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ABSTRACT

Recent research for knot invariants has shown-that the
fundamental group of the knot complement contains a great
deal 6f information. This research has led mathematicians
to examine represehtations of the commutator subgroup of
such groups as they map into a fixed finité group, called
the target group.

The structure of the set of homomorphisms from the
commutator subgroup to the target group can be graphed and
ﬁnderstood through symbolic dynamics even if the set of
homomorphisms is infinite, even uncountable. The repre-
sentations of these knot complements in a dynamical system
appear as special periodic points when their domain isv

restricted. The system will produce other not so special

periodic points and sometimes even nonperiodic points. This

information has helped us understand more about the struc-
ture of the knot exterior énd the variety of its covering
spaces. However, work infthis érea:islfér frém exhausted.
DynamiCal éystéms‘aé applied to fundamentéligroups of
knot exteriors can be summarized more generally as follows.
The dynamical system defined by the set of homomorphisms
from the commutator subgroup of the fundamental group of a
knot exterior to any tafget group, with the shift map has a
‘structure of a shift of finite type. Such a structure can
be completely described symbolically by a finite directed

graph. This dynamical system is special in that it has
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direct application ﬁot only to knots but links -as well.
Invariants of sﬁqh a dynamical system, such as‘the.number of
periodic points of each given period, directly determine
invariants of the associated knot. Also, when an abelian
target group is used with the dynamical system, we can glean
information about the infinite cyclic cover as well as the
branched cyclic covers of the kn;bt.1

Thé following is an expose' designed to highlight the
important mafhematical developmenfs from Topology, Group
Theory aﬁd Combinatorics that contributed to the developmentf
of these special typés of dynamical systems called symbolic
‘dynamical systéms. Also, included is thé étep—by—step
developmeht of the syﬁbolic dynamical system for the trefoil
knot as an examplé following each step of the theoretical
development of the algorithm for theée symbolic dynamical

. systems.
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INTRODUCTION
A TLighthearted ILook

Three strings went into a bar and sat down at a table.
The first string asked, "Is there a waitress here?"

The second string said, "No, you have to go up to the
bar and get your own."

So the first string got up, went over to the bartender
and said, "I'll have three Scotches."

The bartender said, "We don't serve your kind in here."

"What kind is that?" said the string.

"Strings, we don't serve strings here," replied the
bartender. | ‘

So the first string went back to the table and said to
the other strings, '"they won't serve us here."

The second string said, "Oh yea, we'll see about that."
He got up, went over to the bartender, pounded on the bar,
and said, "Hey bartender, I want three Scotches, and I want
them now!"

The bartender said, "I told your friend, and now I'm
telling you, we don't serve strings in here. Now beat it."

The second string went back to the table and shrugged.

The third string stood up and said,l "Let me handle
this." He tied himself into a nasty tangle and pulled the
strands out of his ends, creating a wild mop of a hairdo.
Then he walked over to the bar, leaned over close, and said,

"Bartender, I would like three Scotches, please."



The bartender turned around and looked at the,string,
then he looked the string up and down. The bartender re-
plied, "You're not fooling me; you're one of those strings,
aren't you?"

The string looked the bartender straight in the eye and
said, "Nope, I'm a frayed knot.? .

In this case, if thé bartender had a knot invariant
test handy . (possibly from a symbolic‘dynamical system) he
could have quickly proven to ﬁimself that the tangled mess
he was looking at was in fact a string (the unknot) and not
a knot;

| A Historical Overview

Why knots? that's so important about a tangled-up loop
of string and whether or no£ it can be untangled without
cutting or gluing??

In the 1880s, the early days of knot theory, it was
believed, among scientisté, that all of space was pervaded
by a substance called ether. Lord Kelvin (William:Thomas,
1824;1907) proposed that atoms were only knots in the fabric
of ether. His conclusion was that different elements would
then correspond to different kinds of knots. Thus, a Scot-
tish physicist, Peter Guthrie Tait (1831-1901) spent years
tabulating knots in the hope that by listing all possible
knots, he would eventually create a table of the elements.

Kelvin was proven wrong as an accurate model of atomic

structure was published near the end of the 1800's. Conse-



quently chemists, along with the rest of the scientific
community, lost interest in knofs fof nearly a century.
However, during this period mathematicians maintained their
intrigue of knots ‘and a century of development in knot
theory resulted. ‘

By the 1980's, biochemists fouﬁd knotting in DNA mole-
cules whiéh resuited in a révised interest in‘knot theory.
Synthetic chemisté have reéently been pursuing the concept
that knotted molécuiés.éould be created where the properties
of the molecules may be determined by the type of knot it
replicated. Ironically, a misguided model of atoms fostered
a field of mathematics that after a 100 years finally'
yie;ded<several-major applications in the fields of biology
and chemistry.’

Topology is the study of deformations of geométric
figures that preserve their properties and is one of the
major areas of research in mathematics today. Knot theory
" is one of many areas of study in topology and has led to
many important advances in other areas of topology.’

A major area of focus within knot fheory has been.énd
still is the search for knotlinvafiants. An invariant is a
means by which one can identify a known knot frdm:any pro-
jection of that knot and where applicaﬁions of this invari-
ant will-consistently produce the same identification re- .
gardless of the ambient isotopy applied to the knof;

The study of representations of knot groups haslyielded



a significant amount of useful information about knots over
the past 70 years. The search for knot invariants has been
a major motivation behind the efforts to examine knot group
representations. What makes the study of mappings of knot
group répfesentations into A finite group possible, is the
fact that the associated set. of homomorphisms is finite and
can be tabulated even though the group itself may be infi-
nite or even uncountable.®

This papér attempts to éxpose this new direction of
study in representations of knot groups{ Let G be any knot
group, X be a finite group called a target group and let
K=[G,G] denote the commutator subgroup of G. Further let
Hom(K,Z) dénote the set of homomorphisms'from Kvinto Y as
representations of K. The commutator subgroup has a presen-
tation that is referred to as finite Z-dynamic meaning that
the knot group G is an infinite cyclic extension of the.
commutator subgroup K. Such a structure generates a shift

of finite type which can be completely described by what is
known as a finite directed graph denoted by I.’

As mentioned earlier a key factor in this approach is
that we can gain information about the group, regardless of
its complexity, from manageable and relatively uncomplicated
target groups. 1In addition;,ifiwe use finite abelién groups
we are able to learﬁ more about tﬁe homotopy and the homolo-
gy of branched cyclic covers.®

These techniques also apply to links.’ However, this
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paper will explore these concepts only in terms of knots.
No special effort to develop like concepts for links will be

made nor will we discuss any conceptual difference between

the two.



DEVELOPMENT: An Algorithm for
Symbolic Dynamical Systems (SDS)

Homotopy, Homologies and gghomologies‘

The fﬁndaméntal group'of é knot complement is the
central coﬁcept in the devélopmént of an algorithm for
symbolic dynamical systems/of:knots. However, before we can
fully understand and appreciate fundamental groups some
knowiedge of homotopy, homologies and cohomologies is desir-
able. Intuitively, a homotopy is the deformation or move-

ment of a path while the end points remain fixed.
Definition: Let y, be a smooth family of paths all defined
on‘fhe same interval [a,b] with the paraméter s varying in
the unit interval and the parameter t Varying in the
interval [a,b]. A homotopy is a map H:[a,b]x[0,1]-U, where
H(a,s)=P, H(b,s)=Q for all 0<s<1 and y,(t)=H(t,s) so each ¥,
is a path in U from P to Q. |
For a family of paths to be smooth, we mean that the coordi-
nates of the point y,(t) are smooth functions of both s and
t. The homotopy H is then a C° function meanihg that the
two coordinate functions can be éxtended'to be infinitely
differentiable functions on some open neighborhood of the
rectangle.

