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Thesis Abstract 

Childhood apraxia of speech (CAS) is a paediatric motor speech disorder of 

neurological origin. It affects the intelligibility of a child’s speech, resulting in consonant and 

vowel omissions, substitutions and/or distortions; interrupted transitions between sounds and 

syllables in words and phrases; as well as prosodic difficulties. If left untreated, these 

difficulties with speech production can have a long-term negative impact on academic 

achievement and social/emotional wellbeing. 

Assessment of speech sound disorders (SSD), including CAS, is traditionally 

perceptually-based and, anecdotally, has been reported to take up a large proportion of 

clinicians’ time. Prosodic deficits have been established as a key predictive factor in 

diagnosis of CAS, yet little is known about optimal methods of assessing and evaluating 

prosody. Perceptually-based assessments can be subject to various sources of error and bias, 

however, objective methods are infrequently used. 

Research indicates that best practice for CAS includes intervention frequency of 2-4 

sessions per week with dose frequency of at least 100 production trials per session. However, 

these treatment intensities do not reflect typical services in Australia or other countries where 

typical session frequency is once per week or 1-2 times per month. Families face numerous 

barriers including service availability; service cost; and distance to services, as well as 

barriers of time when they are called upon to supplement their clinic visits with home 

practice. When home practice is implemented, research indicates that speech practice is 

perceived as work, some children dislike having parents as therapist, some parents do not feel 

confident running sessions themselves and studies of speech perception abilities in untrained 

adult listeners suggest that parents’ ability to detect speech errors and provide accurate 

feedback may not be optimal. 
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Given the rapid advances in technology over the past decade, this thesis examines the 

potential for automatic speech recognition (ASR) technology to expedite the process of 

objective analysis of speech, particularly for lexical stress patterns. This dissertation also 

investigates the potential for mobile technology to bridge the gap between current service 

delivery models in Australia and best practice treatment intensity for CAS. To address these 

two broad aims, this thesis describes three main projects. 

The first project is a systematic literature review of ASR technology as applied to the 

evaluation and modification of speech production skills in children, either in cases of speech 

sound disorder or foreign language learning. A systematic search and review of the literature 

published between January 2007 and December 2016 was conducted to explore: (i) the types 

of automatic speech analysis (ASA) tools being applied as well as the populations of children 

and aspects of speech production to which they are applied; (ii) the performance accuracy of 

these tools compared with human perceptual evaluation; and (iii) whether there is evidence 

for treatment efficacy/behaviour change when using these automated tools. Across the 32 

studies included in the review, 18 different tools were identified. These tools were applied to 

speech sound disorders from arrange of aetiologies as well as to children learning foreign 

languages. The majority of tools had been developed for analysis of phonemic accuracy, with 

only one quarter including analysis of prosodic accuracy. Most tools were applied to word 

level speech, with around one third applied to phrase level speech production. ASA tools 

were being implemented for four main purposes. These included: (i) word recognition (i.e. 

whether the tool can recognise the word being spoken by the user) – these tools can be used 

as measures of intelligibility or overall severity of disorder; (ii) judgement of the incoming 

spoken word or phrase as correct or incorrect based on reference to a stored representation; 

(iii) classification or categorisation of the incoming speech into a category such as lexical 
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stress pattern or phoneme error type (i.e. omission, substitution) and (iv) behaviour change – 

these tools were incorporated into a treatment package designed to facilitate speech 

modification. There was a wide range of performance accuracy values when comparing the 

tool’s output to human perceptual judgement. The findings of the review indicated that ASA 

tools have clinically acceptable reliability (> 80%) with human perceptual judgement for 

predicting intelligibility or severity of disorder, correct/incorrect judgements of phoneme and 

lexical stress patterns for typical developing speech, classification of typically developing 

lexical stress patterns and classifying/categorising phoneme error patterns in speech sound 

disorder only when the tool had been specifically trained on disordered speech. Automated 

tools were not able to meet clinically acceptable reliability thresholds when judging 

phonemic pronunciation or lexical stress patterns for mispronounced words from children 

with speech sound disorders or children learning an additional language. 

The second project is a validation study exploring the accuracy of an automated 

lexical stress classification tool compared with human perceptual judgment. The tool was 

designed by one of the co-authors and team members from electrical engineering and 

intended for use as one part of a multi-component speech processing engine that would 

analyse children’s speech production attempts on a clinician server. This server and a custom 

designed mobile application called Tabby Talks, were designed to facilitate tablet-based 

home practice of speech production targets and remote monitoring by the clinician using the 

server. This project extended on earlier investigations of the tool’s accuracy by including a 

larger number of participants with CAS and a wider range of three-, four- and five-syllable 

words; and comparing both CAS and TD speech with human perceptual judgement (rather 

than dictionary defined lexical stress patterns). Guided by the findings of the systematic 

review project, this study also explored the effects of pre-training the tool with information 

about specific pronunciation errors made by the children as well as the influence of within 
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word phonetic contexts, age of the speaker and percent phoneme accuracy. The results were 

consistent with the findings from the systematic review that automated tools can reliability 

classify lexical stress patterns for TD speech when compared to human perceptual judgement. 

The automated tool in this study was also able to classify strong-weak (SW) words produced 

by children with CAS, however, classification accuracy for weak-strong words (WS) and 

overall classification accuracy did not reach clinically acceptable reliability thresholds. The 

tool classified TD speech with significantly greater accuracy than CAS speech and classified 

SW words with significantly greater accuracy than WS words for both experimental groups. 

Within-word phonetic features and phoneme/pronunciation accuracy were only weakly 

correlated with lexical stress classification accuracy. Unlike results from earlier research, use 

of a pre-trained, knowledge-driven classification algorithm offered no advantage to 

classification accuracy for any word type in either experimental group. The overall 

conclusions indicate that ASA tools require continued development and training using larger 

datasets of disordered speech. 

The third project presented in this thesis is an intervention study exploring the effect 

of different types of feedback on response to intervention for children with CAS. This is a 

randomised control trial using an established treatment program for CAS, The Nuffield 

Dyspraxia Programme – Third Edition (NDP3). Treatment was delivered in the speech 

pathology clinic via a custom-designed mobile application, Tabby Talks, to two groups of 

children with CAS, both receiving treatment sessions following evidence-based treatment 

intensity guidelines. The intervention was designed to specifically explore the feasibility and 

effectiveness of using an app that, in the future, could be equipped with ASR technology to 

provide feedback on speech production accuracy during home practice sessions, simulating 

the common service delivery model in Australia. One group received app-delivered face-to-

face treatment and augmented feedback from a speech pathologist four days per week for 
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three weeks (KP group). The home practice simulation group (KR group) received face-to-

face app-delivered treatment with augmented feedback from a speech pathologist one day per 

week for three weeks and received only right/wrong feedback on speech production accuracy 

from the clinician for the remaining three days per week, simulating the type of feedback that 

ASR technology would provide during independent app-based home practice. Fourteen 

children with mild to severe CAS, aged 4;0 to 10;10 participated in the intervention. 

Participants were matched for age and severity and randomised to a treatment condition using 

stratified randomisation. Both experimental groups responded to the feedback condition they 

received and made positive gains in treated and untreated real word accuracy over time. 

Although there was no significant difference between the groups at any time point, the KP 

group had made significant gains in treated word accuracy immediately post-treatment, 

similar to traditional paper-based NDP3 treatment, while the KR group had not. Notably, 

both groups continued to improve over time and both groups were performing significantly 

above baseline levels of accuracy for treated and untreated words at long-term follow up. 

Clinicians, parents and children were surveyed about their experiences using mobile 

technology to engage with intensive speech therapy. All participants reported a general 

preference for app-delivered therapy compared with traditional paper-based table-top 

interventions. This study was the first of its kind to directly compare the effects of different 

types of feedback whilst maintaining the same feedback schedule between groups. The 

findings support the feasibility for mobile applications, that could be equipped with future 

ASR technology that can provide reliable and accurate feedback on speech productions, to 

facilitate intensive practice of speech production targets and bridge the gap between optimal 

treatment intensity for CAS and the realities of access to services in Australia. 

Collectively, the findings from all three projects highlight the potential for ASR 

technology, once well-trained on disordered speech and rigorously evaluated, to support 
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clinicians with efficient and objective analysis of disordered speech. Mobile applications with 

in-built ASR have the potential to increase children’s motivation and engagement with 

intensive practice schedules and can be an effective supplement to face-to-face therapy with a 

clinician. The final chapter of this thesis discusses future directions for technology-based 

speech assessment and intensive speech production practice, guidelines for future 

development of therapy tools that include more game-based practice activities and the 

contexts in which children can be transferred from predominantly clinician-delivered 

augmented feedback to ASR-delivered right/wrong feedback and continue to make optimal 

gains in acquisition and retention of speech production targets. 
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Chapter 1:  

Childhood Apraxia of Speech (CAS): Nature and 

Treatment Needs 
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Childhood Apraxia of Speech 

Childhood apraxia of speech (CAS) is a subtype of speech sound disorder (SSD). 

Using the Speech Disorders Classification System (SDCS; Shriberg et al., 2010), CAS 

belongs to the typology ‘motor speech disorder’ and the specific subtype ‘motor speech 

disorder – childhood apraxia of speech’. It has only been in the last decade, that consensus 

has been reached regarding the terminology, nature, and core features of CAS. Historically, 

suspected developmental apraxia of speech (DAS) was a term applied to children whose 

speech production patterns (a) differed from other children with speech delay; (b) took longer 

to normalise even with intervention; and (c) resembled the difficulties exhibited by adults 

with acquired apraxia of speech (AOS) (see Shriberg, Aram & Kwiatkowski, 1997a for a 

review). Diagnosis was made perceptually, based on the presence or absence of features from 

diagnostic checklists which included a wide range of speech behaviours (e.g. Davis, Jakielski, 

& Marquardt, 1998; Hall, Jordan, & Robin, 1993; McCabe, Rosenthal, & McLeod, 1998) that 

did not adequately differentiate between CAS and other types of paediatric phonological or 

motor speech disorders (e.g. Davis et al., 1998; McCabe et al., 1998).  

In the mid 2000s, the American Speech-Language-Hearing Association (ASHA) 

conducted a large-scale literature review and consulted with an expert committee of 

researchers and consumer representatives. The resultant publication of a position statement 

(ASHA, 2007a) and technical report (ASHA, 2007b) declared a consensus position on the 

nature and features of CAS. The report defined CAS as “a neurological (pediatric) speech 

sound disorder in which the precision and consistency of movements underlying speech are 

impaired in the absence of neuromuscular deficits (e.g. abnormal reflexes, abnormal tone) 

…..The core impairment in planning and/or programming spatiotemporal parameters of 

movement sequences results in errors in speech sound production and prosody” (ASHA, 

2007a; ASHA, 2007b). The consensus process provided three core features of CAS: 
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inconsistent errors on consonants and vowels; difficulty with co-articulatory transitions 

between sounds and syllables; and prosodic deficits, particularly with marking lexical or 

phrasal stress (ASHA, 2007b). Although these three features were not intended to be 

necessary or sufficient for diagnosis of CAS, they have subsequently been regularly used by 

researchers as minimum diagnostic criteria (e.g. Namasivayam et al., 2015; Murray, McCabe 

& Ballard, 2015). 

Over the years, there have been some efforts to operationalise measures and/or 

methods for repeated and reliable measurement of the core features of CAS. For example, 

Shriberg and colleagues developed a range of qualitative (i.e. the Speech Disorders 

Classification System; Shriberg, 1993; Shriberg et al., 2010) and quantitative (e.g. the 

Articulation Competence Index for classifying severity of speech impairment in intervals 

based on percent consonants correct (PCC) or the Prosody-Voice Profile; Shriberg, 1993) 

methods aimed at identifying specific behavioural markers that were linked to genetic 

mutations (Lawrence D. Shriberg, 1993) and improving differential diagnosis of CAS 

(Shriberg, Aram, & Kwiatkowski, 1997b, 1997c). Murray and colleagues further explored the 

suite of measures that could achieve the highest predictive power with the goal of improving 

accuracy of clinical diagnosis of CAS (Murray, McCabe, Heard, & Ballard, 2015). In 2015, 

Iuzzini-Seigel and colleagues (2015) operationalised eleven commonly applied diagnostic 

features to encourage repeatable and reliable measurement of these features. These included: 

vowel error, consonant distortion, stress errors, syllable segregation, groping, intrusive 

schwa, voicing errors, slow rate, increased difficulty with multisyllabic words, resonance 

disturbance, difficulty achieving initial articulatory postures (Iuzzini-Seigel et al., 2015). 

However, the authors have not yet evaluated these metrics for sensitivity and specificity for 

CAS. Most recently, Shriberg and colleagues proposed a new behavioural marker, the Pause 

Marker Index, as a valid and highly sensitive and specific diagnostic marker of CAS 
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(Shriberg et al., 2017b). This measures the percentage of inappropriate between-word pauses 

from a sample of 24 utterances in a continuous speech samples that meets eligibility for 

coding using the Prosody-Voice Screening Profile (Shriberg et al., 2017a). The authors 

operationalized ‘inappropriate pauses’ as being either (i) linguistically inappropriate in length 

or location; or (ii) having articulatory, voicing or prosodic features with the pause or an 

adjacent sound segment (Shriberg et al., 2017a).  

Assessment & Diagnosis of CAS  

 Assessment of CAS has traditionally been conducted via auditory-perceptual 

judgments of the presence or absence of features. However, reliability and validity of 

perceptual judgments are vulnerable to numerous sources of error and bias (see Kent, 1996) 

(Kent, 1996). In addition, traditional methods may not adequately differentiate disorders 

(Ballard, Granier & Robin, 2000; McNeil, Robin & Schmidt, 1997).  

Post-assessment data analysis and paperwork is reported to be equally (McLeod & 

Baker, 2014) or more time consuming than the direct assessment process (Skahan, Watson, & 

Lof, 2007). However, computerised methods are infrequently used (McLeod & Baker, 2014; 

Skahan et al., 2007). It is clear that there is scope for the development of automated tools. 

These tools could facilitate large scale studies which would allow for the development of 

normative databases on specific acoustic speech measures and enable exploration of 

sensitivity and specificity of measures used to differentially diagnose speech disorders such 

as CAS (McKechnie et al., 2008; Kent & Kim, 2003). Such tools have the potential to both 

increase objectivity and accuracy as well as expedite the processes involved in speech 

analysis both for diagnosis and monitoring of post-treatment retention of skills. Reliable 

diagnosis of CAS is critical for ensuring that children receive timely and appropriate 
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intervention in order to mitigate some of the recognised long-term difficulties associated with 

persistent CAS.  

Associated difficulties and long term impact. 

The speech difficulties associated with CAS have been reported to take longer to 

resolve than other SSDs (Forrest, 2003; Shriberg, Aram, & Kwiatkowski, 1997) and can persist 

throughout childhood and into adulthood (Carrigg, Parry, Baker, Shriberg, & Ballard, 2016; 

Lewis, Freebairn, Hansen, Iyengar, & Taylor, 2004; McCabe, Preston, Murray, Bricker, & 

Morgan, 2017). Some children with CAS may also demonstrate one or more additional deficits 

such as difficulty with auditory encoding and auditory memory skills (Shriberg, Lohmeier, 

Strand, & Jakielski, 2012); delays in the development of sensorimotor, sequential memory and 

attention skills (Nijland, Terband, & Maassen, 2015); lower verbal intelligence scores (Carrigg 

et al., 2016); greater reliance on auditory feedback than other children (Iuzzini-Seigel et al., 

2015; Terband, van Brenk, & van Doornik-van der Zee, 2014); poorer expressive morphology 

(Murray, Thomas, & McKechnie, 2018); poorer expressive language skills (Lewis et al., 2004); 

and difficulties with phonological awareness (McNeil, Gillon, & Dodd, 2009).  

Persistent CAS has been demonstrated to have a long term negative impact on the 

development of academic and literacy skills (Gillon & Moriarty, 2007; Lewis et al., 2004; 

Snowling & Stackhouse, 1983); social-emotional well-being (Carrigg, Baker, Parry, & Ballard, 

2015; Carrigg et al., 2016; McCabe et al., 2017; McCormack, McAllister, McLeod, & Harrison, 

2012); and vocational prospects (Carrigg et al., 2015; McCabe et al., 2017). In light of the long 

lasting and pervasive impact of CAS, effective treatment is necessary in order to mitigate these 

identified risks. 

Speech Motor Control and Motor Learning 
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Given the consensus that CAS is a disorder of motor planning and/or programming 

(ASHA, 2007b), intervention protocols for CAS should be guided by the Principles of Motor 

Learning (PML) approach (Schmidt & Lee, 2011). These principles were developed 

following investigations into how healthy and typically developing individuals learn skilled 

limb movements and provide guidance around a number of specific practice and feedback 

conditions that facilitate the acquisition and/or retention of motor skills (see Schmidt & Lee, 

2011).  

Practice conditions 

Amount of practice.  The nonspeech motor literature suggests that a larger number of 

trials (i.e. amount of practice) leads to greater retention, however, this probably also has an 

interaction effect with other practice variables such as constant versus variable practice and 

blocked versus random practice (see Schmidt & Lee, 2011). Evidence from speech motor 

control studies also supports the principles of large amounts of practice (operationalised as 

number of trials per session) is more beneficial than fewer, specifically for CAS (e.g. Edeal & 

Gildersleeve-Neumann, 2011; Kim, LaPointe, & Stierwalt, 2012).   

Distribution of practice. Distributing practice over a longer time period has 

generally been found to have greater benefit for performance and retention of nonspeech 

motor skills as compared with massed practice (see Schmidt & Lee, 2011). This seems to not 

necessarily be the case for speech production skills, with studies of distributed practice during 

Lee Silverman Voice Treatment (LSVT) for dysarthria associated with Parkinson’s disease 

(Spielman, Ramig, Mahler, Halpern & Gavin, 2007) and also during Rapid Syllable 

Transition Treatment (ReST) for CAS (Thomas, McCabe, & Ballard, 2014) finding 

comparable outcomes compared with studies using more massed practice approaches. 
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Practice variability. Constant practice of the same movement in the same way has 

been found to benefit acquisition of new skills, while variable practice, where some aspect of 

a movement such as timing or intensity is changed, has been found to benefit longer term 

learning and retention of a skill (e.g. Lai, Shea, Wulf & Wright, 2000; see also Schmidt & 

Lee, 2011 for a review).  Some evidence from speech motor literature comparing constant 

versus variable practice reported equivocal results, with no difference between groups at the 

end of the acquisition phase (Adams & Page, 2000). Other studies of speech motor control 

have provided support for the benefit of variable practice (e.g. by training production of 

sounds in various phonetic contexts) on acquisition and transfer of skills (Ballard, Maas & 

Robin, 2007; Wambaugh et al., 1998, 1999; Austerman Hula et al., 2008), however, these 

studies did not directly compare constant with variable practice.   

Practice Schedule. In nonspeech motor literature, blocked practice schedules have 

been demonstrated to enhance acquisition of skills while random practice enhanced longer 

term retention and transfer to novel skills (see Maas, 2008 and Schmidt & Lee, 2011 for 

reviews). Evidence supporting the use of randomised blocks of trials, where targets are 

presented in random order but each target is practiced in a short block before the next target 

is presented, found equivalent or greater benefit on performance and retention as compared 

with purely random practice (see Schmidt & Lee, 2011). These results suggest that 

randomized blocks of trials are a good middle ground between maximising the positive 

effects of blocked practice on acquisition of skills and of random practice on 

retention/learning of skills. Practice schedules have been directly compared in speech motor 

control of healthy young adults, with results indicating that random practice was more 

beneficial than blocked practice for retention of skills however there were no discernible 

differences between the two practice schedules when examining the effect on acquisition of 

skills (Adams & Page, 2000) and participants with AOS (Knock, Ballard, Robin, & Schmidt, 
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2000). This principle has also been directly studied with a small sample of participants with 

CAS (Maas & Farinella, 2012). Findings were mixed, with two children demonstrating an 

advantage of blocked practice, one child demonstrating an advantage from random practice 

and another child demonstrating no response to either practice schedule (Maas & Farinella, 

2012).  This principle requires further investigation using larger sample sizes and exploring 

the effect on speech disorders of varying aetiologies. 

Movement complexity 

Simple (part) versus complex (whole). Evidence from nonspeech motor literature 

suggests that practising part of a movement task does not generalise to improved performance 

of the whole task (see Schmidt & Lee, 2011). In motor speech disorders, evidence suggest 

that targeting complex novel behaviours facilitates generalisation to real words (e.g. Murray, 

McCabe, & Ballard, 2015; Schneider & Frens, 2005; Thomas et al., 2014) These findings are 

consistent with the main overall principle of the challenge point framework in that learners 

need to be challenged in order for learning to occur (Guadagnoli & Lee, 2004).  

Feedback conditions 

 Discussion of feedback conditions here will be focused on those conditions which 

have been investigated in both speech and nonspeech motor literature. For a full overview of 

different feedback conditions see Schmidt and Lee (2011). 

