 

transformation. This paper is intended as a professional 

developmental tool to help secondary algebra teachers 

understand the concepts underlying the algorithms we use, 

how these algorithms developed, and why they work. It 

uses a historical perspective to highlight many of the 

concepts underlying modern equation solving. The paper 

includes suggestions of some ways to use historical 

approaches to not only enhance an algebra course, but to 

help students improve algebraic thinking and understand the 

deep-rooted connections between algebra and geometry. In 

addition, it will provide resources and references for 

those teachers wishing to explore the topic further.
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CHAPTER ONE

INTRODUCTION

Project Overview

Humans developed computations for several reasons.

The need to track business transactions and the need to 

keep track of time were two primary purposes for the 

evolution of calculations. Humans used mathematical 

calculations for a variety of practical applications. The 

need to be able to keep count of animals in a herd, 

exchange money, deal with property issues, and keep a 

calendar in order to know when to plant crops are just a 

few such applications.

Over time humans began to develop increasingly 

sophisticated methods for calculations. Ancient Egyptians 

employed the method of false position to solve applied 

problems in which the variables vary directly. They used a
)

simple technique involving proportional reasoning to find 

the unknown variable. Evidence of this can be found in 

Egyptian scrolls such as the Rhind Papyrus and the Moscow 

Papyrus, dated as far back as 1650 BC. This technique for 

equation-solving marks one of the earliest records of 

algebra.
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Algebra got its name from the Arabic word al-jabr 

employed in the title of a book written in Baghdad in 825 

AD by Mohammed ibn-Musa Al-Khwarizmi. Loosely translated, 

the title of his book Hisab al-jabr w'al-mugabalah means 

"the science of transposition and cancellation." Early 

algebra focused on equations and solution techniques. It 

developed over a period of approximately 3500 years. 

Beginning in 1700 BC, there is evidence of the development 

of symbolic notation and methodical equation solving. 

Modern algebra has expanded into abstract topics including 

groups, rings, and fields. The history of mathematics 

allows us to trace the evolution of algebra and provides a 

means by which we can make connections between concrete and 

abstract algebraic ideas.

Although much of the ancient history of mathematics 

has been lost, the earliest evidence of algebraic thinking 

appears to come from Babylonia. Cuneiform clay tablets 

dating back to King Hammurabi in 1700 BC show evidence of 

calculations with the area and perimeter of a rectangle. 

The tablets demonstrate that it is possible to calculate 

the length and width of a rectangle given its area and 

perimeter. The method used here involves a parameter which 

is used to describe each of the unknowns. This method of 
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introducing a third unknown as a parameter differs 

significantly from the methods of substitution or 

elimination that are taught in contemporary algebra 

classes.

Much of our knowledge regarding equation-solving 

begins with the ancient Babylonians. The method of "false- 

position" is one of the earliest means by which people 

solved linear equations (Berlinghoff & Gouvea, 2004). This 

method bears similarities to the "guess-and-check" method 

taught in many beginning algebra classes. The method of 

"false position" employs a clever application of 

proportional reasoning. However, this method can be used 

only on equations involving variables that vary directly 

with each other. The method of false position was extended 

to that of "double false position" (Berlinghoff & Gouvea, 

2004). This method also relied on proportional reasoning, 

but could be applied to systems of two linear equations 

with two unknowns. Variations of this method existed in 

other cultures over time. For example, the Chinese method 

of surplus and deficit is essentially the same as double 

false position. The Babylonians also employed a variation 

of the method.
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Mohammed ibn-Musa Al-Khwarizml moved beyond linear 

equations and into solving quadratic equations. He divided 

quadratic equations into six types. He then devised a 

method for solving each type, including familiar ideas like 

completing the square. Girolamo Cardano (~1545 AD) spent 

many years of his life investigating cubic equations. 

After many years of struggle and family turmoil, Cardano 

established a method to solve the general cubic

0 = ax3 + bx2 +cx + d

and the many variations of depressed cubics in his book Ars 

Magna.

Although solution algorithms for linear, quadratic, 

and cubic equations have evolved over time, the underlying 

concepts are similar to what they were in the beginning. 

One of the most interesting and beneficial applications of 

having a historical perspective to mathematics is to help 

both students and teachers understand why certain 

algorithms work, discover how those algorithms might be 

derived, and identify their underlying concepts.
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Literature Review

Numerous texts trace the history of mathematics. Many 

of these texts present an overview of mathematical 

developments. A few will select a main idea, and 

investigate it thoroughly. However, it is difficult to 

find a source that specifically traces the development of 

equation solving and its applications to the secondary 

classroom.

Math through the Ages (Berlinghoff & Gouvea, 2004) is 

an excellent book from which to learn the history of some 

key mathematical ideas. The text focuses on a few main 

ideas, and expands upon them. Specifically, it provides 

interesting stories and histories on people. However, it 

does not show most of the actual work that was needed to 

derive the formulae and ideas presented. On the other 

hand, Journey through Genius (Dunham, 1990) provides many 

of the proofs and derivations of formulae in addition to 

interesting background information. However in this book, 

the focus of each chapter is a specific theorem, rather 

than the evolution of a mathematical idea. Swetz's (1994) 

From Five Fingers to Infinity provides a broader range of 

topics of historical mathematics. Swetz de-emphasizes 

individuals, and presents the materials by geographic 
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location and time. For instance, one chapter is specific 

to the evolution of mathematics in ancient China. This 

presentation style is quite valuable in getting such a 

large amount of information across. However, it lacks the 

interesting personal stories present in books such as Math 

through the Ages and Journey through Genius that can 

motivate the reader to investigate a topic further. The 

Historical Roots of Elementary Mathematics (Bunt, Jones, & 

Bedient, 1976) is very similar in style and information to 

Math through the Ages. Both books present information in 

short chapters specific to a main idea (e.g. Greek 

numeration systems). In addition, both books cover a wide 

range of topics that are broken down by date. However, The 

Historical Roots of Elementary Mathematics does not delve 

into the stories describing the people behind the 

discoveries. The four volume collection The World of 

Mathematics (Newman, 1956) consists of individual articles 

compiled together in an effort to convey the "...diversity, 

the utility and the beauty of mathematics" (Newman, iii). 

Newman attempted to show the richness and range of 

mathematics. This collection spans ideas from the Rhind 

Papyrus to the "Statistics of Deadly Quarrels" (Newman, p 

1254). The World of Mathematics presents an amazingly 
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broad view of the many applications of mathematics to the 

sciences. An Introduction to the History of Math (Eves, 

1956) covers the same topics as several of the other books, 

in much the same manner. It traces the development of 

mathematics from numeration systems through to the 

development of calculus. It includes specific information 

of the individuals that developed many of the critical 

ideas in the history of mathematics. Boyer's (1968) A 

History of Mathematics is almost entirely about Greek 

mathematics. It covers ancient Greek mathematics to a 

degree that none of the other mentioned texts do.

Perhaps one of the most valuable tools for a secondary 

teacher available is Historical Topics for the Mathematics 

Classroom (National Council for Teachers of Mathematics, 

1989). This text consists of a series of "capsules" (short 

chapters). Each capsule gives a brief historical overview 

of a particular topic (e.g. Napier's Rods). The capsules 

are grouped by general topic (algebra, geometry, 

trigonometry, etc.). Specifically, this text provides a 

historical context to graphical approaches to equation

solving. In addition, it provides a concise overview of 

the methods employed to solve quadratics and cubics. The 
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people that developed these methods are named, though 

little is said about their personal history.

The many texts available on the history of mathematics 

all attempt to convey an enormous amount of information in 

different ways. Some briefly describe many of the 

contributions that people have made to mathematics. Others 

describe the contributions of a culture, paying less 

attention to individuals (thereby allowing more time for 

the derivations of formulae). Although many texts include 

the evolution of equation solving in their exposition, such 

material is often spread throughout the text. In addition, 

most texts are not geared specifically for secondary 

teachers. I believe my project will complement this body 

of knowledge. As opposed to covering the breadth of 

mathematics, I will focus on equation solving in a way that 

will connect to the secondary classroom. My intention is to 

provide a source that can help secondary teachers 

understand where their textbook formulae came from and to 

familiarize teachers with some of the people and stories 

that contributed to the development of the mathematics we 

use today. I would like to demonstrate that the problem 

solving techniques for equations that are used in the 

secondary high school curriculum today did not simply fall
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from the sky! Rather, modern methods for solving equations 

took time, dedication and effort to evolve.

