
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Theses Digitization Project John M. Pfau Library 

2006 

Parallel programming on General Block Min Max Criterion Parallel programming on General Block Min Max Criterion 

ChuanChe Lee 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project 

 Part of the Software Engineering Commons 

Recommended Citation Recommended Citation 
Lee, ChuanChe, "Parallel programming on General Block Min Max Criterion" (2006). Theses Digitization 
Project. 3065. 
https://scholarworks.lib.csusb.edu/etd-project/3065 

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has 
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. 
For more information, please contact scholarworks@csusb.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/222987393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3065&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3065&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/3065?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F3065&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


PARALLEL PROGRAMMING ON GENERAL

BLOCK MIN MAX CRITERION

A Thesis

Presented to the

Faculty of
California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree
Master of Science

in

Computer Science 

by
ChuanChe Lee

September 2006



PARALLEL PROGRAMMING ON GENERAL

BLOCK MIN MAX CRITERION

A Thesis
Presented to the

Faculty of

California State University,

San Bernardino 

by
ChuanChe Lee
September 2006

Approved by:

Dr. Richard Botting



© 2006 ChuanChe Lee



ABSTRACT

General Block Min Max Criterion (GBMM) is a 

pre-2D-chopped robust estimation method designed by Dr. 

Schubert. It may be applied on image clarification, 

pollution detection ... etc. This thesis tries to 

parallelize GBMM method not only to speedup it, but also 

to see whether a pre-chopped algorithm is suitable to be 

implemented in checker-board method or not.
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CHAPTER ONE
BACKGROUND

1.1 Introduction
The content of Chapter One presents an overview of 

the thesis. The contexts of the problem are discussed 
followed by the purpose, significance of the thesis, and 
assumptions. Next, the limitations that apply to the 

thesis are reviewed. Finally, definitions of terms are 

presented.

1.2 Purpose of the Thesis
The purpose of the thesis is to develop a parallel 

implementation of the General Block Min Max Criterion 
(GBMM) which is designed by Dr. Keith Schubert. [7] GBMM 

is a robust estimation1 method which tries to solve Ax = b 

where A is a matrix, b and x are vectors, especially when 

A is ill-conditioned2. This thesis not only tries to 

parallelize GBMM so that it will be performed more 

1 Robust estimation is "an estimation technique which is insensitive 
to small departures from the idealized assumptions which have been 
used to optimize the algorithm." [11]

2 A matrix is ill-conditioned if the condition number ( k(A) = ||^4 'I'llxlll) 

is large. The condition number is a measurement of whether a problem 
is good to digital computation. The condition number "gives a bound 
on how inaccurate the solution x will be after approximate solution. 
Note that this is before the effects of round-off error are taken 
into account."
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rapidly, but also tries to see whether a pre block-chopped 
algorithm may better fit the checker board decomposition3 

method or not.

3 Checker board decomposition is a widely used method in parallel 
implication to get better speedup.

1.3 Context of the Problem
The context of the problem is to address whether the 

block decomposed structure can match the checker board 
decomposition which is a widely used parallel method. 
Matrix multiplication is notoriously time consuming, but 

is widely used in many fields both in research and 

industry, such as physics, chemistry, pollution detection, 

image clarification.

1.4 Significance of the Thesis
The significance of the thesis is, at least, twofold. 

First of all, robust estimation and identification is 

important in many ways as listed in previous sections. But 

it usually takes time to calculate. The speedup is an 
endless desire and a necessity, especially in scientific 
usage. If we wish to clarify a video instantly for driving 

in fog, the speed is definitely important in that 

situation. Parallel computing is a good method to speedup.
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Secondly, whether the structure of an algorithm is an 

important issue to parallel or not? As a pre-block-chopped 

algorithm, GBMM is a good example to examine.

1.5 Assumptions
Although GBMM does not have the following 

assumptions, this thesis adds some assumptions listed 

below:

1. The matrix A is chopped into equal size.

2. The number of processes used is a perfect square

number, say, 1, 4, 9, 16 ... n etc.

3. All the number of :partitions, q and p, and

matrix size, h and w, are multiple of n, the

square root of the number of processes ; used.

4 . Assume none of the in equation (6) listed

section 2.2 is zero.

1.6 Limitations
During the development of the thesis, a number of 

limitations were noted. These limitations are presented 

here.

This parallel implementation is based on Cannon's 

Algorithm which will be briefly introduced in 2.2; 

therefore, the number of processes should be a perfect

3



square number. This is the reason why this thesis must 

have that assumption.

1.7 Definition of Terms
The following terms are defined as they apply to the 

thesis.
CPO - Communication Parallel Overhead.

DM - Diagonal Matrix.

Focused process - The process which is doing more work 

than the other processes. Usually, process 0 is the 

focused process, but not always so.
GBMM - General Block Min Max. GBMM is a robust method 

proposed by Dr. Schubert.
MPI - The Massage Passing Interface. MPI is a library 

specification for message-passing, proposed as a 
standard by a broadly based committee of vendors, 
implementers, and users.

RCPO - Redundant Calculations Parallel Overhead.

1.8 Organization of the Thesis
This thesis is divided into five chapters. Chapter

One provides an introduction to the context of the 

problem, purpose of the thesis, significance of the 

thesis, limitations, and definitions of terms. Chapter Two 
is a review of relevant literature. Chapter Three 
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documents the methodology used in this thesis. Chapter

Four presents the results from the research. Chapter Five 

gives the conclusion of the thesis. Finally, the 

references for the thesis are listed.

5



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction
Chapter Two presents discussion of the relevant

literature. Section 2.2 describes the GBMM method. Section
2.3 illustrates Cannon's Algorithm. Section 2.4 gives an 

introduction to the Householder QR decomposition. Section 

2.5 mentions parallel QR decomposition. And a brief 

summary is presented in section 2.6.

2.2 The General Block Min Max Criterion
General Block Min Max Criterion (GBMM) is a robust 

method provided by Dr. Schubert. This section describes 

general ideas and equations that are used in this thesis.