 High versus low frequency feedback. Motor learning literature generally supports 

an advantage for low frequency feedback (see Schmidt & Lee, 2011; Wulf, Shea, & 

Lewthwaite, 2010). This is interpreted in relation to the guidance hypothesis, in the sense that 

frequent feedback guides the individual towards the correct response and may create a 

dependency such that performance degrades when feedback is removed (Salmoni, Schmidt, 

& Walter, 1984). Conversely, low frequency feedback provides the learner with the 



9 
 

opportunity to evaluate their own errors (Guadagnoli & Kohl, 2001). However, feedback 

frequency may interact with task complexity, in that more complex skills may need more 

frequent feedback (Swinnen, Lee, Verschueren, Serrien & Bogaerds, 1997). 

 In speech, evidence from healthy speakers also supports an advantage for reduced 

frequency feedback when measuring retention of novel speech behaviours (Adams & Page, 

2000; Kim et al., 2012). In disordered speech, studies directly comparing high frequency with 

low frequency feedback in AOS (Austermann Hula, Robin, Maas, Ballard, & Schmidt, 2008) 

and CAS (Maas, Butalla, & Farinella, 2012) have reported mixed results with some 

participants benefiting from high frequency and others from low frequency feedback. The 

principle of low frequency feedback offering an advantage to motor learning has been largely 

accepted and systematically applied during investigations of the ReST treatment protocol, 

with numerous studies supporting ReST treatment as efficacious (Ballard, Robin, McCabe, & 

McDonald, 2010; McCabe, Macdonald-D'Silva, van Rees, Ballard, & Arciuli, 2014; Murray, 

McCabe, & Ballard, 2015; Thomas et al., 2014; Thomas, McCabe, Ballard, & Lincoln, 2016). 

 Immediate versus delayed feedback. Nonspeech motor literature supports an 

advantage for delayed feedback, interpreted again in relation to the guidance hypothesis 

(Salmoni et al., 1984) as it can be assumed that immediate feedback interrupts any intrinsic 

feedback the learner may generate for themselves (see Schmidt & Lee, 2011; Maas et al., 

2008 for reviews). This principle has been successfully applied to treatment for CAS using 

ReST (e.g. McCabe et al., 2014, Murray et al., 2015, Thomas et al., 2016) where feedback is 

provided at reduced frequency and following a three second delay. However, when feedback 

timing was directly compared in AOS, the results suggested that delayed feedback was more 

effective for some but not all participants (Austermann Hula et al., 2008), suggesting that 

further investigation of the differential effects of feedback timing is warranted with larger 

populations of speakers with disorders of speech motor control. 
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 Knowledge of results versus knowledge of performance. Knowledge of results 

(KR) refers to the provision of summative information in regards to the accuracy of a 

completed movement sequence, whereas, knowledge of performance (KP) includes specific 

information about the nature of the movement in regards to which parts of a movement 

sequence were in/correct, how or why they were in/correct and how to change these 

parameters in order to achieve a correct movement sequence on the next attempt (Maas et al., 

2008; Schmidt & Lee, 2011). 

 In the nonspeech motor literature, KP has been found to be beneficial when the goal 

or task is novel to the learner, that is, when the learner does not have any internal reference of 

correctness (Newell, Carlton & Antoniou, 1990). KP was found to not be more effective than 

KR when the goal is known (Swinnen, Walter, Lee & Serrien, 1993). In another study from 

around the same time, Young & Schmidt (1992) demonstrated that KP was more effective in 

the acquisition phase of motor learning but did not lead to improved performance on retention 

testing, whereas KR demonstrated an advantage for motor learning and retention.  

 Feedback type has never been directly compared in studies of speech motor control. 

The nonspeech motor literature findings of a retention advantage for KR feedback seems to 

have led to widespread acceptance and application of KR feedback in studies of speech motor 

control and learning, however, when investigating the influence of other types of feedback 

conditions in studies of CAS, findings have been mixed. One reason for this may be due to 

the use of KR feedback with children who may not yet have a stable internal reference of 

correctness and therefore may benefit from a period of KP to establish acquisition of novel 

speech motor movements before moving to KR style feedback to support long term learning. 

PML and Intervention Protocols for CAS 
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 Several motor-based treatments for CAS incorporate PML into their protocols. Those 

with preponderant evidence for treatment efficacy include Dynamic Temporal and Tactile 

Cueing [DTTC] (Strand & Debertine, 2000; Strand, Stoeckel, & Baas, 2006), ReST (Ballard 

et al., 2010), and the Nuffield Dyspraxia Programme – Third Edition [NDP3] (Williams & 

Stephens, 2004). DTTC incorporates high practice amounts, massed practice, variable 

practice of targets and feedback designed on a hierarchy and faded based on production 

accuracy (see Strand, Stoeckel & Baas, 2006). ReST incorporates high practice amounts, 

massed practice, randomised presentation of stimuli, and delayed, reduced frequency KR 

feedback (see Ballard et al., 2010; McCabe, Macdonald-D'Silva, van Rees, Ballard & Arciuli, 

2014; Murray, McCabe, & Ballard, 2012). NDP3 incorporates principles aimed at facilitating 

acquisition of new speech behaviours and incorporates frequent KP feedback and blocked 

practice (see Murray et al., 2012; Williams & Stephens, 2004).  

 Few principles have been directly compared in CAS. Exceptions include Edeal & 

Gildersleeve-Neumann (2011) who examined the role of practice amount in treatment using 

DTTC; Maas & Farinella (2012), examining the effects of blocked versus random practice 

during DTTC intervention; Maas, Butalla & Farinella (2012) examining the effect of 

feedback frequency in DTTC intervention; Namasivayam and colleagues (2015) comparing 

the effects of weekly versus twice weekly intervention using the Motor Speech Treatment 

Protocol (MSTP); and Thomas, McCabe & Ballard (2014), exploring practice distribution 

using ReST intervention. To date, there has been no direct comparison of feedback type in 

studies of speech motor control.  

The paper presented in Chapter 6 is a submitted manuscript directly examining the 

effects of type of feedback on treatment outcomes in CAS. The study arose from the need to 

explore alternative service delivery methods such as mobile applications as a way to achieve 

optimal practice conditions for children with CAS. Faithful application of PML, particularly 
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the principles around practice amount, practice distribution and practice schedule is difficult 

to achieve within the Australian clinical context where organisation or institution policies, 

workload, or other barriers, as discussed in the section below, typically do not allow for the 

sort of intensive practice schedule needed.  

Service Delivery  

Intervention intensity is an influential contributing factor to treatment outcomes for 

SSDs in general and CAS in particular. Intervention intensity is often reported in the 

literature in terms of number of intervention sessions received per week with more intense 

treatment leading to greater outcomes for children with SSDs including CAS (Allen, 2013; 

Baker, 2012; Kaipa & Peterson, 2016; Namasivayam et al., 2015; Williams, 2012). However, 

session frequency is not the only means of conceptualising intervention intensity. Warren, 

Fey and Yoder (2007) identified several factors which must be considered when investigating 

intervention intensity. These include: dose frequency, the number of times intervention is 

provided per day or per week within the intervention period; dose, the number of teaching 

moments during an intervention session; dose form, the task or activity within which the 

teaching moment is delivered; total intervention duration, the time period over which the 

intervention is administered; and cumulative intervention intensity, an index of overall 

intensity which is the product of dose by dose frequency by total intervention duration 

(Warren et al., 2007). There is a tendency for these parameters to be under-reported in 

treatment research (Justice, 2018; Zeng, Law, & Lindsay, 2012). Variations may influence 

the treatment outcome such that the relationship may not be non-linear, and more may not 

always equal better (Baker, 2012). 

From the best available evidence to inform clinical practice, the recommended dose 

frequency for SSDs in general (Sugden, Baker, Munro, Williams, & Trivette, 2018) and CAS 
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specifically (Murray, McCabe, & Ballard, 2014) is between two and four individual sessions 

per week of 30-60 minutes in duration. These intensities do not reflect typical practice, either 

in Australia or internationally, where sessions are most often reported to be once per week or 

1-2 sessions per month (Brumbaugh & Smit, 2013; Hegarty, Titterington, McLeod, & 

Taggart, 2018; Keilmann, Braun, & Napiontek, 2004; Oliveira, Lousada, & Jesus, 2015; 

Ruggero, McCabe, Ballard, & Munro, 2012; Sugden et al., 2018; To, Law, & Cheung, 2012). 

For treatment of CAS specifically a recent survey of Australian speech-language pathologists 

(SLPs) identified the most common dose frequency as once per week, with a duration of 30-

45 minutes per session (Gomez, McCabe, & Purcell, 2018). Interestingly, dose frequency did 

not influence respondents’ perception of treatment efficacy (Gomez et al., 2018).  

Two recent systematic reviews of the evidence reported that recommended dose is 

100 production trials per session for both SSD in general (Sugden et al., 2018) and CAS 

specifically (Murray, McCabe, & Ballard, 2014). In practice, a slim majority (51.9%) of 

Australian clinicians reported adhering to the 50-100 production trials per session as 

recommended in the SSD research evidence; however, a large number (44%) were not 

meeting this standard (Sugden et al., 2018). 

Service delivery: barriers 

There are several commonly reported barriers to the implementation of the high 

amounts of therapy that are recommended for CAS recommended amount of therapy. In 

Australia, one of the most frequently reported is that the number of SLPs in the workforce is 

unable to meet community demand. SLPs also frequently report workplace issues including 

productivity/workload demands, high caseloads, workplace policy/mandates and insufficient 

funding as influential factors to caseload management and dose frequency (Edgar & Rosa-

Lugo, 2007; Gomez et al., 2018; Kenny & Lincoln, 2012; Lim, McCabe, & Purcell, 2017; 
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Sugden et al., 2018). High workloads and large caseloads have been reported to interact with 

SLPs’ longevity and retention in the workforce, further compounding the difficulty with 

availability of services (Edgar & Rosa-Lugo, 2007). Long waiting lists (McAllister, 

McCormack, McLeod, & Harrison, 2011; O'Callaghan, McCallister, & Wilson, 2005; 

Ruggero et al., 2012) and typical operating hours (Lim et al., 2017; McAllister et al., 2011) of 

speech pathology services also pose challenges.  

Provision of services in rural and remote areas create unique issues. Clinicians can be 

called upon to travel to their clients, and long travel distances cut into the clinician’s available 

time for delivery services (Verdon, Wilson, Smith-Tamaray, & McAllister, 2011). 

Conversely, families often carry the burden of travel which places demands on families’ time 

as well as the added burden of costs involved in fuel for motor vehicles or use of public 

transport (McAllister et al., 2011; O'Callaghan, McAllister, & Wilson, 2005; Wilson, 

Lincoln, & Onslow, 2002). In addition, families face barriers of access related to the cost of 

speech pathology services, with limitations on the number of publicly funded services and 

high costs involved in accessing private speech pathology services (Kenny & Lincoln, 2012; 

Ruggero et al., 2012; Verdon et al., 2011). Families who are accessing speech pathology 

services may still encounter barriers to their engagement with these services. A 2011 survey 

of families’ experiences participating in speech pathology services (McAllister et al., 2011) 

found that families often report difficulty scheduling clinic-based therapy into their daily 

lives. However, the issues are complex, with a 2012 survey of Australian parents (Ruggero et 

al., 2012) reporting that families receiving services fewer than one time per week desired 

more.  

Service delivery: potential solutions 

Tele-practice. 
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One potential solution for overcoming barriers of access that has been increasingly 

researched in recent years is tele-practice. Tele-practice is defined by ASHA (n.d.) as “…the 

application of telecommunications technology to the delivery of speech language pathology 

and audiology professional services at a distance…”. It includes (a) synchronous services 

conducted in real-time using interactive audio and/or video connections such as telephone, 

videophone and, most commonly, internet-based videoconferencing as well as (b) 

asynchronous services where images or data are collected and transferred to a clinical 

professional for later viewing and interpretation and (c) hybrid methods incorporating some 

combination of synchronous and asynchronous services (Stewart Keck & Doarn, 2014; 

Theodoros, 2012).  

Tele-practice has been used successfully to assess and treat a variety of speech and 

language in both children and adults, including developmental language disorders and 

aphasia, phonological and motor speech disorders, stuttering, voice disorders and craniofacial 

anomalies (see Stewart Keck & Doarn, 2014 for a review). In CAS specifically, a phase 1 

multiple baseline single case experimental design (SCED) exploring the efficacy of ReST 

delivered via internet-based video conferencing demonstrated that children were able to make 

significant gains in speech production skills, which generalised to untreated behaviours 

(Thomas et al., 2016). These gains were similar in magnitude to face-to-face delivery of 

ReST treatment with maintenance of skills at 4-month follow up (Thomas et al., 2016). Both 

caregivers and clinicians reported being satisfied with tele-practice for ReST treatment 

(Thomas et al., 2016). While tele-practice may help overcome some of the barriers of access 

related to distance and time, it still requires contact with the clinician and may not be an 

adequate solution to barriers related to availability of speech pathology services in general 

and, more specifically, availability of services that can provide intervention at the 

recommended intensity.  
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Parent involvement. 

Parent involvement is perhaps the most commonly employed strategy for overcoming 

barriers to recommended intervention intensity (Lim, McCabe, & Purcell, 2017; O'Callaghan 

et al., 2005; Sugden et al., 2018). More than 95% of Australian SLPs report involving parents 

in the provision of intervention for SSDs, typically via provision of home practice activities 

(Pappas, McLeod, McAllister, & McKinnon, 2008; Sugden, Baker, Munro, Williams, & 

Trivette, 2017). Parents have been asked to undertake a wide range of home practice 

activities (Sugden, Baker, Munro, & Williams, 2016) and there is some evidence that parent-

implemented intervention activities demonstrate equal effectiveness to clinician-delivered 

intervention (Lancaster, Keusch, Levin, Pring, & Martin, 2010; Lawler, Taylor, & Shields, 

2013; Ruscello, Cartwright, Haines, & Shuster, 1993). Despite the regular use of parents as 

intervention partners, only 68.4% of clinicians reported often providing training and 30.3% 

reported only sometimes providing training, with 88% of clinicians acknowledging that no 

structured training program is used (Sugden et al., 2017). More than half of all SLPs 

interviewed also reported ongoing barriers related to family engagement in the therapy 

process and lack of completion of home practice activities (Lim et al., 2017; Sugden et al., 

2017).  

Parents’ perceptions and experiences of their involvement in intervention are mixed. 

On the one hand, some parents are generally satisfied as long as the SLP remains involved 

with the family and maintains primary responsibility for the outcomes (Glogowska & 

Campbell, 2000; Watts Pappas, McAllister, & McLeod, 2015). On the other hand, many 

parents have also reported barriers of time in the sense that home practice can be difficult to 

fit into the routine of daily life (McAllister et al., 2011; Thomas, McCabe, Ballard, & 

Bricker-Katz, 2018). Parents perceive the SLP as the expert (Watts Pappas et al., 2015) and 

demonstrate a preference for individual intervention sessions with the clinician (Ruggero et 
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al., 2012). Only 4% of parents in Ruggero et al.’s survey reported a preference for parent 

training and a home program (Ruggero et al., 2012). In contrast, 93% of parents of children 

over the age of three years reported that they would be willing to help their child with 

computer-based home practice activities. 

In one of the first investigations of the efficacy of parent involvement in treatment for 

CAS, Thomas and colleagues (2017) found that a combination of parent and clinician 

delivered ReST treatment was efficacious for fewer children and that fewer children 

generalised to untrained behaviours when compared to the participant outcomes from 

clinician-only intervention. The average parent fidelity of implementation of the treatment 

program, compared with a clinician’s judgment, was 77% and the average accuracy of parent 

feedback on their child’s speech production attempts was 78%. These figures fall short of the 

suggested threshold of 85% which has been historically applied when investigating the 

reliability between two independent evaluations of the same behaviour (Cucchiarini, 1996; 

Pye, Wilcox, & Siren, 1988; Shriberg & Lof, 1991). The authors concluded that overall 

treatment efficacy was likely influenced by a number of factors including the amount of 

training given to parents given that parents do not have the background in phonetic training 

that a clinician has (Thomas et al., 2017). The parents involved in the study expressed a 

number of concerns around parent-implemented intervention which fell into three main 

themes: that the children disliked having their parents as their therapist; that the parents were 

concerned about their own skill in implementing the therapy, particularly providing a model 

of the target words and determining the accuracy of their child’s productions; and finding the 

time each day to conduct the therapy sessions (Thomas et al., 2018).  

In another study of parent-implemented treatment, Lim and colleagues (2017) found 

that parent-implemented DTTC generated a wide range of treatment outcomes across the four 

participating parent-child dyads with only one of the four children demonstrating 
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improvement rate that was greater than chance-level.  Parent fidelity of adherence to the 

treatment protocol ranged from 49 to 87% (Lim et al., 2017). Parents had difficulty both with 

adhering to the intensive nature of the treatment protocol as well as with judging the accuracy 

of their child’s responses and providing the appropriate level of cueing and instruction in 

accordance with the DTTC treatment protocol (Lim et al., 2017). While the parents reported 

benefit associated with spending more time with their child and learning strategies to support 

their child with speech production practice, all parents also reported barriers associated with 

finding time in their daily routine to complete the therapy activities and motivating their child 

to engage with the therapy activities (Lim et al., 2017). The parent perspectives in these two 

studies echoed those reflected in McAllister et al. (2011) of speech home practice being 

‘work’ and something that is difficult to fit into daily life.  

It is reasonable for parents to express concern over their ability to accurately judge the 

correctness of their children’s speech production attempts. Research into the factors 

influencing speech perception accuracy has demonstrated that children’s speech is more 

difficult to decipher than adults (Hearnshaw, Baker, & Munro, 2014; Markham & Hazan, 

2004; Munnoch, Baker, Munro, & Hearnshaw, 2018); that individual phonemes differ in the 

degree of accuracy with which they are perceived (Munnoch et al., 2018; Nittrouer & Miller, 

1997; Schellinger, Munson, & Edwards, 2017; Wolfe, Martin, Borton, & Youngblood, 2003); 

and that listener experience increases speech perception accuracy  (Brunnegård, Lohmander, 

& van Doorn, 2009; Munson, Johnson, & Edwards, 2012; Wolfe et al., 2003). On the other 

hand, listeners can habituate over time, resulting in ‘perceptual drift’ that results in a 

degradation of the ability to detect subtle errors over time (see Kent, 1996). The majority of 

errors in speech perception accuracy involve the listener being under-sensitive to speech 

sound errors and judging a speech production attempt as correct even when it contained an 

error (Munnoch et al., 2018). In contrast, to the findings on perceptual accuracy for speech 
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sound errors, accurate perception of syllable segregation did not differ between trained and 

untrained listeners (Brown, Murray, & McCabe, 2018). In that study both listener groups’ 

perceptual accuracy was positively correlated with the degree of segregation within words 

(Brown et al., 2018).  Thus, for both speech sound errors and syllable segregation errors, 

research findings suggest that perceptual accuracy may be most easily achieved for 

productions that differ markedly from the ‘typical’ correct production, but that more subtle 

differences may be less likely to be accurately perceived.  

Advances in technology: handheld devices. 

Instrumental methods have long been advocated for their potential to overcome the 

various sources of error and bias inherent in auditory-perceptual judgments of speech (see 

Kent, 1996). Acoustic and kinematic analyses have the potential to increase the objectivity of 

speech analysis, however these methods sometimes require specialised equipment and 

typically involve manual measurements which can be time and/or cost prohibitive for 

clinicians. Given the rapid advancement of technology over the last ten to fifteen years, and 

the proliferation of handheld devices and mobile applications, it is timely to re-consider the 

role that technology can play in overcoming some of the barriers to evidence-based service 

provision.  

Computer-based or mobile-based approaches to assessment and treatment of SSDs, 

although infrequently used in clinical practice (McLeod & Baker, 2014) or home practice 

(Ruggero et al., 2012; Sugden et al., 2018), should be considered. Such tools, when equipped 

with automatic speech analysis (ASA) or recognition (ASR) software offer the potential for 

accessible, cost effective, and objective methods of assessing speech.  ASR-equipped 

computer- or app-delivered intervention activities can also provide an effective supplement to 

face-to-face clinical sessions and an alternative to parent-delivered home practice.  
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Purpose and Structure of Thesis 

This thesis investigates the potential for technology to (i) overcome some of the 

barriers inherent in the current Australian service delivery context and (ii) offer alternative 

methods of access to intensive treatment for children with CAS. It is comprised of seven 

chapters, including publications.  

Chapter 2 (paper 1) presents a systematic literature review exploring the current state 

of the evidence around the implementation and effectiveness of automated speech analysis 

and recognition software in evaluating and treating paediatric SSDs, including CAS. The 

literature review explored SSDs more broadly given the limited available data on CAS alone. 

Chapter 3 summarises the findings from the systematic review which were specific to 

CAS and discusses the particular importance of designing ASA tools which can evaluate 

lexical stress. Lexical stress is selected as a starting point as this feature has been found to 

have high predictive power/validity for detecting CAS (Murray, McCabe, Heard, et al., 

2015). 

Chapter 4 (paper 2) presents an experimental study that aims to test and validate one 

ASA method - automated lexical stress classification of polysyllabic words - that could 

facilitate more objective assessment and diagnosis of CAS. Such testing and validation is a 

necessary step before such software can be integrated into apps or other clinical tools for use 

in standard practice. 

