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Abstract

This thesis examines auctions as a selling mechanism in various market environments. There

are in total three chapters. The first two build theoretical frameworks to analyze equilibria and

to investigate expected revenues in multiple period settings, while the last chapter is an empirical

study on the pre-auction estimates in art auctions.

The first chapter studies sequential auctions with endogenous supply. In the setting of the

model, whether more units of goods are to be auctioned is contingent on the performance of the

current auction. More specifically, two sellers, each of whom owns one unit of an identical item,

but have different opportunity costs, face a fixed number of bidders, each of whom has unit

demand and private valuation. One unit is to be sold for certain by one of the sellers; the winner

of the first auction exits and the winning bid becomes common knowledge; the second seller

then may offer her item depending on the price achieved in the first auction. In other words,

the sellers together endogenize the supply decision based on the information on the demand side

revealed in the first auction. We consider sequential auctions in both first-price and second-price

formats. We give conditions for a symmetric pure strategy equilibrium to exist for each auction

format. Under the assumption of uniform distributions, we explicitly solve for the equilibrium.

We show that the second-price auction format provides a higher expected payoff to both sellers

than the first-price format, and that both sellers prefer that the low-cost seller conducts the

first auction while the high-cost seller conducts the contingent second auction. In addition, we

conclude that the expected price declines if the second auction is held due to the uncertainty of

the availability of the second unit of the item. This finding provides one possible explanation for

the ‘declining price anomaly’, a well-documented phenomenon that puzzles auction theorists.

The second chapter investigates a market in which buyers with interdependent valuation

arrive over time. A seller sells a single item with a second-price auction in such a market and

wishes to achieve maximum ex ante profit. Meanwhile, although the total number of buyers is

fixed, they arrive one by one in an exogenous sequence. We attempt to answer the following two

questions in this setting: What is the optimal timing of auction for the seller? How well does

the auction perform compared to another simple selling mechanism, posted price sale? We first

point out that with interdependent buyer valuation holding an auction that includes all buyers

may not be profit maximizing, even after we have assumed that everyone is sufficiently patient

and is not discounting the future transactions. We analyze both the efficiency loss and the

improvement on the ‘winner’s curse’ concern that are associated with an early auction. Using
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uniform distribution examples and numerical solutions we show that under some conditions the

optimal timing of auction can be earlier than the time when all buyers arrive. We conclude that

the relative importance of the signals of other buyers plays a central role in characterizing the

equilibrium. In the second part of the chapter, we compare auction and posted price sale. We

argue that posted price sale is likely to be ex ante more profitable than auction when the total

number of buyers is small and the signals of others are important to buyers.

In the final chapter, we empirically examine the pre-auction estimates in art auctions, which

are given by art experts hired by auction houses. We first address the question of whether these

pre-auction estimates are unbiased indicators of the actual hammer prices, a question raised

and studied by many economists in the literature. We have collected 3,923 auction records

of paintings by a well-defined group of American artists between 1987 and 2018. The sample

size is large enough to allow us to be the first to adopt a nonparametric approach to test the

bias in the pre-auction estimates. Since the pre-auction estimates include a low estimate and

a high estimate, we use the arithmetic mean of the low and high estimates in the regression

model for the test. After correcting for the sample selection bias, we find evidence of bias in

the arithmetic mean as a predictor of the hammer price, although the size of the bias is small.

Then we criticize the use of the arithmetic mean to test the bias of the pre-auction estimates,

an approach adopted by all previous studies in the literature to our best knowledge. We build

a simple model to illustrate that the distribution of the hammer price is left-skewed even if the

distribution of buyer valuation is symmetric. If the pre-auction estimates are considered as a

confidence interval for the hammer price, then we show that under some conditions art experts

have incentives to place the low estimate closer to the mean of the hammer price. As a result,

using the arithmetic mean of the low and high estimates is misleading, resulting in an upward

bias. We also find regression results that support our argument. We conclude that empirically

the low estimate should be given more weight compared to the high estimate when one tries to

interpret the pre-auction estimates and to predict the hammer price.
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1 Sequential Auctions with Endogenous Supply

1.1 Introduction

This chapter studies sequential auctions in a setting in which whether further auctions are to

be held is contingent on the performance of the current auction. In particular, at the outset,

one item is offered for sale at an auction and it is common knowledge that whether a second

item will also be offered for sale at an auction depends on the auction price achieved in the first

auction. This setting is meant to be a stylized description of a commonly observed feature in the

real world. For example, the success of one auction in July 1994 conducted by the US Federal

Communications Commission (FCC) to sell licenses for electromagnetic spectrum opened the

flood gates for “spectrum auctions”. Since then the FCC itself has conducted over 80 such

auctions and raised over 60 billion dollars, and numerous similar spectrum auctions, emulating

the FCC auction, have subsequently been conducted on six continents. In the art market, a

record auction price achieved by an artist encourages owners of other works by the artist to put

those on the market. In Australia, where houses are typically sold in auctions, it is common for

real estate agents to distribute flyers touting a high auction price of a house and actively solicit

further supply in the neighbourhood. In these examples, the supply of items to be auctioned is

endogenous and contingent on the performance of similar prior auctions.

In our formulation, two distinct sellers, each of whom owns one unit of an identical item, but

have different opportunity costs for the items, face a fixed number of bidders, each of whom has

a unit demand and independently distributed private valuation. One unit is to be sold first by

one of the sellers; the winner of the first auction exits and the winning price (but not the other

bids) becomes common knowledge; the second seller then may offer her item depending on the

auction price achieved in the first auction. It is common knowledge that the low-cost seller’s

opportunity cost for the item is zero; the cost of the high-cost seller is private information and

has a known distribution with non-negative support. The order in which the sellers offer their

item is endogenous. Finally, we consider sequential auctions in both the first-price and the

second-price formats, each being an absolute auction (i.e., with a known reserve price of zero).

We show that a monotone pure strategy equilibrium exists in both first-price and second-

price sequential auctions under some restrictions on the distributions of the valuations of bid-

ders and the cost of the high-cost seller. Moreover, the two auction formats are not revenue

equivalent. The information content from observing the winning bid in two auction formats is
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different: the first-price auction reveals only the upper bound of the highest valuation of the

bidders that will remain for the second auction while the second-price auction reveals the exact

highest valuation. As a result, even with identical realizations of the valuations of bidders, it is

possible that the seller decides to offer the second item for sale in one auction format but not

in the other format.

Under the assumption that the distributions are uniform, we give explicit constructions of

the bidding function and the equilibria. We show that, when the second auction takes place,

the expected price in the second auction is lower than the first. This is consistent with the

observed declining price trend in sequential auctions documented in many empirical studies;

the empirical finding is robust enough that it is referred to as the “declining price anomaly” or

the “afternoon effect”. The phenomenon is considered a puzzle: the price path in a sequential

auction of identical items is predicted to be a martingale in classical sequential auctions models,

with the winning price in each round the same on average with independent private valuations.

In our setting, the uncertain supply in the second period leads to more aggressive bidding in

the first auction and explains the declining price path. In addition, we show that ex ante both

sellers prefer the order of moves such that the low-cost seller conducts the first auction and

the high-cost seller decides whether to conduct the second auction. The low-cost seller takes

advantage of the more aggressive bidding in the first auction when it is uncertain whether the

second auction will take place. In contrast, the high-cost seller prefers to put her item for sale

only when demand is sufficiently strong to cover her opportunity cost. Finally, we conclude that

both sellers get a higher expected payoff with sealed second price auction format than using

sealed first price auction format.

This chapter is organized as follows. Section 1.2 reviews related literature. Section 1.3

introduces the basic model. Section 1.4 studies the first-price auction format in the context,

derives the symmetric pure strategy equilibrium and gives sufficient conditions for its existence.

Section 1.4 also provides the explicit constructions of equilibria under the assumption of uniform

distributions. Sections 1.5 mirrors the preceding section but studies the second-price auction

format. Section 1.6 compares the first-price and the second-price auction formats. Section 1.7

offers concluding comments. All proofs are gathered in the Appendix.
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1.2 Literature Review

Weber (1983) and Milgrom and Weber (2000)1 pioneer the study of sequential auctions. In

the case where the items are homogeneous, each buyer only demands a single unit and buyer

valuations are independent and private, they argue that the Revenue Equivalence Theorem

applies, so the equilibrium bidding strategy must lead to the same expected payoff as in an

auction where all items are sold simultaneously. Moreover, they show that the price path in

sequential auctions is a martingale. That is, the expected price of each auction is the same as

the price of the previous one. The martingale property confirms the intuition of the Law of One

Price. Bidders shade their bids in earlier auctions aware of the “option value” of participating

in later rounds. In equilibrium, there should not exist arbitrage opportunity across auction

rounds, so the expected price of each round must be the same on average. Their model has

become a benchmark for studying sequential auctions.

Following the work of Webber and Milgrom, sequential auctions have been studied exten-

sively. However, very few papers attempted to study strategic behaviours of sellers, who can

observe results in earlier auction rounds and possibly use such information in later auctions.

There are two important questions to be answered: to what extent are sellers able to obtain

information about the remaining bidders in sequential auctions? How should sellers use such

information? Katsenos (2008) studies the case where sellers can choose the reserve price before

each round in two-round sequential auctions with single-unit demand. He concludes that pure

strategy equilibrium only exists when the bidder with the second highest valuation can hide her

information in the first round. This result implies that observing all bids in sealed price auc-

tions or English auctions will not help sellers obtain useful information about bidders, because

bidders would pool the bids in order to conceal their true valuation to protect their payoff in the

next auction round. As a result, among standard auction mechanisms, only sequential Dutch

auctions accommodate a pure strategy monotone equilibrium. However, Katsenos shows that

although sellers are better off in the second round by choosing an optimal reserve price using

information revealed in the first round, they lose more in the first round because the competi-

tion is weakened as some bidder types abstain from the first round in the equilibrium. Caillaud

and Mezzetti (2004) find similar results in an example with multi-unit demand. The lesson is,

in most cases, sellers are not able to gain much information in earlier rounds; when they are

able, they are worse off on average if they are allowed to choose the reserve price using the

information gained. Consequently, sellers have an incentive to promise not to use information

1This paper was written in 1982, but only got published recently.

10



revealed in the process of sequential auctions to set reserve prices; instead, they should commit

to the pre-determined reserve prices, if they wish to set one.

Instead of setting reserve prices, strategic sellers could decide whether or not to auction the

next item at all depending on information revealed in earlier auctions. However, the only works

the author is aware of that allow a strategic seller to make supply decisions are by Zeithammer

(2007 and 2009). In his 2007 paper, Zeithammer studies a very special discrete case where

exactly two new buyers with single-unit demand arrive at each period and will only live for two

periods whilst the seller lives forever. In addition, he assumes that buyer valuations can only

be either high or low, two discrete values, and the seller’s cost of production is in between these

two values. He shows that in the equilibrium bidders may eventually stop shading their bids

when the seller’s payoff becomes too low to sustain the supply of items.

In his next paper, Zeithammer (2009) assumes that a single seller owns two identical items

with increasing opportunity costs. The opportunity costs are publicly known by bidders. The

seller observes only the winning price of the first auction and decides whether to auction the

second item. Most importantly, all economic agents are assumed to discount the results of the

second auction. A symmetric pure strategy equilibrium exists only with Dutch auction format

if the discount factor is sufficiently low. When such an equilibrium exists, there is a threshold

price in the first auction, below which the second auction is unavailable and above which the

second auction is guaranteed.

The work by Zeithammer (2009) is similar to but different from this chapter. In this chapter,

instead of publicly known, the opportunity costs of sellers are private information. Second, in

our model discounting is not required to support the symmetric pure strategy equilibrium. In

addition, a symmetric pure strategy equilibrium exists with sealed second price auctions as well

as with sealed first price auctions (or equivalently Dutch auctions). Finally, there are multiple

sellers in this chapter. Assuming multiple sellers with one unit of supply each instead of a

single seller owning multiple items has many advantages. First, it reflects many real-world

sequential auction environments. Second, by assuming multiple sellers, it is justifiable that the

remaining seller can only access the publicly announced winning price in the first auction. This

information disclosure assumption is important to the equilibrium and the robustness of the

model. If sellers could observe every bid in the first auction, they would have strong incentives

to dishonour their commitment of a zero reserve price and set an optimal reserve price that

seizes all trade surplus in the second auction. The commitment issue will make buyers nervous
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and they may try to conceal their valuations by pooling, causing the collapse of any monotone

pure strategy equilibrium. Third, with multiple sellers, it is easy to justify the heterogeneity in

opportunity costs among homogeneous items. Finally, interesting questions arise with multiple

sellers: who should sell in the first auction and who should sell in the second? The coordination

between sellers on the order of moves reveals rich insights into endogenous supply in sequential

auctions.

One interesting prediction of this chapter is that when the second auction exists, after ob-

serving the winning price in the first auction, the expected price of the second auction falls

below it. Such result is consistent with observed declining price trend in sequential auctions

documented in many empirical studies (Ashenfelter, 1989a; Beggs and Graddy, 1997; Ashen-

felter and Genesove, 1992; Van den Berg, Van Ours, and Pradhan, 2001), which is known as

“Declining Price Anomaly” or “Afternoon Effect”. The phenomenon is puzzling because We-

ber (1983) shows that the price path in sequential auctions should be a martingale, namely,

the winning prices in each round should be the same on average. He and Milgrom and Weber

(2000) also point out that if buyers valuations are affiliated, prices should drift upwards instead.

Many studies have tried to explain the reasons for the “Declining Price Anomaly”. McAfee and

Vincent (1993) show that risk aversion of buyers can make the prices decrease over time, though

the condition is somehow restrictive and hard to defend: the degree of risk aversion of buyers

needs to increase with their wealth. Bernhardt and Scoones (1994) assume that items in se-

quential auctions are stochastically equivalent and bidders do not know their own valuations

of the next item until seeing it when the next auction starts. They find declining prices arise

in such a situation. Rosato (2014) believes that loss aversion of buyers can rationalize the

“Afternoon Effect”. Chakraborty, Gupta, and Harbaugh (2006) study the case where items are

heterogeneous. They conclude that in the equilibrium the order of the sale is endogenous and

the seller sells the better item first in optimizing her expected payoff. It naturally results in a

declining price path. Jeitschko (1999) argues that stochastic supply reduces the option value of

latter auction rounds and causes declining prices. This chapter contributes by offering another

reasonable explanation of the “Declining Price Anomaly”, claiming it is what one should expect

if sellers strategically make the supply decision using the information revealed in earlier auction

rounds. Here the intuition for the declining price path lies in the uncertainty of the supply,

which is very similar to Jeitschko’s work; but our chapter shows that the uncertainty of the

supply is endogenously created by the decision of sellers, which is related to Chakraborty et al.

in the sense that it is the sellers being strategic that plays the important role.
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Finally, this chapter assumes each round of the sequential auction is conducted as an absolute

auction (i.e. the reserve price is zero), as in Bulow and Klemperer (1996) and Zeithammer

(2009). The purpose of such an assumption is to isolate the effect of the sellers’ supply decision

from that of reserve prices. In addition, in many cases, a pre-committed reserve price is not

credible as demonstrated by McAfee and Vincent (1997). According to them, if sellers cannot

commit to never resell any unsold item and the resale is conducted quickly, auctions with reserve

prices are revenue equivalent to those without them. In the context of this chapter, the sellers

need to prepare the item and bear the full opportunity cost before each auction. Since the cost is

already sunken when the auction starts, the sellers will have an incentive to sell and even resale

their items at any positive price, satisfying the key conditions in McAfee and Vincent (1997).

As a result, assuming a zero reserve price does not lose much insight into the implications of

endogenous supply in sequential auctions.

1.3 The Model

Two sellers wish to sell identical items to n buyers (n ≥ 3) via auctions. Buyers have single-unit

demand. Each of them assigns a private value v to the item, and the value is independently

drawn from a common distribution according to c.d.f. F (v) and p.d.f. f(v). The support

interval of the distribution is assumed and normalized to [0, 1]. Each seller possesses one unit

only and bears a different cost to make the item ready for sale. It is assumed that the identity of

the lower cost seller is public information; and without loss of generality, her cost is normalized

to zero. The cost of the other seller, denoted as c, is her private information and is drawn from

a distribution with c.d.f. G(c) and p.d.f. g(c) on [0, C]. For regularity, g(c) is assumed to be

continuous, which rules out any distribution with mass points.2 Sellers cannot coordinate to

hold a simultaneous auction, so the items can only be sold one by one in sequential auctions.

For now, it is assumed that the seller with zero cost sells the item first.3 The winning price is

disclosed to everyone at the end of the first auction, and the winner leaves. Then the other seller

decides whether she will hold the second auction to sell her item. If she decides not to sell, the

auction ends. Otherwise, she will have to pay her cost c and then start the second auction with

the remaining n − 1 bidders. As discussed earlier, it is assumed that there is no reserve price

in each auction, so sellers commit to selling to the winner at the winning price. In addition,

2The degenerated fixed value case, as a special case, is also ruled out.
3Later in the uniform distributions example, the chapter will show that each seller individually benefits by

choosing such an order, so the order is actually endogenously determined.
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all economic agents are risk neutral. All distribution functions, i.e. F (v),f(v), G(c) and g(c),

are public information. Finally, it is pre-announced that either all auctions are conducted in

sealed first price auctions or all auctions are conducted in sealed second price auctions. For

consistency, it is assumed that sellers cannot switch auction format across auctions.

1.4 The Sealed First Price Sequential Auction

This section studies the case in which sealed first price auctions are used by sellers. If a

symmetric pure strategy equilibrium exists, the solution can be derived backwardly. Sufficient

conditions for its existence are given in the general case. A simple example is then proceeded

with uniform distributions in which explicit solutions can be calculated. With the example, one

can learn a few insights on the properties of the equilibrium.

1.4.1 The General Case

First, assume that a symmetric pure strategy equilibrium exists. It is a well-known consequence

of incentive compatibility that the bidding functions of bidders must be strictly increasing.4 At

the end of the first auction, the winning price P is revealed. In the equilibrium, everyone can

invert the bidding function used in the first auction βI to work out the type of the winner.

Denote the winner’s type as v∗, then v∗ = βI
−1

(P ).5 Now v∗ is the upper bound of the

remaining bidders’ values, so their distribution is updated with the following density functions:

the c.d.f. is
F (v)

F (v∗)
and the p.d.f. becomes

f(v)

F (v∗)
, both of them are on the support interval

[0, v∗].

If the seller holds the second auction, consider a remaining bidder with value v who might

unilaterally deviate from the equilibrium strategy. She essentially faces n− 2 competitors in a

single-unit sealed first price auction. These n − 2 competitors share the same updated value

distribution as described above. Now the textbook results apply, according to Krishna (2009),

when v ≤ v∗ the equilibrium bidding function is

4In this paper, “increasing” refers to non-decreasing, but not strictly increasing.
5The existence of βI−1

(P ) is ensured by the strict monotonicity of βI .
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bI(v) =
1(

F (v)
F (v∗)

)n−2

∫ v

0
td

[(
F (t)

F (v∗)

)n−2
]

=

∫ v

0
td

[(
F (t)

F (v)

)n−2
]

(1)

Notice it is possible that v > v∗, as this bidder may have already deviated by underbidding

in the first auction. The bidding strategy must cover such off-equilibrium situation. When it

happens, this bidder can guarantee her winning in the second auction by bidding bI(v∗),6 so

she will not bid anything higher than bI(v∗). It can also be shown that she will not bid below

bI(v∗) either. By the definition of bI , the optimal action for a bidder of type v∗ is to bid bI(v∗).

This is because when she bids below that amount, in expectation, her utility loss of not winning

overweighs the gain from paying less when she wins. When the bidder with v > v∗ bids below

bI(v∗), compared to the type v∗ bidder, her utility loss of not winning is even larger but the

gain from paying less is the same. As a result, her expected utility loss overweighs the gain,

and she should not bid below bI(v∗). In sum, when v > v∗, the bidder will just bid bI(v∗).

Now check the seller’s decision. Denote the highest value among bidders in the second

auction as Y , then the expected winning price (or the expected revenue of the seller) in the

second auction is

R2 = E[bI(Y )|v∗]

=

∫ v∗

0
bI(y)d

[(
F (y)

F (v∗)

)n−1
]

=

∫ v∗

0

(∫ y

0
tF (t)n−3f(t)dt

)(n− 1)(n− 2)f(y)

F (v∗)n−1
dy.

(2)

It is obvious that R2 is a function of v∗, which is what one would expect, as the seller’s

expected revenue in the second auction should depend on the information revealed in the first

round. The seller will offer the second auction if and only if R2(v∗) ≥ c. Buyers understand it,

but without observing the true value of c, they can only hold a belief on the probability of the

existence of the second auction as below.

Define the likelihood function for the second auction as

l(v∗) ≡ Pr(there is the 2nd acution|v∗)
6Actually she may lose if the highest value of other remaining bidders is v∗, but the probability of such event

is 0. As a result, it will not affect her expected payoff.
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then

l(v∗) = Pr(c ≤ R2(v∗))

= G(R2(v∗))
(3)

Knowing bI(v) and l(v∗), the bidding function in the first auction, βI(v), can now be derived.

There are some complications because the impacts upon a bidder’s expected payoff are quite

different when she deviates from βI(v) towards different directions. Consider a bidder with

value v who only deviates in the first auction. If she bids as if her value was z > v in the first

auction, her value v must be below v∗ if she loses in the first round. Her expected payoff is

π(z, v) = F (z)n−1[v − βI(z)] + Pr(A)[v − bI(v)], z ≥ v (4)

Here F (z)n−1 is the probability of this bidder winning the first auction, and A is the event

that “the bidder loses the first auction by bidding βI(z), but the seller holds the second auction

and this bidder wins it”.

However, if the bidder underbids (z < v), it is possible that the bidder loses the first auction

and the winning value v∗ is smaller than her value v. In such a scenario, she will bid bI(v∗) in

the second auction. As a result, her expected payoff is

π(z, v) = F (z)n−1[v − βI(z)] + Pr(B)[v − bI(v)] + E[v − bI(v∗)|C], z ≤ v (5)

Here event B is that “the bidder loses the first auction by bidding βI(z), the winning type

v∗ is higher than v, the seller holds the second auction and this bidder wins it”, and event C is

that “the bidder loses the first auction by bidding βI(z), the winning type v∗ is lower than v,

the seller holds the second auction and this bidder wins it”. It is obvious that B ∪ C = A.

In the equilibrium, every bidder should not have incentives to deviate from the bidding

function. Mathematically, it is equivalent to

v ∈ arg max
z

π(z, v), (6)
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so the first order necessary conditions for equilibrium are


the right-hand derivative d+

dz π(z, v)
∣∣
z=v
≤ 0

the left-hand derivative d−

dz π(z, v)
∣∣
z=v
≥ 0

(7)

Notice that by coincidence for both equations (4) and (5), dπ(z,v)
dz is the same when z = v.7

This implies that
dπ(z, v)

dz

∣∣∣∣
z=v

= 0

From the differential equation above, combined with the initial condition that the buyer

with zero value must bid zero (i.e. βI(0) = 0), the equilibrium bidding function βI(v) can be

derived, as shown in the following proposition.

Proposition 1.1. With sealed first price auctions, if a symmetric pure strategy exists, it is

unique. In this equilibrium, the bidding function in the first auction is

βI(v) =

∫ v

0

[
l(t)bI(t)− l(t)t+ t

]
d

[(
F (t)

F (v)

)n−1
]
, (8)

where function l(t) is defined in equations ( 3) and ( 2).

The winner in the first auction leaves and the winning price P is disclosed. The winner’s

value v∗ becomes public information, as

v∗ = βI
−1

(P ).

Then the second seller (with cost c) will hold the second auction if and only if R2(v∗) ≥ c,

where function R2 is defined in equation ( 2).

If there is the second auction, the bidding function for a remaining bidder with value v is


bI(v) =

∫ v
0 t d

[(
F (t)
F (v)

)n−2
]

if v < v∗

bI(v∗) if v ≥ v∗
(9)

7Shown in the proof of Proposition 1.1 in the appendix.
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Proposition 1.1 actually covers two well-known special cases with fixed supplies. First, in a

single-unit sealed first price auction l(v∗) is always zero, so the only relevant bidding function

is (according to equation (8))

βI(v) =

∫ v

0
t d

[(
F (t)

F (v)

)n−1
]
, (10)

which is indeed the symmetric equilibrium bidding function in this case. Second, if there are

two auctions for certain, l(v∗) = 1 for all v∗. Hence the first round bidding function becomes

βI(v) =

∫ v

0
bI(t) d

[(
F (t)

F (v)

)n−1
]
. (11)

Again, this is exactly the well-established result in the standard two-unit sealed first price

sequential auctions.

Proposition 1.1 gives the form of the unique symmetric pure strategy equilibrium if it ex-

ists. However, there could be cases where such an equilibrium cannot be established. More

specifically, βI(v) is only derived from a necessary first order condition, and it may not satisfy

the optimality/non-deviation condition v ∈ arg max
z

π(z, v). Intuitively, the existence of such

an equilibrium must depend on the distributions of bidder values and seller cost. The following

proposition provides sufficient conditions that ensure the symmetric pure strategy equilibrium

exists.

