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Latent Variable
Research 		                      Copyright (c) Robert Ping 2001-2019

 	 (Displays best with Microsoft IE/Edge, Mozilla Firefox
                                  and Chrome (Windows 10)

		     

	 Please note: The entire site is now under construction. 

	 Please send me an email at rping@wright.edu if something isn't working.

FOREWORD--This website contains research on testing theoretical models
   (hypothesis testing) with latent variables and real world survey data (with or without
   interactions or quadratics). 

It is intended primarily for PhD students and researchers who are just getting started 
   with testing latent variable models using survey data. It contains, for example, 
   suggestions for reusing one's data for a second paper to help reduce "time 
   between papers." It also contains suggestions for finding a consistent, valid and 
   reliable set of items (i.e., a set of items that fit the data), how to specify latent 
   variables with only 1 or 2 indicators, how to improve Average Variance Extracted, 
   a monograph on estimating latent variables, and selected papers.

News:

   A paper about reusing a data set to create a second theory-test paper is available
   (to help reduce the "time between papers"). It turns out that an editor might 
   not object to a paper that reuses data which has been used in a previously 
   published paper, if the new paper's theory/model is "interesting" and materially 
   different from the previously published paper. The paper on reusing data discusses 
   how submodels from a previous paper might be found for a second paper that may 
   not require collecting new data. (Please click here for more.)

Recent Additions and Changes (indicated by "New," "Revised" or "Updated"):

   o Comments on specifying and estimating a manifest (i.e., observed, single-
      indicator, etc.) variable as a latent variable, 
   o suggestions for specifying and estimating a latent variable with only 2 indicators, 
   o comments on the use of regression in theoretical model (hypothesis) testing.
   o an EXCEL template to "weed" a measure so it "fits the data" (i.e., so it is 
      internally consistent) and
   o several papers have been added, including one titled "What is Structural Equation 
      Analysis?" that may be useful to those who would like to quickly gain a sense of 
      this topic.
   o Some of the material below is duplicated elsewhere on the web sire (click here to 
      view the entire web site).

Please note: If you have visited this web site before, and the latest "Updated" 

http://www.wright.edu/~robert.ping/index.htm
http://www.wright.edu/%7Erobert.ping/NOTES%20ON10.doc
http://www.wright.edu/%7Erobert.ping/index.htm


   date (at the top of the page) seems old, you may want to click on your browser's 
   "Refresh" or "Reload" button on the browser toolbar (above) to view the current 
   version of this web page.

All the material on this web site is copyrighted, but you may save it and print it 
   out. My only request is that you please cite any material that is helpful to you. APA 
   citations for the material below are shown with the material.

Don't forget to Refresh: Many of the links on this web site are in Microsoft WORD.
   If you have viewed one or more of them before, the procedure to view the latest
   (refreshed) version of them is tedious ("Refresh" does not work for Word documents
   on the web). With my apologies for the tediousness, to refresh any (and all) Word
   documents, please click on "Tools" on the browser toolbar (above), then click on
   "Internet Options...." Next, in the "General" tab, find the "Temporary Internet Files"
   section and click on "Delete Files...." Then, click in the "Delete all offline content" box,
   and click "OK." After that, close this browser window, then re-launch it so the latest
   versions of all the WORD documents are forced to download.

Your questions and comments are encouraged; just send an e-mail to 
rping@wright.edu. 

Latent Variables:

 

 
Frequently
Asked Question:

"Is
there any way to speed up the process of attaining
internal 
   consistency for a measure (making a
multi-item measure fit the 
   data with more than 3 items)?" (Please see the first EXCEL
   template below.)

"What
is structural equation analysis?"
    (Please click here for a paper on this matter,
then please e-mail 
   me with any questions or comments you may
have.)

"Why are
reviewers complaining about my use of standardized loadings?"
   It
turns out that standardized
loadings (latent variable (LV)
loadings
specified
   as all free so the resulting LV has a
variance of unity) may produce
incorrect
   t-values for some parameter estimates in real world data,
including
structural
   coefficients. This presents a problem for theory testing: An
incorrect
(biased)
   t-value for a structural coefficient means that any
interpretation of the
structural 
   coefficient's significance or nonsignificance versus its hypothesis may be
risky.
    
(Please click here
for more.)

"Why are reviewers
complaining about the use of multiple regression 
   in my paper?" (Please click here for a paper on this subject.)
  

mailto:rping@wright.edu
http://www.wright.edu/~robert.ping/SEA.doc
http://www.wright.edu/%7Erobert.ping/stdLoad.doc
http://www.wright.edu/~robert.ping/MR.doc


"Is
there any way to improve Average Variance Extracted
(AVE) in a 
   Latent Variable X?"
    (Please click here for a paper on this
matter.)

"How
does one specify and estimate latent
variables with only 1 or 2 
   indicators?"
   (Please click here for a paper on this
matter, then please consider 
   e-mailing me--I have more
suggestions.)

 
 

(CLICK
 ON A
 RED 
 DOT)

EXCEL Templates:

  For Latent Variable Regression, a measurement-error-adjusted 
regression
      approach to Structural Equation Analysis, for situations where 
regression 
      is useful (e.g., to estimate nominal/categorical variables with LV's) 
(see 
      Ping 1996, Multiv. Behav. Res., a revised version appears below).
      More about the template.

For "weeding" a multi-item measure so it "fits the data" (i.e., finding 
   a set of items that "fits the data," so the measure is internally 
   consistent).
Note: In real-world data, there frequently are multiple subsets of a 
   multi-item measure that will "fit the data," and this raises the issue 
   of which of these subsets is "best" from a validity standpoint. This 
   template helps find at least one subset of items, usually with a 
   maximal number of items (typically different from the one found 
   by maximizing reliability, and, so far, containing more than 3 
items), 
   that will "fit the data." The template then can be used to search 
   for additional subsets of items that will also fit the data, and thus 
   it helps find the "best" face- or content valid 
   subset of items in a measure. More about the template.

On-Line Monograph: 

(CLICK
 ON A
 RED 
 DOT)

TESTING LATENT VARIABLE MODELS WITH SURVEY DATA (2nd 
Edn.)

The results of a large study of theoretical model 
(hypothesis) testing 
   practices using survey data, with critical analyses, 
suggestions and 
   examples. Potentially of interest to Ph.D. students and 
researchers 
   who conduct or teach theoretical model testing using survey data. 
   Contents include the six steps in theoretical model (hypothesis) 
   testing using survey data; Scenario Analysis; alternatives to 
   dropping items to attain model-to-data fit; inadmissible solutions 
   with remedies; interactions and quadratics; and pedagogical 
   examples (177 pp.).

Of particular interest lately is how to efficiently and effectively "weed" items to 
   attain a consistent measure (see STEP V, PROCEDURES FOR ATTAINING...).

The APA citation for this on-line monograph is Ping, R.A. (2004). Testing latent 

http://www.wright.edu/~robert.ping/ImprovAVE2.doc
http://www.wright.edu/~robert.ping/Under_Det.doc
http://www.wright.edu/%7Erobert.ping/Tmplmvbr.xls
http://www.wright.edu/%7Erobert.ping/LVR.doc
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http://www.wright.edu/~robert.ping/weeding.doc
http://www.wright.edu/~robert.ping/lv1/toc1.htm


   variable models with survey data, 2nd edition. [on-line monograph]. 
   http://www.wright.edu/~robert.ping/lv1/toc1.htm .

Ping
(2002) TESTING LATENT VARIABLE MODELS WITH SURVEY
DATA
  (Edition 1)

Selected Papers on Latent Variables:
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"On the Maximum of About Six Indicators per Latent Variable with 
   Real-World Data." (An earlier version of Ping 2008, Am. Mktng. 
   Assoc. (Winter) Educators' Conf. Proc.).

The paper suggests an explanation and remedies for the puzzling result that 
   Latent Variables in theoretical model testing articles all have a maximum of 
   about 6 indicators. 

"On Assuring Valid Measures for Theoretical Models Using Survey 
   Data" (An earlier version of Ping 2004, J. of Bus. Res., revised 
   December 2006).

The paper reviews and comments on extant procedures for creating valid 
   and reliable latent variable measures.
 

"But what about Categorical (Nominal) Variables in 
Latent Variable Models?"
   (An earlier version of Ping 2009, Am. Mktng. Assoc. 
(Summer) Educators'
   Conf. Proc.).
 
In part because categorical variables almost always are measured in surveys in the 
   Social Sciences (e.g., "Demographics"), the paper suggests a procedure for estimating 
   nominal ("truly" categorical) variables in a structural equation model that also contains
   latent variables.
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NOTES ON “USED DATA”-- 
REUSING A DATA SET TO CREATE 
A SECOND THEORY-TEST PAPER 

 
 

Ping R.A. (2013). "Notes on 'Used Data.'" Am. Mktng. Assoc. (Summer) Educators' Conf. Proc. 

 
ABSTRACT 

 
 There is no published guidance for using the same data set in more than one theory-test 

paper. Reusing data may reduce the “time-to-publication” for a second paper and conserve funds 

as the “clock ticks” for an untenured faculty member. Anecdotally however, there are reviewers 

who may reject a theory-test paper that admits to reusing data. The paper critically discusses this 

matter, and provides suggestions. 

INTRODUCTION 

Anecdotally, there is confusion among Ph.D. students about whether or not the same data 

set ought to be used in more than one theory-test paper. Some believe that data should be used in 

only one such paper. Others believe that data may be reused.  

In a small and informal survey of journal editors, none was found to be opposed to 

reusing data, even when their journals’ “instructions to the writers” stated or implied that the 

study, and presumably its data, should be original.  

In an anecdote from this survey, an editor summarized his experience with a paper that 

used data from a previous article. One reviewer rejected the paper because the data was not 

“original,” while the other reviewers saw no difficulty with a paper that relied on “used data.” 

This anecdote hints there also may be confusion about used data among some reviewers, and, 

since they are likely authors, presumably among some authors. 

In a small pretest of a study of faculty at Research 1 universities who had Ph.D. students, 

none could recall the topic of reusing data in theory tests ever being discussed. 



Because the consequences of any such confusion might include that the diffusion of 

knowledge may be impeded (e,g., an important study could be delayed, or go unpublished, 

because the author(s) had difficulty funding a second study), the paper critically discusses the 

reuse of data in theory tests, and provides suggestions. Along the way, several matters are raised 

for possible future discussion and pursuit.  

USED DATA 

“Used data” is ubiquitous. Secondary data from, for example, the US Census Bureau, and 

the Bureau of Labor Statistics, are in use almost everywhere. The advantages of (re)using this 

data include reduced costs and time. But data collected by governments/non-governmental-

organizations/commercial firms may not be ideal for a theory test. (It tends to be descriptive, and 

multi-item measures typical in theory tests may be unavailable; raw secondary data may be 

difficult to obtain; or it may not measure all the variables that are important to the researcher.) 

This paper will focus on the initial reuse of primary data; typically with 

formative/reflective (multi item) measures intended or used for theory testing. Theory-testing 

situations that might be judged to involve the initial reuse(s) of data include creating two or more 

papers based on a single data set gathered by the author(s). Other situations include creating a 

paper based on data that was previously collected for commercial purposes. (Anecdotally, in 

Europe, Ph.D. candidates’ dissertation data may have been gathered and used by a “sponsoring 

company” for the company’s commercial purposes that are unrelated to the dissertation.) They 

also include reanalyzing a published data set for illustrative or pedagogical purposes (typically 

for a suggested methodology), and reanalyzing a paper’s data to further understand or “probe” a 

result observed in the paper. Less obviously, improving measure psychometrics (e.g., deleting 

measure items to improve reliability), and model-building also involve reusing data.  



The advantages and disadvantages of reusing data are discussed next. Then, suggestions 

for theory testing are provided, and avenues for future research are sketched.  

ADVANTAGES OF RESUSING A THEORY-TEST DATA SET 

One advantage of reusing data is that it can reduce the elapsed time between theory 

generation and analysis, the resources required for data gathering (e.g., costs), and in some cases 

(e.g., data gathered by others) the expertise required to gather data. For example, in a model with 

several variables, after a paper that tests hypothesized links among (exogenous) model 

antecedents and their (endogenous) consequences, more papers in which the antecedents (or the 

consequences) are themselves linked, might be theoretically interesting enough for submission 

without gathering additional data. (Criteria for “theoretically interesting” might include new 

theory that either extends, or fills a gap in, extant theory.) 

Reusing data may enable the division of a large paper into two or more papers, in order to 

satisfy a journal’s page limit. For example, in a model with multiple final endogenous 

(consequence) variables, these variables might be divided into two sets of consequence variables 

(with their antecedents), and thus two papers, one for each resulting model. In each paper, this 

might reduce the number of hypotheses and their justifications, and the discussion and 

implications sections. 

Stated differently, it might mean that an important study would not be delayed, or go 

unpublished, because of paper size, or difficulty funding an additional study.  

Other advantages of reusing data might include: 

o “Piggy backing” a theory test onto a commercial survey. This and using data already 

gathered by a commercial firm also may save time and costs.  



o Combining two surveys into a single survey. Unrelated surveys may not be easily 

combined, but, for example, when two models have some of the same latent variables, 

time and money might be conserved.  

o Publication of a dissertation with changes. (These changes should be based on additional 

theory, such as an additional path(s), that was developed prior to any data analysis 

beyond that for the dissertation. Stated differently, the logic of science (e.g., Hunt 1983) 

permits empirical discovery, hypothesis, then testing; but testing must be conducted using 

different data from that used in empirical discovery—see Kerr 1998 (I thank a reviewer 

for this citation)). 

o The use of secondary data.  

Although it is now less popular that it was, meta analysis (e.g., Glass 1976) uses previously 

gathered data. In addition, methodologists and others also have used previously published data 

sets to illustrate a suggested methodology (e.g., Jöreskog and Sörbom 1996, and Bentler 2006).  

Reuse of a paper’s data includes estimating associations “Post Hoc”--after the model has 

been estimated (see Friedrich 1982)--to further understand or explain an observed association(s). 

It also includes reanalysis of the paper’s data to illustrate different model assumptions. (For 

example, Ping 2007 reported results with and without Organizational Commitment in the 

proposed model for discussion purposes.) 

Reusing data also enables psychometric improvement of measures. Measure items are 

routinely deleted serially with measure (or model) reestimation to improve reliability and facets 

of validity (e.g., average extracted variance—see Fornell and Larker 1981). This might be argued 

to be reuse of the data set (i.e., data snooping) to find the “best” itemization of a measure.  



DISADVANTAGES OF RESUSING A THEORY-TEST DATA SET 

Reusing data to produce more “hits” may not be viewed others as a worthy endeavor. 

Absent a compelling explanation such as reducing paper size, or sharpening the focus of a paper 

(e.g., a previous paper was on the antecedent-consequences links, and the next paper is about the 

links among the consequences), a reviewer (or reader) might judge data reuse as opportunism 

rather than “proper” science.  

 A second paper that, for example, replaces correlations in a previously published model’s 

antecedents with paths, may be judged conceptually too similar to the first paper for publication. 

Thus, instead of conserving time, time may be wasted on a second paper that experiences 

rejections because of its insufficient contribution beyond the first paper. 

 Further, papers that are variations on a single model, and that reuse not only data but 

theory/hypotheses, measures, and methods, and share some results that are identical to a previous 

paper could be judged idioplagaristic. As a result, time and effort may be lost in rewriting to 

perceptually separate papers that use the same data set. 

Care must be taken in how a model is divided into submodels. For example, omitting one 

or more significant exogenous variables in a model may bias the path coefficients of an 

endogenous variable to which they are linked (i.e., the “missing variable problem”--James 1980). 

And, it is easy to show that omitting one or more dependent variables in a model may change 

model fit, and thus standard errors and model paths’ significance.  

“Piggy backing” onto commercial survey (or using commercial data) may save time and 

costs, but an academic researcher may have difficulty controlling some of the project. For 

example, overall questionnaire design and its testing may not be under the control of the 

academic researcher. Similarly the sampling frame, sampling, and activities to increase response 



rates also may not be under the direction of the academic researcher. Further, the appearance of 

an academic researcher’s “independence” from the survey “issues” (i.e., the researcher is not “up 

to something”) may be lost by not using university letterhead or return address. (Or arguably 

worse: using university letterhead and return address to collect data that also will be analyzed by 

a commercial firm). Finally, having someone else “doing some of the work” can deprive a 

researcher of valuable experience in data gathering. (This could be an important disadvantage: 

for a dissertation, demonstrating data gathering expertise is typically required.) 

Last, a questionnaire that combines several surveys may be too large for its respondents: 

it may increase their fatigue, and it may produce echeloning, respondent irritation over similarly 

worded items, etc., that can increase response errors, and produce low response rates. 

DISCUSSION 

It may not be apparent that a model might contain candidate submodels for additional 

papers. Several examples might help suggest a framework for finding candidate submodels.  

Finding Submodels  

In Figure 1, a disguised (but actual) theoretical latent variable model (Model 1), the blank 

(fixed at zero) paths (e.g., A2 -> A3) could be freed to help produce submodels. To improve 

readability, several Model 1 latent variables were rearranged, and exogenous (antecedent) latent 

variables (those without an antecedent) were relabeled “A” (see Figure 3). Terminal 

(endogenous) consequences (latent variables that are not antecedents) were relabeled “TC,” and 

intermediate (endogenous) latent variables were relabeled “E.”  

Next, each blank (fixed at zero) path was considered for being freed, then in which 

direction it might be freed. Then, several of these new paths were discarded because they were 



theoretically implausible, of little interest theoretically, or directionality could not be established 

(bidirectional/non recursive paths were not considered). Next, several A’s were relabeled as E’s. 

The results included Model 1 and the (full) Figure 3 model, plus several submodels 

involving the A’s and E’s that were judged interesting enough for possible submission. For 

example, a submodel involving E5, and the other E’s and A’s (to avoid missing variable 

problems—A4, for example is an indirect antecedent of E5) (Submodel 1) was judged to have 

submission potential (E5 was judged to be an important consequence) (see Figure 4). (Submodel 

1 could be abbreviated E5 = f (E4, E6, E7, Ei, Ea, Eb, A2, A4 | i = 1-3, paths among E’s free as 

shown in Figure 3, paths among Ea, Eb, A2 and A4 free as shown in Figure 3), where “f” 

denotes “function of, as shown in Figure 4” and “|” means “where.”)  

A “hierarchy of effects” (serial) respecification of Figure 3 also was considered. 

Specifically, a second-order latent variable S1 was specified using Ea, A2, Eb and A4 (see 

Figure 2, and see Jöreskog 1971). Similarly, second-order latent variables S2 and S3 were 

specified using E1-E7 (see Figure 2), and the proposed sequence S1, S2, S3 then TC was 

specified. (Experience suggests that a second-order latent variable can be useful to combine, and 

thus simplify, latent variables in a model (e.g., Dwyer and Oh 1987)). 

Similarly, there was an interesting submodel involving Eb (Eb = f (Ea, A2, A4)) (not 

shown, but see Figure 3), and another interesting submodel involving E1-E3 (Submodel 2) ({Ei} 

= f (A2, A4, Ea, Eb | i = 1-3, paths among A2, A4, Ea and Eb free as shown in Figure 3, paths 

among Ei free as shown in Figure 3), where “{}” means “set of ”) (not shown, but see Figure 3). 

In summary, several models were found, each having a “focal consequence” latent variable(s) 

that was judged to be important enough to have submission potential.  



Figure 6 shows a different disguised theoretical latent variable model (Model 2) where 

antecedent (exogenous) latent variables have been labeled “A,” and terminal consequences 

(latent variables that are not antecedents) have been labeled “TC.” In Figure 7, Model 2 was 

rearranged for clarity, bolded paths were added to replace the originally blank (fixed at zero) 

paths in Model 2, and intermediate latent variables were (re)labeled E (Model 3). Because much 

of the theory and many of the measures in Model 2 were new, the first paper (with Figure 6’s 

Model 2 and no bolded paths) was too large for journal acceptance. As a result, TC3 (itself an 

interesting focal variable) was excised for placement in a second paper (i.e., TC3 = f (A3, Ei | i = 

1-7, all paths among A3 and Ei fixed at zero) (not shown, but see Figure 7). An additional model 

with the focal variable E2 = f (A3, E1, E3 | bolded paths among A3, and E1 and E3 free as shown 

in Figure 7) (Submodel 3) was judged interesting enough for journal submission (A3 is an 

indirect antecedent of E2 and is specified to avoid the missing variable problem) (not shown, but 

see Figure 7). Another interesting model was discovered, with the bolded Figure 7 paths among 

E4-E7 (with A3 and E1-E3 without their bolded paths, and without TC3), that was judged to be a 

“hierarchy of effects” (sequential) model (i.e., first E4, next E5 or E7, then E6, then E7) 

(Submodel 4) (not shown, but see Figure 7).  

An additional model with a theoretically plausible and interesting non-recursive (bi-

directional) path between E6 and E7 (see Figure 5, and see Bagozzi 1980) also was discovered 

using Figure 7. (A non-recursive model that was identified—see for example Dillon and 

Goldstein 1984, p.447—was not immediately obvious. At least two variables were required for 

identification of the bi-directional path between E6 and E7: one that should significantly affect 

E6 but should not be linked to E7, and another that should significantly affect E7 but should not 

be linked to E6. Because nearly all the Figure 7 latent variables were theoretically linked to both 



E6 and E7 (and could not be omitted without risking the missing variable problem), theoretically 

plausible demographic variables D1 and D2 were added to attain identification). Finally, a 

comparison of the Figure 7 model’s estimates for males versus those for females was considered. 

In summary, after rearranging and re-labeling the Figure 6 latent variables for clarity, 

previously fixed but theoretically plausible paths were freed. Then, interesting focal variables 

were found and submodels with as many of the Figure 6 variables as antecedents as possible (to 

avoid the missing variable problem) were estimated (to determine if the results were still 

“interesting”). In addition, the Figure 7 model was found to contain a hierarchy of effects 

submodel, and at least one of the paths was plausibly non-recursive. Finally, the Figure 6 model 

was estimated for males, then reestimated for females, and the results were compared. 

Experience suggests that models with many variables may contain “interesting” 

submodels. Models with several “intermediate” variables (e.g., Figure 3), and those with 

multiple antecedents or several terminal consequences (e.g., Figure 7) also are likely to contain 

interesting submodels. As the examples suggested, in addition to “single consequence” 

submodels, linked antecedent and linked consequence submodels (e.g., Figure 7), second order, 

hierarchy-of-effects and non-recursive submodels are possible. Comparing model results for 

categories of a demographic(s) variable also might produce interesting results.  

Irregularities 

Unfortunately, data reuse may provide opportunities for “irregularities.” For example, 

combining two surveys into a single survey provides an opportunity to “data snoop” across 

surveys. While this might generate interesting theory, it also might result in a paper that 

“positions” exploratory research (data snooping, then theory/hypotheses, and then a theory 



disconfirmation test using the data-snooped data) as confirmatory research (theory/hypotheses 

prior to any data analysis involving these hypotheses, then disconfirmation ).  

Data reuse also may provide a temptation to “position” the results of post hoc analysis as 

though they were originally hypothesized. For example, care must be taken that paths discovered 

by post hoc data analysis (e.g., to explain an hypothesized but non-significant association) are 

not then hypothesized as though they were not the results of data snooping.  

(Parenthetically, “data snooping” also might be acceptable using a split sample, or a 

simulated data set. With a split sample, half of the original data set might be used for data 

snooping, and the other half could be used to test any resulting hypotheses. Similarly, a 

simulated data set might be generated using the input item-covariance matrix from the original 

data set, then used for data snooping. Then, the original data set could be used to test any 

resulting hypotheses. In both cases, the additional hypotheses, and the split half or simulated data 

set procedure should be mentioned in the interest of full disclosure.  

Improving Psychometrics 

Viewing sequentially dropping items (item weeding) to improve measure psychometrics 

as reanalysis of a data set, thus reusing data, may require additional discussion. Item weeding is 

routinely done in structural equation analysis to improve internal and external consistency, and 

reliability and validity in measures. These activities have been criticized (e.g., Cattell 1973; 

Fornell and Yi 1992; Gerbing, Hamilton and Freeman 1994; Kumar and Dillon 1987a, 1987b), 

however these complaints did not involve data reuse, and these objections are now seldom heard.  

Item weeding is (implicitly) justified as required to separate measurement from model 

structure (e.g., Anderson and Gerbing 1988). (Ideally it produces a compromise between 

measurement model “fit” and face validity). However, it is easy to show that in real-world data 



these efforts can reduce the standard errors of the structural model’s path coefficients. Stated 

differently, item weeding could be viewed as data snooping to (perhaps inadvertently) weaken 

the desired disconfirmation test of a proposed model by finding itemizations that are more likely 

to improve the chances of “confirming” the model. 

Alternatives to weeding are few. In real-world data, summing unweeded indicators may 

not be acceptable because the resulting measure may be unreliable. However, Gerbing and 

Anderson (1984) suggested in effect that deleted items could be specified as a second factor in a 

second-order latent variable (e.g., Jöreskog 1971). The software they suggested to expedite this 

task, ITAN (Gerbing and Hunter 1988) is no longer readily available, but experience suggests 

that in real-world data exploratory factor analysis could be used to create second-order latent 

variables from the “factors” (to likely reduce both the “data snooping,” and to reduce the item 

deletions and thus improve measure face validity). 

SUGGESTIONS FOR THEORY TESTING  

Authors may want to be more aware of the opportunities attending data reuse. Even if 

they elect not to reuse their data for publication, finding submodels might be used as way to 

discover additional interesting research topics. Authors could then write a second paper on an 

interesting submodel while conducting a new data gathering activity to test that submodel. They 

also might estimate the submodel using the “old” data before the new data are available, to 

develop at least a framework for several sections of the new paper, including possibly the 

reliability and validity of the submodels’ measures (these should be reconfirmed using the new 

data), and the results and discussion sections. 



Once the new data are available, the second paper could be revised based on the new 

data. The used-data issue would be avoided, and time might be conserved by the parallel 

activities of writing a new paper while collecting data for its test. 

However, given the risks that the new paper might be judged too similar to any previous 

paper, or it may be judged idioplagaristic, authors may elect to conserve time and funds by 

constructing a new paper based on the used data. In that event, the editor of any target journal 

probably should be contacted, to gauge their reaction to reusing data (there is the obvious matter 

of possibly compromising the double blind review process, even if the editor instructs the 

reviewers that the authors are not necessarily the same as before). 

In addition, to anticipate any reviewer objections, authors should consider a “full 

disclosure” of the history of the data, and the paper. Specifically, any prior publication, such as 

publication of a previous paper involving the data, publication of the paper as an abstract, a 

conference paper, etc. probably should be noted to address any reviewer questions about the 

paper’s relationship to any other published papers.  

Any previous use of the data briefly should be described in the first submission of a paper 

that reuses data, to address any reviewer questions about the originality of the data given the 

sample appears to be identical to a previously published article(s). If reuse becomes an issue 

during review, additional details, previous paper descriptions, and assurances such as “analysis 

of the data for the present paper was conducted after theorizing,” and “theorizing was not revised 

to fit the data,” etc. could be provided. Further, any valid justifications, such as “the present 

paper is the result of pruning the prior paper to meet the page limitation,” could be stated.  

In addition, in a combined survey, it could be stated that extensive pretesting was 

conducted to reduce survey recipient fatigue; or in a study that piggybacked onto a commercial 



study, that the lead researcher was careful to maintain strict control of all phases of the study. 

Further, it could be stated that every effort was made to reduce idioplagarism, that care was taken 

in creating submodels to eliminate the missing variable problem, and that the model was tested 

with and without omitted consequent variable to estimate any bias due to model fit. 

(parenthetically, this “data history” also may be important after paper acceptance, so readers can 

gauge the acceptability of the paper for themselves). 

Ideally, if data are to be reused, that decision should be made prior to any data gathering. 

Specifically, after the initial model is developed, any additional submodels and their hypotheses 

should be developed before any data are gathered. This should reduce any temptation to develop 

hypotheses then insert them in the original paper based on data snooping. 

If the decision to reuse data is made after data has been gathered, all submodel(s) and 

their hypotheses should be developed before any submodel is estimated. Again, this may reduce 

any temptation to insert “data snooped” hypotheses in the same paper.  

Addressing the matter of multiple papers with many of the same variables, and the same 

hypotheses for these variables, the same measures and sample, many of the same findings, etc. 

being judged too similar, or even idioplagaristic, may require effort. Similarity might be reduced 

by emphasizing that, although the new paper involves previously studied constructs, it provides 

important new theory about the relationships among them. For example, Submodel 1 in Figure 3 

proposed previously unexplored antecedents (E4, E6 and E7) of an important variable (E5).  

Reducing the appearance of idioplagarism may require writing a fresh paper, instead of 

rewording (or cutting and pasting), for example, the hypotheses justifications, and the 

descriptions of the measures, sampling, data gathering, the results, etc. of a prior paper. 



Finally, if multiple papers using the same data set are jointly submitted for review, ideally 

each paper should acknowledge the existence of the other(s). A (brief) explanation of each could 

be provided, and copies might be placed on a commercial web site, for the reviewers. 

Several comments may deserve emphasis: publishing similar versions of a paper, for 

example a conference version or an “earlier” version of a paper, could be argued to be 

idioplagarism. An alternative may be to consider publishing an abstract rather than a full paper. 

Similarly, submitting an unaltered or slightly altered paper to multiple outlets also could be 

viewed as idioplagaristic. (This is proscribed by many publication outlets. Typically it is 

discovered by having a common reviewer, and anecdotally, violation can be grounds for 

rejection, or desk rejection of any future submission.) One should resist the temptation to hide 

any reuse of data. (A reviewer who is familiar with any previous paper may question the 

originality of the data.)  

At the risk of overdoing it, theory should always precede data analysis. Specifically, 

while hypotheses may be developed or revised using data, they should not be tested using the 

same data. (However, hypotheses developed after post hoc analysis of the data are appropriate 

for the paper’s discussion or future research sections--with a caveat that these results may be an 

artifact of the present data set, and thus are exploratory and are in need of disconfirmation in a 

future study.)  

FUTURE RESEARCH 

It may be instructive to survey Ph.D. students, journal editors, and faculty for their 

attitudes about reusing data. If students have either no attitude, or a weakly held one, while some 

journal editors and reviewers do not object, this might suggest an additional publication strategy 

for untenured faculty “while the P&T clock ticks.” (However, it is plausible that “top tier” 



journal editors and reviewers, when reviewing for these journals, might covertly object to 

reusing data—indeed a comment from a reviewer in the present venue hinted that they may 

object to reusing data.) 

A similar study of these attitudes in the European Union also might be interesting. If 

Ph.D. students and others are encouraged, in effect, to seek a “sponsoring company” for their 

research (with the possibility that their academic research may become part of the sponsoring 

company’s commercial research), this might suggest at the very least, topics for debate, if not 

avenues for research and publication. 