The general (block) perturbation min max problem is

stated as 

4,i+Ei,i

4,1 + ^<7,1

+ Eb,i

bq+Eb^
..... (1)

where

A is the coefficient of Ax = b, where A belongs to 

3m*n and b belongs to 3m.

q and p are block partition numbers of A on column 

and row, respectively.

6



E is the errors in A.

Eb is the errors in b

The equations used in this thesis are listed below:

Mi

Ci,J M

<Pi = 1 +
>1

+Ll
M,

<D = diag (<pil, • • • f

W = diag (i|ql, • • • r

----- (2)

..... (3)

..... (4)

<PqI)   (5)

..... (6)

typl) ..... (7) 
where

rhj = and rjbJ = \\E'b,i are the amount of uncertainty

in the matrix A and vector b, respectively.

I is the identity matrix.
Dr. Schubert provides a recursive method for GBMM. It 

has two recursive formulas:

Xi = T”1 At (b - Axi-i) for big 'P .... (8)

x± = (AT <t> A)-1 (At h? b - WXi-i) for small T .. (9) 

where AT is the transpose of A and W_1 is the inverse 

of T.

7



The Stopping condition is suggested as

ip1!' 5 for 5 between 10”4 and 10”8 (10)

2.3 Cannon's Algorithm
This thesis uses Cannon's Algorithm to calculate the 

matrix multiplication. The standard Cannon's Algorithm 

requires the number of processes to be a perfect square 

number, n2. The processes are arranged in a 2-D mesh. Each 

process contains an equal partition of the matrix A and B 

as well. (See Figure 1) The number of iterations that the 

algorithm requires in order to complete the whole 

calculation is the square root of the number of processes,

=n. Before all the iterations, both A and B need an 

initial shift to start the calculation. (See Figure 2) 
After each iteration, all of the processes need to 
transfer their own portion of A to their left processes, 

and the leftmost processes needs to send its own portion 

of A to the rightmost processes. Not only A but also B 

requires shifts as well. The difference is that B needs an 

up shift. (See Figure 3) After all the iterations, both A 

and B need a final shift to restore all the partitions of 

A and B to the arrangement that existed before Cannon's 

Algorithm began.

8



In each iteration, each process does a serial matrix ■ 

multiplication on the sub matrix the process has now. The 

sum of all the iterations in a process, is the answer of 
the sub matrix that each .process is responsible for.

Ao,o Ao,i Ao,2 Ao,3

Bo.O Bo,i Bo,2 Bo,3

Ai,o Ai(1 Al,2 Al,3

Bi)o Bu Bl,2 Bi,3

A2,0 A24 A2,2 A23

B2,0 B24 B2.2 B2,3

A3,o Au A3,2 a3>3

B3,o B3,i B3,2 b3,3
■■■ —Figure 1. Initial Distribution of Blocks among 16 = 4 

Processes

9



Ao,o Ao,i Ao,2 Ao,3

Bo,o B1.1 B27 B3,3

Ai,i Ai,2 Al,3 Ai,o

Bi.o B2.1 B3,2 Bo,3

A2,2 A23 A2,0 A2,i

B2,0 B3J Bo,2 Bl,3

A3,3 A3,0 A3,i A3,2

B3.0 Bo,i Bl,2 B2,3
Figure 2. Initial Shift of Cannon's Algorithm so that Each
Process Contains Ai,k and Bk,j which are what Matrix
Multiplication Requires
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1___________________ £
Ao,o - Ao.i Ao,2 - Ao,3

Bo.o Bi.i B2,2 B3,3
t t t f

Am Ai,2 - Al,3 *- Ai.o

Bi,o B2,l B3,2 Bo,3
f t f

A2,2 A2,3 - A2,0 - A24

B2,0 B3J Bo,2 Bi,3
t f

A3,3 - A3,0 - A3,l A3,2

B3,0 Bo,i Bl,2 B2,3r l— | '—f —o
Figure 3. The Way Cannon's Matrix Multiplication Algorithm

Shifts. In C = A * B, Sub-Matrix A needs a Left Shift
While Sub-Matrix B Neecls an Up Shift

2..4 The Householder QR Decomposition
This thesis uses QR Decomposition instead of matrix 

inversion to calculate the matrix inverse4 in equation . 
(9)5. The result obtained through the use of QR

4 Dr. Schubert uses Singular Value Decomposition (SVD) to compute the 
matrix inverse. SVD is more stable than QR but, of course, more 
complicated than QR.

5 In the case of the diagonal matrix, W, the inverse matrix of W, V"1, 

can easily be calculated by inverting all the diagonal cells. 
Therefore, equation (8) needs neither inverse nor QR.

11



factorization is more stable than the one obtained from 

the inverse.
QR decomposition forms an orthogonal projector of A 

on Q, so that A = QR where Q is an orthogonal matrix and R 

is an upper triangular matrix (UTM).

The idea to use QR instead of the inverse is due to 

the fact that if

A = QR,

then

Ax = b,

which becomes

QRx = b.

From the above, we can easily obtain

Rx = Q~rb.

Because the only operator of x is the UTM R, it is very 

easy to solve for x.

This thesis use Householder QR Factorization to 
compute the QR decomposition. The implementation of the 
Householder QR Factorization Algorithm in this thesis can 

be written as the following formulas, which closely 

resemble those used by Math Lab:

for k = 1 to n

x = Ak-.m,k ..... dD

12



vk = szgw(x1)||x||2e1+x ..... (12)

n = MWL ....... (13)
4:m,*:n = ^k-.m,k'.n ~2vk^Vk^k.m,k:n) ...................... (14)

And the Q_1jb is obtained by the following formulas:

for k = 1 to n
bk-.m = h-.m-2vk<llbk-.m) ...................... <15)

2.5 Parallel QR
There are some parallel QR algorithms like [2], [4]

[5] or [9]. This thesis applies none of them. Nor does 

this thesis use Givens rotation which is more easily 

parallelized than Householder transformation. It just 

parallelize Householder QR algorithm according to equation 

(11) through (14) naively.