Proposition 1.2. With sealed first price auctions, the symmetric pure strategy equilibrium

prescribed in Proposition ( 1.1) exists if

1. bidding function βI(v) given in equation ( 8) is increasing and

2. for all (v, z) such that v < z,

Fn−2(z)− l(z)
{
F (v)n−2

[
1− bI ′(v)

]
+ (n− 2)F (v)n−3f(v)

[
v − bI(v)

]}
≥ 0 (12)

Note that the first condition is also a necessary condition of the pure strategy equilibrium.

It ensures that bidder with higher value bids higher in the auction. βI
−1

exists under this

condition, so the winner’s value v∗ is revealed at the disclosure of the winning price. In classic

models with exogenous supply, the first condition alone is sufficient for the existence of the pure

strategy equilibrium. In this model, however, the second condition is needed so that bidders’
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expected payoff function π(z, v) satisfies the single crossing condition,8 which is important to

the pure strategy equilibrium. In addition, because the second condition only applies to the

v < z case, inequality (12) can be replaced by the following stronger but tidier version:

1− l(z) + bI
′
(v)l(z)− (n− 2)f(v)

F (z)

[
v − bI(v)

]
l(z) ≥ 0 (13)

1.4.2 The Uniform Distributions Example

Now consider a simple example in which the pure strategy equilibrium exists and the equilib-

rium bidding functions can be solved in analytic forms. Assume buyer values follow a uniform

distribution on [0, 1], so F (v) = v and f(v) = 1 on [0, 1]. Assume the second seller’s cost c also

follows a uniform distribution on its support [0, C], so G(c) = c
C and g(c) = 1

C on [0, C].

According to equation (1)

bI(v) =

∫ v

0
t d

[(
t

v

)n−2
]

=
n− 2

n− 1
v

(14)

According to equation (2)

R2(v∗) =

∫ v∗

0

n− 2

n− 1
y d

[( y
v∗

)n−1
]

=
n− 2

n
v∗

(15)

According to equation (3)

l(v∗) = G(R2(v∗)) =


n−2
nC v

∗ if n−2
nC v

∗ ≤ 1

1 if n−2
nC v

∗ > 1

(16)

Note that v∗ ≤ 1, so as long as C is sufficiently large (i.e. C ≥ n−2
n ), n−2

nC v
∗ ≤ 1 always

holds and l(v∗) = n−2
nC v

∗ for all possible v∗. This case is relatively simple, as l(v∗) is strictly

increasing on its entire support. It is studied in the following part.

1.4.2.1 The Case with Sufficiently Large C

8This is shown in the proof of Proposition 1.2.
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The Equilibrium

Now assume C ≥ n−2
n , so l(v∗) = n−2

nC v
∗. According to equation (8),

βI(v) =

∫ v

0

[
n− 2

n

t

C

(
n− 2

n− 1
t− t

)
+ t

]
d

[(
t

v

)n−1
]

=
n− 1

n
v − n− 2

n(n+ 1)C
v2

(17)

It is easy to check that βI
′′
(v) = − 2(n−2)

n(n+1)C < 0 and βI
′
(0) = n−1

n > 0. In addition,

βI
′
(1) =

n− 1

n
− 2(n− 2)

n(n+ 1)C

≥ n− 1

n
− 2(n− 2)

n(n+ 1)

n

n− 2

=
(n− 1)2 − 2

n(n+ 1)

> 0

(18)

The first inequality comes from C ≥ n−2
n , the assumption that C is sufficiently large. The above

implies that βI
′
(v) > 0, i.e. the bidding function in the first auction is indeed increasing. Hence

the first condition in Proposition 1.2 is satisfied. Now check the second condition. When v < z,

the left-hand side of inequality (13) now becomes

1− l(z)
[
1− n− 2

n− 1
+
n− 2

z
(v − n− 2

n− 1
v)

]
>1− l(z)

[
1− n− 2

n− 1
+
n− 2

v
(v − n− 2

n− 1
v)

]
=1− l(z)

≥0

(19)

so the second condition in Proposition 1.2 also holds. As a result, βI(v) given by equation (17)

is indeed the equilibrium bidding function in the first auction. One can also directly verify that

v ∈ arg max
z

π(z, v) without applying Proposition (1.2). This alternative approach is provided

in the appendix.

In fact, inequality (19) is established without using any property of G(c). In other words,

the uniform distribution of the bidder values alone is sufficient to satisfy the second condition

in Proposition (1.2).
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Figure 1: Bidding functions with uniformly distributed buyer values on [0, 1], when C is suffi-

ciently large, in the sealed first price sequential auctions.

Corollary 1. With sealed first price auctions, if bidder values are uniformly distributed, re-

gardless the distribution of seller’s cost c (including its upper bound C), the symmetric pure

strategy equilibrium exists if the first round bidding function βI(v) given in equation (8) is

increasing.

Note that Corollary 1 does not put any restriction upon the distribution of seller’s cost c, so

it also applies to the case where C is not sufficiently large. Corollary 1 implies that when bidder

values are uniformly distributed, the symmetric pure strategy equilibrium existence condition

is not different between the endogenous supply model and the fixed supply model.

Figure 1 shows the equilibrium bidding functions in two examples. It is easy to check that

in both cases C = 0.6 is sufficiently large so that the likelihood function l(v∗) is always strictly

increasing. In the figure, BI(v) represents the equilibrium bidding function in the first auction

if there is always a second auction as in a classic sequential auction model. In both examples,

βI(v) lies above BI(v). That is, when the second auction is contingent on the result of the

first auction, bidders bid more aggressively. The intuition is that the availability of the second

auction is uncertain, so the option value of the second auction is discounted and bidders value

the first auction relatively more. One can also observe that βI(v) is concave, i.e. its slope

flattens when v increases. This is because a bidder with higher value v would expect a higher

winning price on average and hence a higher probability of having the second auction. The

option value of the second auction is then discounted less, so the bidder would bid more similar
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to the case with fixed two auctions.

The Endogenous Order of Sale

Till now, this chapter has assumed that the order of sale is determined as the following: the

seller with zero cost moves first and sells her item in the first auction, then the seller with cost

c moves after observing the auction result in the first round. In this part, we are going to show

that both sellers mutually benefit by following such an order.

If sellers follow the prescribed order of sale, denote πI,01 as the expected payoff of the zero

cost seller who moves first and πI,c2 as the expected payoff of the seller with cost c who moves

second. Denote X as the highest value among all n buyers, then

πI,01 = E
[
βI(X)

]
=

∫ 1

0

(
n− 1

n
x− n− 2

n(n+ 1)C
x2

)
d (xn)

=
n− 1

n+ 1
− n− 2

(n+ 1)(n+ 2)C

(20)

There is zero probability for a seller with c ≥ n−2
n to hold the second auction because the highest

possible value of v∗ is 1 and the highest possible R2(v∗) equals n−2
n . As a result, πI,c2 = 0 for

c ≥ n−2
n ; whilst for a seller with c < n−2

n ,

πI,c2 = E [R2(X)− c |R2(X) ≥ c]

=

∫ 1

nC
n−2

(
n− 2

n
x− c

)
d (xn)

=
n− 2

n+ 1
− c+ cn+1

(
n

n− 2

)n 1

n+ 1

> 0

(21)

In sum,

πI,c2 =


n−2
n+1 − c+ cn+1

(
n
n−2

)n
1

n+1 > 0, if c < n−2
n

0, if c ≥ n−2
n

(22)

Now consider the case where sellers instead choose the alternative order of sale. That is,

the seller with cost c moves first and the zero cost seller moves second. If the seller with cost

c holds the first auction, buyers know for sure that there will be a second auction as the other
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seller bears zero cost and will certainly benefit from trade. As a result, l(v∗) = 1 for all v∗ and

the first round bidding function becomes

βI(v) =

∫ v

0
bI(t) d

[(
F (t)

F (v)

)n−1
]

=

∫ v

0

n− 2

n− 1
t d

[(
t

v

)n−1
]

=
n− 2

n
v

(23)

Hence the expected revenue of this seller from the first auction is

E

[
n− 2

n
X

]
=

∫ 1

0

n− 2

n
x d (xn) =

n− 2

n+ 1
(24)

Consequently, the seller shall offer the first auction only if c ≤ n−2
n+1 . When this happens, the

expected payoff of the zero cost seller from the second auction is

E [R2(X)] =

∫ 1

0

n− 2

n
x d (xn)

=
n− 2

n+ 1

(25)

If c > n−2
n+1 , the seller with such cost will not hold the auction even if she moves first. And

everyone shall observe that there is no auction in the first round. Then the seller with zero

cost holds an auction in the second round, and her expected payoff is simply that of a standard

single-unit auction with n bidders. It is n−1
n+1 . Without observing the true value of c, the zero

cost seller believes that c > n−2
n+1 occurs with probability 1− n−2

(n+1)C , so her expected payoff when

she moves secondly, denoted as πI,02 , is

πI,02 =
n− 2

n+ 1

n− 2

(n+ 1)C
+
n− 1

n+ 1

[
1− n− 2

(n+ 1)C

]
=
n2C − n− C + 2

C(n+ 1)2

(26)

One can check that

πI,01 − π
I,0
2 =

[
n− 1

n+ 1
− n− 2

(n+ 1)(n+ 2)C

]
− n2C − n− C + 2

C(n+ 1)2

=
n− 2

(n+ 1)2(n+ 2)C

> 0

(27)
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This implies that the seller with zero cost strictly prefers moving first.

As for the seller with cost c, if she moves first, as discussed above, her expected payoff is

πI,c1 =


n−2
n+1 − c, if c ≤ n−2

n+1

0, if c > n−2
n+1

(28)

Compare πI,c1 above to πI,c2 given in equation (22), it is apparent that πI,c2 = πI,c1 = 0 when

c ≥ n−2
n , but πI,c2 > πI,c1 when c < n−2

n . Hence for the seller with cost c, moving secondly

weakly dominates moving first.

In conclusion, both sellers prefer such an order that the zero cost seller sells her item in the

first auction and then the other seller has the option to sell her item in the second round. As

a result, the order of sale needs not to be exogenously given. Instead, sellers should be able to

coordinate and endogenously reach an agreement upon the order of sale.

1.4.2.2 The Case with Small C

The Equilibrium

Now consider the case where the upper bound of cost, C, is not sufficiently large. That is,

C < n−2
n . In this situation, the first round bidding function is slightly more complicated, since

the likelihood function has two stages as shown below.

l(v∗) =


n−2
nC v

∗, if v∗ < n
n−2C

1, if v∗ ≥ n
n−2C

(29)

As a result, when v < n
n−2C,

βI(v) =

∫ v

0

[
n− 2

n

t

C

(
n− 2

n− 1
t− t

)
+ t

]
d

[(
t

v

)n−1
]

=
n− 1

n
v − n− 2

n(n+ 1)C
v2

(30)

which is the same as equation (17). It has been shown earlier that this bidding function is

increasing.
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When v ≥ n
n−2C, according to equation (8),

βI(v) =

∫ n
n−2

C

0

[
n− 2

n

t

C

(
n− 2

n− 1
t− t

)
+ t

]
d

[(
t

v

)n−1
]

+

∫ v

n
n−2

C

n− 2

n− 1
td

[(
t

v

)n−1
]

=
1

n(n+ 1)

(
n

n− 2
C

)n 1

vn−1
+
n− 2

n
v

(31)

In this case, it is easy to check that βI
′
(v) > 0 as long as n ≥ 3, as

βI
′
(v) =

n− 2

n
− n− 1

n(n+ 1)

(
n

n− 2
C

)n 1

vn

≥ n− 2

n
− n− 1

n(n+ 1)

(
n

n− 2
C

)n 1

( n
n−2C)n

=
(n− 1)2 − 2

n(n+ 1)

> 0

(32)

In sum, when C < n−2
n , the first round bidding function is

βI(v) =


n−1
n v − n−2

n(n+1)C v
2, if v < n

n−2C

1
n(n+1)

(
n
n−2C

)n
1

vn−1 + n−2
n v, if v ≥ n

n−2C

(33)

and βI
′
(v) > 0 for all v ∈ [0, 1].

Apply Corollary 1, the symmetric pure strategy equilibrium exists and equation (33) is

indeed the equilibrium bidding function. Also, one can directly check βI(v) given in equation

(33) leads to an equilibrium without applying Corollary 1. This alternative approach is provided

in the appendix.

Figure 2 shows the equilibrium bidding functions in two examples with small C. The like-

lihood function l(v∗) becomes 1 when v∗ is above 0.8 and 0.6 in example 1 and 2, respectively.

In the figure, BI(v) represents the equilibrium bidding function in the first auction if there is

always a second auction as in a classic sequential auction model. Again, in both examples,

βI(v) lies above BI(v); and βI(v) gets closer to BI(v) when v increases. The same intuition

applies as in the case with sufficiently large C. Figure 2b shows clearly that bidding behaviours

in the first auction changes when l(v∗) reaches 1. This threshold is the inflection point of βI(v),

below which βI(v) is concave and beyond which βI(v) is convex.

The Endogenous Order of Sale
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Figure 2: Bidding functions with each buyer’s value independent uniformly distributed on [0, 1],

when C is small, in the sealed first price sequential auctions.

This part of the paper demonstrates that when C is not sufficiently large (C < n−2
n ), both

sellers also prefer the following order of sale: the zero cost seller moves first and the seller of

cost c moves secondly.

First, assume both sellers stick to the prescribed order. Because c ≤ C < n−2
n , no matter

what value c takes, it is always possible for the seller with cost c to participate in the second

auction. The condition is simply R2(v∗) = n−2
n−1v

∗ > c, or equivalently v∗ > n−1
n−2c. Such v∗

always exists, as n−1
n−2c <

n−1
n < 1. As a result, the expected payoff of the seller with cost c if

she moves secondly is

πI,c2 = E [R2(X)− c |R2(X) ≥ c]

=

∫ 1

nC
n−2

(
n− 2

n
x− c

)
d (xn)

=
n− 2

n+ 1
− c+ cn+1

(
n

n− 2

)n 1

n+ 1

> 0

(34)
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and the expected payoff of the zero cost seller if she moves first is

πI,01 = E
[
βI(X)

]
=

∫ n
n−2

C

0

[
n− 1

n
x− n− 2

n(n+ 1)C
x2

]
d(xn)

+

∫ 1

n
n−2

C

[
n− 2

n
x+

1

n(n+ 1)

(
n

n− 2
C

)n 1

xn−1

]
d(xn)

=
n− 2

n+ 1
− n

(n+ 1)(n+ 2)

(
n

n− 2
C

)n+1

+
1

n+ 1

(
n

n− 2
C

)n
(35)

Here βI(v) follows equation (33).

Now study the case where sellers choose the alternative order of sale, i.e. the seller with

cost c moves first and the seller with zero cost moves secondly. It the seller with cost c holds

the auction, her expected revenue is n−2
n+1 , as calculated in equation (24). If c < n−2

n+1 , she will

abstain from the auction and get zero payoff; if c ≥ n−2
n+1 , she will hold the first auction and

obtain n−2
n+1 − c in expectation.

Now there are two scenarios.

(1) If C ≤ n−2
n+1

First, if C ≤ n−2
n+1 , then c is always smaller than n−2

n+1 . The seller with cost c always holds

the first auction. As a result,

πI,c1 =
n− 2

n+ 1
− c, for all c (36)

and

πI,02 =
n− 2

n+ 1
(37)

which has been calculated in equation (25).

Note that9

πI,01 − π
I,0
2 =

1

n+ 1

(
n

n− 2
C

)n
− n

(n+ 1)(n+ 2)

(
n

n− 2
C

)n+1

=
1

n+ 1

(
n

n− 2
C

)n(
1− n2

(n− 2)(n+ 2)
C

)
>

1

n+ 1

(
n

n− 2
C

)n(
1− n

n+ 2

)
> 0

(38)

9The first inequality below is due to C < n−2
n

.
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In other words, the seller with zero cost strictly prefers moving first. In addition, it is obvious

that πI,c2 > πI,c1 , and the gap is cn+1
(

n
n−2

)n
1

n+1 . This implies that the seller with cost c strictly

prefers moving secondly. In sum, both sellers would agree that the zero cost seller moves first

and the other seller moves next, if C ≤ n−2
n+1 .

(2) If n−2
n+1 < C < n−2

n

In the second scenario, i n−2
n+1 < C < n−2

n , it is possible that c > n−2
n+1 and the seller with

such cost will not hold the first auction. Now the expected payoff to the seller with cost c, if she

moves first, is the same as in equation (28). Without observing the true value of c, the zero cost

seller believes that the first mover holds the auction at probability n−2
n+1 . Hence, the expected

payoff of the zero cost seller, if she moves second, should be the same as in equation (26).

Obviously πI,c2 > πI,c1 for all c. Now compare πI,01 and πI,02 .

πI,01 − π
I,0
2 =

1

n+ 1

(
n

n− 2
C

)n
− n

(n+ 1)(n+ 2)

(
n

n− 2
C

)n+1

− n2C − n− C + 2

C(n+ 1)2
(39)

It can be shown that RHS of equation (39) is strictly positive given that n−2
n+1 < C < n−2

n and

n ≥ 3, so the seller with zero cost strictly prefers moving first. As a result, if n−2
n+1 < C < n−2

n ,

both sellers also strictly prefer the prescribed order of sale.

Summarizing the two scenarios above, it can be concluded that when C is not sufficiently

large (i.e. C < n−2
n ), both sellers also prefers the same order of sale. They will endogenously

coordinate so that the zero cost seller moves first and the seller with higher cost moves secondly.

1.4.2.3 “Declining Price Anomaly” And Other Equilibrium Properties

Declining Price Anomaly

Many empirical studies have observed that the winning prices decline from round to round

in sequential auctions. Such a phenomenon is called “Declining Price Anomaly” because the

classic sequential auction theory predicts that the price path should be a martingale. In this

section, with the uniform distributions example, this paper shows that a declining price path is

exactly what one should expect. In the model with endogenous supply, the phenomenon is no

longer an “anomaly but instead a property of the equilibrium.
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First, check the case where C ≥ n−2
n . If there are two auction rounds, given the win-

ning price P1 in the first auction, one can calculate the expected price in the second auction

round, E[P2|P1]. Because in the equilibrium, the first round bidding function βI(v) is invertible,

knowing P1 is equivalent to knowing the winner’s type v∗. Hence,

E[P2|P1] = E[P2|v∗]

= R2(v∗)

=
n− 2

n
v∗

(40)

According to βI(v) given in equation (17),

P1 = βI(v∗) =
n− 1

n
v∗ − n− 2

n(n+ 1)C
v∗2 (41)

and as long as v∗ 6= 0,

P1 − E[P2|P1] =
1

n
v∗ − n− 2

n(n+ 1)C
v∗2

≥ 1

n
v∗ − n− 2

n(n+ 1)

n

n− 2
v∗2

= v∗
(

1

n
− 1

n+ 1
v∗
)

> 0

(42)

That is, E[P2|P1] < P1. The equilibrium price path is not a martingale, instead, it has a

declining trend.

In fact, a much stronger result can be obtained if C is large enough. If C > (n−1)(n−2)
n+1 , one

can check that for all v,

βI(v)− bI(v) =

[
n− 1

n
v − n− 2

n(n+ 1)C
v2

]
− n− 2

n− 1
v

> 0

(43)

In the equilibrium, the winner’s value in the first auction v∗ is always above that of the winner

in the second round v∗∗. As a result,

P1 = βI(v∗) > bI(v∗) ≥ bI(v∗∗) = P2 (44)

Note that equation (44) is stronger than equation (42). Equation (42) predicts that prices decline

only in expectation, but it is still possible that some realizations can lead to an increasing price

path. In contrast, equation (44) ensures that the winning price in the second round is always

strictly lower than the price in the first auction.
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Figure 1a illustrates such a case. In this example, C = 0.6 > (n−1)(n−2)
n+1 , so βI(v) entirely

lies above bI(v). In contrast, Figure 1b shows the case where βI(v) can be below bI(v).

Now check the case where C < n−2
n . Denote the winner’s value in the first auction as

v∗, equation (40) still holds. βI(v) follows equation (33).

If v∗ ≥ n
n−2C, then

P1 =
1

n(n+ 1)

(
n

n− 2
C

)n 1

v∗n−1 +
n− 2

n
v∗

>
n− 2

n
v∗

= E[P2|P1]

(45)

If v∗ < n
n−2 , then P1 = n−1

n v∗ − n−2
n(n+1)C v

∗2. Hence, inequality (42) holds. That is, P1 >

E[P2|P1].

In sum, when C < n−2
n , the endogenous supply also predicts a declining price trend in

expectation.

The intuition of the declining price trend lies within the uncertainty of the existence of the

second auction. If the supply is fixed and there are two auctions for sure, the no-arbitrage

opportunity principle applies so the prices across different rounds should be the same in ex-

pectation. This is because the second auction has an “option value” when buyers compete in

the first round, so they shade their bids in the first round taking into account of such “option

value” they must forgo if they win. As a result, each bidder bids lower in the first round, but

the one with the highest value leaves the market in the second round. These two effects affect

the intensity of competition and balance each other in the equilibrium. The consequence is

that in expectation the winning price should be the same across different rounds. However,

when sellers can choose whether or not to offer the next auction, the supply becomes uncertain.

Buyers are not sure if there is going to be a second round. As a result, the “option value” of the

second auction is discounted by the probability that the second seller does not hold the second

auction. Consequently, in the first auction, they will shade their bids not as much as they would

do in the fixed supply case. On the other hand, the winner of the first auction will still leave

the market in the second auction, so the balance between the two effects is broken. Now the

competition in the first round becomes more intense, so a higher price on average should be

expected.
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This intuition is similar to the work of Jeitschko (1999), who has also pointed out that the

uncertainty of supply can explain the “Declining Price Anomaly”. However, Jeitschko assumes

that the uncertainty is exogenous and sellers are not strategic. This paper takes an important

step further by allowing sellers to make use of the information revealed in the sequence of

auctions. The supply becomes endogenous and its uncertainty is well modelled. It depends on

their belief on the cost of sellers and the bid of buyers. For example, if a bidder bids high in

the first auction, she would expect that the likelihood of the second auction to be high as well.

Other Equilibrium Properties

Now it is a good time to review the equilibrium property on the order of sale. It has been

concluded in an earlier section that both sellers are better off with the following order: the

zero cost seller moves first and then moves the seller with cost c. This result should not be

surprising.

There is an advantage for the seller with a positive cost to move second, as she can get a

better estimation of buyer values by observing the winning price in the first auction. With the

extra information, she will be able to make a wiser choice on whether or not to sell her item to

reduce the chance of loss. However, such information is valueless to the zero cost seller, because

she always prefers sale.

On the other hand, the zero cost seller benefits by selling her item in the first auction. This

is because bidders are not sure if there is going to be a second auction and they bid more

aggressively in the first round. This is the same intuition for the declining price path. However,

if the seller with cost c moves first, bidders know that the zero cost seller must hold the second

auction, so there is no longer any uncertainty with the supply. As a result, the advantage of

selling first vanishes, and the seller with cost c cannot benefit from it.

In sum, the first auction provides an advantage to the zero cost seller exclusively, whilst

moving secondly only benefit the seller with a positive cost. Consequently, both of them will

take their preferred position without any conflict.

Another interesting observation is that in the equilibrium the expected payoff of the zero

cost seller, πI,01 , depends on C but not on c, while the expected payoff of the seller with cost c,

πI,c2 , depends on c but not on C. More specifically, it is easy to check that πI,01 is increasing in

C, and πI,c2 is decreasing in c.
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Note that buyers do not know c while they bid in the first auction, it makes sense that the

payoff of the seller in the first auction (with zero cost) is unaffected by c. On the other hand,

buyers guide their bids with their belief up the distribution of c, so C matters. If C is higher,

they would think that the likelihood of having the second auction is lower. Consequently, they

will compete more aggressively in the first auction, so the expected payoff of the seller will be

higher.

Once the second auction is offered, bidders compete as in a standard single-unit sealed first

price auction, so neither C nor c affects their competition. However, a higher c implies less

chance for the seller with such cost to make a profit and a higher chance for her to not hold the

second auction at all. As a result, her expected payoff is decreasing in c.

1.4.2.4 Non-Existence of Symmetric Pure Strategy Equilibrium When Cost Is Pub-

lic Information

A symmetric pure strategy equilibrium does not always exist if sellers are allowed to make

supply choice based on the information revealed in earlier rounds of sequential auctions. This

paper earlier has given the sufficient conditions that support the symmetric pure strategy equi-

librium. In this subsection, an example is presented in which symmetric pure strategy equilib-

rium does not exist.