Two paths,7m and v,, from an interval [a,b]'to a topo-

logical space'U, with the same endpoints are said to be

smoothly homotopic in U if there is a homotopy, H, that



smoothly deforms one path onto the other. That is,

H
S s —
Oib-—-—mmj

where H(a,s)=P and H(b,s)=Q are constant functions on the

interval [a,b] for all 0<s<l. Note that y.(t)=H(t,s) so
each y, is a path in U from P to Q. A comparable definition

exists for ¥, and y; being closed paths on U where the only

difference is the requirement that H(a,s)=H(b,s) for all
0<s<1 iﬁ the second part of the above definition.'®

Before we discuss homology and cohomology groups let's
first define and discuss 1l-chains and O-chains. Given a

topological space X, a l-chain in X is expressed as
Y =nY,+N,Y,+* ' +n;Y;, where each y; is defined to be a continu-

ous path in X, each n; is an integer and all paths are
defined on the unit interval. Thus all l-chains are formal

linear combinations of paths. The boundary of a bounded
rectangle R, denoted by JR with sides parallel to the axes
is a 1l-chain expressed as y=yfﬂg—yqu, where each y; is a

straight path as shown:



s e, (0,4)

(alc) Y1 - (b,q)

Such a boundary 'is referred to as a l-boundary. Next a
O-chain in X is a functicn from X to the set of integers
that is zero outside a finite set. 1In bractice it means
that a finite set of points are selected and each is as-
signed either a positive or negative multiplicity. A
O0-boundary is a 0-chain where the sum of the multiplicities

is zero.

For any 1-chain where y=n,y,+-+n/y, the boundary of the
path denoted by Jdy is defined to be the 0O~chain expressed as

Oy=n;[Y;(1)=Y:(0) 1+ * ~+n.[¥.(1)=Y.(0)]. A closed 1l-chain is
defined to be a 1-chain whose boundary is zero and is also
referred to as a l-cycle.

The following are pictorial examples of a l-chain, a
l-cycle, a homologous-i-cycle and their related boundaries

as they are defined in H,U.



The above depicts a i-chain in U, where y is a path from P,

to P; defined by y=n,Y,+n,y,+n,y;+n,Y,+nys and where each n;

integer represents the number of times each subpath y; is

completely traversed. Recall that all l-chains are formal

linear combinations of paths.

This second example depicts a closed 1-chain called a

l-cycle where each point occurs as many times as a final
point of a path as it does on an initial point of a path.
We can now define two homology groups of U, an open

subset of X where ZJU is a group of O-chains on U and BJU is

a subgroup of O-boundaries of Z,U. One homology group is



called fhe zeroth homology group and defined as:the quotient
groupAHJh#gﬁ/BJL The key here for using such a factor group
'is that gven-if the groups Z,U and B,U are infinite and .
uncountaﬁle we know the factor group is always finite, small
and easy to handle and gives us valuable information about
the larger group. The homology group H,JU actually measures
the number of conﬁected components in the topological space.
The following proposition sums it up.

Proposition: The homology group HU is canonically isoﬁor—
phic to the free abelian group on the set of path connected
- components of U.

The following definition gives a connection between homolo-
gies, l-cycles and boundayies.

Definition: Two closed l1-chains are said to be homolgous if
the difference between them‘is a boundary in U.

The next homology group is called the first homology
group of U, denoted and defined by the quotient group as
HJ##QU/BJLV In a similar way Z,U is defined as the group of
closed l1l-chains on U and B,U, a subgroup of Z,U, is defined
as a group of l-boundaries on U. Two closed 1l-chains are
homologoﬁs exactly when they have the same image in Hﬂh-in
which case we say that they define the same homology

class.!
Definition: A l1-chain path y is called a boundary (or a
1-boundaryf'in U if it can be written as a finite linear

combination of boundaries of such maps with integer coeffi-
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cients.
Our goal here is to define l-boundaries but first some
preliminaries are necessary. The following is an example of

a l-cycle in U,

where the continuous mapping I' is restricted to the four
sides of the square [0,1]x[0,1] in the domain called a

boundary. That is, I'(y;)=y,.and the 1-boundary, denoted by
o' is defined by the 1—cyc1e'aF=yr+yfﬁ5dn where [ (0,0)=P,,

ro,1)y=p,, I'(1,1)=P;, I'(1,0)=P,. A l-boundary in U is thus
defined as a l-chain in U written as a finite linear combi-
nation with integer coefficients of boundaries of such maps
on rectangles.'?
The Fundamental Group

Definition: The fundamental group of a topological space X
with base point x is defined to be the set of equivalence
classes of loops at x where the equivalence relation is a
homotopy.

A loop is a path whose initial and terminal points are
the same denoted by some point x€X. The fundamental group

is denoted by w,(X,x).
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For example, coﬁsider the fundamental group.bf'the
circle s', denoted by m;(S',x). Since the multiplication of
arCS'on:thé‘circle are fg;l positive or negative fevolutioﬁs
(or no releutibns) ﬁheﬁ-thé7fundamehta1 group contains an
infinite number of equivalence classes of full revolution

ioéps and is homomorphic to the set of integers,

(i.e., hJU?,X)EZ). When comparing the fundamental gfoup of
s' with ihe fﬁndamentalAéroup of the torus, it is easy teo
recognize that the torus is a two-dimgnsional surface in R?,

which 'can be viewed as a surface created by rotating a

circle or T?=S'xS'. The following depicts the torus

o5

circular
rotation

8! rotated in a circle

In either case two separate and distinct directions are
defined on the torus. The circle S' in the figure depicts a
direction we call the meridian and the circular rotation in .

the figure depicts a direction we call longitude. Thus, the

12



fundamental group of the torus, denoted by 7, (T?,x) also

consists of an infinite number of equivalence classes of
loops. The difference here is that the classes of loops and

base point are defined as an ordered‘pair reflecting the two
distincf directions. Just as m;(S',x)=Z, the fundamental
group of the torus is homeomorphic to Zx Z= 77z,
i.e. m,(T?, x)=n(S'xS", x)=Zx Z=77.

One other example worth considering.is the trivial case
of the fundamental group. This is the fundamental group on

the disk, D?’. In this case, all loops defined on' any base

point x€D® are homotopic totﬁhe base point itself called the

nonloop or identity 1ooo.:'Therefore, 7, (D?, x) =e.
Often‘the‘fundomentaifgroup is referred to without

reference to a base point, denoted 7;(X) when the definition

of the fundamental group is applied to a path-connected
topological space X; that is where any two points can be
connected by a path. This is because the base point xex
does not matter since different base points resuit in iso-
morphic groups.

Let us now discuss how the fundamental group relates to
the first homology group. Given a topological space X and a
base point x€X there is a homomorphism from the fundamental

group to the first homology group. This homomorphism takes

the class of a loop, denoted by [Y] at x to the homology

13



class of y where Yy is regarded as a closed 1-chain or
l-cycle.

It has been established that the first homology group
is abelian. Thus the above defined homomorphism vanishes on
all commutators, a b a'b™ of the fundamental group, imply-

ing that it also vanishes on the commutator subgroup of the
fundamental group, denoted by K=[=n;(X,x), m;(X,x)]. Thus K
consists of all of the finite products of commutators. The
quotient group 7;(X,x)/K is often referred to as the
abelianized fundamental group of X and is denoted by
7w, (X,x)®. Therefore, the above defined homomorphism, h,
maps the abelianized fundamental group of X into the first
homology of X, i.e. h:m,(X,x)*—H,x. In fact, the fundamen-
tal group determines the homology group giving the following
proposition.®’?
Proposition: If X is a path-connected space then the canon-
ical homomorphism h:%,;(X,x)**—H,x is an isomorphism.
Intuitively, the first homology group counts the number
of holes in a topological space. Since 7w;(X,x)/K and H,X
are isomorphic on a path-connected topological space X we
can then say that the fundamental group, =;(X) also counts

the number of holes in X. However, the fundamental group is
able to detect and reveal far more about a topological space

than do the homology groups as we shall see later in this

14



development. In.particular, the fundamental group can tell
us far more about knof exteriors than do the homology
groups. Since the homology group is a quotient group it
loses information where the fundamental grdup does not.
Another nice feature of the fundamental group is that it is
hanageable for khot’exterior applications.
The §eifért—yan Kampen Theorem

The folloﬁing is a statement of the Seiferf-Van Kampen
theorem;, sometimes'calied simply the Van Kampen Theorem.
Seifert-Van Kampen Theorem: Let X be a space that is the
union of two open subspaces U and V. Assume that the inter-
section'of U and V is nonempty, each subspace U,V and UnvV
are path connected and x is a point in the intersection.