SUMMARY 

Because there is no published guidance concerning the use of the same data set in several 

theoretical model-test papers, and there may be confusion among Ph.D. students and reviewers 

about whether this is appropriate in theory tests, the paper critically discussed reused data in 

theoretical model tests, and provided suggestions.  

Experience suggests that models are likely contain at least one submodel that might be a 

candidate for an additional paper. And, although it was anecdotal, some editors and reviewers 

had no objection to “used data” in theory tests. However, authors should be aware of the risks 

that attend used data in theory tests: reviewers may not approve of reusing data, and any 

subsequent paper based on used data may be judged conceptually too similar to the first paper for 

publication. Papers based on used data also may be judged idioplagaristic when compared to 

other papers to use the data. Further, care must be taken in specifying submodels to avoid the 

“missing variable” problem.  

Suggestions for authors included that they may want to contact the editors of target 

journals to gauge the acceptability of a paper based on used data. And, that if data is to be reused, 



that decision ideally should be made prior to data collection, to reduce any temptation to add 

additional hypotheses to the paper based on “data snooping” the data once it was collected. And, 

if data are reused, authors should consider a “full disclosure” of the history of the data set. 
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Figure 1—Abbreviated Latent Variable Model (Model 1) (Disguised) (see p. 6) 
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Figure 2—Respecified Figure 3 Model (see p. 7) 
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Figure 3—Rearranged Figure 1 Model with Plausible Additional Paths (in bold) (see p. 6) 
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Figure 4—Submodel 1 (of Figure 3) (see p. 7) 
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Figure 5—An Abbreviated Non-Recursive Respecification of Figure 7 (see p. 8) 
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Figure 6—Abbreviated Latent Variable Model (Model 2) (Disguised) (see p. 8) 
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Figure 7—Rearranged Abbreviated Model 2 with Plausible Additional Paths (in bold) (see p. 8) 
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QUESTIONS of the MOMENT... 

 

"What is structural equation analysis?" 

 

(The APA citation for this paper is Ping, R.A. (2009). "What is structural equation 

analysis?" [on-line paper]. http://www.wright.edu/~robert.ping/SEA.doc) 

 

 

Structural equation analysis can be understood as "regression with factor scores." In fact, 

even a moderate grasp of factor analysis and regression can make structural equation 

analysis rather easy.  

 

Specifically, in the regression equation 

 

1) Y = b0 + b1X + b2Z + e , 

 

if X, for example, has a multiple item measure with items x1, x2 and x3, sample values for 

X can be constructed by summing or averaging the x's in each case, and regression can 

proceed using the values for Z and Y in each case. 

 

However, instead of summing or averaging the items of X, for example, factor scores 

could be used instead. The items of X could be factored using x1, x2 and x3, and the 

resulting factor score for X in each case could be used in the Equation 1 regression.  

 

Equation 1 could be diagrammed as 

 

Figure A 
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The arrows in Figure A are the plus signs in Equation 1, and the figure is read, "Y is 

associated with (affected by, or less commonly, "caused by") X and Z." The regression 

coefficients, b1 and b2,  are shown on the arrows. Note the Equation 1 error term, e, also 

is diagrammed, but the intercept is not.  

 

If X is a single-item measure such as age (e.g., How old are you?), it would have the 

regression equation  

 

2) AGE = c0 + c1age + e' 

 

that could be diagramed as  
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                    AGE 

 

where the intercept c0 again is missing, c1 is a constant equal to 1 and e also is a constant 

equal to 0.  

 

However, c1 and e' need not be constants. Recalling that some respondents misreport their 

age, and age is usually measured on an ordinal scale that under or over-estimates each 

respondent's actual age, the "true score" AGE is actually a combination of the observed 

variable, age, and measurement error, e'. However, the (true score) AGE is unknown.  

 

Structural equation analysis "solves" this unknown "true-score AGE problem" using three 

or more observations (indicators) of AGE. In this event, the items age1 (e.g., How old are 

you?), age2 (e.g., Please circle your age.) and age3 (e.g., How old were you on your last 

birthday?) can be factored to produce factor scores (estimates) for the true score of AGE.  

 

If respondents' (true score) AGE were known its regression equation would be  

 

3) AGE = c0' + c1'age1 + c2age2 + c3age3 + e" , 

 

where e" is the variation of AGE not predicted by c1'age1 + c2age2 + c3age3. This could be 

diagramed as 

 

Figure C 
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However AGE also can be "inferred" using factor analysis (i.e., from its factor scores) 

and its indicators age1, age2 and age3, and this diagram is customarily drawn as 

 

Figure D 
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where e'' is assumed to be zero and not shown, the arrows are reversed to signal that 

factor analysis is involved, e1, e2 and e3 the are the (measurement) errors that result when 

e' is assumed to be zero, and c1', c2' and c3' are factor loadings (instead of regression 

coefficients). Stated differently, instead of regression relationships, Figure D is meant to 

show that the "true" (factor) score for AGE equals the observed score age1 plus the error 

e1 (i.e., AGETrue score = Observedage1. + Errore1). It also shows that the "true" score for AGE 

equals the observed score age2 plus (a different) error, e2, and the true score for AGE 

equals the observed score age3 plus (another) error, e3. (The observed scores, age1, age2 

and age3 are scaled by the loadings, c1', c2' and c3' so the variance of AGE produced by 

age1, age2 and age3 is the same). 

 

Figures A and D are customarily combined in structural equation analysis as 

 

Figure E 
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where X is AGE, which is "inferred" using factor analysis. Commonly seen in structural 

equation analysis, these diagrams are typically a combination of a regression diagram and 

one or more factor analysis diagrams. 

 

Using the cases with observations (and/or factor scores) for Z and Y, the regression 

coefficients (the b's) in Figure E could be determined using factor scores as values for 

AGE. 

 

This could be done using factor analysis and regression. Or it could be done using 

structural equation analysis software (AMOS, LISREL, EQS, etc.) that accomplishes the 

"factor-scores-for-AGE, then-regression" process by estimating Figure E in "one step." 

This software can be learned beginning with estimating factor scores for one factor. To 

illustrate, starting with an independent variable from your model, X, and its measure with 

the items x1, x2, etc., estimate factor scores for X by (exploratory) factoring it using 

maximum likelihood exploratory factor analysis.  

 

Then, if X is unidimensional, estimate factor scores for X and its items x1, x2, etc. by 

factor analyzing X (alone, using only X's items, x1, x2, etc.) using structural equation 



analysis and maximum likelihood estimation. (The "diagram" that is frequently used to 

"program" structural equation analysis software should be similar to Figure C with X 

instead of AGE, and possibly more indicators for X.) The standardized factor loadings 

that will be available in the structural equation analysis (confirmatory) factor analysis 

output should be roughly the same as the factor loadings from the exploratory factor 

analysis. (Some will be nearly the same and a few will be considerably different, but the 

averages should be about the same.)  

 

Next, using a dependent variable from your model, Y, and its measure with the items y1, 

y2, etc., exploratory factor analyze Y. If Y is unidimensional, confirmatory factor analyze 

the factor Y (alone), as was just done with the factor X. Again, the standardized factor 

loadings for Y that will be available in the structural equation analysis output should be 

roughly the same as the factor loadings from the exploratory factor analysis of Y.  

 

Then, factor X and Y jointly (using X's and Y's items together) using maximum 

likelihood exploratory factor analysis. Next, find the factor scores for X and Y jointly by 

(confirmatory) factor analyzing X and Y using structural equation analysis (allow X and 

Y to be correlated). As before, the factor loadings for X in the joint exploratory factor 

analysis of X and Y should be roughly the same as X's standardized factor loadings 

shown in the joint structural equation analysis output. The same should be true for Y. The 

joint loadings for X should be nearly identical to those from factor analyzing X by itself 

(i.e., the loadings of X should be practically invariant across measurement models). 

Similarly, the joint loadings for Y should be practically invariant when compared to the 

measurement models for Y by itself. 

 

Finally, regress Y on X using averaged indicators. Then, replace the correlated path 

between X and Y in the joint (confirmatory) factor analysis of X and Y above with a 

directional path from X to Y to produce the structural model of X and Y. The regression 

coefficient for X should be roughly the same as the directional path (structural) 

coefficient from X to Y. Further, the loadings in the structural model should be only 

trivially different from those in the measurement models above. 

 

The balance of your model now could be added one unidimensional variable at a time to 

produce a series of exploratory factor analyses, confirmatory factor analyses, a 

regression, and the full structural model. As before, loadings for each factor (latent 

variable) should be roughly the same between the exploratory and confirmatory factor 

analyses, and the structural equation analysis loadings for each latent variable should be 

practically invariant. (The regression and structural coefficients will change as more 

variables are added, but corresponding latent variables should have roughly the same 

regression and structural coefficients.)  

 

If loadings are not "trivially different" as more latent variables (e.g., Z) are added, this 

suggests that the unidimensional measures are not unidimensional enough for structural 

equation analysis. To remedy this, examine the Root Mean Error of Approximation 

(RMSEA) in the measurement models for the latent variables added so far. Improve 

reliability for the latent variable(s) in their (alone) measurement model(s) with an 



individual RMSEA that is more than .08 by deleting items that reduce its reliability. 

(Procedures for this are available in SAS, SPSS, etc.) Do this for any other latent variable 

that has an (alone) RMSEA more than .8 as it is added. The result should be that 

corresponding latent variable loadings are practically invariant across all their 

measurement and structural models.  

 

After all the latent variables have been added to the model, the results are that the model's 

structural coefficients have been estimated using structural equation analysis, and the full 

measurement and structural models (i.e., with all the variables) "fit the data" (their 

RMSEA's are less than .08).  

 

If the structural model does not fit the data, but the full measurement model does, it is 

because there is a path somewhere that should not be assumed to be zero. Because this 

exact path could be anywhere, structural equation analysis works best on models in which 

all paths are (adequately) predicted by theory. 

 

Obviously there is more to learn. But, estimating your model's structural coefficients was 

the immediate objective, and one could use the above process again to estimate other 

structural equation models.  

 

However, you may be wondering why factor scores were never actually used. Structural 

equation analysis can produce factor scores, but they are not used in the actual structural 

equation analysis computer algorithm.1 Factor scores were a pedagogical device used to 

help explain things. 

 

You also may be wondering, if regression estimates are "roughly the same" as structural 

equation analysis estimates, why not use the regression estimates (or exploratory factor 

analysis factor scores with regression)? The problem is that regression "sameness" 

becomes "rougher and rougher" as more latent variables are added to the model (the 

direction (sign) of one or more coefficients can eventually be different between 

regression and structural equation analysis). 

 

                                                 
1 Structural equation analysis minimizes the difference between the input covariance 

matrix of the observed items and the covariance matrix of these items implied by the 

measurement or structural model. For example, in the Figure E model the indicators of 

AGE and the variable Z were not allowed to correlated (i.e., they are assumed to have no 

paths connecting them), even though their input data are correlated. 

Simulation studies have "confirmed" (consistently suggested) that with multi-item 

measures, known factor structures, with known loadings and known regression 

coefficients, are "better" estimated by structural equation analysis' "minimize the (chi-

square) difference between the input covariance matrix of the observed items and the 

covariance matrix of these items implied by the measurement or structural model" than 

by regression. For this reason, regression estimates now labeled as "biased" when one or 

more multi-item measure is present in a regression equation (e.g., Aiken and West 1991, 

Bohrnsted and Carter 1971, Cohen and Cohen 1983, Kenny 1979). 
 



Some of the structural equation analysis jargon and "standard practice" may be of 

interest.  

 

There is little agreement measures of model to data fit (e.g., Bollen and Long 1993). I 

used RMSEA because it is adequate for these purposes.  

 

In the measurement and structural models, one indicator of each latent variable is 

customarily "fixed" (set) to the value of 1.  

 

Reliability and validity receive considerable attention in structural equation analysis. 

However, there is little agreement on validity criteria (see QUESTIONS of the 

MOMENT... "What is the "validity" of a Latent Variable Interaction (or Quadratic)?" 

for details).  

 

Improving model-to-data fit by maximizing reliability can degrade construct or face 

validity (again see QUESTIONS of the MOMENT... "What is the "validity" of... "). 

In general, care must be taken when deleting items from a measure in the 

measurement or structural model estimation process.  

 

In structural equation analysis, significance is customarily suggested by a t-value 

greater than 2 in absolute value (p-values are not used). 

 

Structural equation analysis can accommodate multiple dependent variables in a 

single model. And, dependent variables can affect each other. For these reasons a 

dependent variable is termed an endogenous variable in structural equation analysis 

(independent variable are called exogenous variables).  

 

In structural equation analysis models it is standard practice to correlate (free) 

exogenous variables, but not to correlate endogenous variables.  

 

The term "consistency" is used to imply the stronger unidimensionality required by 

structural equation analysis (e.g., the indicators of X are consistent).  
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QUESTIONS of the MOMENT... 

 

"Why are reviewers complaining about my use of standardized loadings?" 

 

(The APA citation for this paper is Ping, R.A. (2013). "Why are reviewers complaining 

about my use of standardized loadings?" [on-line paper]. 

http://www.wright.edu/~robert.ping/stdLoad.doc) 

 

 

Jöreskog (1996, “LISREL 8 … Reference Guide, p.35) warned that standard 

errors (in LISREL), among other statistics, may be incorrect when correlations are 

analyzed (without standard deviations, etc.) in structural equation models. This presents a 

problem in theory testing—an incorrect (biased) standard error for a structural coefficient 

means that its t-value is incorrect, and any interpretation of the observed structural 

coefficient’s significance or nonsignificance versus its hypothesis may be risky.  

 

While I have yet to find equivalent warnings about correlations and standard errors in 

documentation for EQS or AMOS, other authors have warned against analyzing 

correlations (see the citations in Bentler 2006, “EQS 6 … Program Manual,” p. 11). As a 

result, it may be prudent to avoid analyzing correlations in theory tests involving 

structural equation analysis.  

 

However, it is easy to show using real-world data that covariances and “standardized 

loadings” (latent variable (LV) loadings specified as all free—so the resulting LV has a 

variance of 1) may produce incorrect t-values for parameter estimates, including 

structural coefficients. Specifically, the t-values of the resulting structural coefficients 

(which are now standardized estimates) may be different from those produced by the 

preferred “unstandardized loadings” LV specification, where one loading of each LV is 

fixed at 1, and each LV’s estimated (error-disattenuated) variance is different from 1 

(e.g., Jöreskog 1996). 

 

Thus, it also may be prudent to avoid using standardized loadings in theoretical model 

tests involving structural equation analysis. (If standardized coefficient estimates are 

required, standardized and unstandardized estimates could be requested, and standardized 

values could be reported with unstandardized t-values.) 

 

Parenthetically, one procedure for specifying unstandardized LV loadings is to specify 

each LV with its first indicator fixed at 1. To simplify any subsequent interpretation of 

loadings, I then respecify each LV by fixing the largest loading of each LV to 1, and 

freeing each LV’s first indicator if it is not the largest (to avoid having two indicators 

fixed at 1), and reestimate the model.  

 

 



QUESTIONS of the MOMENT... 

 

"Why are reviewers complaining about the use of multiple regression in my paper?" 

 

(The APA citation for this paper is Ping, R.A. (2009). " Why are reviewers complaining 

about the use of multiple regression in my paper?" [on-line paper]. 

http://www.wright.edu/~robert.ping/MR.doc) 

 

 

Multiple regression assumes each independent variable is measured without error (i.e., 

the observed score is exactly the true score). Unfortunately, it is well known that the 

extent and direction of all regression coefficient is biased by even a single variable that 

contains (known or unknown) measurement error (e.g., Aiken and West 1991, Bohrnsted 

and Carter 1971, Cohen and Cohen 1983, Kenny 1979).  

 

Even though this assumption was well known, it was routinely ignored in theoretical 

model (hypothesis) testing until Jöreskog's proposal that, among other things, allowed 

modeling of measurement error (Jöreskog 1970, 1971) (i.e., structural equation analysis). 

As a result, reviewers may reject substantive papers that rely on regression because 1) its 

regression's assumption of variables with no measurement error is now believed to be 

violated even in demographic variables such as age and income (both are typically 

misreported by some respondent groups, and each is typically measured in "round 

numbers"). 2) reviewers are (re)aware of how regression estimates can be biased (i.e., 

untrustworthy) in theoretical model tests when one or more variable contains 

measurement error (unless they are uncorrelated with any of the other independent 

variables, which is unlikely in real-world data). And, 3) regression usually produces 

Least Squares estimates--Maximum Likelihood estimates are now preferred for 

theoretical model testing.  

 

As a result, some reviewers now believe that regression is an insufficient test of a 

theoretical model if there is measurement error in even one model variable (i.e., all the 

resulting coefficients used to test the hypotheses are untrustworthy).  

 

Many suggested procedures for multiple regression (e.g., Cohen and Cohen 1983) are 

now considered inappropriate for theory testing because for example, the analysis 

procedures (e.g., stepping variables in, etc.) also are insufficient tests of the hypotheses. 

 

Alternatives to ordinary least squares regression that account for measurement error 

include Fuller (1991) and Ping (1996), but each has drawbacks. Fuller's proposals are 

inaccessible to many substantive researchers. Ping's proposal relies on measurement 

parameter estimates from structural equation analysis, and begs the question, why not just 

use structural equation analysis? 

 

The "problems" with utilizing the now preferred structural equation analysis, appear to be 

several: it is not taught in all terminal degree programs. And, despite texts apparently 

aimed at "self teaching" it (e.g., Byrne 1990), and (powerful) graphical user interfaces 



now available in most structural equation analysis software packages, anecdotally, 

structural equation analysis still seems to be inaccessible to many substantive researchers 

when compared to regression. For untenured researchers who may be "on a clock," this 

can slow productivity. For others, this can require "finding" someone who does structural 

equation analysis, then "managing" their involvement in the resulting paper. Structural 

equation analysis also can appear to "take over" a theoretical piece, producing a perhaps 

unwelcome intrusion on its theoretical matters.  

 

"Solutions" to the structural equation analysis "problems" all have drawbacks. First, if 

structural equation analysis is not required (e.g., for a dissertation), to conserve time don't 

use it. However, for the reasons stated above, this may be a temporary solution.  

 

Next, consider allowing about a month to do three things: first, finding someone to help 

with learning structural equation analysis, then learning only enough structural equation 

analysis to "get by" reviewers. Then, consider quickly creating/revising a paper with a 

simple model (or a simple submodel of your current model) that uses (replaces regression 

with) structural equation analysis, and submitting it to a good conference. Rather than 

acceptance, the objective would be to learn structural equation analysis in a realistic 

setting. Any reviewer feedback would also suggest what/where more structural equation 

analysis work is needed. 

 

Click here for more about structural equation analysis as "regression using factor scores 

instead of averaged items," and how to learn the basics in a reasonable amount of time. 
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QUESTIONS of the MOMENT... 

 

"Is there any way to improve Average Variance Extracted (AVE) in a Latent Variable 

(LV) X?" 

 

(The APA citation for this paper is Ping, R. A. (2009). "Is there any way to improve 

Average Variance Extracted (AVE) in a Latent Variable (LV) X (Revised)?" [on-line 

paper]. http://www.wright.edu/~robert.ping/ImprovAVE2.doc) 

 
(Click here for an earlier version of this paper, Ping, R. A. (2007). "Is there any way to improve Average 

Variance Extracted (AVE) in a Latent Variable (LV) X?" [on-line paper]. 

http://www.wright.edu/~robert.ping/LowAVE.doc.) 

 

 

Average variance extracted (AVE) almost always can be improved by dropping cases, or 

by dropping the item with the largest measurement error variance. The result may be 

desirable to improve AVE, or to raise it above the square of a correlation with another 

latent variable (LV) (i.e., to improve discriminant validity in the Fornell and Larker 

(1981) sense).  

 

One approach to dropping cases is to use a "Jacknife-like" procedure (Efron 1981). 

Specifically, a case is removed from the data set, and AVE is computed for the remaining 

cases.1 Then, the removed case is replaced, a different case is removed, and AVE is 

computed for the remaining cases. This process is repeated for each of the rest of the 

cases to find the case that produces the largest AVE improvement.2 

 

Additional AVE improvement may be obtained by repeating this process using the 

improved AVE data set (i.e., with the case that produces the largest AVE improvement 

removed), instead of the full data set. Specifically, a case is removed from the first 

improved AVE data set, and AVE is computed for the remaining cases. Then, the case 

just removed (not both cases) is replaced, a different case is removed, and AVE is 

computed for the remaining cases. This process is repeated for each of the rest of the 

cases to find the largest AVE improvement with two cases removed (but, see Footnote 2). 

 

This process could be repeated using combinations of the above and Footnote 2) 

procedures, but experience suggests that dropping about three cases or approximately a 

.05 AVE improvement is the most AVE improvement that dropping cases will produce in 

real-world data. 

                                                 
1 In a (maximum likelihood) exploratory factor analysis, the "Percent of Variance 

Explained" by Factor 1 can be used to gauge changes in AVE in a unidimensional set of 

items--it is roughly the same as AVE. 

 
2 Dropping the case that detracts most from AVE is arguably "not random," and this casts 

a shadow over sample "representativeness." An improvement would be to randomly 

select a case from the set of cases that detract most from AVE. Alternatively, cases could 

be deleted randomly and the first case that improves AVE could be dropped. 

http://www.wright.edu/~robert.ping/LowAVE.doc


Dropping an item also will improve AVE, frequently by more that deleting cases will. 

However, the procedure for this is "messy," and the resulting set of higher AVE items 

can be less content or face valid than before items were dropped (i.e., the resulting set of 

items may match its conceptual and/or operational definitions less well). The results also 

may be less internally consistent (i.e., the single construct measurement model of the 

resulting items may fit the data less well).  

 

Experience suggests that in real-world data, several consistent subsets of items from a 

measure usually can be found. An alternative to dropping items is to create one or more 

additional subsets of items and gauge the AVE of each these subsets. Replacing any 

deleted cases, (maximum likelihood) exploratory factor (with varimax rotation) the full 

measure. Then for the Factor 1 items, find highest reliability subset of these items (there 

are procedures in SPSS, SAS, etc. to accomplish this, usually in the "reliability" 

procedures). If the AVE of the resulting highest reliability subset of items is 

unacceptable, try dropping cases from this subset of items. (Dropping the item with the 

largest error term from the highest reliability subset of items usually reduces AVE.)  

 

If model-to-data fit or content validity problems arise when items are dropped, 

combinations of one or more of the following procedures could be used.  

 

Replacing any deleted cases, consider finding another consistent subset of items using 

Modification Indices (see Appendix A--Item Weeding in "On the Maximum of About Six 

Indicators..." on this web site). If this subset has unacceptable AVE, try dropping the item 

with the largest error, and/or drop case(s). Experience suggests that Modification Indices 

sometimes works better than maximizing reliability. However, AVE improvement seems 

to be limited to about 10 points (i.e., 0.10). 

 

If AVE is still unacceptable, replace any deleted cases, then, using the Factor 1 items, 

drop the item with the largest error term first. Then, reitemize the resulting set of items 

using Modification Indices or by maximizing reliability. Next, drop cases, and/or drop 

the item with the largest error from the results.  

 

However, if AVE of the resulting measure is within a few points of "acceptable" (0.50), 

this may not always be "fatal" to publishing a model test. Experience suggests that not all 

reviewers accept AVE as "the" measure of convergent validity, some prefer reliability. 

Thus, if an LV is reliable, that may be a sufficient demonstration of convergent validity 

for some reviewers. 

 

In addition, the logic for possibly ignoring low AVE might be that many "interesting" 

theoretical model-testing studies involve a "first-time" model, and an initial model test, 

that together should be viewed as largely "exploratory." This "first test" usually uses new 

measures in a new model tested for the first time, etc., and insisting that the new 

measures be "perfect" may be inappropriate because new knowledge would go 

unpublished until a "perfect" study is attained. AVE adherents of course might reply that 

concluding anything from measures that are more than 50% error is ill advised, because 

there are so few replication studies. 



 

In my opinion, an AVE slightly below 0.50 might be acceptable in a really "interesting" 

"first-time" study, 1) if it does not produce major discriminant validity problems 

(discussed below), 2) the diminished AVE is noted and discussed in the Limitations 

section of the paper, 3) any significant effects involving the low AVE LV's are held to a 

higher significance requirement (e.g., |t| >= 2.2 rather than |t| >= 2.0), and 4) any 

discussion of interpretation, and especially implications, involving the low AVE LV's are 

clearly labeled as "very provisional" and in need of replication.  

 

Again, the logic would be that the model may be too interesting to suppress its first test. 

In different words, the focus of the paper should be on the new theory developed, and the 

contributions include a "first test," and that more measurement work is needed on the low 

AVE measures. (A less desirable alternative with low AVE would be a propositional 

paper, which might be considerably less "interesting.") 

 

This "first-time study" argument also may apply when there are discriminant validity 

problems, and more measurement work is needed on the low discriminant validity 

measures. Nevertheless, it always possible to reduce the correlation between two LV's 

using a procedure similar to Residual Centering (see Lance 1988). The procedure 

involves reducing the covariation between the target LV's X and Z until the squared 

correlation between them is less than the AVE of both X and Z. Specifically, average the 

indicators for X and Z, then regress the lower AVE LV, X for example, on the higher 

AVE LV, Z, to produce Z = b0 + b1X. Next, subtract a percentage of b0 + b1X (i.e.,  

 

1) K*( b0 + b1X),  

 

where K is between 0 and 1) from Z in each case to scale (reduce) the covariance (and 

thus the (squared) correlation) between X and Z.  

 

However experience suggests that in real-world data, scaling simply masks a discriminant 

validity problem rather than remedying it. Specifically, in real-world data, experience 

suggests that with lower AVE and correlated X and Z, the unique error variance (i.e., 

error variance that is unshared in the correlation between X and Z) of one or both X and 

Z can be greater than 50%. This in turn increases the instability (variability) of structural 

coefficients involving X or Z across studies beyond that which could be expected with 

sampling variation. Stated differently, with declined AVE and (even moderately) 

correlated X and Z, their association with Y, for example, can be largely the result of 

measurement error, which should produce different results (i.e., instability--reduced 

"reproducibility" in Campbell and Fiske's (1959) terms) in subsequent studies. Increased 

correlation between X and Z, especially when it is greater than X or Z's AVE, increases 

this potential for instability. 

 

1) As a perhaps surprising example from a real-world survey, the AVE's of two LV's were 

both 0.59, and their correlation was -0.59 (their covariance, the square of their 

correlation, was 0.33). Scaling one LV to zero correlation with the other, reduced its 

AVE to 0.47, and scaling the other LV to zero (after removing the previous scaling) 



reduced its AVE to 0.48. Thus, the amount of unique error variance in the LV's was 53% 

(= 1 - 0.47) in one, and 52% (1 - 0.48) in the other. This suggests that any associations 

involving X or Z and a dependent variable is (slightly) more the result of error variance 

than it is the result of error-free variance, which should (slightly) amplify any difference 

in results from sampling variation in subsequent studies. Note that both LV's were 

discriminant valid using Fornell and Larker's (1981) AVE's-versus-squared-correlation 

discriminant validity criterion, and they likely would not have had their discriminant 

validity questioned--both LV's had "acceptable" AVE's, and their correlation was less 

than |0.70|. Also note that in this case the unacceptable unique err-free variances might be 

remedied by increasing AVE in the LV's.  

 

As another example again using real-world data, the AVE's of two LV's were 0.58 and 

0.72, while their correlation was .82 (their covariance, the square of their correlation, was 

0.67). Scaling the larger AVE LV to zero correlation, reduced its AVE to 0.44. and 

scaling other LV (after undoing the previous scaling) reduced its AVE to 0.34. In 

different words, the amount of unique error variance in the larger AVE LV was 56% (= 1 

- 0.44), and the amount of unique error variance in the smaller AVE LV was 66% (= 1 - 

0.34). This suggests that their associations with another LV,Y for example, are more the 

result of error variance than error-free variance, which should produce more instability 

(different results) in subsequent studies than if it were lower.  

 

Finally, the AVE's of two other LV's were 0.72 and 0.87, while their correlation was -.71 

(their covariance, the square of their correlation, was 0.50). Scaling the larger AVE LV to 

zero correlation, reduced its AVE to 0.77, and scaling other LV (after undoing the 

previous scaling) reduced its AVE to 0.55. In different words, the amount of unique error 

variance in the larger AVE LV was 23% (= 1 - 0.77), and the amount of unique error 

variance in the smaller AVE LV was 45% (= 1 - 0.55). This suggests that their 

associations with another LV,Y for example, are more result of error-free variance than 

error variance, which should produce (comparatively) less instability (differing results) in 

subsequent studies than if error variance were higher. Note that both LV's had 

"acceptable" AVE's, but their correlation was slightly greater than |0.70|. 

 

These examples suggest that Fornell and Larker's AVE's-versus-squared-correlation 

(discriminant validity) test may or may not signal a problem with unique error variance, 

and thus Fornell and Larker's discriminant validity test may or may not signal declined 

"reproducibility," Campbell and Fiske's stated objective of validity. 

 

 

Several comments may be of interest. As the first example suggests, low AVE's should 

be investigated for low unique error-free variance. There probably can be no firm rule, 

but Fornell and Larker's "AVE at least 0.50" may be insufficient. Experience suggests 

that all correlations above 0.7 should be investigated (see Example 1 above), especially 

when the AVE's of the LV's involved are less than 0.6. 

 

Any low unique error-free variance problems should be discussed in the Limitations 

section of the study's paper, and any discussion of the implications of the associations 



involved should be prefaced with a caveat that these associations are mostly error and 

may be an artifact of the study. 

 

Z and its t-value is unchanged by scaling (i.e., subtracting K*( b0 + b1X) from Z in each 

case). However, scaling reduces the variance of Z, and thus it reduces any standardized 

structural coefficient (beta) involving Z. The range of Z is also reduced by scaling.  

 

For an LV, X, that fails Fornell and Larker's AVE's-versus-squared-correlation 

(discriminant validity) test with Z, it is easy to show that all of X's error free variance is 

not contained in the covariance of X and Z. (X's AVE less than its correlation with Z 

might mean that all of X's error-free variance, its AVE, is contained in the covariance.)  

 

For example when two LV's, with AVE's of 0.49 and 0.72, and a squared correlation of 

0.65 (i.e., their covariance (squared correlation) was larger than one LV's error-free 

variance (AVE), a failure of Fornell and Larker's discriminant validity test), had the 

smaller AVE LV's variance scaled to zero correlation between them (i.e., K = 1 in 

Equation 1), in a measurement model of the resulting smaller AVE LV, it had 21% error 

free variance (i.e., a 0.21 AVE). In different words, all the covariation between the LV's 

was removed by scaling, yet there still was error-free variance (AVE) in both LV's (i.e., 

21% error-free variance in the smaller AVE LV and 72% in the larger).  

 

This could be interpreted as suggesting that the LV's were operationally distinct (the 

customary meaning of discriminant validity3). (In real-world data, only if the variance of 

an LV is equal to its covariance with another LV is there complete operational 

indistinctness--this matter is further discussed below). 