2.6 Summary
The literature important to the thesis was presented 

in this chapter. For a full version, please refer to the 

bibliography.
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CHAPTER THREE
METHODOLOGY

3.1 Introduction
Chapter Three documents the methodologies used in 

this thesis. The test code uses many speedup methods. The 

methods listed here are directly related to the parallel 

programming.
This chapter introduces methods mainly by the order 

of modules. Section 3.2 states reduce parallel overhead. 
Section 3.3 mentions general methods used in this thesis. 

Section 3.4 talks about speedup method used in Cannon's 

Algorithm. Section 3.5 discusses other matrix 
multiplication used. Section 3.6 states how the transpose 

is designed. Section 3.7 describes the Householder QR 
Decomposition. Section 3.8 documents the implementation of 
solving linear equation by QR decomposition. Section 3.9 

explains how the main GBMM subroutine goes. And finally, 
the main test program is described in Section 3.10.

3.2 Reduce Parallel Overhead
Parallel overheads hinder the parallel speedup from 

achieving the ideal value. The ideal speedup is just the 

number of processors used. These include extra calculation 

for parallel, communications between processes, 

14



synchronizing the processes, etc. This thesis deals with 

two kinds of parallel overheads only: redundant 

calculations parallel overhead (RCPO) and communication 

parallel overhead (CPO).
3.2.1 Reduce Redundant Calculation Parallel
Overhead

Redundant calculations parallel overhead are some 

calculations required in parallel program but not needed 
in serial programs. For example, getting the number of 

process used, knowing the ranking of this process, 

calculation of which portion of data this process is 

using, etc.
In this thesis, some of these calculations include 

the calculation of a process's 2-D coordinates and 

ranking, vertical ranking, horizontal ranking and local 
block size. It uses global variables so that they are 

calculated one time only in most cases.
3.2.2 Reduce Communication Parallel Overhead

Communication parallel overhead refers to the time 

spent on communications between processes which are 
totally unnecessary in serial programs.

There are many ways to reduce the CPO. In addition to 

the checker-board decomposition, this thesis groups 

15



information that need to communicate together to reduce 

the latency.
Another method used in this thesis to reduce CPO is 

the application of Cannon's algorithm. See section 3.4 for 

details.

3.3 General Methods
Some RCPO is not "calculations." It maybe a simple 

if-statement, especially if the if-statement is in a loop, 

it may cause detectable timing. This section states how 

this thesis deals with this kind of problem.

3.3.1 Delete Unnecessary If
Sometimes only the focused process has the correct 

answer. For example, at the end of a subroutine, we may 

need to write something like

if (id==y) return a;6

6 Unless explained, the programs or partial codes listed in this 
document are C style.

else return 0;

Because only the id==y has the correct answer, a, letting 

all processes return a saves an if-statement on the 

process whose rank is y which is. the focused process so 

that the parallel overhead will be reduced a tiny bit.

16



For example, when calculating the 2-norm in a 

subroutine, each process calculates the sum of the square 

of each cell of the sub matrix it owns, and then does a 

sum reduction to the focused process. The focused process 

does a square root of the total sum, and then returns the 
answer, which is the 2-norm. The standard way to code on 

the last return should be

return id==y ? garbage : sqrt(norm);

The focused process can not start calculating the 

square root until the last partial squared sum has been 

received which is a short time later than the last message 

had been sent. Therefore, though this will cause all 

unfocused processes in the same communication group an 
extra square root calculation, but will save the focused 
process an if-statement. Hence reduce the parallel 

overhead on focused process a tiny bit.
3.3.2 Loop Unrolling for Parallel Overhead

Loop unrolling is frequently used to speedup serial 

program. It expands loops in some ways to allow 
instruction rescheduling, better register usage, or reduce 

overhead instructions so that the speedup is achieved.

[12]
Usually, when a program is parallelized, some extra 

if-statement will be used which is a parallel overhead. If 

17



this happened in a loop, it usually can be reduced by loop 

unrolling. An example used in this research will be stated 
in 3.4.

3.4 About Cannon's Algorithm
As briefly noted in 2.3, Cannon's Algorithm needs to 

shift both A and.B on each iteration. The B in GBMM is a 

const matrix, see equation (9). Keeping all the square 

root of the number of process, n, portions of B7 required 

for each process in each process will reduce the time 

needed for communication, hence save n times of the 

communication of one over n2 portion of B. Though it 

wastes a little bit more than n times of RAM in each 

process, it speedups dramatically.

7 This will reduce the scalability of this algorithm.

The way this thesis uses the advantage of constant 
matrix B in Cannon's Algorithm is as follows. The whole 

matrix B is cut into n columns and scattered to all 

processes from process 0. A three dimensional array, ***A, 

is used to hold the n portions the process requires. Not 

only the content of the ***A is all the value it needs, 

but also the order of the content is prearranged to what 

it will be used in Cannon's Algorithm. That is, the A[0] 

18



in each process contains the portion for the first 
iteration of Cannon's multiplication this process 

requires, A[l] the second, ... A[n-1] contains the last one 

required in Cannon's Algorithm.

The preorder treatment for the initial shift in 

Cannon's algorithm is done by exchanging the pointer *A, 

not by switch the content of ***A so that the parallel 

overhead will be reduced. The preordered treatment helps 
each process to use just the A[i] to compute in the ith 

iteration of Cannon's Algorithm. The processes need not to 

consider which sub 2-D array to use in this iteration. Not 

only no communication is performed for B, but also no 

tedious computation is executed.

The way the memory is allocated in ***A is the same 
as C arranged 3-D array to get better locality in each sub

2-D array, **a, which is what really used in our

algorithm.