Also éssume that all spaces X, U, V, and UnV have universal
coverings. If i, + 7T (UNV, x) —m (U, X), 1,07 (UnV,x) 7 (V,X),
J1sm (U,X)—m"l‘(X,x)y', and jz:nl(V,x)_—;frl (X,x) then for any
homomorphisms hl;ﬁz (U,‘x)r—;G and h,:r7,(V,x) G such that
h;o i;=h,o i, 4theure is a uﬁique homorphism h:m;(X,x)—G such
that hej=h; and hej=h,." |

‘The folloﬁing diagrém is an interpretation of thg Van

Kampéh Theorem:

15



I (UNV, X))

T (V, X))
Clearly, the homomorphisms h;° i; and h,° i, from #,(UNV, Xx)

to G are equivalent and are considered to be the same. The
Van Kampen Theorem gives us a method for calculating funda-
mental groups as we will see. Since the Seifert-Van Kampen
Theorem has been proven on .simply connected topological
spaces it follows that it also holds true on locally simply
connected spaces since these spaces are far less restric-
tive. Thus the fundamental group 7, (X,x) satisfies the
definition of a universal group with the properties of the
Seifert-Van Kampen Theoren.

The important hypothesis here is that all spaces are
connected including UnV. The following are some corollaries
and propositions as a consequence of the Van Kampen Theorem.

Corollary: If U and V are simply connected then X is simply

connected.

Corollary: If UnV is simply connected, then

Hom{m (X,x), G)= Hom(m,(U,x), G) x Hom{m,(V,x), G) for any G.

The above corollaries mean that m(X,x) is the free

16



product of nl(U,X)'and ®,(V,x). Free groups are defined
using the idéa of free products.

Consider;the graph of a.uniqp of two ciréles “8” we can
label U and V. Thgse twoA?ircles shgre only one point we
will call x; wherelclearly-x= UnV.'-Let %_andrb be loops
arqund the boundary of each circle U and V. Ithcan be‘seen
that the fundamental group of U and V are infinite cyclic,

generated by classes of these loops denoted by [y;] and [Y.].

It follows that to give a homomorphism from =, (X,x) to any

group G is the same as specifying arbitrary elements g; and

g, of G called dgenerators. . In summary we can say that there

exists a unigue homomorphism from = (X,x) to G that will map

[{v.] to g; and [Y,] to g,. Here an important conclusion is

that the fundamental group is the free group on the genera-
tors [v;] and [v,]1. |

If we let [v,}=a and {Y.]=b bé generators-of the funda-
mental group, then every element of.the fundamental group
can be uniquely called a word expressed in the form
a™b™a™ - b, where m; are‘integers and 0sisr. All m; are
non-zero except occasionaliy the first and last. The iden-
tity element is then e=a’b° The free group of two genera-

tors can be constructed;direCtly and algebraically as the

. products of words defined by juxtaposition with cancellation .

17



of adjacent multiplicative inverses. A formal definition is
provided in the next section.

The following proposition is another consequence of the
Van Kampen Theoren. |
Proposition: If G is a free group on n generators, and H is
a subgroup of G that has finite index d in G, then H is a
freo groﬁp( with dn-d+1 generators.

The Van Kampen Theorem has given us a definition of
free fundamental groups with some understanding of group
generators and elements of the group called words. We will
need this for our development of an algorithm for symbolic
dynamical systems.

Group Pgegentétions

In this section for group preséntations-we will develop
téchniqués necessary for the development of presentations of
fundamental groups of knot exteriors. This will then lead
us to the calculation of symbolic dynamical systens.

From the Van Kampen Theorem we have seen some fund-
amental groups which are free groups. The following is a
definition of'a free group.

- Definition: A group F is said to be free on a‘suoset XcF if
given .any group G and any map, éﬁX—G there exists a unique
homomorphism ©’:F-G, extending e, that is, having the prop-

erty that eo’(x)=e(x), for all x€X.

- 18



This is the same as saying that the following diagram

commutes.
c

X—F

o l o
G

In this case X is called the basis of F and |X|, the card-
inality of X, is called the rank of F, denoted by r(F).

Thus a group F is called free if it has a subset X
where every element of F can be written uniquely, up to
trivial relations, as the product of elements of X and their
inverses. A trivial relation is one that is equivalent to
the identity element € such as x;x; ', X, 'X;, XX;X; X, %, etc.
Here uniqueness simply means that if any two elements of F
(called words) look different then they are different. A

reduced word is one where no generators (elements of x) are

adjacent to its multiplicative inverse. In other words all

possible cancellations of the form x,x,”'=€ have been done

within the word. A reduced word x;X,~X; is said to be cycli-
cally reduced if x;#x; '.

The following describes some notation regarding free
groups. A group F that is free on a subset X is denoted by
F(X). A free group contains generators and only trivial
relators and is denoted by <x;|>. The existence of the
extended mapping o implies that there are no relations in X

and the uniqueness of o' implies that X generates F. A
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comparable definition for a f£ree abelian group is generated

merely by replacing the word ‘group’ with the words ‘abelian

group' in the definition of a free group. The fundamental

group of the torus is an example of a free abelian group of
rank 2. Other examples of free fundamental groups are a
circle of rank 1 (i.e. one trip of the path where the ini-
tial and terminal point is the same) and any bouquet of n
circles all of which share only one point and are free
groups of rank n. An example of a bougquet of 5 circles

sharing only one peoint is as follows:

In this case rank n is rank 5 meaning that each circular
path of the bouquet is traversed only once and in_each case
the common point is the initial and terminal point of each
traversal. These examples of a free group are consequences
of the Seifert-Van Kampen Theoremn.

The following are some notably important facts for us
regarding free groups. If G is any group, F is an arbitrary
group and Xc<F, then we say that Hom(F,G) is the set of all

homomorphisms from F to G and Map(X,G) is the set of all

mappings from X into G. Now let p be a restriction map from

the set of homomorphisms from F to G tc the set of maps from
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X'into G definéd'by p(e’(x))=e'(x),V xex‘and o'6éHom(F,G) .
Thus, p is surjective if an onlyfif for all eeMap(X,G) there
is an extension map o' as defined in the forgoing definition
of free maps and shown above. The map p ié injective if and
only if o exists.and is unique. Therefore, to say that F
is free on X‘is to say p i$ a bijection for any grouva and
vice versa. A free grﬁup mayihaﬁe many differgnt bases all
of which havg'the same number of elements. This implies
that the rank of a freé éroup is weli defined. th— J
sequently, a free group is determined up to an isomorphism
by its rank. |

The‘abéve comménts_can be summed uplby the following
leﬁma andlfwo propositions:. » - ‘
Lemma: If F is free on X, then X generates F.
Proposition: If F; is free on X, (1=1,2) énd F.,2F,, then

I,X1|=|X2

Proposition: If F;, is free on X;(i=1,2) and:LXA=4Xﬂ,
then F,=F,.

The following propositions, 1emma and theorem provide
us with some more useful facts about free groups.
Proposiﬁion: Every group is isomorphic to a factor group of
some free‘grouP; That is, G=Image of ©2F(X)/Kereo’.