 

In real-world data, experience suggests that improving an LV's AVE does not materially 

change correlations with that LV.  

 

Substantive authors have used other single-sample discriminant validity tests besides 

Fornell and Larker's AVE's-versus-squared-correlation (discriminant validity) test, and 

these tests may be attractive when there are problems with discriminant validity. These 

tests include testing the correlation confidence interval (see Anderson and Gerbing 1988) 

or a single degree of freedom test (see Bagozzi and Phillips 1982). However, it is easy to 

show that these tests are likely to produce untrustworthy results in theory tests with 

survey data. Specifically, in theory tests with real-world survey data, testing the 

correlation confidence interval for two LV's to see if it contains 1, which would suggest 

that the two LV's are empirically (operationally) indistinct (i.e., they are "discriminant 

invalid" in the popular sense--see Footnote 3), almost always suggests empirical 

distinctness. Typical sample sizes (hundreds of cases) and the internal consistency 

requirement in survey data theory tests typically combine to produce small correlation 

                                                 
3 A careful reading of Campbell's writings suggests that their notion of discriminant 

validity is evidenced by low correlations with other variables, rather than the popular 

requirement of a lack of population correlations of 1 (i.e., empirical or operational 

distinctness). 



standard errors that in turn produce confidence intervals are usually too small to include a 

correlation value of 1.  

 

For example, two LV's that were known to be theoretically indistinct (their items 

contained only slight variations in item wording) and that had a correlation of 0.9988, 

produced a 95% correlation confidence interval of [.9984, .9993] in a sample of 200 

surveys. In different words, the 95% confidence interval for these LV's suggested they 

were operationally distinct (i.e., "discriminant valid") even though they were theoretically 

indistinct and had a correlation of .9988.  

 

A single degree of freedom test can be applied to a measurement model containing the 

two target LV's, or it can be applied to the full measurement model containing the target 

LV's, to compare the model to one where the two LV's correlation is constrained to 1. In 

a two-LV measurement model, a single degree of freedom test frequently produces 

untrustworthy test results (i.e., two highly correlated LV's that have their correlation 

constrained to 1 will usually fit the data significantly worse that when their correlation is 

free). For example, in a two-LV measurement model, two LV's that may or may not have 

been theoretically distinct (they were two factors of the same LV) had a correlation of 

.9295. In a single degree of freedom test, their correlation could not be constrained to 1 in 

LISREL (the fitted covariance matrix was not positive definite). However, constraining 

the correlation to 0.9795 instead of 1 produced a chi square difference (chi square = 388 

for the constrained correlation model, chi square = 207 for the unconstrained correlation 

model) with 1 degree of freedom (degrees of freedom = 54 for the constrained correlation 

model, degrees of freedom = 53 for the unconstrained correlation model) that was 

significant (chi square difference = 388 - 207 = 181, which has 1 - α of 1.0000 with 1 

degree of freedom), suggesting they were (very) operationally/empirically distinct (and 

thus "discriminant valid"). 

 

Then, two sets of items, that could be argued to be conceptually the same (both were 

from Factor 1 of the same LV), with a correlation of 0.9969, were tested in a two-LV 

measurement model. Again in a single degree of freedom test, their correlation could not 

be constrained to 1 in LISREL. However, constraining the correlation to 0.9998 instead 

of 1 produced a chi square difference (218 = 249 for the constrained correlation model, 

minus 31 for the unconstrained model) with 1 degree of freedom (9 for the constrained 

correlation model, degrees of freedom = 8 for the unconstrained model) that was 

significant (1 - α = 1.0000 with 1 degree of freedom), which suggested they were (very) 

operationally distinct, and thus "discriminant valid." 

 

However, the chi square statistic is sensitive to sample size. So, the sample size was 

reduced in steps until the parameter estimates became unstable, comparing chi square 

differences at each step. Nevertheless, the chi square difference tests continued to be 

significant, suggesting that sample size did not affect these results. 

 

A full measurement model produced similar results. Two LV's that may or may not have 

been conceptually the same (they were two factors of the same LV) had a correlation of 

.9274. While their correlation could not be constrained to 1 in a larger measurement 



model containing them, constraining them to a correlation of .9476 produced a chi square 

difference test with a significance of .9990. This suggested they were operationally 

distinct (i.e., they were "discriminant valid").  

 

Then, two sets of items, that could be argued to be conceptually indistinct (both were 

from Factor 1 of the same LV), with a correlation of 0.9998, were tested in a two LV 

measurement model. In this case their correlation could be constrained to 1, and the chi 

square difference (= 12 = (5626 for the constrained correlation model, minus 5626 for the 

unconstrained model)) with 1 degree of freedom (1836 for the constrained correlation 

model, 1835 for the unconstrained model) was significant (1 - α = .9999 with 1 degree of 

freedom), which suggested they were (very) operationally distinct, and thus "discriminant 

valid." 

 

Again, because the chi square statistic is sensitive to sample size, the sample size was 

reduced in steps until the parameter estimates became unstable, comparing chi square 

differences at each step. Again, the chi square difference tests continued to be significant, 

suggesting that sample size did not affect these results. 

 

 

In summary, experience suggests that in real-world data, alternative "discriminant 

validity" tests, such as correlation confidence intervals or single degree of freedom tests, 

are untrustworthy, usually suggesting "discriminant validity" even for nearly collinear 

LV's.  

 

Discriminant validity in the (original) Campbell and Fiske (1959) sense (low correlations 

with conceptually distinct LV's) could be viewed in terms of the amount of unique err-

free variance in correlated LV's after scaling, and the potential for instability of structural 

coefficient estimates. Stated differently, do AVE's and the covariance between two LV's 

combine to reduce the unique error-free variance of either (or both) (after scaling) to less 

than 50%, and thus increase the instability potential of these LV's structural coefficients? 

In two of the three examples above, AVE's and correlations combined to reduce unique 

error-free variance after scaling to questionable levels for "reproducibility" in Campbell 

and Fiske's (1959) terms.  

 

 

For emphasis,  

 

o with or without obvious discriminant validity problems in the Fornell and Larker sense 

(i.e., failure(s) of Fornell and Larker's AVE's-versus-squared-correlation (discriminant 

validity) test), lower AVE's can produce discriminant validity/reproducibility problems 

(i.e., AVE is insufficient to avoid an increased potential for structural coefficient 

instability) (see Example 1 above).  

 

o Lower AVE LV's should be investigated for the possibility that their unique error-free 

variances are less than 50%. There probably can be no firm rule, but Fornell and 

Larker's suggestion that AVE should be above 0.50 may be insufficient with 



independent variable correlations above 0.30. Experience suggests that unique error-

free variances should be investigated in all correlations larger than 0.7 (again see 

Example 1 above), especially if an AVE of the LV's involved is less than 0.60.  

 

o Discriminant validity problems should be addressed by raising AVE, not by scaling.  

 

o And finally, any unremedied low unique error-free variance problem should be 

discussed in the Limitations section of the study's paper, and any discussion of the 

implications of a significant unremedied low unique error-free variance LV should be 

prefaced with a caveat that these results are based on more than 50% unique error 

variance, and thus may be an artifact of the study. 
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QUESTIONS of the MOMENT... 

 

"How does one specify and estimate latent variables with only 1 or 2 indicators?" 

 

(The APA citation for this paper is Ping, R. A. (2008). "How does one specify and 

estimate latent variables with only 1 or 2 indicators?" [on-line paper]. 

http://www.wright.edu/~robert.ping/Under_Det.doc) 

 

One view of a latent variable X, where X is a manifest, observed, continuous, single-

indicator, etc. variable, is that X is still a latent variable, but it has only 1 indicator. The 

loading of x, X's indicator, is 1, and the measurement error of x is 0. 

 

The only difficulty is that it is well known that X seldom has zero measurement error (see 

Nunnally 1993). As a result, the reliability of X is overstated because the reliability of x 

is rarely 1, and the structural coefficient in X's association with Y, for example, is 

typically biased in real-world data. To account for this, one approach would be to relax 

the assumption of zero measurement error in x. However, X with a single indicator is 

underdetermined, and a input value for the loading and the measurement error of x must 

be provided. There has been some confusion over the next steps because the loading and 

measurement error variance are not independent of each other. The relationship between 

them involves ρx, the assumed reliability of x, and the familiar ex = Varx*(1 - ρx), where 

ex is the measurement error variance of x, and Varx is the error-attenuated variance of x 

(e.g., from SAS, SPSS, etc.). In addition, a well-known estimate of ρx is the square of the 

loading of x on X (see for example Bollen 1989). This estimate is exact for standardized 

Varx (Varx = 1). Thus, the loading of x and the corresponding measurement error variance 

of x vary together, and they depend on the choice of the assumed reliability, which 

usually ranges from 0.7 to 1 (e.g., for an assumed reliability of 0.7 for x, the 

corresponding loading of x on X is the square root of 0.7, 0.837, and the measurement 

error variance is computed using Varx(1 - 0.7) or 0.3 if Varx is standardized). 

 

To make things simple, consider testing just the "theory-testing extremes" of reliability, 

ρx = 0.7 and ρx = 1, to see if the structural coefficient of the X-Y association becomes non 

significant (NS) with either of these choices. In particular, to estimate the X-Y structural 

coefficient at px = 1, specify X's loading (λx) with the square root of ρx = 1 (λx = SQRT(1) 

= 1), and specify X's measurement error variance (ex) with Varx*(1 - ρx) = 1*(1 - 1) = 0 

("*" denotes multiplication) in the structural model. Next, repeat this process using ρx = 

0.7 (λx = SQRT(0.7) and ex = Varx*0.3). If neither structural coefficient of X-Y is NS at 

these "extreme" ρx's, the safest approach is probably to be conservative and interpret the 

smaller of the two associations (with the caveat and limitations suggested below).  

 

However, if either of the structural coefficients of X-Y become NS with these "extreme" 

ρx's, there are several possibilities. If a structural coefficient is NS at reliabilities of 0.7 

and 1 it probably should be judged to be zero in the population. If it is NS at ρx = 0.7 and 

significant at ρx = 1, the conservative approach would be to judge the NS association(s) to 

be very likely to be zero in the population. This is because the reliability of X might 

actually be less than 0.7. If it is NS at 1 and significant at 0.7, the conservative approach 



again would be to judge the NS association(s) to be somewhat likely to be zero in the 

population. This is because there is some chance the reliability of X might actually be 

high.  

 

Thus, if either of the structural coefficients of X-Y is significant for one of the reliability 

"extremes" and non significant (NS) for the other, that association should probably be 

judged to be zero in the population. However, depending on the model, this may not be a 

fatal blow. The lack of significance is likely due to a small standardized structural 

coefficient for the NS association, and thus this association would not be comparatively 

"important" to helping explain variance in Y. To practitioners this result could actually be 

as or more important than a "confirmed" association. 

 

Unfortunately, however, there is more. There is a risk that the reliability of X is less than 

0.7 (see below). This may be why theory testers prefer to avoid manifest variables if they 

can. The possibility that the reliability of X could be less than 0.7 should obviously be 

stated as a study limitation, and it should be a caveat to any interpretations or 

implications involving the X-Y association, even if it was significant at both "extremes" 

of reliability. In addition, because the reliability of X is actually unknown in the study, in 

the strictest sense this suggests that the X-Y association observed in the study should not 

be trusted. Thus, the study limitation and caveats that attend manifest variables are (or 

should be) very serious. 

 

What are the options if the study is complete and X is a focal variable? In general there 

are several alternatives. These include ignoring X's reliability issue and hoping that 

reviewers will too (this is not recommended, however, because readers might notice it 

after publication and dismiss the study), performing a reliability study, and 

"argumentation." Unfortunately, the term "reliability study" has several meanings. 

Reliability studies for manifest variables in theoretical model tests should involve 

estimates of intra- and inter-subject rating or measurement of the manifest variables. 

However, I have not found anything that might be useful in theoretical model tests yet. In 

the meantime, consider reading the material on "Scenario Analysis" in the Testing Latent 

Variable Models Using Survey Data monograph on this web site. It may be possible to 

use Scenarios with students to provide multiple inter-subject or inter-subject estimates of 

X, or a surrogate for X, from which its reliability could be roughly estimated.  

 

A plausible argument might be used to limit the possibilities for the amount of error in X, 

and provide a rough estimate of its reliability. For example, in several social science 

literatures the length of the relationship (LENG) is negatively associated with 

relationship exiting. However, LENG is usually measured in years, which obviously 

contains measurement error. Nevertheless, the "true" value of LENG for each respondent, 

informant, or subject (case) is unlikely to be more than about 10 years different from the 

"observed" or reported LENG in each case. Thus, one more "observation" of LENG 

could be computed in the data set by adding a (uniform) random number from -10 to 10 

to LENG in each case to create LENG_T, an artificial  "true" value for LENG. The 

coefficient alpha of the resulting (artificial) "measure" with the items LENG and 



LENG_T might be successfully argued to be a plausible estimate of the reliability of 

LENG. "Might" of course would depend on the reviewers. 

 

As you might suspect the "reliability" depends on several attributes of the distribution of 

LENG, for example. The coefficient alpha of LENG and LENG_T in a real-world data 

set of committed relationships (mean = 13.46 years, maximum = 76) was 0.9560. In the 

same data set the "reliability" of the reported number of employees, EMPL (mean = 7.78, 

maximum=167), that could be argued to be "off" by 10, 20 or 50 employees, was 0.9612, 

0.8693, and 0.5299 respectively. A "better" "reliability" estimate might involve averaging 

the reliabilities produced by a 100 replications of this procedure.  

 

A slightly different approach might involve estimating a range of values such as those for 

EMPL, and picking the most conservative, likely, etc. However, this could be labeled 

"not good science," because "the argument/hypothesis" should always come first in 

theory testing. Because there are additional difficulties with this range approach, consider 

resisting it and develop a plausible argument for one "different from" number instead. I 

would chose 10 for EMPL because experience suggests that in the real world most people 

know these things and the mean for EMPL was 7.78.  

 

 

If X has 2 indicators, its specification is slightly less tedious. Nevertheless, X with 2 

indicators is still underdetermined, and input values for 2 of X's five measurement 

parameters must be provided. Alternatively, x1 and x2 could be averaged to create a single 

indicator for X, avg(x1,x2) (see Baggozzi and Heatherton 1994). This single indicator 

would have a loading that is equal to the square root of the reliability of avg(x1,x2) (see 

Bollen 1989). Its measurement error variance is the familiar eavg(x1,x2) = Varavg(x1,x2)*(1 - 

ρavg(x1,x2)), where eavg(x1,x2) is the measurement error variance of avg(x1,x2), and Varavg(x1,x2) 

is the error-attenuated variance of avg(x1,x2) (e.g., from SAS, SPSS, etc.).  

 

It is easy to show that the latent variable reliability of avg(x1,x2) is the reliability of the 2 

indicators x1 and x2 (see Werts, Linn and Jöreskog 1974 for a proposed formula for latent 

variable reliability). In addition, Anderson and Gerbing (1988) noted that coefficient 

alpha is practically equivalent to Latent Variable reliability. Thus, to specify X with 2 

indicators, the reliability of x1 and x2 (ρavg(x1,x2)) should be determined using coefficient 

alpha, x1 and x2 should be averaged to produce avg(x1,x2), and the error attenuated 

variance of avg(x1,x2) (Varavg(x1,x2)) should be determined using SAS, SPSS, etc. Next, X 

should be specified with the single indicator avg(x1,x2), the loading of which is the square 

root of ρavg(x1,x2), and the measurement error variance of which is Varavg(x1,x2)*(1 - ρavg(x1,x2)). 

 

Because coefficient alpha is not identical to latent variable reliability, any t-values 

involving X (e.g., in an X-Y association) probably should have a significance cut off 

higher than |t| = 2 (e.g., in the X-Y association with X having 2 indicators, significance 

might be suggested by |t| greater than or equal to 2.1).  
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Tmplmvbr.xls 

 

The excel spreadsheet file titled “Tmplmvbr.xls” has been added to the metadata 

record for “Theoretical Model Testing with Latent Variables” as an additional file.  

Please download this additional file to access the original spreadsheet.    



EXCEL Template for Computing the (Measurement Error) Adjusted Covariance Matrix 

for Latent Variable Regression 
 

(The APA citation for this paper is Ping, R. A. (2008). "EXCEL Template for Computing the 

(Measurement Error) Adjusted Covariance Matrix for Latent Variable Regression." [on-line paper]. 

http://www.wright.edu/~rping/ItemWeed.doc) . 

 

This EXCEL spreadsheet adjusts a covariance matrix from SAS, SPSS, etc. 

involving the latent variable Y, a set of up to 5 other latent variables, A through E, and, 

optionally, all possible interactions and quadratics involving A through E (i.e., AA, BB, 

AB, CC, AC, BC, DD, AD, BD, CD, EE, AE, BE, CE, DE) for use in error-adjusted-OLS 

regression ("latent variable" regression). This may seem like a step backward in structural 

equation analysis, but there are situations involving latent variables where LISREL, EQS, 

AMOS, etc. are difficult to impossible to use and (error-adjusted) OLS regression is 

helpful (e.g., model building where OLS regression's forward selection and backward 

selection are useful, latent variable models with one or more categorical variables, etc.). 

The adjustment uses measurement model parameter estimates for the loadings, 

measurement error variances and variances associated with the latent variables Y, and A 

through E. The spreadsheet assumes that Y, and A through E are internally consistent 

(each of their single construct measurement models fit the data), they have mean centered 

indicators, and that there are no correlated measurement errors involving any of the latent 

variables A through E. 

To use the spreadsheet, a (full) measurement model containing Y and up to five 

latent variables of interest should be estimated. Next, the bold entries and the italicized 

entries on the spreadsheet should be deleted to avoid mixing old data with new data, and 

the result should be zeroes in most of the non- blank areas of the spreadsheet (these 

values should correct themselves once new data is entered). Then, the covariance matrix 

to be adjusted should be created using SAS, SPSS, etc. and the variables of interest. Note 

that this covariance matrix should be created with Y, the dependent/endogenous variable 

named first. Next, the measurement model loadings, measurement error variances, and 

variances for Y and the variables of interest should be entered into the appropriate 

locations on the spreadsheet (i.e., loadings go in the "lambda" lines, measurement error 

variances go in the "theta" lines, and measurement model variances/covariances for X 

and Z go in the "Phi" matrix). These entries will all appear in bold font--un-bolded cells 

are unrelated to entering measurement model parameter estimates). At this point the 

adjusted covariance matrix will be available beneath the covariance matrix to be adjusted 

in the middle of the spreadsheet. 

 

Several comments may be of interest. Obviously deleting old data is important in using 

this spreadsheet. For emphasis, when this spreadsheet (and the others) are visible on a 

local computer, it can be saved on that computer for later use (i.e., without going back on 

line). Thus, it is possible to save a copy of the on line version of the EXCEL spreadsheet 

locally to be used as a "master copy" for modification, subsequent calculations, saving 

modified copies, etc. The data that appears in the website version of this spreadsheet is 

also shown in a reordered form in Tables AE1 and AE2 of the monograph 

INTERACTIONS AND QUADRATICS IN SURVEY DATA: A SOURCE BOOK FOR 

THEORETICAL MODEL TESTING (2nd Edition), on this web site. Several entries in 



Table AE2 are slightly different from the spreadsheet "Adjusted Covariance Matrix..." 

entries (e.g., Var(SxA) which is Var(AB) in the "Adjusted Covariance Matrix..." of the 

spreadsheet) for unknown reasons (possibly transcription errors from the spreadsheet to 

the Table AE2 matrix-- however, the Table AE2 matrix was used to create the latent 

variable regression results shown in Tables E, G and H, not the spreadsheet). 



weeding1.xls 

 

The excel spreadsheet file titled “weeding1.xls” has been added to the metadata 

record for “Theoretical Model Testing with Latent Variables” as an additional file.  

Please download this additional file to access the original spreadsheet.    



EXCEL Template for Obtaining Internally Consistent Subsets of Items 

 

 

This EXCEL template is intended to help delete items from a measure to produce two or 

more sets of items that "fit the data" (are internally consistent). 

 

The APA citation for these instructions is Ping, R.A. (2006). "More about the template for 

obtaining an internally consistent set of items." [on-line paper]. 

http://www.wright.edu/~robert.ping/weeding.doc. 

  

 

New measures will almost never "fit the data" using a single construct measurement 

model without dropping items to attain model-to-data fit. In addition, most well established 

measures developed before covariant structure analysis (LISREL, AMOS, etc.) became popular 

also will not fit the data without item weeding.  

It turns out that measures used with covariant structure analysis are limited to about six 

items (see discussions in Anderson and Gerbing 1984, Gerbing and Anderson 1993, Bagozzi and 

Heatherton 1994, and Ping 2008). One explanation is that correlated measurement errors, 

ubiquitous in survey data but customarily not specified in covariant structure analysis, eventually 

overwhelm model-to-data fit in single-construct and full measurement models as indicators are 

added to the specification of a construct. And, that usually happens with about 6 items per 

construct. 

There are ways around item weeding, such as various item aggregation techniques (see 

Bagozzi and Heatherton 1994), but many reviewers in the Social Sciences do not like these 

approaches. Unfortunately, reviewers also may not like dropping items from measures because 

of concerns over face- or content validity (how well the items "tap" the conceptual and 

operational definitions of their target construct). One "compromise" is to show the full measure's 

items in the paper, and assuming the full measure does not fit a single construct measurement 

model, show one submeasure that does fit the data and is maximally "equivalent" to the full 

measure in face or content validity. However, to do that, several submeasures are usually 

required, and finding even one is frequently a tedious task. 

This template will assist in finding at least two subsets of items from the target measure 

that fit the data in a single construct measurement model of the items. The process is as follows. 

First, exploratory (common) factor analyze the target measure with its items using Maximum 

Likelihood estimation and varimax rotation. If the measure is multidimensional, start with the 

Factor 1 items. The other factors and the full measure can be used later.  

Next, estimate a single construct (confirmatory) measurement model using the Factor 1 

items (if the measure is unidimensional Factor 1 is the full measure). If the first measurement 

model fits the data item omission is not required. If this measurement model does not fit the data, 

find the "First Order Derivatives" in the output. (I will assume LISREL 8, which requires "all" 

on the OU line to produce First Order Derivatives. As far as I know, most other estimation 

packages produce statistics equivalent to First Order Derivatives. For example in SIMPLIS “First 

Order Derivatives” are available by adding the line “LISREL Output: FD.”). Paste the lower 

triangle of First Order Derivatives for "THETA-EPS" into the template making sure you retain 

the item names so you can figure out which item to drop (see the example on the template). Then 



find the largest value in the "Overall Sum" column--it will be the same as the "Max =" value in 

the lower right corner of the matrix. 

Now, reestimate the measurement model with the item having the largest "Overall Sum" 

omitted (call this Reestimation 1). Record the Chi Square and RMSEA values on the spreadsheet 

for reference. If they are acceptable, use the items in this measurement model as submeasure 1.  

There is no agreement on acceptable single construct measurement model fit. I use either 

a Chi Square that is slightly nonzero for single construct measurement models (e.g., 1E-07, not 

0), or an RMSEA that is .08 or slightly below, but many authors would suggest much stronger fit 

criteria for single construct measurement models.1 

If the unomitted items do not fit the data, find the "First Order Derivatives" for "Theta-

Eps" in the Reestimation 1 output. Paste these into the second matrix in the template, record the 

Chi-Square and RMSEA values, and reestimate the single construct measurement model 

(Reestimation 2).  

Repeating this process, eventually Chi Square will become nonzero, and after that 

RMSEA will decline to 0.08 or less (the recommended minimum for fit in full measurement and 

structural models--see Brown and Cudeck 1993, Jöreskog 1993). This should happen with about 

7 or 8, down to about 5, remaining items. If acceptable fit does not happen by about 4 items, an 

error has probably been made, usually by omitting the wrong item.  

Each subset after Chi Square becomes non zero is a candidate subset for "best," but 

because items are disappearing with each step, these smaller subsets are usually less face valid, 

and thus the first acceptable subset is usually the preferred one.  

To find another subset of items, repeat the above process using "Modification Indices" 

for "Theta Epsilon." (The SIMPLIS command line is “LISREL Output: MI.”) The theory behind 

Modification Indices is different from First Derivatives, and a different subset usually results. 

Another subset of items usually can be found using reliability. The reliability of all the 

Factor 1 items is computed using SAS, SPSS, etc., the item that contributes least to reliability is 

deleted, and the reliability of the remaining items is computed. This process is continued until 

deleting any item reduces reliability. The remaining items usually will fit the data in a single 

construct measurement model. 

 

If the full measure was multidimensional, there may be several more subsets found by 

repeating the above procedures using the full measure's items instead of the Factor 1 items, then 

using the reliability procedure just mentioned. Experience suggests these subsets are smaller, but 

they frequently include items from Factor 2, etc. and thus they may be more face valid. This 

process can also be used on any Factor 2 items, Factor 3, etc. 

 

There are many more subsets that can be found by omitting the next largest "Overall 

Sum" item instead of the "Max =" item. Specifically, the second largest item in Reestimation 1 

could be omitted in place of the largest. Then, continuing as before omitting the largest "Overall 

Sum" items, The result is frequently a different subset of items that fits the data. Another subset 

can usually be found using this "Second Largest" approach using modification indices instead of 

first derivatives. Others can be found omitting the second largest overall sum item in 

Reestimation 2, instead of Reestimation 1, etc., with or without deleting the second largest in 

Reestimation 1. This "Second Largest" strategy can also be used on the full set of items.  

Experience suggests that there are about N-things-taken-6-at-a-time combinations of 

items with real world data that will fit the data, where N is the number of items in the full 



measure (more, if 5, 4 and 3 item subsets are counted). For example, if the original measure has 

8 items, with real world data there are about 8!(8-6)!/6! = 112 6-tem subsets of items that might 

fit the data. While the above strategies will not find all of them, experience suggests they should 

identify several two subsets that are usually attractive because they are comparatively large 

(again however, usually with about 6 items) and they should appear to tap the target construct 

comparatively well. 

The above spreadsheet approaches may not always identify the highest reliability subsets 

of items, but experience suggests the resulting subsets are usually larger and as, or more, face 

valid than those produced by other approaches. However, with low reliability measures, even 

though the "First Derivative" or "Modification Indices" subsets should be only a few points 

lower in reliability than a subset found by, for example, dropping items that contribute lest to 

reliability, the higher reliability subset may be preferred to a higher face validity subset.  

It may be instructive to (re)submit all the subsets found to an item-judging panel for their 

selection of the "best" subset for each construct.  

Other comments: There are exceptions to several of the assertions made above, but this is 

probably not the place for an exhaustive exposition on item deletion strategies. For emphasis, the 

template assumes lower triangular matrices. There is an additional example in Appendix E of the 

monograph, Testing Latent Variable Models..., on the web site.  
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ENDNOTES 

 
1 In my opinion, some authors go too far in real world data with single construct measurement model fit, resulting in 

unnecessarily small submeasures. There are several issues here, including model fit versus face or content validity, 

and experience suggests that with real-world data, "barely fits" in single construct measurement models is almost 



                                                                                                                                                             
always sufficient to attain full measurement model fit. Thus, in real world data, subsets of items that each produce a 

comparatively small but nonzero Chi Square or an RMSEA that is just below .08 are usually "consistent enough" to 

later produce a full measurement model that fits the data. I prefer the RMSEA criterion because it seems to produce 

fewer problems later. Again, however, many authors would not agree with this strategy. Later, if it turns out that the 

full measurement model does not adequately fit the data, simply estimate the next item weeding single construct 

measurement model and drop the next largest "Overall Sum" items to improve full measurement model fit. 
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ON THE MAXIMUM OF ABOUT SIX INDICATORS 

PER LATENT VARIABLE WITH REAL-WORLD DATA 

 

 
 

ABSTRACT 

 

Authors have noted that consistent latent variables have a maximum of about six 

indicators each. This paper discusses this perhaps surprising behavior and its implications, and 

an explanation is offered. Approaches to utilizing more than about six indicators in latent 

variables are also discussed, and several novel approaches are proposed. Each of these 

approaches is explored using real-world data. 

 

 

Theoretical model tests (hypothesis testing) involving structural equation analysis 

combine unobserved or latent variables with proposed linkages among these variables (a model) 

and proposed (observed) measures of these unobserved variables. These model tests usually 

involve several steps including defining the model constructs, stating the relationships among 

these constructs, developing appropriate measures of the constructs, gathering data using these 

measures, validating these measures, and validating the proposed model.  

Commenting on step three, developing appropriate measures, authors have noted that 

latent variables seem to have an upper limit of about six indicators each (Anderson & Gerbing, 

1984; Gerbing & Anderson, 1993; Bagozzi & Heatherton, 1994; Ping, 2004). This apparent 

"maximum" for latent variable itemization has produced an unfortunate result. Cattell (1973) 

commented that measures used with structural equation analysis tend to be "bloated specific" 

(operationally narrow) instances of their target construct. Larger well-established measures 

developed before structural equation analysis became popular have virtually disappeared from 

published theoretical model tests involving latent variables. When they do appear in published 

studies involving structural equation analysis, they frequently are "shadows of their former 

selves" because of extensive item weeding (i.e., the deletion of items from a measure to attain 

model-to-data fit). 
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This paper explores the apparent ceiling of about six indicators per latent variable. An 

explanation for this result in real-world data is proposed, and approaches to avoiding this 

apparent limit in theoretical model testing are explored using real-world data. 

 

The observed upper limit of about six indicators per latent variable in published model 

tests is apparently the result of persistent model-to-data fit difficulties (i.e., inconsistency,1 see 

Anderson & Gerbing, 1982) with itemizations containing more than about six indicators per 

latent variable in real-world data. Gerbing and Anderson (1993) commented that "...fit indices 

indicated less fit as the...number of indicators per factor, increased..." They went on to propose 

that "Models with few indicators per factor...have fewer df (degrees of freedom), leaving more 

'room to maneuver' the parameter estimates so as to minimize the fit function, which in turn is a 

function of the residuals."  

An Additional Explanation  

Intuitively, lack of model-to-data fit in a set of items is the result of unrelated items in 

that set of items--items that do not "cluster" well enough with the other measure items. 

Mechanically, the input correlation between an unrelated item in a measure and each of the other 

measure items cannot be satisfactorily accounted for by the model paths connecting them.2 

Gerbing and Anderson's (1993) comment above suggests that "unrelatedness" increases simply 

by specifying additional indicators. 

The Footnote 2 equation for the model-implied covariance of two unidimensional items 

suggests an alternative explanation for increased "unrelatedness" when an additional indicator is 

added to a latent variable. Specifying indicators without accounting for correlations among 

measurement errors in real-world data (e.g., because of common method) may eventually ruin 
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model-to-data fit. In different words, by ignoring the potential for correlated measurement errors 

in real-world data, and thus not specifying them, the sum of the residuals (i.e., the sum of the 

differences between the Footnote 2 computed covariances of the items without the correlated 

error terms, and the input covariances) eventually becomes unacceptably large. 