It is critical for teachers to understand the history 

behind their topic in order for them to make educated 

decisions regarding the manner and order of the 

presentation of material. These decisions impact students' 

motivation and curiosity, which in turn impacts the amount 

of information they absorb in a meaningful manner. 

Understanding the history of the evolution of equation 

solving will help teachers make decisions on how to present 

information to their students in the secondary school.
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CHAPTER TWO
' LINEAR EQUATION-SOLVING

Historical Overview

Humans have been solving linear equations for 

centuries. Linear equations arise naturally when applying 

mathematics to the real world (Berlinghoff & Gouvea, 2004). 

The Rhind Papyrus was written by the scribe Ahmes in 

approximately 1650 BC. This document gives evidence of 

Ancient Egyptian linear word problems and their solutions. 

The solutions to these problems are not derived in a manner 

that most mathematics students would recognize today. The 

following algorithm is often taught in a one year algebra 

course: 1) label a variable 2) write an equation 3) perform 

the "order of operations" in reverse in order to isolate 

the variable. However, in Ancient Egypt, scribes used the 

method of "false position." First, the scribe would 

"posit" (guess) a possible solution to the word problem. 

This guess was usually some convenient value to work with 

and need not be anywhere near the correct solution. He 

would then determine the result yielded by his guess. If 

he did not guess the correct solution, he would calculate 

the ratio he would need to multiply his incorrect result by
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in order to attain the correct result. He would then 

multiply the original guess by that ratio.

Proportional reasoning played a key role in the method 

of false position. Problem 26 from the Rhind Papyrus 

illustrates this idea well. "Find a quantity such that 

when it is added to one quarter of itself, the result is 

15." The solution using typical modern algorithms would 

begin by defining a variable to represent the unknown 

quantity. A common choice for this variable is x. Then, the 

problem may be represented algebraically by the equation

1x + — x - 15 .
4

So, by combining like terms, the equation becomes

— x = 15
4

Multiplying both sides of the equation by four fifths 

yields

x = 15- —
5 .

Thus, the unknown quantity is 12.

Compare this with the solution using the method of 

"false position." Make a convenient guess. A convenient 

guess for this example would be some multiple of 4. Let 

11



the guess, G, be 16. Calculate the result using this guess 

in the problem statement: When the quantity of 16 is added 

to one quarter of itself (i.e. 4) the result is 20. The 

symbolic representation of this statement is

16 + ^(16) = 16 + 4 = 20

The proportion by which this result should be multiplied in 

order to get the correct solution of 15 is fifteen

twentieths :

20----
20

Now multiply the original guess by this proportion:

16 —
20

Thus, the unknown quantity is 12.

In general, the algorithm for the solution to a linear 

equation using false position can be demonstrated as 

follows. Note that this method works only if the variable 

is directly related to the result. Therefore, for 

illustrative purposes, first let the word problem be 

represented by the linear equation

Mx = N .
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Remember that this algebraic shorthand would not have been 

employed at the time.

1. Make a guess, G. Typically, M could be represented 

by a ratio and this guess would be a multiple of the 

denominator of M . However, any guess will do.

2. Calculate the result with the guess: M-G

3. If MG is not equal to the desired result N, then

G is not the correct solution. The proportion by 

which MG should be multiplied to achieve the

Ndesired result N is given by ---. Indeed, we see
MG

N
MG--------= N .

MG

4. Multiply the original guess by this proportion to 

find the correct solution:

r N N

MG M

Using modern notation, it is clear that this is the correct 

solution to the equation

Mx = N .

The calculations provided above should indicate why this 

method will work for all linear equations where there is a 

13



direct proportional relationship between the input and the 

output.

We can illustrate the underlying concept of

proportions geometrically with similar triangles.

Figure 1. False Position Using Similar Triangles

Consider the line y =Mx . We are looking for the x- 

coordinate corresponding to the y-coordinate N. We guess an 

x-coordinate and find the corresponding y coordinate on the 

line. The point (G,MG) lies on the line y = Mx . Thus, it 

becomes possible to create similar right triangles, using

14



the proportionality of corresponding legs to obtain

G _ x
MG~^‘

So x must be given by

MG ’

The idea of applying ratios to solve mathematical 

problems was not unique to the ancient Egyptians. Chinese 

scholars produced the text The Nine Chapters on the 

Mathematical Art. This text was edited by Liu Hui in 236 

A.D., though the time of its origin is still in question 

(Berlinghoff & Gouvea, 2004). It seems to have originated 

sometime between 1100 B.C. and 100 B.C. "Proportionality 

seems to have been a central idea for these early Chinese 

mathematicians, both in geometry (e.g. similar triangles) 

and in algebra (e.g. solving problems by using 

proportions)" (Berlinghoff & Gouvea, 2004). The original 

text contains problems and solutions, as did the Rhind 

Papyrus, but Liu Hui added commentary and justifications 

for the solutions.

Proportionality was the main concept applied by 

ancient scholars when solving linear equations, 
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particularly in the method of false position. Variations 

on the method of false position were employed for more 

complex linear equations. One such method is that of 

"double false position." This method will give solutions 

for problems that can be represented by the (modern) 

equation Mx + B = N, and solutions for problems that can be 

represented by systems of two equations and two unknowns. 

This method was so effective, that mathematicians continued 

to use it even after the advent of the algebraic notation 

that provided the means to efficiently write equations 

(Berlinghoff & Gouvea, 2004). In addition, one of the 

current benefits to using the method of "double false 

position" is that many students have trouble writing an 

algebraic equation from a word problem. However, most can 

substitute values in to see if they work. This method ties 

in to what is currently called "guess and check," which 

can be an intermediate step in going from a word problem to 

an equation.

The method of double false positions follows a format 

similar to that of false position, however, the method 

requires two guesses. Given a problem that can be 

represented in the form Mx + B = N. Begin by making a guess, 

16



Gx, for the solution. Calculate the result and compare it 

to N . If it is not the correct solution, calculate the 

magnitude of the difference, E1, between the result and N .1 

Now, make a second guess, G2 . If it is not the correct 

solution, calculate the magnitude of difference,/^, between 

the result and N. In order to find the correct solution, 

use both guesses and errors in the following way:

1 Mathematicians did not generally acknowledge the use of 
negative numbers until the 17th century AD, hence only 
positive errors would be considered.

If both guesses yield either underestimates (less than the 

result desired) or overestimates (greater than the result 

desired), then the formula to find the solution is given 

by:

Ex -G2 -E2 • G1
x = —5iL .

Ex — E2

If one guess yields an underestimate (less than the result 

desired) and the other guess yields an overestimate, 

(greater than the result desired), then the formula to find 

the solution is given by:

E, -G2+E2- G,
x = —1L .A +e2

17



The latter formula is used as a means to avoid dealing with 

negative numbers (Berlinghoff, 2005, p 123) .

It is possible to display these general solutions 

geometrically with similar triangles. In the figure below, 

the correct solution, x, yields the correct result in the 

linear relationship y=mx+b. Both guesses are overestimates 

(and could similarly have been underestimates).

overestimate 

overestimate 
correct result

Figure 2. Double False Position Using Similar Triangles 
(Different Types)

18



Triangles ABC and ADE are similar because all of their 

angles are congruent. Each of the following values can be 

derived from this diagram:

DE = the difference between the correct result and the 

first guess = error 1= Ex

BC = the difference between the correct result and the 

second guess = error 2= E2

AD = Q-x

AB = G2-x

Thus, the proportion

■^1 _ -^2

Gj - x G2-x

can be created.

Simplification of this proportion yields the familiar 

equation

x _ ^2^1 ~ E1&2

E\ —E2

In Figure 3 the correct solution, x, yields the correct 

result in the linear relationship y=mx+b. The first guess 

is an overestimate, while the second is an underestimate.