Chapter 5 discusses intervention approaches for CAS, including the extant literature 

on treatment efficacy, and the necessary considerations for utilising mobile technology with 

or without ASA as alternative service delivery methods in CAS.  

Chapter 6 (paper 3) considers how the use of mobile technology can influence the 

type of feedback that a child receives on their speech production attempts during practice. 



21 
 

This chapter presents an intervention study comparing children’s response to two types of 

augmented feedback – KP, as provided by a clinician, and KR, as would be provided by an 

ASA algorithm. In both conditions, the clinician uses a tablet-based app to deliver practice 

exercises in a controlled clinic setting. User satisfaction with the tablet-based exercises is also 

explored through surveys administered to the children, their parents/caregivers and the 

treating clinicians. 

Chapter 7 provides an overall discussion, summary and conclusions of the findings of 

these three studies in the context of extant literature on treatment efficacy, service delivery, 

and the scope within which technology can be an effective tool for assessment and treatment 

of CAS. 
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Chapter 2: Automated speech analysis tools for children’s 

speech production: A systematic literature review 
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Abstract 
Purpose: A systematic search and review of published studies was conducted on the use of automated speech analysis (ASA) 
tools for analysing and modifying speech of typically-developing children learning a foreign language and children with 
speech sound disorders to determine (i) types, attributes, and purposes of ASA tools being used; (ii) accuracy against 
human judgment; and (iii) performance as therapeutic tools. 
Method: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Across 
nine databases, 32 articles published between January 2007 and December 2016 met inclusion criteria: (i) focussed on 
children’s speech; (ii) tools used for speech analysis or modification; and (iii) reporting quantitative data on accuracy. 
Result: Eighteen ASA tools were identified. These met the clinical threshold of 80% agreement with human judgment when 
used as predictors of intelligibility, impairment severity, or error category. Tool accuracy was typically580% accuracy for 
words containing  mispronunciations. ASA tools  have been  used effectively to improve to children’s foreign  language 
pronunciation. 
Conclusion: ASA tools show promise for automated analysis and modification of children’s speech production within 
assessment and therapeutic applications. Further work is needed to train automated systems with larger samples of speech 
to increase accuracy for assessment and therapeutic feedback. 

 
Keywords: automatic speech recognition; speech sound disorder; prosody 

 
 
 
Introduction 

 

Recent advances in automatic speech analysis tech- 
nology are making the prospect of computer-driven 
speech assessment and intervention more viable for 
children with speech sound disorders (SSD). 
Significant barriers of access, cost and long-term 
engagement for children who require intensive and 
prolonged speech therapy have been identified 
(McAllister, McCormack, McLeod, & Harrison, 
2011), and clients/parents have reported a desire 
for alternative approaches to accessing services 
(Ruggero, McCabe, Ballard, & Munro, 2012). In 
light of this, computer-driven approaches, particu- 
larly when embedded in serious games, have poten- 
tial to overcome these barriers. Here, we performed 
a systematic search and review (Grant & Booth, 
2009) to determine the types of automatic speech 
analysis and recognition (ASA) tools that have been 
developed over the past 10 years, what they are 

being used for in the context of speech assessment 
and treatment, and how they are performing. We did 
not aim to perform an analysis of study design and 
quality. Rather, our objective was to provide an 
overview of the current state of the field and an 
evaluation of the quality and accuracy of the current 
ASA tools; discussing feasibility for their use in 
clinical practice and needs for future development. 

 
Automatic speech analysis tools 

 

In the 1960s and 70s, the earliest ASA systems were 
able to process isolated words from small to medium 
pre-defined vocabularies using acoustic phonetics to 
perform: time alignment; template-based pattern 
recognition; or matching of the incoming speech 
signal with the stored reference production (Kurian, 
2014). The inherent variability of the speech signal 
introduced by vocal tract variations across speakers 
and temporal variability across repeated productions 
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Figure 1.  Basic components of a speech recognition system. 
 

 
 
 

of the same word affected recognition accuracy. In 
the 1970s, linear predictive coding (LPC) was 
introduced, which could account for some of the 
individual variation caused by vocal tract differences 
(Kurian, 2014). In the 1980s, ASA tools became 
better able to process larger vocabularies and con- 
tinuous speech, driven by the development of 
technology based on statistical modelling of prob- 
ability that a particular set of language symbols (i.e. 
either phoneme sequences or word sequences) was a 
match to the incoming speech signal (Kurian, 2014). 
These systems are more robust to variations across 
speaker (e.g. pronunciation or accent) and environ- 
mental noise as well as temporal variations in the 
speech signal (Kurian, 2014). Hidden Markov 
models (HMMs), which perform temporal pattern 
recognition, are now the predominant technology 
behind speech recognition systems. Also in the 
1990s, new innovations  in  pattern  recognition  led 
to discriminative training and kernel-based tech- 
niques such as Support Vector Machines (SVMs) 
which functioned as classifiers. Figure 1 presents a 
model of the component processes involved in 
modern ASA systems (also see Keshet, in press, in 
this issue; and Shaikh and Deshmukh, 2016). 

Performance accuracy of ASA tools is influenced 
by two main components of the system (Mustafa, 
Rosdi, Salim & Mughal, 2015). One component is 
the feature extraction process, which is in turn also 
influenced by the type of speech (i.e. isolated words, 
connected speech or continuous speech); and the 
size of the vocabulary, with larger vocabularies 
associated with improved  performance  (Mustafa 
et al., 2015). Continuous speech is the most difficult 
to analyse because the utterances all run together 
and segmentation needs to be performed by the ASA 
in order for accurate recognition to occur (Strik & 
Cucchiarini, 1999). Also affecting system develop- 
ment and performance accuracy is the fact that 
availability of databases with large vocabularies is 
limited (Mustafa et al., 2015). The second compo- 
nent influencing performance accuracy is the type of 
speech acoustic model, which is based on speaker 
mode (i.e. speaker dependent, where the system is 
trained by the user’s own speech samples; speaker 

independent where the system requires no additional 
training before use by a speaker; or speaker adaptive 
where the system is capable of adapting to the user 
over time, thus improving performance) (Mustafa 
et al., 2015). 

Despite  the  remarkable  improvements  in  ASA, 
particularly for adult speech, computational model- 
ling systems continue to have difficulty adapting to 
the temporal and spectral variability that is intro- 
duced to the speech signal via individual differences 
such as vocal tract length, words in context (i.e. co- 
articulation effects) or environmental noise 
(O’Shaughnessy, 2015). These factors are particu- 
larly challenging for ASA in children, who are going 
through periods of growth and making developmen- 
tal speech errors. In both adult and child  studies, these 
models have also struggled with the increased within- 
and between-speaker variability introduced with 
disordered speech (Su, Wu, & Tsai, 2008). Given the 
rapid changes in this field, it is timely to consider 
the state of the field in terms of child- focussed ASA 
tools being developed for assessment and 
modification of disordered or non-native speech. 

 
Technology 

 

Smartphone and tablet technology are now a part of 
children’s everyday lives. In Australian households 
with children under 15, 88% in major cities and 79% 
in remote areas have access to the Internet 
(Australian Bureau of Statistics, 2016). Of these, 94% 
access the Internet via laptop or desktop computer,  
85%  via  mobile  or  smartphone  and 62% via tablet 
(Australian Bureau of Statistics, 2016). Despite 
reports of infrequent use of com- puter-based or 
mobile-based analysis procedures or intervention 
activities in children with  SSD (McLeod & Baker, 
2014); these tools have potential to facilitate easily 
accessible, cost effective and objective measures of 
speech. This may increase clinician efficiency and 
assist in caseload manage- ment, and such tools may 
also supplement face-to- face speech-language 
pathology to reduce barriers to access and facilitate 
higher practice intensity (Baker, 
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2012). Technology-based approaches may also 
increase child engagement and motivation with 
learning tasks as they are colourful, can include 
animation and audio prompts or reinforcers, involve 
active manipulation of stimuli and gameplay by the 
child, and can incorporate speech recording, pre- 
recorded models, and playback of responses 
(Morton, Gunson, & Jack, 2012; Simmons, Paul, 
& Shic, 2016; Tommy & Minoi, 2016). However, to 
be viable, any ASA tools incorporated into diagnos- 
tic or therapeutic software need to meet the same 
reliability standards that we apply to human raters. 
Commonly accepted criteria for percent agree- 
ment on perceptual judgments of speech between 
two human raters or  reliability  of  outcome across 
two separate evaluations of the same behav- iour is 
between 75 and 85% (Charter, 2003; Cucchiarini, 
1996). We therefore apply an 80% threshold in 
evaluations of the  tools  identified for this review. 

 
Assessment and treatment of SSD 

 

Recent surveys of Australian and American paedi- 
atric speech-language pathologists (SLPs) reported 
that phonological process analysis, estimating intel- 
ligibility, determining phonetic inventory (independ- 
ent analysis) and use of phonological processes 
(relational analysis) constitute essential elements of 
a speech assessment battery (McLeod & Baker, 
2014; Skahan, Watson, & Lof, 2007). The resultant 
post-assessment data analysis and paperwork were 
reported to be equally (McLeod & Baker, 2014) or 
more time-consuming (Skahan et al., 2007) than the 
assessment process itself. Few SLPs in either study 
reported use of computerised analysis procedures. 
Scope clearly exists for automated analysis processes 
to be developed that could increase clinical effi- 
ciency. Such tools would ideally include: (i) high 
agreement with human decisions regarding word 
recognition, which could automate the process of 
intelligibility assessment; (ii) judgments of correct/ 
incorrect for a given speech attempt, with reference 
to a stored template or canonical representation, thus  
automating  the  process  of  relational  analysis; 
(iii) classification or categorisation of speech error or 
prosodic error patterns, useful for detecting presence 
of impairment; and (iv) potentially use clusters of 
features to differentially diagnose disorders. 

If well designed, such tools could also be used to 
monitor and shape response to intervention over 
time as well as augmenting and increasing home 
practice. Recommended intervention frequency for 
SSD is 2–4 sessions per week with at least 100 trials 
per session (Allen, 2013; Baker & McLeod, 2011; 
Ballard, Robin, McCabe, & McDonald, 2010; 
Edeal & Gildersleeve-Neumann, 2011; Murray, 
McCabe, & Ballard, 2014, 2015; Thomas, 
McCabe, & Ballard, 2014; Williams, 2012). These 
treatment intensities do not, however, reflect typical 

practice (Keilmann, Braun, & Napiontek, 2004; 
McLeod & Baker, 2014; Oliveira et al., 2015; 
Ruggero, McCabe, Ballard, & Munro, 2012; To, Law, 
& Cheung, 2012). Families face barriers of service 
availability where  community  demand cannot be met 
by available speech-language pathol- ogy resources 
(Kenny & Lincoln, 2012; Lim, McCabe, & Purcell, 
2017; McAllister et al., 2011; O’Callaghan, 
McAllister, & Wilson, 2005; Ruggero et al., 2012; 
Verdon, Wilson, Smith-Tamaray, & McAllister, 
2011) and barriers of distance in rural and remote 
areas (McAllister et al., 2011; O’Callaghan et al., 
2005; Ruggero et al., 2012; Verdon, Wilson, Smith-
Tamaray, & McAllister, 2011). This discrepancy is 
further confounded by parental reports of difficulty 
finding time for home practice and their perception 
that speech homework is ‘‘work’’ (McAllister et al., 
2011). 

McAllister et al. (2011) found computer-based 
homework is provided to only 17% of families 
contrasting the high level of interest expressed by 
participants in Ruggero et al. (2012). Capitalising on 
this interest, as well as on the automated corrective 
instruction already used in second language learning 
contexts (e.g. Neri, Mich, Gerosa, & Giulian, 2008), 
ASA tools could be developed and integrated into 
training programmes to help facilitate independent 
practice (Eskenazi, 2009). 

 
 
Purpose 

 

In this review, we aim to address the following 
research questions: 

 

(1) ASA tools and purposes: 
 

(a) What ASA tools are being used?; 
(b) For what populations of children (i.e. language 

learners/disordered speech; and the range of 
languages/disorders investigated)?; 

(c) For which aspects of production/pronunciation 
evaluation and what types of stimuli (i.e. sound/ 
word/phrase level; restricted or unrestricted 
stimulus sets)? 

 
(2) Accuracy  of  analysis:  How  do  these  tools  perform 

compared with human perceptual evaluation? 
(3) Behaviour  change:  Is  there  evidence  that  improve- 

ments to children’s speech sound production abilities 
as a response to intervention are comparable between 
ASA-based training tools and face-to-face training? 

 

 
 
 

Method 
 

We used the Preferred Reporting Items  for Systematic 
Reviews and Meta-Analyses (PRISMA) search 
guidelines (Moher, Liberarti, Tetzlaff, Altman, & The 
PRISMA Group, 2009) when formulating our search 
strategy. The flow diagram of study selection is 
presented in Figure 2. 
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Records after duplicates 
removed 

 
(n = 5910) 
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1. Pre-2007 
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Records excluded (n = 908) 

 

 
 
 
 

Records screened at title 
and abstract 
(n =1004) 

1. Not about speech 
sound production 
/pronunciation 

2. Not about speech 
evaluation or 
modification 

3. Population cancer or 
unrepaired structural 
deficit 

4. Unable to access full- 
text 

 

 
Full-text articles 
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3. No quantitative data 

on ASR performance 
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Studies included 
in analysis 

(n = 32) 
 

Figure 2.  Systematic search and review flowchart. 
 
 
 
Evidence identification 

 

We searched the following key databases in the fields 
of allied health, engineering and computer sciences to 
identify relevant articles: Medline, Cinahl, ERIC, 
Embase, Scopus, Web of  Science,  IEEEXplore, ACM 
Digital Library and Applied Science and 
Technology. The following search terms were used 
with Boolean operators, wildcards and proximity 
syntax: artic*; impair*; phonol*; disorder; apraxia; 
dyspraxia; dysarthria; speech error;  patholog* speech; 
multilingual*; bilingual*; foreign language; language 
learn*; pronunciation; diagnosis; ‘‘decision making’’; 
instruction; therapy; intervention; training; response 
feedback; computer based/assisted/aided; signal 
processing; mobile application; app; software; speech 
recognition software; android; iOs; handheld; 
intelligent tutoring system; computer managed 
instruction;     education*     technology;     electronic 

learning; virtual speech therapist; virtual classroom; 
web based instruction; computer programme; auto- 
mat* speech recognition/analysis/evaluation/assess- 
ment/intelligibility assessment; speech/pronunciation 
verification; automat* speech error detect*/feedback/ 
speech processing; spoken dialogue systems; artificial 
intelligence; neural networks (NNs); automated pat- 
tern recognition; machine learning; acoustic-phon- 
etic classification; corrective feedback. See 
Supplementary Appendix 1 for sample search strate- 
gies. Note that studies of ASA technology in foreign 
language learning were sought because these tools 
have similar goals to those designed for children with 
SSD (e.g. detection of phoneme mispronunciations 
or provision of corrective feedback for modifying 
productions; Saz, Lleida, & Rodrı́guez, 2009) that 
could inform development of tools for SSD diagnosis 
and  treatment. 
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Studies published between January 2007 and 

December 2016 were considered for inclusion. 
Date restrictions were imposed in order to focus 
the review on current tools and technologies and to 
exclude out-dated technology that has been replaced 
with more advanced versions. The year 2007 was 
selected as it marks the release of the first iPhone, 
with Apple’s processing speed, graphics, touch 
screens, and integration of app technology making 
them the industry front runner (Martin, 2014), and 
accelerating development in the field. 

 
Screening 

 

A total of 7669 articles were retrieved from database 
searching, and a further 59 from later hand 
searching of reference lists in articles that survived 
initial screening. Of these, 1759 duplicates were 
removed. After applying limits of (i) published 
between 2007 and 2016 and (ii) focussed on 
children’s speech production, 4906 additional rec- 
ords were excluded. Therefore, 1004 were retained 
for title and abstract screening. Of these, 908 were 
excluded for the following reasons: (1) not dealing 
with paediatric speech sound production/pronunci- 
ation; (2) not explicitly focussed on evaluation or 
modification of speech production skills; (3) not the 
target population (e.g. oral or pharyngeal cancers, 
laryngectomy); or (4) full text record not accessible. 
A total of 96 papers were shortlisted for full text 
review. 

 
Eligibility criteria 

 

The review focussed on studies of ASA technology 
applied to the speech of typically developing (TD) 
children, using either their native or a non-native 
language (i.e. language learning; LL), or children 
reported to have SSD. Studies were included if they 
reported on the use of automated tools for speech 
analysis and/or speech modification delivering sum- 
mative or formative feedback to the clinician or the 
speaker. While we acknowledge that there are 
numerous computer programmes and mobile appli- 
cations that provide interactive and game-based 
presentation of stimuli such as ArtikPix (Expressive 
Solutions LLC, 2011), only software integrating 
ASA for the purpose of determining speech accuracy 
was included in this review, as we were interested in 
software with potential to act as a virtual clinician. 

Studies were required to provide quantitative data 
on the accuracy of the tool’s ASA algorithms against 
human judgment and, for automated speech modi- 
fication tools, on treatment effects or changes to 
speech intelligibility, word accuracy or pronunci- 
ation accuracy. All study formats were considered, 
including journal articles, serials, conference papers 
and proceedings provided that new data were 
reported. The search was limited to studies written 
in English. 

Of the 96 studies accepted for full text analysis, 
32 were judged eligible for this review. Reasons for 
exclusion included: (1) duplicates overlooked in the 
initial screening process; (2) only adult participants 
(where this had been unclear at the screening phase); 
and (3) no quantitative data on ASA performance 
accuracy. 

 
Analysis of evidence 

 

To address research question (i) we extracted infor- 
mation on characteristics of the participants (i.e. age, 
sex and type of speech disorder, where appro- 
priate); the purpose of speech analysis (i.e. phoneme 
or prosodic accuracy); types and attributes of ASA 
tools being used (i.e. technology for different ASA 
purposes, operating system, format of the interface 
and the user-feedback generated); characteristics of 
the speech samples used (i.e. type of speech sample 
and whether speech stimuli were from open or 
constrained sets); the speech features extracted by 
the tool; and the language of operation of the tool. 
To address question (ii) we tabulated the outcome 
measures used and their  reported accuracy against 
human  perceptual  judgment.  To  answer  question 
(iii) we tabulated details of behaviour change 
outcomes. 

 
 

Result 
 

All data extracted from each of the 32 publications 
were collated in a spreadsheet (see Supplementary 
Table SI). Summary tables are presented here. 

 
ASA tools and purposes 

 

Table I presents a summary of the tools reviewed, 
the speech analysis foci and participant characteris- 
tics cross the 32 studies. 

 
Participant characteristics 
Participants ranged in age from 3 to 21 years. Four 
studies included participants of58 years; 17 studies 
included participants up to 16 years and one up to 
21 years. Twenty-two of the 32 articles (71%) did 
not report on the sex distribution of the participants 
in the study, therefore, these data are not discussed 
further. When extracting sample size data, we 
considered only the samples used to evaluate the 
tool’s accuracy, not samples used for training and 
development of the tool. Sample sizes ranged from 1 
to 1133 (n ¼ 29 publications) with a median sample 
size of 37. Half of all studies had sample sizes within 
the range 19–119. In three publications, sample size 
was not stated. Tools were applied to language 
learning populations in 28.1% (n ¼ 9) of articles and 
to disordered speech in 71.9% (n ¼ 23). 

 
Technology and purpose 
Within the 32 articles, 18 types of ASA tools were 
discussed  (see  Figure  3(A)).  Twenty-four  studies
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Table I. ASA technology and its purpose for each study (alphabetical) with children who have a speech disorder (DIS) or are learning a foreign language (LL). 
 