Continuing the case with uniform distributions, assume that the distribution of c degenerates

to a single point. In other words, assume c is public information. Now assume that a symmetric

pure strategy equilibrium exists. In this case, buyers will be able to tell the seller’s decision after

observing the result of the first auction. There would a threshold price P ∗ (and equivalently a

threshold winner value x∗) such that the seller will offer the second auction if the winning price

in the first auction exceeds P ∗.

Mathematically, the bidding function in the second round is still bI(v) = n−2
n−1v, and the

expected revenue from the second auction is still R2(x∗) = n−2
n x∗. As a result, the likelihood

function l(x∗) is not continuous, and it becomes:

l(x∗) =


0, if x∗ < n

n−2c

1, if x∗ ≥ n
n−2c

(46)

Here n
n−2c is the threshold winner value. If the symmetric pure strategy equilibrium exists, it

is easy to check that the bidding function in the first auction must have two stages.
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If v < n
n−2c, then

βI(v) =

∫ v

0
t d

[(
t

v

)n−1
]

=
n− 1

n
v

(47)

If v ≥ n
n−2c, then

βI(v) =

∫ n−2
n
c

0
t d

[(
t

v

)n−1
]

+

∫ v

n−2
n
c
b(t) d

[(
t

v

)n−1
]

=
n− 2

n
v +

1

n

(
n

n− 2
c

)n 1

vn−1

(48)

A necessary condition for equilibrium is that the bidding function must be increasing.10

However, this condition is violated when v is larger than and close enough to n
n−2c, as

βI
′
(

n

n− 2
c) =

n− 2

n
− n− 1

n

(
n

n− 2
c

)n 1(
n
n−2c

)n
= − 1

n

< 0

(49)

This implies that there does not exist any symmetric pure strategy equilibrium when c is publicly

known.

What causes the problem with a symmetric pure strategy equilibrium in this case? A short

answer is a discontinuity or a jump of the likelihood function at the threshold value. Consider

a bidder with value v in the first auction. If v is below the threshold, she is not able to alter the

likelihood of the second auction by marginally deviating from the equilibrium bidding function.

As a result, her bid only matters if she wins; and if she wins, there certainly will not be the

second round. Hence, she will simply bid as if there is just one auction at all. This is confirmed

by equation (47). On the other hand, if v is just above the threshold, there will always be a

second auction if this bidder deviates only marginally. As a result, she needs to consider the

“option value” of the second round and shade her bid accordingly. There is a contrast around

the threshold value: just below the threshold, bidders bid more aggressively as if there is only

one auction, whilst above the threshold bidders shade their bids because of the availability of

the second auction. Consequently, the sudden change across the threshold creates a problem,

so the pure strategy equilibrium no longer exists.

10In this paper, “increasing” refers to non-decreasing, but not strictly increasing.
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1.5 The Sealed Second Price Sequential Auction

Sealed second price auction is another popular auction format. When buyer values are inde-

pendent, it is outcome equivalent to English auction (ascending auction). In this section, the

paper studies the case where each auction is conducted as a sealed second price auction. Like

the section with sealed first price auctions, sufficient conditions for the existence of a symmetric

pure strategy equilibrium are given. If such an equilibrium exists, its general form is derived.

In addition, simple examples with uniform distributions are used to gain more insights into the

model.

1.5.1 The General Case

Assume that a symmetric pure strategy equilibrium exists, it can be derived by backward

induction. If there is a second auction, it is a dominant strategy for every bidder to bid her

true value, so the bidding function in the second round is simply bII(v) = v for all v.

In a symmetric pure strategy equilibrium, bidding functions of bidders must be increasing.

Denote the equilibrium bidding function in the first auction as βII(v), then βII
−1

(v) exists due

to the monotonicity. As a result, once the winning price P1 is announced, everyone knows the

highest value among the remaining n− 1 bidders in the second round as v∗ = βII
−1

(P1). Note

that it is different from the sealed first price auction case, where v∗ was the upper bound of the

highest value among the remaining bidders. The distribution for the rest of the n − 2 bidder

values11 is now updated with the following density functions: the c.d.f. is
F (v)

F (v∗)
and the p.d.f.

becomes
f(v)

F (v∗)
, both of them on the support interval [0, v∗].

Now check the seller’s decision. Denote the second highest value among bidders in the

second auction as Y2, then the expected winning price (or the expected revenue of the seller) in

the second auction is

RII2 (v∗) = E[bII(Y2)|v∗]

=

∫ v∗

0
y d

[[
F (y)

F (v∗)

]n−2
]

(50)

RII2 is a function of v∗, as seller’s expected revenue in the second auction should depend on

11The winner in the first auction has left, and the highest remaining value is v∗, so there are only n−2 publicly

unknown values.
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the information revealed in the first round. The seller will offer the second auction if and only

if RII2 (v∗) ≥ c. Buyers understand it, but without observing the true value of c, they can only

hold a belief on the probability of the existence of the second auction as discussed below.

Define the likelihood function for the second auction as

lII(v∗) ≡ Pr(there is the 2nd acution|v∗)

then

lII(v∗) = Pr(c ≤ RII2 (v∗))

= G(RII2 (v∗))
(51)

Consider a bidder with value v in the first auction. Denote π(z, v) as her expected payoff

if she pretends her value to be z. The equilibrium requires that v ∈ arg max
z

π(z, v). Similar

to the case with sealed first price auctions, the first round equilibrium bidding function can be

derived from the following necessary first-order condition

dπ(z, v)

dz

∣∣∣
z=v

= 0 (52)

The equilibrium bidding function βII(v) can be solved for from the differential equation

above, as shown in the following proposition.

Proposition 1.3. With sealed second price auctions, if a symmetric pure strategy exists, it is

unique. In this equilibrium, the bidding function in the first auction is

βII(v) = v +
[
lII
′
(v) (1− F (v))− lII(v)f(v)

] [ v

f(v)
− 1

f(v)

∫ v

0
t d

[[
F (t)

F (v)

]n−2
]]

, (53)

where function lII(v) is defined in equations ( 51) and ( 50).

The winner in the first auction leaves and the winning price P1 is disclosed. v∗, the highest

value among the n− 1 remaining bidders, becomes public information, as

v∗ = βII
−1

(P1).

Then the second seller (with cost c) will hold the second auction if and only if RII2 (v∗) ≥ c,

where function RII2 is defined in equation ( 50).
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If there is the second auction, the bidding function for a remaining bidder with value v is

bII(v) = v, for all v. (54)

Proposition 1.3 actually covers two well-known special cases with fixed supplies. First, in

a single-unit sealed first price auction lII(v∗) is always zero and so is lII
′
(v∗). As a result, the

only relevant bidding function is (according to equation (53))

βII(v) = v, (55)

which is indeed the symmetric equilibrium bidding function in this case. Second, if there are

two auctions for certain, lII(v∗) = 1 and lII
′
(v∗) = 0 for all v∗. Hence the first round bidding

function becomes

βII(v) =

∫ v

0
t d

[[
F (t)

F (v)

]n−2
]
. (56)

Again, this is exactly the well-established result in the standard two-unit sealed first price

sequential auctions.

Proposition 1.3 gives the form of the unique symmetric pure strategy equilibrium if it ex-

ists. However, there could be cases where such an equilibrium cannot be established. More

specifically, βII(v) is only derived from a necessary first order condition, and it may not satisfy

the optimality/non-deviation condition v ∈ arg max
z

π(z, v). Intuitively, the existence of such

an equilibrium must depend on the distributions of bidder values and seller cost. The following

proposition provides sufficient conditions that ensure the symmetric pure strategy equilibrium

exists.

Proposition 1.4. With sealed second price auctions, the symmetric pure strategy equilibrium

prescribed in Proposition ( 1.3) exists if

1. bidding function βII(v) given in equation ( 53) is increasing and

2. for all v,

lII
′
(v) [1− F (v)] + f(v)− lII(v)F (v) ≥ 0. (57)
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Note that the first condition is also a necessary condition for a pure strategy equilibrium. It

ensures that bidder with higher value bids higher in the first auction. Similar to the case with

sealed first price auctions, the second condition ensures that bidders’ expected payoff function

π(z, v) satisfies the single crossing condition, which is important to the existence of pure strategy

equilibrium. In addition, because inequality (57) only involves the distribution of bidder values,

the second condition restricts the distribution of v alone. However, the distribution of c is still

important, as it enters the calculation of the first round bidding function βII(v).

1.5.2 The Uniform Distributions Example

Assume buyer values follow a uniform distribution on [0, 1], so F (v) = v and f(v) = 1 on [0, 1].

Assume the second seller’s cost c also follows a uniform distribution on its support [0, C], so

G(c) = c
C and g(c) = 1

C on [0, C].

According to equation (50),

RII2 (v∗) ==

∫ v∗

0
y d

[( y
v∗

)n−2
]

=
n− 2

n− 1
v∗.

(58)

According to equation (51),

lII(v∗) = G(RII2 (v∗)) =


(n−2)v∗

(n−1))C if (n−2)v∗

(n−1))C ≤ 1

1 if (n−2)v∗

(n−1))C > 1

. (59)

1.5.2.1 The Case with Sufficiently Large C

Note that v∗ ≤ 1, so as long as C is sufficiently large (i.e. C ≥ n−2
n−1), (n−2)v∗

(n−1))C ≤ 1 always

holds and lII(v∗) = (n−2)v∗

(n−1))C for all possible v∗. It can be shown that in this case the symmetric

pure strategy equilibrium exists.

The Equilibrium
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Assuming C ≥ n−2
n−1 , according to equation (53),

βII(v) = v +

[
n− 2

(n− 1)C
(1− v)− (n− 2)v

(n− 1)C

][
v −

∫ v

0
t d

((
t

v

)n−2
)]

=

[
1 +

n− 2

(n− 1)2C

]
v − 2(n− 2)

(n− 1)2C
v2.

(60)

βII(v) needs to be increasing to be an equilibrium bidding function. Note that because

v ≤ 1 and C ≥ n−2
n−1 ,

βII
′
(v) = 1 +

n− 2

(n− 1)2C
− 4(n− 2)

(n− 1)2C
v

≥ n− 4

n− 1
.

(61)

As a result, βII(v) is increasing if n ≥ 4.

What happens when n = 3 ? One can check that βII
′
(v) < 0 when C is close to n−2

n−1 and v is

close to 1. It implies that βII(v) given in equation (60) is not an equilibrium bidding function,

and there does not exist a symmetric pure strategy equilibrium in this case. Intuitively, when

the number of bidders is too small, there will be little competition in the second auction. At

the same time, when C is not too large, the chance of having the second auction is relatively

large. Hence, the option value of the second round is relatively high, so it will significantly affect

bidding behaviours in the first round. In the first round, bidders shade their bids taking into

account of the option value of the possible second auction. Importantly, bidders shade their

bids by different proportions. Bidders with low values shade smaller proportions as they reckon

the likelihood of having the second round is low. In contrast, bidders with high values have

incentives to shade more as they believe the chance of having the second round is high. This

contrast causes the problem because high-value bidders would like to shade their bid relatively

more and may result in a breaking down of the monotonicity of the bidding function.

Next, it is easy to check that the second condition in Proposition 1.4 is satisfied, as the

left-hand side of inequality (57) becomes

lII
′
(v) [1− v] + 1− lII(v)v

=
[
1− lII(v)v

]
+ lII

′
(v)(1− v)

≥0.

(62)

In conclusion, applying Proposition 1.4, when n ≥ 4, βII(v) is indeed the equilibrium bidding

function. One can also directly verify that v ∈ arg max
z

π(z, v) without applying Proposition

(1.2). This alternative approach is provided in the appendix.
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In fact, inequality (62) is established without using any property of G(c). In other words,

the uniform distribution of bidder values alone is sufficient to satisfy the second condition in

Proposition (1.4).

Corollary 2. With sealed second price auctions, if bidder values are uniformly distributed,

regardless of the distribution of seller’s cost c (including its upper bound C), the symmetric

pure strategy equilibrium exists if the first round bidding function βII(v) given in equation (53)

is increasing.

Corollary 2 implies that when bidder values are uniformly distributed, the symmetric pure

strategy equilibrium existence condition is not different between the endogenous supply model

and the fixed supply model.

Figure 3 shows the equilibrium bidding functions in two examples with sufficiently large C.

In the figure, BII(v) represents the equilibrium bidding function in the first auction if there

is always a second auction as in a classic sequential auction model. Again, in both examples,

βII(v) lies above BII(v); and βII(v) gets closer to BII(v) when v increases. The same intuition

applies as in the case with sealed first price auctions. Compared to Figure 3a, in Figure 3b

bidders bid more aggressively in both rounds because there are more competitors in this case.

In addition, more bidders imply on average a higher winning price in the first auction and hence

a higher likelihood of the second auction. Therefore, βII(v) is closer to BII(v) in Figure 3b.

One important observation is that βII(v) can be higher than v for some low values of v.

Why would a bidder bid higher than her valuation in the first round? First, compared to the

model with a fixed supply, here a bidder has an extra incentive to imitate a higher type because

it may help increase the probability of the second auction when she loses in the first round.

Such an incentive is stronger when v is low and so is the probability of winning the first round.

As a result, in a separating equilibrium, low type bidders need to bid aggressively to deter

bidders with even lower values from imitating them. Second, it has been shown in the proof of

Proposition 1.4 that such a bidder still expects a positive payoff by bidding above her valuation.

The individual rational constraint is not a problem.

The Endogenous Order of Sale
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Figure 3: Bidding functions with each buyer’s value independent uniformly distributed on [0, 1],

when C is small, in the sealed second price sequential auctions.

Now assume n ≥ 4, so the symmetric pure strategy equilibrium exists. In this part, the

paper is going to show that both sellers prefer the order of sale in which the zero cost seller

moves first followed by the seller with cost c.

If sellers follow the prescribed order of sale, denote πII,01 as the expected payoff of the zero

cost seller who moves first and πII,c2 as the expected payoff of the seller with cost c who moves

second. Denote X2 as the second highest value among all n buyers, then

πII,01 = E
[
βII(X2)

]
=

∫ 1

0

[(
1 +

n− 2

(n− 1)2C

)
x− 2(n− 2)

(n− 1)2C
x2

]
n(n− 1)(1− x)xn−2dx

=
n− 1

n+ 1
− (n− 2)2

(n− 1)(n+ 1)(n+ 2)C
.

(63)

A seller with c ≥ n−2
n−1 never holds a second auction because the highest possible value of v∗

is 1 and the highest possible RII2 (v∗) equals n−2
n−1 . As a result, πII,c2 = 0 for c ≥ n−2

n−1 ; whilst for

a seller with c < n−2
n−1 ,
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πII,c2 = E
[
RII2 (X2)− c |RII2 (X2) ≥ c

]
=

∫ 1

(n−1)c
n−2

(
n− 2

n− 1
x− c

)
n(n− 1)(1− x)xn−2dx

=
n− 2

n+ 1
− c+

n− 2

n− 1

(
(n− 1)c

n− 2

)n
− n− 2

n+ 1

(
(n− 1)c

n− 2

)n+1

> 0.

(64)

In sum,

πII,c2 =


n−2
n+1 − c+ n−2

n−1

(
(n−1)c
n−2

)n
− n−2

n+1

(
(n−1)c
n−2

)n+1
> 0, if c < n−2

n−1

0, if c ≥ n−2
n−1

(65)

Now consider the case where sellers instead choose the alternative order of sale. That is,

the seller with cost c moves first and the zero cost seller moves second. If the seller with cost

c holds the first auction, buyers know for sure that there will be a second auction as the other

seller bears zero cost and will certainly benefit from trade. As a result, lII(v∗) = 1 for all v∗

and the first round bidding function becomes

βII(v) =

∫ v

0
t d

[(
t)

v

)n−2
]

=
n− 2

n− 1
v

(66)

Hence the expected seller’s revenue from the first auction is

E

[
n− 2

n− 1
X2

]
=

∫ 1

0

n− 2

n
xn(n− 1)(1− x)xn−2dx

=
n− 2

n+ 1

(67)

Consequently, the seller with cost c shall offer the first auction only if c ≤ n−2
n+1 . When this

happens, the expected payoff of the zero cost seller from the second auction is

E
[
RII2 (X)

]
=

∫ 1

0

n− 2

n− 1
xn(n− 1)(1− x)xn−2dx

=
n− 2

n+ 1

(68)

If c > n−2
n+1 , the seller with such cost will not hold the auction even if she moves first. And

everyone shall observe that there is no auction in the first round. Then the seller with zero

cost holds an auction in the second round, and her expected payoff is simply that of a standard
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single-unit auction with n bidders. It is n−1
n+1 . Without observing the true value of c, the zero

cost seller believes that c > n−2
n+1 occurs with probability 1− n−2

(n+1)C , so her expected payoff when

she moves secondly, denoted as πII,02 , is

πII,02 =
n− 2

n+ 1

n− 2

(n+ 1)C
+
n− 1

n+ 1

[
1− n− 2

(n+ 1)C

]
=
n2C − n− C + 2

C(n+ 1)2

(69)

One can check that

πII,01 − πII,02 =

[
n− 1

n+ 1
− (n− 2)2

(n− 1)(n+ 1)(n+ 2)C

]
− n2C − n− C + 2

C(n+ 1)2

=
4(n− 2)

(n+ 1)(n+ 2)C

> 0

(70)

This implies that the seller with zero cost strictly prefers moving first.

As for the seller with cost c, if she moves first, as discussed above, her expected payoff is

πII,c1 =


n−2
n+1 − c, if c ≤ n−2

n+1

0, if c > n−2
n+1

(71)

Compare πII,c1 above to πII,c2 given in equation (65). When c < n−2
n+1 ,

πII,c2 − πII,c1 =
n− 2

n− 1

(
(n− 1)c

n− 2

)n
− n− 2

n+ 1

(
(n− 1)c

n− 2

)n+1

=

(
(n− 1)c

n− 2

)n
(n− 2)

(
1

n− 1
− (n− 1)c

(n+ 1)(n− 2)

)
>

(
(n− 1)c

n− 2

)n
(n− 2)

(
1

n− 1
− n− 1

(n+ 1)(n− 2)

n− 2

n+ 1

)
=

(
(n− 1)c

n− 2

)n 4n(n− 2)

(n− 1)(n+ 1)2

> 0

(72)

As a result, πII,c2 = πII,c1 = 0 when c ≥ n−2
n−1 , but πII,c2 > πII,c1 when c < n−2

n−1 . Hence for the

seller with cost c, moving second weakly dominates moving first.
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In conclusion, both sellers prefer such an order that the zero cost seller sells her item in the

first auction and then the other seller has the option to sell her item in the second round. As

a result, the order of sale needs not to be exogenously given. Instead, sellers should be able to

coordinate and endogenously reach an agreement upon the order of sale.

The intuition for such coordination between sellers is exactly the same as in the case with

sealed price auctions. The first auction provides an advantage to the zero cost seller because

bidders bid more competitively in the first auction when there is uncertainty about the existence

of the second round. On the other hand, moving secondly benefits the seller with positive cost,

as she can get information from the result of the first auction and maker a wiser choice on

whether or not to sell her item.

1.5.2.2 The Case with Small C

Now consider the case where the upper bound of cost, C, is not sufficiently large. That

is, C < n−2
n−1 . If a symmetric pure strategy equilibrium exists, the likelihood function has two

stages as shown below:

lII(v∗) =


n−2

(n−1)C v
∗, if v∗ < n−1

n−2C

1, if v∗ ≥ n−1
n−2C

(73)

It suggests that there is a threshold winning price (or equivalently a corresponding value v∗)

in the first auction beyond which the second auction is guaranteed. When v < n−1
n−2C, according

to Proposition 1.3,

βII(v) ≡ βII(v) =

[
1 +

n− 2

(n− 1)2C

]
v − 2(n− 2)

(n− 1)2C
v2 (74)

When v ≥ n−1
n−2C, lII(v) = 1 and lII

′
(v) = 0, so

β̄II(v) ≡ βII(v)

= v + [0 (1− F (v))− f(v)]

[
v

f(v)
− 1

f(v)

∫ v

0
t d

[[
F (t)

F (v)

]n−2
]]

=
n− 2

n− 1
v.

(75)

Note that β̄II(v) is exactly the same as the first round bidding function in the standard

case with two auctions for certain. That is, a bidder with a value higher than the threshold will

simply bid as if there would certainly be a second auction.
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However,

βII
(
n− 1

n− 2
C

)
− β̄II

(
n− 1

n− 2
C

)
=

1

n− 1
− 1

n− 2
C

>
1

n− 1
− 1

n− 2

n− 2

n− 1

=0

(76)

It implies that a bidder with a value slightly below n−1
n−2C bids higher than another bidder

with a value slightly above n−1
n−2C. The bidding function βII(v) is not increasing, so there does

not exist a symmetric pure strategy equilibrium in this case.

Recall a symmetric pure strategy equilibrium exists with sealed first price auctions, even if C

is small. What is the difference between sealed first price auctions and sealed second price ones

that causes the different results? The key is that in the sealed second price auction the winner

does not pay her own bid but the second highest bid. If a symmetric pure strategy equilibrium

exists, consider a bidder with a value above the threshold that guarantees the second round.

By marginally deviating from her equilibrium bid, the likelihood of the second auction does not

change. If she loses, that is when the “option value” of the second round actually matters, the

winning price would still be higher than the threshold and the second auction will be held. In

addition, this bidder only needs to pay the second highest bid if she wins. Consequently, she

does not care about what other bidders bid, and she will just bid as if she was in a standard

two-units sequential auction. By contrast, if the bidder has a value below the threshold, she will

be able to push up the expected likelihood of the second round by bidding slightly higher in the

first auction, which is good to her if she loses. More specifically, consider this particular event

in which a bidder benefits by overbidding in the first auction: (i) her bid is the second highest;

(ii) her bid convinces the second seller to hold the second auction; (iii) if she had instead bid

honestly, then the second seller would not hold the second auction. This is a positive probability

event, hence it may be in the bidder’s best interest to adjust her bidding strategy and tend to

bid higher compared to the case where she cannot influence the likelihood of the second auction.

It implies that a bidder with a value just below the threshold would bid higher than another

bidder with a value just above the threshold. As a result, the bidding function is not increasing

around the threshold value, and the equilibrium collapses.

1.5.2.3 “Declining Price Anomaly”
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Just like in the case with sealed first price auctions, when sealed second price auctions are

used, the declining price trend is not an anomaly but a property of the equilibrium in the model

with endogenous supply.

Assume n ≥ 4 and C ≥ n−2
n−1 so that the symmetric pure strategy equilibrium exists. If

there are two auction rounds, given the winning price P1 in the first auction, one can calculate

the expected price in the second auction round, E[P2|P1]. Because in the equilibrium, the first

round bidding function βII(v) is invertible, knowing P1 is equivalent to knowing the second

highest value among bidders, v∗. Hence,

E[P2|P1] = E[P2|v∗]

= RII2 (v∗)

=
n− 2

n− 1
v∗

(77)

According to βII(v) given in equation (60),

P1 =

[
1 +

n− 2

(n− 1)2C

]
v∗ − 2(n− 2)

(n− 1)2C
v∗2 (78)

so

P1 − E[P2|P1] =

[
1

n− 1
+

n− 2

(n− 1)2C

]
v∗ − 2(n− 2)

(n− 1)2C
v∗2 (79)

It is easy to show that P1 − E[P2|P1] > 0 for v∗ ∈
(

0, 1
2 + n−1

2(n−2)C
)

. But 1
2 + n−1

2(n−2)C > 1

and v∗ ≤ 1, so P1 > E[P2|P1] as long as v∗ is non-zero. The equilibrium price path shows a

declining trend in expectation. The intuition for the declining price path is exactly the same as

in the case with sealed first price auctions.

1.6 Comparison Between First Price And Second Price Auctions

It is important to point out that in this paper sealed first price auctions are not revenue equiv-

alent to sealed second price auctions. The Revenue Equivalence Theorem cannot be applied

because the allocation rule is different between the auction formats, because the seller with

positive cost may sell her item in one format but retain it in the other. For example, if the

highest value among bidders, Y1, is very high but the second highest value, Y2, is very low, the

seller with cost c will sell her item in the sealed first price auction case, as the winning price

in the first round reveals Y1; whilst she will not hold the second auction if sealed second price

auction format is used, in which Y2 is revealed.
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Now assume n ≥ 4 and C ≥ n−2
n−1 so that symmetric pure strategy equilibrium exists with

either sealed first price auctions or sealed second price auctions. We have

πII,01 − πI,01

=

[
n− 1

n+ 1
− (n− 2)2

(n− 1)(n+ 1)(n+ 2)C

]
−
[
n− 1

n+ 1
− n− 2

(n+ 1)(n+ 2)C

]
=

n− 2

(n+ 1)(n+ 2)(n− 1)C

>0.

(80)

The above inequality shows that the zero cost seller gets a strictly higher expected payoff

with sealed second price auctions.

When c ≥ n−2
n−1 , according to equation (22) and (65), both πI,c2 and πII,c2 are zero.

When n−2
n ≤ c <

n−2
n−1 , πII,c2 > 0 = πI,c2 .