19



Figure 3. Double False Position Using Similar Triangles 
(Same Types)

Triangles ABC and CDE are similar because all of their 

angles are congruent. Each of the following values can be 

derived from this diagram:

DE = the difference between the correct result and the 

first guess = error 1 = £j

BC = the difference between the correct result and the 

second guess = error 2 = E2

BD = Gj-x

20



AB = x-G2

Thus,

^2 _ A
x - G2 Gx—x

Simplification of this proportion yields

x _ -^2^1 + Efii 
Ei + E2

Analytic geometry provides another way of interpreting this 

solution algorithm in modern terms. If these pieces of 

data were viewed as points, the correct solution could be 

found using the concept of slope. Let (x^yj be the first 

guess and its result. Let (x2,y2) be the second guess and 

its result. Finally, let (x,y) be the correct solution and 

its result. These three points are collinear, as the 

solutions are found by performing the same linear 

operations on each of the guesses. In particular, they 

each lie on the line with slope M and y-intercept B. Since 

the first guess (x^yj and the correct solution (x,y) lie on 

the same line,

X-X[

21



Since the second guess (x2,y2) and the correct solution (x,y)

lie on the same line,

x-x2

Since each of these ratios is equal to the same constant,

then

y-y, y-y2
X - Xj x - x2

This equation can be simplified in an effort to solve for x,

the correct solution. 4

y-yr y-y2
X - Xj x - x2

Multiplying both sides by (x-x2)(x-Xj) yields

(y-yi)(x-x2) = (y-y2)(x~xx).

Distributing gives

x(T-Ti)-^2(T-yi)=^(j-T2)-xi(T-j'2) •

By regrouping the terms it follows that

xl(y-y2)-x2(y-y1) = x(y-y2)-x(y-yi).

Isolating x provides

Finally, rewrite the equation to find

22



In terms of the original guesses and their errors, the 

final result can be represented as follows

Ex • G7 — E2 ■ G,
x— ——  -—- .

Ei ~ E2

The ancient scholars that developed this method used the 

concept of proportionality to derive their solutions, since 

in linear equations the change in the output is 

proportional to the change in the input (Berlinghoff & 

Gouvea, 2004, pl24). This method is similar to the method 

of "surplus and deficiency" found in the ancient Chinese 

texts. However, this Chinese method employed the use of 

one overestimate (surplus) and one underestimate 

(deficiency).

Babylonian sources illustrate another variation of 

false position in the solution of linear equations. In 

some ways the method provides a connection between "false 

position" and "double false position." The method involves 

making one guess (as in false position), but also 

calculating the result if the guess were increased by one 

unit (tin essence, making a second fixed guess) . In this 

Babylonian variation of false position the solver makes a 
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guess, finds the result, and then calculates the error.

Then, the guess is increased by one unit, and the 

difference in the amount of error is observed. Finally, 

the proportion by which the change in the error would need 

to be multiplied in order to decrease the original error to 

zero is calculated. The solution is now obtained by adding 

this proportion to the original guess.

Figure 4 depicts a line (y = mx + b). The unknown is the 

correct x-coordinate that yields the desired result (To). 

Each increase by one on the x axis results in an increase 

by the amount of the slope on the y axis. Remember that 

slope is calculated by "rise over run." In this variation 

of false position, the "run" will always be one. Thus, to 

reach the desired result, the question is to find out how 

many "slopes" need to be added to go from the original 

guess to the correct solution.

24



Figure 4. The Babylonian Variation on False Position

These methods of solving linear equations would not be 

familiar to most secondary school students today. However, 

with a little time and effort, students would learn to 

appreciate where the algorithms that are used today came 

from. These methods would reinforce and give a deeper 

understanding of proportional reasoning concepts underlying 

modern algorithms. These methods and their geometrical 

interpretations might also be introduced into the 

curriculum for students that are struggling with the modern 
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algorithms, as alternative ways to solve and visualize the 

solutions of linear equations.

Applications to the Classroom

Here is an example of a problem that the Ancient

Egyptians solved using the method of false position in 

approximately 1650 BC. Each of the problems below will 

contain both the historical and modern approaches to the 

solution.

Problem 1: From The Rhind Papyrus.2

2Berlinghoff, W.& Gouvea, F. (2004). Math through the 
Ages. Farmington, ME: Oxton House Publishers.

A quantity; its half and its third are added to it.

It becomes 10.

The Solution: Using current algorithms.

Let x be the unknown quantity.

Writing the' word problem as an equation using the 

variable x would yield

1 1 mx + —x + —x = 10.
2 3

Combining like terms gives

—x = 10.
6
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Multiplying both sides by the reciprocal of —

isolates x in

Simplifying leads to

Thus the unknown quantity is

The Solution: Using "False Position."

Make a guess (using a number that will work easily 

with the denominators 2 and 3):

G = 6

Calculate the result using the guess. Substituting 

the guess into the problem yields

«+|(«)+|(6) •

This simplifies to

6 + 3 + 2 = 11 .

Calculate the ratio by which 11 would be multiplied to

get the correct result of 10

11-— = 10 .
11
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Multiplying the original guess by this ratio leads to

Thus, the correct solution is — = 5—.
11 11

Here is another example that can be solved using the method 

of "false position."

Problem 2: From The Rhind Papyrus (Problem 26) .3

When a quantity is added to one-fourth of itself the 

result is 15.

The Solution: Using current algorithms.

Let x be the quantity. Then, writing an equation to 

represent the word problem gives
1 1C

x + — x = 15 .
4

Combining like terms leads to

—x = 15 .
4

3 Katz, V. (1998) . A History of Mathematics: An 
Introduction. Reading, MA: Addison-Wesley Educational 
Publishers, Inc.
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Multiplying both sides by the reciprocal of — results

in

x = 15- — .
5

Thus, the unknown quantity is 12.

The Solution: Using "false position."

Make a convenient guess (using a number that is a 

multiple of the denominator 4):

G = 8 .

Calculate the result using the guess. Substituting 

the guess into the problem yields a problem statement: 

When the quantity eight is added to one-fourth of 

itself (i.e. 2) the result is 10. This statement can 

be represented as

8+|(8)-

This simplifies to

8 + 2 = 10 .

Calculate the ratio by which 10 would be multiplied to 

get the correct result of 15

10— = 15 .
10
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Multiplying the original guess by this ratio leads to

8-—.
10

120Thus, the correct solution is -- = 12.
10

Here is an example of "double false position" from the 

early 1800's.

Problem 3: From Daboil's Schoolmaster's Assistant.4

4Berlinghoff, W. & Gouvea, F. (2004). Math through the 
Ages. Farmington, ME: Oxton House Publishers.

A purse of 100 dollars is to be divided among four men

A,B,C, and D, so that B may have four more dollars 

than A, and C eight more dollars than B, and D twice 

as many as C; what is each one's share of the money?

The solution: Using current algorithms.

Let A receive x dollars. Then B receives x+4, C 

receives x+4+8, and D receives 2(x+4+8). Then, writing 

an equation to represent the word problem gives

x + (x + 4) + (x + 4 + 8) + (2 (x + 4 + 8)) = 100 .

Combining like terms leads to

5x + 40 = 100 .
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Subtracting 40 from both sides yields

5x - 60 .

Multiplying both sides by the reciprocal of 5 results 

in

x = 60 • — .
5

Thus A received $12, B received $16, C received $24, 

and D received $48.

The Solution: Using "Double False Position."

Make a guess of how much money A receives:

G,=6

Calculate the result using this guess:

6 + (6 + 4) + (6 + 4+8) + (2(6+4 + 8)) = 70 .

This is an underestimate by 30. So, the error (El) is

30.

Make a second guess: G2=8

Calculate the result using this guess:

8 + (8 + 4) + (8 + 4 + 8) + (2(8 + 4 + 8)) = 80 .

This is an underestimate by 20. So, the error (E2) is 

20.
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Since the two errors are the same type (both

underestimates), use the formula for double false 

position that is appropriate:

E, • G2— E2 • G,The solution=—-— -- -—L .
Ei — E2

Substitution yields

30-8-20-6The solution=-------- .
30-20

Simplifying leads to

, n ■ 120The solution=-- .
10

So, the solution is 12.

Thus A received $12, B received $16, C received $24, 

and D received $48.

An example using the Chinese method of "surplus and 

deficiency."

Problem 4: From Jiuzhang (Problem 17) .5

The price of 1 acre of good land is 300 pieces of 

gold; the price of 7 acres of bad land is 500. One

5 Katz, V. (1998) . A History of Mathematics: An 
Introduction. Reading, MA: Addison-Wesley Educational 
Publishers, Inc.
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has purchased altogether 100 acres; the price was 

10,000. How much good land was bought and how much 

bad?

The Solution: Using current algorithms.

Let the amount of good land be x acres. Let the amount 

of bad land be y acres. The price of x acres of good 

land is:

300
x acres'— gold pieces per acre = 300xgold pieces.