First Author (Year) Technology of toola Age Sample sizeb Sex Populationb Disorder type 

Phoneme-level  analysis 
Azizi (2012) HMM (4 models trained: M & F adults, F adults, 

F adults + kids; kids only) 
5–8 yrs 13 (DIS) not stated DIS articulation 

Bártů (2008) ANN (KSOM) 4–10 yrs 3 (DIS) 7 (TD) 2M, 1F 2M, 5F DIS developmental dysphasia 
Chen (2011) HMM Dependence network mean 6yrs 132 (DIS) not stated DIS articulation 
Dudy (2015) HMM 4–7 yrs 19 (DIS-1); 24 (DIS- 

2); 47 TD 
not stated DIS DIS-1: articulation; DIS-2: 

speech; 

Duenser (2016) HMM incorporating Phoneme Classification; 
Knowledge Driven Recognition; Decision 
Support) 

3–14 yrs 13 (DIS-mixed); 9 TD not stated DIS Cerebral palsy; pre-term 
birth; TD 

Kadi (2016) GMM SVM GMM/SVM hybrid not stated 19 (DIS) 16M, 3F DIS dysarthria 
Lee (2011) HMM Yr 3–5 24 (TD) 12M, 12F LL 

 
Maier (2008) Unclear (OneR, DecisionStump, LDA-classifier, 

NativeBayes, J48, PART, RandomForest, 
SVM, AdaBoost) 

 
not stated 26 (DIS) 21M, 5F DIS cleft lip and palate 

Maier (2009a) HMM: semi-automated using transcription data 
HMM: automated using trigram language 
model independent of transcription 

mean 10.1 yrs; mean 
62 yrs 

31 children (DIS); 41 
adults (DIS) 

not stated DIS dysarthria; laryngectomy 

Maier (2009b) HMM mean 9.4 yrs (DIS-1); 
mean 8.7 yrs 
(DIS-2) 

26 (DIS-1); 32 
(DIS-2) 

not stated DIS cleft lip and palate 

Mazenan (2015) HMM primary school age 20 (DIS) not stated DIS not specified 
Navarro-Newball (2014) HMM not stated 20 (DIS) not stated DIS hearing impaired 
Nicolao (2015) DNN 13+ yrs 222 not stated LL 
Obach (2012) HMM SVM MLP not stated 25 (TD) 18M, 7F LL 
Pantoja (2014) KNN not stated not stated not stated LL 
Parnandi (2015) HMM (phoneme decoder) 7–10 yrs 7 (DIS) 6M, 1F DIS CAS 
Saz (2009) HMM (ASR) Confusion network (pronunciation 

verification) 
11–21 yrs (DIS); 

10–18 yrs (TD) 
14 (DIS); 168 (TD) 7M, 7F (DIS); 73M 

95F (TD) 
DIS dysarthria 

Schipor (2012) HMM preschool & young 
school age 

Shahin (2014) GMM-HMM DNN-HMM 4–10 yrs (DIS); K – Yr 
10 (TD); 

not stated not stated DIS dyslalia 
 

5 (DIS); 110 (TD); not stated DIS CAS 

Shahin (2015) HMM (posterior probability) HMM (lattice 
based phoneme verification) 

4–16 (DIS); not stated 
(TD) 

2 (DIS); 4 (TD) not stated DIS CAS 

Singh (2015) SVM 8–16 yrs 20 (DIS) not stated DIS not specified 
Suanpirintr (2007) HMM Phoneme based speech recognition (PSR) 

HMM (word-based speech recognition) 
HMM (pause reduced word-based 
recognition) 

7–13 yrs (DIS); 8–11 
yrs (TD) 

4 (DIS); 2 (TD) 2M, 2F (DIS); 1M, 1F 
(TD) 

DIS dysarthria 

Ting (2008) MLP 8 yrs 1 (DIS) 1M DIS articulation 
Wielgat (2008) DTW (phoneme based); DTW (word based); 

HMM (whole word); HMM (phoneme level)
not stated not stated not stated DIS speech disorder 

Prosodic analysis 
Delmonte (2009) LALR parser not stated not stated not stated LL 
Ferrer (2015) HMM (GMM) Decision Trees Neural Networks 10–14 yrs 168 (TD); 329 (TD 

                                                                                                                                                                              approximating errors) 
not stated LL  

 
(continued) 
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(75%) described tools for phoneme level analysis of 
pronunciation, eight studies (25%) described  tools for 
prosodic aspects of pronunciation  and  two studies 
(6.25%) described tools that simultaneously analysed 
phonemic and prosodic aspects of pronun- ciation 
(See Table I). 

Twelve publications evaluated two or more ASA 
tools. Some studies compared the performance  of two 
or more tools for a specific analysis purpose; for 
example, comparing classification accuracy for dys- 
arthria severity using Gaussian Mixture Models 
(GMM), a SVM or a hybrid of the two (Kadi, 
Selouani, Boudraa, & Boudraa, 2016). Other studies 
reported an ASA system comprised of multiple 
automated analysis modules, each performing a 
different task, for example, a HMM-based phoneme 
segmentation/forced alignment module and a 
dependence network for subsequent phoneme error 
classification accuracy (Chen, 2011). For details, see 
Supplementary Table  SI. 

Figure 3(A) also presents data on the proportion 
of tools addressing the different analysis foci of the 
ASA tools. The majority of tools (17/18) were 
designed to analyse a specific feature of speech (i.e. 
intelligibility, correctness, classification of phoneme 
error or lexical stress pattern). Nine tools across 8/32 
studies (25%) measured speech recognition rates. 
These studies reported on whether the tool recog- 
nised the input as the target word or phoneme. These 
tools could be applied to automated intelli- gibility 
assessment or evaluation of the degree of disorder or 
mispronunciation. Success of classifying speech into 
different categories was reported in twenty-five of 
the included studies (25/32; 78%). This included 
classification of speech  input  as correct or incorrect 
based on reference to a stored representation as well 
as classification to a specific category, such as 
lexical stress patterns (e.g. strong- weak or weak-
strong) or phoneme error type (e.g. substitution or 
omission). Two studies (2/32; 6.25%) reported 
duration measures including total voicing/utterance 
duration and voicing delay. Voicing delay was 
defined as a measure of response latency or delayed 
initiation of speech following presentation of 
stimulus. 

No studies reported on tools designed for iden- 
tifying a syndrome or differentiating different speech 
disorders. Only three systems were designed for 
speech modification within a treatment or learning 
package (Delmonte, 2009; Lee et al., 2011; 
Navarro-Newball et al., 2014). 

 
Operating system 
The operating system (OS) for the ASA tool was not 
defined in 20 publications (62.5%). Three papers 
described Web-based tools and servers (Lee et al., 
2011; Maier et al., 2009b; Parnandi et al., 2015), 
four described tools that run on a desktop or laptop 
computer (Duenser, 2016; Pantoja, 2014; Shahin, 
Ahmed,   &   Ballard,   2012;   Shahin,   Ahmed, 
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Figure 3. Frequency across the 32 studies of A. each automated technology used and proportion of tools addressing each analysis focus 
(HMM ¼ Hidden Markov Models; SVM ¼ Support Vector Machine; MLP ¼ MultiLayer Perceptron; ANN ¼ Artificial Neural Network; 
DNN ¼ Deep Neural Network VAD ¼ Voice Activity Detector; MaxEnt ¼ Maximum Entropy;  CNN ¼ Convolutional  Neural  Network; DTW 
¼ Dynamic Time Warping; GMM ¼ Gaussian Mixture Models; KNN ¼ k-nearest neighbour algorithm; LALR parser  was  not defined in 
the study; LDA ¼ Linear Discriminant Analysis); B. each type of speech sample elicited; C. use for each feature extraction method 
(MFCCs ¼ mel-frequency  cepstral  coefficients; LPC ¼ linear predictive coding  coefficients; PLP ¼ perceptual  linear prediction coding 
coefficients; HFCCs ¼ human frequency cepstral coefficients); D. each language represented. 

 

 
McKechnie, Ballard, & Gutierrez-Osuna, 2014), 
two specified Windows OS (Navarro-Newball et al., 
2014; Sztaho, Nagy, & Vicsi, 2010), one ran on the 
Mac OS (Delmonte, 2009), one on the Android OS 
(Parnandi et al., 2015), and one was a cross- 
platform tool that could operate in Windows, Mac, 
Linux and Android (Ferrer et al., 2015). 

 
Interface: user input and output 
In four studies, ASA was embedded in an applica- 
tion incorporating both a clinician/teacher interface 
and a child interface (Maier et al., 2009a; Navarro- 
Newball et al., 2014; Parnandi et al 2015; Saz et al., 
2009). That is, the ASA potentially could be used to 
deliver feedback on speech productions to the child 
or to provide analysis of performance to a remote 
clinician/teacher. Of these, two studies addressed 
dysarthria (Maier et al., 2009a; Saz, Yin, et al., 2009); 
one addressed childhood apraxia of speech (CAS) 
(Parnandi et al., 2015); and one included children 
with hearing loss (Navarro-Newball et al., 2014). 
Two studies focussed on describing a speech 
processing engine, which was being developed for 

later integration into a programme with both clin- 
ician/teacher and child interfaces; one for language 
learning (Hacker, Cincarek, Maier, HeBler, & Noth, 
2007) and one for CAS (Shahin et al., 2015). Two 
tools, both designed for foreign language learning, 
had only a  child  interface  (Delmonte,  2009;  Lee 
et al., 2011). The ASA system in the remaining 16 
studies had been evaluated in its development phase, 
without reference to the user interface. 

Regarding the child interface, three studies 
described game-based programmes through which the 
children recorded  their  speech  samples  (Lee et al., 
2011; Navarro-Newball et al., 2014; Parnandi et al., 
2015). All other studies used non-game speech 
sampling methods  such  as  picture  naming or word 
reading, or provided insufficient informa- tion to 
determine the method used. 

Of the six studies that reported an ASA system 
already integrated into a child interface, four used 
the speech analysis output to provide feedback to the 
child. In three of these studies, all using HMM- based 
ASA systems, the feedback was on accuracy 
(i.e.  correct/incorrect)  of  phonemes  in  picture 
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naming (Saz, Yin, et al., 2009), syllable string 
repetition (Navarro-Newball et al., 2014) or sen- 
tence level (Lee et al., 2011) tasks. The language- 
learning system in Lee et al. (2011) also provided 
feedback in the form of a model and recast. The 
fourth system with a child interface, an LALR parser 
system, was designed for children learning English 
pronunciation and provided feedback on accuracy of 
lexical and phrasal stress assignment, as well as 
performance-based feedback such as ‘speak more 
slowly’ (Delmonte, 2009). Two other language– 
learning studies, with systems not yet integrated into 
a child–friendly  interface, provided feedback on 
pronunciation accuracy. The system in Pantoja 
(2014) focussed on phonemic accuracy and the 
system in Hacker et al. (2007) analysed both 
phonemic and prosodic input features to provide 
the child with feedback on pronunciation accuracy. 

 
Speech sample characteristics 
Figure 3(B) presents data on the elicited speech 
samples used to develop and evaluate the tools in the 
included studies. Most commonly, ASA tools were 
developed and evaluated using single word stimuli 
(n ¼ 22 studies). When multi-word utterances were 
used, they ranged from three word phrases to 
sentences. Ten tools, across seven publications, 
were tested using both single and multi-word utter- 
ances (see Supplementary Table SI). The majority 
(75%) of ASA tools were tested with a constrained 
stimulus set (n ¼ 24 studies), meaning participants 
were produced a specific set of words or sentences 
rather than spontaneous speech. In seven studies, it 
was unclear whether the stimulus set was open or 
constrained. 

There was large variability across the selected 
studies in number of speech tokens used to evaluate 
a tool. The median was 1750 (range 78–54,080), 
with 50% of studies reporting between 340 and 
8400. Six publications did not report number of 
tokens per participant or total number. 

 
Features extracted 
Figure 3(C) summarises the feature extraction data 
from the studies. The majority of tools, in 20/32 
publications, used Mel-frequency cepstral coeffi- 
cients (MFCCs), often in combination with other 
features. MFCCs map spectral information from the 
speech signal onto the Mel scale, which approxi- 
mates the way the human auditory system perceives 
frequencies. For three tools feature extraction was 
not reported (de Wet, Van der Walt, & Niesler, 2009; 
Duenser et al., 2016; Lee et al., 2011). 

 
Language 
ASA systems were developed for thirteen different 
languages, most commonly English (14/32 or 
43.75%) (see Figure 3(D)). Of the studies targeting 
English, 9/14 were designed for children learning 
English  as  a  non-native  language  and  5  were  for 

English-speaking children with a speech  disorder. For 
the other 12 languages addressed, 2 studies were tools 
for second language learning and 15 for helping 
children with disorders in their native language. One 
study did not specify the  language used to train and 
test the tool. 

 
 

Accuracy of analysis 
 

The accuracy of speech recognition or classification 
against human judgment was reported in a number 
of ways including word recognition rate, percent 
agreement, correlation and measures used in signal 
detection (e.g. true/false positive rates, sensitivity, 
specificity). A summary of the ASA technology, 
outcome measure, and accuracy of analysis and 
population studies is in Supplementary Table SII. 

 
Word recognition rate 
Word recognition rates for TD children ranged from 
69.4% to 98% (Azizi, Towhidkhah, & Almasganj, 
2012; Suanpirintr & Thubthong, 2007, respect- 
ively). For SSD/LL speech, word recognition rates 
ranged from 48.5% for speakers with dysarthria 
(Suanpirintr & Thubthong, 2007) to 91.67% for 
children learning another language (Wielgat, 
Zieliń ski, Woźniak, Grabias, & Kró l, 2008). Ting 
and Mark (2008) achieved high recognition rates of 
97–100% for isolated vowel phonemes in a SSD/LL 
speaker. Mazenan et al. (2015) reported high 
recognition rates on a range of isolated phonemes 
(88.19–96.92%) and at the whole word level (95– 
100%); however, the population was not specified. 

 
Percent agreement with human judgment 
Accuracy in classifying phoneme-level pronunciation as 
(in)correct against human judgment ranged from 
45.7% for mispronounced words for a combined 
group of TD and SSD speakers (Dudy, Asgari, & 
Kain, 2015) to 95.67% for LL speakers (Obach & 
Cordel, 2012). Tools categorising phoneme error 
type in SSD speech showed from 91.13% agreement 
with human judgment (Singh, Thakur, & Vir, 2015) 
to 99.6% (Maier, Honig, Hacker, Schuster, & Noth, 
2008). 

One study reported on a dual-component tool in 
which an HMM-based component decoded the 
sequence  of  incoming  phonemes  and  compared this 
input to a stored representation of the target word; and 
a Dependence Network component classified the 
input sequence to a particular phon- eme error 
category (e.g. substitution or omission) (Chen, 2011). 
Accuracy for automated vs. manual phoneme 
labelling accuracy of the  HMM  tool ranged from  
46.32% for mispronounced words, where the 
sequence of phonemes produced violated the 
phonotactic rules/permissible sequences of the target 
language, to 88.7% for correctly pronounced words  
(Chen,  2011). 
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Regarding percent agreement for lexical stress 
classification, four studies of TD children reported 
values ranging from 53–70% (Sztaho et al., 2010) to 
93.4% (Shahin et al., 2016). Shahin et al. (2012) 
reported higher agreement for words with strong- 
weak stress (93.8%) than words with weak-strong 
stress (75%). For two studies of TD and SSD/LL 
children combined, overall accuracy ranged from 
77.6% (Shahin et  al.,  2015)  to  88.4%  (Duenser 
et al., 2016). For nine studies examining only SSD/ 
LL speech, percent agreement ranged between  10 and 
71% (Sztaho et al., 2010) up to 93.5% (Ferrer et 
al., 2015). 

Considering phonemic and prosodic features simul- 
taneously for determining word accuracy, Hacker 
et al. (2007) reported 74.2% agreement with human 
judgment for SSD/LL speakers and 89% for the 
pooled TD and SSD/LL. 

For intensity threshold-based voice activity detec- 
tion tools, percent agreement for automated vs. 
manual calculation ranged from 96% in SSD/LL 
speech (Parnandi et al., 2015) to 96.6%. These 
studies considered TD and SSD/LL speech com- 
bined (Shahin et al., 2015). For calculations of total 
utterance duration, accuracy of the tool ranged from 
94% for SSD/LL speech (Parnandi et al., 2015) to 
94.8% (Shahin et al., 2015) for TD and SSD/LL 
speech combined. These measures were explored in 
only two studies from the same research team, which 
may account for the narrow range of percent 
agreement values. 

 
Correlation 
Eight of the 32 studies reported human–machine 
correlations for the evaluation of pronunciation at 
the phoneme-level in SSD/LL speech. Correlations 
ranged from a non-significant or weak correlation 
(range 0.02–0.40; de Wet, Van der Walt, & Niesler, 
2009) to a strong correlation of 0.89 (Maier et al., 
2008, 2009a,b). One study exploring prosodic 
accuracy in a sample of pooled TD and SSD/LL 
speakers reported moderate to strong correlations 
(0.66–0.86) between automatic and human assess- 
ments (van Santen, Prud’hommeaux, & Black, 
2009). 

 
Signal detection theory measures 
Thirteen of the 32 studies reported more detailed 
information on classification accuracy of the tool 
versus the ‘‘gold standard’’ of human judgment. Six 
reported on true positive rate (i.e. sensitivity – all 
items included in a category truly do belong in that 
category); two reported on precision (i.e. the prob- 
ability that an item truly belongs in the assigned 
category); one reported on true negative rate (i.e. 
specificity – all items excluded from a category truly 
do not belong in that category); four reported true 
and false positive/negative rates; and one reported 
equal errors rates (i.e. the threshold where likelihood 
of false acceptance and false rejection is equal). 

For SSD/LL phoneme-level classification accur- 
acy, true positive rates ranged from 52.6% (SSD) in 
Maier et al. (2009b) to 100% (LL) in Obach & 
Cordel (2012). For TD speakers, true positive rate 
was reported at 96% (Shahin et al., 2014). 
Classification true negative rate for phoneme-level 
analysis in SSD/LL speakers ranged from 53.8% 
(Shahin et al., 2014) to 82–95% (Chen, 2011). For 
TD speakers, Shahin et al. (2014) reported a true 
negative rate of 74.6%. Classification precision rates 
for phoneme-level pronunciation accuracy ranged 
from 87 to 100% for LL speech in Obach and 
Cordel (2012). For TD and SSD speakers com- 
bined, classification precision was reported at 91.1% 
by Shahin et al. (2015). The ASA tool from three 
studies reported multiple measures including sensi- 
tivity, specificity, false positive and/or false negative 
rates for SSD/LL speakers. False positive rates 
ranged from 19.5% (Duenser et al., 2016) to 
70.5% (Saz, Yin, et al., 2009). The lowest false 
negative rates were reported by Saz et al. (2009) at 
1.5% for speaker-dependent conditions (i.e. where 
the ASA tool had been trained for each impaired 
speaker). For speaker-independent conditions (i.e. 
where the tool had been trained on unimpaired 
speakers), false negative rates ranged from 6.1% 
(Shahin et al., 2014) to 12.3% (Saz, Yin, et al., 
2009). Shahin et al. (2014) reported 16.3% false 
positives; and 4% false negatives for their tool’s 
analysis of phoneme-level accuracy in TD speakers. 
Equal error rates ranged from 14 to 25.3% across a 
range of speaker-dependent and speaker-independ- 
ent conditions analysed by Saz et al. (2009). 

 
 
Behaviour change 

 

Only three publications reported on changes in 
speech production following practice with an ASA- 
based tool providing feedback on accuracy: one tool 
was an LALR parser (Delmonte, 2009) and the 
other two studies both developed and evaluated an 
HMM-based ASA system (Lee et al., 2011; 
Navarro-Newball et al., 2014). Delmonte (2009) 
reported that 20 LL children improved their pro- 
duction of lexical and phrasal stress after 10 hours of 
training but no statistics were reported to substan- 
tiate this claim. Lee et al. (2011) reported significant 
improvement in mean pronunciation scores in 21 
beginner and intermediate LL students, with a large 
effect size of 0.90. Navarro-Newball et al. (2014) 
studied a single child with hearing loss who acquired 
all trained two to three syllable consonant-vowel 
combinations within eight sessions. No studies 
compared performance of the children using ASA- 
based tools against traditional clinician-delivered 
intervention. Given the variability in outcome meas- 
urement across these three studies and the absence 
of raw data/statistical analyses in two studies, we 
were unable to report on pooled results. 
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Discussion 
 

The over-arching aim of this review was to examine 
the use and effectiveness of ASA tools in analysing 
and/or modifying children’s speech production. To 
that end, we addressed the following sub-goals: 1. 
(a) to examine the types of automatic speech analysis 
(ASA) and recognition (ASR) tools used for speech 
analysis/modification; (b) the populations and (c) 
goals/purposes to which they have been applied; 2. 
to determine the accuracy of ASA tools’ analyses of 
speech in typically developing (TD) children, chil- 
dren with speech sound disorders (SSD), or TD 
children learning a foreign language (LL); and 3. to 
determine whether currently there is evidence that 
changes in children’s speech production accuracy is 
comparable between of ASA-based training tools and 
face-to-face training. 

 
ASA tools and purpose 

 

Based on the data extracted from the studies 
included in this review, HMMs are the most studied 
automated analysis tools to date. SVMs, NNs and 
GMMs were also frequently described with out- 
comes meeting or exceeding clinical thresholds. 
These tools apply probability or likelihood measures 
that are better able to adapt to temporal variability in 
the speech signal and nonlinear interactions between 
speech input and other environmental acoustic 
variables (Deng & Li, 2013). ASA-based tools have 
been most often applied to phonemic accuracy at 
single word level and infrequently at utterance level. 
Less commonly, tools evaluated lexical or phrasal 
stress at both word and utterance level. These tools 
have been applied to populations of children with 
SSDs in their native language and typically develop- 
ing children learning to speak additional languages. 

Most tools are being used to analyse single words 
in one language and have been tested using con- 
strained word sets. Such tools are limited in their 
generalisability to other contexts without extensive 
training and re-testing. Accessing or collecting large 
samples of speech from specific user groups/popu- 
lations in order to comprehensively train the ASA 
module to better adapt to speaker variability can be 
difficult (Lee et al., 2011; O’Shaughnessy, 2008). 
Task-dependent and/or speaker-dependent models 
such as the HMM + Confusion Network model in 
Saz et al. (2009), demonstrated clinically acceptable 
performance accuracy; however, their reliance on a 
specific set of vocabulary items significantly limits 
transferability to other populations, languages and 
word sets. Using a limited vocabulary, particularly 
one with few easily confused words (e.g. neighbours 
such as ‘‘pat’’ and ‘‘bat’’) will increase analysis/ 
recognition accuracy at the cost of reducing breadth 
of application, which places limits on their wider use 
in assessment and treatment. 