When c < n−2
n ,

πII,c2 − πI,c2

=

[
n− 2

n+ 1
− c+

n− 2

n− 1

(
(n− 1)c

n− 2

)n
− n− 2

n+ 1

(
(n− 1)c

n− 2

)n+1
]

−
[
n− 2

n+ 1
− c+ cn+1

(
n

n− 2

)n 1

n+ 1

]
=

cn

(n+ 1)(n− 2)n
[
(n+ 1)(n− 2)(n− 1)n−1 − (n− 1)n+1c− nnc

]
>

cn

(n+ 1)(n− 2)n

[
(n+ 1)(n− 2)(n− 1)n−1 − (n− 1)n+1n− 2

n
− nnn− 2

n

]
=

cn(n− 1)n−1

(n+ 1)(n− 2)n−1

[
3− 1

n
−
(

n

n− 1

)n−1
]

>0.

(81)

As shown above, in expectation the seller with cost c is strictly better off with sealed second

price auctions if her cost is not too high. If her cost is very high, she shall be indifferent between

two auction formats as she never enters the second round and gets zero payoff. As a result, the

seller with cost c also prefers sealed second price auctions.

Why is sealed second price auctions ex ante superior in terms of sellers’ payoff, compared to

sealed first price auctions? Intuitively, it is because with sealed second price auctions the second

seller can obtain better information by observing the winning price in the first auction. With

46



sealed second price auctions, the winning price reveals the highest value among all remaining

bidders; whilst in sealed first price auctions, the winning price only shows an upper bound of

the highest value among remaining bidders. If the second seller could only observe the upper

bound of the highest remaining value in both cases, then the Revenue Equivalence Theorem

can be applied to the second round, so the expected payoff to the second seller would be the

same in both auction formats. However, because the second seller gets better information with

sealed second price auctions, her expected payoff in the second round must be higher. On the

other hand, the expected payoff to bidders in the second round is lower with the sealed second

price auctions. It implies that the option value of the second round is lower. As a result, with

sealed second price auctions, bidders value the first auction relatively higher and they shall bid

more aggressively. It leads to better competition and a higher price in the first round, which

benefits the first seller.

In conclusion, if sellers can choose the auction format, they again are able to coordinate

and both agree to adopt sealed second price auctions, which gives them higher expected payoff

compared to sealed first price auctions.

1.7 Conclusion

This chapter studies a sequential auction model in which two sellers, each with one unit of

the identical item, are heterogeneous in terms of their opportunity cost of selling the item.

The seller with high cost has the incentive to make use of the information revealed in the first

auction, so the supply of the good is contingent on the result of the earlier round. This chapter

has shown that a unique symmetric pure strategy equilibrium exists under some conditions on

the distributions of bidder valuations and seller costs. In such an equilibrium, both sellers prefer

that the low-cost seller sells her item first followed by the high-cost seller. The high-cost seller

can take advantage of observing the winning price in the first auction and then hold the second

auction only if she believes the market demand is strong enough to make a profit. As a result,

there is uncertainty on the availability of the second auction, so bidders bid more aggressively

in the first auction as the “option value” of the second auction is discounted by its uncertainty.

The low-cost seller benefits from the enhanced competition in the first auction.

Such bidding behaviours of buyers in the equilibrium also implies a declining price trend,

given that two auctions are held. This provides an explanation of the “Declining Price Anomaly”,

which has been documented in many empirical studies on sequential auctions. This chapter has

47



shown that the declining price trend is merely a property of the equilibrium path when the

supply in sequential auctions is endogenous. It is a predicted result of the strategic interactions

between bidders and sellers.

However, a symmetric pure strategy equilibrium does not always exist in the model. For

example, if the cost of the high-cost seller is public information, a symmetric pure strategy

equilibrium does not exist. In addition, when sealed second price auctions are used, there is no

symmetric pure strategy equilibrium if the upper bound of the cost of the high-cost seller is too

low.

The sealed first price sequential auctions and the sealed second price sequential auctions are

not revenue equivalent when the supply is contingent on the performance of the first auction.

This is because the allocation rule is different between the two mechanisms. Note that the

winning price in the first auction reveals the upper bound of the highest value among remaining

bidders, while in the second price auction it shows the highest remaining value itself. As a

result, it is possible that the second seller holds the second auction in one format but abstains

from the second round in another format. This chapter has shown that if a symmetric pure

strategy equilibrium exists in both mechanisms, then both sellers obtain higher expected payoffs

by choosing the sealed second price auction format. Intuitively, in sealed second price auctions,

the second seller obtains better information on the values of remaining bidders, so she is able to

make a better entry decision. In addition, bidders bid more competitively in the first auction as

the “option value” of the second auction shrinks due to the fact that the second seller extracts

more from the second round. Hence, the greater competition in the first auction benefits the

first seller. The implication is that one should expect the first price auctions to be less common

in practice than the second price auctions in the context where the supply is endogenous.

Only when the upper bound of seller’s cost is low and a symmetric pure strategy equilibrium

does not exist with second price auctions, the first price auction format may be chosen at the

consideration of ease of implementation.

For simplicity, this chapter assumes that there are only two sellers. Further study will

attempt to extend the model by assuming there are m sellers (m > 2). Sellers’ opportunity

costs of selling their items are different and privately known. One may further assume that the

opportunity cost of seller i is drawn from a distinct distribution with c.d.f. Gi(c). In addition,

all these distribution functions are assumed to be ranked in terms of either first order stochastic
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dominance, i.e., for any c ≥ 0,

G1(v) ≤ G2(v) ≤ · · · ≤ Gm(v),

or in other stochastic orders (e.g. hazard rate dominance or likelihood ratio dominance), so

that the model studied in this chapter becomes a special case.
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Chapter 2

Interdependent Value Auctions with Arriving Buyers
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2 Interdependent Value Auctions with Arriving Buyers

2.1 Introduction

In this chapter, we study the environment in which a seller of one indivisible item faces buyers

with interdependent values who do not arrive at the market at the same time. It is commonly

observed that in reality buyers may enter a market at various time points as they take different

lengths of time to conduct research or to settle financial arrangements. In addition, if the

pre-auction exhibition period for the item is extended, the information may be able to reach

a broader audience and hence attract more buyers to the market. One prominent example is

the auctions on online platforms such as eBay. Items listed on these platforms get viewed by

different potential buyers all the time.

In classic auction theory models, all potential buyers are assumed to be present in the

auction. There are two implicit arguments supporting such a simplification. First, if the buyer

values are private, the equilibrium bidding behaviour of a bidder is only affected by the other

participating bidders, regardless of the number of buyers who are not present in the auction. As

a result, it is not necessary to consider the other potential buyers who may have been excluded

from the auction. The second implicit argument is that the seller in fact has a strong incentive

to wait and include all potential buyers in the auction as this is the way to maximize the seller’s

expected payoff, as long as waiting is not costly and as long as the buyer values are private.

However, if waiting is costly or the buyer values are interdependent or other complications

on the seller’s side is added, these two implicit arguments are no longer valid. Therefore,

there have been many studies in auction theory literature on arriving buyers. For example,

Gallien and Gupta (2007) study online auctions with randomly arriving buyers. They show

with numerical experiments that if the buyers are time sensitive the seller may significantly

increase her expected payoff by adding a buyout option on top of the auction. Said (2011)

assumes that new buyers and new differentiated goods may randomly arrive at the market and

finds that bidders shade their bids according to the anticipated future dynamics of the market.

In a more recent work of his, Said (2012) shows that a sequence of ascending auctions with price

clocks maximizes the revenue if buyers arrive randomly to compete for an uncertain number of

perishable goods.

All these studies share a common assumption: the buyer values are private. In this chapter,
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we assume that the buyer values are interdependent but keep the other settings as simple as

possible. It is assumed in this chapter that the seller only has one indivisible item to sell and the

buyers arrive one by one in an exogenous sequence with the total number of potential buyers

known. Also, we assume that there is zero cost for the seller to wait and everyone does not

discount the future. With these assumptions, we can isolate the effect of interdependent buyer

values when buyers are arriving at various time points. We attempt to answer two questions in

this chapter.

First, it is questionable whether the seller should wait until all potential buyers have arrived

before holding the auction. Intuitively, holding the auction with all potential buyers increases

the competition and ensures the efficiency of the selling mechanism. However, with interdepen-

dent buyer values, a bidder bids conservatively because of the ‘winner’s curse’ concern. Holding

an early auction with a smaller number of buyers helps mitigate the ‘winner’s curse’ effect be-

cause winning the auction only implies that other bidders who have arrived early have inferior

signals but does not affect the distribution of the signals of those who are excluded from the

auction. As a result, bidders in an early auction will bid more aggressively as they hold higher

expected values of the item after taking into account the ‘winner’s curse’ problem. It is then

ambiguous whether an early auction is overall ex ante more profitable, hence the first main

question we attempt to answer is: what is the optimal timing of auction that maximizes

the expected payoff to the seller? We start with a simplified case in which the seller is not

allowed to set a reserve price. In this case, we show that it is possible that an early auction

with a subset of all buyers is optimal in maximizing the seller’s expected payoff. The intuition

here aligns with the study by Campbell and Levin (2006). They conclude that when buyers

have interdependent values, allowing a buyer whose value is not the highest to win the item is

likely to improve the seller’s revenue because it increases all buyers willingness to pay. We also

study the case in which the seller is allowed to choose both the timing of the auction and the

reserve price. The dynamics become more complicated as a positive reserve price allows the

possibility of retaining the item in the first auction and re-auctioning it later to the remaining

buyers. More importantly, when it comes to the second auction, the reserve price of the first

auction becomes a manipulative tool that can shape the perception of the remaining buyers on

the signals of those who failed in the first auction. We use numerical examples to illustrate that

the seller is even more likely to prefer holding an early auction if she is allowed to set a reserve

price. In addition, the relative importance of the signals of others in a buyer’s valuation plays

a central role in characterizing the optimal reserve price and the optimal timing of the auction.

52



Second, it is observed that in Australian real estate market and many other markets while

auctions are a popularly adopted selling mechanism, there are still a few sellers who choose

to use the posted price sale to sell their items. The second question we attempt to answer

is: how well does auction perform compared to the posted price sale when the

buyers arrive over time with interdependent values? Which of the two selling

mechanism provides a higher expected revenue to the seller? There are some studies

in the literature comparing auction and posted price sale, but none of them has looked at the

scenario with interdependent buyer values. For example, Wang (1993) argues that with private

buyer values the posted price sale may be more profitable only if conducting an auction is costly.

He also shows that auction is likely to generate higher revenues if the private buyer values are

more dispersed. Vakrat and Seidmann (1999) find empirical evidence that the winning price of

an object in an online auction is on average 25% lower than the catalog price of the identical

object sold at the same websites. They use a simple model with private buyer values to explain

the phenomenon, arguing that the reason for such a price gap is the cost of participating in an

auction. Khezr and Sengupta (2013) investigate the situation in which buyers’ valuation only

depends on their own signals and the seller’s private information. They conclude that auction

with a disclosed reserve price always outperforms the posted price sale. In a more recent work,

Khezr (2014) keeps the same assumptions on the buyer values and acknowledges that buyers

may arrive randomly over time. He shows that the posted price sale may be a more profitable

option when the seller is expecting a small number of arrivals.

In this chapter, we compare the performance of sealed-bid second price auction (with a

reserve price) and posted price sale when buyers with interdependent values arrive at the market

over time. Both selling mechanisms have their own advantages and drawbacks, which make the

comparison a project of interest. Intuitively, the auction suffers from the ‘winner’s curse’ concern

so buyers in the auction bid more conservatively. On the other hand, an optimal reserve price

in the auction is a more efficient device to maximize the revenue as all buyers in the auction

are symmetric ex ante, while the posted price is less effective because the same price applies to

all buyers who observe different information due to their various arriving time. We show with

examples that both the total number of buyers and the relative importance of other buyers’

signals together determine which selling mechanism is more ex ante profitable. In general,

auction tends to be better if the total number of buyers is large and if other buyers’ signals are

unimportant.

The rest of this chapter is organized as the following. The basic model and the market
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environment is introduced and defined in Section 2.2. In Sections 2.3 and 2.4, we study the

optimal timing of auction. Section 2.3 covers the absolute auction case (i.e. without a reserve

price), but then in Section 2.4 the reserve price is allowed. In Section 2.5, we compare auction

and posted price sale in terms of the expected payoff to the seller. Section 2.6 concludes the

chapter and discusses the limitations. Most of the proofs are in the Appendix.

2.2 The Basic Model

A seller wishes to conduct an auction to sell an indivisible item. There are N potential buyers

who will arrive at the market one by one each time in an exogenous sequence. The buyers hold

interdependent values on this item. Each of the buyers receives a private signal ti ∈ [0, T ],

which is independently drawn from the same distribution identified by C.D.F. F (t) and P.D.F.

f(t). Therefore, the vector that contains everyone’s signal t = (t1, t2, . . . , tN ) follows a joint

distribution; we denote its C.D.F. as H(t) and its P.D.F. as h(t). Buyer i values the item

according to the valuation function vi(t) : [0, T ]N → R. The valuation function is assumed to

be symmetric across buyers: vi(t) = u(ti, t−i). In addition, the valuation function is increasing

in ti:
d
dti
u(ti, t−i) > 0 and weekly increasing in other arguments: d

dtj
u(ti, t−i) ≥ 0, j 6= i. u(t) is

also assumed to be second order continuously differentiable, C2. All buyers are assumed to be

risk-neutral. All economic agents are assumed to be sufficiently patient so they do not discount

future payments.

The seller’s value of keeping the item is normalized to 0, so her objective is to maximize

the expected revenue from the auction. For simplicity, we assume the auction is conducted in

a sealed-bid second price format. The seller cannot change the auction format, but she can

choose the timing of the auction. Namely, the seller can choose n (≤ N) such that the auction

is conducted immediately after the nth potential buyer has arrived but before the (n+ 1)th one

does.

2.3 Model 1 - the Absolute Auction Case

We first check the simplest case in which the seller does not set a reserve price, i.e. the seller

conducts an absolute auction. Therefore, the only choice variable the seller has is the timing of

the auction, or equivalently the number of bidders included in the auction, n (2 ≤ n ≤ N)12.

12n needs to be at least 2 to make the second price auction to work.
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Given n, it is easy to show that the bidding function of bidder i with signal ti, taking into

account of the full spectrum of all signals t (t1, t2, . . . , tN ) conditional on ti is the highest among

the first n signals (t1, t2, . . . , tn), is

b(ti, n) = E[u(ti, t−i) | tj ≤ ti, j 6= i, j ≤ n]

=

∫
S
u(ti, t−i)h(t−i | tj ≤ ti, j 6= i, j ≤ n)dt−i

(82)

where S = {t−i | tj ≤ ti, j 6= i, j ≤ n}. It is clear that the bidder discounts other bidders’ signals

up to her own signal level to avoid the winner’s curse problem. However, she does not discount

the signals of the buyers who are excluded from the auction because of their late arrival. This is

because however high their signals are, these buyers do not affect bidder i’s chance of winning

the auction at all. The following proposition shows that the bidders bid more aggressively when

the auction is conducted earlier with fewer potential buyers.

Proposition 2.1. The bidding function given in Equation 82 is decreasing in n. That is,

b(ti, n1) ≤ b(ti, n2), ∀ 2 ≤ n2 < n1 ≤ N

Proof. See Appendix.

Intuitively, when making a bid, the bidder takes into account the fact that winning the

auction implies that all other bidders’ signals are below her own signal. Therefore, the bidder

should discount the signals of other participants in the auction to avoid the so-called ‘winner’s

curse’. When the auction is held earlier with fewer participants, winning the auction sends a

better message on other buyers’ signals. It is possible that the bidder could win the auction not

because other’s signals are not as high as hers but because she is lucky as the buyers with high

signals have not arrived. As a result, the bidder should submit a higher bid when n is smaller.

The expected payoff13 to the seller is

U(n) =

∫ T

0
b(t, n)d

(
H(2)
n (t)

)
=

∫ T

0
b(t, n) · h(2)

n (t)dt

(83)

where H
(2)
n (t) and h

(2)
n (t) are the C.D.F. and P.D.F.of the second highest signal among all ti,

1 ≤ i ≤ n, respectively. The seller wishes to maximize the expected payoff by choosing the

optimal timing (or equivalently, the optimal size of bidders n) of the auction:

max
n∈N

U(n) (84)

13In the model the payoff is the same as the revenue as the seller’s value of the item is 0.
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Equation 83 shows the trade-off when the seller holds the auction at an earlier time. Proposition

2.1 concludes that b(t, n) is decreasing in n, so the seller can benefit from an early auction since

the bidders bid more aggressively. However, when the seller only sells to a subset of all buyers,

inefficiency occurs as it is possible that the item is allocated to a buyer who does not value it

the most. The efficiency loss indirectly reduces the seller’s payoff as there would be less value

to be extracted if the winner does not value the item the highest. Such a loss can be seen from

h
(2)
n (t) in Equation 83, since it is well-known that h

(2)
n (t) is more concentrated on its left tail as

n decreases. It reflects the fact that less competition in the auction due to a smaller number

of bidders is likely to result in a lower winning price. In sum, whether the seller can improve

her expected payoff by conducting the auction before all N potential buyers arrive depends on

which of these two opposite effects dominates the other.

We now use a simple example to illustrate that the seller’s optimal choice on n can vary in

different situations. Assume each buyer’s signal t is independently and uniformly distributed

on [0, 1]. That is, f(t) = 1 and F (t) = t for all t ∈ [0, 1]. In addition, assume a simple linear

valuation function:

u(ti, t−i) = ti + γ
∑
j 6=i

tj , γ > 0 (85)

According to Equation 82, the bidding function for bidder i becomes

b(ti, n) =ti + γ

(
(n− 1)

∫ ti

0
x · 1

ti
dx+ (N − n)

∫ 1

0
xdx

)
=
(

1 +
γ

2
(n− 1)

)
ti +

γ

2
(N − n)

(86)

Following Equation 83 the expected payoff to the seller can be calculated as below

U(n) =

∫ 1

0

((
1 +

γ

2
(n− 1)

)
ti +

γ

2
(N − n)

)
n(n− 1)tn−2(1− t)dt

=
(

1 +
γ

2
(n− 1)

) n− 1

n+ 1
+
γ

2
(N − n)

(87)

and
d

dn
U(n) =

2(1− γ)

(1 + n)2
(88)

so we have the following conclusion:

Proposition 2.2. When the valuation function takes a simple linear form as defined in Equa-

tion 85 and each buyer’s signal is independently and uniformly distributed on [0, 1], then the

seller’s optimal choice of the timing of the auction is the following:
if γ < 1, the seller waits for all buyers;

if γ = 1, the seller is indifferent with the size of arrivers;

if γ > 1, the seller prefers conducting the auction as early as possible (with the first 2 buyers).
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Proof. If γ < 1, Equation 88 shows that dU(n)
dn > 0. Therefore, it is optimal for the seller to

set n as large as possible. The seller shall wait for all N buyers to arrive before conducting the

auction. Notice that dU(n)
dn = 0 if γ = 1 and that dU(n)

dn < 0 if γ > 1, it is trivial to see other

conclusions in Proposition 2.2.

γ measures the weights a buyer allocates to the signals of others. It measures the relative

importance of other buyers’ opinions on the item. According to Proposition 2.2, if each buyer’s

signal is equally important when the seller holds the auction at an earlier time (i.e. reduces n)

the effect of more aggressive bids from bidders exactly offsets the effect of efficiency loss. As a

result, the seller would be indifferent with the timing of the auction. However, if the buyers are

more confident with their own signals and believe they are more important than those received

by others in determining the value of the item, the effect of efficiency would dominate, so the

seller should wait for all buyers to arrive before holding the auction. On the other hand, if it is

believed that the signals of others are more important, the seller would benefit from an earlier

auction with fewer participants because the effect of more aggressive bidding would dominate.

In their well-cited work, Bulow and Klemperer (1996) prove that one extra buyer is so

valuable that it is worth more than optimal mechanism design with fewer buyers. As a result,

the seller should try her best to increase the number of buyers in the market. They also show

that this result also holds with the interdependent value model, the only requirement is that

all buyers are ‘serious’: the lowest possible buyer value is not less than the value by the seller.

In our model, this requirement is satisfied, so the conclusion by Bulow and Klemperer (1996)

is valid. At first glance, it seems puzzling because Proposition 2.2 argues that the seller should

limit the auction to fewer buyers when γ > 1. However, there is actually no contradiction.

This is because what Bulow and Klemperer (1996) emphasize is the number of all potential

buyers existing in the market, whose signals and competing actions are taken into account by

a bidder in the auction. In our model, their conclusion should be interpreted as the following:

the seller should try to increase the total number of potential buyers, N ; if N can be increased,

then simply auctioning to all N + 1 buyers is more profitable than in the situation with only N

buyers in total regardless how optimal the timing of the auction is.

In our model, A bidder in the auction is aware of the existence of those N − n buyers who

are excluded from the auction. She also takes into account their signals when calculating her

bid. The main point of our model is to discusses what timing (or equivalently, n) optimizes

the expected seller payoff, given a fixed N . The discussion is within the category of selling
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mechanism design itself.

In fact, in their study of the optimality of auction with interdependent buyer values, Camp-

bell and Levin (2006) make a similar argument. They conclude that the seller’s revenue can be

improved by allowing a buyer whose signal is not the highest to win the item. This is because

such a mechanism, in general, will increase all buyers willingness to pay, possibly enough to

offset the loss to the seller of not always selling to the buyer with the greatest willingness to

pay.

2.4 Model 2 - When the Seller Can Set a Reserve

In the previous section, it is assumed that the seller does not set a public reserve price in the

auction. However, in practice, the reserve price is ubiquitous as it is a useful tool to improve the

seller’s expected payoff. In this section, we allow the seller to set a reserve price R in the initial

auction as well as the timing of the auction (or equivalently, the number of the bidders, n). This

change adds complication to the selling mechanism because it creates the possibility that the

item fails to be sold in the initial auction. As a result, we add a few new assumptions to model

the situation after the item passes in. For simplicity, we assume those who attended the initial

auction leave the market afterward, searching items available in other markets. Additionally,

we assume that if the item fails to be sold in the initial auction, the seller simply waits for

all the remaining buyers to arrive and sells it again in an absolute auction (i.e. with 0 reserve

price) to the newly arrived N −n bidders (note that the first n buyers have exited the market).

We also assume that these N − n buyers only observe the reserve price R but not the actual

bids in the first auction.

Theoretically speaking, the seller does not necessarily need to wait till the end to hold the

second auction. She could again choose an optimal timing of the second auction after the initial

one fails. However, allowing the seller to choose the timing of the second auction complicates

the calculation without adding new insights into the dynamics of the model. The key dynamic

we want to study is how the seller would choose the timing of the initial auction given that the

item can be sold again if the initial auction fails. It is also reasonable to assume that the reserve

price in the second auction is 0. This is because there will not be any more buyers to come after

the second auction. Since it is assumed that all bidders who have attended the auction will

leave the market, the seller cannot commit to a positive reserve price at the end of the second

auction as it is always better to sell the item at any positive price than retaining it. In practice,
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the winning price of an auction is usually published if it exceeds the reserve price and the item

gets sold. However, if the item fails to be sold, the highest bid in most cases is not revealed or

documented. As a result, the bidders in the second auction are assumed to observe only the

previous reserve price in our model.

Given n, bidders in the first auction still follow the bidding function b(ti, n) given in Equation

82. Because the valuation function u(ti, t−i) is assumed to be increasing in ti, it is easy to check

that b(ti, n) is increasing in ti:
d
dti
b(ti, n) > 0. Therefore, for the seller, setting reserve R is

equivalent to setting the type of buyer that will just bid R. Denote the signal received by such

a buyer as tR ∈ [0, T ], then b(tR;n) = R.

For a bidder in the second auction, she observes the reserve price R in the previous auction

and understands that the highest bid was below R. In other words, she knows that the signals

of the previous n buyers are all below tR. As a result, she will update the distribution of these

signals (t1, t2, . . . , tn) accordingly and also discount the signals of her remaining competitors up

to her own signal to avoid the ‘winner’s curse’. Now it is easy to show that a bidder i in the

second auction will submit her bid according to the following bidding function.

β(ti, N − n, tR) =E[u(ti, t−i) | tj ≤ tR, j ≤ n; tk ≤ ti, k 6= i, n < j ≤ N ]

=

∫
Q
u(ti, t−i)h(t−i | tj ≤ tR, j ≤ n; tk ≤ ti, k 6= i, n < j ≤ N)dt−i

(89)

where Q =
{
t−i | tj ≤ tR, j ≤ n; tk ≤ ti, k 6= i, n < j ≤ N

}
. It is trivial to see that β(ti, N−ntR)

is increasing in tR as the valuation function u(t) is increasing in t.