The price of y acres of bad land is:

500 . 500 i a ■y acres—— gold pieces per acre = -y-y gold pieces.

The total cost would then be

300x + 500- — .
7

Thus, the following system of equations can be 

developed

x + y = 100

300x +500-— = 10000.
7

Solving the first equation for one variable leads to

x = 100-y .

Substituting this equation into the second equation 

gives
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300(100-y) + 500-y = 10000 .

Distributing achieves

30000-300y + ^y = 10000 .

Combining like terms leads to

20000 = ^300-—\ .
I 7 /

This can be simplified to

20000 = ^^-y .
7

Finally, multiplying both sides by the reciprocal of

1600—-— provides

20000-------
1600

Thus, the solution for y is

1600

Substituting this value back into the first equation

(after having solved it for x) yields

x = 100-y = 100-87.5 = 12.5 .

Thus, the amount of good land is 12.5 acres and the

amount of bad land is 87.5 acres.
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The Solution: Using the Chinese method of "surplus and 

deficiency."

Begin by making a guess for the amount of good land: 

G} = 5.

Calculate the amount of bad land:

y = 100-5 = 95 .

Now calculate the yield based on the amounts of land: 

500-^ = ^.
7 7

This is an underestimate by 12000
7

a "deficiency." Now

make a guess that might give an overestimate, a

"surplus."

G2 =20 .

Calculate the amount of bad land:

y = 100-20 = 80 .

Now calculate the yield based on the amounts of land

300(20)+500-^ = ^0 .

This is an overestimate by 12000
7

a "surplus."

Thus, to solve the problem, use the formula

EXG2 + E2GX

Ex+E2
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Substitution yields

Thus, there are 12.5

acres of bad land.

Here is an example of a

Babylonian variation of

Problem 5: From the VAT

<1200

= 12.5 .

acres of good land, and 87.5

problem that was solved using the

"false position."

8389 (Problem 76) . 6

Ej +E2

2One of two fields yields — sila

yields sila per sar (sila and

per sar, the second

sar are measures for

capacity and area, respectively). The yield of the 

first field was 500 sila more than that of the second;

the areas of the two fields were together 1800 sar.

How large is each field?

The Solution: Using current algorithms.

Let the first field have an area of x sar. Let the

second field have an area of y sar. Then, x and y need

6Katz, V.(1998). A History of Mathematics: An 
Introduction. Reading, MA: Addison-Wesley Educational 
Publishers, Inc.
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to satisfy the following system of equations

x + y = 1800

-x--y = 500.
3 2

Solving the first equation for one variable leads to

x = 1800-y .

Substituting this equation into the second equation 

gives

Distributing achieves

1200-—y- —y = 500 . 
3 2

Combining like terms and simplifying leads to

700 =—y .
6

Finally, multiplying both sides by the reciprocal of

provides
ex

 I o

700-— = y .
7

Thus, the y is 600.

Substituting this value back into the first equation

(after having solved it for x) yields

x = 1800-y = 1800-600 = 1200 .
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Thus, the first field was 1200 sar, and the second 

field was 600 sar.

The Solution: Using the Babylonian variation on "false 

position."

Make a guess: Let the first field be 900 sar.

Calculate what the second field must have based on the 

fixed amount of their sum. Since their sum is 1800 

sar, the second field must be 900 sar. Calculating the 

difference in their yields results in

150 .

Calculate the error in the result:

500-150 = 350 .

Increasing the guess for the first field by one unit 

in turn decreases the guess for the second field by 

one unit, and calculating the resulting difference in 

the yield gives

Distributing leads to

2 2 1 1 
—-900 + —-1-—-900 + —-1 .
3 3 2 2
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Grouping the terms results in

—-900-—-9Ool + f—-1 + —-1^1 .
.3 2 ) U 2 )

Factoring the result gives

900 r2
5

Thus, increasing the guess by one unit has increased 

the resulting yield by

2 £_7
3 2~6 '

Finally, in order to achieve the correct result, 

divide the original error by this proportion to find 

out how many sar the original guess needs to be 

increased:

350h-—= 350-—= 300 .
6 7

Thus, the original guess must be increased by 300 sar.

The first field was 1200 sar, and the second was 600 

sar.

To create problems that can be solved with the methods 

of false position and double false position, fill in the 

blanks and change the pertinent information in the 

following templates.
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False Position

An unknown quantity is added to its ____ (half, third,

etc.). It becomes ____ (total amount). What is the

unknown quantity?

Figure 5. Template for False Position

Double False Position

An unknown quantity ____ (type) is added to another

unknown quantity ____ (type), and the result is ____

(constant). ____ (proportion) of the first quantity

together with ____ (proportion) of the second quantity

results in ____ (constant). What are the two

quantities?

Figure 6. Template for Double False Position
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CHAPTER THREE

QUADRATIC EQUATION-SOLVING 

Historical Overview

In 1766 a successor of Islamic prophet Muhammed, 

caliph al-Mansur, founded Baghdad, a new capital of his 

empire. When the initial impulses of Islamic orthodoxy 

gave way to a more tolerant atmosphere, Baghdad soon became 

a commercial and intellectual center (Katz, 1998). Over 

the next 200 years, the succeeding caliphs set up a world- 

renowned library, which included manuscripts from Athens 

and Alexandria, and a research institute, the Bayt al- 

Hikma. By the end of the ninth century, the most 

influential and famous historical mathematical texts had 

been translated into Arabic and were being studied in 

Baghdad. The Islamic scholars studied the works of Euclid, 

Archimedes, Apollonius, Diophantus, Ptolemy, along with 

Babylonian and Hindu works.

One of the earliest Islamic algebra texts was written 

by Mohammed ibn-Musa Al-Khwarizmi in 825 AD (Katz, 1998). 

Within the book itself, and within the title Al-kitab al- 

muhtsar fl hisab al-jabr wa-l-muqabala, Al-Khwarizmi used 

the term "al-jabr", which would evolve into the word 
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algebra. Al-Khwarizmi noted that what people generally- 

wanted was a solution to an equation. His book was a 

manual for solving equations. Specifically, Al-Khwarizmi 

dealt with three types of quantities: the square of the 

unknown, the root of the square (the unknown), and numbers 

(constants). Since the Islamic mathematicians did not deal 

with negative numbers, coefficients and roots of equations 

needed to be positive. The modern term "square root" is 

the same idea that Al-Khwarizmi refers to as a "root." The 

term "square root" refers to the side length of a square. 

The side length is the "root" (the origin) of the square.

root= side length

Figure 7. The "Square Root"

Given a square of area A, the "root" of the square would be 

the length of one of its sides. For example, the root of a
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square of area 9 would be 3. The root of a square of area

2 would be yfl (the "square root" of 2) .

One current method of solving quadratic equations

involves putting all of the terms on one side of the

equation, so that the other side would be zero. This lends

itself to factoring and using the zero product property, or

using the Quadratic Formula (which is just a method of

finding roots so that an equation can be factored).

However, these methods require the use of negative

coefficients in order to attain real solutions. The.

Islamic mathematicians did not accept the use of negative

coefficients/ and thus developed methods to solve quadratic

equations while keeping the coefficients, and solutions,

positive. This led to six types of equations that can be

written using the quantities "squares," "roots," and

"numbers."

1) Squares equal to roots: ax^ =bx

2) Squares equal to numbers: ax^ =c

3) Roots equal to numbers: bx=c

4) Squares and roots equal to numbers: ax^+bx=c

5) Squares and numbers equal to roots: ca^+c = bx

6) Roots and numbers equal to squares: bx + c = ax^
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Solutions to the first three types of equations could 

be achieved via elementary methods. What follows are 

illustrations of how types 1-3 might be solved using 

familiar methods and notation.

One current method that could be used to solve Al- 

Khwarizmi's first type of quadratic equation, ax2 = bx, is 

fairly brief. First, divide both sides by of the equation 

x. This can be done because of the assumption that x^O. The 

solution to Type 1 yields only one solution, as Al- 

Khwarizmi did not allow zero as a solution. Dividing 

provides

ax2 _ bx

x x

Simplify, and then divide both sides by a,

ax _b

a a

Thus, the solution is

b
x = — .

a

The solution method to the second type of Al- 

Khwarizmi's equations, ax2=crls similar. First, divide
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both sides of the equation by ar to yield

ax2 _ c

a a

The next step is to find the length of the side of a square

cwith area —, that is the "root" of the square. In modern or

terms, this refers to taking the square root.