About the serial multiplication part of Cannon's

Algorithm,- this thesis use both naively O(n3) standard
matrix multiplication method and O(nlog27) « O(n2’80735)

Strassen's Algorithm to implement it. [10]

19



3.5 Multiplication
Many kinds of matrix multiplication are used in this 

thesis, not just the matrix multiplication mentioned in 

the previous section. Matrix diagonal-matrix (DM) 
multiplication, DM matrix multiplication, row-vector 

matrix multiplication row-vector column-vector 

multiplication and matrix column-vector multiplication are 

also used.
Among them, only the matrix column-vector 

multiplication, DM matrix multiplication and matrix DM 

multiplication are implemented in ways that parallel 

speedup may easily be detected.

During calculations, sub-matrices and sub-vectors are 

distributed among processes. We do not need to gather them 
to a focused process and redistributed them. This is 
especially the case when, if we are lucky, the distributed 
answers are distributed in the way the following 
calculation needs -- there will be no CPO in this case.

3.5.1 Row-Vector Matrix Multiplication
Let whole 2-D mesh processes contain corresponding 

sub matrix. Let each row of processes contain a full set 
of the row vector as figure 4 for matrix DM 

multiplication. After calculation, each row of processes 

has a set of the answer.

20



3.5.2 Diagonal-Matrix Multiplication
A DM is a matrix with the property that the values of 

the entries that are not on the diagonal are zero. 

Therefore, we can use an one-Dimensional array to store 

the value of whole DM.
The sequence .the DM matrix and matrix DM 

multiplication is implemented as follows. Let whole 2-D 

mesh processes contain corresponding sub matrix. Let each 

row of processes contain a full set of the diagonal of the 
DM as figure 4 for matrix DM multiplication. Let each 

column of processes contain a full set of the diagonal of 

the DM as figure 5 for DM matrix multiplication. Thus, 

each process contains all the values it needs to calculate 

the matrix DM or DM matrix multiplication of its own 
portion.
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Mo,o Mo,i Mo,2 Mo,3

Do Di d2 D3
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Figure 5. The Portion that Each Process Contains to
Perform the Diagonal-Matrix Matrix Multiplication
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Thus, there will be no CPO if the DM was stored as 

the multiplication demanded before the multiplication 

begins.

3.6 The Transpose
Both the vector and matrix may need to be transposed.

The vector or matrix may be in focused process before the 

transpose is required or the vector or matrix has been 
scattered in processes already. Though this will have four 

different situations, the thesis used only two of them: 

vector transpose when the vector has been scattered and 
matrix transpose when the matrix is in the focused process 

only.

3.6.1 The Vector Transpose
In this thesis, all vectors are stored as 

one-dimensional array. It depends on the function to 
interpret whether it is a column vector, row vector, or, 
even the diagonal of a DM.

Before entering the subroutine, all vectors had been 
row wise or column wise scattered among processes already. 

In the subroutine, calculate local size first, and then 

allocate memory for transposed vector. If the process is 

on the diagonal of the process 2-D mesh, copy the original 

values to the memory prepared for transposed vector.
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Otherwise, calculate the rank of the destination process, 

send to and receive from the destination process the 

vector. Return the pointer points to the transposed 

vector.
3.6.2 The Matrix Transpose

The only one transpose happens in this thesis is at 

the beginning of the GBMM subroutine where the deblur 

matrix is stored in the focused process before been 

scattered and transposed.
In the matrix transpose subroutine, calculate local 

size first, and then allocate memories for both 
communication buffer and transposed sub matrix. The 

focused process calculates the rank of each process, 

gather corresponding sub matrix to a continuous RAM, 
scatters the corresponding part of the sub matrix to 
correct processes.

Note that only the content of the sub matrix, **A, 

are transferred. The index of the **A, *A, are calculated 

at the time the memory is allocated because both the sent 

and the received sub matrices are of the same arrangement 

and the same size. Thus, eliminate the unnecessary 
communication which is a redundant CPO.

The order to scatter the matrix is from the largest 

rank to the smallest rank,- the focused one. This will save 
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a memory block on the focused process and save the time to 

copy from transfer buffer to the working buffer.
Each process begins transposing its own sub matrix 

after it has received the values it required. Then, free 

up the transfer buffer.

3.7 The Householder QR Decomposition
In the Householder QR decomposition subroutine, it 

calculates local size first, and then allocates memories 
for r, R, v, and V, where V is the matrix that collects 
the reflection vectors (RV), v. The final step of the 

initial work is copy A into R. Because x is useless after 

equation (12) and is almost the same as v except for the 

first element, there is no x exist in RAM. The v totally 

handles all the functions x need.
In implementing the loop of the Householder QR 

decomposition, it calculates the local size of k:m and k:n 

(see equation (11)), gets the rank, id_now, of the process 

which contains the current k, place the if-statement which 

judges the process coordinates outside the loop of 

partial-squared-sum calculations to reduce the RCPO in 

loop, send the answer to the focused process, and sums the 

answer up to get the squared sum, n2, of the vector. The 

process whose rank is id_now calculates the square-root of 
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n.2 to get the 2-norm of x. Change the value of the first 

element of v according to the equation (12).

About the equation (13) , calculate the 2-norm of v 

through change of n.2, broadcast the 2-norm of v to those 

who are in the same column of the focused process, the one 

whose rank is id_now, in the process 2-D mesh. Then the 

processes that contain the useful part of v normalize v.
{Now start dealing with the equation (14). Broadcast 

the useful part of v horizontally so that the distribution 

of v matches the condition that the row-vector matrix 

multiplication needs. If the process contains useful part 

of v, make a pointer array, *s, in which each element 

points to a special address of A so that **s is just the 

sub matrix that equation (14) requires. Multiply row 

vector v and the sub matrix, **s. Otherwise, make an array 
that all the elements value are zero which represent the 
answer of zero vector times a sub matrix. Do a 

sum-reduction in the processes that are in the same column 

of the focused process. Broadcast the result, v', to 

processes that are in the same column of the focused 

process. Separate this column of processes into four 
groups according to the position that the process relates 
to the focused one so that there is no RCPO in the loop
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when doing the final part of equation (14),

= Ak.mk.n -2vjt(v') . Copy the answer to the V matrix which 

consists of the v. Free up memories, set the return 

pointer points to V.