None of the studies included in this review 
demonstrated   the   use   of   ASA   methods   to 

differentially diagnose disorders. This is an area of 
particular clinical need, particularly for disorders that 
have historically been difficult to differentiate, for 
example, CAS and inconsistent phonological 
disorder (Dodd, 2013; Murray, McCabe, Heard, & 
Ballard, 2015) or some types of dysarthria (Kent & 
Kim,  2003). 

 
 

Accuracy of analysis 
 

ASA-based tools  built on HMM architectures that 
extract Mel-frequency cepstral  coefficients 
(MFCCs) from the speech signal correlate well with 
human judgment and can accurately predict 
intelligibility/severity ratings for child speech (Maier 
et al., 2009a; Saz, Yin, et al., 2009). For both 
phoneme- and prosody-level judgments of correct/ 
incorrect, accuracy was particularly high when tools 
were applied to correctly pronounced words in 
groups of TD speakers or groups of  SSD/LL speakers 
(Chen, 2011; Duenser et al., 2016; Ferrer et al., 
2015; Shahin et al., 2012, 2016). Mixed results were 
obtained when evaluating the perform- ance accuracy 
of HMM-based tools on combined samples of TD and 
SSD/LL speakers (Hacker et al., 2007; Obach & 
Cordel, 2012; Parnandi et al., 2015; Shahin et al., 
2015). It is possible that, in studies reporting high 
rates of classification accuracy for combined samples 
of TD and SSD/LL speakers, high accuracy for 
correctly pronounced words from TD speakers may 
have masked potentially poorer performance of the 
tool with SSD/LL speech. Classification of 
incorrectly pronounced words did not reach the 80% 
threshold for TD, LL, or SSD speakers at phoneme- 
or prosodic-level analysis (Chen, 2011; Ferrer et al., 
2015; Shahin et al., 2014). 

For  tools  which  demonstrated  high  rates  of 
classification/categorisation accuracy for phoneme 
error patterns (Dependence Network based tool, 
Chen, 2011; HMM-based tool, Maier et al., 2009b, 
SVM-based tool, Singh et al., 2015) or severity level 
(GMM-based tool, Kadi et al., 2016), results need 
to be interpreted with caution, as overall sensitivity 
can be low when datasets contain few samples with 
errors (Maier et al., 2008, 2009b). Wider clinical 
applicability of these particular tools (Singh et al., 
2015; Kadi et al., 2016) will be limited as each tool 
is language specific, disorder specific and word-list 
specific. 

Regarding tools which classify/categorise lexical 
stress patterns, tools meeting clinically acceptable 
standards when applied to TD speakers (ANN- 
based tool, Shahin et al., 2012; CNN-based tool, 
Shahin et al., 2016) or approaching clinically 
acceptable accuracy when applied to a combined 
group of TD and SSD/LL speakers (MLP-based 
tools, Parnandi et al., 2015; Shahin et al., 2015) 
need  to  be  validated  on  SSD/LL  speakers  to 
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determine their accuracy on speech samples where 
the likelihood of mispronunciations is high. 

Taken together, these findings suggest that ASA 
methods are able to meet/exceed clinically accept- 
able thresholds for correctly-pronounced words but 
do not meet clinically acceptable standards when 
evaluating words containing mispronunciations, par- 
ticularly in the case of impaired speech. Of the best 
performing ASA tools in the reviewed studies, two 
HMM-based tools (Duenser et al., 2016; Obach & 
Cordel, 2012), one GMM-based tool (Kadi et al., 
2016), one SVM-based tool (Singh et al., 2015) and 
one HMM plus Dependence Network tool (Chen, 
2011) were trained on populations of LL or SSD 
speakers, which may account for their increased 
performance accuracy. Of these five tools, two 
incorporated Knowledge Driven recognition systems 
that had been trained specifically for the types of 
errors those speakers were likely to produce (Chen, 
2011; Duenser et al., 2016). For performance 
accuracy to increase for mispronounced words, 
ASA models need to be trained on a larger corpus 
of speech containing incorrectly pronounced words. 
Until this happens, clinical applicability of these 
tools to speech disordered populations will be 
limited, particularly in the case of disorders with a 
motor basis where errors may be less predictable and 
consistent than in disorders with a linguistic basis 
that follow largely predictable ‘‘rules’’. 

 
Behaviour change 

 

To date, the focus on tools for automated speech 
analysis (ASA) have been mainly at the development 
stage and for evaluation of accuracy or error type in 
speech production. Given the varied success of these 
tools, it is not surprising that very few studies have 
yet explored their utility or appropriateness for 
changing behaviour. We found only three studies 
documenting the ability of these tools to facilitate 
changes to speech production/pronunciation abilities 
of the child. For two of these studies (LALR parser, 
Delmonte, 2009; HMM-based ASA, Navarro- 
Newball, et al., 2014), the exact nature of the 
intervention and performance measurement was 
unclear and the effect size for the intervention was 
not reported. For these reasons, pooled data on 
effect sizes could not be reported. The HMM-based 
tool in Lee et al. (2011) was reported to facilitate 
significant improvement in mean pronunciation 
accuracy with large effect sizes; however, the exact 
measure of pronunciation accuracy was not defined. 
None of the studies compared ASA-based instruc- 
tion and feedback to face-to-face instruction. 

The absence of information about the quality and 
accuracy of the ASA-based feedback in many studies 
reporting quantitative changes to speech production 
(Neri et al., 2008; Wang & Young, 2015) makes it 
difficult to determine the true agent of change in 
these studies. Qualitative data suggests that, to be 

effective, feedback must be both ‘‘correct’’ i.e. not 
reject an utterance that a human listener would 
accept, and ‘‘adequate’’, i.e. specific to the error 
made by the user (Engwall & Balter, 2007). The 
quantitative data reviewed here leads us to question 
the capacity of ASA tools to meet both these criteria, 
especially for children and impaired speakers. 

Surprisingly, only one of the studies included in 
this review described the development of a mobile 
application for speech analysis and modification 
(Parnandi et al., 2015), despite the proliferation of 
speech therapy apps over the last 10 years. In that 
study, the application offered a digital, interactive 
method of stimulus presentation and a method for 
assigning rewards for correct productions, but the 
speech processing unit was located on a separate 
server and automated analysis of the child’s speech 
attempts was conducted offline. Therefore, the user 
relied on traditional  feedback  from  a  trained clin- 
ician or parent (Parnandi et al., 2015). Most therapy 
apps for paediatric speech disorders simply provide 
an alternative method of stimulus presentation and 
rely on a SLP, therapy assistant or parent/caregiver 
to provide feedback and shaping of responses. One 
possible reason for the current scarcity of apps 
equipped with in-built real-time ASA-based evalu- 
ation and feedback is that mobile devices have 
limited computational capacity to perform those 
functions with high reliability (Lee, Lee, Kim, & 
Kang,  2017). 

 
Limitations and future directions 

 

While the demand for ASA continues to grow, its 
rate of growth depends on successfully closing the 
performance gap between human and machine 
recognition, a need that has been described for 10 
years (O’Shaughnessy, 2008). Some authors have 
investigated the effects of applying vocal tract length 
normalisation to samples of children’s speech to 
improve the recognition accuracy of ASA models 
trained on adult speech (Azizi et al., 2012). Dudy 
et al. (2015) demonstrated that training a standard 
Goodness-of-Pronunciation model (GOP) on expli- 
cit samples of correct and incorrect pronunciations 
produced a statistically-significant increase in the 
rate of agreement between ASA and human experts’ 
classification; however, the modified GOP algorithm 
continued to perform below clinical ‘‘gold stan- 
dard’’. Phonetically-based systems are, by necessity, 
language-specific as the set of phonemes and the 
range of allowable phoneme sequences is specific to 
individual languages (Delmonte, 2009). By exten- 
sion, this could be applied to impaired speech. 
Future research should focus on optimising the 
performance of automated tools for phoneme label- 
ling, classification of correct/incorrect, and sensitiv- 
ity for error identification in populations with 
impaired speech production abilities where high 
instances of mispronounced words are likely. 
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We acknowledge the risk of publication bias and 

English language bias as a result of restricting our 
database search terms to title and abstract fields, 
limiting the date range, restricting the search to 
articles published in English, and to tools that have 
been evaluated in scholarly journals. Further inves- 
tigation is needed to identify potentially useful ASA 
tools developed for languages other than English. 

Although outside the date range of this review, 
two papers were recently published on video-game 
delivered (Cler, Mittelman, Braden, Woodnorth, & 
Stepp, 2017) and app-delivered (Byun et al., 2017) 
biofeedback for treatment of speech sound dis- 
orders. Notably, these studies both focussed on 
discrete aspects of speech production (velopharyn- 
geal valving and production of the /r/ phoneme, 
respectively). This suggests tools more narrowly 
focussed to specific speech sounds or discrete bio- 
acoustic features may have greater potential for 
success, at least in the short-term. 

 
 

Conclusion 
 

ASA shows promise for automated assessments of 
intelligibility or automated classification of impair- 
ment severity level. In order for ASA systems to be 
useful to users, false acceptance and rejection rates 
need to be low to avoid frustration for the user, and 
error detection accuracy and feedback capabilities 
need to be high in order to avoid potentially harmful 
effects of inaccurate guidance for shaping a student’s 
behaviour. Quantitative data presented in this review 
suggest that clinical transferability of the described 
ASA tools is limited at this time. This is due to sub- 
par performance on mispronounced words com- 
bined with highly constrained speech sample sets, as 
well as heterogeneous languages on which these 
systems have been trained. The proliferation of 
language learning and speech therapy apps suggests 
that automated feedback from computer and tablet- 
based gaming as speech therapy is an area of keen 
interest and we should expect to see the body of 
literature growing in the near future. With continued 
research interest and effort, these tools have real 
potential to assist children to achieve high intensity 
and engaging speech practice outside the clinic and 
can help overcome service delivery barriers. It is 
feasible that serious games with integrated ASA 
could soon be used to assist children with SSD to 
achieve rapid speech change by facilitating high 
frequency, high quality, engaging home practice with 
ASA-generated feedback on performance. 
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Portilla, A., Linares, D., & Á lvarez, G. (2014). Talking to Teo: 
Video game supported speech therapy. Entertainment 
Computing, 5, 401–412. doi:10.1016/j.entcom.2014.10.005 

Neri, A., Mich, O., Gerosa, M., & Giuliani, D. (2008). The 
effectiveness of computer assisted pronunciation training for 
foreign language learning by children. Computer Assisted 
Language      Learning,      21,      393–408.      doi:10.1080/ 
09588220802447651 

Nicolao, M., Beeston, A.V., & Hain, T. (2015 April 19–24). 
Automatic assessment of English learner pronunciation using 
discriminative classifiers. Paper presented at the 2015 IEEE 
International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). 

O’Callaghan, C., McAllister, L., & Wilson, L. (2005). Barriers to 
accessing rural paediatric speech pathology services: Health 
care consumers’ perspectives. Australian Journal of Rural 
Health, 13, 162–171. doi:10.1111/j.1440-1854.2005.00686.x 

O’Shaughnessy, D. (2008). Invited paper: Automatic speech 
recognition: History, methods and challenges. Pattern 
Recognition, 41, 2965–2979. doi:10.1016/j.patcog.2008.05.008 

O’Shaughnessy, D. (2015, 28-30 October, 2015). Automatic 
speech recognition. Paper presented at the 2015 Chilean 
Conference on Electrical, Electronics Engineering, 
Information  and  Communication   Technologies (CHILECON),  
Santiago,  Chile. 

Obach,  D.D.,  &  Cordel,  M.O.  (2012,  19-22  Nov.  2012). 
Performance comparison of ASR classifiers for the development of 
an English CAPT system for Filipino students. Paper presented at 
the  TENCON  2012  IEEE  Region  10  Conference. 

Oliveira, C., Lousada, M., & Jesus, L.M.T. (2015). The clinical 
practice of speech and language therapists with children with 
phonologically based speech sound disorders. Child Language 
Teaching      &      Therapy,      31,      173–194.      doi:10.1177/ 
0265659014550420 

Pantoja, M. (2014). Automatic pronunciation assistance on video. 
Paper presented at the PIVP 2014 - Proceedings of the 1st 
International Workshop on Perception Inspired Video 
Processing, Workshop of MM 2014. 

Parnandi, A., Karappa, V., Lan, T., Shahin, M., McKechnie, J., 
Ballard, K., . . . Gutierrez-Osuna, R. (2015). Development of a 
remote therapy tool for childhood apraxia of speech. ACM 
Transactions on Accessible Computing, 7, 10. doi:10.1145/ 
2776895 

Ruggero, L., McCabe, P., Ballard, K.J., & Munro, N. (2012). 
Paediatric speech language pathology service delivery: An 
exploratory survey of  Australian  parents.  International  Journal of   
Speech-Language   Pathology,   14,   338–350.   doi:10.3109/ 
17549507.2011.650213 

Saz, O., Lleida, E., & Rodrı́guez, W. R. (2009). Avoiding speaker 
variability in pronunciation verification of children’s disordered 
speech.   Paper   presented   at   the   Proceedings   of   the   2nd 
Workshop on Child, Computer and Interaction, WOCCI ’09. 

Saz,  O.,   Yin,  S.C.,   Lleida,  E.,  Rose,  R.,   Vaquero,  C.,   & 
Rodrı́guez,  W.R.  (2009).  Tools  and  technologies  for  com- 
puter-aided speech  and language therapy. Speech 
Communication, 51,  948–967.  doi:10.1016/ 
j.specom.2009.04.006 

Schipor, O.A., Pentiuc, S.G., & Schipor, M.D. (2012). Automatic 
assessment of pronunciation quality of children within assisted 
speech therapy. Automatinis vaikų tarsenos kokybJ s vertinimas 
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Automatic speech recognition tools for childhood apraxia 

of speech: The importance of lexical stress 

  



41 
 

Chapter 2 reported on findings from a systematic review of the literature on the use of 

automated speech analysis (ASA) tools for children’s speech production. Overall, these 

findings indicated that ASA tools are unable to meet the clinical acceptable thresholds of 

accuracy of judgement when applied to disordered speech, either for phoneme level 

judgments or judgments of prosody, including lexical stress (McKechnie et al., 2018). To 

date, there have been proportionately more studies exploring ASA for phoneme level analysis 

than prosodic level analysis (approximately 75% compared to 25% respectively) (McKechnie 

et al., 2018). Of the 32 papers reported in the literature review, only three reported on tools 

for CAS and these were all from our research team (Parnandi et al., 2015; Shahin, Ahmed, 

McKechnie, Ballard, & Gutierrez-Osuna, 2014; Shahin et al., 2015). Of these, two included 

analysis of lexical stress (Parnandi et al., 2015; Shahin et al., 2015) which has emerged as a 

critical characteristic of CAS.  

Lexical stress  

Lexical stress has been established as an important aspect of speech and language 

development. It has emerged as an influential component in models of how typically 

developing children learn to read aloud (Arciuli, Monaghan, & Seva, 2010) and models of 

how humans make lexical decisions and segment the speech stream (Mattys, 1997). It has 

also demonstrated importance for the diagnosis and treatment of several childhood disorders 

such as CAS (Ballard, Robin, McCabe, & McDonald, 2010; Shriberg et al., 2003); language 

disorder (Aguilar-Mediavilla, Sanz-Torrent & Serra-Raventos, 2002); literacy difficulties 

(Leitão, Hogben, & Fletcher, 1997); and autism spectrum disorder (e.g. McCann & Peppe, 

2003; Paul, Augustyn, Klin & Volkmar, 2005). Difficulty with lexical stress production has 

been found to negatively impact intelligibility (Field, 2005; Klopfenstein, 2009) and 

perceptions about social and communicative competence (Paul et al., 2005) and has even 

been linked with reduced likelihood living independently (Shriberg & Widder, 1990) 
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In English stressed (i.e., strong) and unstressed (i.e., weak) syllables tend to alternate 

both within and across words within a phrase or sentence (Fletcher, 2010; Greenberg, 1999) 

There are three lexical stress patterns in English. Most words of more than one syllable are 

classified as having either a strong–weak (SW) pattern, for example the word CONduct, or a 

weak–strong (WS) pattern, for example the word conDUCT. The strong–strong (SS) pattern, 

such as in the word FOOTBALL, is less common. There is a subset of English homographs 

in which lexical stress serves to distinguish between grammatical word classes such as noun 

and verb (e.g., CONduct vs. conDUCT). Lexical stress can therefore also provide critical 

information during online spoken word recognition (Arciuli & Slowiaczek, 2007; Cooper, 

Cutler, & Wales, 2002; Slowiaczek, 1990). English speakers typically develop an awareness 

to these differing stress patterns by adulthood (e.g. Arciuli & Cupples, 2004, 2006, 2007). 

Vowels in stressed syllables tend to be longer (Fletcher, 2010; Greenberg, 1999), louder, and 

higher in pitch than unstressed syllables.  

The acoustic features used to measure lexical stress include vowel duration (msec), 

vocal intensity (dB SPL), and fundamental frequency (f0 in Hz). Vowel quality also 

contributes to lexical stress categorisation, with vowels in weak syllables typically reduced to 

schwa. English speakers use all three of these acoustic correlates to mark lexical stress. The 

prominence of any one of the three acoustic correlates can vary according to factors such as 

grammatical structure and word position within the sentence (Turk & Sawusch, 1997; Van 

Kuijk & Boves, 1999).  

Lexical stress in CAS 

Prosodic difficulties have been included in descriptions of children with CAS from as 

early as 1972 (see Skinder, Strand & Mignerey, 1999). Shriberg and colleagues first 

suggested stress production difficulties as a potential diagnostic marker for CAS during 

development of the Prosody-Voice Screening Profile (Shriberg, Kwiatkowski & Rasmussen, 
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1990). These authors conducted a series of studies in 1997, which found a higher proportion 

of lexical stress errors in children with suspected CAS when compared with typically 

developing children (Shriberg, Aram, & Kwiatkowski, 1997c). They concluded that lexical 

and phrasal stress errors, particularly ‘excessive/equal/misplaced’ stress, was a valid 

diagnostic marker for a subtype of CAS (Shriberg et al., 1997c).  

Initial investigations by Skinder, Strand and Mignerey (1999) found support for 

perceptual differences in lexical and phrasal stress accuracy when comparing children with 

CAS to typically developing children but did not find any differences between the two groups 

in the use of acoustic features to mark stress. In later studies, Skinder and colleagues also 

reported acoustic differences between children with CAS and TD children in their marking of 

lexical and phrasal stress (Skinder, Connaghan, Strand, & Betz, 2000; Skinder, Strand, Stoel-

Gammon, Mignerey & Betz, 1999b). In one study, they found that children with CAS were 

not able to use acoustic cues to mark lexical stress as effectively as TD children, with 

particular difficulty observed with reducing duration to mark an unstressed syllable (Skinder, 

Strand, Stoel-Gammon et al., 1999). In a later study, the same researchers also reported that 

correctly stressed words could be differentiated from incorrectly stressed words using the 

acoustic correlates of peak fundamental frequency and peak amplitude (Skinder et al., 2000). 

To further their work around identifying potential diagnostic markers for CAS, 

Shriberg and colleagues (2003) developed and validated a metric for acoustic analysis of 

lexical stress called the Lexical Stress Ratio (LSR). The LSR is a composite score statistically 

derived from the ratios of three acoustic variables (frequency area, amplitude area and 

duration) to quantify relative prominence across adjacent syllables in bisyllabic words 

(Shriberg et al., 2003). A high LSR indicates excess stress on the stressed syllable and a low 

LSR indicates reduced stress on the stressed syllable (Shriberg et al., 2003). Loss of data due 

to children purposefully lengthening the second syllable of words with weak-strong (WS) and 
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strong-strong (SS) stress patterns led to the authors analysing only the strong-weak (SW) 

words. While this is a limitation to the study, their findings demonstrated that, when rank 

ordered, 83% of the LSR values which fell in in the upper and lower extremes of the 

continuum came from participants with suspected CAS, thus confirming that lexical stress 

errors are a valid marker of CAS. The LSR was further explored by Hosom and colleagues 

(2004), who demonstrated the feasibility of using ASR methods to increase the efficiency of 

computing LSRs. The ASR system described in this study first used forced alignment to 

detect vowel phoneme boundaries, then automatically extracted the same frequency, 

amplitude and duration variables which were analysed in Shriberg et al. (2003) to calculate 

the LSR. The results from the automated LSR measurement fell within the standard error of 

the mean LSRs reported in Shriberg et al. (2003) (Hosom et al., 2004), however, these ASR 

methods were not further explored with larger sample sizes nor adopted into clinical practice.  