Given n and tR, the expected payoff to the seller is

UR(tR, n) = H(1)
n (tR)

∫ T

0
β(t,N − n, tR)h

(2)
N−n(t)dt

+
(
H(2)
n (tR)−H(1)

n (tR)
)
· b(tR, n)

+

∫ T

tR
b(t, n)h(2)

n (t)t

(90)

where H
(1)
n (t) is the C.D.F. of the highest signal from the first n buyers; H

(2)
n (t) and h

(2)
n (t) are

the C.D.F. and P.D.F.of the second highest signal from the first n buyers, respectively; h
(2)
N−n(t)

is the P.D.F. of the second highest signal from the N−n buyers excluded from the first auction.

In addition, define

h
(2)
N−n(t) = 0, if N − n < 2. (91)

The first term in Equation 90 calculates the expected revenue from the second auction if the

first auction fails to sell the item. However, if n is large (n > N − 2) so that there are not
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enough new buyers to conduct the second auction with, the seller gets 0 revenue in the second

stage. Equation 91 makes sure such a situation is handled in our results. The second term in

Equation 90 represents the case in which the highest bid in the first auction exceeds the reserve

price but the second highest does not so the item is sold at the reserve price. The last term in

Equation 90 deals with the case in which the item is sold in the first auction above the reserve

price.

The seller wishes to maximize the expected payoff by choosing the optimal timing (or equiv-

alently, the optimal size of bidders n) of the auction and the optimal reserve price R:

max
(tR,n)

UR(tR, n) s.t. n ∈ N, tR ∈ [0, T ]. (92)

There are several effects involving the reserve price R (or equivalently, tR) that affect the

seller’s expected payoff. First, a higher reserve price will benefit the seller when the item is sold

at the reserve price in the first auction, as shown in the second term in Equation 90. Second,

a higher reserve price reduces the chance of the item being sold in the first auction. However,

whether this effect will increase or decrease the seller’s payoff is ambiguous, given that there is a

second auction with the remaining buyers if the item passes in in the first auction. For example,

if n is small, then a higher reserve price is likely to increase the probability of the item being

sold to the seller with the highest signal, improving the efficiency of the selling-mechanism and

increasing the expected payoff to the seller. On the other hand, if n is large, then a higher

reserve price tends to reduce efficiency. These first two effects also exist with independent

private value (IPV) auction models. The next effect, however, is unique to the interdependent

value assumption in our model. A higher reserve price creates a better perception of the signals

of the first n buyers when the first auction fails to sell the item. The N − n new buyers in the

second auction will think the reason previous n buyers failed to reach the reserve price may

not be their low signals but instead a high reserve price set by the seller. Since these signals

are value relevant to the new buyers, a higher reserve price helps increase the value of the item

estimated by new buyers, who in turn will bid more aggressively in the second auction.

Next, we take the same example as in the previous section to illustrate dynamics the seller

faces when she is allowed to set a reserve price. We assume that each buyer’s signal t is inde-

pendently and uniformly distributed on [0, 1] and that the valuation function follows Equation

85. Define m = N − n, the bidding function in the first auction is the same as in Equation 86.

It can be re-written as

b(ti, n) =
(

1 +
γ

2
(n− 1)

)
ti +

γ

2
m (93)
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When m ≥ 2 (n ≤ N − 2), according to Equation 89 the bidding function in the second auction

becomes

β(ti,m, t
R) =ti + γ

(
(m− 1)

∫ ti

0
x · 1

ti
dx+ n

∫ tR

0
x · 1

tR
dx

)

=

(
1 +

m− 1

2
γ

)
ti +

nγ

2
tR

(94)

The expected payoff to the seller can be calculated from Equation 90 as below

UR(tR, n) = (tR)n
∫ 1

0

((
1 +

m− 1

2
γ

)
s+

nγ

2
tR
)
m(m− 1)sm−2(1− s)ds

+ n(tR)n−1(1− tR)
((

1 +
γ

2
(n− 1)

)
tR +

γ

2
m
)

+

∫ 1

tR

((
1 +

γ

2
(n− 1)

)
s+

γ

2
m
)
n(n− 1)sn−2(1− s)ds

(95)

When m < 2 (n > N − 2), the expected payoff to the seller is

UR(tR, n) = n(tR)n−1(1− tR)
((

1 +
γ

2
(n− 1)

)
tR +

γ

2
m
)

+

∫ 1

tR

((
1 +

γ

2
(n− 1)

)
s+

γ

2
m
)
n(n− 1)sn−2(1− s)ds

=

(
1 +

n− 1

2
γ

)(
n− 1

n+ 1
+ (tR)n − 2n

n+ 1
(tR)n+1

) (96)

The following proposition gives the optimal reserve price for a given n.

Proposition 2.3. For a given n ∈ [2, N ], the optimal reserve type is

tR
∗
(n) =


1− (N−n−3)γ+4

(n−3)(N−n+1)γ+4(N−n+1) , if n ≤ N − 2;

1
2 , if n > N − 2.

(97)

Proof. See Appendix.

Figure 4 shows the optimal reserve curves when γ takes different values with n = 10. Please

note that the curves are plotted as if n is a continuous variable for illustration purpose, although

n can only take integer values. When n is larger than 8, the seller cannot organize a second

auction if the item is not sold in the initial auction. In this case, the optimal reserve type is 1
2

for all values of γ, which is simply a horizontal line in the figure. It is clear that regardless of the

value of γ, the optimal reserve type is higher than this 1
2 level when n ≤ 8. This is because the

seller is happy to set a higher reserve when there is a second chance to sell the item if the item

fails to be sold due to the reserve price. In addition, when the second auction takes place, a

higher reserve price can increase the estimated value of the item among the remaining bidders,

as we discussed earlier.
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Figure 4: Optimal reserve type curves with with each buyer’s signal independent uniformly

distributed on [0, 1], when N = 10, across three γ values, in the sealed-bid second price auction.
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The maximum point of each curve is labelled in the figure. When γ = 0.25 we observe

that the optimal reserve type decreases as n increases. In contrast, the optimal reserve type

increases with n when γ = 0.75. Recall that setting a higher reserve price brings at least

two opposite effects to the seller’s expected payoff. First, it affects the efficiency of the selling

mechanism, creating a probability that the seller does not accept the highest bid in the first

auction and has to sell to a lower bid in the second auction. Specifically, the possible payoff loss

caused by the inefficiency due to the reserve price becomes worse when n increases, as there

will be fewer remaining buyers in the second auction if the first auction fails to sell the item.

As a result, when n increases, the seller may want to reduce the reserve price to mitigate the

issue. Second, a higher reserve price improves the belief of the N − n new buyers in the second

auction about the signals of the first n buyers who failed in the first auction. Therefore, it

increases the estimated value of the item among bidders in the second auction since the value

depends on the signals of the first n buyers as well. As a result, when n increases, this effect of

belief improvement becomes stronger, so the seller may wish to set a higher reserve price. Also,

coefficient γ determines the overall strength of this belief improvement effect, as γ measures

how important the signals of others are in the valuation function. When γ is sufficiently large,

the belief improvement effect can be strong enough to dominate the efficiency concern so that

the seller will raise the reserve when n increases. In our example, γ = 0.75 illustrates such a

case. On the other hand, when γ = 0.25, the green curve in Figure 4 shows that the effect of

belief improvement is not strong enough to offset the effect of inefficiency problem: the optimal

reserve type keeps decreasing as n rises.

Another choice variable the seller has is the timing of the auction or the number of bidders

included in the first auction n. Bring Equation 97 into UR(tR, n), we obtain the seller’s maximum

expected payoff given n:

U∗(n) ≡ UR
(
tR
∗
(n), n

)
(98)

The optimal n∗ can be calculated by maximizing U∗(n) subject to n ∈ [2, N ] and n ∈ N. Then

the optimal reserve type is tR
∗
(n∗) from Equation 97. We actually obtain n∗ and tR

∗
in a two-

stage process, but the following proposition states that this method is equivalent to maximizing

the expected payoff with respect to (tR, n) simultaneously.

Proposition 2.4. Denote S ≡ argmax
2≤n≤N, n∈N

U∗(n), where U∗(n) is defined in Equation 98. De-

fine tR
∗
(n) as in Equation 97, then {

(
tR
∗
(n∗), n∗

)
| n∗ ∈ S} is the solution set to

max
(tR,n)

UR(tR, n) s.t. n ∈ N, tR ∈ [0, T ].

63



Proof. See Appendix.

When n > N − 2 (i.e. m < 2), tR
∗

= 1
2 according to Proposition 2.3. From Equation 96, we

obtain

U∗(n) =
1 + n−1

2 γ

n+ 1

(
n− 1 +

(
1

2

)n)
(99)

One can verify that U∗(n) given in Equation 100 is increasing in n. As a result, the maximum

expected payoff to the seller when n > N − 2 is at n = N and its maximum value is

max
n>N−2

U∗(n) = U∗(N)

=
1 + N−1

2 γ

N + 1

(
N − 1 +

(
1

2

)N) (100)

When n ≤ N−2, we cannot get an explicit analytical solution, but the numerical solution is

calculated. Figure 5 shows the curve of U∗(n), the maximum expected payoff to the seller as a

function of n , across four different values of γ when N = 10. The green horizontal dashed line

in the figure represents the seller’s expected payoff when n = N , which is her optimal choice

if n > N − 2. In all four sub-figures, it is clear that the maximum point of the U∗(n) curve

when n ≤ N − 2 (the blue curve) is higher than U∗(N), so the seller’s optimal choice of n never

exceeds N − 2 to ensure there are enough remaining bidders to conduct a second auction with

in case the item is not sold in the first auction.

Another observation is that the curve of U∗(n) is not monotonic while 2 ≤ n ≤ N − 2.

Unless γ is very close to 1 (for example, in Subfigure d γ = 0.98), the optimal n is strictly less

than N − 2. For example, n∗ = 3 when γ = 0.25, n∗ = 5 when γ takes a value between 0.5 and

0.75. It seems that the seller somehow balances the number of bidders in two auctions with

her optimal choice of n. The intuition here is not straightforward, as the impact of n (or the

timing of the first auction) on seller’s expected payoff is more complicated in Model 2, because

there could be a second auction. Holding an earlier auction (or choosing a smaller n) affects

the bidding behaviours of buyers in both auctions: bidders in the first auction will bid more

aggressively because the ‘winner’s curse’ problem is less severe with a smaller n, as discussed in

Model 1. Meanwhile, buyers in the second auction are less influenced by the previous reserve

price because the number of buyers who failed to reach that reserve is smaller. As a result, a

smaller n may cause buyers in the second auction to bid less aggressively if the reserve is high,

but more aggressively if the reserve price is low. In addition, changing n will also affect the

efficiency of the selling mechanism. However, the direction of the efficiency change is ambiguous
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Figure 5: Maximum expected payoff to the seller, U∗(n), with each buyer’s signal independent

uniformly distributed on [0, 1], when N = 10, in the sealed-bid second price auction.
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when n is reduced, which is a key difference from Model 1. For example, if n is already small,

reducing n improves efficiency. On the other hand, if n is large, how the efficiency changes when

n decreases depends on the reserve price level.

Recall Proposition 2.2 in Model 1 predicts that the seller should not conduct an early auction

(n < N) if γ < 1. In contrast, the results of Model 2, in which the seller is allowed to set a

reserve price, show that even when γ < 1 the seller can benefit from an early auction (i.e.

n∗ < N). This is because in the new model the seller has a second chance to sell the item so

auctioning the item to only a subset of buyers is not as inefficient as in Model 1. Such a result

makes our study more applicable to the practice as in most real-life examples buyers conduct

extensive research before the auction and put more weight on their own signals (i.e. γ < 1).

2.5 Model 3 - Posted Price vs Auction

In this section, we compare the posted price sale against auction in our environment with

interdependent buyer values. Both selling mechanisms are described below.

We define the auction mechanism as the following. For simplicity, in this section, we assume

that the seller simply waits until all N buyers arrive and hold a sealed-bid second price auction

with a reserve price. We do not allow the seller to choose the timing of the auction here because

the choice of n complicates the calculation but does not give much insight into the key difference

between the auction and the posted price sale. In addition, holding one auction to all potential

buyers with a reserve is a popular selling mechanism in both practice and theory.

For the posted price sale, we assume the seller chooses a public price P for the item at the

beginning and commits to it. As assumed in the basic model, N buyers arrive one by one in an

exogenous sequence. Upon arrival, if the item is still available, the ith buyer observes two pieces

of information: First, she observes the number of buyers who arrived before her, or equivalently

her own position in the sequence, i. Second, she sees the posted price P . Then she decides

whether to purchase the item at price P immediately. If she decides to purchase the item, the

transaction takes place and the market closes. Otherwise, buyer i leaves the market and the

seller waits for the next buyer to come. We understand there might be a commitment issue

when buyer N refuses the offer because the seller may wish to sell the item at any positive price

as it is her last chance to make any revenue. However, a similar commitment issue also exists

with the reserve price in the auction. We believe that it is fair to assume that the seller can fully
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commit to the reserve price and the posted price in the two selling mechanisms, respectively.

Assume the signal of buyers is independent and identically distributed, if the seller chooses

to auction the item, her optimal expected payoff, U∗A, is a well-known result.

U∗A = max
tR

UA(tR) (101)

where UA(tR) is the expected payoff to the seller given the reserve type tR

UA(tR) =
[
F

(2)
N (tR)− F (1)

N (tR)
]
B(tR) +

∫ T

tR
B(t)dF

(2)
N (t) (102)

and B(ti) is the bidding function by a bidder with signal ti

B(ti) = E [u(ti, t−i) | tj ≤ ti, j 6= i] (103)

In the posted price sale, the expected value of the item to buyer 1, who arrives first, is

v1(t1) = E (u(t1, t−i)) (104)

Buyer 1 purchases the item if and only if v1(t1) ≥ P , so if she does not buy the item others

can infer that v1(t1) < P . It is easy to check that v1(t1) is increasing in t1, so v−1
1 (P ) exists on

[v1(0), v1(T )]. Define t̄1 ≡ v−1
1 (P ), when those who arrive later see the item is still available,

they can infer that t1 < t̄1.

For buyer i (i ≥ 2), when she arrives, if the item is still available, her expected value of the

item is

vi(ti) = E [u(ti, t−i) | tj < t̄j , ∀j < i] (105)

where t̄j = v−1
j (P ). It is easy to check that vi(ti) is increasing, so its inverse function exists

on [vi(0), vi(T )]. Define t̄i ≡ v−1
i (P ), when those who arrive later see the item is still available,

they can infer that t1 < t̄1.

For a given price P , the expected payoff to the seller is

US(P ) = [1− Pr(ti < t̄i, ∀i)]P

= [1−H(t̄1, t̄2, . . . , t̄N )]P

=

[
1−

n∏
i=1

F (t̄i)

]
P

(106)

and the maximum expected payoff is

U∗S = max
P

US(P ) (107)
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We use the same example from the previous two sections to illustrate how the seller’s ex-

pected payoff is affected by the two different selling mechanisms. Again, the signal of buyers is

independently and uniformly distributed on [0.1]. The valuation function follows Equation 85.

For the auction, the optimal reserve type tR
∗

= 1
2 according to Proposition 2.3 and the

maximum expected payoff to the seller is also calculated in Equation 100.

U∗A =
1 + N−1

2 γ

N + 1

(
N − 1 +

(
1

2

)N)
(108)

For the posted price sale,

v1(t1) =E

t1 + γ

N∑
j=2

tj


=t1 + γ(N − 1)

∫ 1

0
tdt

=t1 +
N − 1

2
γ

(109)

and for P ∈
[
γ(N−1)

2 , γ(N−1)
2 + 1

]
,

t̄1 = P − γ(N − 1)

2
. (110)

When i > 1, we have

vi(ti) =E

ti + γ
∑
j 6=i

tj

∣∣∣∣ tj < t̄j , ∀j < i


=ti + γ(N − i)E(t) + γ

i−1∑
j=1

E(tj | tj < t̄j)

=ti +
γ(N − i)

2
+ γ

i−1∑
j=1

∫ t̄j

0
t · 1

t̄j
dt

=ti +
γ(N − i)

2
+
γ

2

i−1∑
j=1

t̄j

(111)

It is easy to check that for P ∈
[
γ(N−1)

2 , γ(N−1)
2 + 1

]
,

t̄i = P − γ(N − i)
2

− γ

2

i−1∑
j=1

t̄j . (112)

The following proposition states that the optimal P must fall into the interval
[
γ(N−1)

2 , γ(N−1)
2 + 1

]
,

so we can use Equations 110 and 112 to help calculate the optimal P and corresponding highest

expected seller payoff.
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Proposition 2.5. When the signal of buyers is independently and uniformly distributed on [0, 1]

and the valuation function follows Equation 85, P ∗ that maximizes the expected seller payoff in

a posted price sale, US(P ), must fall in
[
γ(N−1)

2 , γ(N−1)
2 + 1

]
.

Proof. See Appendix.

Now we only consider the situation with P ∈
[
γ(N−1)

2 , γ(N−1)
2 + 1

]
. We have

t̄i+1 − t̄i =
γ

2
− γ

2
t̄i

⇒ t̄i+1 =
γ

2
+
(

1− γ

2

)
t̄i

(113)

for all 1 ≤ i ≤ N − 1, then

t̄i =
γ

2
+
(

1− γ

2

)(γ
2

+
(

1− γ

2

)
t̄i−2

)
=
γ

2

[
1 +

(
1− γ

2

)
+ · · ·+

(
1− γ

2

)i−2
]

+
(

1− γ

1

)i−1
t̄1

=
γ

2
· 1− (1− γ/2)i−1

1− (1− γ/2)
+
(

1− γ

1

)i−1
t̄1

=1−
(

1− γ

2

)i−1 [
1− P +

γ

2
(N − 1)

]
(114)

for all 1 ≤ i ≤ N . The expected payoff to the seller is

US(P ) =

[
1−

n∏
i=1

t̄i

]
P (115)

The explicit analytical solution to max
P

US(P ) is hard to obtain so we show its numerical

solutions with comparison to the optimal auction payoff in Figure 6. In Figure 6, the horizontal

blue line represents the optimal expected payoff to the seller with the auction mechanism, U∗A.

The red curve shows the expected payoff to the seller in the posted price sale with a price P .

The two vertical dashed lines identify the interval
[
γ(N−1)

2 , γ(N−1)
2 + 1

]
. We only consider this

interval according to Proposition 2.5.

Before checking the results in detail from Figure 6, it is useful to intuitively understand

the advantages and drawbacks of the two selling mechanisms. With the interdependent buyer

values, a bidder in the auction must take into account the ‘winner’s curse’. She needs to

discount all other bidders’ signals up to her own signal when making her bid. On the other

hand, a buyer in the posted price sale is not subject to the ‘winner’s curse’ problem because she

does not need to discount the signals of those who would arrive after her. Being able to purchase

the item only implies that buyers who arrived earlier failed to outbid the posted price P . In
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Figure 6: Comparison between the expected seller payoff using the posted price sale, US(P ),

and the expected seller payoff using the sealed-bid second price auction, U∗A; with each buyer’s

signal independent uniformly distributed on [0, 1].
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comparison, buyers in auction bids less aggressively than buyers in the posted price sale. Note

that γ measures the relative importance of other buyers’ signals to a buyer when she evaluates

the item. As a result, when γ is big, the ‘winner’s curse’ effect is strong so the posted price sale

tends to be more profitable than the auction. In addition, when the total number of buyers,

N , is smaller, it is likely that the highest signal among all buyers is lower. Consequently, the

‘winner’s curse’ effect is stronger and the posted price sale also tends to be more profitable than

the auction.

Another key difference between the auction and the posted price sale is that buyers in

the auction are in symmetric positions with identical information available to each of them.

In contrast, buyers in the posted price sale observe different information depending on their

positions of arrival. For example, a buyer who arrives late observes the purchase decision of

those who have arrived before her. Additionally, the item may be sold in earlier rounds even

before the arrival of a particular buyer. As a result, the reserve price R or the reserve type tR

applies in the same way to all the buyers in the auction, so the optimal reserve level tR
∗

can

efficiently maximize the expected payoff. In comparison, to effectively maximize the expected

payoff in the posted price sale, each buyer should be given a unique offer because they observe

different information. However, the seller is only allowed to commit to one posted price P to

all buyers in the model, so the optimal P ∗ does not maximize the expected payoff as efficiently

as tR
∗

does in the auction. When the total number of the buyers, N , is large, such a difference

is amplified so that the auction tends to be more profitable than the posted price sale.

Figure 6 confirms our intuitions above. First, in Subfigures (a), (d), and (g), we observe

that the function curve of US(P ) lies entirely below U∗A when γ = 0.25, regardless the number

of total buyers, N . That is, when γ is small the adverse effect of the ‘winner’s curse’ is weak,

so the auction tends to be superior to the posted price sale in generating payoff to the seller.

Furthermore, given a fixed N , when γ increases the curve of US(P ) locates relatively higher to

U∗A. Subfigures (c), (f) and (i) illustrate that the posted price sale can be more profitable as long

as γ is sufficiently high. Second, Subfigures (b), (e) and (h) show the cases in which both selling

mechanisms generate the same profit and the seller is indifferent between them. When N = 3,

γ needs to be 0.74; when N = 5, γ needs to be 0.96; when N = 7, γ needs to be 1. Apparently,

when N increases, the posted price sale becomes more disadvantaged because a single price is

applied to more buyers with different information. As a result, in order to completely offset

such a disadvantage and to make the two selling mechanisms equally profitable, γ needs to be

larger to make the auction suffer from a stronger effect of the ‘winner’s curse’ consideration.
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Finally, Subfigure (h) plots a special case: although the auction and the posted price sale lead

to the same expected payoff, the posted price sale actually gives a deterministic payoff. In this

situation, the optimal price is set to be the item value to the first buyer assuming her signal is

of the lowest type. As a result, the item is surely sold to the first buyer at that price.

One phenomenon our model can help explain is that in the real estate market many sellers

choose the posted price sale mechanism to sell their houses after their houses earlier passed in

at auctions. According to our model, if γ is small and/or if the number of buyers remaining

is still large, the auction is likely to be a more profitable option. In the real estate market, it

is reasonable to assume that γ is not too small as there are many common aspects of a house

that every buyer values. After a failed auction, it is also reasonable to assume that the number

of buyers who are still interested in the property is small. As a result, the seller is likely to

conclude that the posted price sale is a better option in such a situation.

2.6 Conclusion

In this chapter, we have studied auctions in a single item market with arriving buyers who have

interdependent values for this item. We attempt to answer the following two questions in such

an environment: What is the optimal timing of auction? Compared to posted price sale, does

auction perform better in terms of the expected payoff to the seller?

In answering the first question, we first study a simplified case without any reserve price

and show that a seller may prefer an early auction with fewer bidders because the ‘winner’s

curse’ problem is mitigated. The relative importance of other buyers’ signals in determining

the buyer valuation plays a central role in characterizing the equilibrium. With our uniform

distribution linear valuation example, it is concluded that the seller prefers an early auction

if the weight coefficient for other buyers’ signals, γ, is larger than 1. The seller can also be

indifferent about the timing of auction if γ is equal to 1. Once the seller is allowed to set a

reserve price, the dynamics become more complicated. This is because the seller has a second

chance to sell the item if it is passed-in at the first auction. Setting an optimal reserve price

and choosing the optimal timing of auction both require the seller to balance the efficiency loss

and the ‘winner’s curse’ concern. Although we cannot obtain an explicit analytical solution,

numerical examples are presented to illustrate that under certain conditions an early auction

with an optimal reserve price does maximize the expected payoff to the seller. It is also evident

that the seller may prefer an early auction even if γ is smaller than 1, after she is allowed to
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set a reserve price. We also point out that our findings are not contradictory to the well-known

result from Bulow and Klemperer (1996), which emphasizes the superior benefit from one extra

buyer. An early auction indeed excludes some buyers from bidding, but it does not remove

them entirely from the market. In other words, while the subset of buyers are bidding in the

auction, they are still taking into account the existence of those who are willing to buy the item

but have not arrived yet. In essence, an early auction is merely a variant of selling mechanism

but not an effort to reduce the size of the market demand.

In answering the second question, the optimal expected revenue from the auction is readily

available, while the posted price sale needs more attention. The key dynamics with the posted

price sale is that buyers who arrive at different time points observe different information. If a

buyer sees the item is still available after her arrival, she can infer that all buyers who have

come before did not accept the price offer so she can obtain inferences on their signals. This

results in an information asymmetry: the later a buyer arrives the more information she will

get. Assuming the seller commits to the posted price without changing it, such a price applies

to all buyers who have asymmetric information so the seller cannot set an optimal price that

efficiently maximizes the revenue. On the other hand, the posted price sale avoids the ‘winner’s

curse’ problem so the buyers are more willing to pay compared to those in the auction. Again,

numerical examples are presented as we cannot get an explicit analytical solution for the optimal

expected revenue from the posted price sale. Our examples illustrate that the posted price sale

tends to be more profitable when the total number of buyers is small and when γ is big.