Take the square root of both sides

Thus the solution is

(Remember that Al-Khwarizmi would have only acknowledged 

positive solutions.) This type of equation could also be 

solved using "false position," as described earlier.

Al-Khwarizmi's third type of equation would not 

currently be called a quadratic, as the square term is 

missing. Therefore, the solution can be found using 

methods that apply to linear equations. The solution to the 

equation bx = c can be found by dividing both sides of the
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equation by b,

bx _c 
~b~b'

Thus, the solution is

c
x = — .

b

The process of obtaining the solution to Al- 

Khwarizmi's fourth type of equation is more complex than 

the first three types. Fortunately, it has a geometric 

derivation that aids in understanding the algebraic 

solution. The equation would take the form ax2+bx = c. 

Assume a = 1 for the sake of simplicity. If a were a number 

other than one, begin by dividing every term by the value 

of a . So we consider the equation x2+bx = c. Represent each 

term on the left side of this equation geometrically. The 

term x2 can be represented by a square with side length x, 

and the term bx can be represented by a rectangle with 

sides of lengths x and b . Create a rectangle from these 

two figures as shown in Figure 8. Then this new rectangle 

must have area equal to c in order to satisfy the equation.
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x2 +hx = c

ABCD is a square with side length x

ED is a side length representing b

ADEF is a rectangle with area bx

Figure 8. Type 4 Diagram

In an effort to create a square out of this rectangle, so 

that we can determine the square's "root," first divide the 

rectangle ADEF in half through the midpoints of AF and DE. 

Then attach one of these halves to the top of the square, 

as shown in Figure 9.
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Figure 9. Type 4 Gnomon
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This creates a shape which is sometimes called a gnomon (a 

square missing a square). In order to create a complete

bsquare with side length x + —, Tt is necessary to "complete

the square." 

This creates Note that boththe equation x + —
2

= C +
I 2j

equations are different ways to represent the area of the

square KJCG. (Remember that the sum of the areas of
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rectangles HADG and IJBA together with square ABCD was

equal to

possible

c in the original diagram.) It now becomes 

to view the area as the square with side length

the sum

figures

Alternatively,

of the areas of

ABCD, IJBA, and

this

ABCD,

ADGH

new figure can be viewed as

IJBA, ADGH, and KHAI. Since

sum to c, the total area is

the solution becomes clear before

the algebraic solution appears. The solution, x, is the

length of the side of the new large square KJCG minus the 

blength of the side of square IAHK, that is —.

Algebraically, after obtaining the

the next step would be to take the square root of both

sides in an attempt to isolate This leads tox.

Considering only positive roots gives
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Hence

This expression represents the length of the side of the 

new square KJCG minus the square IAHK. Negative solutions 

were disregarded in this derivation since Al-Khwarizmi 

derived his solutions geometrically, so the solution was a 

length represented in a diagram.

The solution to Al-Khwarizmi's fifth type of equation 

begins in a similar fashion to the solution of the fourth 

type. The equation would take the form

x2 + c = bx

where the leading coefficient has again been given the 

value of one for the sake of simplicity. Take the case 

c>x2, then it becomes possible to represent this equation 

with the diagram shown in Figure 11.
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ax2 +c = bx

ABCD be a square with side length x

HADN be a rectangle with area c

NC is a side length representing b

HBCN is a rectangle with area bx

Figure 11. Type 5 Diagram

To create the desired figure, first construct the 

perpendicular bisector of BH and let its intersection with

BH be called G. Then construct a circle with radius AG 

centered at G (see Figure 12).
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Next, construct the intersection K between the circle and 

the perpendicular bisector of BH on the side outside of 

AHND. Use this segment to construct rectangle RLMH on the 

side HG (see Figure 13).
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Notice that RHNI is congruent to ABCD since RI = AD and RH

= BH-AB-AR. Observe that the concave hexagon LRGTNM is a 

gnomon with area equal to c. Thus, the solution x is equal
£

to the side length — minus the length MH. To calculate the

length of MH, begin by completing the square MKTN.
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Now, MKTN has area c + (/?G!)2 . Now MH is congruent to LR. The 

length of LR can be obtained by taking the square root of 

the square LKGR. The area of LKGR can be found by 

subtracting c (the area of AHNT) from the area of square

bMKTN, a square with side length — . So,

MH = LR =

Thus the solution, x, is
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The case 0<c<x2 yields a different geometric 

interpretation of Al-Khwarizmi's fifth type of equation. 

It yields a second positive solution. Figure 16 is 

similar to Figure 11, however the area, c, of AHND is 

assumed to be smaller than that of square ABCD.
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In an effort to create a gnomon, from which it will be 

possible to derive the value of x, proceed in a manner very 

similar to the previous case. The first step is to bisect 

segment NC at G and to construct a circle with radius 

length NG centered at N.

Figure 17. Type 5 Bisection

Next, construct perpendicular lines from where the circle 

intersects HN, and point G. Let I be the intersection of 

the circle with HN and construct the square GNIJ.
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Figure 18. Type 5 Gnomon

Construct a square with length DG off of DG.

Figure 19. Type 5 Completing the Square
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Now the diagram displays gnomon NDLKJI. Square IJGN is

b missing square LKGD. The solution, x, is equal to — plus

the side length DG (recall that the length NC is equal to 

b, and point G bisected NC). To calculate the area of 

square LKGD, begin by finding the area of square IJGN. 

Then subtract the area of HADN.

Area of LKGD= - c

Thus the side length DG is given by

Finally, the solution, x, is

Al-Khwarizmi found means to solve all the possible 

quadratic equations that could be written with positive 

coefficients and constants. An illustration of the 

solution method for the sixth and final type of Al- 

Khwarizmi' s equations can be found in the "Applications to 

the Classroom" section. At this point, Al-Khwarizmi still 

did not acknowledge the solutions to his equations to be 
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roots of equations. Thomas Harriot developed the idea that 

the solutions to quadratic equations were zeros of the 

equations. This non-geometric interpretation made it 

possible to consider negative solutions. It then became 

possible to create a formula that allowed the calculation 

of solutions to all quadratic equations, The Quadratic 

Formula.

Applications to the Classroom

There is a classic example that Al-Khwarizmi used to 

demonstrate his method of "completing the square." 

Problem 1: The Classic "Completing the Square" Problem.1

What must be the square which, when increased by ten 

of its own roots, amounts to thirty-nine?

The Solution: Using "Completing the Square" pictorially 

together with Al-Khwarizmi's verbal description.

You halve the number of roots, which in the present 

instance yields five.

This you multiply by itself; the product is twenty- 

five .

7 Katz, Victor (1998). A History of Mathematics: An
Introduction. Reading, MA: Addison-Wesley Educational 
Publisher, Inc.
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Add this to thirty-nine; the sum is sixty four.

Now take the root of this which is eight, and 

subtract from it half the number of roots, which is 

five; the remainder is three.

This is the root of the square which you sought for. 

(Katz, 1998, p355)

Students often run straight to the Quadratic Formula 

to solve quadratic equations, even when other alternatives 

are available. For instance, factoring and using the zero 

product property is often a more efficient method to find 

the solution(s). The decision to use the Quadratic Formula 

or another technique requires students to use critical 

thinking and analyzing skills. Like the Quadratic Formula, 

Al-Khwarizmi's method of Completing the Square also works 

on all quadratics, and when encouraged to use the method, 

teachers and students may find that it is often less 

complicated than the Quadratic Formula. Practice in 

comparing and employing various solution methods can help 

students develop such skills.

Problem 2: An Example Comparing the Quadratic Formula to 

Completing the Square.
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Find the root(s) of the equation

y = x2 + 8x + 2 .

The Solution: Using the Quadratic Formula.

For an equation of the form

ax2 + bx + c = 0 ,

the Quadratic Formula is

- b ± 2 - 4ac
x =-----------------------------.

2a

In order to find the solution(s) to the

y=0, substitute the values a = \, b = 8,and

Quadratic Formula to obtain

-8±V82-4-1--2 
x =---------------------------- .

2-1

Simplifying yields

-8±^64 + 8 
x =------------------- .

2

Combining terms beneath the square root

-S + y[T2. 
x =-------------- .

2

Which can be simplified to

-8±6a/2 
x —-------------- .