More recently, prosodic deficits emerged as a discriminant measure of CAS in two 

discriminant function analysis models (Murray, McCabe, Heard, & Ballard, 2015). In Model 

1, Murray and colleagues (2015) demonstrated that, from the 24 quantitative measures 

extracted from assessment data, two measures – percent lexical stress match and presence of 

syllable segregation – presented 82% diagnostic accuracy against expert diagnosis of CAS 

and comorbid CAS (i.e. CAS plus an additional diagnosis). Greater diagnostic accuracy was 

obtained after removing four children with comorbid CAS and three non-CAS children with 

structural impairments from the dataset. Model 2 achieved 91% diagnostic accuracy with 

expert diagnosis using four quantitative measures including percent lexical stress match, 

presence of syllable segregation, percent phonemes correct and accuracy on diadochokinetic 

tasks (Murray et al., 2015). Model 2 achieved 100% diagnostic sensitivity and specificity for 

all children used to create the model with 97% sensitivity and 100% specificity when applied 

to the four comorbid CAS children and three non-CAS children with structural deficits 
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(Murray et al., 2015). While four behaviours emerged in this analysis, lexical stress was the 

strongest predictor in the model. It is also important to note that lexical stress operates over 

larger units of multiple syllables, and it is the planning/programming of syllable sequences 

that is particularly impaired in apraxia of speech (ASHA, 2007; Hall, Jordan, & Robin, 

2007). Therefore, an accurate automated measurement for lexical stress production would 

allow development of a powerful diagnostic and treatment outcome tool. 

ASR tools for lexical stress in CAS 

In light of the demonstrated importance of lexical and phrasal stress as core features 

of CAS, it is critical that ASR tools developed for the evaluation and/or treatment of CAS are 

able to accurately determine the lexical stress patterns produced. Compared with phoneme 

accuracy, lexical stress production is relatively easy to measure acoustically. The three 

variables of vowel f0, intensity and duration are straightforward to extract, once the vowel is 

identified in the acoustic signal. 

Despite the relative ease of automated measurement of lexical stress, the results of the 

systematic literature review presented in Chapter 2 indicate that only seven of the papers 

reviewed has designed tools to specifically analyse word level (i.e. lexical) stress. From these 

seven, only four studies had tested these tools using speech disordered populations, with 

small sample sizes (n < 20). Of the four studies exploring automated analysis of prosody in 

disordered speech, two had been specifically developed to evaluate lexical stress in CAS, also 

with small sample sizes (n < 7). Performance accuracy data presented in Chapter 2 indicate 

that ASR tools are able to reliably classify lexical stress patterns in typically developing 

speech but classification of lexical stress patterns in disordered speech continues to fall short 

of the accepted clinical threshold for reliability between raters when compared to expert 

perceptual judgment (McKechnie et al., 2018).  
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Chapter 4 presents a paper exploring the accuracy of a custom-designed automated 

lexical stress classification tool. Lexical stress analysis has been chosen both for its 

demonstrated importance as a key feature of CAS and potential for use as an outcome 

measure in intervention (Ballard et al., 2010; Miller, Plante, Ballard, & Robin, 2018). This 

paper extends previous work in this area by (a) applying the ASA to a larger sample of 

children with CAS, and (b) priming the tool’s dictionary with knowledge of the specific 

mispronunciations made by the participants in an attempt to overcome some of the previously 

reported limitations in automated locating of the vowel boundaries in the acoustic signal. 

Through testing and refining the lexical classifier tool, the two primary aims of the paper are 

to determine (a) whether this tool can perform reliably for both children with typical 

development and with CAS, for words across a range of stress contrast patterns, and (b) 

ultimately, whether the tool is ready for integration into an app-based therapy program for 

CAS to provide children with automated feedback on performance accuracy. 
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Chapter 4: An automated lexical stress classification tool 

for assessing dysprosody in childhood apraxia of speech 
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Paper 2: An automated lexical stress classification tool for assessing dysprosody in 

childhood apraxia of speech 

The paper presented in this chapter is currently under review for publication as follows: 

McKechnie, J., Shahin, M., Ahmed, B., Murray, E., McCabe, P., Arciuli, J., & Ballard, K.J. 

(submitted). An automated lexical stress tool for assessing dysprosody in childhood 

apraxia of speech. Journal of Speech, Language and Hearing Research. 
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Abstract 

Purpose: Childhood apraxia of speech (CAS) is characterized by difficulty with production 

of lexical stress contrasts in polysyllabic words, particularly those with weak (W) – strong (S) 

onset (e.g. tomato: /tə’matoʊ/). Here, we explore the potential for automated classification 

tools to increase objectivity, accuracy and efficiency of lexical stress analysis in words with 

different stress patterns across the first two syllables.  

Method: Speech samples from 16 typically developing (TD) children and 26 children with 

CAS producing 50 common polysyllabic words were input to a Deep Neural Network 

(DNN)-based classification tool. We extend earlier work by comparing automated 

classification accuracy with clinical auditory perceptual judgment using samples from both 

TD children and children with CAS. We also compare classification accuracy for TD speech 

to CAS speech; explore potential improvement to classification accuracy using a knowledge-

driven analysis approach where lexical stress analysis algorithms can accommodate common 

syllabic speech sound errors in the sample; and explore both within-word segmental features 

and within-participant factors such as age and severity of speech disorder as potential sources 

of automated classification error. 

Result: Classification accuracy for TD speech overall met the clinical threshold of > 80% 

agreement with human judgment, although high accuracy for strong-weak words (SW) drove 

this result. The threshold was not reached for CAS speech overall (76.77%) but was met for 

SW words (86.8%). Accuracy for CAS was moderately correlated with phonemic accuracy 

and, when restricted to words produced with perceptually accurate lexical stress, tool 

classification reached 80% accurate for SW words and for the combined set of SW and weak-

strong (WS) words (strong-strong/SS words excluded). There was no significant advantage to 

using a knowledge-driven approach. Within-word features such as liquid or glide consonants 
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adjacent to the vowel and non-schwa unstressed vowel phonemes were only weakly 

correlated with classification error. 

Conclusion: Automated speech analysis tools continue to improve in their ability to make 

decisions that are comparable with traditional clinical auditory perceptual judgment. The 

system tested here had clinically acceptable accuracy for words with SW stress for both TD 

and CAS speech and for words produced with perceptually accurate lexical stress. The 

findings represent an improvement over previous methods for lexical stress analysis in 

childhood speech disorders in terms of ease of use and accuracy against human perceptual 

judgments. Future challenges are improving the accuracy of these tools for impaired speech 

and, in particular, analysis of words with weak onsets that are commonly affected in 

childhood speech impairments. 
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Introduction 

Difficulty with the production of lexical stress has been identified as one of the core deficits 

in childhood apraxia of speech (CAS) (ASHA, 2007) and has been studied for its potential as 

a diagnostic marker (Shriberg, Aram, & Kwiatkowski, 1997c; Murray, McCabe, Heard & 

Ballard, 2015). Assessment of lexical stress production is traditionally impressionistic 

(Peppe, 2009) and therefore vulnerable to various sources of error and bias within- and 

between-rater (Charter, 2003; Kent, 1996). Objective acoustic measurement is advantageous 

for overcoming issues of perceptual bias or drift, however, manual measurement is time 

consuming for clinicians (Diehl & Paul, 2009). This study aims to further the work of Shahin 

and colleagues (Parnandi et al., 2015; Shahin, Ahmed, & Ballard, 2012; Shahin et al., 2015; 

Shahin, Gutierrez-Osuna, & Ahmed, 2016) in the development of an automated lexical stress 

classification tool for CAS. Here, we compare tool-based classification of stress patterns with 

expert auditory perceptual judgment. We also explore the potential for knowledge-driven 

systems to boost tool-based classification accuracy for mispronounced words; as well as 

examine classification errors for potential within-word segmental factors, which may affect 

tool accuracy and so guide stimulus selection for reliable assessment instruments in the 

future. 

CAS is a congenital speech sound disorder of neurological origin which affects the accuracy 

and consistency of the movements and movement transitions required for speech sound 

production in the absence of any muscular or nerve deficits (ASHA, 2007). The primary 

impairment is in the programming of the temporal and spatial parameters of movement 

sequences, manifesting in speech sound and/or prosodic errors (ASHA, 2007). Experts in 

CAS have reached some level of consensus around three segmental and suprasegmental 

features that are consistent with deficits in programming of speech movements: “(a) 

inconsistent errors on consonants and vowels in repeated productions of syllables or words; 
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(b) lengthened and disrupted coarticulatory transitions between sounds and syllables; and (c) 

inappropriate prosody, especially in the realization of lexical or phrasal stress” (ASHA, 2007, 

pp 4, 54 and 59).  

Prosodic deficits continue to demonstrate significance as a valid diagnostic feature of CAS 

(Hosom, Shriberg & Green, 2004; Murray, McCabe, Heard, & Ballard, 2015; Shriberg et al., 

2003)). Murray and colleagues (2015) conducted a discriminant function analysis using a set 

of 24 quantitative measures extracted from a comprehensive clinical battery for diagnosing 

CAS. The gold standard comparison was expert diagnosis based on ASHA’s 3-item 

consensus-based feature list (described above) (ASHA, 2007) and Strand’s 10-point checklist 

(Shriberg, Lohmeier, Strand, & Jakielski, 2012). Perceptually-judged error in producing 

lexical stress contrast in polysyllabic words was the strongest predictor of CAS diagnosis in 

the regression models presented (Murray et al., 2015). This warrants development of an 

objective and efficient assessment tool for lexical stress to aid clinical diagnosis of CAS.  

Lexical Stress 

The English language uses lexical stress patterns in which stressed or strong syllables and 

unstressed or weak syllables tend to alternate both within words and across words within a 

phrase or sentence (Fletcher, 2010; Greenberg, 1999). Over 90% of English words are 

polysyllabic (contain more than one syllable) and therefore carry alternating lexical stress 

(Arciuli, Monaghan, & Seva, 2010). Most polysyllabic English words are classified as having 

either strong-weak (SW; e.g. DInosaur /ˈdaɪnəˌsɔ/) or weak-strong (WS, e.g. poTAto 

/pəˈteɪˌtoʊ/) over the first two syllables, with a tendency towards final syllable lengthening 

and medial syllable shortening (Fletcher, 2010). Vowels in stressed syllables tend to be 

longer (msec) (Fletcher, 2010; Greenberg, 1999), louder (dB), and higher in fundamental 

frequency (f0) than vowels in unstressed syllables (Kochanski, Grabe, Coleman, & Rosner, 
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2005). Duration and loudness make a greater contribution to listeners’ perception of 

prominence than fundamental frequency (Kochanski et al., 2005) especially in a single word 

picture naming task (Ballard, Djaja, Arciuli, James, & van Doorn, 2012). Lexical stress in 

English can signal differences in grammatical word classes, such as noun (e.g. REcord) and 

verb (e.g. reCORD) and can be influential in spoken word recognition tasks (e.g. Arciuli & 

Slowiaczek, 2007; Cooper, Cutler & Wales, 2002). Given that 85-90% of content words in 

English carry initial stress, stressed syllables tend to be used by the listener to identify word 

boundaries within connected speech (Cutler & Norris, 1988). The influence of lexical stress 

on word identification and word segmentation extends beyond the local/adjacent syllabic 

context to more distal prosodic patterns, with manipulation of lexical stress patterns earlier in 

a word string having a demonstrated effect on the way in which listeners perceive and use 

lexical stress to determine word boundaries later in the string (e.g. Breen, Dilley, MacAuley 

& Sanders, 2014; Dilley, Mattys & Vinke, 2010; Morrill, Dilley & MacAuley, 2014). 

Difficulty with production of lexical stress contrasts impacts negatively on speech 

intelligibility (Field, 2005; Klopfenstein, 2009), reduces speech naturalness and can lead to 

negative perceptions about the social and communicative competence of the speaker (Paul et 

al., 2005). 

Measuring lexical stress  

Lexical stress is a good target for acoustic analysis as it involves manipulation of segmental 

or syllabic duration, fundamental frequency and intensity; all variables that are easily 

calculated by speech analysis software. Studies focused on acoustic analyses of lexical stress 

have also returned findings which support this as a key feature of apraxia of speech in both 

developmental (Munson, Bjorum, & Windsor, 2003; Nijland et al., 2003; Shriberg et al., 

2003; Skinder, Connaghan, Strand, & Betz, 2000; Skinder, Strand, & Mignerey, 1999) and 

acquired forms (Ballard et al., 2014; Ballard et al., 2016; Duffy et al., 2017; Vergis et al., 
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2014). Many of these studies did not directly compare their acoustic measures with 

perceptual judgments of speech. Two of these studies reported finding no acoustic differences 

between typically developing and CAS groups in the execution of lexical stress contrasts, 

despite listeners perceiving that the speakers with CAS had achieved stress production less 

accurately than typically developing speakers (Munson et al., 2003; Skinder et al., 1999). 

Skinder and colleagues (1999) suggested that listener perception may have been influenced 

by segmental errors, while Munson and colleagues (2003) proposed that the acoustic 

differences produced by speakers with CAS may not have been consistently perceived by the 

listeners if the degree of difference in prominence across syllables did not match the 

canonical representation. This hypothesis supports the findings of Fear, Cutler and Butterfield 

(1995) who demonstrated that listeners have a tendency to preferentially make a binary 

distinction between stressed and unstressed syllables, even though acoustic analysis 

demonstrated that an intermediate category exists in words that contain de-stressed but 

unreduced vowels. Two exceptions are further explored here. First, Shriberg and colleagues 

(2003) developed the lexical stress ratio (LSR; a single index generated from acoustic 

variables of vowel duration, intensity and f0) and reported that inter-rater agreement for the 

global judgment of whether a child should be diagnosed as suspected CAS was higher when 

the child’s LSR fell in either the upper or lower extremes of the distribution (Shriberg et al., 

2003). Second, Ballard, Robin, McCabe & McDonald (2010) reported high agreement 

between auditory-perceptual judgment of lexical stress accuracy and manually calculated 

normalized Pairwise Variability Indices (PVI), particularly for vowel duration, peak intensity 

and/or peak f0. PVI (Low, Grabe & Nolan, 2000; see equation below) calculates the degree 

of asymmetry across two adjacent syllables in a string and provides a measure that has been 

normalized for speech rate, vocal intensity, or f0, respectively.  
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Advances in technology have made objective/acoustic analysis readily available through the 

use of freeware such as smartphone applications like Wavepad Audio Editor (NCH software) 

and speech analysis freeware such as Praat (Boersma & Weenick, 2011). However, objective 

manual measurements are perceived to be too time consuming for clinicians to use on a 

regular basis (Diehl & Paul, 2009). Many clinicians report that the analysis component of the 

assessment process is at least equally (McLeod & Baker, 2014), if not more time consuming 

(Skahan, Watson, & Lof, 2007), than the direct assessment activities.  

Automated analysis of lexical stress. 

Automated analysis of lexical stress has been investigated for its potential to support both 

foreign language learning (Delmonte, 2009; Ferrer et al., 2015; Hacker, Cincarek, Maier, 

HeBler, & Noth, 2007; Shahin, Epps, & Ahmed, 2016) as well as assessment and treatment 

of various pediatric speech disorders including CAS (Hosom, Shriberg, & Green, 2004; 

Parnandi et al., 2015; Shahin et al., 2015), speech impairment (Sztaho, Nagy, & Vicsi, 2010) 

and autism (van Santen, Prud'hommeaux, & Black, 2009). Of the tools that have been applied 

to disordered speech, studies have reported that automated analyses range from 10% to 

77.6% agreement with human judgment (Sztaho et al., 2010, and Shahin et al., 2015, 

respectively); that automated measures fall within the standard error of the mean of manually 

calculated measures (Hosom et al., 2004); and that automated analyses demonstrate moderate 

to strong correlation with human judgments (Hosom et al., 2004; van Santen, 

Prud’hommeaux, & Black, 2009). We propose applying a threshold of 80% agreement 

between automated acoustic analysis and human judgment of speech as this is the threshold 

of clinically acceptable agreement often used between two human raters (Charter, 2003; 

Cucchiarini, 1996). Across both the language learning and speech disordered populations, 

automated lexical stress analysis tools that have been able to achieve this 80% threshold have 

done so for correctly pronounced words (i.e. words with no segmental substitutions, 
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distortions, deletions or additions); these tools typically do not reach clinically acceptable 

standards when analyzing mispronounced words (see McKechnie et al., 2018, for a review). 

The best performing tools reviewed by McKechnie and colleagues (2018) that had been 

applied to mispronounced or disordered speech had generally used knowledge-driven 

methods, where the tools had been supplied with data on the types of speech errors contained 

within the speech samples analyzed. This type of specificity limits the wider clinical 

applicability of such tools and necessitates the use of confined dictionaries of words for 

analysis as larger dictionaries will increase the phonetic neighborhood and increase the 

likelihood of automated systems recognizing an erroneous word based on phonetic similarity 

(Rubin & Kurniawan, 2013).  

Shahin, Gutierrez-Osuna & Ahmed (2016) developed software, which automatically 

classifies children’s lexical stress patterns across each adjacent syllable pair in isolated 

polysyllabic word productions. This tool calculates eight acoustic features for each syllable in 

a word, derived from the duration, f0, intensity and spectral energy of two consecutive 

syllables: peak to peak Teager Energy Operator (TEO) amplitude over syllable nucleus, mean 

TEO energy over syllable nucleus, maximum TEO energy over syllable nucleus, nucleus 

duration, syllable duration, maximum f0 over syllable nucleus, mean f0 over syllable nucleus, 

and 27 Mel-scale energy bands over syllable nucleus. These features are combined into a 

single wide feature vector and input into a deep neural network (DNN) classifier. From these 

combined features, the tool classifies each production as having either a SW, WS, SS, or WW 

(weak-weak) stress pattern across adjacent syllables and assigns a confidence estimate for 

that classification, expressed as a proportion of one. The confidence estimate is a 

mathematical expression of the degree of certainty that a given word was produced with the 

recognized (i.e. automatically assigned) stress pattern. The tool does output pairwise 

comparisons across all syllables for a word but, consistent with work cited earlier, we focus 
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here on the first two syllables. Typically developing (TD) children’s productions of three and 

four-syllable polysyllabic words initiated with these four different stress patterns were 

entered into the DNN classifier with overall classification accuracy against dictionary-defined 

stress patterns reaching 88%. Using a binary classification (SW, WS), the tool labelled stress 

patterns with 93% accuracy. However, for children with CAS, accuracy with the binary 

classification compared to human auditory perceptual judgment was lower at 73.4%.  

The DNN tool (Shahin, Gutierrez-Osuna, & Ahmed, 2016) has advantages over previous 

models developed by the same team (Shahin, Ahmed, & Ballard, 2012; Shahin et al., 2015). 

First, the tool was trained using child speech rather than adult speech. Second, the DNN 

classifier used raw syllable-level features rather than normalized PVI measures to learn more 

sophisticated relationships and so reduce errors rates compared with earlier versions (Shahin 

et al., 2012). Although not using PVI values to inform the lexical stress classification, these 

can still be extracted from the output. This is particularly useful for clinicians, given that 

children may have difficulty learning to control only some features to mark stress (e.g. 

relative vowel duration but not f0). Furthermore, these measures will be useful to compare 

speech-impaired children’s performance to emerging normative PVI data for English and 

other languages (Arciuli & Ballard, 2017; Arciuli & Colombo, 2016; Arciuli, Simpson, Vogel 

& Ballard, 2014; Ballard, Djaja, Arciuli, James & van Doorn, 2012).  

Such automated tools have the potential to increase objectivity, accuracy and efficiency of 

speech analysis and clinical diagnosis. These findings offer support for the use of acoustic 

measures to profile prosodic difficulties and monitor treatment-related change.  

Purpose 

This study is an extension of Shahin’s work (2016), which analyzed only 15 words from 10 

children with CAS and compared classification accuracy for TD speakers to a dictionary-
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defined canonical stress pattern rather than to human judgment of the child’s actually-

produced stress pattern. Here, we compare the tool’s classification accuracy to human 

auditory perceptual judgment using speech samples from both Australian English speaking 

TD children and children with CAS. We extend on earlier work by including a larger number 

of participants with CAS, and a wider range of 3, 4 and 5-syllable polysyllabic words. We 

also perform deeper analysis of the tool’s classification accuracy using several methods. First, 

we explore the effects of pre-training the tool with information about specific pronunciation 

errors made by the children, given the advantage for knowledge-driven methods identified in 

the review by McKechnie and colleagues (2018). We also explore the influence of phonetic 

contexts within words, given that syllabic nuclei are influenced by phonetic context and that 

phoneme boundaries may be more or less distinct depending on context (Peterson & Lehiste, 

1960); Finally, we investigate the potential influence of the age of the speaker; and severity 

of speech impairment (as measured by percentage of phonemes produced correctly). 

Our hypotheses were as follows: 

1. An automated lexical stress classifier using acoustic features of duration, f0, intensity 

and spectral energy across adjacent syllables in polysyllabic words will achieve ≥80% 

agreement with traditional ‘gold standard’ auditory perceptual judgments for TD 

speech. 

2. The automated lexical stress classifier will achieve higher classification accuracy for 

TD speakers than for CAS speakers, for whom the likelihood of mispronunciation is 

high. 