Next, we will discuss several remedies for lack of model-to-data fit, which will 

subsequently be investigated using real-world data. 

Classical Remedies for Lack of Fit 

Classical remedies for lack of model-to-data fit include removing items (item weeding), 

and correlating indicator measurement errors. The pros and cons of each of these remedies are 

discussed next. 

Item Weeding  In published theoretical model tests involving structural equation analysis 

and real-world data, the about-six-indicators limit frequently produces "item weeding," the 

removal of items from a measure, to attain a set of indicators that fits the data. This approach has 

the benefit of producing a subset of items that "clusters" together (i.e., their single construct 

measurement model is consistent; it fits the data). 

However, because the items to be deleted are usually unknown beforehand, item weeding 

usually capitalizes on chance. In addition, the process of weeding is tedious. As we will see, 

there may also be several subsets of items for a latent variable that will fit the data (i.e., item 

weeding may be indeterminate). Finally, structural coefficients, standard errors, and thus 

observed significances and their interpretation, can vary across these weeded itemizations (i.e., 

the interpretation of structural coefficients in a model involving weeded subsets can be 

equivocal). 
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Item weeding to attain model fit in valid and reliable measures has also been criticized 

because it impairs content or "face" validity3 (e.g., Cattell, 1973, 1978; see Gerbing, Hamilton & 

Freeman, 1994). As mentioned earlier, Cattell (1973) remarked that the resulting weeded 

measures tend to be bloated specific (operationally narrow) instances of their target construct. 

Correlated Measurement Errors It is well known that correlating measurement errors can 

improve model-to-data fit. This result becomes apparent by examining the Footnote 2 Equation. 

Including a non-zero correlated measurement error term can improve the model-implied 

(computed) covariance estimate, and thus it can reduce the corresponding residual. The use of 

correlated measurement errors presumably to improve fit has been reported (e.g., Bagozzi, 

1981a; Byrne & Shavelson, 1986; Bearden & Mason, 1980; Duncan, Haller & Portes, 1971; 

Reilly, 1982), although this approach has become increasingly rare in recent published model 

tests. It has the benefit of producing a (sub)set of items that appears to "cluster" together (i.e., 

their single construct measurement model is consistent; it fits the data). However, as we will see, 

the indiscriminant use of correlated measurement errors can result in a set of items that appears 

to be consistent but is actually multidimensional (see Gerbing & Anderson, 1984).  

Authors have criticized the use of correlated measurement errors to improve fit (e.g., 

Bagozzi, 1983; Fornell, 1983; Gerbing & Anderson, 1984) for several reasons. These include 

that it is a departure from the assumptions underlying classical test theory and factor analysis, 

and the correlated measurement errors that are specified are typically unhypothesized and thus 

discovered by capitalizing on chance. In addition, the process of identifying measurement errors 

that should be correlated is tedious, and, as we will see later, there may be several sets of 

correlated measurement errors that will produce model-to-data fit (i.e., the results of correlating 

measurement errors may be indeterminate). 
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Recent Remedies for Lack of Fit 

Comparatively recent remedies for lack of model-to-data fit include using second-order 

constructs, and aggregating items. These remedies are discussed next. 

Second-Order Constructs Gerbing and Anderson (1984) argued that a second-order construct 

is an alternative to using correlated measurement errors.4 They suggested that a pair of items 

with correlated measurement errors could be re-specified as a factor (i.e., as a latent variable, and 

without using correlated measurement errors), and that a second factor containing the rest of the 

items, along with the first factor, could be specified as the "indicator" latent variables of a 

second-order construct. This approach has the benefit of producing a set of items that in their 

second-order specification fits the data. 

However, because the items that should be specified in the first factor are unknown 

beforehand, the process of identifying these first-factor items could be viewed as capitalizing on 

chance. In addition, the process of identifying the first-factor items is tedious, and there may be 

several second-order constructs that will fit the data (i.e., the results of this approach may be 

indeterminate). 

Aggregation Kenny (1979) is apparently credited with an approach that involves summing 

items in a measure to provide a single indicator of a latent variable. The approach uses 

reliabilities for loadings and measurement error variances, and variations of this approach have 

been used in the Social Sciences with structural equation analysis presumably to avoid item 

weeding. (e.g., Heise & Smith-Lovin, 1981; James, Mulaik & Brett, 1982; Williams & Hazer, 

1986).5 
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This full or total aggregation (Bagozzi & Heatherton, 1994) alternative to item weeding 

has several merits including that it allows the use of older well-established measures having 

more than six items with structural equation analysis (e.g., Williams & Hazer, 1986).  

An assumption in structural equation analysis is that the indicators are continuous. When 

it is averaged, a summed indicator produces a more-nearly-continuous indicator (e.g., averaged 

ordinal-scaled indicators then take on ratio-valued numbers) that better approximates this 

continuous data assumption, and thus an aggregated indicator can reduce the bias that attends the 

criticized use of structural equation analysis with ordinal (e.g., rating scale) data (e.g., Bollen, 

1989; Jöreskog & Sörbom, 1996).  

A summed indicator also reduces the size of the input covariance matrix (i.e., the input 

covariances of a summed indicator replace the input covariances of the several indicators 

comprising the sum), thus reducing the asymptotic incorrectness of the input covariance matrix 

for a given sample size. In different words, this helps enable the use of the methodological small 

samples typical in survey-model tests in the Social Sciences (e.g., 200-300) with larger structural 

models by improving the ratio of the sample size to the size of the covariance matrix.6 The use of 

summed indicators also separates measurement issues from model structure issues in structural 

equation models. In different words, for an unsaturated structural model, lack of fit with a 

summed-indicators model unambiguously suggests structural model misspecification, rather than 

suggesting a combination of measurement model difficulties and structural model 

misspecification. 

However, the indiscriminant use of summed indicators could produce a summed item that 

is composed of multidimensional items. Summed indicators are also non-traditional in structural 

equation analysis, and their use could be viewed as not particularly elegant when compared to 



 7 

multiple indicator specification. Further, it is believed that a reliability loading can underestimate 

the loading of a summed item. 

Other Remedies 

There are several other remedies for lack of model-to-data fit, including partial 

aggregation, gauging external consistency only, and using measure validation studies. These 

remedies are discussed next. 

Partial Aggregation  Bagozzi and Heatherton (1994) also used partial aggregation--

items were grouped into subsets and each subset was summed. This approach avoids the use of 

reliability loadings used in full aggregation if three or more consistent subsets of items can be 

found. This approach also has all the benefits and drawbacks of full aggregation. However, 

because the items that should be aggregated are unknown beforehand, partial aggregation could 

be viewed as capitalizing on chance. The process of finding consistent subset of items is also 

tedious, and there may be several aggregations of items that will fit the data (i.e., the results of 

partial aggregation may be indeterminate). 

External Consistency Only An additional alternative to item weeding would be to weed 

(unidimensional) measures jointly, instead of weeding them singly. Item weeding is typically 

performed one measure at a time (i.e., using single construct measurement models--see Jöreskog, 

1993) to establish the internal consistency of each measure (i.e., each measure fits its single 

construct measurement model--see Anderson and Gerbing, 1988). Later, the resulting internally 

consistent (unidimensional) measures are jointly specified in a full measurement model (i.e., a 

measurement model that contains all the measures) to assess the external consistency of the 

(unidimensional) measures (i.e., the measures jointly fit a unidimensionally specified full 

measurement model--again see Anderson and Gerbing 1988). However, it could be argued that 
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the ultimate objective of item weeding is for a full (unidimensionally specified) measurement 

model to fit the data (to isolate any structural model fit problems to the structural paths among 

the latent variables). Thus, it should be possible to accomplish full measurement model fit by 

using measures that are unidimensional in the exploratory common factor sense, omitting the 

internal consistency evaluation step, and item-weeding using a full measurement model only. 

Although this remedy has not been used as far as we know, it should have the benefit of 

producing measures with fewer items weeded out. However, because the items that should be 

weeded are typically unknown beforehand, this alternative could be viewed as capitalizing on 

chance. In addition, the process of weeding is tedious, and there may be several sets of the 

resulting items that will fit the data (i.e., the results of this weeding may be indeterminate). 

Further, skipping the internal consistency step violates the current received view in theoretical 

model testing using survey data: Anderson and Gerbing's (1988) "Two-Step" approach to model 

respecification in order to attain model-to-data fit (i.e., first verify internal consistency, then 

verify external consistency). 

Measure Validation An approach that might reduce some of the drawback of the above 

approaches would be to conduct a measure validation study. Ideally, measure validation uses 

several data sets, one to show measure adequacy (i.e., acceptable psychometrics), and one more 

to validate (i.e., disprove) the adequacy of the measure.  

A measure validation approach might allow the "discovery" of "the" (content valid) 

weeded subset of items for each measure, "the" (acceptable) second-order construct structure, 

"the" partial aggregation structure, "the" correlated measurement error structure, or "the" 

external-consistency-only structure of a measure in study one, and the (dis)confirmation of that 

structure could be attempted in study two. Thus, this approach might permit the use of weeded 
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subsets, second-order constructs, etc. with less criticism because capitalizing on chance would be 

removed in the second study.  

EXAMPLES 

To investigate their efficacy, the above approaches were used with a real-world data set. 

A mailed-out survey used in a theoretical model test produced more than 200 usable responses. 

Among the variables in the hypothesized model was the construct N that was measured using a 

new 18-item measure.7 While the measure for N was judged to be content or face valid, it was 

multidimensional (i.e., it had three dimensions using maximum likelihood exploratory common 

factor analysis). The items in the first factor were subsequently judged to be valid and reliable 

(the coefficient alpha for Factor 1 was .963), but the single construct measurement model for the 

Factor 1 items was inconsistent (i.e., it was judged to not fit the data using a single construct 

measurement model--chi square/df/p-value/RMSEA/GFI/AGFI = 270/35/0.0/.227/.670/.481).8 

Appendix A provides an example of item weeding to produce a subset of consistent items 

for N. In summary, a total of 20 consistent but different weeded subsets of the items of N were 

found using a procedure suggested by Ping (1998) (see Ping, 2004). The search for additional 

weeded subsets was discontinued after it became difficult to determine which weeded subset had 

the "best" content validity. 

Because the weeded items were unknown beforehand, the resulting consistent subsets of 

items all capitalized on chance. In addition, the process of weeding was very tedious, and 

because the weeding produced multiple itemizations, the resulting subsets of weeded items were 

indeterminate.9 Finally, in a simple structural model of the antecedents of N, one of the structural 

coefficients, its standard error, and thus its significance, became non significant as alternative 
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weeded itemizations of N were specified. Thus, the interpretation of the structural model 

involving weeded itemizations of N was equivocal. 

Appendix B provides an example of the use of correlated measurement errors to produce 

a set of items for N that fits the data. In summary, two sets of correlated measurement errors 

were found that resulted in all of the Factor 1 items fitting a single construct measurement model 

for N. An efficient procedure for finding these correlated measurement errors was discovered, 

and this procedure was used to find a third set of correlated measurement errors that permitted 

the full 18 item set to fit a single construct measurement model for N.  

Because the measurement errors that were correlated were unknown beforehand, these 

correlated measurement errors capitalized on chance. Further, the process of identifying 

measurement errors that should be correlated was tedious. There were also several sets of 

correlated measurement errors, and thus the resulting sets of correlating measurement errors 

were indeterminate. 

Appendix C probed the use of second-order constructs to enable model-to-data fit using 

the Factor 1 items from the measure for N. In summary, no second order specification of Factor 

1 could be found that fit the data without resorting to correlated measurement errors. This 

suggests that with real-world data a second-order specification for inconsistent items may not 

always be readily apparent. Specifically, these results suggest that in real-world data logically 

grouping inconsistent items (e.g., Hunter and Gerbing, 1982; Gerbing, Hamilton and Freeman, 

1994) and combining weeded and weeded-out items (e.g., Gerbing & Anderson, 1984) in 

second-order constructs may not always result in a second-order construct that fits the data.  

Appendix D provides examples of the use of full aggregation. Using factor scores the full 

18-item measure for N was aggregated and used to estimate a structural model containing N. 
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Aggregation was also accomplished with a single averaged indicator for N composed of its 

Factor 1 items, then a single averaged indicator for N composed of weeded Factor 1 items. In 

summary, three interpretationally equivalent (i.e., the directions and significances of their 

structural coefficients were equivalent) full aggregation approaches were reported in addition to 

the use of factor scores; averaged indicators with averaged LISREL 8 loadings and measurement 

errors, with averaged maximum likelihood EFA loadings and measurement errors, and with 

reliability loadings and measurement errors. 

Appendix E presents the results of investigating the other suggestions: Partial 

Aggregation, gauging External Consistency Only to achieve measurement model fit, and the use 

of Measure Validation. 

Using Partial Aggregation, several partitionings of the items were investigated. These 

included logical groupings of all 18 items in the measure for N (i.e., groupings of items that 

appeared to tap the same facet of N as Bagozzi and Heatherton, 1994 suggested), creating two 

summed indicators for N from its Factor 1 items (i.e., an indicator that was the average of the 

weeded Factor 1 items, and another indicator that was the average of the Factor 1 items that were 

weeded out), creating 3 summed indicators for N from its Factors 1, 2 and 3 items as three 

averaged indicators for N, subsets of the 18 items of N using maximum likelihood exploratory 

common factor analysis (EFA) with forced 7, 6, etc. factor solutions, and subsets of the Factor 1 

items of N using EFA with forced 7, 6, etc. factor solutions. However, none of these partial 

aggregations of the items of N fit the data. 

This suggests that the specification of a measure with a large number of items may not 

always be readily apparent using partial aggregation, even when the items cluster together 
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unidimensionally in an exploratory factor analysis (i.e., an acceptable partial aggregation of the 

Factor 1 items of N could not be found). 

Investigating the omission of the internal consistency verification step and achieving 

model-to-data fit using External Consistency Only, we itemized the 9 latent variables in the study 

with their Factor 1 items. Then we estimated a full measurement model containing all the model 

latent variables with each set of items specified unidimensionally (each item was specified with 

only one underlying latent variable). This full measurement model was judged to fit the data 

without deleting any additional items to attain model-to-data fit. 

This suggests that in real-world data omitting the internal consistency verification step for 

unidimensional items in the maximum likelihood exploratory factor analysis sense may produce 

a full unidimensionally specified measurement model that fits the data, thus separating 

measurement from structure as Anderson and Gerbing (1988) and others have stressed.  

In order investigate the use of a Measure Validation study to avoid some of the above 

criticisms of item weeding, correlated measurement errors, etc., we conducted a Scenario 

Analysis. A Scenario Analysis is an experiment in which subjects read written scenarios that 

portray a situation or scenario in which the study constructs are manipulated. Then they are 

asked to complete a questionnaire containing the study measures. Unfortunately the protocol 

used for the scenario analysis produced missing treatments. As a result, while the resulting 

scenario analysis was useful for assessing reliability and facets of validity, its results were not 

appropriate for finding "the" (content valid) weeded subset of items for N, "the" correlated 

measurement error structure, etc. in order to permit the use of weeded subsets, second-order 

constructs, etc. with fewer of the criticisms mentioned earlier.  

Discussion  
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These results suggest that several of the proposed alternatives to item weeding may not 

always be useful in real-world data. Second-order constructs failed to perform in the example.  

The example also suggested that partial aggregation of a multidimensional measure may 

not always be an alternative to item weeding in real-world data. Similarly, the example use of a 

measure validation study with Scenario Analysis did not perform as expected. 

Of the alternatives to item weeding discussed, only full aggregation, external consistency 

only, and correlated measurement errors performed in the example.  

Because correlated measurement errors are comparatively rare in recent published model 

tests, it seems almost pointless to discuss them further. In addition, the example illustrated how 

they are found by chance. Because there were several sets of correlated measurement errors, the 

results of correlating measurement errors can be indeterminate, and an unexplored issue is the 

effect of changes in correlated measurement errors on structural coefficients.  

The example suggested that full aggregation might be used to specify a multidimensional 

measure as a 2nd order construct. Nevertheless, item weeding will probably continue as the 

preferred approach to attaining measurement model-to-data fit in survey data model tests even 

though its use has been criticized, and as the examples suggested, the results of these tests and 

their interpretation may change materially when items are omitted simply to attain measurement 

model to data fit.  

However, the example also suggested an improved approach to item weeding: for each 

weeded measure find several item weedings that fit the data, then re-convene the item-judging 

panel to determine which set of items that best taps the conceptual definition for the measure's 

construct. A through weeding would include the results of weeding the full measure (e.g., the 18 

item measure for N), along with "jacknifed" weedings of the full measure (i.e., remove the first 
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item, then weed the rest; replace the first item then remove the second item and weed the rest; 

etc.). It would also include weedings from pairwise combinations of any factors (e.g., for the 

items of N, F1 and F2, F1 and F3, and F2 and F3), along with their "jacknives," and weedings 

from F1 and its "jacknives." A through presentation of the results of weeding to an item-judging 

panel would include the full measure and the Factor one items, along with the weeded subsets. 

If the full measure or its F1 items are judged to be more content valid than any of the 

weeded submeasures, External Validity Only and full aggregation could be used for that 

(sub)measure10 (i.e., other weeded measures might be combined with Externally Valid Only 

measures or fully aggregated measures).  

Several comments may be of interest. Appendix A illustrated the alternative explanation 

proposed earlier for the apparent ceiling of about six internally consistent indicators: item 

weeding reduced the number of unspecified but significant measurement error intercorrelations 

that contributed to the residuals in a single construct measurement model (specified without 

correlated measurement errors). Specifically, before weeding there were 25 significant 

modification indices for the correlations between the measurement errors in the Factor 1 items 

(not reported), and the sum of these modification indices without regard to sign was 474. As each 

item was weeded (removed), the number of these significant modification indices declined, and 

so did their sum without regard to sign. Perhaps surprisingly, the resulting consistent weeded 

subset, Subset 2, had three significant modification indices for the correlations between the 

remaining measurement errors.  
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APPENDICES 

APPENDIX A--Item Weeding 

To investigate item weeding, the full 18-item measure for N was subjected to a procedure 

for item weeding suggested by Ping (1998) (see Ping, 2004). This procedure uses partial 

derivatives of the likelihood function with respect to the measurement error terms (Modification 

Indices for Theta Epsilon in LISREL, LMTEST in EQS). Specifically, a single construct 

measurement model for the full 18 item (multidimensional) measure of N was specified 

unidimensionally and with the correlations among the measurement errors fixed at zero. This 

produced a matrix of modification indices for the fixed correlated measurement errors which was 

then examined, and the item in that matrix with the largest summed modification index without 

regard to sign (i.e., the sum of the item's column of modification indices without regard to sign) 

was deleted. Next, the single construct measurement model without this item was re-estimated, 

and the item with the largest summed modification index without regard to sign in the resulting 

modification indices for the correlations among the measurement errors was deleted. This 

process was repeated, deleting an item at each step, until a subset of the 18 items was found that 

fit the data.  

The resulting 5-item subset (Subset 1--containing the items n1, n12, n14, n15 and n18) was 

consistent (it fit the data--chi square/df/p-value/RMSEA/GFI/AGFI = 2.84/5/.723/0/.991/.974) 

(see Footnote 8 for a discussion of model fit), and it contained items from Factor 1 (n12, n14, n15 

and n18) and an item from Factor 3. There was another consistent 5-item subset (Subset 1a-- n4, 

n12, n14, n15 and n18--chi square/df/RMSEA/GFI/AGFI = 9.09/5/.105/.079/.973/.919), that 

contained the Factor 1 items and a Factor 2 item. However, we could not find a consistent subset 
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with items from all three factors. Nevertheless, it was possible to find consistent subsets with 

items from several factors.  

Using this derivative procedure on the 10 items of Factor 1, a different consistent subset 

obtained (Subset 2--n9, n13, n15, n16, n17 and n18--chi square/df/p-value/RMSEA/GFI/AGFI = 

15/9/.086/.072/.961/.910). This 6-item subset was judged to be slightly more content or face 

valid than Subsets 1 or 1a, and its items clustered together using maximum likelihood 

exploratory common factor analysis slightly better than Subset 1 (the percent of the variance 

explained for Subset 2 was 75.7%, versus 59.8% for Subset 1 and 66.8% for Subset 1a).    

Several more consistent subsets were then obtained. Obviously any subset of Subset 2 

would fit the data, and there were 41 of these (= the total number of combinations of 6 things 

taken 5, 4 then 3 at a time). In addition, arbitrarily omitting an item from the Factor 1 set of 10 

items produced two more consistent subsets, Subset 3 (n9, n10, n11 and n17--chi square/df/p-

value/RMSEA/GFI/AGFI = 3.34/2/.187/.072/.987/.939), and Subset 4 (n11, n13, n16, n17 and n18--

chi square/df/p-value/RMSEA/GFI/AGFI = 2.64/5/.754/0.0/.992/.976). These subsets clustered 

together about as well as Subset 2 (71.6% and 75.1% explained variance respectively) and 

judging which had the "best" content validity became impossible without resorting to an item-

judging panel. However, we judged each of the weeded measures to be less content valid than 

either the original 18-item measure, or the 10 item Factor 1 measure.  

We then discontinued the search.11 In summary, we identified 20 consistent subsets of the 

18-item measure for N using the derivative procedure.  

Finally, we gauged the sensitivity of structural coefficients to changing the itemization of 

N. In a simple saturated structural model with N as the single endogenous variable, the structural 

coefficients and standard errors were judged to vary unpredictably across these different 



 19 

itemizations of N. For example, the t-value for one of the 4 significant structural coefficients 

changed from t = 2.66 to t = 0.91 by changing the itemization of N from weeded Subset 1a to 

Subset 4.12 

APPENDIX B--Correlated Measurement Errors 

In order to investigate correlated measurement errors, the full 18-item measure for N was 

subjected to a procedure involving modification indices. A single construct measurement model 

for the full (multidimensional) measure of N was specified unidimensionally and with the 

correlations among the measurement errors fixed at zero to produce a matrix of modification 

indices for the fixed correlated measurement errors. Then, the measurement error correlation 

corresponding to the largest of these modification indices was freed (i.e., the corresponding 

measurement errors were allowed to correlate) (a modification index of 3.8 is significant at p = 

.05 with 1 degree of freedom, see the second part of Footnote 14). Next, the single construct 

measurement model was estimated with this measurement error correlation freed, and the largest 

of the resulting modification indices for the remaining fixed correlations among the measurement 

errors was found and freed. This process was repeated, freeing a measurement error correlation 

at each step, a total 90 times before we decided to abandon this "forward selection" process of 

identifying correlated measurement errors.13  

However, we used the above "forward selection" approach on a smaller subset of items, 

the Factor 1 items (10 items-- n9 through n18), until the set of Factor 1 items was judged to fit the 

data. The Factor 1 items with correlated measurement errors was judged to be consistent (i.e., it 

fit the data--chi square/df/p-value/RMSEA/GFI/AGFI = 34/20/.022/.074/.949/.861) (see 

Footnote 8 for comments on model fit). The procedure required 27 estimations and produced 15 

significant correlated measurement errors (9:10,11; 10:12,13,16,17; 11:--; 12:13,17; 13:14,15,16; 
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14:17,18; 15:16,18; 16:--; 17:--; where for example 9:10,11 denotes the correlations between ε9 

and ε10, and ε9 and ε11, where ε denotes a measurement error term, and 11:-- for example 

indicates that ε11 was not correlated with its higher-ordinality measurement errors, ε12 through 

ε18).  

To find another set of correlated measurement errors for the Factor 1 items, we specified 

a single construct measurement model for the Factor 1 items with all the measurement error 

correlations fixed at zero, except for the ε9 correlations which were freed.14 Estimating this 

model we recorded the significant measurement error correlations between ε9 and ε10 through ε18. 

Next we re-fixed the measurement error correlations with ε9 to zero, and freed the ε10 

measurement error correlations with its higher-ordinality measurement errors, ε11 through ε18 

(i.e., all measurement error correlations were fixed at zero except for those between ε10 and ε11, 

ε10 and ε12, ... , and ε10 and ε18). After estimating this model, we recorded the significant 

measurement error correlations between ε10 and ε11 through ε18. Repeating this process of re-

fixing the previously freed measurement error correlations, and freeing and estimating the 

higher-ordinality measurement error correlations for ε11, then ε12, ... , then ε18 (e.g., the ε11 

correlations with ε12 through ε18, the ε12 with ε13 through ε18, etc.), the result was a set of 

significant measurement error correlations for ε9 through ε18.  

Next, we re-specified the single construct measurement model for Factor 1 with the all 

measurement error correlations again fixed at zero. Then, we freed the significant modification 

indices just recorded for ε9, ε10, etc. (i.e., based on their recorded modification indices, the 

significant correlations for ε9 were freed, the significant correlations for ε10 were freed, etc.). 

This single construct measurement model was estimated (chi square/df/p-

value/RMSEA/GFI/AGFI = 31/14/.004/.098/.956/.828) and the nonsignificant measurement 
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error correlations were trimmed (i.e., fixed at zero--for example 10:11,15 were trimmed because 

they were nonsignificant when estimated in the presence of the other specified measurement 

error correlations). This trimmed model was then estimated, and because it did not yet fit the data 

(chi square/df/p-value/RMSEA/GFI/AGFI = 53/24/.0004/.097/.931/.841) the modification 

indices (MI's) for the remaining non-freed measurement error correlations were examined to find 

the largest significant MI, MI9,12 (= the modification index for the ε9-ε12 correlation = 10.30). 

The ε9-ε12 correlation was then freed and the resulting single construct measurement model was 

estimated. This measurement model was judged to fit the data (chi square/df/p-

value/RMSEA/GFI/AGFI = 41/21/.009/.079/.945/.870).  

Several comments may be of interest. There were two sets of correlated measurement 

errors that would permit Factor 1 items to fit the data in a single construct measurement model. 

Stated differently, there was more than one set of correlated measurement errors that would 

make the Factor 1 items consistent in a single construct measurement model. While the 

correlations from the second or "column-wise" selection approach were more parsimonious (i.e., 

there were fewer of them) and they were found using half as many estimations (12--1 for each 

item, one more to trim the nonsignificant intercorrelations, plus one to add the additional 

intercorrelation MI9,12--versus 27 for forward selection), their comparative statistics are trivially 

different (AIC/CAIC/EVCI for the column-wise selection = 105/229/.815 versus 104/240/.803 

for forward selection). 

Since the second or column-wise selection approach required considerably fewer 

estimations, we tried it on the full set of 18 items. Obtaining a set of measurement error 

correlations that were judged to make the full 18-item measure consistent required 19 

estimations, one for each item, one to trim the resulting nonsignificant correlations, and 9 more 
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estimations to add enough additional correlations to obtain consistency (chi 

square/df/RMSEA/GFI/AGFI = 122/69/.00007/.077/.906/.768).  

Thus, the original multidimensional set of 18 items could be specified so that it fit the 

data in a single construct measurement model using correlated measurement errors. Stated 

differently, correlated measurement errors masked a multidimensional measure.  

Finally, the trimming step in the column-wise selection approach (i.e., to remove 

nonsignificant correlated measurement errors) suggests that some measurement error correlations 

were collinear. Stated differently, freeing a correlation affected the significance or lack thereof in 

other correlations. This may explain the apparent indeterminancy in measurement error 

correlations. Specifically, the starting point (i.e., the measurement errors that were initially 

allowed to correlate) determined the remaining significant measurement error correlations. 

APPENDIX C--Second-Order Constructs 

To investigate the use of second-order constructs we tried several approaches. The initial 

objective was to find a second-order construct for the Factor 1 items that would fit its single 

construct measurement model. To this end authors have suggested grouping items into subsets 

using their content or face validity (i.e., grouping items that seem to be related based on their 

wording--see Hunter and Gerbing, 1982; Gerbing, Hamilton and Freeman, 1994). For example, 

we grouped the Factor 1 items into two subsets based on wording (i.e., the subset 1 items were 

used to indicate latent variable 1, the subset 2 items were used to indicate latent variable 2, and 

latent variables 1 and 2 were specified as the "indicators" of the now second-order Factor 1), then 

three subsets. However, we were unable to find a grouping of the Factor 1 items based on item 

wording that fit their single construct measurement model (i.e., the measurement model 

containing only the second-order construct) without resorting to correlated measurement errors.  
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Authors have also suggested that weeded-out items might be specified as a second 

"indicator" factor in a two-factor second-order construct (i.e., a second-order construct with the 

weeded items as one "indicator" latent variable, and the items that were not weeded out as the 

other indicator latent variable--see Gerbing and Anderson, 1984). To this end we specified a 

second-order construct with the weeded-out items as one "indicator" latent variable, and the 

surviving items as another "indicator" latent variable. Again, we were unable to find a second-

order construct that would fit their single construct measurement model without resorting to 

correlated measurement errors. 

We also tried a second-order construct with the two factors that resulted from a forced 

two-factor solution in maximum likelihood exploratory common factor analysis of the Factor 1 

items, then a forced three-factor solution. These second-order constructs also would not fit their 

single construct measurement model without resorting to correlated measurement errors.  

Finally, we tried specifying a second-order construct with three consistent subsets of the 

Factor 1 items (i.e., two consistent four-item subsets, and one three item subset that fit the data 

exactly). This second-order construct also did not fit the data without resorting to correlated 

measurement errors. 

Several comments may be of interest. These results suggest that with real-world data the 

use of a second-order construct may not always easily improve model-to-data fit. 

APPENDIX D--Full Aggregation 

In full aggregation, a set of items is summed to form a single indicator. Because the 

resulting latent variable is underdetermined with only one indicator, it requires that two of its 

three estimated parameters, its loading, its measurement error variance or its latent variable's 

variance, be fixed for identification.  
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It is easy to show that the loading of a summed indicator is the sum of its individual 

indicator loadings, and that its measurement error variance is the sum of the individual indicator 

measurement error variances.15  

A reliability loading and the well-known measurement error estimate Variance*(1-

reliability) has been used in the social sciences. It is easy to show that these estimates for an 

aggregated indicator are exact when the variance of its latent variable is 1 and latent variable 

reliability is available (see Appendix F).  

Ping (2004) suggested using maximum likelihood exploratory factor analysis (EFA) 

loadings and reliability measurement error variances for a fully aggregated indicator. There is an 

additional estimate of the measurement error variance available using EFA results (see Equation 

F6 in Appendix F).  

An additional approach would be to replace indicators with their fully aggregated EFA 

factor scores.  

Each of these aggregation alternatives will be explored next. 