ALemma: Let a,beF(X) such that ab=ba. Then there is a C€F(X)

such that a=c* and b=c" for some k,heZ.
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In other words, this iemma says that free groups are
non-commutative. intuitively, free groups are the most non;
abelian groups there are.

Proposition: (i) Iﬁ a'ffee~group F with n roots when they
exist are unique, that is, if a,b€F satisfying a%df,\neﬁﬁ
then a=b{ (ii) any elemenf (word) w of F ﬂas oﬂl& finitely
many génefétors,jtbét_is, {aEEhf=W,‘for some neN} is fi-
nite. |
Proposition:;Comhutétibhlis;an'equivalence relafion on
F\{e}. That is the centraliéer C(w) :={weF| aw=wa for any
acrF\{e}}is abelian.'® l

From here we venture into some facts about presenta-
tions of free groups. A presentation can be viewed as a
convenient shbrthand for specifying any particular group.
If we let F(X) be a free group on X, R a subset of F, N the
normal closure of R in F, and G the factor group F/N then a
free presentation can be defined as follows:

Definition: A free presentation, denoted by G=<X|R>, is
referred to simply as a presentation of G. The elements of
X are called generators and those of R are called defining
relators. A group G is said to be finitely presented if it
has a presentation with both X and_R-being finite sets.

Precisely, this means that the elements x€X generate G,
the elements reR are equal to the identity element eeG, and
G is the largest group with these properties. Further the

defining relations reR for G are assumed to be equal to e.
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This convention allows normal algebraiﬁdmanipulation. Thus
a defining relation, say uv, when set equal to e, uv=e may
take on the form u=v', for some u,VeF(X). Groups frequent-
ly occur in the form of presentations but it is difficult to
deduce properties of a group frémwa given presentation of
if. There are a nﬁmbér of.techniqués used but none are
clearly definitive in general. For our purpoées we will
derive presentations.of knot groups using the Wiftinger
process. This will be discussed later, in detail.

The following are some helpful facts about groups and
their presentations. Every cyclic éroup is a homomorphic
image of the set of integers, denoted by Z=<x|>, by defini-
tion. From Group Theory we know tﬁat the Kernel 6f a homo-
morphism of a'cyclic group is cyélic, being either the
normal closure of x", neN or trivial. 1In this notation,
Z=<x|>, Z,=<x|x">, neN, we completely list all cyclic
groups.

Proposition: Every group has a presentation, and every
finite group is finitely présented;

The folloWing are soﬁe important facts regarding homo-
morphisms.

Lemma: Let F,G,H be groups and v:F—G, a:F—H be homomorph-

isms such that (i) the image of v is G, denoted Im v=G and

(ii) Ker v < Ker a. Then there is a homomorphism a’:G—H
such that voa=a.
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This lemha is called the induced hohomorphism lemma.
The following proposition by von Dyck is a result of this
lemma.‘ |
Proposition: If G=<X|R> and H=<X|S> where RcScF(X), then
there is an ebimorphism ¢:G~H fixing every xc€X such that
ker¢=S/R. Conversely, every factor group of G=<X|R> has a
presentéfioﬁ <x|s> with RcsS.
The following proposition gives a means by which we may test
a map from the generators of a group G to another group H to
determine if it extends to a homomorphism of all of G. This’
-proposition is key to. the homomorphisms we will look at for
symbolic dynamical systems of knot complements.
. Proposition: If given a group presentation G=<X|R>, a group
H, and a mapping o:X~H, then o extends to a homomorphism
©:G~H 1if and only if the result of substituting xo for x in
r yields the identity in H, V xeX and reR.
When such a ©' exists it must 5e unique since X generates G.
Also note that e’ is an epimoréhism if and only if <xe>=H.'®
Another valuable tooi in the development of an SDS for
a knot is the use of Teitze transformations or Teitze moves.
Teitze moves give us the tools needed to transform a given
presentation of a group to a different presentation of the
same group. The following proposition formélizes this
method for us. | |
Proposition: Lef F<X|>, G=<X|R> and suppose that w,reF Wifh

w arbitrary and réR\R. If y.is a symbol not in X, then both
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the inclusions X~<X|R,r> and X~=<X,y|R,y 'w> extend to iso-
morphisms with domain G.

The above proposition yields four ways to adjust a
given presentation <X|R> to derive another equivalent pre-
sentation for the group. These four ways come directly from
the four isomorphisms of the above proposition and are
called Teitze transformations. These four moves are defined
as follbws where F is a free group on the subset X through-
out.

Definition: i) Adjoining a relator, denoted by R+ is defined
as X=X, R=R U {r}, where reR\R is the normal closure in F.

ii) Removing a relator, denoted by R- is defined as X=X,

R=R\{r}, where reRNR\{r}. 1iii) Adjoining a generator,
denoted by X+ is defined as X=XU{y}, R=RU{y'w}, where yeX
and weF. iV) Removing ‘a generator, denoted by X- is defined
as X'=X\{y}, R'=R\{y'w}, where yeX, we<X\{y}|> and .y'lw is
the only member of R involving y.'® '

For example, by a finite series of Tietze moves we can
show that the group G, presented by

G1=<w,x,y,,z|wx=y, Xy=z, YZ=W, zw=x>

is cyclic by reducing its presentation fo that of a cyclic
group of'order 5.

To begin with consider the first and third relators
y=wx and. w=yz, where‘ by substitufion gives us ‘another r‘e_la—
tor of the group eliminating the generator y, namely w=wxz.

By multiplying both sides on the left by w' we can elimi-
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nate another generator, w and derive'yet another relator,
wlw=w"wxz or e=xz or x'=z. By appiying a comparable series
of Tietze moves to the relatoré Z=XY and'x=zw we derive the
new relator y=w'. By substituting into the original pre-
sentatioﬁ we can rewrite it in terms of the two generators w
and x as follows: G,=<w,x|wx=w!,xw '=x", wixl=w, xlw=x>.
Since wx=w"' can be written as w’=x" and since wlxl=w can be
written as x'=w’ then two of the relators are the same
allowing us to eliminate one in our ppesentation. By a
similar arguement we can eliminate one of the remaininé two
generators since they are also equal. Thus, we have reduced
our presentation to the following:

G=<w, x|w=x", w=x*>.

A close look reveals that yet another substitution can
be made for w’ since w=x’ implies that w?=x’ in thé second
realtor. This substitution ?llows us to eliminate another
generator, w and reduce our presentation to only one relator
as follows: G,=<x|x'=x!> or G =<x|x"> since x'=x implyies
that x°=e. Thus, Gf=<Xhé>‘iS a presentation for an. infinite
cyclic group of order 5. |

The following proposition describes how two presenta;
tions of a given group are related.

Proposition: Given any two finite presentations of the same.
group, one can be obtained‘from the other by a finife-se;

quence of Tietze transformations.

Later we will see that Tietze moves allow us to simplify a
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group presentation to one having fewer generators and
relators.

In order to fully develop an algorithm for the symbolic
dynamical systems for knot groups we will need presentations
of commutator subgroups. The Reidemeister-~Schreier theorem

will allow us to accomplish this task as we shall see later.
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THE FOCUS: The SDS and
" Directed Graph for the Trefoil

The Wirtinger Presentation
Our goal here is to present the algorithm for producing
a Symbolic Dynamical System (SDS) for any non=trivial knot

k. A dynamical system is defined as follows:

Definjtion: A dynamical system is a pair (X,c) consisting of

a topological space X and a homeomorphism oc:X—X. A mapping

f:(X,0) *(X,0) of dynamical systems is a continuous func-

tion f£:X—X for which f°o o= o° f. The dynamical systems

(X,6) and (X,0) are conjugate if there exists a mapping

g:(X,0)—*(X,0) such that ge f and fo g are identity func-

tions.*

The four major steps in the algorithm are developed sequent-

ually as follows:

1) derive a presentation of a given knot group using the
Wirtinger process,

2) develop ‘a presentation for the commutator subgroup
from the Wirtinger presentation using the Reidemester-
Schreier Theorem with a distinguished generator.