3. Classification accuracy will be higher when using a knowledge-driven system trained 

on the segmental errors represented in the disordered speech sample.  
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4. Classification errors will be associated with within-word features known to reduce 

inter-rater reliability in perceptual and manual acoustic measurement such as 

equivocal stress across the first two syllables (e.g. HAMBURger/ˈhæmˈbɜgə/); short 

vowel phonemes in the stressed syllable, (e.g. BUTterfly /ˈbʌtəˌflaɪ); ambiguous 

phoneme boundaries (i.e. liquid consonants at syllable onsets or offsets such as in 

“elephant”); or words in which weak syllables have particularly low intensity and/or 

undetectable pitch (i.e. unstressed vowels adjacent to unvoiced phonemes, such as 

“potato”).  

Method 

Participants 

Sixteen typically developing children (seven males, nine females; M = 6 yrs, range 4 – 10 

yrs, IQR = 3) and twenty-six children with CAS (twenty-two males, four females; M = 4.5 

yrs, range 4 – 12 yrs, IQR = 3) participated. All children were Australian English speakers. 

Typically developing children were recruited via convenience sampling from the local 

university community. Inclusion criteria included: aged 4 – 12 years, and parent-report of 

typically developing receptive and expressive language skills, age-appropriate speech sound 

production skills as demonstrated by percent consonants correct scores above 85% and 

developmentally appropriate phonology on the Single Word Test of Polysyllables (Gozzard, 

Baker & McCabe, 2004), no hearing deficits, no oro-muscular structural deficits, indicated by 

age appropriate oral structure and function scores on the Oral and Speech Motor Protocol 

(Robbins & Klee, 1987), and no other developmental diagnoses. 

Children with CAS were drawn from cohorts recruited for studies of CAS at a large 

metropolitan university. All children underwent a standard test battery for differential 

diagnosis of CAS (Murray et al., 2015). Inclusion criteria included: aged 4-12 years; age-
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appropriate receptive language skills, indicated by a score of  ≥ 85 on the receptive language 

index of the Clinical Evaluation of Language Fundamentals – Preschool – Second Edition 

(CELF-P2; Semel, Wiig & Secord, 2006) or Clinical Evaluation of Language Fundamentals – 

Fourth Edition (CELF-4; Wiig, Semel & Secord, 2006); no hearing deficits; no oro-muscular 

structural deficits nor evidence of dysarthria, indicated by age appropriate oral structure and 

function scores on the Oral and Speech Motor Protocol (Robbins & Klee, 1987); and no other 

developmental diagnoses as per parent report. Table 1 presents demographic information, 

speech production test data and statistical comparisons for the participant groups. 

Table 4.1. Participant demographic and speech production data. 

 TD (n = 16) CAS (n = 26) Statistics 
Variable M (SD) Range M (SD) Range  
Demographic      
Age (years) 6.1 (2.0) 4 – 10 5.9 (2.5) 4 – 12 Z = -0.71* 

 
Sex 7 male 

9 female 
 22 male 

4 female 
  

Test of Polysyllables1 
PPC 95.2 (4.2) 85.6 –99.3 61.8 (21.1) 23.9 – 96.7 t = 6.24** 
PVC  93.9 (5.3) 82.5 – 100  67.5 (17.6) 38.5 – 94.2  t = 5.82** 
PCC 95.4 (4.8) 81.4 – 100 57.5 (24.7) 13.0 – 98.6 t = 5.66** 
% Lexical 
stress matches 

88.8 (8.4) 77.3 – 100  51.0 (26.6) 6.3 – 93.8 t = 5.5** 

Severity rating2 
Mild (n) 
(> 85%) 

15  5   

Mild-moderate 
(65 – 85%) 

13  5   

Moderate-
severe 
(50 – 65%) 

0  5   

Severe 
(< 50%) 

0  11   

Note. 1 Gozzard, Baker, & McCabe (2008); 2 Based on percentage of consonants correct from 
the Test of Polysyllables; * p < .05, ** p < .0001; 3. Participant sp011 was the youngest 
participant, aged 4 years, all errors were developmentally appropriate. 

 

Stimuli 
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Stimuli included 50 color pictures, each representing a common 3-5 syllable word (Gozzard 

et al., 2004). Twenty-eight of the words are produced with unequivocal strong-weak stress 

across the first two syllables in Australian English (e.g. dinosaur, motorbike), 12 words with 

unequivocal weak-strong stress pattern (e.g. tomato, banana), and 9 with strong-strong stress 

pattern (e.g. hamburger, cucumber). The latter typically involve some degree of stress 

contrast with primary and secondary strong stress, but are difficult to assign to the SW or WS 

category as neither vowel is reduced to a schwa; for this reason, they are referred to here as 

having an equivocal stress pattern. The Macquarie Dictionary Online for Australian English 

was used to determine stress pattern (https://www.macquariedictionary.com.au). This range 

of stress contrasts was included to examine how the classifier handled degree of 

contrastiveness across the perceptual continuum. Words of three or more syllables were used 

in order to avoid conflating lexical stress pattern with final syllable lengthening effects in 

two-syllable words (Smith & Robb, 2006). 

Procedure 

Each child was seated at a desk in a quiet room in the speech pathology clinic of the 

University or in their own home. Stimuli were presented via a Powerpoint presentation on a 

laptop computer, with one picture per slide. Slide advancement was controlled by the 

researcher and, for each slide, the child was prompted to name the picture. If the child did not 

produce the target word, s/he was first prompted with a forced-choice question (e.g. “Is it a 

watermelon or a pear?”) and finally with a cue for delayed repetition (e.g. “This is a 

watermelon. Now you say it”). This ensured a high response rate. 

Speech samples were recorded with Audacity® (Mazzoni & Dannenberg, 2000) or Praat 

(Boersma & Weenink, 2011) at 44,100KHz sampling frequency using a Roland Quad-

Capture UA-55 [Roland, Los Angeles, CA] or Avid Recording Studio M-Audio Fast Track 
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Audio Interface [Avid, Burlington, MA] connected to a Dell Latitude laptop, and an 

adjustable head-worn microphone (AKG C520, AKG Acoustics, Vienna, Austria) at 5cm 

mouth-to-microphone distance. Each word for each child was saved in a separate file, labeled 

with the target word (e.g. watermelon.wav), for batch processing with the lexical stress 

classification tool. 

Prior to analysis, words that did not match the syllabic structure of the target word (e.g. 

productions with weak syllable deletion or with syllables added) were excluded. This was 

done for two main reasons: (1) the forced alignment process of the tool was unsuccessful for 

these words as they did not contain the required number or class of phonemes; and (2) the 

focus of this study was on lexical stress as defined by Iuzzini-Siegel and colleagues (2015; 

see above) and not on syllable production skills. Less than 1% (0.86%) of sampled words 

from TD speakers and 22% of words sampled from CAS speakers were excluded at this step. 

Next, all samples were run through the automated lexical stress classification tool. The tool 

took each individual wav file, linked to text information about that target word, and aligned it 

with the expected phoneme sequence. This sequence was extracted using a phonetic 

dictionary to estimate and mark phoneme boundaries within the word using a Hidden Markov 

Model (HMM) acoustic model pre-trained using the Australian National Database of Spoken 

Language (ANDOSL) corpus of Australian English speakers (Millar, et al., 1994). The tool 

extracted information about the phoneme sequence and time boundaries from the speech 

signal, and used Praat scripts to compute acoustic feature information for f0, intensity, 

duration and spectral energy. It then combined eight acoustic features into one wide feature 

vector (i.e. peak to peak TEO amplitude over syllable nucleus, mean TEO energy over 

syllable nucleus, maximum TEO energy over syllable nucleus, nucleus duration, syllable 

duration, maximum f0 over syllable nucleus, mean f0 over syllable nucleus, and 27 Mel-scale 

energy bands over syllable nucleus). The vector for each word was input to the DNN 
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classifier, which then categorized each word as either SW or WS, with an associated 

confidence level expressed as a probability. The DNN classifier was trained using the Oregon 

Graduate Institute Multilanguage (OGI) corpus of American English children (Cole & 

Muthusamy, 1994).  

All samples were run through the classification tool twice: 1) the HMM model aligned the 

produced phoneme sequence against the expected sequence using a phonetic dictionary, 

which contained a single canonical representation of the target word (i.e. single-

pronunciation HMM-based forced alignment), and 2) the HMM model aligned the produced 

phoneme sequence against the expected sequence using a phonetic dictionary, which 

contained multiple phonemic representations of the target words based on the range of actual 

variations/mispronunciations produced by the participants in the study (i.e. multiple-

pronunciation HMM-based forced alignment). This was done on the hypothesis that 

mispronounced words may have generated errors in the forced alignment stage of processing 

which, in turn, may have affected the feature vector analysis and subsequent stress pattern 

classification.  

All productions were randomly ordered and played back to an experienced speech-language 

pathologist (the first author) for perceptual rating of stress pattern using a 5-point Likert scale 

(i.e. 1 = unambiguously WS, 2 = somewhat WS, 3 = equal stress, 4 = somewhat SW and 5 = 

unambiguously SW). Following this, 48% of productions were randomly selected for 

independent rating by a second experienced speech-language pathologist (the last author), to 

establish reliability. Both raters were blinded to the output of the automated analysis at time 

of rating. Rater 2 was also blinded to participant group. Inter-rater reliability analysis was 

performed using the weighted Cohen’s kappa statistic (Cohen, 1960). The resulting reliability 

estimate indicated substantial agreement, K = 0.695 (Landis & Koch, 1977). Prior to data 

analysis, perceptual ratings of stress patterns were collapsed to a 3-point scale, where 1 and 2 
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were combined into a single category coded 1 for WS; and 4 and 5 were combined to a single 

category coded 2 for SW. 

Statistical Analysis 

The primary dependent measure was the agreement between the tool and the primary human 

rater for lexical stress pattern assigned to a word, where 1 indicated a match between 

automated and manual classifications and 0 indicated a mismatch. Percent agreement and 

Cohen’s kappa statistic (Cohen, 1960) were used to calculate strength agreement between the 

tool and human rater by group, lexical stress type, and HMM-based forced alignment method 

(single-pronunciation HMM model vs. multiple-pronunciation HMM model). Then the 

independent samples t-test and McNemar’s chi-squared test (McNemar, 1947) were used to 

compare levels of agreement (i.e. tool accuracy) between and within groups and conditions. 

First, between-group comparisons (TD vs. CAS) tested differences in tool accuracy under  (a) 

the single-pronunciation HMM-based forced alignment method and (b) multiple-

pronunciation HMM-based forced alignment for all words together, and then for subgroups 

of words (i.e. excluding SS words, and considering SW or WS separately). Second, analysis 

of the tool’s accuracy was conducted considering each group (TD, CAS) separately to 

explore (a) accuracy of single-pronunciation vs. multiple-pronunciation HMM-based forced 

alignment for all words and then the subgroups of words, (b) for the two alignment methods 

separately, accuracy for all words vs. all words when the SS words were excluded and then 

for SW vs WS words, and (c), for CAS data only, post-hoc analysis of accuracy for words 

perceived to have correct vs. incorrect lexical stress or correct vs. either correct or incorrect 

stress was used to further explore our findings. Alpha values were set at 0.01 to adjust for 

multiple comparisons. Effect sizes were calculated using Hedges’ g (Hedges, 1981) 
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A series of correlation analyses were then run for the TD and CAS children separately. Point 

biserial correlation, using the nonparametric Spearman’s rho statistic, was used to explore 

whether classification accuracy was associated with the tool’s confidence estimate for the 

assigned classification, or with presence / absence of segmental features that may contribute 

to lower lexical stress contrastiveness or less reliable detection of phoneme boundaries. These 

features included nasal or liquid phonemes adjacent to the vowel, non-schwa unstressed 

vowels, or unvoiced plosives adjacent to an unstressed vowel which can lead to vowel 

devoicing. In addition, post-hoc analyses were conducted to further explore potential sources 

of classification error. We investigated whether classification accuracy was associated with 

age or phonemic accuracy, as measured by percent consonants correct (PCC), percent vowels 

correct (PVC) or percent phonemes correct (PPC). PCC, PVC and PPC are frequently used as 

measures of severity for children with speech sound disorders (Shriberg & Kwiatkowski, 

1982). For these latter analyses, Spearman rho was used for the TD children, due to non-

normally distributed data, and Pearson’s correlation coefficient for the CAS group.  

Results 

Agreement between classifier and human judgment  

Figure 1 presents the percent agreement with human auditory perceptual judgment for the 

automated lexical stress classification tool using single- and multiple- pronunciation HMM-

based forced alignment in the TD and CAS groups.  For TD children, the 80% agreement 

threshold was passed for both alignment methods for (i) all sampled words, (ii) all words 

excluding those with equivocal stress; (iii) unequivocal SW words only; and (iv) unequivocal 

WS words only. For CAS children, SW words reached > 80% agreement under both 
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alignment methods with WS words at about 60% agreement. 

 

Figure 4.1. Percent agreement and Cohen’s kappa values for automated classification with 
single- vs. multiple-pronunciation HMM-based forced alignment compared with auditory 
perceptual judgment. TD = typically developing, CAS = childhood apraxia of speech, SS = 
strong-strong stress, SW = strong-weak stress, and WS = weak-strong stress, * = moderate 
effect, ** = substantial effect. 

 

Figure 1. also presents the Cohen’s kappa calculations for each group for the two alignment 

methods, considering (i) all the sampled words, excluding those perceptually judged as equal 

stress (given that the tool could only classify into either SW or WS) and (ii) the set of 

sampled words, excluding those perceptually judged as equal stress as well as those with 

typically equivocal stress (i.e. SS). Substantial agreement was achieved using single-

pronunciation HMM-based forced alignment to classify all words produced by TD children 

(with or without the equivocal words included); and when using multiple-pronunciation 

HMM-based forced alignment to classify to all words excluding equivocal words from TD 

children. For the CAS children, all comparisons reached moderate agreement. 

Between Groups Comparisons 

TD Single CAS Single TD Multi CAS Multi
All words 85.03 76.77 82.06 73.91
All words (excl. SS) 90.63 80.00 87.89 77.41
SW 94.46 86.84 90.14 83.00
WS 80.19 60.37 81.25 60.40
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Independent samples t-tests revealed that the tool’s accuracy in classifying lexical stress 

patterns was significantly higher for the speech of TD children compared with CAS children 

on all comparisons. The effect size for WS words was medium. For all other comparisons, 

effect sizes were small. (see Table 2).  

Table 4.2. Between group comparisons of the lexical stress classification tool’s accuracy 
against human judgment for typically developing children (TD) vs. children with apraxia of 
speech (CAS), considering the single and multiple pronunciation HMM-based forced 
alignment methods. 

 Single pronunciation  Multiple pronunciation  
Comparison Statistic p g Statistic p g 
All sampled words t = 3.53 0.0004 0.2005 t = 3.55 0.0012 0.191 
All words 
excluding SS 

t = 4.57 < 0.0001 0.304 t = 4.51 0.0001 0.2837 

SW words t = 3.38 0.0008 0.2311 t = 2.71 0.0069 0.1992 
WS words t = 3.48 0.0006 0.4378 t = 3.50 0.0005 0.463 

Note. SS – Strong-Strong stress pattern (e.g. hamburger), SW = Strong-Weak (e.g. dinosaur), 
WS = Weak-Strong (e.g. tomato), g = Hedges’ g 

 

Within Group Comparisons 

Single- vs. multiple-pronunciation HMM-based forced alignment: For the TD group, the 

single-pronunciation HMM-based forced alignment demonstrated significantly greater 

accuracy against human judgment when classifying SW words. There were no statistically 

significant differences between single-pronunciation HMM-based forced alignment and 

multiple-pronunciation HMM-based forced alignment for any of the other sample word 

groupings for the TD participants nor for any comparisons for the CAS group (see Table 3) 

Word type: For the TD group, there was a statistically significant improvement in automated 

classification accuracy, for single-pronunciation HMM-based forced alignment when the 

equivocal words were removed from the speech sample. The effect size was small. In 

addition, SW words were classified significantly more accurately than WS words using single 

pronunciation HMM-based forced alignment, with a medium effect size. Using multiple-
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pronunciation HMM-based forced alignment, no significant improvement in classification 

accuracy was gained for the TD group by removing equivocal words, neither did the 

difference in classification accuracy between SW and WS words reach statistical significance 

for this group. For the CAS group, there was no significant increase in automated 

classification accuracy by removing equivocal words for either single-pronunciation HMM-

based forced alignment model or multiple-pronunciation HMM-based forced alignment. 

Using both single- and the multiple-pronunciation HMM-based forced alignment, SW words 

were classified with significantly greater accuracy than WS words in the CAS group. The 

effect size was medium (see Table 3).  

Words perceived with correct or incorrect lexical stress: Within the CAS group, for both the 

single- and multiple-pronunciation HMM-based forced alignment, automated classification 

accuracy for words perceived to have correct lexical stress met or exceeded the 80% inter-

rater agreement threshold for (i) all words excluding those with equivocal stress and (ii) SW 

words (see Figure 2). For these word classes, there was a statistically significant difference in 

classification accuracy between words with perceptually accurate lexical stress and words 

with perceptually incorrect lexical stress and effect sizes were large in both forced alignment 

methods (see Table 3). In both single- and multiple-pronunciation HMM-based forced 

alignment, a total of 47 words from the analyzed sample were perceived as being produced 

with incorrect lexical stress. These 47 words were produced by 18 of the 26 participants with 

CAS. In the sample analyzed by the single-pronunciation HMM model, the median number 

of errors per participant (n = 18) was three (range 1 – 5). In the sample analyzed using 

multiple-pronunciation HMM-based forced alignment, the median number of errors per 

participant (n = 18) was 2.5 (range 1 – 5). Removing words produced with incorrect lexical 

stress assignment resulted in a statistically significant improvement in classification accuracy 

compared with results obtained from analysis of both perceptually correct and incorrectly 
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stressed words with alpha set at 0.05 (see Table 3). Classification accuracy for WS words 

from children with CAS was not significantly improved when analysis was performed on 

words produced with perceptually accurate lexical stress (see Figure 2).   

Table 4.3. Within group comparisons of the lexical stress classification tool’s accuracy 
against human judgment for typically developing children (TD) and children with childhood 
apraxia of speech (CAS). 

Single pronunciation vs Multiple pronunciation 
 TD   CAS   
Comparison Statistic p  Statistic p  
All sampled words Χ2 = 3.69  0.0547  Χ2 = 2.68  0.1019  
All words 
excluding SS 

Χ2 = 3.70  0.0543  Χ2 = 1.74  0.1878  

SW words Χ2 = 6.86  0.0088  Χ2 = 3.70  0.0545  
WS words Χ2 = 0.17  0.06831  Χ2 = 0.03  0.8551  
Word type comparisons 
 TD   CAS   
Comparison Statistic p g Statistic p g 
Single 
pronunciation 

      

All words vs All 
excluding SS 

t = 2.49 0.0131 0.182 t = 1.47 0.4118 0.0729 

SW vs WS words t = 4.41 < 0.0001 0.490 t = 7.61 < 0.0001 0.7026 
Multiple 
pronunciation 

      

All words vs All 
excluding SS 

t = 2.33 0.0201 0.1677 t = 1.49 0.1369 0.0696 

SW vs WS words t = 2.32 0.0209 0.2769 t = 5.87 <0.0001 0.5611 
CAS only: Lexical stress perceived as correct vs incorrect  
 Single pronunciation  Multiple 

pronunciation 
 

Comparison Statistic p g Statistic p g 
All words 
excluding SS  

t = 10.98 < 0.0001 1.6961 t = 11.34 < 0.0001 1.7368 

SW words  t = 16.48 < 0.0001 3.155 t = 12.85 < 0.0001 2.4423 
WS words t = 0.95 0.3437 0.2438 t = 2.83 0.0053 0.7308 
CAS only: Lexical stress perceived as correct vs either correct or incorrect  
 Single pronunciation  Multiple 

pronunciation 
 

Comparison Statistic p g Statistic p g 
All words 
excluding SS 

t = 2.07 0.0389 0.1311 t = 2.17 0.0302 0.1495 

SW words t = 2.58 0.0101 0.1622 t = 2.18 0.0296 0.1419 
WS words t = 0.23 0.82 0.0408 t = 0.687 0.4926 0.0824 

Note. SS – Strong-Strong stress pattern (e.g. hamburger), SW = Strong-Weak (e.g. dinosaur), 
WS = Weak-Strong (e.g. tomato) 
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Figure 4.2. Percent agreement for automated classification with single- vs. multiple-
pronunciation HMM-based forced alignment compared with auditory perceptual judgment, 
for words produced with correct and incorrect lexical stress. CAS = childhood apraxia of 
speech, SS = strong-strong stress, SW = strong-weak stress, and WS = weak-strong stress. 