While it is obviously possible to aggregate a multidimensional measure, none of the 

above estimates for the resulting single indicator's loading and measurement error variance 

would be appropriate (because each requires or assumes unidimensionality), with the exception 

of factor scores. Pursuing that option we produced factor scores using maximum likelihood 

exploratory factor analysis and the full 18 item measure of N. Specifically, maximum likelihood 

EFA of N produced three factors, and the factor score for each of these factors was summed then 

averaged. Next, a full structural model (i.e., with all the latent variables and N as the single 

endogenous variable) were estimated with N specified using this single aggregated factor score 

indicator (with a loading of 1 and a measurement error of 0). The resulting structural model was 
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judged to fit the data (chi square/df/RMSEA/GFI/AGFI = 2349/1449/0/.066/.650/.614) (see 

Footnote 8 for comments about assessing model-to-data fit).  

Next, we estimated a series of structural models involving N and the other model latent 

variables with a full aggregation (average) of the F1 items, or a full aggregation (average) of a 

weeded subset of the F1 items, Subset 2 from Appendix A (items n9, n13, n15, n16, n17 and n18). 

The resulting single indicator used the estimates for loadings and measurement error variances 

mentioned above, averaged LISREL 8 loadings and measurement errors, averaged maximum 

likelihood EFA loadings and measurement errors, reliability loadings and measurement errors 

(see Appendix F), and factor scores. 

The structural coefficients on the paths to N from the other 8 latent variables were 

compared to the structural coefficients produced by the equivalent structural model (i.e., 

containing N and the other 8 latent variables) that used either the 10 items in F1 or Subset 2, with 

N specified with multiple indicators that were the individual items of F1 or Subset 2. 

The Subset 2 full measurement model fit the data (chi square/df/RMSEA/GFI/AGFI = 

2789/1733/0/.065/.630/.596), as did its (saturated) structural model (chi square/df/RMSEA/GFI/ 

AGFI = 2789/1733/0/.065/ .630/.596). The structural coefficients that resulted were used as a 

basis for assessing the efficacy of the various alternative loadings and measurement error 

variances mentioned above.  

In summary, the factor score indicator produced by a maximum likelihood EFA with just 

the Subset 2 items (i.e., with no other items present in the EFA) was judged to produce the 

smallest differences between the corresponding t-values of the Sunset 2 (baseline) structural 

model and the factor score indicator structural model. The root mean square (RMS) (pairwise) 

difference of t-values across the 8 structural coefficients on the paths to N was .002 and the 
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average difference without regard to sign (MAD) was .005 (with a range of between .000 for the 

nonsignificant structural coefficients to .012 for the significant structural coefficients) (structural 

coefficient RMS = .011, MAD = .024, range = [.004, .066]). 

The smallest structural coefficient differences were produced by the averaged LISREL 8 

loadings and measurement errors--the RMS difference of structural coefficients across the 8 

structural coefficients on the paths to N was .007 and the MAD was .015 (the range was .001 to 

.041) (t-value RMS = .065, MAD = .149, range = [.001, .353]).  

The t-value and structural coefficient differences for the other aggregation approaches 

were nearly identical to those produced by the averaged LISREL 8 loadings and measurement 

errors. For example, the average of the maximum likelihood EFA loadings and an Equation F6 

measurement error variance produced a t-value RMS, MAD and range of .062, .149 and [.001, 

.353], respectively. Its structural coefficient RMS, MAD and range were .005, .015 and [.000, 

.024], respectively. The reliability loading and measurement error was similar (t-value RMS = 

.065, MAD = .149, range = [.001, .353]) (structural coefficient RMS = .006, MAD = .015, range 

= [.001, .031]). 

These results were then used to predict the ranking of the performance of N specified 

using the fully aggregated F1 items and the above approaches. As a baseline structural model the 

External Consistency Only (see Appendix E) (full) measurement model for N using the F1 items 

was re-specified as a structural model. An External Consistency Only full measurement model 

uses unidimensional sets of indicators that are not necessarily internally consistent (i.e., their 

single construct confirmatory measurement model may not fit the data). In the present case, each 

latent variable in the External Consistency Only full measurement model had a unidimensional 

itemization (in a maximum likelihood EFA sense), but none of these itemizations was consistent 
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(in the confirmatory factor analysis sense). However, the resulting External Consistency Only 

full measurement model measurement model fit the data (chi square/df/RMSEA/GFI/AGFI = 

3480/1979/0/.073/.590/.556) (see Footnote 8 for comments about assessing model fit), as did the 

corresponding structural model (chi square/df/RMSEA/GFI/AGFI = 

3480/1979/0/.073/.590/.556). 

As with the weeded Subset 2 of the measure for N, the factor score indicator was judged 

to have produced the smallest t-value differences (t-value RMS = .032, MAD = .070, range = 

[.001, .167]). However, it also produced the smallest structural coefficient differences (structural 

coefficient RMS = .013, MAD = .022, range = [.000, .085]). 

The other approaches investigated produced nearly identical results. For example, 

averaged LISREL 8 loadings and measurement errors produced t-value RMS, MAD and range of 

.048, .124, [.066, .236], respectively (structural coefficient RMS = .050, MAD = .093, range = 

[.005, .300]). Averaged maximum likelihood EFA loadings and measurement errors were similar 

(t-value RMS = .048, MAD = .122, range = [.066, .236]) (structural coefficient RMS = .050, 

MAD = .092, range = [.004, .300]), as were reliability loadings and measurement errors (see 

Appendix F) (t-value RMS = .047, MAD = .120, range = [.066, .236]) (structural coefficient 

RMS = .050, MAD = .093, range = [.000, .300]). 

The details of these estimations were as follows. For the factor score approach, a 

maximum likelihood EFA of the 10 F1 items (i.e., with all other items absent) was performed, 

and the resulting factor scores were added to the data set (i.e., the resulting factor scores were 

saved and given the variable name FS). Next, N was specified using the single indicator FS with 

a fixed loading of 1 and a fixed measurement error variance of 0 (i.e., the variance of N, PHIN, 

was free). The resulting structural model was judged to fit the data (chi 
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square/df/RMSEA/GFI/AGFI = 2327/1449/0/.065/.652/.616) (see Footnote 8 for comments 

about assessing model-to-data fit). 

In the LISREL 8 loadings and measurement errors approach, a single construct 

measurement model of the 10 F1 items (i.e., with all other latent variables absent) was estimated 

with the variance of N free (i.e., one indicator loading was fixed at 1 to provide a metric for N). 

Although this single construct measurement model did not fit the data (chi 

square/df/RMSEA/GFI/AGFI = 273/35/0/.219/.687/.509), the F1 items were unidimensional 

using maximum likelihood EFA, so the resulting loadings were averaged and the resulting 

measurement error variances were divided by 102 (using expectation algebra, the variance of an 

average of independent measurement errors, a constant times the sum of the measurement errors, 

is the constant squared times the sum of the variances of the measurement errors). Next, the F1 

indicators were averaged, then N was specified using the resulting single indicator with a fixed 

loading and measurement error variance equal to the averaged LISREL 8 loadings and the 

"averaged" measurement error variances just described, respectively (i.e., the variance of N, 

PHIN was free). The resulting structural model fit the data with the same fit statistics as the factor 

score model. 

For the maximum likelihood EFA loadings and its Equation F6 measurement error 

variance estimation, a maximum likelihood EFA of the 10 F1 items (i.e., with all other items 

absent) was performed. The resulting loadings were re-scaled then averaged,16 and the 

measurement error variance of this single was calculated using Equation F2 in Appendix F. Next, 

the F1 items were averaged, and N was specified using the resulting single indicator with a fixed 

loading and measurement error variance equal to the averaged EFA loadings and the Equation F6 

measurement error variance just described, respectively (i.e., the variance of N, PHIN again was 
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free). The resulting structural model also fit the data with the same fit statistics as the factor score 

model. 

In the reliability loading and measurement error approach, the coefficient alpha reliability 

(α) and the error-attenuated variance (V) (i.e., from SPSS, SAS, etc.) of the F1 items was 

determined. The F1 items were again averaged to form a single indicator of N, and this single 

indicator's the measurement error variance was fixed at the Equation F2 value of = V*(1- α), the 

loading of the single averaged indicator of N was fixed at the square root of the coefficient alpha 

reliability, and the variance of N, PHIN was freed. Again the resulting structural model fit the 

data with the same fit statistics as the factor score model. 

Several comments may be of interest. Specification of the weeded and "weeded-out" 

items of F1 was accomplished using several aggregation approaches.  

The successful estimation of a structural model for a multidimensional N specified with 

aggregated factor scores, suggests that aggregated factor scores might be an alternative to a 2nd 

order factor or partial aggregation (see Appendix E) for specifying a multidimensional measure 

in structural equation analysis. In the present case an 18 item measure which formed three factors 

using maximum likelihood EFA was fully aggregated using (averaged) maximum likelihood 

EFA factor scores.  

Other full aggregation indicators, loadings and measurement error terms were 

investigated (e.g., normed indicators) but not reported because they were judged to have 

performed worse than the reported approaches. 

The results from reliability and LISREL 8 loadings were a surprise. Fixing the loading to 

the square root of coefficient alpha overstates the loading (see Equation F3 in Appendix F) 

which should not have performed well. Similarly, the LISREL 8 single construct measurement 
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model for the items of F1 did not fit the data, yet the resulting loadings and measurement error 

variances were useful in this investigation. However, the External Consistency Only 

measurement model for N with the F1 items did fit the data, and the F1 loadings and 

measurement error variances were trivially different from those produced by single construct 

measurement model for the items of F1. This suggests an additional full aggregation approach 

which is identical to the LISREL 8 approach (a), except that it uses loadings and measurement 

error variances from an External Consistency Only measurement model for N. 

Comparing the structural coefficients and t-values for the 18-item measure for N with 

those from F1 and the weeded Subset 2 (not reported), structural coefficients and significances 

changed materially when items were removed from an aggregated indicator for N (2 structural 

coefficients that were significant using the 18 item measure became nonsignificant when items 

were dropped, and 1 structural coefficient became significant when items were removed). In 

different words, this also suggests that changes in content or face validity of a measure (i.e., the 

items included or excluded in a measure) may change the construct validity of that measure (i.e., 

the correlations among the other latent variables in the model).  

Finally, to investigate the sensitivity of structural coefficients and their significances to 

small changes in itemization with full aggregation, we specified N with fully aggregated weeded 

Subsets 1 through 4 and 1a (see Appendix A). The resulting sensitivity to different weeded 

subsets of items observed were similar to those reported in Appendix A. This suggests not only 

that item changes may change the study results and their interpretation, but that full aggregation 

may not mask these changes. 

APPENDIX E--Other Approaches 
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Partial Aggregation  To investigate partial aggregation, we grouped the items of N into subsets 

of items based on similar face or content validity (i.e., we grouped items that appeared to tap the 

same facet of N together) as Bagozzi and Heatherton (1994) suggested. We then specified N with 

the summed items (i.e., N was specified with 2 or 3 summed indicators). However, neither of 

these groupings fit a single construct measurement model for N. 

Next we created two indicators for N from the results of weeding. We summed the 

weeded Factor 1 items, then did the same for the Factor 1 items that were weeded out. Using a 

fixed reliability measurement error variance for the summed weeded-out items because the latent 

variable was underdetermined, the measurement model was judged to not fit the data (chi 

square/df/RMSEA/GFI/AGFI = 16/8/.047/.082/.979/.871) (the model fit is close to being 

acceptable, but N was not unidimensional--modification indices suggested that the "weeded out" 

indicator loaded significantly on several latent variables). 

Next, we created three indicators for N using the summed items from Factor 1 for one 

indicator, the summed items from Factor 2 for another, and the summed items from Factor 3 for 

the last indicator. However, N was again not unidimensional in the full measurement model 

containing N and the other latent variables, and it did not fit the data. 

Finally, we tried obtaining subsets of the items of N using maximum likelihood 

exploratory common factor with forced 7, 6, etc. factor solutions, and each factor's items were 

then summed. While the 7, 6, etc. forced factor varimax and oblimin exploratory factorings 

converged with the 18 item measure of N, and the 6, 4 and 3 factor exploratory factorings also 

converged with the Factor 1 items of N, the forced 7 and 5 factors with the Factor 1 items did not 

converge. In addition, none of the successful forced factorings fit the data (the 3-factor solution 

was not unidimensional in the full measurement model). 
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These results suggest that partial aggregation may not always allow the specification of a 

large number of items (i.e., more than about 6). Specifically, in the present case none of the 

partial aggregating approaches produced a full measurement model that was external consistent.  

External Consistency Only To investigate omitting the internal consistency step for 

unidimensional measures and achieving full measurement model-to-data fit using external 

consistency only, we itemized each of the 9 latent variables with their Factor 1 items. Each latent 

variable thus had a unidimensional itemization (in a maximum likelihood exploratory factor 

analysis sense), but none of these itemizations was consistent (i.e., none fit their single construct 

measurement model). However, a full measurement model containing the 9 latent variables 

specified unidimensionally with their respective Factor 1 items (i.e., each item was "pointed to" 

by only one latent variable) was judged to fit the data (chi square/df/RMSEA/GFI/AGFI = 

3480/1979/0/.073/.590/.556) (see Footnote 8 for comments on assessing model-to-data fit). 

 To probe the limits of this externally consistent measurement model we weeded each of 

the multidimensional measures until they became unidimensional in a maximum likelihood 

exploratory factor analysis (EFA) of the un-weeded items. Specifically, each multidimensional 

measure was specified in a single factor measurement model as though it were unidimensional. 

For each measure the partial derivative technique used in Appendix A was used to weed the first 

item from that measure. The un-weeded items in that measure were factored using maximum 

likelihood EFA to check their factor structure. If the un-weeded items were multidimensional 

another item was weeded using the partial derivative technique, and the factor structure of the 

resulting un-weeded items was again checked using maximum likelihood EFA. This process was 

repeated until the measure was unidimensional using maximum likelihood EFA. 
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A full measurement model containing these larger but unidimensional measures was also 

judged to fit the data, but LISREL produced a warning message that the sample size was smaller 

than the number of parameters to be estimated, and that the parameter estimates were thus 

unreliable. 

Measure Validation Measure validation (i.e., the determination of the adequacy--reliability and 

validity--of a measure) in survey models can take several approaches. These include a separate 

large scale study(s) aimed solely at validating the study measures. However, presumably because 

of budget and time constraints, large scale measure validation studies are sometimes bypassed, 

and measure adequacy is gauged in a small scale pretest survey(s) (e.g., 100 cases). These small 

pretest surveys are used to preliminarily assess the measures, and to determine response rates. 

Obviously, weeded subsets, second-order constructs, etc. may be difficult if not impossible to 

investigate with the resulting small data sets. 

Again perhaps because of budget and time constraints, the final- (model-) test data set is 

sometimes used for measure validation. In this case the final-test data are used for two separate 

purposes: to assess the measures, and to validate or test the hypothesized model that uses these 

measures. In this case weeded subsets, second-order constructs, etc. could obtain, but all the 

earlier criticisms (capitalizing on chance, etc.) then apply. 

To investigate the use of a separate large-scale measure validation study that takes less 

time and is less expensive than to a mailed-out survey, we conducted a Scenario Analysis. A 

Scenario Analysis is an experiment in which the subjects (usually students) read written 

scenarios that portray a situation in which the study constructs are verbally manipulated (i.e., 

high for one experimental subject--"you are very satisfied with..."--low for another--"you are 

very dissatisfied with..."). Then the subjects are asked to complete the study questionnaire which 
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contains the measures to be validated. Compared with other research designs such as cross 

sectional surveys, the results of Scenario Analyses have been reported to be similar enough that 

they might be useful in measure development and validation (Ping, 2004).  

A Scenario Analysis designed to assess N and the other study measures was conducted 

using students. An audit of the resulting completed questionnaires suggested, however, that 

many scenarios were incomplete or were not administered. Specifically, while there were nine 

variables in the proposed model, eight were exogenous, and thus the scenario required 28 = 256 

completed questionnaires to produce one questionnaire for each treatment (i.e., treatment1 = high 

exogenous variable1, high exogenous variable2, ... , high exogenous variable8; treatment2 = high 

exogenous variable1, high exogenous variable2, ... , low exogenous variable8; treatment3 = high 

exogenous variable1, high exogenous variable2, ... , low exogenous variable7, high exogenous 

variable8; treatment4 = high exogenous variable1, high exogenous variable2, ... , low exogenous 

variable7, low exogenous variable8; ... ; treatment256 = low exogenous variable1, low exogenous 

variable2, ... , low exogenous variable7, low exogenous variable8). However, substantially fewer 

than 256 usable questionnaires were obtained, and re-administering the missing scenarios was 

judged to be out of the question because it was nearly impossible to determine which scenarios 

were missing.17 The effect of these missing treatments was subsequently judged to be unknown. 

However, comparing the results of single construct exploratory common factor analysis 

of each measure, of the 9 measures, the behavior of 7 measures was same between the scenario 

analysis and the final test: 5 measures were unidimensional in both studies and 2 measures were 

multidimensional in the two studies, while 2 measures were unidimensional in scenario analysis 

and multidimensional in the final test, and no measures were multidimensional unidimensional in 

scenario analysis and unidimensional in the final test (not reported). However, loadings in the 
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unidimensional measures were different between the data sets (i.e., an item that loaded high in 

the scenario data loaded lower in the final test data, and vice versa). Further, the 

multidimensional factor structure was not constant across the data sets--the number of factors 

were usually different between the data sets, but items in the scenario factor 1's were contained 

in (i.e., a subset of the) final test factor 1's in all but 1 case. 

Further, reliabilities were within a few points of each other between the two data sets. 

While Average Extracted Variances (AVE's) (see Fornell & Larker, 1981) varied more widely (1 

to 19 points), when the scenario AVE's were above .5 so were the final test AVE's. 

Encouraged by these sanguine results despite the missing treatments, we weeded the 

measure for N using the scenario data. As discussed in Appendix A, the first weeded subset of 

the Factor 1 N items in final test data was Subset 2 (n9, n13, n15, n16, n17 and n18). However, n16 

was the first item weeded out of Factor 1 in the scenario data (not reported). Thus, for the focal 

construct N, weeded subsets would not (all) be the same across data sets, and finding "the" 

weeded subset of items for the Factor 1 items of N using this scenario data set was judged 

unlikely. 

Similarly, the first set of correlated measurement errors found for the Factor 1 items of N 

in the final test data was (9:10,11; 10:12,13,16,17; 11:--; 12:13,17; 13:14,15,16; 14:17,18; 

15:16,18; 16:--; 17:--; where for example 9:10,11 indicates the correlations between ε9 and ε10, 

and ε9 and ε11--ε is a measurement error term, and 11:-- for example indicates that ε11 was not 

correlated with its higher-ordinality measurement errors, ε12 through ε18). However, 17:18 was 

the first correlated measurement error identified in the Factor 1 items of N using the scenario 

data (ε17 and ε18 were not correlated in the Factor 1 items in the final test data). Thus, the 

correlated measurement errors for N would not all be the same across data sets, and finding "the" 
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correlated measurement errors for the Factor 1 items of N using this scenario data set was also 

judged to be unlikely. 

We did not investigate 2nd order constructs or partial aggregation because they did not 

perform in the final test data. Similarly, because the itemizations of Factor 1 in nearly half of the 

study latent variables were different between the two data sets, weeding using external 

consistency only was also not investigated in the scenario data. 

Since the reliabilities were similar between the two data sets, however, we did investigate 

full aggregation. However, the correlations were not same between data sets. For example, N had 

a correlated with S, an important study variable, of .10 in the scenario data, but this correlation 

was -.54 in full test data. Thus, the proposed structural model was not investigated in the 

scenario data because structural coefficients are related to partial correlations (and the scenario 

data was intended for measure validation rather than model validation). 

In summary, while this scenario analysis may have been useful for assessing N and the 

other study measures' reliability and facets of validity (even with missing treatments), its results 

were not appropriate for finding "the" (i.e., a content valid) weeded subset of items for N, "the" 

correlated measurement error structure, etc. in order to permit the use of weeded subsets, second-

order constructs, etc. with fewer of the criticisms mentioned earlier because capitalizing on 

chance would be removed in the second study. However, it remains an open question whether or 

not a "proper" scenario analysis (i.e., one in which all the treatments were administered) would 

have produced the same conclusion regarding weeded subsets, etc.  

Unfortunately, since one was not performed for this analysis (or the original model test, 

due to budget and time constraints), it is also an open question whether a large scale measure 
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validation study could have been used to find "the" weeded subset of items for N, "the" 

correlated measurement error structure, etc.  

APPENDIX F--Derivation of Single Indicator Loadings and Measurement Error Variances 

Werts, Linn and Jöreskog (1974) proposed that the latent variable reliability (ρX) of a of a 

unidimensional measure X (i.e., the measure has only one underlying latent variable) is given by 

            L2
X Var(X) 

F1) ρX = ـــــــــــــــــــــــــــــــ  , 

                   L2
X Var(X) + EX 

 

where LX is the sum of the loadings of the items in the measure X on their latent variable X, 

Var(X) is the (error disattenuated) variance of X (i.e., from a measurement model of X), and EX is 

the sum of the measurement error variances of the items in the measure X as they load on their 

latent variable X. It is also well known that EX is given by 

F2) EX = Var(X) (1 - ρX) , 

 

where Var(X) is the (error attenuated) variance of X (e.g., obtained using SAS, SPSS, etc.). By 

solving Equation (F1) for LX and substituting Equation (F2) into the result, 

F3) LX = [Var(X) ρX / Var(X)]1/2 

 

which becomes 

F4) LX = [ρX]1/2 

 

when Var(X) equals Var(X) (e.g., if X, and thus X, is standardized and its variance is equal to 1), 

or 

F5) LX ≈ [ρX]1/2 

 

otherwise, where ≈ indicates "approximately equal to." 

Finally, Anderson and Gerbing (1988) pointed out that for a unidimensional measure 

there is little practical difference between coefficient alpha (α) and latent variable reliability ρ. 
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Thus, for a single indicator specification of a standardized latent variable X (i.e., its 

variance is fixed at 1), its loading, LX, is the square root of its latent variable reliability ρ (see 

Equation F1), and its measurement error variance, EX, is 1 - ρX (see Equation F2).  

These parameters can be estimated for a standardized latent variable X by substituting 

coefficient alpha reliability, α, into Equations (F2) and (F4), and for an unstandardized latent 

variable X its single indicator loading can be approximated using Equation (F5) and α , and its 

measurement error variance can be estimated using Equation F2.  

Ping (2004) suggested summing maximum likelihood exploratory factor analysis (EFA) 

loadings for LX, and using Equation F2 for the measurement error variance of a fully aggregated 

measure. Because EFA also produces an estimate of the Average Extracted Variance (AVE), the 

explained variance for a factor, the equation for the AVE of X (see Fornell & Larker, 1981) 

     Σ(lxj (j=1,p))
2 Var(X) 

 AVEX = ـــــــــــــــــــــــــــــــــــــــــــ  

              Σ(lxj (j=1,p))
2 Var(X) + EX 

 

     Σ(lxj (j=1,p))
2 

 ,  ــــــــــــــــــــــــــــــ =           

              Σ(lxj (j=1,p))
2 + EX 

 

where lxj is a loading, Σ is a sum (of squared loadings--Equation F1 involves the square of the 

sum), and Var(X) = 1, can be solved for the measurement error variance of a sum of indicators, 

EX 

         Σ(lxj (j=1,p))
2 (1 - AVE) 

F6) EX = ــــــــــــــــــــــــــــــــــــــــ  , 

                  AVE 

 

where AVE is the explained variance of (unidimensional) factor containing the items in X. 
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Thus, an additional estimate of the loading of a summed indicator composed of 

unidimensional items is the sum of its EFA loadings, and an additional estimate of its 

measurement error variance is given by Equation (F6). 

 

ENDNOTES 

                                                 
1 In this case inconsistency is actually unacceptable consistency: the observed or input 

correlation between two indicators of the same latent variable is not acceptably numerically 

similar to the path analytic (Wright, 1934) product of the coefficients on the loading paths from 

their common latent variable. 

 
2 Using path analysis (Wright, 1934) the covariance of two unidimensional items x1 and x2 (i.e., 

items with only one underlying latent variable) implied by a model is the product of the path 

coefficients on their paths from their common latent variable (i.e., the product of their loadings), 

plus the product of the path coefficients due to correlated measurement error (i.e., 1*2 + 

1*1*Cov(1,2), where  denotes loading,  denotes measurement error, 1 is the implied path 

coefficient on the path between each measurement error and their respective x, and Cov denotes 

covariance). Because correlations between measurement errors are usually assumed to be zero, 

the covariance term is usually ignored.  

 
3 Content or face validity is usually established by qualitatively judging how well items match 

the conceptual definition of the target construct. 

 
4 A second-order construct has other constructs as its "indicators." For example in Dwyer and 

Oh's (1987) study of Environmental Munificence and Relationship Quality, the second-order 

construct Relationship Quality had the first-order constructs Satisfaction, Trust, and Minimal 

Opportunism as indicators (see Bagozzi, 1981b; Bagozzi and Heatherton, 1994; Gerbing and 

Anderson, 1984; Gerbing, Hamilton and Freeman, 1994; Hunter and Gerbing, 1982; Jöreskog, 

1970; and Rindskopf and Rose, 1988 for accessible discussions of second-order constructs). 

 
5 Bagozzi and Heatherton (1994) also used a variation of this approach that did not use reliability 

loadings. 

 
6 For example, a model with just-identified latent variables (3 items per latent variable), and 5 

latent variables requires 240 cases to produce at least two cases per input covariance matrix 

element. The same model with 5 summed indicators and 240 cases would have 16 cases 

available to compute each input covariance matrix element. 

 
7 The study details have been omitted to skirt matters such as conceptual definitions, hypotheses, 

etc. which were judged to be of minimal importance to the present purposes. 
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8 Anderson and Gerbing (1984) suggested that GFI and AGFI may not be appropriate gauges of 

model-to-data fit in larger models. An RMSEA (Steiger, 1990) of .05 suggests close fit and 

values through .08 suggest acceptable fit--see Browne and Cudeck (1993); Jöreskog (1993). 

 
9 However, this indeterminacy could be remedied by reconvening an item-judging panel to judge 

the resulting measures and thus identify a weeded subset of items that best taps the conceptual 

definition of N. 

 
10 The variations of full aggregation (e.g., factor scores, LISREL 8 parameters, etc.) have not 

been formally investigated for structural coefficient bias and inefficiency, as far as we know, and 

the structural coefficient results from External Consistency Only and full aggregation should be 

compared for validation. A disagreement in nonsignificance (e.g., a structural coefficient varies 

between nonsignificance and significance with External Consistency Only and factor scores) 

should probably be judged nonsignificant.  

 
11 Other omissions were possible--e.g., omitting a Subset 2 item from the set of 18, etc., and 

there were 18 of these, some of which may have duplicated Subset 1. 

 
12 While these two itemizations had no items in common, equivalent behavior was observed with 

Subset 2 and Subset 1 or Subset 1a that did have common items. Parenthetically, the reliability of 

the antecedent latent variable was .86. However, similar behavior was observed for a latent 

variable with much lower reliability. Finally, there were other structural coefficients that were 

completely unaffected by changes in the itemizations of N.  

 
13 This process was actually repeated more than 180 times to check for errors because the results 

appeared to be cycling. Whether or not this process would have converged with this number of 

potential correlated measurement errors (171) is unknown. 

 
14 Correlating all measurement errors with ε9 was not identified, so the correlation between ε9 

and ε13 was fixed at zero because its modification index (MI) was .0001, suggesting the 

correlation was nonsignificant. A MI in this case is approximately a Chi-Square statistic for 

freeing the correlation between ε9 and ε13--a MI of .0001 suggests the path coefficient on the 

correlation between ε9 and ε13 would have a Chi-Square difference (from 0) of .0001 which is 

nonsignificant with a p-value of .992 and 1 degree of freedom. 

 
15 Using expectation algebra and the usual assumptions regarding latent variables and their errors 

of measurement, the variance of a sum of indicators xi, Var(x1+x2+...+xp) = Var(λx1X + εx1 + 

λx2X + εx2 + ... + λxpX + εxp) = (Σλxj (j=1,p))
2Var(X) + ΣVar(εxj (j=1,p)), where λ is a loading, X is a 

latent variable, and ε is a measurement error. 

 
16 Because exploratory factor analysis assumes variances of 1, the loadings were re-scaled by 

dividing each loading by the maximum loading to allow for latent variable variances other than 

1. This produces one loading equal to one and the other loadings in the customary .6 to .9 range. 
17 In retrospect, we should have at least numbered the scenarios by treatment. 
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ON ASSURING VALID MEASURES 

FOR THEORETICAL MODELS USING SURVEY DATA 

 

 

 

 

This research critically reviews the process and procedures used in Marketing to assure valid and 

reliable measures for theoretical model tests involving unobserved variables and survey data, and it selectively 

suggests improvements. The review and suggestions are based on reviews of articles in the marketing 

literature, and the recent methods literature. This research also provides several perhaps needed explanations 

and examples, and is aimed at continuous improvement in theoretical model tests involving unobserved 

variables and survey data. 

 

 

Based on the articles in our major journals, marketers generally agree that specifying and testing 

theoretical models using Unobserved Variables with multiple item measures of these unobserved variables and 

Survey Data (UV-SD model tests) involve six steps: i) defining constructs, ii) stating relationships among these 

constructs, iii) developing measures of the constructs, iv) gathering data, step v) validating the measures, and 

vi) validating the model (i.e., testing the stated relationships among the constructs). However, based on the 

articles reviewed (see Endnote 1 for these journals), there appears to be considerable latitude, and confusion in 

some cases, regarding how these six steps should be carried out for UV-SD model tests in Marketing. 

For example in response to calls for increased psychometric attention to measures in theoretical model 

tests, reliability and validity now receive more attention in UV-SD model tests (e.g., Churchill, 1979; Churchill 

and Peter, 1984; Cote and Buckley, 1987, 1988; Heeler and Ray, 1972; Peter, 1979, 1981; Peter and Churchill, 

1986). However, there were significant differences in what constitutes an adequate demonstration of measure 

reliability and validity in the articles reviewed. For example in some articles, steps v) (measure validation) and 

vi) (model validation) involved separate data sets. In other articles a single data set was used to validate both 

the measures and the model. Further, in some articles the reliabilities of measures used in previous studies were 
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reassessed. In other articles reliabilities were assumed to be constants that, once assessed, should be invariant 

in subsequent studies. Similarly, in some articles many facets of validity for each measure were examined, even 

for previously used measures. In other articles few facets of measure validity were examined, and validities 

were assumed to be constants (i.e., once judged acceptably valid a measure was acceptably valid in subsequent 

studies). 

Thus an objective of this research is to selectively identify areas for continuous improvement in step v), 

measure validation. The research provides a selective review, albeit qualitative, of the UV-SD model testing 

practices of marketers in that step and the other steps as they pertain to step v). It also provides selective 

discussions of errors of omission and commission in measure validation. For example, this research discusses 

the implications of reliability and facets of validity as sampling statistics with unknown sampling distributions. 