To our best knowledge, this chapter provides the first study in the literature on the optimal

timing of auction and on the comparison between auction and posted price sale in an environ-

ment with arriving buyers who have interdependent values. We give theoretical analysis and

numerical examples to show that under certain conditions it is optimal to hold an early auction

without waiting for all potential buyers to arrive. Our findings may be applied to guide sellers

and auction houses to decide the timing of auctions in practice. Our model also provides a

rationale for exclusive auction/sale events observed in some real-world markets. In addition,

the comparison between auction and posted price sale offers an explanation of why some sellers

choose to sell their items (e.g. houses) by posting a price instead of holding an auction.

We understand there are some limitations to our study in this chapter. First, it is assumed

that buyers arrive one by one in an exogenous sequence for calculation ease. Although the

main results are unlikely to be affected, it is ideal to assume that the buyers enter the market
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at a stochastic arrival rate. The key limitation is the exogeneity of the sequence. It will be

interesting to allow buyers to make a decision on the timing of their own arrival. This will add

extra strategic interactions among buyers themselves and also between buyers and the seller.

Further research needs to be carried out in this direction. Second, when we compare auction and

posted price sale, we simply assume that the seller holds the auction after every buyer arrives.

We do this in order to capture the main difference between auction and posted price sale as

well as to simplify calculations. However, we have shown that such an auction mechanism may

not be optimal because an early auction may lead to a higher expected revenue. As a result,

our comparison essentially is one between posted price sale and the ‘standard’ auction used in

practice. We can try adding the early auction option into the comparison in future studies.

Finally, due to the complexity of the models, we cannot obtain explicit analytical solutions, so

we rely on numerical examples to visualize the results. In future studies, it is worth trying to

prove some general characteristics of the solutions that do not rely on any particular distribution

or valuation function.
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Chapter 3

Art Auction Pre-Sale Estimates Interpretation:

An Empirical Study
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3 Art Auction Pre-Sale Estimates Interpretation: An Empirical

Study

3.1 Introduction

Most fine works of art are sold in auctions, in which their monetary values are established

by the highest bids from the buyers. Before auctions, auction houses send their specialists to

evaluate the item and then publish a low estimate and a high estimate of its market value.

A question that draws much attention of researchers is whether these pre-sale estimates are

unbiased indicators of the item to be sold in art auctions.

Milgrom and Weber (1982) argue that committing to truthfully reveal all private information

before an auction is the best strategy for the seller because of the linkage principle. Ashenfelter

(1989b) also agrees that pre-sale estimates should be unbiased in predicting prices in auctions

given that the market is efficient and competitive. However, the efficiency assumptions can be

violated in practice, resulting in biased pre-sale estimates. Specifically, auction houses that act

as the agent for sellers may hold different interests from the sellers’ when organizing the auctions,

maximizing their own expected profit. For example, the auction houses may have an incentive

to lower the appraised values to reduce the insurance costs in case the items were damaged or

stolen. In addition, an indicator of performance called ‘value realized rate’ is published after

major auctions, which measures the total sale revenue realized in the auctions as a proportion to

the pre-sale estimates. Auction houses may wish to enhance their public image by strategically

lowering the pre-sale estimates to achieve a higher value realized rate. Ashenfelter and Graddy

(2003) documented some anecdotal evidence on such agency problems. Ekelund, Jackson, and

Tollison (2013) point out that ‘conservative forecasting’ can be one explanation for the downward

bias in pre-sale estimates. Furthermore, Mei and Moses (2002) show that auction houses may use

the pre-sale estimates to manipulate beliefs of buyers, assuming that the buyers are credulous.

Another factor that can possibly lead to the bias of the pre-sale estimates is the restriction

set by auction houses on the reserve price. All major auction houses stipulate that the reserve

price must not exceed the pre-sale low estimate of the item. Ashenfelter, Graddy, and Stevens

(2002) argue that an upwardly biased low estimate may occur if the seller wishes to set a higher

reserve price and negotiates with her auction house to raise the low estimate.

Mixed results are found in numerous empirical studies that try to test the bias of the pre-sale
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estimates in art auctions. Abowd and Ashenfelter (1988) find that the pre-sale estimates are

unbiased and that they perform much better than hedonic price functions in predicting prices.

Ashenfelter (1989b) shows that the auction houses are truthful in reporting pre-sale estimates.

Czujack and Martins (2004) conclude that the auction houses have given unbiased predictions

for the works that have been sold, using the data on 675 Picasso paintings in auctions conducted

between 1975 and 1994. McAndrew, Smith, and Thompson (2012) analyzed a set of French

Impressionist paintings listed in auctions from 1985 to 2001 and find no evidence of bias in

the pre-sale estimates published by the auction houses. On the other hand, Beggs and Graddy

(1997) show that there are systematic under-predictions in a group of impressionist and modern

artworks while over-predictions occur in another group of works in contemporary art. Bauwens

and Ginsburgh (2000) also find evidence of a significant bias in the pre-sale estimates, but they

also conclude that the bias is small in size, studying 1,621 English silver teapots auctioned

in London between 1976 and 1990. Mei and Moses (2002) use a combined large data set of

paintings to show an upward bias in the pre-sale estimates for expensive paintings.Ekelund,

Jackson, and Tollison (2013) conclude that the pre-sale estimates are biased downward, based

on the sale records on paintings by a group of eight American artists.

In this chapter, we have constructed a relatively large data set and re-visit the question that

how one should interpret the pre-sale estimates in art auctions. We follow Ekelund, Jackson,

and Tollison (2013) and believe that the eight artists included in their samples are a well defined

and acknowledged group of American artists who banded together and enjoyed similar fames.

Paintings by them constitute good samples with limited heterogeneity, so we decide to base our

study on them. We collected information on their paintings listed in auctions between 1987

and 2018 and constructed a data set of 3923 observations with detailed records, while Ekelund,

Jackson, and Tollison (2013) only obtained 557 workable observations. We consider this rich

and unique data set with a sufficiently large sample size as one of our contributions.

There are two main issues with the previous empirical studies in the literature. First, all

of them take parametric approaches, in which particular specifications of the ‘true regression

model’ are assumed to enable hypothesis testing. Consequently, the test results inevitably

depend on the regression equations. The potential misspecification problem could be the reason

why different studies disagree on the bias of the pre-sale estimates in art auctions. To address

this problem, we adopt a nonparametric method to re-visit the unbiased hypothesis test on the

pre-sale estimates, following other standard assumptions in the literature. One challenge we

face is the sample selection issue in auction sales because the hammer price is not recorded if
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one item fails to meet the reserve price and ‘passes in’. We follow Das, Newey, and Vella (2003)

and use a two-step approach, which can be seen as an extension of the standard sample selection

model proposed by Heckman (1979), to correct for the sample selection bias when running the

nonparametric regression. In addition, parametric methods are also carried out in comparison

using the same data set in this chapter. We conclude that evidence of the bias is not strong.

In addition, among the few popular specifications we tested, the nonparametric model seems to

agree that a simple linear model is a good one. Although parametric regressions show that the

bias exists, the size of the bias is small.

The second issue is that previous studies do not fully use the information embedded in the

pre-sale estimates. As stated before, the pre-sale estimate for an item is a price interval, consist

of a low estimate and a high estimate. However, when testing the bias of the pre-sale estimates,

only one variable, which solely represents the pre-sale estimates by itself, is included in the

regression models. Thus, a formal process of transforming the interval estimate into a point

estimate is necessary. Surprisingly, none of the previous studies in the literature pays enough

attention to this step; most of them just intuitively use the arithmetic mean of the low and the

high estimates as the point estimate for the test. The underlying assumption of the arithmetic

mean approach is that the low and the high estimates are symmetric about the mean of the

price distribution estimated by the art experts. However, this assumption is problematic as the

art experts are likely to have other priorities when making estimates.

The pre-sale estimate for an item is essentially a confidence interval of its market price if

we assume that the art experts must ensure the actual hammer price falls between the low

and the high estimates with at least a certain probability level(i.e. the confidence level). It

is reasonable to assume that the art experts’ main objective is to narrow the span of such a

confidence interval. We show that the distribution of the hammer price is left-skewed in an

English auction with symmetrically distributed independent private values. As a result, the low

and the high estimates provided by the art experts will not be symmetric about the mean of the

price. More specifically, we predict that the arithmetic mean of the low and the high estimates

is larger than the mean of the price if the confidence level used by the art experts stays below

a certain threshold.14 Therefore, we conclude that it is important to include both the low and

the high estimates as two variables in the regression model if one wishes to fully interpret the

pre-sale estimates. Based on the same data set, we find empirical evidence to suggest that a

relatively higher weight should be assigned to the low estimate to predict the hammer price.

14The threshold is given as c∗ in Proposition 3.2.
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In Section 2, the data is described. In Section 3, we apply both nonparametric and paramet-

ric methods to test whether the arithmetic mean of the low and the high estimates is biased. In

Section 4 we use a simple theoretical model to illustrate that a symmetric distribution of buyer

values leads to an asymmetric distribution of the auction price, which could be a source of the

bias detected in Section 3. We also predict that the arithmetic mean of the low and the high

estimates overestimates the mean of the auction price if the confidence level is below a threshold.

In Section 5 we include both the low and the high estimates in the regression models and show

that empirically the low estimate should be given a higher weight when interpreting the pre-sale

estimates in art auctions. Section 6 concludes this chapter and discusses the limitations.

3.2 Data

All paintings in our data set are created by eight American artists. They are Robert Henri

(1865 - 1929), Arthur B. Davies (1862 - 1928), William Glackens (1870 - 1938), Ernest Lawson

(1873 - 1939), George Luks (1867 - 1933), Maurice Prendergast (1858 - 1924), Everett Shinn

(1876 - 1953), and John Sloan (1871 - 1951). This group of artists are called ‘The Eight’ by

art collectors. They are also identified as the ‘Ashcan School’ after they banded together for a

group exhibition at the Macbeth Galleries in New York. We believe that observations about the

auction records of their paintings will make a good sample because the authors share similar

fames and skills, which will greatly reduce heterogeneities within the data.

Ekelund, Jackson, and Tollison (2013) obtained a data set on the paintings by ‘The Eight’,

but they only achieved 557 workable observations with complete information.15 We decided to

construct our own data set and coded a program that can automatically search through auction

data websites16 and fetch targeted information. We successfully compiled a much larger data

set that contains complete auction records on 3923 paintings by ‘The Eight’ auctioned between

1987 and 2018.17 The sample distribution of the paintings by author is summarized in Table

1. The Sotheby’s and the Christie’s are the two major auction houses in our sample. They

conducted auctions for 1,029 and 1,018 pieces of paintings from our sample, respectively.

Each observation provides the following detailed information: the title of the painting,

15There are in total 2500 observations in their data set, many of them with missing information. I tried to

request the access to their data but unfortunately did not get any response
16Most of the data are fetched from www.askart.com.
17I give special thanks to my colleague Julian Kuan, who coded the web crawler program and helped a lot in

cleaning the data.
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Table 1: Observations by author

Artist

Henri Davies Glackens Lawson Luks Prendergast Shinn Sloan Total

Observation 589 565 465 486 441 356 643 378 3923

Percentage 15% 14.4% 11.9% 12.4% 11.2% 9.1% 16.4% 9.6% 100%

Table 2: Partition of observations

Passed-in HP < Low Low ≤ HP ≤ High High < HP Total

Observation 1031 1221 931 740 3923

Percentage 26.3% 31.1% 23.7% 18.9% 100%

*Low - the low estimate; High - the high estimate; HP - the hammer price

author, size (in inch2), media (for example, canvas, paper, board and so on), colour style

(multi-coloured or monochrome), whether the piece was signed by the artist, auction house,

date of auction, low and high estimates of the price, whether the piece was sold or passed

in, and the hammer price18 if the painting was sold. The pre-sale estimates and the hammer

prices are all converted to their dollar values in the year 2018, using the Consumer Price Index

published by the U.S. Federal Reserve Bank.

One complication with the data is that the highest bid (the auction price19) was not recorded

if the price did not meet the secret reserve and the item was passed in. Table 2 shows the

partition of all observations by the level of the highest bids relative to the secret reserve and

the pre-sale estimates. It shows that 26.3% of paintings failed to be sold in auctions, hence the

highest bids for them are not observable in our data.

3.3 Testing for the bias of the pre-sale estimates

In this section, we test whether the pre-sale estimates are unbiased predictions of realized

auction prices. Denote Yi as the hammer price of painting i, Li and Hi as the low estimate

and the high estimate, respectively, for painting i. We first follow the standard approach in the

18Some observations only record the actual price paid by the winner in the auction. It differs from the hammer

price by a pre-determined proportional charge called ‘buyer premium’. The ‘buyer premium’ is published by

auction houses, so the hammer price can be recovered from the actual price paid by the purchaser.
19All the auctions were conducted in the open English auction format, so the highest bid determined the market

value of the painting.
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literature to use the arithmetic mean of Li and Hi to represent the pre-sale estimates in the

regression models: Mi ≡ 1
2(Li+Hi). Unbiasedness requires that the expectation of the hammer

price is equal to the pre-sale estimate:

E(Yi |Mi) = Mi (116)

The hammer price Yi can only be observed if the painting is sold in the auction. As a result,

a formal sample selection model can be written down as follows:

di = 1(Z ′iγ + εi > 0), selection process (117)

Yi · di = Y ∗i = (F (Mi) + ui)di, price equation (118)

Equation 117 formulates the selection process: dummy variable di is equal to one if painting

i is sold and zero if it passes in. Zi is a variable vector that includes all relevant variables that

may influence the sale result in the auction. All variables in Zi come from the information set Ω

that is available to the art experts before the auction. In our data set, they include the following

regressors: painting size in square inches, signature dummy variable,20 four medium dummy

variables,21 colour dummy variable,22 seven author dummies,23 two auction house dummies,24

recession dummy,25 seven time dummies,26 the low estimate and the high estimate. εi is a

random disturbance with zero conditional mean E(εi | Ω) = 0 and a finite variance.

Equation 118 describes the relationship between the hammer price and the pre-sale estimate

for painting i, where F is a function of Mi. ui is the error term in the price equation, also

satisfying the zero conditional mean assumption. Y ∗i is the observed hammer price variable;

it takes the value of zero for paintings that failed to be sold in the auction. As long as ui

and εi are correlated, directly running a regression with observed Y ∗i causes a sample selection

bias. The standard practice to correct this sample selection bias is to either use a two-step

20It is equal to one if the painting was signed by the artist and zero otherwise.
21They are board, paper, canvas and panel, with other hard materials as the base group.
22It is equal to one if the painting shows multiple colours and zero otherwise.
23Arthur B. Davies is the base artist.
24They are Sotheby’s and Christie’s, with all other smaller auction houses as the base group.
25It takes the value of one if the painting was auctioned in a recession and value of zero otherwise. The recession

periods are identified by the National Bureau of Economic Research (NBER). There were three recessions in total

in the time horizon of our data set.
26The time horizon of our data set is divided into eight four-year periods. The base period is from 2014 to

2018.
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Heckman (1979) estimator using the inverse Mills ratio (IMR) or take a Maximum Likelihood

(ML) approach.

Assume a simple linear model for the price equation: F (Mi) = β0 + β1Mi, then we can

conclude

E(Yi |Mi, di = 1, Zi) = β0 + β1Mi + ρσIMRi (119)

where ρ denotes the correlation between ui and εi, σ denotes the standard error of ui. The

inverse Mills ratio is defined as IMRi = ϕ(ti)
Φ(ti)

, with ϕ and Φ being the standard normal den-

sity and distribution functions, where ti is the predicted value from the probit equation 117.

Alternatively, one can obtain ML estimators by maximizing the following likelihood function:

L =
∏
d=0

Φ(−Z ′iγ)

×
∏
d=1

[
1

σ
ϕ

(
Yi − β0 − β1Mi

σ

)]
Φ

[(
Z ′iγ + ρ

(
Yi − β0 − β1Mi

σ

))
(1− ρ2)−

1
2

] (120)

In general, the ML estimators are more efficient than the two-step Heckman estimators. As a

result, we only present ML estimation results in this section.

With the simple linear specification, the unbiasedness hypothesis we need to test is H0 :

β0 = 0, β1 = 1. Another commonly used specification of the price equation in the literature is

in log form:

lnYi · di = lnY ∗i = (β0 + β1 lnMi + ui)di (121)

Assuming the distribution of ui is exponential normal, the unbiasedness hypothesis we need to

test is H0 : β0 = 0, β1 = 1.

Table 3 summarizes the regression results of the selection model with the level form price

equation and the log form price equation in comparison. Robust standard errors are used in the

regressions because heteroskedasticity is detected in Breusch-Pagan test. Both specifications

show significant correlation ρ between the error terms in the selection equation and the price

equation. This confirms that selection bias will occur if the regression is run directly on the

observed hammer price, so the two-stage selection model is absolutely necessary to correct for

such a bias. With the selection equation, we find that the low and the high pre-sale estimates

do not affect the probability of sale. Also, the colour style of the paintings and the medium

type do not affect the probability of sale, expect that paintings on canvas tend to have a higher

passed-in rate. Paintings by George Luks, Maurice Prendergast and Everett Shinn seem to be
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Table 3: MLE results for the two parametric models

Level model Log model

Coeff. R.S.E. 95% C.I. Coeff. R.S.E. 95% C.I.

Price equation

constant -3087.695 6424.547 -15679.58 9504.186 -0.276*** 0.063 -0.401 -0.152

M 1.142*** 0.119 0.909 1.375

ln(M) 1.032*** 0.006 1.021 1.043

Selection equation

recession -0.178** 0.079 -0.200*** 0.076

Sotheby’s 0.258*** 0.064 0.294*** 0.060

Christie’s 0.164*** 0.062 0.169*** 0.058

signature 0.062 0.062 0.140** 0.059

size -0.0001* 0.000 -0.000** 0.000

Henri 0.172** 0.086 0.176** 0.083

Glackens -0.73 0.089 -0.069 0.084

Lawson -0.141 0.088 -0.198** 0.083

Luks -0.258*** 0.086 -0.247*** 0.083

Prendergast -0.376*** 0.105 -0.391*** 0.097

Shinn -0.221*** 0.082 -0.222*** 0.081

Sloan 0.029 0.095 -0.012 0.092

board -0.047 0.096 -0.037 0.092

paper -0.106 0.114 -0.057 0.110

canvas -0.223** 0.113 -0.200* 0.108

panel -0.112 0.146 -0.109 0.136

coloured -0.006 0.067 -0.023 0.066

low estimate -0.000 0.000 -0.000 0.000

high estimate 0.000 0.000 -0.000 0.000

year90 0.111 0.098 0.195** 0.092

year94 -0.115 0.099 -0.074 0.092

year98 0.163 0.096 0.233*** 0.090

year02 0.053 0.093 0.161* 0.088

year06 0.244** 0.086 0.361*** 0.084

year10 0.001 0.086 0.076 0.083

year14 -0.104 0.083 -0.099 0.078

constant 0.766*** 0.144 0.609*** 0.139

Equation interdependence

ρ -.0329** .015 -0.569*** 0.059

* p < 0.10; ** p < 0.05; *** p < 0.01
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harder to sell, while Robert Henri’s works enjoy a better chance to be sold in auctions.27 As

one would expect, paintings auctioned during recession periods have a slimmer chance to meet

the reserve price. Not surprisingly, the two big auction houses, the Sotheby’s and the Christie’s,

performed better compared to the other smaller ones. There is some evidence that paintings

with the signature of the artists are more likely to be sold, but the two different price equation

specifications disagree on its significance.

Apparently, the log model rejects the hypothesis that the pre-sale estimates are unbiased

in predicting the hammer price at 5% significance level. Table 3 shows that β0 is significantly

negative and the 95% confidence interval for β1 is above 1. After transforming the log equation

to the level form, the regression results for the price equation can be written as

E(Yi |Mi) = 0.76M1.03
i (122)

The multiplier coefficient (0.76) shows an upward bias, while the power coefficient (1.03) indi-

cates a downward bias. Ekelund, Jackson, and Tollison (2013) also find the two types of biases,

but they conclude both types lead to an underestimation bias. With our result, the overall

direction of the bias depends on which effect dominates the other. For example, when the value

of the painting is relatively low (i.e. Mi is small), the multiplier effect is dominating so the bias

is an overestimation. When the value of the painting is high, we expect an underestimation

bias as the power coefficient shall have a larger effect.

With the level model, the evidence of the bias is weaker and not so obvious. If we inde-

pendently test H0 : β0 = 0 and H0 : β1 = 1, we cannot reject these two null hypotheses at 5%

significance level. However, when we test the joint hypothesis, the unbiasedness of the pre-sale

estimates are rejected at a significant level as low as 2%. In addition, the size of the bias is

actually very small, which is demonstrated in Table 4. If the hypothesis is that the pre-sale

estimate undervalues the paintings by 2%, then such a hypothesis can only be rejected at 10%

significance level. Furthermore, we cannot reject the hypothesis that the pre-sale estimate is

downwardly biased by only 3%. In conclusion, the level model finds that there exists a down-

ward bias in the pre-sale estimates, but the size of the bias is within 3%, a relatively small

level.

The level model and the log model are two popular specifications widely used in the lit-

erature. The results we find are similar to the findings in the previous studies. Compared to

27Rober Henri was the leader and teacher of this artist group. It is not surprising to see that his paintings are

sold with a higher probability in auctions.
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Table 4: Joint hypothesis test results on different bias levels

Hypothesis χ2 p-value

β0 = 0 &

β1 = 1 7.92 0.019

β1 = 1.02 4.79 0.091

β1 = 1.03 3.52 0.172

Ekelund, Jackson, and Tollison (2013), who studied the same group of artists, our results differ

by concluding that the size of the bias is smaller and that the bias could be an overestimation.

Because our data set has a much larger sample size, we believe our findings are persuasive.

However, there is one major issue with such a parametric approach. The regression results and

the test results heavily rely on the specification of the ‘true model’. The different findings we

obtained with the level model and the log model, even though the differences are not alarmingly

big, illustrate how the specification of the regression equation can alter the final conclusion. As

a result, we attempt a nonparametric approach in the rest of the section.

The nonparametric analysis does not assume a pre-determined form of the regression equa-

tion. Instead, the function form is derived from the data. This will avoid the potential mis-

specification problem but will also require a much larger sample size. Our data contains nearly

4,000 observations, allowing us to conduct the first nonparametric regression on this topic in

the literature.28

Another challenge with the nonparametric approach is that neither standard Heckman es-

timators nor the ML methods are applicable to correct for the selection bias. Das, Newey, and

Vella (2003) proposed a two-stage method for the nonparametric analysis, which can be seen

as an extension of the Heckman (1979) sample selection model. The structure of the model is

identical to equations 117 and 118, but nonparametric regressions are conducted to assess them.

Das, Newey, and Vella (2003) prove that

E(Yi |Mi, di = 1, Zi) = F (Mi) + λ(p) (123)

where λ(p) is a function of the propensity score p from the selection equation 117. We follow this

method and run a nonparametric estimation with local-linear Epanechnikov kernel regressions.

The main results are presented in Table 5.

28To our best knowledge there is not a study that addresses the bias of the pre-sale estimates in auctions using

a nonparametric model.
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Table 5: Nonparametric estimation results

Estimate S.E. 95% C.I.

Price equation

Mi 1.139 *** 0.098 0.976 1.379

p -54791.68 *** 15859.26

Selection equation

Mi 4.37e-07 2.23e-06

Price equation estimates are averages of derivatives; * p < 0.10; ** p < 0.05; *** p < 0.01

One important assumption that ensures the validity of this nonparametric selection model

is that Mi does not influence the selection result (i.e. whether or not the painting will be sold

in the auction) given all other variables from the information set Ω. Table 5 shows that Mi is

insignificant in the selection equation (Equation 117). This confirms that our nonparametric

model is indeed valid. Also, λ(p) is very significant in the price equation (Equation 118). It

implies that such a sample selection model is necessary, otherwise, a selection bias will occur.

Finally, the average of the derivative of the hammer price with respect to Mi is estimated to

be 1.139, and its 95% confidence interval covers the point 1. As a result, on average we do

not reject the hypothesis that Mi is unbiased in its marginal effect. However, we are not able

to test whether there exists a constant bias that applies to Mi in all levels. This is because

this nonparametric approach for the selection model can only identify function F (Mi) up to an

additive constant term, as shown by Das, Newey, and Vella (2003).

Figure 7 helps us visualize how the price equation looks like on the dimension of Mi. The

curve of the nonparametric margins shows the accumulated estimated marginal effect of Mi on

the hammer price. In fact, the figure is supposed to display the 95% confidence intervals for

each circled points on that curve, but the 95% confidence intervals are too small relative to

the scope of the vertical axis to be seen. Figure 7 also shows that the curve of the margins

stays fairly close to the 45-degree straight line, reflecting the fact that the marginal effect is not

significantly different from 1. In addition, although the curve of the margins is slightly curved,

it seems that a level linear model can still be a good approximation. On the other hand, the

fitted curve of the log model (from the parametric regressions) differs from the curve of the

nonparametric margins with big discrepancies.