3) develop the augmented group system and shifts of
finite type from the presentation of the commutator
subgroup and lastly,

4) produce the graph determined by the shifts of finite

type into what is called the directed graph.
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Each of the abové steps will be exﬁlained in detail as the
focus of this report. As each step is'developed we will
apply them to the éimplest non-trivial knbt, called the
trefoil, as an ongoing example. In the end we will discuss
the promise that SDS holds for discovering new knot invari-
ants which will hopefuliy enhance our ability to distinguish
knots.

We have not yet explained howlto arrive at a presenta-
tion of the fundamental group for a knot. First we know
that the fundamental group of é surface can reveal a great
deal about‘tﬁat'surface. Since a knot has no surface we

must'consider‘the complement of a knot as it would relate to
an imbedding in R>. 'By creating a uniform tubular‘neighbor-
-hood around the knot, we then 'have a solid torus embedded in
R*. By discardihg this.solid tube then we are left with a

“tunnel” in 3-space. The 3-space without the solid tube of

the knot is called the complement of the knot, denoted by

R?>-kx. The hope here is to identify unique characteristics

of the knot from its complement in R®. This can be related

to the concept of identifying a person in their absence by
the unique impression they left in a fingerprint.

Let's now consider the fundamental group of the knot
complement, denoted by =, (R*-k).

We mentioned earlier that Wirtinger presentations were

the key for presentations of the fundamental group of knot
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complements, so lets now look at how this works. Consider
any projection of a knot onto a plane in R’. From this

projection we identify the overpasses and underpasses at
each crossing. An arc in a knot projection is that part of
the projected knot that adjoins one underpass to another.

Then we label each of a finite number of knot arcs by

O, ,0, in the projection plane. Thus, each a; is connected

to a;.; and a;,; (mod n) by the underpassing arcs. The union

of these arcs is called a diagram of the knot k. For exam-
ple, the arcs of a particular diagram of the figure-eight

knot are shown below.

Next, we select a meridian loop x; of the knot for each arc
o; with orientation. Imagine standing in the ‘tunnel’ of

each arc facing with the orientation. A meridian is chosen
as a clockwise loop which appears as a straight line ori-
ented from right to left in the projection. The following
is a pictorial close up of one crossing of a projection of a
knot complement with orientation of arcs and related merid-

ian.
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&4""~ meridian x;

Arc (lj—»
Arc oy ~ v ArcC Ol
— % >
Meridian x; 1 ! Meridian x;.,,

Meridian x; - PG

{

Notice that arc oy has an associated meridian denoted x;.

By viewing the meridian loops as oriented straight lines we
realize that only two general possibilities exist as de-

picted below. From this we see a relation r from each that
yields either TIXX;=X; Xy Or YiX;¥;=X;X;,; depending on the

relative orientation of the crossing arcs as follows:

A

xi‘F Xi41 xg ! Xin
oL, ! = Ol 4 o o o | &= g Oy
X5 XX =X Xy Xy TIXiXy=RyXi4

4
Here let r; denote whichever of the two eguations holds for
any given crossing. For any knot k there are a finite
number of relations say r;,,r,, where n is the number of

crossings of the knot. The following theorem summarizes the

above remarks, yielding the Wirtinger presentation for
1H(F?-k). This is a consequence of the Van Kampen Theorem
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for'fundamental'groups.19

Theorem: The group n;(R’-k) is generated by the homotopy
classes of the meridiaﬁ\xg and has the following presenta-
tion =, (R°~-k)=<x,, --I-,X,,Irl, -, ¥,>, where any one of the r; is a
consequence of the other relations and may be omitted with-

out effect.

Since we will consider. fundamental groups of knot

complements only in R?, then for convience we will use the

notation 7;(k) in place of z;(R°-k). Where the knot is

specifically known we will name it in place of the general
notation of k. As mentioned earlier we will use the trefoil
to.demonstrate the development of each step of the SDS
algorithm.

We will now develop a Wirtinger presentation 6f the
trefoil where x; are the generators'and r; are the relators
of the presentation. We begin with a projection of the
trefoil showing a chosen orientation (labeled arcs) and
appropriately oriented generators (meridians). Recall from
the abo?e theorem that the_relation coming from any one of
the crosSipés may be oﬁitted-in the development of the

Wirtinger preséntation.
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Here we write the relators from the two crossings
indicated. The relators for the tre'foi'll ‘are ri;3X,;X,=®.¥, énd
r,tXX;=X,X;. Since wé now have both the generators and
relators the pfesentation of the fundamental group of thé

trefoil can be written as,
7, ( trefoil)=<x,,X,, X, | %, X, =%, %, =X, %X;> .

As mentioned earlier the trefoil is a nqn—triviai knot.
~ That is .equivalent to saying that =,(trefoil) is a non-
abelian group, since the only knot with abelian fﬁndamental
grbup<is the unknot. Note'that'nl(unknot)#z, and is gener-
ated by a meridian of the unknot. It is worth remarking
that the abelianization of any knot group ié‘isomorphié to
Z.ZO ' N

etz | 1e Distinguishe ene
Next our goal is to find a presentation for the com-i
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mutator subgroup K of w; (k). We will use Tietze moves in a

process given to us by the Reidemester-Schreier Theorem.?

A key here is that one of the Tietze moves is designed to
introduce a new generator a, such that x;,=x,a for some icZ.

In order to find the commutator subgroup K we must
first bhooseia genérator; x:cailed the distinguished genera-
tor and set all'other‘generators equal to a multiple of the
distinguished generator and another unknown generator. That
is, we will hold that x=x,, and x;=xa for some new element a
and some i€Z. After this then we can rewrite a presenta-
tion eliminating a known generator by replacing it with its
equivalent in terms of the distinguished generqtor.

Now we ﬁant to write a presentation of the commutator
subgroup of our trefoil group using the Reidemester-Schreier
Theorem discussed earlier. Consequently, the commutaﬁor

subgroup‘of T, (trefoil) will also be a nonabelian group as

is needed. A consequence of tﬁe Reidemester—Schfeier Théo-
rem is that the generators of the commutator subgroup are
defined by a;=x"'ax' and the defining relators are found by
conjugating the relation in the last presentation by powers
of x. Notice that we have already done this for the tre;

foil. We need only rewrite our relation in terms of a,,
i€eZ. 1In reviewing a;=x‘ax' by successive values of i€Z
starting with i=0 our generators can be derived and by

substitution our relation can be rewritten. If i=0, then
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a,=x’ax’=a implying a,'=a*'. If i=1, then a,=x‘ax implying
a; '=(x'ax) '=x'a'x, etc. A quick inspection of our only
relation shows that we can stop here.®

For examplé, the fundamentallgroup of the trefoil can
be presehted with one meridian generafor (the distinguished
generator), x and some other generator a as
T, (trefoil)=<x,a|x 'a”'x'ax’a>. By inserting xx '=e in the
relator between the a™’ and the second x! our relator is
transformed into the product of conjugations of the form
a;=x *ax'. Now it can be written as x'a‘xx%ax’a, where

=1

x 'alx=a,?, x?ax’=a, and a=a,. With this we can write the

relator as a presentation of the commutator subgroup K as
K=<a;|a,; 'aj.,a;,1€Z>. Later we will see how this example

plays a part in the complete development of the symbolic

dynamical system for the trefoil.

Augmented Group Systems and Shifts of Finite Type

To this point we have completea roughly half of our
algorithm of symbolic dynamical syétems with the trefoil as
the example. However, before we conﬁinue-some introduction
to augmented group systems and .shifts is necessary here.
Lets begin Qifh a definition. o |
Definition:‘An augmentéd gfbup;sgstem is a triple denoted by
(G,x;x) consisting of a finitély.presented group G, an
epimorphisn x:G-&Z’and‘a>distinguished elément'xeG,‘such

that y(x)=1.
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We have an example of an augmented group system in our

trefoil.?” The augmented group system for the trefoil is

the triple (m,(trefoil),y,x), where y:m(trefoil)—Z and

x(x)=1.