3.8 The Solving for x by QR
Consider the linear equation Ax = b, where A is a 

matrix and b and x are vectors. The solution can be found 

by QR factorization of' A, if A is not singular, as 

following:

A x = b

,QR x = b

R x = Q~1b

Then, solve for x through the last equation by 

back-substitution because R is a UTM (see section 2.4). 

And the <2_1b can be obtained by the equation (15) listed 
in section 2.4.

The parallel implementation of the equation (15) is 

preceded by calculation of local matrix size. Then, copy 

vector b to a temporary vector, qb, call QR decomposition 

function to get V and R, where V is the matrix that 

collects the reflection vectors (RV), v.

In the main part of the equation (15), starts a loop 

from zero to number of processes used -1, n-1, as the 
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index for columns of 2-D process mesh. Then, if the 

processes contain' the value of the RVs, send the whole sub 

V matrix to the processes in the first column in 

corresponding row. Start a loop from zero to the width of 
the local matrix minus one. Separate the processes in the 

first column into three groups according to what it 

contains about v: no valid v, partial v, or full v to 

calculate the partial 2(v*kbk.m) . Call MPI_Allreduce to get 

the sum of the partial 2(y*kbk.m') , the true 2(v*kbk.m) . Calculate 

the bk.m = bk.m-vk(2vkbk.m) . Broadcast the qb horizontally to 

match the parallel back-substitution requires.
The sequence of the back-substitution is listed 

below. The pretreatment includes calculating the local 

matrix size, allocating memories, making a copy of vector 
b so that the b will remain unchanged after this 
calculation and calculating the last equation am,n xn = bm.

For the loop part, the outer loop runs from n-1 down 
to zero while the inner loop runs from local width minus 

one, wl, down to one. The two nested loops form the whole 

range of the width of the original matrix. Vertically 

broadcast the xm which has been pre-calculated in the 

pretreatment or previous iteration. Let all the processes 

on the same column of focused process calculate their own 
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part of
xn_i = [ (bm) - a*,nxn] / a*,n-i. After the inner loop, 

broadcast the xlowest_one vertically as the pre-calculated xn 
of the next iteration of the outer loop. If the focused 

process is not in the first column of process 2-D mesh, 

send the x to the process left to itself.
At the end of this function, free up the memory which 

stores the copy of vector b, return the calculated x.

3.9 The General Block Min Max
The main GBMM routine implements the equations (2) to 

(10) listed in section 2.2 to get the answer. It sets all 
the local global variables8 first to reduce.the RCPL.

8 The global variables are set in the same gbmm.c file only to 
preserve some data security.

Then, it distributes the deblur matrix, A, to each process 

as Cannon Algorithm's matrix B and shift it as mentioned 

in section 3.4. The routine transpose it to each process, 

then, scatters the vector b, r]b, and the matrix r/ in 

checker-board style. Set all xi to 1 as the seed of the 
first iteration. Set the pointer to b transpose points to 
b by the fact that b transpose equals to b in process 0, 

the focused one. In other process, allocate memory for 

transposed vector of b for processes in the first column.
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Calculate the transposed coordinate and rank. Except for 
the focused one, all the processes in the first row send 
its own b to the corresponding processes in the first 

column.

In the iteration part, the routine broadcasts x 

vertically if this is not the first iteration. Then it 

calculates Ax, calculates the equation (2), (3), <I> and Y.

It frees up the memories used by equations (3) and (2). It 

transposes 0 to be horizontally distributed so that the 

distribution fits the requirement that the matrix DM 

multiplication requires. It frees up the memory used by £. 

It calculate the AT4>. It frees up the memory used by the 

horizontal version of $. Then it calculates the norm of W. 
It broadcasts the value horizontally so that each process 
has the norm of T. The threshold to determine to use 

equation (8) or (9) is set to be 100.

In the implementation of equation (8), the big W 
version, the code starts with calculating the inverse of 
the i|i9. Transpose the distribution of ¥ among processes 
from horizontally to vertically10. Then calculate the W_1 

At<I>. Transpose Ax from the first column to the first row.

9 See footnote e on section 2.4.

10 There is no need to transpose if the processes are on the diagonal, 
of course.
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Let the processes in the first row calculate b - Ax and 

store it in Ax. Broadcast it vertically. Finally, use the 

matrix column-vector multiplication subroutine to 

calculate the new x, W"1 (b - Ax) .

In the implementation of equation (9), the small ¥ 

version, the code begins with calculating the Ar$ b 

through matrix column-vector multiplication subroutine. 

Then the processes in first row calculate Tx. Transpose 

the value of Wx from stored in the first row of processes 

to the first column ones. Let the first column processes 

calculate the AT<I>b - Yx and store them in the same address 

of those who store ATOb. Let all processes calculate AT<I> 

A. Use QR subroutine to solve for x in equation (9), 

x = (AT<I>jb - Wxi-i) . Free up AT4>b.
No matter the norm o.f T is big or small, now start 

dealing with the final parts: free up memories used in all 

processes. The processes in the first row copy new x,

[lx,. - II calculate equation (10), the -—n—n—- 5, and free up the
INI

unused memories and set pointer of x to new one. The 

process 0 broadcasts the 5 to all processes, increases the 

iteration counter. Finally, all processes check the 

condition of whether the next iteration is needed by check 

the 5 and iteration counter.
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After all iterations, free up all the memories used.

Perform a gather action. Finally, free up the memory used

by x.