2

equation when

c = -2 into the

gives
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Factor the 2 out of the numerator to obtain

2(~4±3^)

2

After dividing by the common factor, the roots are

x = -4±3>/2 .

(Teachers may recognize this final step as one which 

students frequently make mistakes on.)

The Solution: Using "Completing the Square."

In order to find the roots, substitute zero for y to 

obtain

0 = x2 + 8x - 2 .

Completing the square interprets the terms as areas, 

so make all of the terms positive yields

x2 + 8x = 2 .

Here is the step-by-step process to find the roots of 

the equation.
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Step 1:

Diagram the areas.

E D C

F

8x

A

X2

(pictures not drawn to

scale)

Step 2:

Divide rectangle FADE in 

half through midpoints H 

and G. E G D C

F 1 H

Sx

A

X2

Figure 20a. The Steps to Solving an Example of Type 4

65



66



Step 6:

The new square has sides 

x + 4 and area 18. Thus, 

(x + 4)2 =18 . Taking the 

square root of each side 

yields x + 4 = ±V18, which can 

be simplified to x + 4 = ±3\/2. 

Thus, x = -4±3a/2 .

y = x2-10x + 45 .

G 4 D X C

K , *

■(■I®

I

< f
v"‘ .

WOSlBWISWiOil

lllii >*
4a • « ‘ ; '

OliiOW

The total area is 2+16

Figure 20c. The Steps to Solving an Example of Type 4

Once students become familiar with the diagramming and 

geometric concepts underlying the "completing the square" 

method, they will be able to apply the method to problems 

that do not lend themselves to geometric solutions. This 

includes problems that have negative coefficients, and 

those that have no real solution (i.e. complex solutions). 

Here is one such example.

Problem 3: Find the root(s) of the equation
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Solution: Using Completing the Square.

Substituting zero for y yields

0 = x2 -10x + 45 .

Rewriting the equation so that the variables are on 

one side, and the constant is on the other gives

-45 = x2 -lOx .

In order to create a perfect square from the terms 

x2-10x, it is necessary to divide the coefficient of x 

by two, and rewrite the problem as

-45 + ? = x2 - 5x - 5x + ? .

The equation, rewritten as a perfect square after 

adding 25 to both sides, becomes

-45 + 25 = (x-5)2 .

Simplifying leads to

-20 = (x-5)2 .

Taking the square root of each side, and simplifying 

when possible, yields

±2zV5 = x - 5 .

Thus, the roots are

x • 5 ± 2z’a/5 .
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One application to the classroom would be to ask 

students to find the geometric solution to the sixth type 

of Al-Khwarizml's equations. Begin by showing students the 

solutions to the first five types of equations, 

particularly Types 4 and 5. Ask the students to use a 

similar diagram to construct the geometric diagram that Al- 

Khwarizmi used to derive his solution to the Type 6 

equation. This problem is quite challenging, and may 

require the use of manipulatives.

Problem 4: Find the geometric representation to display and 

derive Al-Khwarizmi's solution to his sixth type of 

equation, bx + c = ax2 .

The Solution:

Begin by representing each of the parts of the problem 

geometrically. Rectangle ABHR represents area bx. 

Rectangle ABHR represents area c. Square ABCD 

represents x2 (allow the coefficient of x2 to be one 

for the sake of simplicity).
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ABHR is a rectangle with area c 

RD is a side length representing b

RHCD is a rectangle with area bx 

ABCD is a square with side length x

x BA

HR

x

CD

Figure 21. The Steps to Deriving Type 6

Begin by bisecting length HC at G and constructing a square 

off of HC.
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Figure 22. Type 6 Bisection

Now, the diagram, shows a square IHGJ with area Orf

Next, construct a square off of side BG with length BG.
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Now it becomes possible to see that rectangles AMNR 

and NIJL are congruent. Therefore the solution, x, is 

equal to the sum of length CG and GB. CG was
£

constructed to be — . To calculate BG, first find the
2

area of square BGLM.
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The area of BGLM is c+
^Y
<2,

Thus BG is

<2,

The solution, x, is then

There are questions of varying difficulty levels that 

teachers can pose to their students. Students could be 

asked to identify the gnomon in one of the figures of the

derivation. In addition, students could be asked to 

justify why particular steps of the derivation are allowed.

This includes verifying that pieces of figures are 

congruent or similar, and justifying what type of shape a 

figure might be (e.g. square).
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CHAPTER FOUR

CUBIC EQUATION-SOLVING

Historical Overview

Mathematician Fra Luca Pacioli noted that there was 

not yet a solution to the general cubic equation in his 

book Summa de Arithmetics in the year 1494 (Dunham, 1990). 

Specifically, Pacioli was of the opinion that finding a 

solution to the general cubic was as likely as squaring the
r

circle (Dunham, 1990)8. However, many mathematicians were 

working on this problem during the fifteenth and sixteenth 

centuries. Sciopine del Ferro took up the challenge to 

find the solution to the general cubic while teaching at 

the University of Bologna between 1500 and 1515 (Katz, 

1998). In fact, del Ferro did find a method for solving 

the cubic, but not to the general form. The general form 

of a cubic would now be written as

8 Recall that squaring a circle was once considered an 
extremely difficult task, and was later proven to be 
impossible. (For more information, see: Dunham, W. (1990). 
Journey through Genius. New York, NY: Penguin Books.)

ox3 + Z>x2 + ex + d = 0 .
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The solution method del Ferro found solved depressed 

cubics, those without a square term:

ax3 + ex+ d = 0 .

Curiously, his method of finding a solution was not 

publicized, but rather, was kept a secret. This secrecy 

was a function of the academic attitude at the time. The 

current trend in academia is for professors to publish new 

results as quickly and often as possible. However, in the 

sixteenth century, university professors were expected to 

challenge others, and to meet the challenges of others. 

Their professorial worth was on the line every time they 

took up a challenge, as was the security of their jobs. 

For this reason, del Ferro did not publish his results. 

Rather, he kept his breakthrough a secret shared with no 

one but his student Antonio Maria Fior, and his successor 

Annibale della Nave, whilst on his deathbed. Fior and Nave 

did not publicize the solution, but word spread that the 

solution to the cubic was known. Soon another 

mathematician named Niccolo Fontana (best known as 

"Tartaglia") boasted that he too knew the solution to the 

cubic.
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Fior publicly challenged Fontana in 1535. Each 

mathematician provided problems for the other to solve. 

For example, "A man sells a sapphire for 500 ducats, making 

a profit of the cube root of his capital. How much is that 

profit?" This problem could be written algebraically as 

x3 + x = 500 .

Tartaglia discovered the solution to this cubic problem, 

while Fior was unable to solve many of Tartaglia's non- 

cubic mathematical questions (Katz, 1998). For this 

reason, Tartaglia was declared the winner of the 

mathematical duel. His prize was 30 banquets prepared by 

Fior, which Tartaglia declined in favor of simply having 

the honor of being the victor (Katz, 1998).

Gerolamo Cardano, a mathematician giving public 

lectures on mathematics in Milan, heard about Tartaglia's 

solution to the cubic. After many entreaties, Tartaglia 

agreed to share his method with Cardano, provided that 

Cardano would not publish these methods. This is how 

Tartaglia solved the cubic x3+cx = d.

jWhen the cube and its things near

2Add to a new number, discrete,

3Determine two new numbers different
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4 By that one; this feat

5Will be kept as a rule

6Their product always equal, the same,

7To the cube of a third

sOf the number of things named.

9Then, generally speaking,

10The remaining amount

H0f the cube roots subtracted

12Will be your desired count.

(Katz, 1998, p359)

Line 1 refers to x3 (the cube) and ex (its things). In Line

2, Tartaglia is referring to creating the term x3+cx = d.

Let v and w be the two new numbers in Line 3. Let their

difference be represented by v-w-d in this line. Lines 6

Thus, Lines 9 through

12 say that Vv-Vw is the solution to the problem. This

can be checked by substituting this solution into the

original cubic x3+cx = d. This would initially give the
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expression

which should be equal to "d." Expanding this expression

leads to

Substituting v-w = d and gives

+ c^/v —ctfw

This can be simplified to

d - ctfv + c-Vw + cl/v — c\lw ,

which becomes "d." Thus, y/v-yfw is a solution to the 

equation x3+cx = d. The question then becomes how to find 

the values for v and w. This will be discussed in the 

geometric derivation that follows. Although this method is 

not the traditional method used to solve cubic equations, 

it has a stronger appeal in terms of applications to the 

classroom.