Next lets consider the definition of a representation
shift.
Definjtion: A represéntation shift, denoted by &;, is the
set of representations p:K-Y. together with the shift map
ox: &5, defined by o,o(a)=p(x'ax) for all acK, where K‘is

the commutator subgroup of the fundamental group and X' is
the target group.

Lets now define a shift of finite type. First let x be.
a distinguished generator and o, be a series of mappings,
whére cxr‘(f)=p(x41y xX) Vp€eH only and xéK. By Van Kampen such a
series of mappings would be depicted as oné mapping cycle.
If we first applied our set of representations & and then
our series of mappings o, we would have what is called
shifts of finite type. We will exemplify a shift of finite
type with the trefoil wheﬁ we resume the construction of its

SDS.
Next we will look at permutation representations.

Definition: A permutation representation of a group K is a
homorphism p:K—S,, where S, is the symmetric group operating

on the set {1,2,-,r}.
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We call p a representation of K, in S,. The following

proposition is well known.??

Proposition: Let K be any group and let r be a positive

integer. The function m:p—*{geK|p(g) (1)=1} maps the set of

representations p:K,S, onto the set of subgroups Hs<K having

index |K:H|sr. The preimage of any subgroup of index r

contains exactly (r-1)! transitive representations.

If p(K) operates transitively on the set {1,2,-,r} then
we say the rebresentation b is transitive.

Recall that a dynamical system is defined as follows:
Definition: A dynamical system is a péir (X,0) consisting of
a topological space X and a homeomorphism oc:X—X. A mapping
f:(X,0) *(X,0) of dynamical systems is a continuous func-
tion f:X—X for which fo o= oo f. The dynamical systems
(X,6) and (X,0) are conjugate if there exists a mapping

g:(X,0)*(X,0) such that ge f and fe g are identity func-
tions.*

The following'proposition follows from the last stated

proposition above.

Proposition: Let r be a positive integer. The function
ﬁuTﬂH={gEKAp(g)(1)=l} induces a mapping from (&,,0,) onto
N A
( ¢rl O-r) *

The following corollary is a consequence of the pre-
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ceding two prop051t10ns.

COrollary Let (G,z;x) be an augmented group system and let
r be a positive integer. Then the assoc1ated representatlon
shift (¢,,0,) is finite if and only if the subgroﬁp system

- . )
®.,0,) 1s finite.

-~

The pair (&y,0,) is a dynamical system where &y is a

space and o, is a homeomorphism which can be nicely repre-
sented by a directed graph. _
The Directed Graph

The fourth part in our algorithm for the ¢onstruction

of a symbolic dyﬁamical system for a given knot complement

is the directed graph, denoted by F=(V,E),'Where

V={p|p:K-X} is the set of vertices and E={pp’|p'=0.p} ie.the_
set of edges. The vertices are representations of the
fundamental group iﬁ Hem(K,Z)vand are connected by an edge
calied the shift map, o,, from p to p’. It turns out that

the entire directed graph is one or more series of perlodlc
points all connectediby‘edges. : Some perlodlc points are of
period eﬂe meanlng a p01nt 1s connected to itself by one
edge.t'And-lt is p0551ble that some. p01nts are non-perlodlc
points that may be pruned” from the dlrected graph.

The directed graph for the trefoil, which we will :

develop in detail later, is as follows'
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(1,0) (2,2)
(0,0) L (1,2) (2,1)
(1,1) ' (2,0)

(0,1)

In the algorithm for symbolic dynamical systems we now
have four major steps. The first two that we discussed
earlier were: 1) to write a simplified Wirtinger presenta-
tion of the fundamental group of the exterior (complement)
of any given knot, k. Recall to simplify a Wirtinger pre-
sentation just solve relators for one or more generators and
substitute into other relators minimizing both generators
and relations, and 2) to develop a presentation for the
commutator subgroup. Recall we first select a generator and
designate it as a distinguished generator, equate each of
the other Wirtinger generators to a multiple of the distin-
guished generator and some other generator. By substituting
and appling Tietze moves we produce still another equivalent
presentation in terms of the distinguished generator and the
unknown group generator. Then by representing the group in
only one relator and inserting a sequence of generator
multiples equivalent to the identity in strategic positions
of that relator, we can rewrite a relator as a multiple

sequence of conjugate generators. The result then is the
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desired presentation of the commutator subgroup.

The third step is the develépment of what is called the
augmented group system and shiffs‘of finite type. In es-
sence, we deyelop a‘set of‘vertices énd a seﬁ of edges as
described above.

The fourth and final step in our algofithm to develop
a symboiic(dyﬂamical éfstem'for a given knot, k is ﬁhe
plottingrof the directéa graﬁh, .. This is done from the
set of vefticés and'edges developed previously. This con-
cludes the algorithm for a dynamical system and its directed
graph which is called a symbolic dynamical system. We are
" now left only fo conclude the construction of the symbolic
" dynamical system for the trefoil. This we will do in the
next section.

As a .side note recall that the Wirtinger presentation
allowed us to disfegard one crossing in our development of
the presentation. We ignored the‘upper crossing and used
the two lower crossings. If we had used the upper and lower
right crossing our above relator would appear as a;,; a;,,'a;?
which is equivalent to a;,;'a;,;, a; since both are assumed to
be equivalent to 1. Alternately, if we had used the upper
and lower left crossings the relator would look like the
inverse of the relator we developed. That is,
aj.itag,a;=a;ag,, ‘'a;,=1 and both agree with the general pre-
sentation since inverses of generators aré assumed. Intu-

itively, these facts seem appropriate once we recognize that
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the standard projection of the trefoil is symmetric about
any of three lines through the center and any one,of the
three créssings, preserVingvorientafion."Since we can
physicaliy replace any crossing with any othéf'by é‘reflec-
tion and sihce the commutator subgroup invariaptly describes
the underlying khot, then it seems totally appropriéte‘that

the three relators discussed above are equivalent.

The Trefoil and Its Directed Graph

We will now conclude the construction of the SDS for
the tréfoil by the development of its directed graph..
'Recall that our shift of finite type & iﬁvolﬁes a finité
group 2. For our work here we will consider only the case
where Y>=Z,. Recall we have }ai+1‘ll a; a;=1 from our general
presentation of the commutgtor subgroup which leads us to
a;,,=a;.a; © and a,=a;a, ', when i=0. Given that p is a homo-

morphism and since a,=a,a, '€K is mapped by p to Z; then
p(az)=p(a;a,’)=p (51)4‘9 (a0 )eZs;.
This equation is then equivalent to p(a;)=p(a;)-p(a;) since
p(a,?)€Z; is equivalent to the additive inverse of. p(ag)€Z;.
Moreover,_as a conseéuence of the relation a;,;? a;,, a;, the
representation.p isndeterminéd by_ité values on a, and a,
through indﬁctiqnf Thus thg representations'p are in
one-to-one correspondence with Z,xZ,. In'other words, the

vertex set for our directed graph I is

41



V={(pl{a"0)y',p(a1) )}EZ3XZ3 ’and the edge set comes from the map
‘p'=0,p. More speéifiéélly,'pp‘ is an edge if and only if
p'=0,p. Now since o_'xp(ai)=p(x'1aix)=p»(ai+1) then the edge set’
becomes E={pp’|p'(aj)=p(a,), p(a,)=p’(a;)}- Thus, if p is the
répresentation givén by (1,0), where p(az)=1 and p(ay)=0 thén
the shift o,p is from (1,0) to.the vertex (oﬂxag), o.p(ay))
=(p (xX"ax) ,p(xa1x) )= (p(as), P(as) ) - Sinée p(az)=p(a1)fp(ao) we
h.ave 6,=(1,0)=(0,2) as an example. And since p(a;)-p(a,)=p(a,)
in our case,.then the edge set can be expressed as
B={pp'|p’ (30) =P (1) , P’ (21)=P@)-P (ac) }-