It suggests techniques such as easily executed experiments that could be used to pretest measures, and 

bootstrapping for reliabilities and facets of validity. The research also suggests an estimator of Average 

Variance Extracted (AVE) (Fornell and Larker, 1981) that does not rely on structural equation analysis (e.g., 

LISREL, EQS, AMOS, etc.). In addition, it suggests an alternative to omitting items in structural equation 

analysis to improve model-to-data fit, that should be especially useful for older measures established before 

structural equation analysis became popular. 

MEASURE VALIDATION 

Step v), measure validation or demonstrating the adequacy of the study measures, appeared to be the 

least consistent of the six steps above (see Peter and Churchill 1986 for similar findings). Perhaps this was 

because there are several issues that should be addressed in validating measures. Measures should be shown to 

be unidimensional (having one underlying construct), consistent (fitting the model in structural equation 

analysis), reliable (comparatively free of measurement error), and valid (measuring what they should). 

Demonstrating validity has also been called measure validation (see Heeler and Ray, 1972). However, I will 

use the term measure validation to mean demonstrating measure unidimensionality, consistency (i.e., model-to-

data fit), reliability, and validity. 
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While step v), measure validation, is well-covered elsewhere, based on the articles reviewed it appears 

to merit a brief review. I begin with unidimensionality and consistency, then proceed to reliability and validity. 

UNIDIMENSIONALITY 

Assessing reliability usually assumes unidimensional measures (Bollen, 1989; Gerbing and Anderson, 

1988; Hunter and Gerbing, 1982). However, coefficient alpha, the customary index of reliability in Marketing, 

underestimates the reliability of a multidimensional measure (Novick and Lewis, 1967). Thus, 

unidimensionality is actually required for the effective use of coefficient alpha (Heise and Bohrnstedt, 1970-- 

see Hunter and Gerbing, 1982) (other indexes of reliability such as coefficient omega have been proposed for 

multidimensional measures -- see Heise and Bohrnstedt, 1970). Thus reliability of a measure, as it was 

typically assessed in the studies reviewed (i.e., using coefficient alpha), should be assessed after 

unidimensionality has been demonstrated (Gerbing and Anderson, 1988). 

A unidimensional item or indicator has only one underlying construct, and a unidimensional measure 

consists of unidimensional items or indicators (Aker and Bagozzi, 1979; Anderson and Gerbing, 1988; Burt, 

1973; Gerbing and Anderson, 1988; Hattie, 1985; Jöreskog, 1970 and 1971; McDonald, 1981). In the articles 

reviewed, unidimensionality was typically assumed in the specification of a model estimated with structural 

equation analysis. Perhaps this was because authors have stressed the need for unidimensionality in structural 

equation analysis models in order to separate measurement issues (i.e., the relationship between a construct and 

its observed variables or indicators) from model structural issues (i.e., the relationships or paths among 

constructs) (Anderson, Gerbing and Hunter, 1987; Anderson and Gerbing, 1988; Bentler, 1989; Bollen, 1989; 

Burt, 1976; Jöreskog, 1993) (however, see Kumar and Dillon, 1987a and 1987b for an alternative view). 

Separating measurement issues from model structural issues in structural equation analysis avoids interpreta-

tional confounding (Burt, 1976), the interaction of measurement and structure in structural equation models. In 

particular, an item or indicator x can be viewed as composed of variance due to its construct X and variance 

due to error, and thus 

Var(x) = λ2Var(X) + Var(e) , (1 
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if X and e are independent, where Var denotes variance, λ or lambda is the path coefficient on the path 

connecting X with x (also called the loading of item x on X), and e is error. Intrepretational confounding in 

structural equation analysis means that changes in model structure (i.e., adding or deleting paths among 

constructs) can produce changes in the measurement parameter estimates of a construct (i.e., changes in item 

loadings, in measurement errors, and in construct variances). Thus, with interpretational confounding, changes 

in the structural equation model can affect the empirical meaning of a construct. 

CONSISTENCY 

Many criteria for demonstrating unidimensionality have been proposed (see Hattie, 1985). Perhaps in 

response to calls for more work in this area (e.g., Lord, 1980), Anderson and Gerbing (1982) proposed 

operationalizing unidimensionality using the structural equation analysis notions of internal and external 

consistency (also see Kenny, 1979; Lord and Novick, 1968; McDonald, 1981) (however see Kumar and 

Dillon, 1987a and 1987b for an alternative view). 

Consistency has been defined as the structural equation model fitting the data (see Kenny, 1979). It is 

important because coefficient estimates from structural equation analysis may be meaningless unless the model 

adequately fits the data (Bollen, 1989; Jöreskog ,1993:297). As Anderson and Gerbing (1982) defined 

consistency, two indicators of X, x1 and x2, are internally consistent if the correlation between them is the same 

as the product of their correlations with their construct X. Similarly an indicator of X and an indicator of Z, x 

and z, are externally consistent if the correlation between x and z is the same as the product of three 

correlations: x with its construct X, z with its construct Z, and X with Z. Thus if X is internally and externally 

consistent, it is also unidimensional, and I will use the term consistent/unidimensional for Anderson and 

Gerbing's (1982) operationalization of consistency. 

Anderson and Gerbing (1982) also proposed assessing consistency/unidimensionality with what they 

termed similarity coefficients (see Hunter, 1973; Tyron, 1935). The similarity coefficient for the items or 

indicators a and b in the same or different measures is the cosine of the angle between the vector of 

correlations of a with the other items in a study (including b), and the vector of correlations of b with the other 
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study items (including a). Similar items have a small angle between their correlation vectors, and a cosine of 

this angle that is near one. Specifically, Anderson and Gerbing (1982) proposed that a and b have high internal 

consistency if their similarity coefficient is .8 or above. External consistency is suggested by items that cluster 

together in a matrix of sorted or ordered similarity coefficients (Anderson and Gerbing, 1982:458) (see 

Appendix B for an example). 

Consistency/unidimensionality is also suggested by a structural equation model that fits the data when 

its constructs are specified as unidimensional (i.e., each observed variable or indicator is connected to only one 

construct). With consistency/unidimensionality there is little change in measurement parameter estimates (i.e., 

loadings and variances-- see Equation 1) between the measurement model and subsequent structural models 

(Anderson and Gerbing, 1988) (i.e., differences in second or third decimal digits only). Thus 

consistency/unidimensionality can also be suggested by showing little if any change in measurement 

parameters estimates between a full measurement model (i.e., one containing all the model constructs, and their 

indicators, with correlations among all the constructs) and the structural model (i.e., one that replaces certain 

correlations among the constructs with paths). 

PROCEDURES FOR ATTAINING UNIDIMENSIONALITY AND CONSISTENCY  

Procedures for attaining unidimensionality using exploratory (common) factor analysis are well 

known. However, procedures for obtaining consistent/unidimensional measures are less well documented. 

Procedures using ordered similarity coefficients are suggested in Anderson and Gerbing (1982:454), and 

Gerbing and Anderson (1988). The ordered similarity coefficients help identify inconsistent items. 

Alternatively, consistency/unidimensionality for constructs specified unidimensionally (i.e., each observed 

variable or indicator is "pointed to" by only one construct) can be attained using a procedure that has been in 

use for some time (see Dwyer and Oh, 1987; Kumar and Dillon, 1987b; Jöreskog, 1993) (however see Cattell, 

1973 and 1978 for a dissenting view). The procedure involves estimating a single construct measurement 

model (i.e., one that specifies a single construct and its items) for each construct, then measurement models 

with pairs of constructs, etc., through estimating a full measurement model containing all the constructs. Items 
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are omitted as required at each step to obtain adequate measurement model fit (and thus 

consistency/unidimensionality because the process begins with single construct measurement models) while 

maintaining content or face validity (content or face validity is discussed later and should be a serious concern 

in omitting items using any consistency improvement procedure). Standardized residuals, or specification 

searches (e.g., involving modification indices in LISREL or LMTEST in EQS) can also be used to suggest 

items to be omitted at each step to improve model-to-data fit. 

However, these methods are not particularly efficient, and they may not always produce the largest 

consistent/unidimensional subset of indicators. Instead, partial derivatives of the likelihood function with 

respect to the error term of the indicators could be used to suggest inconsistent items (see Ping 1998a). This 

approach involves the examination of the matrix of these derivatives in a single construct measurement model. 

The item with the largest summed first derivatives without regard to sign that preserves the content or face 

validity of the measure is omitted. The matrix of first derivatives is then re estimated without the omitted item, 

and the process is repeated until the single construct measurement model fits the data (see Appendix A for an 

example of this procedure). 

My experience with this procedure and real survey data sets is that it produces maximally internally 

consistent item subsets. The approach is similar to Saris, de Pijper and Zegwaart's (1987) and Sörbom's (1975) 

proposal to improve model-to-data fit using partial derivatives of the likelihood function with respect to fixed 

parameters (i.e., to suggest paths that could be freed, e.g., modification indices in LISREL). The internally 

consistent measures produced are frequently externally consistent. Nevertheless, the procedure could also be 

used on a full measurement model containing all the constructs specified unidimensionally (i.e., each observed 

variable or indicator is connected to only one construct). This full measurement model variant of the first 

derivative approach is useful if several study measures are inconsistent, because the most inconsistent item in 

each measure can be identified with a single measurement model. 

COMMENTS ON UNIDIMENSIONALITY AND CONSISTENCY 

Unidimensionality in the exploratory common factor analytic sense is required for coefficient alpha, 
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and consistency/unidimensionality is required for structural equation analysis. Further, it is well known that the 

reliability of a measure is necessary for its validity. Thus, there is a sequence of steps in validating a measure: 

establish its consistency/unidimensionality for structural equation analysis, or establish its unidimensionality 

using maximum likelihood exploratory common factor analysis (i.e., not principal components factor analysis) 

for regression (however, see Endnote 2 for cautions about regression), then show its reliability, and finally its 

validity. 

Unidimensionality in two and three item measures is difficult to demonstrate using exploratory or 

confirmatory factor analysis because these measures are under- or just determined. However, ordered similarity 

coefficients will gauge both internal and external consistency and thus unidimensionality using the criteria 

discussed above. 

While Churchill and Peter (1984) found no effect on reliability when positively and negatively worded 

or reverse-polarity items are mixed in a measure, subsequent studies suggest that mixing positively and 

negatively worded items can adversely affect measure consistency/unidimensionality (see the citations in 

Herche and Engelland, 1996). If concern for acquiescence bias (see Ray, 1983) produces a measure with 

positively and negatively worded items that produces consistency/unidimensionality problems, inconsistent 

items might be retained as a second facet in a second-order construct (see Bagozzi 1981b for a similar 

situation) (second-order constructs are discussed later). 

My experience with the above procedures in obtaining consistency/unidimensionality is that they are 

all tedious, especially the first derivative procedure. An alternative is to avoid consistency problems by 

summing one or more constructs' items and use regression (see Endnote 2 for cautions about regression), or use 

single indicator structural equation analysis (which will be discussed next). In addition, ordered similarity 

coefficients do not always suggest maximally consistent item clusters in survey data. Instead they usually 

suggest sufficiently consistent clusters of items that are also sufficiently reliable (see Appendix B for an 

example). 

In survey data it is easy to show that unidimensionality obtained using maximum likelihood 
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exploratory common factor analysis does not guarantee consistency/unidimensionality in the Anderson and 

Gerbing (1982) sense. Thus, consistency/unidimensionality is a stronger demonstration of unidimensionality 

than a single factor solution in maximum likelihood  exploratory common factor analysis. Based on the articles 

reviewed and my own experience, there seems to be an upper bound for the number of items in a 

consistent/unidimensional measure of about six items (also see Bagozzi and Baumgartner, 1994 for a similar 

observation). Thus larger measures, especially older measures developed before structural equation analysis 

became popular, usually required extensive item omission to attain consistency/unidimensionality in the 

articles reviewed. While the resulting consistent/unidimensionality submeasures were invariably argued or 

implied to be content or face valid, they often seemed to be less so than the original full measures. 

In fact, a common misconception in the reviewed articles that used structural equation analysis was 

that consistent measures are more desirable than less consistent fuller measures, especially older measures 

developed before structural equation analysis became popular. Many articles appeared to assume that older full 

measures were inherently flawed because they were typically inconsistent and required item omission to attain 

a consistent subset of items. Nevertheless, it could be argued that the full measures were frequently more 

desirable than the proposed more consistent reduced measures for reasons of face or content validity. Thus, I 

will discuss an alternative to item omission to attain consistency/unidimensionality in structural equation 

analysis. 

Single Indicator Structural Equation Analysis  Item omission to attain acceptable measurement model-to-

data fit may not always be necessary in order to use structural equation analysis. In situations where it is 

desirable for reasons of face or content validity to use a unidimensional, in the exploratory common factor 

analysis sense, but less than consistent measure, the items in the measure could be summed and regression 

could be used to validate a UV-SD model (however see Endnote 2). Alternatively Kenny (1979) hinted at a 

procedure involving reliabilities that can be used with structural equation analysis to validate a UV-SD model. 

Variations of this procedure have been used elsewhere in the social sciences (see for example Williams and 

Hazer 1986 and the citations therein). This procedure involves summing the items in a measure that is 
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unidimensional using maximum likelihood exploratory common factor analysis, then averaging them to 

provide a single indicator of the unobserved construct. 

Because this single indicator specification is under determined, estimates of its loading and 

measurement error variance are required for structural equation analysis. The observed indicator x of an 

unobserved or latent variable X can be written x = λX + e, where λ or lambda is the loading of x on X (i.e., the 

path coefficient on the path from the unobserved variable X to the observed variable x) and e is error. Thus, the 

loading Λ of the averaged indicator X (= [x1 + x2 + ... + xn]/n) on X, is approximated by Σli/n in 

X = (x1 + x2 + ... + xn)/n = (λx1X + ex1 + λx2X + ex2 + ... + λxnX + exn)/n 

   (ΣliX)/n + (Σei)/n = ΛX + (Σei)/n , (2 

if X and e are independent, where li are the loadings of xi on X from a maximum likelihood exploratory 

common factor analysis. (Note: in practice, each li should be divided by the largest li if Var(X) ≠ 1--see 

Appendix F.) 

It is well known that an estimate of the measurement error variance of the averaged indicator X is 

Var(X)(1-ρ) (Kenny 1979), where Var(X) is the variance of X, and ρ is the latent variable reliability of X 

(discussed later-- see Equation 4). However, Anderson and Gerbing (1988) pointed out that for unidimensional 

measures there is little practical difference between coefficient alpha (α) and the latent variable reliability ρ. 

Thus for an unidimensional measure X, estimates of the loading of its averaged indicator and its measurement 

error are Λ = Σli/n and Var(X)(1-α) respectively, where Var(X) is the variance of the averaged indicator 

available in SAS, SPSS, etc. (see Appendix F for the details and an example). 

This procedure can be simplified further. Authors have defined the reliability of a unidimensional 

indicator as the square of the loading between the indicator and its latent variable (see Bollen, 1989). Thus, the 

square root of α (√α) could be substituted for Λ (Kenny, 1979) (see Appendix F). However, this substitution 

produces biased (i.e., understated) variance estimates for measures with highly variable loadings. While there is 

no hard and fast rule, √α should probably not be used with a measure that has items with reliabilities (i.e., √α) 
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of less than .8 (i.e., λ's less than .64). (Note: √α is not biased if Var(X) is standardized to equal 1.) 

Model-to-data Fit Consistency/unidimensionality can be established for models specified 

unidimensionally (i.e., each observed variable or indicator is "pointed to" by only one construct) using model-

to-data fit (fit). Thus, one use of indices of fit is to suggest consistency/unidimensionality. Perhaps because 

there is no agreement on the appropriate index of fit (see Bollen and Long, 1993), multiple indices of fit were 

usually reported in the articles reviewed. The most commonly reported index of fit, chi-square, is a measure of 

exact fit (Browne and Cudeck, 1993). However it rejects model-to-data fit as the number of cases increases 

(Hoelter, 1983), and additional fit statistics such as Goodness of Fit Index (GFI) and Adjusted Goodness of Fit 

Index (AGFI) were typically reported in the articles reviewed. However, GFI and AGFI decline as model 

complexity increases (i.e., more observed variables or more constructs), and they may be inappropriate for 

more complex models (Anderson and Gerbing, 1984). 

In addition to chi-square, GFI, and AGFI, the articles reviewed variously reported standardized 

residuals, comparative fit index (CFI), and root mean square error of approximation (RMSEA), among other 

indices of fit. Because there is also no agreement on an appropriate set of fit indices, I will simply note that 

standardized residuals were reported increasingly less frequently over time in the articles reviewed. Bentler's 

(1990) CFI appeared to be growing in popularity and was frequently reported in the recent articles, as was 

Steiger's (1990) RMSEA (possibly because it appears to have Jöreskog's 1993 endorsement) (see Endnote 3 for 

more on CFI and RMSEA). 

RELIABILITY 

Unfortunately the term consistency has been used in connection with reliability (see for example 

DeVellis, 1991:25). In fact there has been considerable confusion over reliability and consistency (see Hattie, 

1985). After discussing reliability I will discuss the distinctness of reliability from consistency as Anderson and 

Gerbing (1982) have defined it. 

Measure reliability was usually reported in the articles reviewed. The reliability of a measure is 

suggested by agreement of two efforts to measure its construct using maximally similar methods (Campbell 
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and Fiske, 1959). Thus it is frequently characterized as the "repeatability" of a measure, and types of reliability 

include a measure's stability over time or subjects (see Bollen, 1989; Nunnally, 1978). It is also described in 

terms of the amount of random error in a measure (Lord and Novick, 1968; see Bollen, 1989 and Nunnally, 

1978). For example, the variance of an indicator x of a construct X could be viewed as composed of variance 

due to its construct X and variance due to error (see Equation 1). As a result, The reliability ρ of a 

consistent/unidimensional item x has been operationalized as the ratio of its variance due to its construct, 

λ2Var(X), and the total variance of x, 

            λ2Var(X)       λ2Var(X) 

ρx =  ─────────   =   ──────────────  , (3 

              Var(x)                λ2Var(X) + Var(e) 

if X and e are independent, where Var(X) is the disattenuated (measurement-error-free) variance of X available 

in a structural equation measurement model (Werts, Linn and Jöreskog, 1974). 

While there have been many proposals for assessing reliability (see Hattie, 1985; Nunnally, 1978), 

coefficient alpha (Cronbach, 1951) is generally preferred (Peter, 1979) because it does not depend on the 

assumptions required of other indices of reliability (see Bollen, 1989). However, coefficient alpha assumes that 

its items are perfectly correlated with their underlying construct (i.e., measured without error) (see Bollen, 

1989). Because this assumption is almost always unreasonable in practice, coefficient alpha underestimates 

reliability (see Smith, 1974). 

There have been several proposals for computing reliability of items that are measured with error (see 

Gerbing and Anderson 1988 for a summary). The most frequently used formula is due to Werts, Linn and 

Jöreskog (1974) (see Bagozzi, 1980b; Bollen, 1989; Dillon and Goldstein, 1984; Fornell and Larker, 1981). 

This Latent Variable Reliability of a measure X, with indicators (items) x1, x2, ... , xn, is given by, 

    (Σλi)2Var(X) 

ρX =  ────────────────  , (4 

            (Σλi)2Var(X)+ΣVar(ei) 

where λi is the loading of xi on X, ei is the error term for xi, Var(X) is the disattenuated (measurement error free) 

variance of X (i.e., available in a structural equation measurement model), and Σ denotes a sum. 
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However as previously mentioned, Gerbing and Anderson (1988) pointed out that for unidimensional 

measures there is little practical difference between coefficient alpha and Latent Variable Reliability. Thus to 

demonstrate reliability, it may be sufficient to report coefficient alpha because at worst it provides a 

conservative estimate of reliability. 

Based on the articles reviewed, it is important to note that reliability and consistency as it was just 

discussed are distinct notions (Green, Lissitz and Mulaik, 1977). An item could be consistent with other items 

but unreliable because of measurement error (see Equation 3). It is also easy to show using survey data that 

maximizing reliability (see Churchill, 1979) may not maximize consistency, and that reliable measures may not 

fit the data well using structural equation analysis (see Gerbing and Anderson, 1988 and Appendix A). 

VALIDITY 

There was considerable variation in the demonstrations of validity among the articles reviewed. This 

may be because methods authors do not all agree on what constitutes an adequate demonstration of validity. 

Item validity is how well an item measures what it should, and a valid measure consists of valid items. Validity 

is important because theoretical constructs are not observable, and relationships among unobservable 

constructs are tested indirectly via observed variables (Jöreskog, 1993; see Bagozzi, 1984). Thus validity 

reflects how well a measure reflects its unobservable construct. It is established using relationships between 

observed variables and their unobserved variable, and observed variables' relationships with other sets of 

observed variables (Jöreskog, 1993). 

 The following discussion assumes unidimensional and reliable measures. While methods author do 

not agree on a maximal set of validity tests, validity should be gauged using at least the following criteria: 

content or face validity (how well items match their conceptual definition), criterion validity (measure 

correspondence with other known valid and reliable measures of the same construct), and construct validity 

(measure correspondences with other constructs are consistent with theoretically derived predictions) (e.g., 

Bollen, 1989; DeVellis, 1991; Nunnally, 1978). Overall measure validity is then qualitatively assessed 

considering its reliability and then its performance over this minimal set of validity criteria. 
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The above terms for validity criteria are from the psychological and sociological literatures. However, 

other labels have been used, especially in Marketing. For example, content validity has been called face or 

consensus validity (see Heeler and Ray, 1972). Construct validity was used by Peter (1981) for content 

validity. Construct validity has been called nomological validity (see Peter, 1981). Trait validity has been used 

for a combination of reliability, and convergent and discriminant validity (Campbell, 1960). Finally, 

demonstrating convergent and discriminant validity has been called measure validation (see Heeler and Ray, 

1972). 

Content or Face Validity Content or face validity was not consistently demonstrated in the articles 

reviewed. Conceptual definitions, the definitions of the constructs comprising the UV-SD model, are required 

to provide conceptual meaning for the constructs in the model, and they are the basis for gauging the construct 

or face validity for these constructs. In the articles reviewed, conceptual definitions were not consistently given, 

especially for previously measured concepts. In fact, many articles appeared to assume that because a measure 

had been judged content or face valid in a previous article, all subsequent readers would accept the measure as 

content or face valid. However, in some cases it could be argued that the content or face validity of a measure 

was still an open matter, even though it had been judged to be content or face valid in a previous article. 

In addition, conceptual definitions were not always stated for new measures. Further, item judging was 

frequently not discussed, and in many cases the full measure's items were not reported. It is difficult to imagine 

that these matters were not important during the review of these articles. Thus, while content validity may have 

been an important matter for reviewers, many articles left the impression that authors or editors consider these 

matters unimportant for journal readers. 

Thus conceptual definitions should be clearly stated for each construct to enable readers to judge the 

content or face validity of measures of the constructs, even for previously used measures. In addition, care 

should be taken not to sacrifice evidence of content validity in the name of article space, for example. 

Criterion Validity Criterion validity concerns the correspondence of a measure with a criterion measure, 

a known and, preferably, standard measure of the same concept. It is typically established using correlations. 
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However, there are no guidelines for adequate correlation between a measure and a criterion variable. In 

addition, for a new construct or a measure of an existing construct in a new context, a criterion measure may 

not be available. Perhaps for this latter reason criterion validity was rarely assessed in the articles reviewed. 

Nevertheless, it was easy to wonder why a new measure of a previously measured construct was 

necessary in many cases, and how well a proposed measure of a previously measured construct would have 

fared in an assessment of criterion validity. Thus, for new measures of previously measured constructs criterion 

validity should be assessed and reported to improve the demonstration of a new measure's validity. 

Construct Validity Construct validity is concerned in part with a measure's correspondence with other 

(i.e., different, non criterion) constructs. To begin to suggest construct validity, measures of other constructs 

should be valid and reliable, and their correspondences with the target measure should be theoretically sound. 

When it was considered in the articles reviewed, construct validity was typically suggested using correlations. 

The correlations with a target measure and their plausibility (i.e., their significance, direction and magnitude) 

were argued to support or undermine its construct validity. 

Convergent and Discriminant Validity Convergent and discriminant validity are Campbell and Fiske's (1959) 

notions involving the measurement of multiple traits or constructs with multiple methods, and they are usually 

considered to be facets of construct validity in the social sciences. Convergent measures are highly 

correspondent (e.g., correlated) across different methods such as a survey and an experiment (such as scenario 

analysis-- discussed later). Discriminant measures are less correspondent with measures of other concepts than 

they are internally convergent. 

Procedures for demonstrating convergent and discriminant validity using multiple traits and multiple 

methods is well documented (e.g., Bollen, 1989; Heeler and Ray, 1972). However, convergent and 

discriminant validity were seldom assessed in the articles reviewed as Campbell and Fiske (1959) intended. 

Perhaps because traits or constructs were typically measured with one method, reliability was frequently 

substituted for convergent validity, and measure distinctness (i.e., low correlations with other measures) was 

substituted for discriminant validity. However, while Nunnally (1978) suggested that a .7 or higher reliability 
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implies convergent validity, measures with reliabilities above .85 can contain more than 50% error variance 

(see Appendix A). Thus measures with .7 or higher reliability may not be judged convergent valid because they 

contain less variance due to their construct than variance due to error. 

Average Variance Extracted Perhaps for this reason, a statistic involving the percentage error variance in a 

measure, Average Variance Extracted (AVE) (Fornell and Larker 1981), was occasionally used to gauge 

convergent validity in the typically mono method studies reviewed. To explain AVE, the variance of a measure 

can be expressed as, 

Var(x1+...+xn)  =  Var(λ1X+e1+...+λnX+en)  =  (Σλi
2)Var(X)+ΣVar(ei), (5 

if X and e are independent, where λi is the loading of the indicator xi on the latent variable X., Var(X) is the 

disattenuated (error free) variance of X, and ei is the measurement error of xi. AVE is given by, 

            (Σλi
2)Var(X)               

AVEX  =  ────────────── , (6 

                  (Σλi
2)Var(X)+ΣVar(ei) 

where Σ indicates a sum (see Endnote 4 more). The result is the percentage of the total variance of a measure 

(see Equation 5) represented or extracted by the variance due to the construct, λ1
2Var(X) + ... + λn

2Var(X) = 

(Σλi
2)Var(X). AVE ranges from 0 to 1, and Fornell and Larker (1981) suggested adequately convergent valid 

measures should contain less than 50% error variance (i.e., AVE should be .5 or above) (also see Dillon and 

Goldstein, 1984, and see Appendix E for an example). 

Because acceptably reliable measures can contain more than 50% error (e.g., X in Appendix A), in 

UV-SD model tests a measure's reliability should probably be higher than Nunnally's (1978) suggestion of .7 to 

avoid a low AVE. While there is no firm rule, measure reliability should probably be .8 or more, to avoid these 

difficulties. However, a more precise alternative to reliability as a gauge of convergent validity would be an 

AVE of .5 or above. Thus, adequate convergent validity could be suggested by reliabilities of .8 or higher, and 

demonstrated by an AVE above .5. 

Discriminant validity was typically established in the articles reviewed by using correlations when it 

was demonstrated. Although there is no firm rule, correlations with other measures below |.7| were usually 
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accepted as evidence of measure distinctness and thus discriminant validity. Larger correlations were 

occasionally tested by examining the confidence intervals of correlations to see if they included 1 (see 

Anderson and Gerbing, 1988). They were also infrequently tested by using a single degree of freedom test that 

compares two structural equation measurement models, one with the target correlation fixed at 1, and a second 

with this correlation free (see Bagozzi and Phillips, 1982). If the difference in resulting chi-squares is 

significant, this suggests the correlation is not 1, and this implies the constructs are distinct, and it provides 

evidence of discriminant validity. (Note: this test and the correlation confidence interval test are untrustworthy 

for gauging discriminant validity--see "Is there any way to improve Average Variance Extracted (AVE) in a 

Latent Variable (LV) X?" on this website.) 

Occasionally AVE was used to gauge discriminant validity. If the squared correlation between 

constructs (r2) is less than either of their individual AVE's, this suggests the constructs each have more error 

free (extracted) variance than variance shared with other constructs (r2). In different words, they are more 

internally correlated than they are with other constructs. This in turn suggests discriminant validity. 

COMMENTS ON MEASURE VALIDATION 

New measures frequently seemed to be underdeveloped in the articles reviewed. For example, new 

measure development details were not always reported. Thus it appeared that recommended procedures such as 

item judging, focus groups, etc. (Churchill, 1979, see Calder, 1977) were not always used to develop new 

measures.  Several data sets should also be used to gauge the reliability and facets of the validity of measures 

(Campbell and Fiske, 1959; see Churchill, 1979). However, measure validation studies were seldom discussed. 

In some cases measure validation was abbreviated in a typically small pretest that was briefly summarized in 

the article, and the reliability and validity of the study measures was gauged using the final test data (i.e., the 

data used to test the proposed model). 

Scenario Analysis While reliability and validity should always be confirmed using the final test data, care 

should be taken to conduct and adequately report measure validation studies, or the study results should be 

termed preliminary because the measures have received minimal testing. Although not reported in the articles 
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reviewed, scenario analysis has been used elsewhere in the social sciences, and it could be used to produce data 

sets for preliminary measure validation (see Ping, 1998b). Scenario analysis is an experiment in which subjects 

(typically students) read written scenarios in which they are asked to imagine they are the subjects of an 

experiment in which variables are verbally manipulated. Then these subjects are asked to complete a 

questionnaire containing the study measures (see Appendix C). The results of scenario analysis have been 

reported to be similar enough to those from surveys to suggest that scenario analysis may be useful in new 

measure development and the verification of existing measures (see for example Rusbult, Farrell, Rogers and 

Mainous, 1988, and Appendix D). 

Previously-used Measures As discussed earlier, many of the descriptions of previously-used measures in 

the articles reviewed were incomplete. For example, while the source of a previously-used measure was 

invariably given, the reliability and validity of these measures in previous studies were frequently left for the 

reader to find elsewhere. More important, articles frequently assumed that a demonstration of adequate 

reliability and validity of a measure in a previous study implied its reliability and validity in subsequent studies. 

Reliability and facets of validity such as construct, convergent, and discriminant validity are demonstrated 

using sample statistics (e.g., coefficient alpha for reliability, correlations for construct and discriminant 

validities, and AVE for convergent and discriminant validity) that vary from sample to sample (see Peter and 

Churchill, 1986). In addition, reliability and AVE have unknown sampling distributions, so they cannot be 

generalized beyond the study sample without additional samples (see Endnote 5 for generalizibility theory). 

Further, the content or face validity of previously-used measures occasionally seemed questionable, and some 

had actually performed marginally (i.e., exhibited low reliability or validity) in previous studies. Thus, care 

should be taken to show that previously-used measures are valid and reliable in the study being reported, and 

that they have been consistently so. 