Cardano and his student, Lodovico Ferrari, continued 

working on solutions to the various forms of the cubic 

(where a variation of the 4 terms would be missing).
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Cardano investigated del Ferro's papers and found that he 

had discovered the solution to the cubic before Tartaglia.

Anxious to publish the solutions to the cubic, and not 

wanting to betray Tartaglia, Cardano used the fact that del 

Ferro had discovered the solution first to evade his 

promise of secrecy. Cardano published Ars Magna, sive de 

Regulis Algebraicis (The Great Art, On the Rules of 

Algebra) (Katz, 1998). Cardano's Formula (in modern 

notation) to solve the cubic x3+cx = d is

Before examining Cardano's method, it is interesting 

to note that both Niccolo Fontana and Gerolamo Cardano both 

led fascinating lives. Fontana was disfigured as a boy 

when a soldier slashed his face with a sword. The legend 

tells that he survived only because a dog licked his wound, 

causing it to heal (Dunham, 1990). Due to the serious 

injury to his face, Fontana had a speech impediment. His 

nickname became Tartaglia (The Stammerer), and he is best 

known by that nickname today (Dunham, 1990). Gerolamo 

Cardano was plagued by infirmities throughout his life 

(Dunham, 1990). He kept track of his many afflictions, and 
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left a detailed accounting of them in his autobiography. 

Cardano had a vision of a woman in white in a dream. When 

he later met a woman that he felt resembled that of his 

dream, he married her. When his wife died, leaving him 

with two sons and a daughter, Cardano was left to raise his 

children alone. He writes that disaster struck in the form 

of a "wild woman," whom his eldest son Giambattista married 

(Dunham, 1990). The couple soon produced a male child 

named Fazio. Unfortunately, the wife boasted that none of 

the children were Giambattista's. Giambattista prepared a 

cake laced with arsenic that killed his wife. He was 

subsequently convicted and beheaded. Cardano raised Fazio 

as a son, and the relationship thrived. Near the end of 

his life, Cardano was jailed for heresy against the Church 

of Italy for several issues, including writing a book 

titled In Praise of Nero. These two mathematicians of the 

16th century led fascinating lives, and their stories serve 

as a reminder that mathematicians are humans too.

Tartaglia and Cardano both played important roles in 

deriving the solution to cubic equations. Cubics of the 

form x3+cx = d are considered "depressed" because the square 

term is missing. Cubics that begin in the form x3+bx2 + cx = d 
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can all be rewritten as depressed cubics. In fact,

substituting

b
x = m —

3

(where b is the coefficient of the second degree term) 

results in a cubic in m with no square term. Substituting

this value for x yields

Simplifying leads to

3 , 2 b2 b3 ,2 2b2 b3 cb
m —bm H---m--------- \-bm-------- m-\------- \-cm------ =

3 27 39 3

Finally, by grouping the terms, the equation becomes

m3 +(~b + b)m2 +
2b2

3

The coefficients of the square term become zero, thus 

creating a cubic with no square term. This is a depressed 

cubic, for which it is possible to use Cardano's Formula. 

Hence, it is possible to find a solution to all cubic 

equations using Cardano's Formula. Keep in mind that all 

cubic graphs have at least one real root, as they are odd

functions. Quantitatively this means that the range of the 

graph will be all real numbers, guaranteeing hence that the 
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graph will have at least one real root. The Intermediate

Value Theorem (commonly covered in calculus) guarantees 

that there exists at least one real root. The Intermediate 

Value Theorem states that if f(x) is continuous on the 

interval [a,b], and k lies between f(a) and f(b), then /(x) 

will have value k for some value of x on the interval [a,b]. 

Essentially, the function cannot get from one point to the 

other without crossing horizontal line y = k .
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A geometric understanding for Cardano's solution to 

the cubic equation requires some three-dimensional 

diagrams. The following two-dimensional nets can be used 

to create the shapes necessary to see Cardano's solution.
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The Nets for the Cubic Derivation

u

NetC

u

,'NetCi ;

u

NetD i

u

NetD
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Each of these nets, when cut and folded along the lines 

provided, creates a three dimensional shape that will be 

used to construct the geometric derivation of Cardano's 

solution to the equation

x3 + ex = d .

Note that this geometric derivation ties together with 

Tartaglia's poem to find the solution of a cubic (discussed 

earlier). In fact, w3 (the small cube) corresponds to 

Tartalia's w3 . In addition, x3corresponds to Tartaglia's 

v3. Geometrically, this would refer to a cube and a 

rectangle added together to create "d." Let Figure 1 (blue 

cube) represent x3 . Then Figure 2 (red cube) is the cube 

that is missing after the pieces are put together represent 

m3 (the piece will not be put together with the rest). Two 

of Figure 3, the pink rectangular prisms representing 

ux(u + x), are necessary to complete the picture. Figure 4, 

the yellow prism represents x2u . Figure 5, the green 

rectangular prism represents xu2 . When all the figures are 

cut out and attached to each other (excluding Net B), they 

comprise a large cube with dimensions (x + w)3— u3 . Thus, the 

three dimensional shape implies that the large cube (which 
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is missing a small cube) is equal to the sum of its parts.

This shape is analogous to the quadratic "gnomon," and 

might therefore be named a "cubic gnomon."

(x + w)3 — w3 = x3 + 3x2w + 3xw2.

Factoring produces

(x + m)3 - u3 = x3 + xu[3(x + «)].

Regrouping the terms leads to

(x + u)3 — u3 = x3 + x[3m(x + w)].

This sum represents a cube and six rectangular prisms added 

together. In other words, this sum is the "d" in the 

original equation x3+cx = d. Thus, 3u(x + u), the rectangles, 

is the value "c" in the equation. Consequently, it is 

possible to write "d" as the original form from which 

x3 + x[3w(x + w)] was derived,

(x + w)3 - u3 .

Hence,

d = (x + u)3-u3 and c = 3w(x + w)

This implies that

c
x + u = — .

3u
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With substitution, it is possible to derive that

Cubing each term leads to

d = -C ^--u3
27u3

Multiplying both sides by w3 generates

c3 
d -u3 =-------u6

27

Writing an equation in terms of u leads to

— = u + du .
27

In an effort to write a quadratic in u3 , substitute y = u3

into the previous equation. This leads to

2 W C" 
y +dy = — 

27

The Quadratic Formula provides the solution

Notice that the negative solution is not included, as 

negative solutions were disregarded at the time. From 

which is follows that

d fj2
--- kJ--- 1--- .

2 V 4 27
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Taking the cube root of both sides leads to

Recall that originally d = (x + uf-u3. Solving the equation 

for x gives x = \d + u3-u. Substituting the derived values 

for "u" and "m3" provides

This leads to Cardano's solution for x

Applications to the Classroom

The cube root is analogous to the square root, which 

is described in Figure 1. The square root refers to the 

length of a side of a square with a desired area, while the 

cube root refers to the length of a side of a cube with a 

desired volume.

Although Cardano expanded on his Islamic predecessors 

by including the possibility of negative solutions, he was 

still not able to find all the possible solutions to cubic 

equations. Rafael Bombelli continued to expand on, and 
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refine, the work of Cardano. Bombelli wrote a book that 

contained a logical progression from linear to quadratic to 

cubic equations. He also included the idea that it seemed 

possible to take the square root of a negative number, 

something that is encountered when using Cardano's formula 

for some cubic equations. He used notation that was a 

stepping stone toward the notation currently used in 

algebra. For example, Bombelli began writing R.Sq. to 

represent the square root. Bombelli also noted that it was 

possible to take the cube root of numbers that were 

negatives. He noted that this required a,different set of 

rules for these new numbers, which he called "plus of plus" 

and "minus of minus" (Katz, 1998). In modern terms, 

Bombelli had begun working with imaginary numbers. 

Bombelli's promotion of the existence of imaginary numbers 

allowed the use of Cardano's Formula even when the sum 

beneath the root would be negative.

Problem 1: Use Cardano's Formula to solve a cubic equation.

89

Use Cardano's Formula to get one real solution of the 

equation x3+63x=316. Then, use this solution to find 

the remaining solutions to the equation.



The Solution:

Cardano's Formula gives

as the solution to equations of the form

x3 + ex = d .