Representation sh;fts p'=o,p are.calculated in the
following manner. |

Since our target group is Z, it follows that we will
have nine glements'in our set of vertices we deéiénate as
p;,i=0,-,8 which are all completely determined by values on
a, and a,. Each p; represents an ordered pair such that .
pi=(pi(ay) ,p; (A1) ), where each.pi(ao) and pi(a15 is an element'
of Zs. From this wevcan list the set of nine vertices tﬁat
are determined by our system as
V={(0,0), (1,0),(2,0),(0,1),(1,1),(2,1),(0,2), (1,2), (2,2) },
where b(;=(0,0),p1=(l,0), etc. In other words the p; is the i

plus first representation in the set of vertices. Finding
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the oriented edges of our edge set for the directed graph we

must select a vertex p; and find another in our set of ver-
tices p;’, such til'at p:'’=0.p;. Recall that there is an edge
p:pi’, if and only if p;'=o,p;, giving p;’(ax)=0.p; (ax)=p: (X
'a,x)=p; (aw) . Let p;=(0,0) be our starting point whefe
po(ag)=po(a,;)=0 €Z,;. Note that o,pp=p,. This shows that thefe

is a loop edge connecting p, to itself and so p, is a vertex
of period one.

Oour next step is to consider a new vertex say p,=(1,0),

where pi(ao)=1, p1(a;)=0 and 0,1 €Z,. Our calculations are

as follows:
Gupr=(P1(a1) 1 (a1) =1 (20) ) =(0,2) =ps.
G.Ps=(Ps (1) , Pe(as) =Ps(as) ) =(2,2)=ps.
GPs=(Ps(ai) , Ps(ai) —ps(ao) )=(2,0)=p,.
Gupo=(P2(a1) , P2(a1)=P2(a0) )=(0,1)=ps.
Cpr= (Pa(a1) s Pa(@r) =Pa(a0) )= (1, 1) =ps-

oxPs=(pPa(ai) , ps(ai)—ps(ao) y=(1,0)=p,.
Notice that a cycle of period 6 has been completed since our

calculations have brought us back to our beginning vertex

namely, p;,. Note that there are only two vertices whose
edges have not yet been determined, they are b5=(2,1) and
" p=(1,2). This time we select ps letting ps(a,)=2 and
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ps(a;)=1. From this we have
C.ps=(Ps(ai) , Ps(ai)=ps(ao))=(1,2)=p;.

o.P=(p7(a1) , pr(ai)-pi(as))=(2,1)=ps.
This completes a third and the last cycle since the edges
have been determined on all of the vertices.
Our directed graph for the trefoil resulted in three
parts, each regarded as a unique bi-infinite path with
different periods. The first is period 1, the second is

period 6, and the third is period 2. We can determine the

affect of o, directly from a directed graph.

The following is the complete directed graph I' for the

trefoil.?
_el0,2)
(1,0) \\%,2)

(1,2) (2,1)

(1,1) (2,0)

(0,1)

From the directed graph we can see that the representation
shift &,,;, for the trefoil contains 1 fixed point, 2 points
of period 2 and 6 points of period 6.

Recall that we denote the augmented group system by

g=(G,X,%x). Representation shifts operating on g with a

target group X are denoted by &r(g). A dynamical system is
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a pair (ox(g),0,) defined to be a topological space plus a

'homeomorphism o, that maps a representation shift to itself,

o,:dy » @y, where &y is a set of ordered pair each in X

called vertices. Finally, a special kind of dynamical

system is one that can be completely described by a finite

graph I'. The bi-infinite paths in I' corresponds to the

representations p. This special kind of dynamical system is
called a symbolic dynamical system and is generally denoted

in the abreviated form by &y(g,), where k represents the

exterior of a given knot.
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CONCI.USTON

Here it seems appropriate to summarize the foregoing
and close with some information on recent research that has
gone beyond this application of symbolic dynamical systems.
First, the algorithm for developing symbolic dynamical
systems will be summarized in a nontechnical narrative in my
own words. The steps in a practical application are then
reviewed as we display the development of a symbolic dynami-
cal system in the section entitled Another Knot? -~ Why Not?
Lastly, we talk briefly about a different kind of knot
invariant called entropy that takes the structure of a
symbolic dynamical system into higher dimensional knot
theory.

The Algorithm in Summary

A known knot is selected then imbedded in R’. This is
followed by selecting a fixed neighborhood of the knot that
envelops the entire knot. We now extract a solid tube

containing the knot with a neighborhood and consider the

complement of the knot. Such an extraction leaves a ‘tunnel

shaped void of the knot in R?. Thus, the fundamental group
is defined in the exterior of the knot and can be presented
in terms of meridian loops.

Here we turn to the Wirtinger process for a presenta-
tion from a projection of the knot. The practice here is to

orient the knot projection, select meridian loops viewed as
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straight lines on the projection orient them from right to
left while facing with the orientation of the knot. These
meridian loops are to be labeled in a manner corresponding
to the arcs of the knot projectioﬁ determined from underpass
to underpass. A presentation of the fundamental group of
the knot is written using meridians as generators while the
relations of the presentation are taken from the relation-
ships among the meridians at all but one of the crossings in
the projection. |

Next with some algebra we solve for and substitute
generators among relators. Then by using Tietze moves we
combine relators, equate them to the identity and eleminate
as many generators and relators as is possible. 1In so doing
we have simplified the presentation to the minimum.

The Reidemester-Schreier Theorem enables us to write a
presentation for the commﬁtator subgroup K of our fundamen-
tal group. The generators of K are denoted by a; where
i=1,2,- . Each a; is equal to the conjugation x*ax'’ from
the prior presentation.‘ We write the presentation of the
commutator subgroup by rewritiﬁg the conjugations of previ-
ous relations in terms of the new generators.

Now we have a presentation of the commutator subgroup,
and let &; denote the set 6f all'representatoré of‘K into X.

Next we define a mapping based on the distinguished genera-
tor x and denoted by'cx. Reéall that the pair (®; ,0,) is
called a dynamic systen, where ¥ is a selected target
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group. For our Trefoil, example_the target group seiected
was thevcyclic group Z,;. This theﬂ allowed -us to define a
representation shift p sﬁéh that.&ﬁkai=p(xﬁéx’. With the
représentatibn shift defined all‘that is left to do is to
cénsiAer each vertex p aﬁd calculate the map o.p to 'some
terminal point p’. This we cali an edge. Once we have
céllected complete sets of all possible vertices and edges
it is then a simple matter to graphically'represent our
dynamical system with what ‘we call ‘a directed graphjand
denote by I. >The directed graph is drawn by plotting all
péssiblé vertices and connecting them‘in accordancé with the
direqtidn détermined»by thé calculations of o;p from ogr_set

of edges. The directed graph will depict one or more bi-
infinite paths consisting of several loops eéch wifh a
_discernibié~period. The dirécted graph.éf a dynamical
system is é symbolic depictién of thaf sysfem we call_é'
‘symbblic‘dynamicalAsystem. The foregoing is a summary of
the approach to an acfive development of a symbolic dynami-

~cal system for any known knot.