3.10 The Main Test Program
The main test program is written as follows. It reads

in the 27 and the files. The 2-D numbers of partitions

are written in the 17 file. The program generates a random 

matrix as an original "image" / vectors sources. Then, 
generates a random square matrix as the blur matrix. Blur 

the "image" by the blur matrix. The uncertainty bound of 

the blur matrix is bound by 20% of the maximum of each 

partition. Transpose the "image" so that the original 

column vectors are continuously stored in memory, that is, 
it is now row vectors which, in C, is stored continuously.
Finally, it starts to deblur the vectors one by one and
sets the time stamp just before and after the calling of

the GBMM subroutine.
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CHAPTER FOUR

RESULTS

4.1 Introduction
Included in Chapter Four was a presentation of the 

results of the thesis. Section 4.2 states the hardware and 

software used. Section 4.3 lists the numerical result. 

Section 4.4 analysis the result. Finally, the summary of 

the research is stated.

4.2 Machine Used
Raven is the machine that this thesis has used to run 

the programs. It is a cluster computer composed of 

thirteen Compaq ProLiant DL360 G2 computers. The ProLiant 

DL360 G2 has dual Intel® Pentium© III 1.40GHz on board, Ll 
cache is 128KB, L2 cache is 512KB on-die. Each computer 
has 512 MB of 133MHz SDRAM 2:1 interleaved. Two Compaq NC 

7780 Gigabit Ethernet NICs Embedded 10/100/1000 which are 

optimized for best latency, but only one of them is 

connected to the router. [14] The router used is D-Link 

DGS-3224TG, which is a 20-port managed layer 2 Gigabit 

Ethernet switching hub. The operation system used is Red 

Hat Linux 3.4.20-8smp with gcc version 3.2.2-5. MPI 1.2 is 

used as the interface.
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4.3 Numerical Result
This thesis is tested on Raven uses one, four, nine, 

and sixteen processors. The 2-D partition number, q and p, 

are always the same, namely, twelve and twelve, throughout 
the test listed in this document. The heights of the 

"image" used to test are multiple of 60 from 180 through 

1380. The widths of the "image" used to test are all the 

same, namely, twelve. The 5- in equation (10) in section 

2.2 is set to be IO”30 to cause a virtual infinite loop so 
that the number of iteration can be controlled. The serial 

part of the Cannon's Algorithm is implemented in two 

different ways: the standard matrix multiplication and 

Strassen's Algorithm.

4.3.1 Standard Matrix Multiplication
The number of "images" used is ten if the image 

height, h, is smaller than 660. It is six if h is 660, 720 

or 780. It is five if h is 840, 900, 960 or 1080. It is 

four if h is 1020 or 1200. It is three if h is 1140 or 

1260. It is two if h is 1320 or 1380. The result of the 

time needed and the corresponding graph are listed below.
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Table 1. Time Needed for Ten GBMM Iterations for Vector

Size from 180 through 1380 for 1, 4, 9 and 16 Processors

7~^._Proc.Size 1 4 9 16

180 0.532 4.760 4.095 6.015
240 2.153 7.242 6.431 6.812
300 5.658 9.483 8.172 8.526
360 12.374 11.220 10.425 10.325
420 22.357 14.229 12.602 •12.271
480 37.283 17.794 14.773 14.149
540 56.412 29.470 17.133 16.280
600 77.887 36.044 ■ 19.777 18.303
660 105.033 55.879 22.973 21.012
720 137.464 66.949 28.255 24.308
780 177.919 93.987 35.999 29.239
840 223.167 110.904 48.308 34.469
900 277.959 145.708 62.328 41.158
960 571.489 178.777 83.245 45.703

1020 409.968 214.258 97.979 61.006
1080 489.306 257.634 119.555 73.932
1140 573.724 297.162 142.294 92.600
1200 682.590 351.683 173.309 97.441
1260 785.533 398.219 198.378 132.042
1320 893.648 463.022 230.760 147.963
1380 1020.838 520.903 267.046 173.182
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Size from .180 through 1380 for 1, 4, 9 and 16 Processors

According to the time recorded, the speedup, which is 
the ratio between the sequential execution time and the 

parallel execution time is calculated, listed and plotted 

below.
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Table 2. Speedup on 4, 9, 16 Processors for Vector Size 
from 180 through 1380

,'^~\Proc. Size 4 9 16

180 0.112 0.130 0.088
240 0.297 0.335 0.316
300 0.597 0.692 0.664
360 1.103 1.187 1.199
420 1.571 1.774 1.822
480 2.095 2.524 2.635
540 1.914 3.293 3.465
600 2.161 3.938 4.255
660 1.880 4.572 4.999
720 2.053 4.865 5.655
780 1.893 4.942 6.085
840 2.012 4.620 6.474
900 1.908 4.460 6.753
960 3.197 6.865 12.504

1020 1.913 4.184 6.720
1080 1.899 4.093 6.618
1140 1.931 4.032 6.196
1200 1.941 3.939 7.005
1260 1.973 3.960 5.949
1320 1.930 3.873 6.040
1380 1.960 3.823 5.895
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from 180 through 1380'.'

4.3.2 Strassen's Algorithm
The number of "images" used is all the same, namely, 

two, in testing the speedup if the serial part of Cannon's 
Algorithm is implemented in Strassen's Algorithm. The 
result of the time needed and the corresponding graph are 

listed below.
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Table 3. Time Needed for ten GBMM Iterations for Vector

Size from 180 through 1380 for 1, 4, 9 and 16 Processors

'^7~~-~^Proc Size 1 ' 4 9 16
180 0.532 4.606 4.000 5.959
240 1.358 7.298 6.440 6.776
300 3.267 9.394 8.257 8.444
360 6.722 10.993 10.376 10.306
420 11.834 13.047 12.712 12.260
480 19.712 15.305 16.838 14.142
540 28.973 20.062 16.876 16.373
600 42.901 26.185 18.956 18.303
660 57.960 36.535 21.293 20.717
720 76.145 45.340 24.477 24.114
780 97.243 60.519 29.637 27.665
840 122.503 73.044 38.079 31.230
900 167.043 93.323 47.200 35.660
960 229.045 124.835 61.374 39.901