Thus, substituting the values of c and d into Cardano's 

formula gives

^[316 |3162 633 J 316 I3162 633
H 2 J 4 +27 \ 2 + V 4 + 27 '

Simplifying this equation results in

x = V343 -V27 = 7-3 = 4 .

And so it follows that x-4 is a factor of the original' 

cubic. It is now possible to use long division or 

synthetic division to determine the quadratic by which 

x-4 would be multiplied in order to obtain the
1

original cubic. The division of x3+63x-316 by x-4 

results in x2+4x + 79. And so it follows (by the 

Quadratic Formula) that the remaining solutions of the 

original cubic are -2 + 5/V3 .
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In some problems, students will find themselves faced 

with the issue of taking the cube root of a value they are 

unfamiliar with. Here is an example that would be the 

first step in solving this type of problem.

Problem 2: An Example Involving the Cube Root of an 

Imaginary Number.

a) Verify that (5+ /)3 =110 + 74/.

b) Conclude that V110-74/ =5 + z .

c) Similarly show that Vl 10-74/ = 5-z

d) Use Cardano's Formula to find one real solution to 

x3 — 78x = 220 .

The Solution:

a) Using the binomial theorem, expand

(5+>y =(sy+3(5y(/)+3(5Xo2+(/y.
Simplifying this expression gives the desired result

(5+ /)3 =110 + 74/

b) To show that

V110-74/ =5-/,

first cube both sides

110-74/ = (5-z)3 .
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Then use the binomial theorem to expand the 

expression

(5-i)’=(5)!+3(5)!(-0+3(5X-02+(-?•

Simplifying this expression gives the desired result 

(5-z)3 =110-74/.

c) Substitute c=-78 and J=220 into Cardano's

Formula to obtain the real solution

2202 (-78)3 J 220 | 12202 ! (~78)~
4 + 27 V 2 +V 4 + 27

Simplifying the terms under the cube root leaves

x = Vl 10+ 7-5476 -V-l 10 + 7^5476 .

Rewriting in complex form results in

x = Ml 10+ 74/ - V-110+ 74/ .

Factoring a negative one out of the second cube root 

gives

x = Ml 10+ 74/ + Ml 10-74/ .

Note that M-l 10 + 74/ = 3/(-l)(110-74/) = -Ml 10-74/ .

Substituting the known quantities from parts a) and
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b) leaves

x = (5 + z)+(5-z).

Hence, one of the solutions to the cubic is

x = 10 .

Problem 3: Large templates for building the geometric 

representation for the equation x3+6x = 20 are provided. 

Create the three dimensional figure that represents the 

equation. Note that the figures are drawn to the scale 

necessary to create the geometric representation of this 

equation. Students could actually measure the side length 

of the appropriate pieces to find the desired solution.
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Figure 26. Cubic Net A
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Figure 27. Cubic Net B
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nets.)

Cubic Net C

96



(Remember that the figure requires

three of these nets.)

Figure 29. Cubic Net D
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Figure 32. Assembled Cubic Pieces (Back View)
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Figure 33. "Completed" Cubic
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CHAPTER FIVE

CONCLUSIONS

Many would agree that the teaching of mathematics at 

all levels can be enriched by historical reflection. This 

enrichment may be most acute at the secondary school level. 

At this point, students begin to grasp the wide scope of 

mathematics. Discovering the power of mathematics may 

cause students to become overwhelmed. Knowledge of the 

historical context behind the concepts may alleviate the 

sense of confusion on the part of the student. It may also 

present feasible responses to the famous "When will I ever 

use this?" This question is one which secondary 

mathematics teachers face on a daily basis. Presenting the 

history behind topics allows students to see how the 

algorithms and ideas they are currently learning evolved 

over the course of hundreds of years.

Atival (1995) found that most mathematics taught in 

the secondary schools today is devoid of historical 

context. Essentially, the students view the topic as 

coming only from the classroom teacher. The teacher shows 

the students how to do the problem, and then decides 

whether they have done it correctly or not. This situation 
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is harmful to the teaching of mathematics, a cumulative 

topic, as it presents the information as isolated and 

unrelated to the many other concepts that aided in its 

development (Atival, 1995). When students learn that the 

topics presented are products of a human endeavor that 

spans hundreds of thousands of years ago through the hard 

work or many people, it creates a sense of interest in the 

material, making it more personal and relevant.

The use of manipulatives and models has been shown to 

be extremely valuable in increasing students' understanding 

of a subject (National Council of Teachers of Mathematics, 

1989). If the manipulatives and models are well-chosen, 

then the operations on them help to draw general 

conclusions about what happens in the more abstract cases. 

In addition, the use of manipulatives motivates those 

students who are more kinesthetic than auditory or visual. 

The act of moving pieces around will help the student 

understand and remember the material.

The examples and explanations in this paper offer both 

visual and kinesthetic learners an opportunity to excel. 

In addition, the derivations of the steps to equation

solving connects geometry with algebra. In doing so, it 

strengthens the skills and understanding in both areas.
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The material within this paper addresses several of 

the content standards that California teachers are expected 

to address. Specifically, the material on linear equation 

solving addresses all or part of the following Algebra 1 

standards9:

9 Standards taken from the California Department of 
Education website: www.cde.ca.gov.

2.0 Students understand and use such operations as taking

the opposite, finding the reciprocal, taking a root,

and raising to a fractional power. They understand and 

use the rules of exponents.

5.0 Students solve multistep problems, including word 

problems, involving linear equations and linear 

inequalities in one variable and provide justification 

for each step.

9.0 Students solve a system of two linear equations in two 

variables algebraically and are able to interpret the 

answer graphically. Students are able to solve a 

system of two linear inequalities in two variables and 

to sketch the solution sets.

11.0 Students apply basic factoring techniques to second- 

and simple third-degree polynomials. These techniques 

include finding a common factor for all terms in a 
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polynomial, recognizing the difference of two squares, 

and recognizing perfect squares of binomials.

19.0 Students know the quadratic formula and are familiar 

with its proof by completing the square.

20.0 Students use the quadratic formula to find the roots 

of a second-degree polynomial and to solve quadratic 

equations.

21.0 Students graph quadratic functions and know that their 

roots are the x- intercepts.

22.0 Students use the quadratic formula or factoring 

techniques or both to determine whether the graph of a 

quadratic function will intersect the x-axis in zero, 

one, or two points.

In addition, the quadratic equation-solving addresses 

the following Geometry standards entirely or in part: 

2.0 Students write geometric proofs, including proofs by 

contradiction.

4.0 Students prove basic theorems involving congruence and 

similarity.

5.0 Students prove that triangles are congruent or 

similar, and they are able to use the concept of 

corresponding parts of congruent triangles.
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8.0 Students know, derive, and solve problems involving 

the perimeter, circumference, area, volume, lateral 

area, and surface area of common geometric figures.

9.0 Students compute the volumes and surface areas of 

prisms, pyramids, cylinders, cones, and spheres; and 

students commit to memory the formulas for prisms, 

pyramids, and cylinders.

11.0 Students determine how changes in dimensions, affect 

the perimeter, area, and volume of common geometric 

figures and solids.

16.0 Students perform basic constructions with a 

straightedge and compass, such as angle bisectors, 

perpendicular bisectors, and the line parallel to a 

given line through a point off the line.

17.0 Students prove theorems by using coordinate geometry, 

including the midpoint of a line segment, the distance 

formula, and various forms of equations of lines and 

circles.

Although the cubic equation and its solutions are not 

addressed in the secondary mathematics curriculum, it is a 

valuable way to tie together several of the standards from 

the Advanced Algebra curriculum:
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3.0 Students are adept at operations on polynomials, 

including long division.

4.0 Students factor polynomials representing the 

difference of squares, perfect square trinomials, and 

the sum and difference of two cubes.

5.0 Students demonstrate knowledge of how real and complex 

numbers are related both arithmetically and 

graphically. In particular, they can plot complex 

numbers as points in the plane.

6.0 Students add, subtract, multiply, and divide complex 

numbers.

7.0 Students add, subtract, multiply, divide, reduce, and 

evaluate rational expressions with monomial and 

polynomial denominators and simplify complicated 

rational expressions, including those with negative 

exponents in the denominator.

20.0 Students know the binomial theorem and use it to 

expand binomial expressions that are raised to 

positive integer powers.

Additional References

If the reader wishes to pursue the topic further, here 

are some additional references that may be helpful.
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