In conclusion, the nonparametric results seem to agree more with the parametric level model.
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Figure 7: Estimated margins from the nonparametric model

The evidence of bias is weak, as we cannot reject the hypothesis that the pre-sale estimate has

a one-to-one marginal effect on the hammer price. The parametric level model has a similar

result as the null hypothesis that β1 = 1 cannot be rejected independently. Unfortunately,

we are not able to test whether the pre-sale estimate is biased by a constant difference using

the nonparametric method due to its limitation. However, we notice that the curve of the

nonparametric margins on the pre-sale estimate is nearly linear, so it makes sense to believe the

parametric level model provides a good approximation. In addition, if the ‘true model’ is close

enough to linear, the parametric level model is more efficient compared to the nonparametric

method. Based on our data set, we believe the findings from the parametric level model is more

persuasive and conclude that there is some evidence of bias in the pre-sale estimates, but the

size of the bias is small. The nonparametric method is a good complementary tool to check the

non-linearity of the ‘true model’ and to re-examine the bias in the marginal effect. Although it

is less efficient because part of the data is used to identify the function form, it can be extremely

useful with other data set in which the ‘true model’ exhibits significant non-linear features.
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3.4 A theory model on the interpretation of the pre-sale estimates

Both the parametric and nonparametric approaches in the previous section to test the bias of

the pre-sale estimates in auctions face a critical problem: only the arithmetic mean of the low

and the high estimates (Mi) are used in the price equation (Equation 118) and the unbiasedness

hypothesis only involves Mi. Such an approach fails to use the full information conveyed by the

pre-sale estimates and will lead to misleading interpretations.

The low (Li) and the high (Hi) estimates together constitute an interval estimate, Mi is a

valid indicator for the bias test only under the assumption that Li and Hi are symmetric about

the actual mean of the distribution of the hammer price believed by the art experts. However,

such an assumption is likely to be violated as we illustrate with the following simple model.

We assume that one item is to be sold in an open English auction.29 There are n(> 3)

bidders to participate in the auction, each of them holds a private value, vi, for the item.30

We assume the art experts are competent and objective. It is also assumed in this model that

after evaluating the item and considering all the market information available, the art experts

correctly identify that the values of the bidders are independently and identically distributed

according to a distribution function F (v) and a density function f(v). We also assume that the

low and the high pre-sale estimates made by the art experts constitute a confidence interval.

In other words, the art experts need to ensure that the realized highest bid in the auction lies

between the the low and the high estimate with a probability instructed by their auction houses.

Finally, we assume that the goal of the art experts is to minimize the span of such a confidence

interval under the constraint of the confidence level required by their auction houses.

We believe this model reasonably describes the task of the art experts and captures the main

issues on how the pre-sale estimates are made in a simplified framework. The auction houses

apparently wish their published pre-sale estimates to be able to predict the auction prices with

a decent probability to establish or enhance their reputation in the market. At the same time, if

the art experts can make the span between the low and the high estimates as small as possible,

it will further demonstrate their expertise and competency, which can potentially attract more

clients and profits in the future. On the hand other, the art experts have little incentive to

make the low and the high estimate to be symmetric about the expected mean of the hammer

29Open English auctions are the most popular auction format, if not the only one, in selling works of fine art.
30We believe that the independent private value (IPV) model is the simplest one that describes the art auctions

well.
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price.

In our analysis, we do not care if the item can be sold or not, so we do not consider the

reserve price. Therefore, for simplicity, we call the highest bid the ‘hammer price’, denoted as

P , even though the hammer does not actually fall if the item passes in. We first start with the

situation in which the number of bidders n is known.

The cdf of the hammer price P is

Gn(p) = Pr(P ≤ p)

= F (2)
n (p) = Fn(p) + n (1− F (p))Fn−1(p)

(124)

where F
(2)
n is the CDF of the second highest order statistic among all n bidder values. The

density function of P is then the PDF of the second highest order statistic among all v:

gn(p) = f (2)
n (p)

= n(n− 1) (1− F (p))Fn−2(p)f(p)
(125)

We have the following proposition on the distribution of the hammer price.

Proposition 3.1. Assume the density function f(v) is symmetric on R. Then the distribution

defined by the density function gn(p) given by Equation 125 is left-skewed.

Proposition 3.1 shows that even if the distribution of the bidder value is symmetric we will

end up with a left-skewed distribution for the hammer price. Such an asymmetry will influence

the art experts in making the low and the high pre-sale estimates as summarized in Proposition

3.2, which is the main result of our theoretical model.

Proposition 3.2. Assume the density function f(v) is symmetric and log-concave on R. Also,

f(v) is assumed to be continuous where f(v) > 0. Then, for the distribution function Gn(x)

given by Equation 124, there exists c∗, l∗ and h∗ on R such that

1. (l∗, h∗) ∈ argmin
(L,H)

| H − L | s.t.
∫ H
L d (Gn(x)) = c∗

2. l∗+h∗

2 =
∫
R xd (Gn(x))

For any 0 < c < c∗, if (l̂, ĥ) ∈ argmin
(L,H)

| H − L | s.t.
∫ H
L d (Gn(x)) = c, then

l̂ + ĥ

2
>
l∗ + h∗

2
=

∫
R
xd (Gn(x)) (126)

Proposition 3.2 states that there exists a threshold confidence level c∗ such that if the art

experts minimize the span between the low and the high estimates then the arithmetic mean
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of them is precisely the unbiased predictor for the hammer price. Furthermore, as long as the

confidence level required by the auction houses is below the threshold level c∗, if the art experts

minimize the span between the low and the high estimates, the arithmetic mean of them is a

biased estimator of the hammer price. The bias is an upward bias.

The requirement of f(v) being log-concave is not too restrictive. A non-negative function

f : Rn → R+ is log-concave if its domain is a convex set, and if it satisfies the inequality

f (θx+ (1− θ) y) ≥ f(x)θf(y)1−θ, for all x, y ∈ Dom(f) and 0 < θ < 1. (127)

In fact, many commonly used distributions, such as uniform distribution, normal and multi-

variate normal distributions, exponential distribution and logistic distribution, are log-concave.

The purpose of this requirement is to ensure that the distribution of the hammer price is strong

unimodal.

The main point of Proposition 3.2 is that using the arithmetic mean of the low and the high

estimates as the predictor of the hammer price is naturally biased due to the skewness of the

underlying distribution, if the confidence level is below some threshold. In other words, the

bias detected in the previous section and in other empirical studies in the literature does not

necessarily imply that the art experts or the auction houses are incompetent or not objective,

as it might merely be a result of using a carelessly chosen point estimator to represent an

interval estimator. One important condition for such a bias is a low confidence level relative to

some threshold. We can observe some evidence from Table 2 supporting such a phenomenon.

As shown in Table 2, only 23.7% of the 3,923 observations ended up with a hammer price

that was between the low and the high pre-sale estimates. It implies that the confidence level

the art experts have in mind while making the low and the high estimates is roughly 23.7%.

Although we are not able to gauge the threshold level c∗, we feel comfortable to believe that a

confidence level as low as 23.7% is very likely below c∗. Also, while the highest bid in 57.4% of

the observations is below the low estimate, only 18.9% of the observations are sold at a hammer

price higher than the high estimate. Such an asymmetry supports the prediction in Proposition

3.1 that the distribution of the hammer price is left-skewed.

So far we have assumed that the number of bidders, n, is known by the experts. Now we

relax this assumption by assuming that n is distributed on [3, N ] with probability function

Pr(n) = k(n) such that
∑N

n=3 k(n) = 1. Art experts do not observe the realization of n before
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Figure 8: The density function curve for the hammer price with each buyer’s value independent

uniformly distributed on [0, 1], in the open English auction.

the auction. As a result, the CDF of the hammer price P is

G(p) = Pr(P ≤ p)

=
N∑
n=3

k(n) · Pr(P ≤ p | n) =
N∑
n=3

k(n)F (2)
n (p)

=
N∑
n=3

k(n)Gn(p)

(128)

G(p) is simply a linear combination of Gn(p). With the linearity, the proof of Proposition 3.2

remains valid with respect to G(p). As a result, Proposition 3.2 also applies to the case with

random n.

Figure 8 illustrates the main points of Proposition 3.2 with two simple numerical examples.

In both subfigures, f(v) is assumed to be a uniform distribution density function on [0, 1].

Subfigure (a) shows the density function for the hammer price when n = 5, while Subfigure

(b) illustrates the case in which n is evenly distributed on [3, 10]. In both cases, it is clear

that the distribution of the hammer price is left-skewed and unimodal. In addition, points A

and B present the location of l∗ and h∗, respectively. Points A and B are symmetric about
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the mean of the hammer price, which is represented by a vertical line. The size of the area

surrounded by the curve of the hammer price density function between point A and point B is

the confidence level. It is also clear in the figures that when the confidence level is reduced, the

distance between A and B also decreases and the midpoint of A and B shifts to the right-hand

side of the mean of the hammer price. In Subfigure (a), the optimal reserve price is also marked

with a dashed vertical line. Recall most auction houses stipulate that the reserve price must be

lower than the low estimate. It is reasonable to assume that auction houses will not exclude the

optimal reserve so they must set a confidence level so that the low estimate is higher than the

optimal reserve. In the case illustrated by Subfigure (a), this consideration leads to a relatively

low confidence level and an upward bias if the mean of the low and the high estimates is used

to predict the hammer price.

3.5 Empirical evidence of the theory

The previous section proves that using the arithmetic mean alone in the regression models

cannot fully utilize the information conveyed in the pre-sale estimates. Consequently, it will

result in bias and leads to problems in interpreting the pre-sale estimates. In this section, we

replace the arithmetic mean in the regression models by the low estimate (Li) and the high

estimate (Hi). We show that the low estimate should be given a higher weight when one

attempts to predict the hammer price.

The selection model now becomes

di = 1(Z ′iγ + εi > 0), selection process (129)

Y · di = Y ∗i = (F (Li, Hi) + ui) di, price equation (130)

For the parametric level model, it is assumed that

F (Li, Hi) = β0 + β1Li + β2Hi; (131)

for the parametric log model, we assume

ln(Y ∗i ) = (β0 + β1 ln(Li) + β2 ln(Hi) + vi) di; (132)

for the nonparametric model, function F (Li, Hi) remains unspecified until it is identified by the

data.
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Table 6: Estimation results of models including L and H

Level model(FGLS) Log model(FGLS) Nonparametric model

Coeff. R.S.E. 95% C.I. Coeff. R.S.E. 95% C.I. Estimate B.S.E.

Price equation

L 0.872*** 0.157 0.564 1.179 0.696*** 0.110 0.480 0.913 0.797** 0.390

H 0.287*** 0.104 0.083 0.492 0.337*** 0.111 0.118 0.554 0.304 0.265

constant 94.477 141.756 0.015 0.076 N/A

Selection

IMR 94.477 141.756 -0.790*** 0.092

p -44852.13*** 14203.72

Nonparametric estimates are averages of derivatives; * p < 0.10; ** p < 0.05; *** p < 0.01

We encounter a heteroskedasticity issue, which is detected by the BreuschPagan test. Het-

eroskedasticity arises in our model because the variance of the error term in the price equation

(Equation 130) is expected to be high when the value of the painting is high and/or the mar-

ket information for the painting is not sufficient to provide an accurate estimate. To tackle

the heteroskedasticity issue, apart from adopting the robust standard error, we use Feasible

Generalized Least Squares (FGLS) to model the variance function of the error term ui:

V ar(ui | Ω) = σ2V (Li, Hi) (133)

Li and Hi enter the variance function not only because they together indicate the price level

of the painting but also because Hi − Li reflects how uncertain the art experts are about the

market value of the painting.

Table 6 summarizes the estimation results of different models with both Li and Hi included

in the price equation. First, both the parametric log model and the nonparametric model

conclude that the two-stage selection model is crucial to correct for the selection bias, as the

inverse Mills ratio (IMR) in the log model and the propensity score p in the nonparametric

model are significant, implying a correlation between error terms ui and vi. However, IMR is

insignificant in the level model, so the sample selection bias may not be a problem if we think

the level model is the ‘true specification’.

The key results we focus in this section is the weights we should assign to the low and the

high estimates in predicting the hammer price. Both the parametric models find significant

weights attached to Li and Hi. All three models show that a higher point estimate is given

to the coefficient of the low estimate. This confirms the prediction of our theoretical model in

the previous section. That is, the arithmetic mean of the low and the high estimates tend to
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overestimate the hammer price; to construct an unbiased estimator, higher weight should be

assigned to the low estimate. In particular, according to the level model, one dollar increase in

the low estimate is associated with more than 87 cents increase in hammer price ceteris paribus.

On the other hand, only a 29-cent increase in hammer price is expected if the high estimate is

increased by one dollar ceteris paribus. The figures of the marginal effects are 70 cents versus 34

cents in the log model and 80 cents versus 30 cents in the nonparametric model. The marginal

effect of the low estimate is estimated to be about twice as much as that of the high estimate

across all three regression models we studied.

Formally, we can test the null hypothesis H0 : L = H against the alternative Ha : L > H

for all three models. We reject the null hypothesis at 1% significance level with the level model.

We reject the null hypothesis at 5% significance level in the log model and in the nonparametric

model.

In sum, our data provide strong evidence that a higher weight should be given to the low

pre-sale estimate when one attempts to predict the hammer price. The findings support the

predictions in Proposition 3.2 in our theoretical model. We conclude that the arithmetic mean

of the low and the high estimate is not a proper predictor of the hammer price in the art

auctions, because it tends to overestimate the hammer price. Therefore, the bias detected in

Section 3 and other empirical studies in the literature does not necessarily imply that the art

experts are incompetent or not objective.

3.6 Conclusion

In this chapter, we study how the pre-sale estimates in art auctions should be interpreted. The

data set we rely on is constructed by fetching auction records from auction data websites with

an automatic searching program. The data set contains 3,923 observations on paintings by a

well-defined group of American artists which were listed in auctions over the past 32 years.

The first part of this chapter re-visits the question of whether the pre-sale estimates are

biased, which is heavily debated in the literature. We contribute to this topic in the following

two ways. First, we believe our data set is superior to many other data sets used in previous

studies. The sample size is sufficiently large to support better estimations using various re-

gression models. In addition, the artists included in our data belong to a unique school and

they show a unified understanding of art creation in their paintings during the same short time
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period. Therefore, our data suffer less of a heterogeneity problem faced by many studies in

the literature. Second, we are the first to adopt a nonparametric approach to analyze the bias

in the pre-sale estimates in art auctions; while all previous studies take parametric models by

assuming a particular specification of the ‘true model’. The parametric approach has a poten-

tial mis-specification problem which may lead to misleading results as the estimation heavily

relies on the assumption of the structure of the equations. It could be a source of the disagree-

ment about the existence of bias among different studies. We use the nonparametric model

proposed by Das, Newey, and Vella (2003) to address the sample section issue in the data set

and compare the results to the findings from two popular parametric models. We conclude that

there is evidence of bias if the arithmetic mean of the low and the high pre-sale estimates is

used to predict the hammer price. There can be two types of biases, one is upward and the

other is downward. The overall direction of the bias depends on the which dominates the other.

However, the overall size of the bias is small. In addition, the nonparametric model does not

show much nonlinearity in the price equation, so the parametric level model can be a good

approximation if the sample size is not big enough to support a nonparametric regression.

The second part of this chapter questions the use of a carelessly selected point estimator to

represent the pre-sale estimates in the bias test. The pre-sale estimates published by auction

houses include a low and a high estimate. In most of the previous studies, including the first

part of this chapter, the arithmetic mean of the low and the high estimates are used in the

regression models to test for its bias in predicting the hammer price. However, such a point

estimator cannot fully represent the information conveyed by the low and the high estimates

which should be considered as an interval estimator. In particular, the arithmetic mean is

unbiased only if the low and the high estimates are symmetric about the mean of the hammer

price, a condition that is unlikely to meet in practice.

We use a simple theoretical model to show that the arithmetic mean of the low and the

high estimates is expected to overestimate the hammer price in practice. We assume that the

art experts’ objective is to minimize the span between the low and the high estimates while

ensuring the realized hammer price to fall into the pre-sale estimate range with some probability

level required by their auction houses. We show that the distribution of the hammer price in

an English auction with independent private values (IPV) is left-skewed and strong unimodal if

the distribution of the bidder value is symmetric and log-concave. Essentially the skewness of

the hammer price distribution leads to the asymmetry in the low and the high estimates about

the mean of the hammer price because the art experts seek to include the most dense part
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of the distribution in the estimate range. The theoretical model predicts that the arithmetic

mean of the low and the high estimates will overestimate the hammer price if the confidence

level adopted by the art experts is below some threshold. Few studies in the literature use

the geometric mean instead, in principle the geometric mean of the low and the high estimates

faces the same problem as with the arithmetic mean. We do not explicitly demonstrate the

bias associated with the geometric mean because it is not popular in the literature and also it

is difficult to conclude a clear direction of the bias with it.

Guided by the conclusion of the theoretical model, we replace the arithmetic mean in the

empirical models by two separate variables: the low estimate and the high estimate. The results

from both parametric and nonparametric models suggest that a higher weight should be assigned

to the low estimate in order to correctly predict the hammer price. This finding confirms the

prediction of our theoretical model. We conclude that the use of the arithmetic mean of the

low and the high estimates will result in an upward bias in predicting the hammer price even if

the art experts are competent and if the auction houses are truthful. The bias identified in the

previous studies does not necessarily imply that the art experts or the auction houses provide

misleading pre-sale estimates. On the contrary, it could be because we have been interpreting

the pre-sale estimates in a misleading way.

One main limitation of the empirical models in this chapter is that our nonparametric

method for the two-stage selection model cannot completely identify the price equation (Equa-

tion 118). An additive constant is left out for identification, so we are not able to conduct

any test on the constant term in the price equation. In other words, we are not able to test

whether the pre-sale estimates are biased by a fixed margin on average, using the nonparametric

model. Importantly, our empirical findings rely on the data set, which only contains paintings

by ‘The Eight’, a group of American artists. The results may not be applicable to other groups

of artwork. For example, we find that there is little non-linearity in the price equation using the

nonparametric model. This observation suggests that a parametric level model can be a good

approximation. However, in other art markets, the non-linearity of the ‘true model’ can be

severe, so the parametric level model may give misleading results. Finally, both our theoretical

model and the empirical models are the most simplified version. One possible extension for

further study is to take into account the fact that many similar paintings (or works of art in

general) are gathered together and auctioned sequentially in one auction event. The number

of similar paintings in the same auction event and the order of auction may be important ex-

planatory variables that influence the realized hammer price. A more detailed data set and a
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more comprehensive theoretical model need to be constructed to address such a consideration.
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4 Appendix

Proof of Proposition 1.1

Proof. Consider a bidder with value v and follow the notations used in equation (4). De-

note Y1 and Y2 as the highest and the second highest value among the other n − 1 bid-

ders, respectively. Then the p.d.f. for the joint distribution of Y1 and Y2 is f1,2(y1, y2) =

(n− 1)(n− 2)f(y1)f(y2)Fn−3(y2). The p.d.f. for Y1 is f1(y1) = (n− 1)Fn−2(y1)f(y1).

Pr(A) = Pr(Y2 < v ≤ z < Y1)E[lI(Y1)|Y2 < v ≤ z < Y1]

=

∫ 1

z

∫ v

0
lI(y1)(n− 1)(n− 2)f(y1)f(y2)Fn−3(y2)dy2dy1

= (n− 1)Fn−2(v)

∫ 1

z
lI(y1)f(y1)dy1

(134)

According to equation (4), when z ≥ v,

π(z, v) = F (z)n−1[v − βI(z)] + (n− 1)Fn−2(v)

∫ 1

z
lI(y1)f(y1)dy1

[
v − bI(v)

]
(135)

In this case, define π̄(z, v) ≡ π(z, v).

When z ≤ v, following the notations in equation (5), one can check that

Pr(B) =

∫ 1

v

∫ v

0
lI(y1)(n− 1)(n− 2)f(y1)f(y2)Fn−3(y2)dy2dy1

= (n− 1)Fn−2(v)

∫ 1

v
lI(y1)f(y1)dy1

(136)

and that

E[v − bI(v∗)|C] =

∫ v

z

[
v − bI(y1)

]
lI(y1)(n− 1)Fn−2(y1)f(y1)dy1 (137)

According to equation (5),

π(z, v) =F (z)n−1[v − βI(z)] +
[
v − bI(v)

]
(n− 1)Fn−2(v)

∫ 1

v
lI(y1)f(y1)dy1

+

∫ v

z

[
v − bI(y1)

]
lI(y1)(n− 1)Fn−2(y1)f(y1)dy1

(138)

In this case, define π(z, v) ≡ π(z, v).

The bidder will truthfully bid according to her type only if

d

dz
π̄(z, v)

∣∣∣∣
z=v

≤ 0

and
d

dz
π(z, v)

∣∣∣∣
z=v

≥ 0
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.

It is easy to check that

d

dz
π̄(z, v)

∣∣∣∣
z=v

=(n− 1)Fn−2(v)f(v)
[
v − βI(v)

]
− Fn−1(v)βI

′
(v)− (n− 1)Fn−2(v)f(v)lI(v)

[
v − bI(v)

]
=
d

dz
π(z, v)

∣∣∣∣
z=v

(139)

As a result, the equilibrium requires

(n−1)Fn−2(v)f(v)
[
v − βI(v)

]
−Fn−1(v)βI

′
(v)−(n−1)Fn−2(v)f(v)lI(v)

[
v − bI(v)

]
= 0 (140)

Rearrange the above differential equation, it becomes[
Fn−1(v)βI(v)

]′
= (n− 1)Fn−2(v)f(v)

[
lI(v)bI(v)− lI(v)v + v

]
⇒Fn−1(v)βI(v) = Fn−1(0)βI(0) +

∫ v

0

[
lI(t)bI(t)− lI(t)t+ t

]
(n− 1)Fn−2(t)f(t)dt

(141)

It is obvious that in the equilibrium a bidder with v = 0 bids 0, so the unique solution to the

differential equation is

βI(v) =

∫ v

0

[
l(t)bI(t)− l(t)t+ t

]
d

[(
F (t)

F (v)

)n−1
]
. (142)

If a symmetric pure strategy equilibrium exists, the above is the unique bidding fuction in

the first auction. The rest of the equilibrium has been analyzed preceding Proposition 1.1.

Proof of Proposition 1.2

Proof. If βI(v) is increasing, βI
−1

exists, so π(z, v) is equivalent to Π(β, v), where β ≡ βI(z)

and Π(β, v) = π(βI
−1

(β), v). In addition, dz
dβ > 0.

When z ≤ v,

∂

∂β
Π(β, v)

=
∂

∂z
π(z, v)

dz

dβ

=
(

(n− 1)Fn−2(z)f(z)
[
v − βI(z)

]
− Fn−1(z)βI

′
(z)− (n− 1)Fn−2(z)f(z)lI(z)

[
v − bI(z)

]) dz
dβ

(143)
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so

∂2

∂v∂β
Π(β, v)

=
∂2

∂v∂z
π(z, v)

dz

dβ

=
(
(n− 1)Fn−2(z)f(z)− (n− 1)Fn−2(z)f(z)lI(z)

) dz
dβ

=
(
(n− 1)Fn−2(z)f(z)

[
1− lI(z)

]) dz
dβ

≥0

(144)

Hence, Π(β, v) satisfies the single crossing condition when z ≤ v.

When z ≥ v,

∂

∂β
Π(β, v)

=
∂

∂z
π̄(z, v)

dz

dβ

=
(

(n− 1)Fn−2(z)f(z)
[
v − βI(z)

]
− Fn−1(z)βI

′
(z)− (n− 1)Fn−2(v)f(z)lI(z)

[
v − bI(v)

]) dz
dβ

(145)

so

∂2

∂v∂β
Π(β, v)

=
∂2

∂v∂z
π̄(z, v)

dz

dβ

=
(

(n− 1)Fn−2(z)f(z)− (n− 1)Fn−2(v)f(z)lI(z)
[
1− bI ′(v)

]
− (n− 1)(n− 2)Fn−3(v)f(v)f(z)lI(z)

[
v − bI(v)

] ) dz
dβ

=
{
Fn−2(z)− l(z)

(
F (v)n−2

[
1− bI ′(v)

]
+ (n− 2)F (v)n−3f(v)

[
v − bI(v)

])}
(n− 1)f(z)

dz

dβ

(146)

If

Fn−2(z)− l(z)
(
F (v)n−2

[
1− bI ′(v)

]
+ (n− 2)F (v)n−3f(v)

[
v − bI(v)

])
≥ 0,

then ∂2

∂v∂βΠ(β, v) ≥ 0 and Π(β, v) satisfies the single crossing condition when z ≥ v.

In sum, when inequality (12) holds for all (z, v) such that z ≥ v, Π(β, v) satisfies the single

crossing condition, so theo the Single Crossing Condition Sufficiency Theorem31 can be applied.