Reliability And Average Variance Extracted  Reliability and Average Variance Extracted (AVE) are 

linked, but not always closely. While reliability is always larger than AVE (see Equations 4 and 5), a highly 

reliable measure can have an unacceptable AVE (e.g., in Appendix A, X has reliabilities of .81 to .86 and 
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AVE's of .5 or below). As Appendix A also suggests, it is possible to decrease reliability but increase AVE 

(see Tables A2 and A3). Thus, omitting items to improve reliability or consistency can either improve or 

degrade AVE. Because omitting unreliable or inconsistent items may also undermine content validity, the final 

itemization of a measure can be a trade off among consistency/unidimensionality, reliability, AVE, and content 

or face validity. 

Interactions and Quadratics In experiments with categorical independent variables (e.g., experiments 

analyzed with ANOVA), interactions (e.g., XZ in Y = b0 + b1X + b2Z + b3XZ + b4XX) and quadratics (e.g., 

XX) are routinely investigated to help interpret significant main effects (i.e., the X-Y and Z-Y effects). 

However, interactions and quadratics were seldom investigated in the UV-SD model tests reviewed, even when 

theory seemed to suggest their existence. Although not reported in the few articles that did investigate 

interactions or quadratics, the reliability of these variables can be low. The reliability of XZ, for example, is 

            rXZ
2 + ρXρZ 

ρXZ =   ───────────    , (7 

              rXZ
2 + 1 

where ρ denotes reliability and rXZ
2 is the correlation of X and Z. Similarly, the reliability of XX is  

 Var(XTXT) 

ρXX =  ——————  

  Var(XX) 

 

2Var2(XT) 

      =  —————  

2Var2(X) 

 

      =  (ρX)2                   (8 

 

(Busemeyer and Jones, 1983) (Note: this result was incorrectly stated in the final JBR article). Thus, the 

reliability of an interaction or quadratic is approximately the product of the reliabilities of their constituent 

variables X and Z (see Endnote 6 for more). As a result, the reliabilities of the constituent variables that 

comprise an interaction or quadratic should in general be high. Further, Equations 7 and 8 do not produce the 

same values as the formula for coefficient alpha. Thus the SAS, SPSS, etc. programs that determining 

reliability can not be used for determining the reliability of an interaction or a quadratic. 
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The validity of interactions and quadratics was not considered in the articles examined. Specifically, 

content (there is an interaction estimation procedure that suggests dropping items-- see Jaccard and Wan, 

1995), convergent, and discriminant validity should be considered for these variables. Interactions and 

quadratics are unavoidably correlated with their constituent variables, and thus they should be shown to be 

distinct from them (i.e., they should be shown to be discriminant valid). In addition, since the convergent 

validity of an interaction or quadratic measured using AVE is always less than its reliability, the convergent 

validity of an interaction or quadratic could be quite low and it should be reported. 

Second Order Constructs There are several types of constructs in the social sciences, including the 

familiar first-order construct, and based on the articles examined, the somewhat less familiar second-order 

construct. A first-order construct has observed variables (i.e., measure items) as indicators of the construct. 

The relationship between indicators and a first order construct typically assumes the construct "drives" the 

indicators (i.e., the indicators are observable instances or manifestations of their unobservable construct, and a 

diagram of the construct and its indicators would show the construct specified or connected to the indicators 

with arrows from the construct to the indicators-- a reflexive relationship, see Bagozzi, 1980b and 1984). 

However, indicators can also "drive" their construct (i.e., the indicators define the construct, and a diagram of 

the construct and its indicators would show the indicators connected to the construct with arrows from the 

indicators to the construct-- a formative relationship, see Fornell and Bookstein, 1982). Formative constructs 

were seldom seen in the articles reviewed. Because formative constructs are not unobserved variables I will not 

discuss them further. 

Occasionally a second-order construct was reported in the articles reviewed. These are constructs with 

other constructs as their indicators. For example in Dwyer and Oh's (1987) study of environmental munificence 

and relationship quality in interfirm relationships, the second-order construct relationship quality had the first-

order constructs satisfaction, trust, and minimal opportunism as indicators (see Bagozzi, 1981; Bagozzi and 

Heatherton, 1994; Gerbing and Anderson, 1984; Gerbing, Hamilton and Freeman, 1994; Hunter and Gerbing, 

1982; Jöreskog, 1970; and Rindskopf and Rose, 1988 for discussions of second-order constructs). Each first 
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order construct in turn had their respective observed indicators. Presumably specifying the second order 

construct relationship quality with first order constructs simplified the model, yet it provided a richer model of 

the consequences of environmental munificence. 

As the Dwyer and Oh example suggests, a second-order construct can be used to combine several 

related constructs into a higher-order construct using structural equation analysis. Thus a second-order 

construct could be used as an alternative to omitting items in a multidimensional construct (see Gerbing, 

Hamilton and Freeman, 1994 for examples). A second-order construct could also be used as an alternative to 

omitting inconsistent items, especially in older measures. If the omitted items are consistent among themselves, 

they could be specified as the second, third, etc. facet in a second order construct. 

However, the reliability and validity of these second-order constructs were not reported. The 

coefficient alpha of these variables is computed using a dissattenuated (error-free) covariance matrix of the 

first-order constructs, or using the error variances (ζ's) and loadings (β's) of the first-order constructs on the 

second-order construct in a second-order measurement model in place of λ's and Var(e)'s Equation 4. 

Similarly, the content or face validity and construct validities of second-order constructs should be 

reported. In this case, validity is demonstrated first by demonstrating valid first-order constructs, then by 

demonstrating the validity of the second-order construct with the first order constructs as indicators. The 

content validity of a second order construct is demonstrated as it is for first order constructs. However, the first 

order constructs should be viewed as the indicators of the second-order construct. Construct validity is 

suggested by plausible correlations of the second-order construct with the other study variables, while 

convergent validity could be suggested by an AVE for the second-order construct that is greater than .5. This 

AVE should be calculated using the loadings (β's) and measurement error variances (ζ's) of the first-order 

constructs on the second-order construct in a measurement model, or using Endnote 4 (see Endnote 7 for 

more). 

Bootstrapping Although it was not reported in the articles reviewed, bootstrapping (Efron, 1981) could be 

used to produce confidence intervals for reliability and facets of validity, and thus provide them with a type of 
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generalizability using the UV-SD model test data. Bootstrapping has been suggested to estimate standard errors 

(see Efron, 1981), and it has also been suggested to improve the asymptotic correctness of a sample covariance 

matrix (Jöreskog and Sörbom, 1996a:173, 185; see Bentler, 1989:76). It is accomplished by averaging the 

statistics of interest (in this case reliability, AVE, the disattenuated correlation matrix of the constructs, etc.) 

that result from taking subsamples of the available cases (e.g., a hundred subsamples each with 10% of the 

cases randomly deleted). The resulting bootstrapped (i.e., averaged) reliability, for example, and the square root 

of the variance of the reliability estimates could then be used to gauge a measure's reliability across multiple 

studies of the same population. A 95% confidence interval for the bootstrapped (average) reliability of a 

measure, ρavg, for example, would be ρavg ± 2(Varρ)1/2 where (Varρ)1/2 is the square root of the variance of the 

reliabilities generated by the bootstrap procedure (the square root of which is an estimate of the standard error 

of ρavg). Multi-sample reliability could then be gauged by inspecting this confidence interval to see if it 

extended below .7. If it did, this would undermine the reliability of the target measure. Similarly, a 95% 

confidence interval for the bootstrapped (i.e., averaged) AVE, AVEavg, would involve AVEavg and VarAVE., and 

an AVEavg - 2(Varave)1/2 value less than .5 would undermine the convergent validity of the target measure. 

(Note: bootstrap results should be used with caution--see "Why are reviewers complaining about the use of 

PLS in my paper?" on this website.) 

A bootstrapped (averaged) correlation matrix of the study constructs could also be used as an improved 

correlation matrix (i.e., more likely to be asymptotically, or large sample, correct) for gauging construct 

validity. In addition, if the confidence intervals for (AVEX)1/2 or (AVEZ)1/2 and the bootstrapped correlation 

between X and Z overlapped, that would undermine discriminant validity. (Again note that ibootstrap results 

should be used with caution--see "Why are reviewers complaining about the use of PLS in my paper?" on this 

website.) 

IN CONCLUSION 

Based on the articles reviewed it was difficult to escape the conclusion that reliability and validity in 

UV-SD model tests could be improved by simply following well-known procedures for this purpose (e.g., 
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Churchill 1979). For example, an examination of the equations for reliability and convergent and discriminant 

validity suggest that difficulties with reliability or these facets of validity could be viewed as a result of 

insufficient error-free variance. Thus procedures for improving the reliability and validity of a measure should 

include increasing the error-free variance of its items, and increasing its items' loadings or correlations with its 

unobserved construct. In particular, increasing the number of item scale points, wording item stems in the 

language of the study population, and pretesting the study protocol (e.g., cover letter, questionnaire, etc.) 

deserve emphasis because they are easily implemented and particularly effective. Specifically, to increase 

construct variance and reduce measurement error variance, the number of scale points could be increased by 

replacing the ubiquitous five point Likert scale with a seven-point Likert scale, a ten-point rating scale, etc. (see 

Churchill and Peter, 1984). 

Churchill's (1979) suggestion of using focus groups in item development is extensively used in applied 

marketing research to improve itemization and thus measurement error. Researchers in this venue believe that 

one or more small and convenient focus groups from the study population will yield important "instances" of 

observable sentiments and behaviors pertaining to study constructs that can reduce the guesswork in 

identifying valid items for a new or revised measure. In addition, these focus groups can reveal the specific 

language the study population uses to communicate regarding these constructs. This information is then used to 

improve the phrasing of item stems, and thus reduce measurement error. 

Similarly, even rudimentary pretests should be effective in reducing measurement error. For example, 

administering the survey protocol (e.g., cover letter, questionnaire, etc.) to as few as one subject from the study 

population, then discussing their responses with them can be effective in reducing measurement error (see 

Dillon, Maden and Firtle, 1987:375). 

Based on the articles reviewed, it may not be widely understood that reliability and facets of validity 

are actually sample-based statistics. Thus the reliability and facets of the validity of each study measure, 

including previously used measures, will vary across samples. Specifically, reliability and facets of validity 

cannot be generalized without additional samples because their sampling distributions are unknown. Thus the 
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reliability and validity of each study measure should be evaluated and reported in a UV-SD model test, 

regardless of whether or not it has been used previously. 

Because content or face validity in UV-SD model tests is subjectively gauged, not only by writers and 

reviewers but also by readers after the study is published, conceptual definitions, items, and measure 

development details should be reported in published articles so that subsequent readers can judge the content 

or face validity of each measure. Similarly, reliabilities and average extracted variances (AVE's), and a full 

correlation matrix for the constructs should also be reported so that construct, convergent and discriminant 

validity can be confirmed by readers. 

A single data set was frequently used to validate both the measures and the model in the UV-SD model 

tests reviewed. Scenario analysis was suggested to provide additional data sets that could be used to 

preliminarily evaluate new and previously used measures. Bootstrapping the UV-SD model test data was 

suggested to gauge the generalizability of the reliability and facets of validity of the study measures. However, 

my preliminary experience with bootstrapped confidence intervals and sample sizes of 200 or more suggest 

that a measure with an observed reliability above .75 is unlikely to have a confidence interval that extends 

below .7, and that a measure with an observed average variance extracted (AVE) above .55 is unlikely to have 

a confidence interval that extends below .5. 

However, it is possible for a measure to have a reliability above .8 yet have an AVE below .5 (see 

Appendix A). Thus new measures should have reliabilities and AVE's above .80 and .55, respectively, to 

improve the likelihood that their population values for AVE are above .5. 

For structural equation analysis consistency is required to attain model-to-data fit and avoid 

interpretational confounding. Consistency can be attained using full measurement models and specification 

searches (e.g., modification indices in LISREL and LMTEST in EQS) to identify items that load significantly 

on multiple constructs. It can also be attained by omitting measure items that either do not cluster together in an 

ordered similarity coefficient matrix of all the measures, or have a large summed first derivative using a full 

measurement model. 
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However, omitting items to attain consistency can affect content validity, and item deletion should be 

done with care. The current practice of omitting items in older well-established measures to attain 

consistency/unidimensionality in structural equation analysis may be ill advised because it can reduce content 

or face validity. Alternatives to omitting items in a measure to attain consistency include summing them and 

using a single averaged indicator and regression (however see Endnote 2). They also include using structural 

equation analysis with a loading and a measurement error that are functions of the communalities or reliability 

of the items. 

When structural equation analysis is used, model-to-data fit and parameter estimates (i.e., loadings, 

measurement errors, and construct variances and covariances) from a full measurement model (i.e., containing 

all the study constructs) should be reported so readers can verify the  consistency/unidimensionality, reliability 

and AVE of the study constructs. 

Needed Research It would be helpful to have additional insights into several aspects of reliability and 

validity. For example, the sampling distributions of the popular reliability coefficients and the average variance 

extracted (AVE) statistic are unknown. Approaches to providing approximate confidence intervals for these 

statistics include curve fitting an approximate distribution using Monte Carlo simulations. The results of Monte 

Carlo simulations involving data sets with different levels of measurement error could also be used to 

determine ranges of confidence intervals at differing reliabilities and/or AVE. 

Similarly, reliability and AVE are related, and it is possible to have a measure with acceptable 

reliability yet unacceptable AVE using existing cutoffs for the acceptability of these statistics. This raises 

questions such as, should the limits of acceptable reliability and AVE be reconciled? If so, how? I suggested a 

conservative approach of raising the reliability cutoff to correspond to the AVE cutoff of .5, but what are the 

effects of lowering the AVE cutoff to correspond to the reliability cutoff of .7? 

In addition, the assessment of reliability and validity in interactions and quadratics needs more work. 

For example, Busemeyer and Jones (1983) derived the formula for the reliability of an interaction (see 

Equation 7), yet Equation 7 produces a different result from the latent variable (LV) reliability equation 
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(Equation 4). Both approaches to determining reliability are plausible, yet the Busemeyer and Jones (1983) 

Equation 7 results are typically much larger than the LV reliability Equation 4 results. Since multiple 

approaches to determining reliability are practically equivalent for unidimensional first order latent variables, 

why do they typically produce different results in interactions and quadratics? 

Similarly, if the Busemeyer and Jones (1983) Equation 7 formula is correct for the reliability of 

interactions and quadratics, and the LV reliability Equation 4 formula is not, is the Equation 6 formula for the 

AVE of an interaction correct? In this case would a modification of the Busemeyer and Jones (1983) Equation 

7 formula be a more appropriate assessment of AVE for interactions and quadratics? 
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ENDNOTES 

1. I reviewed UV-SD model tests in major marketing journals. The journals included Journal of Marketing, the Journal 

of Marketing Research, Marketing Science, the Journal of Consumer Research, the Journal of the Academy of Marketing 

Science, the Journal of Retailing, the Journal of Personal Selling and Sales Management, and the Journal of Business 

Research from 1980 to the present. I also reviewed the recent methods literature in the Journal of Marketing Research, 

the Psychological Bulletin/Psychological Methods, Psychometrika, Multivariate Behavioral Research, Sociological 

Methodology, and Sociological Methods and Research. 

 

2. However, authors have warned against the used of regression with variables measured with error (see Bohrnstedt and 

Carter, 1971; Rock, Werts, Linn and Jöreskog, 1977; Warren, White and Fuller, 1974; and demonstrations in Cohen and 

Cohen, 1983), and from 1980 to the present regression was increasingly less frequently used in the articles reviewed. 

 

3. CFI compares model fit to the fit of a null or independence baseline model (i.e., one in which the observed variables 

are composed entirely of measurement error). It typically varies between 0 and 1, and values .90 or above are considered 

indicative of adequate fit (see McClelland and Judd, 1993). 

   RMSEA has been suggested as a third indicator of fit (see Jöreskog, 1993), possibly because of the potential 

inappropriateness of chi-square, GFI and AGFI, and criticisms of CFI's all-error baseline model (see Bollen and Long, 

1993). An RMSEA below .05 suggests close fit, while values up to .08 suggest acceptable fit (Browne and Cudeck, 1993; 

see Jöreskog 1993). 

 

4. AVE must be manually calculated, and its parameters are available in structural equation modeling. AVE can be 

approximated using estimates of the Equation 6 parameters available from SPSS, SAS, etc. In Equation 6, Σλi
2 is 

approximated by the sum of squares of the loadings in a maximum likelihood exploratory common factor analysis (i.e., 

the sum of the communalities or the eigenvalue of the items). Var(X) can be set to one, and ΣVar(ei) is approximated by n 

- Σλi
2. Thus, AVE is approximately the explained variance of the items in a maximum likelihood exploratory common 

factor analysis. Our experience is that for an unidimensional measure there is little practical difference between an AVE 

calculated using Equation 6 and an AVE equaling the percent explained variance in a maximum likelihood exploratory 

common factor analysis. 

 

5. Generalizability theory (Cronbach, Gleser, Nada and Rajaratnam, 1972) can be used to address this problem for 

reliability, although it has not been widely used in the social sciences and was not used in any of the articles reviewed. 

Similarly bootstrapping, which is discussed later, could be used for reliability, AVE, etc. Both of these approaches, 

however require additional samples. 

 

6. The exact reliability of an interaction is .002 to .228 larger than the product of the reliabilities of the constituent 

variables across constituent reliabilities of .7 to .9 and constituent correlations of .1 to .9-- the largest difference is for a 

correlation of .9 and constituent reliabilities of .7 each. The exact reliability of a quadratic is .095 to .225 larger than the 

square of the reliability of the constituent variable across constituent reliabilities of .7 to .9-- the largest difference is for a 

correlation of .9 and a constituent reliability of .7. 

 

7. The indicator first-order constructs may not be discriminant valid, but this is not unusual in second order constructs. 
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APPENDIX A- Consistency Improvement using Summed First Derivatives 

 

A measure of the latent variable X with eight items was used in a marketing survey that produced more than 200 

usable responses. The first derivatives with respect to the error terms (Var(e)' s in Equation 1)from a single construct 

measurement model of X, and their sum without regard to sign for each item, are shown in Table A1. The item with the 

largest Table A1 column sum without regard to sign (x4) was omitted, and the measurement model was re estimated to 

produce the Table A2 first derivatives. This process was repeated until RMSEA was .08 or less (see Table A4). An 

investigation of all other measurement models with of five items (not shown) produced combinations of items that were 

less consistent (i.e., they had worse model-to-data fit statistics), suggesting the Table A4 items were maximally 

consistent. 

However, maximizing consistency does not necessarily maximize reliability or Average Variance Extracted (AVE). 

The items with maximum reliability and AVE were x4, x5, x6, x7, and x8 (Reliability = .884 and AVE = .606, but χ2 = 25, 

df = 5, p-value = .0001, RMSEA = .135). 

There is no guidance for trading off reliability and consistency. In the present case the reliabilities of both the Table 

A4 itemization and x4, x5, x6, x7, and x8 would likely be judged acceptable. However AVE for the Table A4 itemization is 

only slightly above the suggested cutoff (i.e., .5), and x4 through x8 are marginally consistent. In cases where reliability 

and consistency diverge, I would suggest using the higher reliability itemization first. 

 

 Table A1- First Derivatives for the Eight Item Measure 

x1  x2  x3  x4  x5  x6     x7     x8 

x1   0.000 -0.439 -0.025 -0.086  0.047  0.006  0.010  0.371 

x2  -0.439  0.000 -0.272  0.287  0.217  0.042 -0.200  0.143 

x3  -0.025 -0.272  0.000 -0.527  0.184  0.364  0.422 -0.207 

x4  -0.086  0.287 -0.527  0.000 -0.943  0.505  0.534  0.144 

x5   0.047  0.217  0.184 -0.943  0.000  0.222  0.359  0.019 

x6   0.006  0.042  0.364  0.505  0.222  0.000 -0.929 -0.187 

x7   0.010 -0.200  0.422  0.534  0.359 -0.929  0.000 -0.113 

x8   0.371  0.143 -0.207  0.144  0.019 -0.187 -0.113  0.000 

Suma  0.983  1.600  2.000  3.027  1.991  2.254  2.565  1.184 

χ2 = 86  df = 20  p-value = 0  RMSEAb = .123  Reliability = .860  AVE = .442 
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APPENDIX A- Consistency Improvement using Summed First Derivatives (Continued) 

 

 

 Table A2- First Derivatives with x4 Deleted 

x1  x2  x3  x5  x6  x7     x8 

x1   0.000 -0.442 -0.064 -0.057 0.037  0.044  0.354 

x2  -0.442  0.000 -0.287  0.129 0.214 -0.067  0.195 

x3  -0.064 -0.287  0.000 -0.172 0.319  0.382 -0.313 

x5  -0.057  0.129 -0.172  0.000 0.090  0.231 -0.252 

x6   0.037  0.214  0.319  0.090  0.000 -0.544  0.012 

x7   0.044 -0.067  0.382  0.231 -0.544  0.000  0.112 

x8   0.354  0.195 -0.313 -0.252  0.012  0.112  0.000 

Suma  0.998  1.334  1.537  0.933  1.217  1.381  1.239 

χ2 = 56  df = 14  p-value = .44E-6  RMSEAb = .117  Reliability = .828  AVE = .416 

 

 

          Table A3- First Derivatives with x3 and x4 Deleted 

x1  x2  x5  x6  x7  x8 

x1   0.000 -0.445 -0.086  0.045  0.054  0.304 

x2  -0.445  0.000  0.036  0.190 -0.103  0.107 

x5  -0.086  0.036  0.000  0.114  0.270 -0.383 

x6   0.045  0.190  0.114  0.000 -0.252 -0.013 

x7   0.054 -0.103  0.270 -0.252  0.000  0.096 

x8   0.304  0.107 -0.383 -0.013  0.096  0.000 

Suma  0.937  0.883  0.891  0.616  0.776  0.904 

χ2 = 36  df = 9  p-value = .38E-4  RMSEAb = .116  Reliability = .814  AVE = .433 

 

 

Table A4- First Derivatives with x1, x3 and x4 Deleted 

x2  x5  x6  x7  x8 

x2   0.000 -0.026  0.110 -0.180  0.079 

x5  -0.026  0.000  0.104  0.252 -0.352 

x6   0.110  0.104  0.000 -0.233  0.064 

x7  -0.180  0.252 -0.233  0.000  0.173 

x8   0.079 -0.352  0.064  0.173  0.000 

χ2 = 5.89  df = 5  p-value = .136  RMSEAb = .028  Reliability = .835  AVE = .509 
─────────────────────── 
a Without regard to sign 
b .05 suggests close model-to-data fit, .051-.08 suggests acceptable model-to-data fit (Brown and Cudeck 1993, 

Jöreskog 1993). 
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APPENDIX B- Ordered Similarity Coefficients and Consistency 

 

Similarity coefficients for the eight items analyzed in Appendix A are shown in Table B, in descending summed 

similarity. For example, x4 has a similarity of 1.00 with itself, and .97 with x5, etc. It is the most similar to all the items 

(i.e., while the sums of similarity coefficients are not shown, it is obvious that x4 has the largest summed similarity), and 

is most similar to x5. x5 is the next most similar item and after x4 it is most similar to and x6. 

However, ordered similarity coefficients do not necessarily suggest maximally consistent item clusters. The most 

similar items are x4, x5, x6, x7, and x8, (each have .9 or higher coefficients with the others). Item x3 is less similar with .91 

or lower coefficients, and x2 and x1 have one or more coefficients below the suggested .8 cutoff. Nevertheless the five 

items with the highest consistency were x2, x5, x6, x7, and x8 (see Appendix A). 

 

 Table B-Ordered Similarity Coefficients for the Appendix A Itemsa 

         x4    x5    x6    x7    x8   x3    x2    x1 

 x4  100   97   94   93   93   91   80   71 

 x5    97 100   94   93   93   87   79   69 

 x6    94   94 100   97   93   84   80   69 

 x7    93   93   97 100   92   83   82   69 

 x8    93   93   93   92 100   88   76   60 

 x3    91   87   84   83   88 100   81   66 

 x2    80   79   80   82   76   81 100   81 

 x1    71   69   69   69   60   66   81 100 
─────────────────────── 
a Table entries are coefficients times 100 
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APPENDIX C- An Example Scenario 

 

Scenario analysis is composed of instructions (see Exhibit C), a scenario (titled "Research Material" in Exhibit C), a 

questionnaire containing measures for the study constructs which is attached to the instructions (not shown), and student 

subjects. The scenario manipulates the independent variables, and the questionnaire measures the manipulations and the 

dependent variables. 

In the Exhibit C scenario each student received the Instructions/Research Materials sheet with the questionnaire 

attached. The Research Material shown in Exhibit C has been truncated at the ellipses to conserve space, and each 

student received a Research Material section showing only one of the two possible choices in each parenthesis. The 

Exhibit C experiment had 8 treatments (see the last paragraph of the Research Material), each with two levels 

(represented by the alternatives in parentheses), so there were 256 (= 28) different Research Materials, one for each 

treatment group. Ideally treatment groups should be homogenous within, and there should be more than one subject per 

treatment. However, this particular scenario involved one subject per treatment and nonhomogeneous student subjects 

(see the results in Appendix D). 

 

 Exhibit C- A Scenario 

 

INSTRUCTIONS:  Please read the following material, and then respond to the statements that follow it.  Your responses 

are anonymous and very important to the development of a study of personal selling. 

RESEARCH MATERIAL 

Please attempt to place yourself in the position of X, the major character in the following short story.  Try to imagine 

that person's feelings and attitudes as vividly as you can, considering what it would be like to be in their situation.  You 

may need to read the story several times before you are completely familiar with the details of the situation.  Then 

respond to the statements that follow the story, indicating how you would react if you were in that situation.  There are no 

"right" or "wrong" answers.  It is your own, honest opinion of how X would feel and act that we want. 

Imagine that you are X.  You are working for a financial services company.  The company sells mutual funds and 

other investments.  It helps clients manage their personal and family assets using offices located around the country.  

Clients seek the company's advice and investment products to maintain and build their net worth for retirement, college 

for their children, etc. 

You are an account representative for, among other things, the company's mutual fund products that include stock 

and bond funds, and funds made up of securities from foreign companies.  You are very good at advising clients 

regarding their financial planning.  You and the company have (a common, different) goal-- (satisfied customers, you 

want satisfied customers and they want brokerage fees).  You are also paid a very (attractive, unattractive) combination of 

salary and commissions that (generously,  does not) compensate(s) you for all the preparation and work that you do for 

the company.  The company's policies and procedures regarding performance evaluation and feedback, promotion, 

vacation, health care, etc. are (very, not) fair compared to other companies.  These policies and procedures are 

administered very (fairly, unfairly):  you see (no) favoritism in promotions, for example, (and, or) inconsistent 

administration of these policies and procedures (any-, every-)where.  You are treated with (great, no) respect (and, or) 

concern for your feelings by company management. 

You have worked for the company for (seven years, three months) now, and have devoted many of these years to 

developing your client base.  (You have spent many nights and weekends, Some of this time has been devoted to)  
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APPENDIX C- An Example Scenario (Continued) 
 

 

learning the company's products and services, and how to serve clients with these products and services, (that could 
have been spent having fun; Some of this time has been spent developing your client base). 

. 

. 

. 
 

Things at work had been fine, but in the past week a problem developed. Your manager called you to say that 

you will be asked to give several of your best clients to the newly hired account representatives.  They currently go too 

long without commissions.  In addition, you will be asked to help train these new account representatives.  This would 

reduce the available time you have to find replacement clients, and reduce your ability to serve your existing clients. 

Remember, you have worked for this company a (long, short) time.  You and the company have (the same,  very 

different) goals.  Your compensation is very (fair, unfair).  The company's policies and procedures are very (fair, unfair). 

 These policies and procedures are administered very (fairly, unfairly).  You are treated with (great, no) respect (and, or) 

concern for your feelings by your company's management.  Other potential employers are very (attractive, unattractive).  

Changing jobs would require (a lot of, little) effort (and, or) risk. 
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APPENDIX D- Scenario Analysis Results Comparison 

 

The Appendix C scenario was administered to more than 200 students, and its questionnaire was also mailed to a 

sample from a non student population, and this generated more than 200 responses. A psychometric comparison of the 

scenario analysis results and the survey data results using the same questionnaire is shown in Table D. They are similar 

enough to suggest that scenario analysis may be useful for measure debugging, and preliminary model evaluation. 

 

 Table D- Comparison of Scenario and Survey Data from a Common Questionnaire Using Factor Analysis 

 

Scenario Data:      Field Survey Data: 

 
FACTOR 1    2    3    4    5            1     2     3     4      5 
 
EX6  .858       EX7   .841 

EX4  .851                                 EX3   .829 

EX2  .839                                 EX2   .821 

EX7  .839                                 EX4   .815 

EX5  .826                                 EX5   .814 

EX1  .770                                 EX1   .807 

EX8  .769                                 EX6   .778 

EX3  .730                                 EX8   .771 

IN8       .933      SA8         .850 

IN3       .897                            SA7         .848 

IN5       .897                            SA4         .809 

IN6       .887                            SA6         .794 

IN1       .869                            SA3         .747 

IN4       .861                            SA2         .746 

IN7       .683                            SA1         .703 

IN2       .601                            SA5         .675 

AL5            .820      IN5   .906 

AL6            .768                       IN8               .901 

AL3            .743                       IN3               .879 

AL2            .739                       IN4               .876 

AL4            .732                       IN6               .873 

AL7            .729                       IN1               .823 

AL1            .701                       IN7               .680 

SA7            .814                       IN2               .646 

SA3                 .780                  AL5                     .778 

SA2                 .771     AL1                     .771 

SA8                 .750                  AL3                     .768  

SA6                 .721                  AL2                     .761 

SA4                 .718                  AL7                     .759 

SA1                 .657                  AL4  -.415              .752 

SA5                 .518                  AL6                     .646 

SC2                      .823    SC5                           .797 

SC4                      .778             SC4                           .784 

SC5                      .721             SC6                           .768 

SC6 -.406                .711             SC3                           .743 

SC1                      .692             SC2                           .637 
SC3 -.443                .642             SC1                           .635 
 
Eigen- 

value 13.24 5.93 3.10 2.35  2.06    16.23  5.87   2.79   1.85   1.79 

Pct. 

Var    35.8 16.0  8.4  6.4   5.6     43.9  15.9    7.6    5.0    4.9 
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APPENDIX E- Average Variance Extracted 

 

A marketing survey involving the latent variables T, U, V, W, and the interaction UxT produced more than 200 

usable responses. After item omissions to attain sufficient consistency, the measures for these latent variables were 

judged to be unidimensional, valid and reliable. A second marketing survey involving the latent variables A, B, C, D, and 

E also produced more than 200 usable responses. The measure for A was an established measure, and omitting items in 

several other measures to attain acceptable consistency was judged to degrade their content or face validity. Thus, these 

measures were used with no item omissions. The unidimensionality of A, B, C, D, and E was gauged using maximum 

likelihood exploratory common factor analysis. Each of the measures for A through E produced one factor with an 

eigenvalue greater than one, which suggested their unidimensionality. Table E presents the reliabilities and average 

extracted variance estimates for these variables. Since the model-to-data fit of the structural equation model for A through 

E was below acceptability, both the average variance extracted and the latent variable reliability (LV Reliability) 

estimates are approximations. 