. - A
Al

Andther-Knot?lf Why Not?
'ﬁetsltake-a summary 1o§k at-thé'develbpment of the
symbolic QYnamicél systém for another ﬁon-frivial knot,
~ called the figure-eight knof.'~fhe figure-eight knot’is'

classified as a 4, knot, the target group X we will use‘is
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Z, and we can denote the symbolic d}}namiCal system by

®z/3(9) -

" From' the standard projection _df the figure-eight knot
we develop a presentation for the fundamental group of the

knot exterior using the Wirtinger process as follows:

K1 X=X X,

3 X1X,=XX,

A Wir{:ihger -presentatic;;n of the figure-eight knot is
Ty (41) =<X1, Xz, X3, Xy |X4X1=k1¥é ¢ XX TR, K K=XKpXa>
From r; and r; we have X;=X; 'X.X), X,=X, X1X; ,X; =X; ¥, 'X, and
x2‘1=><'4.;1'><'1“1x4. Rewriting r; we have %, '%,'%,X,=€ , then by
substituting we can write our only relatér as follows:
xl'lx{lxlx[_lvxl'lx,;, X x;‘..‘lxlx4=e |
Notice we now have only two generators-and one .relétor, sucb:
that =, (.41)=<x1,x4|x1'1x4“131 xg'ix1'1x4x1x4figllx;>. Next select

as our distinguished generator such that x,=ax, where a is
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another group generator and x=X,.-
Note that x,'=x'a™. Again by substitution we have,
T, (4,)=<x%,a|x 'xa'xx'a 'x 'axxx'a 'xax> or

7, (4,) =<x,a|x’a x*x2a ¥’ x *ax’x ?a " x*x lax>

by strategic insertions of x'x*,i€Z such that oﬁ_r relator

is presented as the product of conjugates. By the
Reidemester-Schreier Theorem we can now write a presentation

for the commutator subgroup, such that the (yenerators are

defined by a;=‘ax", i€Z. Thus, as=a, a,;=x 'ax, -a2=x"éax2, a;=x"
‘ax’ and a,'=a™l, a,; '=x"'a’'x, a,'=x’a’'x’, a;'=x’a'x’. Rewrit-
ing our relator with the above substitutions we now have

a, '-a, ' ra," a2;1~a1, which will be the relator for the presen-
tation of the commutator subgrqpp/, |
K=<a,,a, ',as;|a, 'a, ‘a;a, ‘a;>. . In general, ‘v}e_ have_.
K=<ai|a‘iﬂ'laiﬂ'1ai+2ai+1'1ai>. iay 'settilm‘g:‘(;ur ;rel.ato.r equal to
the identity and solving for a;,» We have : }

ai+1_2ai+2ai+1—?ai=1 gives ai+2=a;_+12‘~ai_1ai+1°

From here we can produce the directed graph. We choose

Y = 7Z, and define our vertex and edge sets to be V={p|p:~Z}

and E={pp'[p’ (a0)=p(a;) , P’ (a1)=3p(a1) =p(ac) } .
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Note that since p is a homomorphism then
p(auz)= p(a’a; as,)
P(aiz)= p(au®)+p(ai ™) +p( ai)
p(ai)= 2p(as)=-p(ai)+p( ain)
p(aiz2)= 3p(ain)-p(a;)
p(aiz)= -p(a;) €,
Since 3p(ai.)-p(a;) is in Z; then we have that 3p(a;,,) will
always equal zero. Thus, p(a;.,)=-p(a;).
Given that pceHom(K,Z;) it then follows that the set of

vertices has nine elements, p;, i=1,-,9 all of which are
completely determined by values on a, and a;. That is, each
p; represents an ordered pair such that p;=(p;(agy),pi(ai)),
where p;(a,),p;i(a;)€Z;. Again, we can now list our set of
nine vertices as follows:
Vo={(0,0),(0,1),(0,2),(1,0),(2,1),(1,2),(2,0),(2,1),(2,2)}
where p;=(0,0),p,=(0,1) and so on.

In order to find the oriented edges of our directed

graph, I' we must select a p; and find a p;'. But first
recall that there is an edge p;p;’, where a,=x fa,x* if and
only if p;'=0,p;. Thus, we have p;’'(ay)=0,p;(a;)=

p; (x'ax)=p¢(ap.1) - Given that p,=(0,0) then let p; be our
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starting-point where pl(a0)=§1(51)=er . Thus,>
o.p1=(p.(ai) ,=-p.(ay) )=(0,0). We have defermined'that Pi ié a
vertex of period one since it maps to itself, o,:p;—p,. Lets
now consider pé='(0,1) , where p,(ao)=0 and p,(a,)=1eZ;. It
follows that

OxP2= (Pz.(al) ¢ —P2(a0) )=(1,0)=p,,

Gpe=(Ps(as) , =ps(0))=(0,2)=p,,

G.ps=(Ps(ai) , —Ps(ac))=(2,0)=p,,

GxP7= (P (A1) 3 -p7(ao) )=(0,1)=p;,
Notice that we have comp}eted a cycle of period four on p,.

We still have four vertices left whose edges are yet to be
determined.

Lets consider, the first 'ver{‘;éx w'ith"an undetermined
edge, ps=(1,1), where p5(a0-)-%-p5(alli) =_’1eZ3'.v" it follows that
0:ps=(P(a1) , =ps(a0) )= (1,2)=pe,
oupe=(Ps(a1) , ~Pe(an))=(2,2)=ps,
GuPs=(Ps (1), =P (@0))=(2,1)=pe,
6.pe= (Do (@2) ; ‘=P (30))=(1,1)=ps,
Again we have c'learly_ complét_ed another cycle bﬁt this time
we have completed the d.eterl;nin.ation of all of the oriented

edges for the nine vertices. This information can now be

graphed as a symbolic repres‘entation' of the fundamental
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group of the figure-eight knot.

Thus, the directed graph for the figure-eight knot is,

(0,1) ~¥»=(1,0)
(0,0) (2,0)s%; (0,2)
(1,1) Dom(1,2)
(2,1 )t (2,2)

Directed graph I' - Figure-eight knot (4,)
Recall that the symbolic dynamical system, ¢,,(g) for

the trefoil had one shift of period 6, another of period 2
and one fixed point. Compare with 9,,;(J) for the figure-

eight having two shifts of period 4 and one fixed point.
Since symbolic dynamical systems are knot invariants then
the difference in the two systems of these knots implies
they are distinct.

The next section is provided to show that the value of
symbolic dynamical systems has not stopped here but has also
revealed knot invariants in higher dimensional knots.

Entropy: A Knot Invariant

The ‘use of symbolic dynamical systems has been carried
generally to higher dimensional knots. As it happens,
entropy is a knot invariant for higher dimensional knots,
denoted by n-knots, as determined from dynamical systems.

By generalizing the definition of an embedded 1-dimen-
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sional knot we can say that an n-knot is a smoothly embedded
n-sphere, also denoted by k, in R™? space. Similarly we
can define the exterior of the knot. That is, let N(k) be a

neighborhood of k that is diffeomorphic to R"xD?, then the

closure of X(k) of R™-N(k) is called the eﬁterior of the
knot.* |

The fundamental group and augmented group systems are
likewise supported by higher dimensioﬁal knot definitions.
Thus representative shifts qah be calculated and directed

graphs produced. It has been determined that the shifts

described by a directed graph has an entropy equal to log A,

‘where A is the Perron eigenvalue of the adjacent matrix of

the directed graph. Not only do conjugate shifts have the
same entropy but so do finitely eﬁuivalent shifts.?

There is a corollary that gives the promise of'tﬁe
discovery of further invariant grdup syétems that apply to

knot theory. That corollary is:

Corollary: Let (G,z,k) be an augmenfed group system and let
r be a positive integer. The entropy, denoted by h(®,) of

the associated represéntation shift (é"ca) is an invariant
of the group systéh ?G,x), i.e. the entropy depends only on

the isomorphism class of the group system.
This corollary is a very powerful tool in that it can be

used to define a sequence of entropy invariants for highef
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dimensionai knots.

This very briéf-and informal discussion on entropy was
included to demonstrate the ekteﬁf of influence symbolic
dynamical systems are cﬁrrénfly ﬁaving:ih Knot Théory. It
was also intended to poiﬁtloﬁt that this fledgling field of
study holas a tremendous»pétential for discovery and further

expansion.
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