1020 242.863 137.547 71.824 49.590
1080 266.533 161.112 88.637 57.717
1140 362.473 193.199 102.805 70.793
1200 391.721 226.431 127.123 96.325
1260 449.664 258.130 141.275 97.704
1320 506.156 297.431 163.541 108.862
1380 582.519 335.688 187.471 128.020
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Size from 180 through 1380 for 1, 4, 9 and 16 Processors

According to' the time recorded, the speedup is
calculated, listed and plotted below.
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Table 4. Speedup on 4, 9, 16 Processors for Vector Size 

from 180 through 1380

'\Jroc.Size 4 9 16

180 0.115 0.133 0.089
240 0.186 0.211 0.200
300 0.348 0.396 0.387
360 0.611 0.648 0.652
420 0.907 0.931 0.965
480 1.288 1.171 1.394
540 1.444 1.717 1.770
600 1.638 2.263 2.344
660 1.586 2.722 2.798
720 1.679 3.111 3.158
780 1.607 3.281 3.515
840 1.677 3.217 3.923
900 1.790 3.539 4.684
960 1.835 3.732 5.740

1020 1.766 3.381 4.897
1080 1.654 3.007 4.618
1140 1.876 3.526 5.120
1200 1.730 3.081 4.067
1260 1.742 3.183 4.602
1320 1.702 3.095 4.650
1380 1.735 3.107 4.550
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from 180 through 1380

4.4 Result Analysis
4.4.1 Small Image Clarification

The parallel speedup effect begins when the vector 
size is larger than 350 and 450 when using standard and 

Strassen's Algorithm, respectively which are both larger 

than the NTSC VCD image size, 320 * 240. This gives a hint 

that unless a parallel speedup algorithm whose speedup 

threshold is apparently smaller than, say, 280 appears, it 
is useless trying to use parallel method to get better 

speedup on application of small images.
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4.4.2 Speedup
The speedup "looks" good on both algorithms when 

vector size is smaller than, say, 750. According to Amdahl 

effect which says that "for a fixed number of processors, 

speedup is usually an increasing function of the problem 

size," the curve should not bend down or stay around 2.0,

4.5 and 6.5 on 4, 9 and 16 processors respectively for a 

standard algorithm and around 1.7, 3.2 and 4.2 for 

Strassen's Algorithm on 4, 9 and 16 processors 

respectively. The reason for that may be that the Ethernet 

cards on the Raven are optimized for latency but the 

algorithms used in this thesis are all designed for 

optimized on bandwidth.
4.4.3 Pre Block-Chopped Algorithm

The implementation of equations (5) and (7) does not 

use the fact that the value in 0> and T are not totally 

different. Instead of having different values of the 
number of the height and width of the deblur matrix, they 

have only the number of the partitions, q and p, different 

values, respectively. Making use of that fact to implement 

the equations (5) and (7), especially the equations (8) 
and (9) where DM multiplication is dealt with, in parallel 

may get a little bit speedup.
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But by simply benchmark each step of GBMM, the ratio 

of the time spent on the final step of equation (9), the 

solving x = LT1 ft, to the time spent on the whole GBMM is 

huge. It ranges from 0.29 to 0.46 on serial version. It 

ranges from 0.58 to 0.96 (the average is 0.664) on four 
processes test. On nine and sixteen processes test, it 

ranges from 0.64 to 0.91 (average 0.732) and 0.65 to 0.91 

(average 0.781), respectively. (See Table 5) This shows 

that the final step of equation (9) is the bottle neck of 

the speedup in this implementation of GBMM, especially the 

more processes is used, the more the average of the ratio 

is.
The fact that more than half of the time is spent on 

solving x = fl-1 [3, especially the more processes is used, 

the more the average of the ratio is, tells us that unless 

there exist an parallel algorithm which can make good use 
of the pre-chopped characteristic to solve x = LT1 f3, or 

there exist an parallel algorithm that can fast and 
accurate to solve x = 12”1 (3, the pre-chopped nature in 

GBMM does not lead to easily parallel speedup through 

checker-broad decomposition method.
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Table 5. Simply Test the Time Spend on Whole GBMM (Time W) 
and on the Last Step of Equation (9) (Time 9) on 1, 4, 9, 

and 16 Processes. The Ratio of the Time W to the Time 9 is
Calculated and Listed Right to the Elements Recording that

Test
CPUSize'\ 1 4 9 16

Time W Time 9 Ratio Time W Time 9 Ratio Time T Time 9 Ratio Time W Time 9 Ratio
180 0.023 0.05 0.46 0.363 0.38 0.96 0.280 0.37 0.76 0.476 0.53 0.90
240 0.067 0.23 0.29 0.586 0.62 0.95 0.499 0.56 0.89 0.4 63 0.53 0.87
300 0.182 0.56 0.32 0.741 0.83 0.89 0.463 0.51 0.91 0.768 0.87 0.88
360 0.450 1.26 0.36 1.059 1.20 0.88 0.811 0.89 0.91 0.949 1.08 0.88
420 0.856 2.25 0.38 1.249 1.59 0.79 1.022 1.20 0.85 1.071 1.24 0.86
480 1.494 3.74 0.40 1.437 1.87 0.77 1.204 1.38 0.87 1.335 1.53 0.87
540 2.248 5.60 0.40 1.778 2.88 0.62 1.365 1.61 0.85 1.548 1.71 0.91
600 3.241 7.81 0.41 2.514 3.88 0.65 1.557 1.90 0.82 1.732 1.96 0.88
660 4.453 10.54 0.42 3.333 5.85 0.57 1.796 2.34 0.77 1.887 2.21 0.85
720 5.925 13.79 0.43 4.252 7.09 0.60 1.994 2.76 0.72 1.967 2.40 0.82
840 9.811 22.39 0.44 6.779 11.55 0.59 3.356 5.09 0.66 2.842 3.55 0.80
900 12.314 27.76 0.44 8.732 15.02 0.58 4.081 6.27 0.65 2.982 4.10 0.73
960 19.089 57.36 0.33 10.597 18.17 0.58 5.541 8.44 0.66 3.360 4.53 0.74