31There are several versions on single crossing condition theorems. Theorem 4.2 in Milgrom (2004) is applied

here in this paper.
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Since the bidding function βI(v) is the solution to the first order condition of max
β

Π(β, v), as

long as it is increasing, it must be the case that βI(v) ∈ arg max
β

Π(β, v).

The above has shown that incentive compatibility constraint for the equilibrium is satisfied.

It is trivial to check that individual rational constraint also holds.

Proof of Proposition 1.3

Proof. Follow the notations in the section preceding Propostion 1.3. Denote Y1 and Y2 as the

highest and the second highest value among the other n− 1 bidders, respectively.

π(z, v) = Pr(Y1 < z)E[v − βII(Y1)|Y1 < z] + Pr(A)E(v − Y2|A) (147)

Here A is the event that “the bidder loses the first auction by bidding βII(z), but the seller

holds the second auction and this bidder wins it”.

If z ≤ v, then A = A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5. A1 is the event that “z < Y2 < v < Y1 and

the seller holds the second auction”; A2 is the event that “Y2 < z < v < Y1 and the seller holds

the second auction”; A3 is the event that “z < Y2 < Y1 < v and the seller holds the second

auction”; A4 is the event that “Y2 < z < Y1 < v and the seller holds the second auction”.

A1, A2, A3, A4 are mutually exclusive, and obviously A5 is of probability 0.

Now it is easy to write

Pr(A)E(v − Y2|A)

=

∫ v

z

∫ 1

v
lII(y2)(v − y2)(n− 1)(n− 2)f(y1)f(y2)Fn−3(y2)dy1dy2

+

∫ z

0

∫ 1

v
lII(z)(v − y2)(n− 1)(n− 2)f(y1)f(y2)Fn−3(y2)dy1dy2

+

∫ v

z

∫ v

y2

lII(y2)(v − y2)(n− 1)(n− 2)f(y1)f(y2)Fn−3(y2)dy1dy2

+

∫ z

0

∫ v

z
lII(z)(v − y2)(n− 1)(n− 2)f(y1)f(y2)Fn−3(y2)dy1dy2

=

∫ z

0
lII(z)(v − y2) [1− F (z)] (n− 1)(n− 2)f(y2)Fn−3(y2)dy2

+

∫ v

z
lII(y2)(v − y2) [1− F (y2)] (n− 1)(n− 2)f(y2)Fn−3(y2)dy2

(148)
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Then,

π(z, v) =

∫ z

0

[
v − βII(y1)

]
(n− 1)Fn−2(y1)f(y1)dy1

+

∫ z

0
lII(z)(v − y2) [1− F (z)] (n− 1)(n− 2)f(y2)Fn−3(y2)dy2

+

∫ v

z
lII(y2)(v − y2) [1− F (y2)] (n− 1)(n− 2)f(y2)Fn−3(y2)dy2

(149)

In this case, denote π(z, v) ≡ π(z, v).

If z ≥ v, event A is “Y2 < v ≤ z < Y1 and the seller holds the second auction”, so

Pr(A)E(v − Y2|A)

=

∫ v

0

∫ 1

z
lII(v − y2)(n− 1)(n− 2)f(y1)f(y2)Fn−3(y2)dy1dy2

=

∫ v

0
lII(z)(v − y2) [1− F (z)] (n− 1)(n− 2)f(y2)Fn−3(y2)dy2

(150)

Then,

π(z, v) =

∫ z

0

[
v − βII(y1)

]
(n− 1)Fn−2(y1)f(y1)dy1

+

∫ v

0
lII(z)(v − y2) [1− F (z)] (n− 1)(n− 2)f(y2)Fn−3(y2)dy2

(151)

In this case, denote π̄(z, v) ≡ π(z, v).

The bidder will truthfully bid according to her type only if

d

dz
π̄(z, v)

∣∣∣∣
z=v

≤ 0

and
d

dz
π(z, v)

∣∣∣∣
z=v

≥ 0

In addition, one can check that

d

dz
π̄(z, v)

∣∣∣∣
z=v

=
d

dz
π(z, v)

∣∣∣∣
z=v

=(n− 1)Fn−2(v)f(v)v − βII(v)(n− 1)Fn−2(v)f(v)

+
(
lII
′
(v) [1− F (v)]− lII(v)f(v)

)∫ v

0
(v − y2)(n− 1)(n− 2)f(y2)Fn−3(y2)dy2

(152)

so the equilibrium requires

(n− 1)Fn−2(v)f(v)v − βII(v)(n− 1)Fn−2(v)f(v)

+
(
lII
′
(v) [1− F (v)]− lII(v)f(v)

)∫ v

0
(v − y2)(n− 1)(n− 2)f(y2)Fn−3(y2)dy2

=0

(153)
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Rearranging the equation above gives the unique solution for βII(v):

βII(v)

=v +
(
lII
′
(v) (1− F (v))− lII(v)f(v)

)( v

f(v)
− 1

f(v)

∫ v

0
y2d

((
F (y2)

F (v)

)n−2
))

(154)

Therefore, if a symmetric pure strategy equilibrium exists, the above is the unique bidding

function in the first auction. The rest of the equilibrium has been analyzed preceding Proposition

1.3.

Proof of Proposition 1.4

Proof. If βII(v) is increasing, βII
−1

exists, so π(z, v) is equivalent to Π(β, v), where β ≡ βII(z)

and Π(β, v) = π(βII
−1

(β), v). In addition, dz
dβ > 0.

When z ≥ v,

∂2

∂v∂β
Π(β, v)

=
∂2

∂v∂z
π̄(z, v)

dz

dβ

=
dz

dβ

{
(n− 1)Fn−2(z)f(z)

+
(
lII
′
(z) (1− F (z))− lII(z)f(z)

)∫ v

0
(n− 1)(n− 2)Fn−3(y2)f(y2)dy2

}
=
dz

dβ
(n− 1)Fn−2(z)

{
f(z)

[
1− lII(z)

]
+ lII

′
(z) [1− F (z)]

}
≥0,

(155)

as lII(z) ≤ 1, F (z) ≤ 1 and lII
′
(z) ≥ 0. Therefore, Π(β, v) satisfies the single crossing condition

when z ≥ v.

103



When z ≤ v,

∂2

∂v∂β
Π(β, v)

=
∂2

∂v∂z
π(z, v)

dz

dβ

=
dz

dβ

{
(n− 1)Fn−2(z)f(z)− lII [1− F (z)] (n− 1)(n− 2)Fn−3(z)f(z)

+
(
lII
′
(z) [1− F (z)]− lII(z)F (z)

)∫ z

0
(n− 1)(n− 2)Fn−3(y2)f(y2)dy2

+ lII(z) [1− F (z)] (n− 1)(n− 2)Fn−3(z)f(z)

}
=
dz

dβ
(n− 1)Fn−2(z)

{
lII
′
(z) [1− F (z)] + f(z)− lII(z)F (z)

}

(156)

As long as for all z,

lII
′
(z) [1− F (z)] + f(z)− lII(z)F (z) ≥ 0,

then ∂2

∂v∂βΠ(β, v) ≥ 0 and Π(β, v) satisfies the single crossing condition.

In conclusion, when inequality (57) holds, Π(β, v) satisfies the single crossing condition, so

the Single Crossing Condition Sufficiency Theorem32 can be applied. Note that βII(v) given in

equation (53) is the solution to the first order condition of max
β

Π(β, v). According to theorem,

as long as βII(v) is increasing, it must be the case that βII(v) ∈ arg max
β

Π(β, v).

The above has shown that incentive compatibility constraint for the equilibrium is satisfied.

It is necessary to check that individual rational constraint also holds. With bidding function

βII(v) given in equation (53), the expected payoff to a bidder with value v is

π(v, v) =vFn−1(v)−
∫ v

0
βII(y2)(n− 1)Fn−2(y2)f(y2)dy2

+

∫ v

0
lII(v)(v − y2)[1− F (v)](n− 1)(n− 2)Fn−3(y2)f(y2)dy2

(157)

and

d

dv
π(v, v) =Fn−1(v) + (n− 1)Fn−2(v)f(v)v − βII(v)(n− 1)Fn−2(v)f(v)

+ lII(v)(v − v)[1− F (v)](n− 1)(n− 2)Fn−3(v)f(v)

+

∫ v

0
lII
′
(v)(v − y2)[1− F (v)](n− 1)(n− 2)Fn−3(y2)f(y2)dy2

+

∫ v

0
lII(v)[1− F (v)](n− 1)(n− 2)Fn−3(y2)f(y2)dy2

−
∫ v

0
lII(v)(v − y2)f(v)(n− 1)(n− 2)Fn−3(y2)f(y2)dy2

(158)

32There are several versions on single crossing condition theorems. Theorem 4.2 in Milgrom (2004) is applied

here in this paper.
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but one can check that

βII(v)(n− 1)Fn−2(v)f(v)

=(n− 1)Fn−2(v)f(v)v

+

∫ v

0
lII
′
(v)(v − y2)[1− F (v)](n− 1)(n− 2)Fn−3(y2)f(y2)dy2

−
∫ v

0
lII(v)(v − y2)f(v)(n− 1)(n− 2)Fn−3(y2)f(y2)dy2

(159)

so

d

dv
π(v, v) =Fn−1(v) +

∫ v

0
lII(v)[1− F (v)](n− 1)(n− 2)Fn−3(y2)f(y2)dy2

≥0

(160)

Since π(0, 0) = 0, π(v, v) ≥ 0 for any v ∈ [0, 1]. The individual rational constraint is satisfied.

Equilibrium Check in the C ≥ n−2
n Case With Sealed First Price Auctions

With sealed first price auctions, when C ≥ n−2
n , the first round bidding function βI(v) is

given in equation (17). Therefore, when z ≥ v,

d

dz
π(z, v)

=
d

dz
π̄(z, v)

=
n− 2

nC
zn − (n− 1)zn−1 + (n− 1)vzn−2 − n− 2

nC
vn−1z

≤n− 2

nC
zn − (n− 1)zn−1 + (n− 1)zzn−2 − n− 2

nC
zn−1z

=0

(161)

When z ≤ v,

d

dz
π(z, v)

=
d

dz
π(z, v)

=
(n− 1)(n− 2)

nC
zn − (n− 1)

(
1 +

n− 2

nC
v

)
zn−1 + (n− 1)vzn−2

(162)

so there are only three roots for d
dzπ(z, v) = 0. They are z = 0, z = v, and z = nC

n−2 ≥ 1.
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In addition,

d2

dz2
π(z, v)

∣∣∣∣
z=v

=
(n− 1)(n− 2)

C
zn−1 − (n− 1)2

(
1 +

n− 2

nC
v

)
zn−2 + (n− 1)(n− 2)vzn−3

∣∣∣∣
z=v

=
(n− 1)(n− 2)

nC
vn−1 − (n− 1)vn−2

≥0

(163)

Therefore, d
dzπ(z, v) ≥ 0 when z ≤ v. In sum, it is optimal for every bidder to truthfully bid

according to their own value, so βI(v) given in equation (17) is indeed an equilibrium bidding

function.

Equilibrium Check in the C ≤ n−2
n Case With Sealed First Price Auctions

With sealed first price auctions, when C ≤ n−2
n , the first round bidding function βI(v) is

given in equation (33). When v ≤ n
n−2C, βI(v) is the same as in the C ≥ n−2

n case. In a similar

way, βI(v) can be checked to be the equilibrium bidding function in the first round.

Now consider the case where v > n
n−2C. If z > v,

d

dz
π(z, v)

=
d

dz
π̄(z, v)

=(n− 1)zn−2v − zn−1

(
n− 2

n
− n− 1

n(n+ 1)

(
n

n− 2
C

)n 1

zn

)
− (n− 1)vn−2

(
v − n− 2

n− 1
v

)
− (n− 1)zn−2

(
1

n(n+ 1)

(
n

n− 2
C

)n 1

zn−1
+
n− 2

n
z

)
=(n− 1)zn−2v − n− 2

n
zn−1 − vn−1 − (n− 1)(n− 2)

n
zn−1

<(n− 1)zn−2z − n− 2

n
zn−1 − zn−1 − (n− 1)(n− 2)

n
zn−1

=0

(164)
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If z ≤ v (and C ≤ n−2
n ), then

d

dz
π(z, v)

=
d

dz
π(z, v)

=(n− 1)zn−2v − (n− 1)zn−2

(
1

n(n+ 1)

(
n

n− 2
C

)n 1

zn−1
+
n− 2

n
z

)
− zn−1

(
n− 2

n
− n− 1

n(n+ 1)

(
n

n− 2
C

)n 1

zn

)
−
(
v − n− 2

n− 1
z

)
(n− 1)zn−2

=0

(165)

In conclusion, it is optimal for every bidder to truthfully bid according to their own value,

so βI(v) given in equation (33) is indeed an equilibrium bidding function.

Equilibrium Check in the C ≥ n−2
n−1 Case With Sealed Second Price Auctions

With sealed second price auctions, when C ≥ n−2
n−1 , the first round bidding function βII(v)

is given in equation (53). If z ≤ v, then

d

dz
π(z, v)

=
d

dz
π(z, v)

=(n− 1)zn−2v − (n− 1)zn−2

[(
1 +

n− 2

(n− 1)2C

)
z − 2(n− 2)

(n− 1)2C
z2

]
+

[
n− 2

(n− 1)C
(1− z)− n− 2

(n− 1)C
z

] [
(n− 1)zn−2v − (n− 2)zn−1

]
=

[
1 +

n− 2

(n− 1)C
(1− 2z)

]
(n− 1)zn−2v +

2(n− 2)

C
zn −

(
n− 1 +

n− 2

C

)
zn−1

≥
[
1 +

n− 2

(n− 1)C
(1− 2z)

]
(n− 1)zn−2z +

2(n− 2)

C
zn −

(
n− 1 +

n− 2

C

)
zn−1

=0

(166)
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If z > v, then

d

dz
π(z, v)

=
d

dz
π̄(z, v)

=(n− 1)zn−2v − (n− 1)zn−2

[(
1 +

n− 2

(n− 1)2C

)
z − 2(n− 2)

(n− 1)2C
z2

]
+

[
n− 2

(n− 1)C
(1− z)− n− 2

(n− 1)C
z

]
vn−1

<(n− 1)zn−2z − (n− 1)zn−2

[(
1 +

n− 2

(n− 1)2C

)
z − 2(n− 2)

(n− 1)2C
z2

]
+

[
n− 2

(n− 1)C
(1− z)− n− 2

(n− 1)C
z

]
zn−1

=0

(167)

In conclusion, it is optimal for every bidder to truthfully bid according to their own value,

so βII(v) given in equation (53) is indeed an equilibrium bidding function.

Proof of Proposition 2.1

Proof. According to Equation 82, notice n1 > n2, we have

b(ti, n2)− b(ti, n1)

=

∫
S2

u(ti, t−i)h(t−i | tj ≤ ti, j 6= i, j ≤ n2)dt−i

−
∫
S1

u(ti, t−i)h(t−i | tj ≤ ti, j 6= i, j ≤ n1)dt−i

=

(∫
S1

u(ti, t−i)h(t−i | tj ≤ ti, j 6= i, j ≤ n2)dt−i +

∫
S3

u(ti, t−i)h(t−i | tj ≤ ti, j 6= i, j ≤ n2)dt−i

)
−
(∫

S1

u(ti, t−i)κ(t−i)dt−i +

∫
S1

u(ti, t−i)h(t−i | tj ≤ ti, j 6= i, j ≤ n2)dt−i

)
=

∫
S1

((u(ti, t−i)− u(ti, t−i))h(t−i | tj ≤ ti, j 6= i, j ≤ n2)dt−i

+

(∫
S3

u(ti, t−i)h(t−i | tj ≤ ti, j 6= i, j ≤ n2)dt−i −
∫
S1

u(ti, t−i)κ(t−i)dt−i

)
=

∫
S3

u(ti, t−i)h(t−i | tj ≤ ti, j 6= i, j ≤ n2)dt−i −
∫
S1

u(ti, t−i)κ(t−i)dt−i

(168)

where κ(t−i) = h(t−i | tj ≤ ti, j 6= i, j ≤ n1)− h(t−i | tj ≤ ti, j 6= i, j ≤ n2),

S1 = {t−i | tj ≤ ti, j 6= i, j ≤ n1}, S2 = {t−i | tj ≤ ti, j 6= i, j ≤ n2}, so S1 ⊆ S2 and
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S3 ≡ S2 \ S1 = {t−i | tj ≤ ti, j 6= i, j ≤ n2; tj > ti, j 6= i, n2 < j ≤ n1}. We have assumed that

u(ti, t−i) is weakly increasing in t−i, so

b(ti, n2)− b(ti, n1)

=

∫
S3

u(ti, t−i)h(t−i | tj ≤ ti, j 6= i, j ≤ n2)dt−i −
∫
S1

u(ti, t−i)κ(t−i)dt−i

≥
∫
S3

u(ti, . . . , ti︸ ︷︷ ︸
n1

, tn1+1, . . . , tN )h(t−i | tj ≤ ti, j 6= i, j ≤ n1)dt−i

−
∫
S1

u(ti, . . . , ti︸ ︷︷ ︸
n1

, tn1+1, . . . , tN )κ(t−i)dt−i

=0

(169)

The last equation can be shown to hold because each tj in t is independent and identically

distributed.

Proof of Proposition 2.3

Proof. When n > N − 2, from Equation 96 it is easy to confirmt that

d

dtR
UR(tR, n) = n

(
1 +

n− 1

2
γ

)
(tR)n−2(1− 2tR). (170)

Therefore, d
dtR

UR(tR, n) > 0 when tR < 1
2 ; and d

dtR
UR(tR, n) < 0 when tR > 1

2 . It follows that

fix n the maximum of UR(tR, n) takes place at tR = 1
2 .

When n ≤ N − 2, from Equation 95 we can obtain

d

dtR
UR(tR, n) =n

[
1 +

n− 1

2
γ − m

2
γ +

m− 1

m+ 1

(
1 +

m− 1

2
γ

)]
(tR)n−1

+ (n+ 1)

(
n

2
γ − 2n

n+ 1
(1 +

n− 1

2
γ)

)
(tR)n

(171)

where m = N − n. It is easy to see that tR = 0 and tR = 1 − (N−n−3)γ+4
(n−3)(N−n+1)γ+4(N−n+1) are the

only two turning points. By checking the curvature of UR(tR, n), notice that

d2

dtR2UR(tR, n) =n(n− 1)

[
1 +

n− 1

2
γ − m

2
γ +

m− 1

m+ 1

(
1 +

m− 1

2
γ

)]
(tR)n−2

+ (n+ 1)n

[
n

2
γ − 2n

n+ 1

(
1 +

n− 1

2
γ

)]
(tR)n−1,

(172)

we can confirm that tR = 1 − (N−n−3)γ+4
(n−3)(N−n+1)γ+4(N−n+1) is indeed the maximum point when

n ≤ N − 2.
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Proof of Proposition 2.4

Proof. Denote the solution set to the maximization problem 92 as O. Take (t̂, n̂) ∈ O but not in

{
(
tR
∗
(n∗), n∗

)
| n∗ ∈ S}. If n̂ ∈ S, it must be t̂ 6= tR

∗
(n̂). However, in the Proof of Proposition

2.3 it has been shown that tR
∗
(n̂) is the only maximum point of UR(tR, n̂). Therefore, UR(t̂, n̂) <

UR(tR
∗
(n̂), n̂), contradiction to the assumption that (t̂, n̂) maximizes UR(tR, n). If n̂ /∈ S, take

n∗ ∈ S, then we have UR(t̂, n̂) ≤ UR(tR
∗
(n̂), n̂) < UR(tR

∗
(n∗), n∗). This is contradictory to

(t̂, n̂) maximizing UR(tR, n). In sum, we conclude that O ⊆ {
(
n∗, tR

∗
(n∗)

)
| n∗ ∈ S}.

Assume there exists n∗ ∈ S but (tR
∗
(n∗), n∗) /∈ O. If there exists (t̂, n∗) ∈ O, then t̂ 6=

tR
∗
(n∗). We have UR

(
tR
∗
(n∗), n∗

)
> UR(t̂, n∗), as it has been shown that tR

∗
(n̂) is the only

maximum point of UR(tR, n̂) in the Proof of Proposition 2.3. It is contradictory to the fact

that (t̂, n∗) ∈ O. If there does not exist (t̂, n∗) ∈ O, then for any (t̂, n̂) ∈ O, n̂ 6= n∗. It follows

that UR(tR
∗
(n∗), n∗) ≥ UR(tR

∗
(n̂), n̂) ≥ UR(t̂, n̂), so (tR

∗
(n∗), n∗) must also be in O, which is

a contradiction to our assumption. In sum, we conclude that O ⊇ {
(
n∗, tR

∗
(n∗)

)
| n∗ ∈ S}.

In conclusion, O = {
(
n∗, tR

∗
(n∗)

)
| n∗ ∈ S}.

.

Proof of Proposition 2.5

Proof. First, note that if P > γ(N−1)
2 + 1, t̄i = 1 for all i. In addition, P > vi(ti) for all i. As

a result, the seller fails to sell the item and gets 0 payoff if she sets the price P > γ(N−1)
2 + 1.

On the other hand, if P ≤ γ(N−1)
2 , then v1(t1) ≥ P for all t1. As a result, the item is sold

to the first buyer for sure and the payoff is simply P . In this situation, setting P < γ(N−1)
2 is

suboptimal. In conclustion, the optimal P that maximizes the the expected seller payoff must

fall into the following interval
[
γ(N−1)

2 , γ(N−1)
2 + 1

]
.

.
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Proof of Proposition 3.1

Proof. It can be shown that gn(p) given in Equation 125 is a special case of function gF (x; a, b)

defined by Jones (2004) as

gF (x; a, b) =
1

B(a, b)
f(x)F a−1(x) (1− F (x))b−1 (173)

where B(a, b) is the beta function, when a = n− 1 and b = 2.

According to Jones (2004), if the distribution defined by the CDF F (x) is symmetric in R,

the sign of a−b determines the skewness of the density function gF (x; a, b). In the case of gn(p),

a− b = n− 3 > 0. As result, gn(p) is left-skewed.

Proof of Proposition 3.2

Proof. First, as shown in the proof of Proposition 3.1, gn(p) given in Equation 125 is a special

case of function gF (x; a, b). As a result, the work by ? shows that (in their Theorem 7.2)

gn(p) is strong unimodal and continuous because f(v) is log-concave. Therefore, for any z ∈

(0,max gn(p)), there exist two and only two different solutions for p to the equation gn(p) = z.

Denote the two solutions as l and h with l < h. Note that l and h are functions of z.

Define s as s ≡
∫ h
l gn(x)dx, it is easy to verify that (l, h) is a solution to the maximization

problem

max
(L,H)

| H − L |

s.t.

∫ H

L
d (Gn(x)) = s

(174)

Define m ≡ 1
2(l + h), it is apparent that m is a continuous function of z. Denote p∗ as the

peak of gn(p) as it is unimodal, then lim
z→gn(p∗)

m(z) = p∗. In addition, because f(v) is symmetric

on R, lim
z→0

m(z) =
∫
R xf(x)dx.
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According to Proposition 3.1, gn(p) is left-skewed, so
∫
R xgn(x)dx < p∗. The definition

of gn(p) implies that
∫
R xf(x)dx <

∫
R xgn(x)dx, so we have

∫
R xf(x)dx <

∫
R xgn(x)dx < p∗.

According to the intermediate value theorem, there exists z∗ such that 0 < z∗ < gn(p∗) and

m(z∗) =
∫
R xgn(x)dx.

Let l∗ = l(z∗), h∗ = h(z∗) and c∗ =
∫ h∗
l∗ gn(x)dx, then

1. (l∗, h∗) ∈ argmin
(L,H)

| H − L | s.t.
∫ H
L d (Gn(x)) = c∗

2. l∗+h∗

2 =
∫
R xd (Gn(x))

Note s is also a continous function of z. It is easy to show that s(z) is decreasing in z and

that lim
z→gn(p∗)

= 0 due to the unimodality of gn(p). By the intermediate value theorem, for any

c that 0 < c < c∗, there exists ẑ such that s(ẑ) = c. By construction, (l̂, ĥ) ∈ argmin
(L,H)

| H − L |

s.t.
∫ H
L d (Gn(x)) = c.

Since gn(p) is strong unimodal and left-skewed, the work by ? and Jones (2004) show that

l∗ < l̂ < ĥ < h∗ and that for any z that z∗ ≤ z ≤ ẑ, d
dlgn(l(z)) + d

dhgn(h(z)) < 0. Then, one can

show that l′(z) + h′(z) > 0. As a result,

1

2
(l̂ + ĥ) =

1

2

((
l∗ +

∫ ẑ

z∗
l′(x)dx

)
+

(
h∗ +

∫ ẑ

z∗
h′(x)dx

))
=

1

2

(
l∗ + h∗ +

∫ ẑ

z∗

(
l′(x) + h′(x)

)
dx

)
>

1

2
(l∗ + h∗)

=

∫
R
xd (Gn(x))

(175)
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