 

 Table E- Reliability and AVE Comparisons 

 

Measure                         U      T     UxT   V      W      A      B      C       D      E 

LV Reliabilitya  .946 .635 .686 .817 .928 .933 .926 .927 .949 .962 

SPSS Reliabilityb .942 .609 .749e .818 .925 .941 .929 .917 .947 .968 

SEA AVEc  .781 .384 .136 .534 .765 .672 .692 .671 .792 .721 

Eigenvalue AVEd .737 .341 .166 .475 .731 .643 .637 .588 .760 .710 

 

_______________ 
a Using Equation 4. 
b Reliabilities using raw data and SPSS, except for the reliability of UxT. 
c Using Equation 6. 
d AVE estimated using the Footnote 6 approach involving the percent explained variance of each measure from Maximum Likelihood exploratory 

common factor analyses (except for UxT-- see Footnote e below). 
e Using Equation 7. 
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APPENDIX F- A Structural Equation Model with Single Indicators 

 

The data from the second marketing survey described in Appendix E was used to estimate the variables A 

through D's associations with E using single indicator structural equation analysis (SEA). A single averaged indicator was 

used for each of the variables A, B, C, D, and E. To use this single indicator approach, the indicators for each latent 

variable X should be unidimensional using maximum likelihood exploratory common factor analysis and criteria such 

only one factor with an eigenvalue greater than one. Next the indicators for X, x1, x2, ... , xn, should be averaged, and the 

value (x1+x2+ ... +xn)/n should be added to each case. Then the variance of X, Var(X), and the reliability of X, αX, should 

be determined using SAS, SPSS, etc. Next the loading of each xi on X should be determined using maximum likelihood 

exploratory common factor analysis (i.e., using SAS, SPSS, etc.), each loading should be scaled (see below), and the 

loadings should be averaged to form ΛX. Finally, the averaged indicator should be specified in the structural equation 

analysis model (i.e., the measurement or structural model) with a fixed loading equal to ΛX and a fixed measurement 

error equal to Var(X)(1-α). 

The above steps were taken for the variables A through E, and the results are shown in Table F1. For emphasis, 

the exploratory common factor analysis used maximum likelihood extraction, and the LISREL 8 estimation used 

maximum likelihood estimation. In addition before they were averaged, the maximum likelihood exploratory common 

factor analysis loadings were scaled by dividing each measure's loadings by its measure's maximum loading (i.e., each of 

A's loadings, la, was replaced by la/max(la), where  max(la) is the largest loading on A); each of B's loadings, lb, was 

replaced by lb/max(lb), where  max(lb) is the largest loading on B; etc.), which is required to syncronize the variances of 

indicators with that of their construct (this is similar to fixing an indicator at one to provide a metric [for non-unit-

variance] A through E in structural equation analysis). 

Table F2 shows the results of estimating the same model with A through E each specified using their multiple 

indicators. Since the reliabilities of A through E were above .9, Table F3 shows the results of replacing Λ with (α)1/2 in 

the Table F1 model. To obtain these results, the coefficient alphas were determined for A through E using SPSS, and the 

square roots of these values replaced the Λ's in the Table F1 model. (Note: A through E were unstandardized--their 

variances were not 1.) 
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APPENDIX F- A Structural Equation Model with Single Indicators (Continued) 

 

 

 Table F1- Single Indicator Coefficient Estimates Using Exploratory Common Factor Analysis 

 

Dependent Variable= E 

                   A             B                 C           D           χ2/df      GFIb  AGFIb  CFIc  RMSEAd 

bi
a  -0.478   0.358     0.000   0.061         0/0       -------(not applicable)------- 

t-value  -6.94   5.18     0.00 0.87 

 

 

 Table F2- Multiple Indicator Coefficient Estimates 

 

Dependent Variable= E 

                   A             B                 C           D           χ2/df     GFIb  AGFIb  CFIc  RMSEAd 

bi
a  -0.465   0.357    -0.025 0.072    1079/517  .774   .740    .928     .070 

t-value  -6.90   5.30    -0.38 1.11 

 

 

 Table F3- Single Indicator Coefficient Estimates Using (α)1/2 

 

Dependent Variable= E 

                   A             B                 C           D            χ2/df      GFIb  AGFIb  CFIc  RMSEAd 

bi
a   -0.478        0.358     0.000 0.061          0/0       -------(not applicable)------- 

t-value   -6.94   5.18     0.00 0.87 

 

_____________ 
a Standardized estimates. 
b Shown for completeness only-- GFI and AGFI may be inadequate for model-to-data fit assessment in larger models (see Anderson and Gerbing 

1984).  
c .90 or better indicates acceptable model-to-data fit (see McClelland and Judd 1993).  
d .05 suggests close model-to-data fit, .051-.08 suggests acceptable model-to-data fit (Brown and Cudeck 1993, Jöreskog 1993). 
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Revision History: 

 

2010: Added "Notes" to update paper for recent results--search on "Notes" to locate. 

 

2006: Paper was written in 1999, edited to reduce length, accepted in 2000, and published in 2004. This 

unreduced version was selectively revised to make it current through 2006. 



BUT WHAT ABOUT CATEGORICAL (NOMINAL) VARIABLES 

IN LATENT VARIABLE MODELS? 

 

ABSTRACT 

 

The paper suggests an approach for specification, estimation and interpretation of a 

categorical or nominal exogenous (independent) variable in theory or hypothesis tests of 

latent variable models with survey data. An example using survey data is provided. 

 

 

Anecdotally, categorical variables (e.g., Marital Status) are ubiquitous in applied 

marketing research. However, they are absent from published theory (hypothesis) tests of 

latent variable models using survey data. 

One plausible explanation is there is no explicit provision for "truly" categorical 

variables in the popular structural equation (covariant structure) analysis software 

packages (e.g., LISREL, EQS, AMOS, etc.). There, the term "categorical variable" means 

an ordinal variable (e.g., an attitude measured by a Likert scale) (e.g., Jöreskog and 

Sörbom 1996), rather than a nominal variable such as Marital Status.  

Further, normality is a fundamental assumption in covariance structural analysis 

(e.g., in LISREL, EQS, Amos, etc.) for maximum likelihood estimation, the preferred 

estimator for hypothesis tests involving latent variables and survey data (e.g., Jöreskog 

and Sörbom 1996). A (truly) categorical independent variable is typically estimated using 

"dummy" variables that are not normally distributed. (For example, while case values for 

the categorical variable Marital Status, for example, might be 1 for Single, 2 for Married, 

3 for Divorced, etc., new variables, for example Dummy_Single, Dummy_Married, etc., 

are created and estimated instead of Marital Status. Dummy_Single might have a case 

value of 1 if Marital Status = Single, and 0 otherwise, Dummy_Married might have cases 

that have the value 1 if Marital Status = Married, and 0 otherwise, etc.)  



There are other less obvious barriers in survey-data theory tests to adding (truly) 

categorical exogenous variables to models that also contain latent variables, including 

determining the significance of a categorical variable when its dummy variables are 

estimated instead. If each dummy variable is significant (or nonsignificant), it seems 

reasonable to conclude that the categorical variable from which the dummies were 

created is significant (or nonsignificant). However, if some dummy variables are 

significant but some are not, there is no guidance for estimating the significance of the 

categorical variable from which they were created. In addition, interpreting a significant 

categorical variable can involve interpreting changes in intercepts, parameters that are not 

usually estimated in theoretical model testing.  

Several approaches have been suggested for estimating categorical variables (e.g., 

dummy variable regression, logistic regression, latent category models, etc.). However, 

there is no guidance for estimating a "mixed" model--one that combines a categorical 

exogenous variable with latent variables--in theory (hypothesis) tests involving survey 

data.  

This paper addresses these matters. It suggests a specification for a categorical 

variable in theory (hypothesis) tests of latent variable models involving survey data. It 

also discusses the estimation and interpretation of a categorical variable in these "mixed" 

models. 

AN EXAMPLE 

To expedite the presentation of these matters, we will use a real-world data set involving 

buyer-seller relationship Satisfaction (SAT), Alternative relationship attractiveness 

(ALT), and Exit propensity (EXI). Data (200+ cases) was collected in a survey to test a 



larger model in which Satisfaction and Alternative Unattractiveness were hypothesized to 

be negatively associated with Exiting. SAT, ALT and EXI were measured using multiple 

item measures (Likert scales). The resulting latent variables, SAT, ALT and EXI were 

judged to be valid and reliable, and the itemizations of each were judged to be internally 

and externally consistent in the Anderson and Gerbing (1988) sense.1 

The structural equation 

EXI = b1SAT + b2ALT + ζ,                (1 

where bi are structural coefficients and ζ is structural disturbance, was estimated using 

LISREL and maximum likelihood estimation, and SAT and ALT were significantly 

(negatively) associated with EXI as shown in Table A.  

SAT was measured with five-point Likert-scaled items that each could be 

analyzed as a categorical variable. (E.g., the SAT indicator Sa2 had 5 categories: those 

respondents who strongly agreed they were satisfied, those who agreed they were 

satisfied, those who were neutral, etc.) For pedagogical purposes SAT was replaced in 

Equation 1 with one of its high loading indicators, Sa2. The resulting model was 

estimated, and Sa2 and ALT were significantly and negatively associated with EXI, also 

as shown in Table A.  

Next, dummy variables for the categories of Sa2 (i.e., category 1 = strongly 

dissatisfied, category 2 = dissatisfied, category 3 = neutral, category 4 = satisfied, and 

category 5 = very satisfied) were created. Specifically, in each case, Sat_Dummyi = 1 if 

Sa2 = i (i = 1 to 5) in that case. Otherwise, Sat_Dummyi = 0. Thus for example, in each 

                                                 
1 Other study details are omitted to skirt matters such as conceptual and operational definitions, etc. that 

were judged to be of minimal importance to the present purposes. 



case where Sa2 = 1, Sat_Dummy1 was assigned the value of 1. For those cases where 

Sa2 equaled some other value (i.e., 2, 3, 4 or 5), Sat_Dummy1 was assigned 0.  

Equation 1 was altered to produce the structural model  

EXI = b11Sat_Dummy1 + b12Sat_Dummy2 + b13Sat_Dummy3  

+ b14Sat_Dummy4 + b15Sat_Dummy5 + b2'ALT + ζ',           (2 

where b1j and b2' (j = 1 to 5) are structural coefficients, and ζ' is structural disturbance.  

 Unfortunately, Equation 2 currently cannot be estimated satisfactorily using 

LISREL (or other popular covariant structure packages such as EQS, AMOS, etc.). The 

covariance matrix produced by the dummy variables is not positive definite. 

The usual "remedy" is to estimate Equation 2 with one dummy variable omitted 

(e.g., Blalock 1979). However, this approach is unsatisfactory for theory testing because 

omitting a dummy variable in Equation 2 alters the significances of the remaining 

dummy variables, depending on which dummy variable is omitted. For example, see the 

significances in Tables B and C of Sat_Dummy2 or Sat_Dummy4 when Sat_Dummy1 or 

SAT_Dummy5 was omitted from Equation 2. 

Ping (1996) proposed a latent variable estimation approach that will estimate 

Equation 2 without omitting dummy variables. The approach, Latent Variable 

Regression, adjusts the Equation 2 variance-covariance matrix for the measurement 

errors in ALT and EXI using Equation 2 measurement model loadings and measurement 

error variances. The resulting error-disattenuated variance-covariance matrix is then input 

to OLS regression. This approach was judged to be acceptably unbiased and consistent in 

the Ping (1996) article.  



In order to use Latent Variable Regression to estimate Equation 2, the error-

adjusted covariance matrix for Equation 2, and "regression through the origin" was used 

(to accommodate the collinearity of the dummy variables--see Blalock 1979). 

Specifically, the (error attenuated) variances and covariances of ALT, EXI and the five 

indicators for the SAT dummy variables were obtained using SPSS. Next, the 

measurement model for Equation 2 was estimated using the (consistent) indicators for 

ALT and EXI, and single indicators for the five SAT dummy variables (i.e., 

Sat_Dummy1, Sat_Dummy2, etc.), with LISREL and maximum likelihood estimation. 

Then, the loadings and measurement error variances from this measurement model were 

used to adjust the SPSS variances and covariances of ALT, EXI and the SAT dummy 

variables using equations proposed by Ping (1996) such as 

Var(ξX) = (Var(X) - θX)/ΛX
2  

and 

Cov(ξX,ξZ) = Cov(X,Z)/ΛXΛZ , 

where Var(ξX) is the error adjusted variance of X, Var(X) is the error attenuated variance 

of X (available from SAS, SPSS, etc.), ΛX = avg(λX1 + λX2 + ... + λXn), avg = average, 

and avg(θX = Var(εX1) + Var(εX2) + ... + Var(εXn)), (λ's and εX's are the measurement 

model loadings and measurement error variances--1 and 0 respectively--for the SAT 

dummy variables, and n = the number of indicators of the latent variable X), Cov(ξX,ξZ) 

is the error adjusted covariance of  X and Z, and Cov(X,Z) is the error-attenuated 

covariance of X and Z.2 

                                                 
2  These equations make the classical factor analysis assumptions that the measurement errors are 

independent of each other, and the xi's are independent of the measurement errors. The indicators for X and 

Z must be consistent in the Anderson and Gerbing (1988) sense.  



 The resulting error-adjusted variance-covariance matrix for Equation 2 was then 

input to SPSS' OLS regression procedure, and the results are shown in Table D. 

DISCUSSION 

The dummy variables for categories 4 and 5 (Sat_Dummy4 and Sat_Dummy5) in 

Table D were nonsignificant, while the other dummy variables were significant. 

Comparing the Table D results for ALT to those from Tables B and C, the statistics for 

the coefficient of ALT were practically unaffected by omitting a single dummy variable, 

or by using regression through the origin. Also note that the unstandardized coefficient 

for Sat_Dummy2 with Sat_dummy1 omitted in Table B was Sat_Dummy2 - 

Sat_Dummy1 (within rounding), in Table D. Similarly, the unstandardized coefficient for 

Sat_Dummy3 with Sat_dummy1 omitted in Table B was Sat_Dummy3 - Sat_Dummy1, 

in Table D within rounding. Similarly, the other Table B dummy variables were the 

difference within rounding between their Table D value and Sat_Dummy1. For this 

reason Sat_Dummy1 is sometimes referred to as a "reference variable." In Table C 

Sat_Dummy5 is the reference variable for the unstandardized coefficient values shown 

there. 

However, the interpretation or "meaning" of the unstandardized coefficients of the 

dummy variables is slightly different from the unstandardized coefficient of ALT. For 

example, the signs on the Table D unstandardized coefficients of the dummy variables 

have no meaning. Specifically, Sat_Dummy1, for example, is not "positively" associated 

with EXI. The unstandardized coefficient of Sat_Dummy1 is the absolute value of the 

change in the mean of EXI "caused" (associated) with Sat_Dummy1 (1.51). In this case, 

the mean of EXI changed in absolute value for the "very dissatisfied" category by the 



amount 1.51. Similarly, the absolute value of the change in EXI for the "very satisfied" 

(Sat_Dummy5) was .15. (Nevertheless, the "direction" of the associations of the set of 

dummy variables with EXI can be inferred--see below).  

THE SATISFACTION-EXITING HYPOTHESIS 

Satisfaction was hypothesized to be associated with Exiting, but so far we have 

estimated only variables derived from Satisfaction, its dummy variables, and several of 

them were nonsignificant. To estimate the effect of Satisfaction on Exiting using the 

dummy variables, the coefficients of the dummies were aggregated using a weighted 

average,3 and the results are shown in Table E. Interpreting this aggregated result, 

Satisfaction, estimated as a categorical variable, was significantly associated with Exiting 

as hypothesized.  

The "direction" of this association can be inferred by linearly ordering the 

unstandardized coefficients of the dummy variables from low to high. In this case EXI 

(i.e., its means in absolute value) decreased as the category represented by the dummy 

variables increased, which is consistent with the Table A result that Satisfaction is 

negatively associated with Exiting. Specifically, in the lower satisfaction categories, 

Sat_Dummy1 and Sat_Dummy2, Exiting was higher (i.e., the means were higher), while 

in the higher satisfaction categories, Sat_Dummy4 and Sat_Dummy5, Exiting was lower.  

COMMENTS  

                                                 
3 An overall F test of the "effect" of the dummies (e.g., F = [( R2

2 - R1
2 )/( k2 - k1 )] / [( 1- R2

2 )/( N - k2 - 1 )] 

where Ri2 is R Square (or Squared Multiple Correlation), i = 1 denotes the model with the dummies 

omitted, i = 2 denotes the model with the dummies included, ki is the number of exogenous variables 

(predictors), and N is the number of cases--see for example Jaccard, Turrisi and Wan, 1990) is 

inappropriate because R2's are not comparable between intercept and no intercept models (Hahn 1977). (In 

addition, R2 is usually incorrectly calculated in no intercept models--see Gordon 1981). 



Anecdotally, it is believed that regression through the origin (no intercept 

regression) is biased, perhaps because its R2 appears to be biased (Gordon 1981)--

especially when the intercept is likely to be non-zero. However, experience suggests that 

with dummy variables, coefficient estimates are consistent between intercept regression 

and no intercept regression. For example, the coefficient estimates from omitting a 

dummy variable (which used intercept regression) such as those in Tables B and C were 

the difference between the omitted dummy variable's coefficient and the other 

coefficients in the no intercept results shown in Table D, within rounding). Also, the 

Equation 2 coefficients for ALT were practically unaffected by regression through origin 

(e.g., see Table B and Table D).  

However, these results do not "prove" anything. They merely hint that the 

suggested approach may be useful for a categorical exogenous variable4 in theory 

(hypothesis) tests of latent variable models with survey data. Nevertheless, as an 

additional example, ALT was estimated as a categorical variable with the results shown 

in Table F. These results paralleled those from estimating Satisfaction. For example, the 

Equation 2 coefficients for SAT were practically unaffected by regression through origin. 

Similarly, the coefficient estimates from omitting a dummy variable (which used 

intercept regression) were the difference between the omitted dummy variable's 

coefficient and the other coefficients in the no intercept results in Table F (within 

rounding). The "direction" of this effect was inferred by linearly ordering the 

unstandardized coefficients for the Alt_Dummy variables. As these means increased (al4 

increased), Exiting increased, which is consistent with Equation F in Table F. Finally, the 

                                                 
4 Blalock (1979) points out that multiple categorical variables cannot be jointly estimated using regression 

through the origin. 



aggregated coefficient for the Alt4 dummy variables, "confirmed" the Equation F results 

that Alternatives, estimated as a categorical variable, was positively associated with 

Exiting as hypothesized. 

However, the proposed approach is tedious to use. The adjusted variance-

covariance matrix for Latent Variable Regression must be manually calculated. Similarly, 

the standard errors for Latent Variable Regression must be manually calculated 

(measurement model covariances could be substituted for the calculated covariances), 

and aggregation of the dummy variable coefficient results must be manually performed. 

(EXCEL templates are available from the authors for these calculations.)  

The sample size of each dummy variable was a fraction of the total sample. 

Although most of the dummy variables were significant in the examples, the typically 

small sample sizes of survey data tests (e.g., about 200 cases) can produce one or more 

nonsignificant associations in the dummy variables because of their small subsamples. 

Thus, aggregation of the dummy variables is desirable to judge the overall significance of 

the categorical variable from which they were created.5 

The suggested aggregation approach for the dummy variables was uninvestigated 

for any bias and inefficiency. Thus, the significance threshold for the aggregated 

coefficient of a categorical variable probably should be higher than the customary |t-

value| = 2.0, where "| |" indicates absolute value. For example, since the significances of 

the Table E and Table F aggregated coefficients were materially larger than t = 2.0, they 

were judged to be significant. 

                                                 
5 Parenthetically, the significance of the Sa2-Exiting association in Table A, for example, was very 

different from that of the aggregation of its dummy variables shown in Table E because the associations 

themselves were estimated differently.  



Obviously, Latent Variable Regression is limited to a estimating a single 

dependent or endogenous variable, and it provides Least Squares coefficient estimates, 

rather than the preferred Maximum Likelihood estimates. However, Castella (1983) has 

proposed adding a "leverage data point" that "forces" a regression intercept of zero (i.e., 

the intercept or constant estimated in no-origin regression is zero). This leverage data 

point also may permit Equation 2, for example, to be estimated using covariant structure 

analysis and all its dummy variables with maximum likelihood.  

Unfortunately, the results for the dummy variables are sensitive to how the 

dummy variables are coded. Changing the assignment of 1 for category exclusion (e.g., 

Sat_Dummy5 = 1 if Sa2 = 5, and Sat_Dummy5 = 0 otherwise) to -1, for example, for 

category inclusion, reverses the signs on all the dummy variables in the tables. However, 

this sensitivity to coding provides further "meaning" for dummy variables. Specifically, 

the absolute value of the unstandardized coefficient of Sat_Dummy5, for example, in 

Table D is the change from zero, the (arbitrary) category exclusion value for the dummy 

variable coding, for the mean of EXI that is "caused" (associated) with Sat_Dummy5 

(.15). In this case, the mean of EXI changed in absolute value (from zero) for the "very 

satisfied" category by the amount .15. Similarly, the absolute value of the change in EXI 

(from zero) for the "very dissatisfied" (Sat_Dummy1) was 1.51.  

The "direction" of a (truly) categorical association across its categories can be 

nearly impossible to hypothesize in the customary manner. For example, it is not obvious 

how one would argue, a priori, the "directionality" of any association between the eight 

VALS Psychographic categories (SRI International 1989) and Exiting using customary 

hypotheses such as   



H2: VALS increases Exiting 

or 

H2': VALS decreases Exiting. 

However, an hypothesis involving VALS and Exiting might be stated without 

"directionality" as  

H2": VALS is associated with (affects) Exiting. 

Any "directionality" could be inferred later from linearly ordering the resulting means 

(even if they were difficult to explain). Such an approach of disconfirming an association 

stated without directionality, then observing or "discovering" directionality is within the 

"logic of  discovery" (e.g., Hunt 1983), so long as this "discovery" of directionality is 

presented as potentially an artifact of the study that must be hypothesized, theoretically 

supported, then disconfirmed in an additional study. 

SUMMARY 

The paper suggested an approach to estimating an exogenous (truly) categorical 

variable (e.g., Gender) in theory (hypothesis) tests of latent variable models with survey 

data. The approach involved using dummy variables for the categories, and Latent 

Variable Regression (Ping 1996). The dummy variable estimation results were 

aggregated to gauge the disconfirmation of a categorical variable hypothesis. The paper 

also suggested that associations between exogenous categorical variables and endogenous 

latent variables might be hypothesized without the customary "directionality" statement 

(that can be difficult to predict in categorical variables). 
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Table A--Abbreviated Equation 1a Estimation Resultsb  

 

 

Equation 1 Estimation Results:  

 

 

Equation 1 with Sa2d Estimation Results:                

 

 

_________________ 
a EXI = b1SAT + b2ALT + ζ . 
b The structural models were judged to fit the data. Estimates involved LISREL and 

maximum likelihood. 
c SE is Standard Error. 
d EXI = b1'Sa2 + b2'ALT + ζ" . 

Endog EXI

Exog Unstd

Variable Str Coef SE
c

t-value

ALT 0.63 0.11 -5.93

SAT -0.58 0.10 -5.76

Exog Unstd

Variable Str Coef SE
c

t-value

ALT 0.69 0.07 9.65

SA2 -0.42 0.05 -7.79



Table B--Abbreviated Equation 2 Results with Sat_Dummy1 Omitteda b   

 

 

 
_____________________________ 

a EXI = b11Sat_Dummy1 + b12'Sat_Dummy2 + b13'Sat_Dummy3  

            + b14'Sat_Dummy4 + b15'Sat_Dummy5 + b2''ALT + ζ''' 
b The structural model was judged to fit the data. Estimates involved LISREL and 

maximum likelihood. 
c SE is Standard Error. 

Exog Unstd

Variable Str Coef SE
c

t-value

ALT 0.68 0.07 9.92

Sat_Dummy3 -0.98 0.26 -3.79

Sat_Dummy4 -1.30 0.26 -5.05

Sat_Dummy2 -0.02 0.26 -0.06

Sat_Dummy5 -1.36 0.28 -4.87



Table C--Abbreviated Equation 2 Results with Sat_Dummy5 Omitteda b   

 

 

 

_____________________________ 

a EXI = b11'Sat_Dummy1 + b12"Sat_Dummy2 + b13"Sat_Dummy3  

            + b14"Sat_Dummy4 + b15Sat_Dummy5 + b2"'ALT + ζ'''' 
b The structural model was judged to fit the data. Estimates involved LISREL and 

maximum likelihood. 
c SE is Standard Error. 

Exog Unstd

Variable Str Coef SE
c

t-value

ALT 0.68 0.07 9.92

Sat_Dummy3 0.38 0.15 2.48

Sat_Dummy1 1.36 0.28 4.87

Sat_Dummy4 0.06 0.12 0.51

Sat_Dummy2 1.34 0.18 7.53



Table D-- Abbreviated Equation 2 Results with all the Sa2 Dummy Variablesab   

 

 

 

 

_______________________ 

a EXI = b11''Sat_Dummy1 + b12'''Sat_Dummy2 + b13'''Sat_Dummy3  

            + b14'''Sat_Dummy4 + b15'Sat_Dummy5 + b2''''ALT + ζ''''' 
b Estimation involved Latent Variable Regression with least squares. 
c The standard error (SE) is from Ping (2001). 

Exog Unstd

Variable Str Coef SE
c

t-value

ALT 0.68 0.07 9.92

Sat_Dummy1 1.51 0.36 4.20

Sat_Dummy5 0.15 0.18 0.85

Sat_Dummy3 0.54 0.24 2.21

Sat_Dummy2 1.50 0.28 5.37

Sat_Dummy4 0.22 0.20 1.09



Table E--Aggregation Resultsa b  

 

 

______________ 
a The Case Weighted Average is Σwibi , where Σ is summation, i = 1 to 5, wi is the 

weighted average (number of cases in category i divided by the total number of cases) of 

the unstandardized coefficient, bi , of Sat_Dummyi, and i = 1 to 5. 

b The aggregated Standard Error is the Square Root of the variance of the weighted sum 

of the individual standard errors (e.g., sqrt(Var(w1SE1 + w2SE2 + w3SE3 + w4SE4 + 

w5SE5) = sqrt(Σwi
2SEi

2 + 2(ΣCov(SEi,SEj))), where "sqrt" is the square root, Var is 

variance, wi is the weighted average (number of cases in category i divided by the total 

number of cases) of the unstandardized coefficient of Sat_Dummyi, SE is standard error, 

Σ is summation, i = 1 to 5, j = 2 to 5, and i > j. 

 

T-value of

Case Case

Weighted Weighted 

Average Standard Error of Average 

of the the Case of the 

Unstandardized Weighted Average Unstandardized

Structural of the Unstandardized Structural

Coefficients Structural Coefficients Coefficients

0.51 0.21 2.47



Table F--Abbreviated Estimation Resultsa for ALT as a Categorical Variable  

 

 

a) Abbreviated Equation 1 with Al4b Estimation Results: c  

 

 

b) Abbreviated Equation 2 Results with Al4b and Alt_Dummy1 Omitted e  

 

 

c) Abbreviated Equation 2 Results with Al4b and Alt_Dummy5 Omitted f  

 

 

d) Abbreviated Equation 2 Results with All Al4b Dummy Variablesg  

Exog Unstd

Variable Str Coef SE
d

t-value

SAT -0.57 0.07 -8.59

AL4 0.52 0.05 9.69

Exog Unstd

Variable Str Coef SE
d

t-value

SAT -0.56 0.07 -8.56

Alt_Dummy3 0.67 0.18 3.85

Alt_Dummy5 1.80 0.26 7.02

Alt_Dummy4 1.56 0.20 7.72

Alt_Dummy2 0.27 0.17 1.61

Exog Unstd

Variable Str Coef SE
d

t-value

SAT -0.56 0.07 -8.56

Alt_Dummy3 -1.12 0.19 -5.83

Alt_Dummy1 -1.80 0.26 -7.02

Alt_Dummy4 -0.23 0.19 -1.21

Alt_Dummy2 -1.53 0.21 -7.42

Exog Unstd

Variable Str Coef SE
d

t-value

SAT -0.56 0.07 -8.56

Alt_Dummy5 5.70 0.23 24.45

Alt_Dummy4 5.47 0.23 23.89

Alt_Dummy1 3.90 0.34 11.54

Alt_Dummy3 4.58 0.26 17.90

Alt_Dummy2 4.17 0.29 14.62



Table F (con't.)--Abbreviated Estimation Resultsa for ALT as a Categorical Variable  

 

 

e) Aggregation Results h i  

 

 

________________ 
a The structural models were judged to fit the data. Exhibits a) through c) involved 

LISREL and maximum likelihood estimates, and Exhibit d) involved Latent Variable 

Regression and least squares estimates. 
b Al4 was the heaviest loading indicator of ALT. 
c EXI = b1"SAT + b2"Al4 + ζ'''''' . 
d SE is Standard Error. 
e EXI = b1'''SAT + b21Alt_Dummy1 + b22Alt_Dummy2 + b23Alt_Dummy3  

            + b24Alt_Dummy4 + b25Alt_Dummy5 + ζ'''''' . 
f EXI = b1''''SAT + b21Alt_Dummy1 + b22'Alt_Dummy2 + b23'Alt_Dummy3  

            + b24'Alt_Dummy4 + b25Alt_Dummy5 + ζ'''''''' . 
g EXI = b1'''''SAT + b21'Alt_Dummy1 + b22"Alt_Dummy2 + b23"Alt_Dummy3  

            + b24"Alt_Dummy4 + b25"Alt_Dummy5 + ζ''''''''' 
h The Case Weighted Average is Σwibi , where Σ is summation, i = 1 to 5, wi is the 

weighted average (number of cases in category i divided by the total number of cases) of 

the unstandardized coefficient, bi , of Alt_Dummyi, and i = 1 to 5. 

i The aggregated Standard Error is the Square Root of the variance of the weighted sum 

of the individual standard errors (e.g., sqrt(Var(w1SE1 + w2SE2 + w3SE3 + w4SE4 + 

w5SE5) = sqrt(Σwi
2SEi

2 + 2(ΣCov(SEi,SEj))), where "sqrt" is the square root, Var is 

variance, wi is the weighted average (number of cases in category i divided by the total 

number of cases) of the unstandardized coefficient of Alt_Dummyi, SE is standard error, 

Σ is summation, i = 1 to 5, j = 2 to 5, and i > j. 

 

T-value of

Case Case

Weighted Weighted 

Average Standard Error of Average 

of the the Case of the 

Unstandardized Weighted Average Unstandardized

Structural of the Unstandardized Structural

Coefficients Structural Coefficients Coefficients

4.48 0.27 16.86
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