1020 18.845 41.34 0.46 12.819 21.97 0.58 6.505 10.15 0.64 4.158 6.12 0.68
1080 22.267 48.99 0.45 14.766 25.87 0.57 7.834 12.25 0.64 5.262 7.59 0.69
1140 26.346 57.73 0.46 17.372 30.05 0.58 9.164 14.45 0.63 6.478 9.63 0.67
1200 31.098 68.47 0.45 20.155 35.19 0.57 10.917 17.24 0.63 7.093 10.17 0.70
1260 35.922 78.48 0.46 23.227 40.31 0.58 12.889 20.32 0.63 9.054 13.57 0.67
1320 41.142 90.28 0.46 26.742 46.73 0.57 15.007 23.72 0.63 9.973 15.34 0.65
1380 46.442 102.46 0.45 30.203 52.51 0.58 17.290 27.38 0.63 11.868 17.98 0.66

Average 0.413 0.664 0.732 0.781
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4.5 Summary
Neither deblur small images nor the advantage of the 

pre-chopped structure of GBMM can be achieved by the 

parallel methods used in this research.
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CHAPTER FIVE

CONCLUSION

5.1 Introduction
Chapter Five presents the conclusion of the thesis.

Lastly, the Chapter concludes with a summary

5.2 Known Problems That Hinder
the Parallel Speedup

There are some known problems that hinder the 

parallel speedup. Section 5.2.1 describes problems in the 

implementation of QR decomposition. Section 5.2.2 states 

the memory allocation problem. Section 5.2.3 suggests 

using better MPI functions.
5.2.1 Problems about Implement QR

As described in section 4.4.3, the final step of the 

equation (9), the solving x = G”1 (3, is the bottle neck of 

the parallel speedup in this implementation of GBMM. 
Therefore, if we want to improve instead of re-design the 
algorithms used in this research, it is the QR and 
solve-through-QR that one should first put the effort to.

In the implementation of QR decomposition, there are 

many chances that only part of the processes in the same 

column as the focused process need to have the value from 

the focused one. For example, the upper part of the 
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process may not need to be involved in the communication 
when k is larger than the height of the matrix over the 

square root of the number of process, n. The program 

broadcasts the value to all processes in the same column 
by using standard broadcast function, MPI_Bcast, in stead 

of designing a suitable and fast algorithm to send 

messages only to the ones that need the value in all the 
implementation similar to that.

Of course, one may re-design these two algorithms, QR 

and solve through QR, through better parallel QR algorithm 
such as Given's rotation. This should get better parallel 

speedup.
5.2.2 The Memory Allocation

There are too many memory allocations and frees used 
in this implementation. Calculate the total memory needed 
in the beginning of GBMM subroutine and allocate it one 
time at the beginning of the GBMM main subroutine, 
calculate all the pointers point to different and suitable 
address should both speedup the serial version and reduce 

some parallel overhead. Hence, the parallel speedup should 

be a little bit more than this version.
5.2.3 Using Better MPI Functions

MPI has more than four sets of send / receive 
functions: standard (MPI_Send), nonblocking (MPI_Isend), 
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synchronous (MPI_Issend) and user-specified buffer 
(MPI_Bsend). For most of the algorithms used in this 

research are suitable to use specified send / receive 

functions such as user-specified function or synchronous 

function. The MPI send / receive functions used in this 

research are all basic ones: MPI_Send and MPI_Recv. For 
example, using user-specified buffering may reduce time 

for copying the content.

5.2.4 Adjust the Threshold

Though equation (8), the big W version, is rarely 

used in practice, the test code sets threshold to be 100, 

which is found to be somewhat too large. The result is 
that none of the more than 8000 test samples11 run on 

equation (8). They all run on equation (9).

11 About 3000 of the test samples are done during the program test. 
They are not listed in chapter 4.

Equation (8) is faster than Equation (9). It does not 
need to calculate QR decomposition. The inversion of the 

diagonal cells can be fully parallelized so that its 
parallel speedup is more than Equation (9). Therefore, the 
average parallel speedup of GBMM should be a little bit 

higher.
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5.3 Further Study
There are many ways to do further studies. For 

accuracy, use singular value decomposition (SVD) instead 

of QR to solve the problem. For speed, try to use even 
find faster parallel speedup method to solve x = A-1 b. 

For matching the design, use parallel computer whose 

Ethernet cards are tuned for bandwidth and retest this 

algorithm.
The reason for the outlying point on the one process 

version at size 960 is still unknown. It had been run many 
times during more than two months on three different 

Pentium-based computers. It seems to be something related 
to the problem about matrix multiplication. It was found 

that the more the matrix size is related to power of two, 
the slower it seems to be. The experiments show that the 

average Megaflops is around 180 on the test machine, but 
it drops to around 40 when size is 256, 384, 448, 512, 
576, 640, 704, 768, 832, 896, 960, 1024 or 1088. It drops 

to around. 120 when size is 320, 448, 544, or 608. It drops 

down to around 90 when size is 800, 864. (See Figure 10)

960 is the only test size of GBMM in this research 

that hits on one of'the slow point. So it shows a big 

outlying point there.
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on Matrix Multiplication. The Unit on x Axis is the Size 

of Matrix, on y is the Megaflops. No Matter the Code is 

Compiled with Linux gcc -03 Option or Not, It Drops

One more thing can be suggested here for further 

research. In fact, about 150 of the more than 8000 samples 
(less than 1.875%) take long run time on four, nine, or 
sixteen processes for unknown reason. Twelve of them are 

around six times long and others are about twice as long. 

They are all grouped in "images", which means that it 

should be related to the deblur matrix. But by inspecting 

the code, all the if-statement are related to process 
rank, none of them are related to matrix or vector value.
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