 

Table 4 presents analysis of the relationship between percent agreement values, confidence 

estimates and within-word segmental features. For the TD samples, there was a strong 

positive correlation between percent agreement values and confidence estimate values using 

single-pronunciation HMM-based forced alignment and a weak positive correlation between 

percent agreement values and confidence interval values using multiple-pronunciation HMM-

based forced alignment. There was a weak negative correlation between percent agreement 

and non-schwa unstressed vowel for both single- and multiple- pronunciation HMM-based 

forced alignment and a weak negative correlation between percent agreement and within-

word feature of liquid or glide consonant (vs. other consonant) adjacent to the vowel only 

when using single-pronunciation HMM-based forced alignment. There were no significant 

correlations for the within-word features of long vs short stressed vowel or unvoiced plosive 

(vs. voiced phoneme) plus schwa in the unstressed syllable. 
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For the CAS samples, there was a weak positive correlation between percent agreement 

values and confidence intervals using single-pronunciation HMM-based forced alignment 

model and a moderate positive correlation between percent agreement values and confidence 

interval values using multiple-pronunciation HMM-based forced alignment. There was a 

weak negative correlation between confidence interval values and the within-word feature of 

liquid or glide consonant adjacent to the vowel using multiple-pronunciation HMM-based 

forced alignment model. There were no other significant correlations for within-word features 

(see Table 4). 

Table 4.4. Correlation analysis (rho) exploring the relationship between classification 
accuracy for the single and multiple pronunciation HMM-based forced alignment methods 
and (a) the tool’s confidence estimates in its classification and (b) within-word segmental 
features for typically developing children (TD) and children with apraxia of speech (CAS). 

 TD CAS 

 

Single 
Pronunciat

ion 

Multiple 
Pronunciat

ion 

Single 
Pronunciat

ion 

Multiple 
Pronunciat

ion 
Confidence: Single Pronunciation  0.726** NA 0.392** NA 
Confidence: Multiple 
Pronunciation  NA 0.348* NA 0.584** 

Nasal phoneme adjacent to vowel -0.053 -0.131 -0.136 -0.116 
Liquid phoneme adjacent to vowel -0.282* -0.266 -0.211 -0.258 
Non-scwha unstressed vowel -0.347* -0.329* -0.221 -0.248 
Long stressed vowel 0.013 0.022 -0.205 0.006 
Unvoiced plosive + schwa 
unstressed vowel 

-0.091 -0.019 -0.202 -0.096 

 

 

Table 5 presents data on the effects of age and severity on classification accuracy. For the 

TD samples, there were no significant correlations between age and classification accuracy 

across any word types for either single- or multiple- pronunciation HMM-based forced 

alignment. There were no significant correlations between consonant, vowel or overall 

phoneme accuracy and classification accuracy using single-pronunciation HMM-based 
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forced alignment. Using multiple-pronunciation HMM-based forced alignment, there was a 

strong positive correlation between consonant accuracy and classification accuracy for (i) all 

sampled words and (ii) all words excluding those with equivocal stress. Vowel phoneme 

accuracy and overall phoneme accuracy were also strongly correlated with overall 

classification accuracy for TD samples using multiple-pronunciation HMM-based forced 

alignment. 

 

For the CAS samples, classification accuracy was moderately correlated with age across all 

word types except SW words using both single- and multiple- pronunciation HMM-based 

forced alignment.  Classification accuracy demonstrated moderate positive correlation with 

percent vowels correct for all word types except WS words and a moderate positive 

correlation with overall phoneme accuracy for SW words using single-pronunciation HMM-

based forced alignment. Consonant, vowel and overall phoneme accuracy were each 

moderately correlated with classification accuracy for all word types using multiple-

pronunciation HMM-based forced alignment model (see Table 5). 
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Table 4.5. Correlation analysis exploring the relationship between classification accuracy, considering all words or specific subsets of words, and 
(a) age and (b) measures of speech impairment severity (i.e. percent consonants [PCC], vowels [PVC], or phonemes correct [PPC]) for typically 
developing children (TD) and children with apraxia of speech (CAS). 

           Single pronunciation tool Multiple pronunciation tool 
 Age PCC  PVC  PPC  Age PCC  PVC  PPC  
TD  
All words 0.241 0.079 0.485 0.258 0.439 0.608* 0.591* 0.518* 
All excluding SS  0.179 0.040 0.111 0.082 0.472 0.583* 0.352 0.398 
SW words 0.205 -0.103 0.050 0.019  0.333 0.471 0.228 0.239 
WS words 0.341 0.382 0.423 0.382 0.466 0.423 0.396 0.384 
 CAS 
All words 0.404* 0.356 0.407* 0.384 0.447* 0.481* 0.493* 0.498* 
All excluding SS  0.412* 0.334 0.392* 0.364 0.434* 0.446* 0.497* 0.476* 
SW words 0.224 0.377 0.412* 0.401* 0.312 0.459* 0.491* 0.483* 
WS words 0.560** 0.283 0.343 0.312 0.524** 0.403* 0.451* 0.429* 

Note: SS – Strong-Strong stress pattern (e.g. hamburger), SW = Strong-Weak (e.g. dinosaur), WS = Weak-Strong (e.g. tomato), 

 * p < .05, ** p < .01 level (2-tailed) 
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Discussion 

Our findings support the hypothesis that an automated lexical stress classification tool can 

achieve > 80% agreement with expert auditory perceptual judgments for TD speech. The tool 

classified stress patterns with above 80% agreement with human judgment for all word 

types/categories for speech samples from the TD group and these results are similar to the 

findings from other studies exploring automated analysis methods with typically developing 

speech (Kim & Beutnagel, 2011; Li, Zhang, Li, Lo, & Meng, 2011; Shahin et al., 2012; 

Shahin, Epps, et al., 2016; Xie, Andreae, Zhang, & Warren, 2004). 

The classifier demonstrated significantly greater classification accuracy for TD speakers than 

for CAS speakers, satisfying our second hypothesis. Our findings also demonstrated that 

classification accuracy for SW words from children with CAS also met the clinical threshold 

of > 80% agreement between raters, whereas previous findings from disordered speech 

samples have not met the clinically acceptable threshold (Ferrer et al., 2015; Shahin et al., 

2015; Sztaho et al., 2010). However, classification accuracy for WS words from children 

with CAS was well below the 80% thresholds. One possible reason for this is that producing 

segments of shorter duration is motorically more difficult than producing segments of longer 

duration (Vergis et al., 2014). Children with CAS may therefore make more significant 

phonemic mispronunciations as well as timing errors in their attempts at WS words and these 

mispronunciations contribute to poorer performance accuracy from automated tools 

(McKechnie et al., 2018). This hypothesis needs to be directly tested and is beyond the scope 

of this study. Alternatively, acoustic studies on the development of lexical stress contrastivity 

suggest that children’s productions of WS words still may not be adult-like until the age of 12 

years (Arciuli & Ballard, 2017). Such findings could also help to explain the poorer 

performance of the tool for WS words in both TD and CAS populations in this study, 
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although the classifier here had been trained using child speech, which should have mitigated 

the influence of maturation. 

Programming the dictionary of the tool’s HMM-based forced alignment module with 

segmental information from the range of phoneme errors produced by the participants gave 

no statistically significant advantage for classification accuracy. Rather, the single-

pronunciation model tended to outperform the multiple-pronunciation model on measures of 

percent agreement with human judgment for both participant groups across most word 

categories. These findings are in contrast with the outcome of other research into automatic 

speech analysis tools which reported high accuracy and agreement with human judgment for 

tools trained on disordered speech using knowledge-driven recognition systems that had been 

specifically programmed with the types of errors the speakers were likely to produce (Chen, 

2011; Duenser et al., 2016). However, these findings may also be explained with reference to 

the higher likelihood of error introduced by a dictionary in which there are a larger number of 

phonetically similar targets (Rubin & Kurniawan, 2013). 

Our findings of improved classification accuracy for words produced with perceptually 

correct lexical stress patterns suggests that the version of the automated lexical stress 

classification tool that was tested in this study can determine stress patterns when productions 

are correct but is, as not yet able to reliably determine when stress patterns are incorrect. 

Although this did not hold true for WS words since removal of words produced with 

perceptually incorrect lexical stress gave no advantage to automated classification of WS 

words.  

Although the spectral features extracted and filter banks used by the classifier were modeled 

on human speech perception and production, it is likely that there will always be differences 

between the human system and the modeled system. It’s possible that there are differences 
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between the acoustic features extracted by such algorithms and the features to which the 

human ear is attuned when judging lexical stress accuracy. Our study implemented a tool 

focused on proximal prosodic contrasts (i.e. relative differences across adjacent syllables), 

when it is likely that the human ear can attune to, and be influenced by, prosodic patterns 

across the entire speech stream (e.g. Morrill et al., 2014).  In addition, there can be acoustic 

differences in the speech signal to which the human ear does not readily attune, for example, 

the tendency to make binary classifications of stressed versus not stressed for words in which 

the de-stressed syllable contains an unreduced vowel (Fear et al., 1995). One other suggestion 

is that computer-driven algorithms seek to match the incoming signal to the pattern it has 

been trained to recognize, whereas human clinicians are trained to tune in to the incoming 

acoustic signal, regardless of target/expectation and are able to use contextual information, 

sociological factors and linguistic factors such as neighborhood density to assist with parsing 

and perception of spoken language. Also, the lexical stress classification system used in this 

study was trained only on correctly produced speech samples due to the lack of sufficiently 

sized databases of disordered speech data. One implication of these findings is that such tools 

may not yet be ready for integration into therapeutic applications until such time that they can 

provide accurate feedback speech production, both correct and incorrect. Until then, tools 

using speech recognition software are best suited to non-speech pathology applications such 

as education and lifestyle apps.  

Our findings for TD children indicate some support for the hypothesis that classification 

errors are associated with more subtle lexical stress contrasts. In the TD samples, 

classification accuracy significantly increased when words with equivocal stress were 

removed. Similarly, percent agreement with human judgment tended to be lower for words in 

which the unstressed vowel was not fully reduced to a schwa (i.e. when the word tended more 

towards equivocal stress). While these syllables represent a separate and distinct acoustic 
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category compared with stressed and unstressed syllables, the human ear has a tendency to 

categorise these with stressed syllables (Fear et al., 1995). In contrast, classification accuracy 

was not significantly improved by removing words with equivocal stress from the CAS 

samples, nor was there any correlation between percent agreement and the within word 

feature of non-schwa unstressed vowel. These findings support the hypothesis that children 

with CAS demonstrate reduced contrastiveness between syllables and tend towards equalized 

lexical stress (Ballard, Robin, McCabe, & McDonald, 2010). These findings also lend 

support to the hypothesis that the perception of equal or exccess stress in CAS may be a 

result of difficulty with control of relative timing as opposed to difficulty with the correct 

assignment of lexical stress (as in suggested in Vergis et al., (2014), Ballard et al., (2014) and 

Peter & Stoel-Gammon, (2005).  

 

For both TD samples using the single-pronunciation model and CAS samples using the 

multiple-pronunciation model, classification error was weakly correlated with the within-

word feature of liquid or glide phonemes adjacent to the vowel. This class of phonemes has 

the least distinct acoustic and spectrographic boundaries (Ballard et al., 2014; Hosom, 2009; 

Peterson & Lehiste, 1960) which may prove problematic for the automated/computerized 

phoneme alignment step in the classification process. This hypothesis is only weakly 

supported as it did not hold true for both pronunciation models in both participant groups. 

 

Additional within participant factor anlaysis exploring sources of classification error only 

partly explained our findings. Age was correlated with classification accuracy only for the 

CAS group. Since the TD group did not demonstrate such a correlation between age and 

classification accuracy, this finding is likely to be due to the relationship between age and 

severity of speech impairment. Phonemic accuracy was moderately correlated with 
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classification accuracy for some word types from the TD group using the multiple 

pronunciations HMM model. As might be expected, phonemic accuracy was more influential 

in classification accuracy for the CAS group, where the likelihood of mispronunciation was 

high. Consonant, vowel and overall phoneme accuracy each demonstrated moderate 

correlation with tool classification accuracy in all word types for multiple-pronunciation 

HMM-based forced alignment with vowel accuracy also correlating with classifiation 

accuracy for all but the WS words in single-pronunciation HMM-based forced alignment. 

Using percent consonants correct as a measure of severity of speech involvement (Shriberg & 

Kwiatkowski, 1982), classification accuracy was reduced as severity of speech impairment 

increased but only for multiple-pronunciation HMM-based forced alignment. Vowel accuracy 

was more significantly correlated with the tool’s performance accuracy across the range of 

tool and word types. This was to be expected given that the vowel is the nucleus of the 

syllable and the tool performed its analysis of lexical stress at the syllable level. It is 

surprising that phonemic accuracy was more influential to performance accuracy of multiple-

pronunciation HMM-based forced alignment than to the accuracy of single-pronunciation 

HMM-based forced alignment. Since the dictionary in this model of the tool had already been 

primed with information about the phonemic variations produced by the participants, one 

would expect to have a reduced likelihood that mispronunciations would affect the tool’s 

ability to correctly classify lexical stress. From this data, this is not the case. One possible 

reason the multiple-pronunciation HMM-based forced alignment system did not significantly 

improve lexical stress classification accuracy is that the acoustic model was trained on adult 

Australian English speakers. This may have caused alignment problems if, instead of 

recognizing mispronounced words, the aligner corrupted correctly produced words where the 

phoneme sequence was actually matched to a sequence in the single-pronunciation forced 

alignment system. Another explanation may be to do with the fact that increasing the size of 
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the dictionary resulted in higher error rates based on erroneous activation of phonetically 

similar targets (Rubin & Kurniawan, 2013). However, it is likely that factors other than 

phonemic mispronunciation and lexical stress errors are influencing automated classification 

accuracy, as vowel and phoneme errors accounted for approximately 26% of the variance in 

classification accuracy in both the single- and multiplt-pronunciation HMM-based forced 

alingment models.  

 

Limitations and future directions 

This research rasied as many questions as it has answered. Further research should investigate 

whether chidren with CAS make more significant segmental errors as well as timing errors in 

their productions of WS words and the potential influence this would have on autoamted 

lexical stress classification accuracy. Our dataset was unbalanced, with more SW words 

sampled than WS words. This was due to the facts that: (i) SW words are more common in 

the English language, particularly for nouns, while the WS pattern tends to be more common 

in verbs (Arciuli & Cupples, 2004, 2006); and (ii) the children were sampled using a picture 

naming task which accounted for the datast being comprised of nouns (i.e. picturable words) 

and therefore made up of more SW words than WS words. Future research should include a 

larger sample of WS words, particularly those produced with perceptually correct lexical 

stress, in order to explore potential factors related to the tool’s significantly poorer 

performance on WS words even when words produced with perceptually inaccurate lexical 

stress were removed.  

 

Further exploration of the similariteis and differences between acoustic features extracted by 

machine learning algorithms and those to which the human ear are attuned when judging 
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lexical stress accuracy is warranted. This would aid in determing why the algorithm does not 

match human perception, particuarly for words spoken with inaccurate stress patterns.  

 

Deeper analysis of the phonemic errors and their influence on syllable structure is required in 

order to further explain the finding that priming the acoustic model with specific knowledge 

about the types of mispronunciations present in the speech samples offered no advantage to 

the tool’s classification accuracy. 

 

As a result of convenience sampling, both groups were unbalanced on sex with the TD group 

having a greater proportion of females than the CAS group. To address this we performed  

between groups analysis of classification accuracy, separating participants into male and 

female groups, and found no significant differences in tool performance.  

 

The HMM-based forced alignment process of the tool was trained using adult Australian 

English speech samples so that the phoneme segmentation process was not affected by accent 

differences. This module of the tool may need to be further trained or adapted using data 

from Australian children. Future directions for this research includes directly testing the 

forced alignment component of the tool by comparing the sequence of recognized phonemes 

with the sequence of phonemes actually produced by the child.  

 

While the HMM-based forced alignment process was trained using Australian English 

speech, the DNN-based classifier was trained using a corpus of US English speech. This 

introduced the potential to negatively affect classification accuracy. While the influence of 

accent needs to be directlly tested, US English and Australian English are dialectical 
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variations of the same stress-timed language and therefore have similar alternating lexical 

stress across adjacent syllables in the majority of words. 

 

There are some limitations inherent in using a forced alignment sytem. One is that the 

phonemes undergo coarticulatory adjustments so that any given phoneme will vary based on 

its phonetic context. Therefore, as is well-known, phoneme boundaries are rarely discrete 

moments in time but estimates of best fit. This is particularly the case for phonemes such as 

liquids/glides transitioning into or out of vowel phonemes (Hosom, 2009). Another is that 

such systems require a constrained vocabulary and can only match the incoming speech 

signal to words within the predefined dictionary. Additionally, the system requires adequate 

training such that it can recognize words even when produced with speaker dependent 

variations in the speech signal (Hosom, 2009). Constraining tasks and vocabulary to reduce 

the potential sources of variability in the speech signal may increase computerized analysis 

accuracy. However, it also has the effect of limiting the ecological validity of the speech 

sample and reducing the clinical utility and widespread application of computerized analysis 

processes if an ‘off the shelf’ tool cannot readily be applied to different populations and 

different word sets (Hosom, 2009). Further research could consider improving the acoustic 

model used in the forced alignment module of the tool. One way to achieve this would be to 

use a more advanced acoustic model based on deep learning (Hinton, et. al. 2012). 

Alternatively, using domain adaptation techniques, suitable in instances where limited data 

from the target population is available, to adapt an acoustic model built on adult speech to 

childrens speech or disordered speech (Asami, Masumura, Yamaguchi, Masataki & Aono, 

2017).  There is also potential for ‘unsupervised systems’, built using different automatic 

speech recognition technology, which do not require the same level of training, to perform as 
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accurately as trained systems and achieve comparable accuracy compared with human 

judgment (Tamburini & Caini, 2005). 

 

Further research is needed beyond the single word to explore the potential for 

automated/computerized analysis processes to evaluate other types of prosodic function such 

as  sentential stress, emphatic stress etc (Peppé, 2009; van Santen et al., 2009).  

 
Conclusions 

This study has potential to guide the development of a test of lexical stress production for 

children, with an associated automated analysis tool for diagnosis relative to normative and 

other-disorder populations. Error analysis can provide guidelines for refining the tool to 

maximize sensitivity and specificity. Such automated analysis tools may make the analysis of 

lexical stress difficulties more accessible to clinicians who may have limited time and fluency 

with acoustic analyses. This is especially salient considering the availability of easily 

accessible technology to capture high quality audio recordings within the clinic using free 

software and smart devices. 

The findings of this study are similar to the results of other studies exploring the use of 

automated speech analysis tools for assessment and modification of speech production skills. 

However, classification accuracy for disordered speech, particularly WS words, is not yet 

reliable enough for integration into commercial or clinical systems. These findings support 

the findings of earlier studies on automated speech analysis which suggest that automated 

systems do not function well when applied to mispronounced words (see McKechnie et al., 

2018, for a review).  

Automated speech analysis remains a difficult problem for clinical populations in the current 

state of technological development. However, the promising results from TD samples and 



84 
 

CAS samples of SW words in the current study suggests that, once trained on larger datasets 

of disordered speech and with a greater range of WS exemplars, such tools have the potential 

to reach clinically acceptable benchmarks of accuracy against human raters in the near future. 
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Chapter 5: Treatment considerations and alternative 

service delivery methods for childhood apraxia of speech 
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Based on the systematic review, presented in Chapter 2, and the automated lexical stress 

classification study, presented in Chapter 4, apps that rely on ASA to provide feedback to 

children on their performance during tablet-based speech practice are not yet ready to be 

implemented in clinical practice. However, it is important to consider the impact of using ASA-

based feedback on the therapy delivery. The results of the systematic review demonstrated that 

most ASA tools that have been studied aim to provide a binary decision either on (i) whether 

a target behaviour is recognised or not, or (ii) whether the observed behaviour correctly 

matched the target or not. In motor learning, this is referred to as Knowledge of Results 

feedback (KR). This contrasts with Knowledge of Performance feedback (KP) that describes 

to the learner both whether or not their movement was correct and how or why it was in/correct. 

In the principles of motor learning (PML) framework (Schmidt & Lee, 2011), it is proposed 

that KP feedback accelerates acquisition of new skills but can interfere with longer-term 

learning, as measured by maintenance of skills after training has ended. This is possibly due to 

the dependence of the learner on the teacher for identifying error and guiding how to change 

the movement to increase accuracy, rather than developing self-evaluation and self-correction 

skills (i.e. the guidance hypothesis, see (Salmoni, Schmidt, & Walter, 1984). It is possibly a 

more passive form of learning. In contrast, KR feedback provides no guidance on how to 

improve accuracy once a movement is identified as incorrect. Therefore, it is proposed that the 

learner is forced to contemplate what went wrong and how the movement might be changed in 

a trial and error fashion. It is thought to be a more active form of learning.  

In Chapter 6, the influence of KP versus KR is tested in children with CAS undertaking 

a tablet-based speech therapy intervention. While KP and KR are important to consider, the 

approach to teaching new motor speech skills also needs to be considered. Murray et al. (2015) 

provided a systematic review of different treatment approaches for CAS, which are briefly 
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discussed here to explain which treatment approach was selected for the study presented in 

Chapter 6.   

Efficacy of treatment for CAS 

There are six treatment approaches for CAS with preliminary evidence of efficacy 

from at least one randomised controlled trial (RCT) or two controlled single-case 

experimental design studies (Murray, McCabe, & Ballard, 2014, 2015). Five are motor-based 

approaches including (i) Nuffield Dyspraxia Programme – Third Edition [NDP3] (Murray et 

al., 2015); (ii) Rapid Syllable Transition Treatment [ReST] (Ballard, Robin, McCabe, & 

McDonald, 2010; McCabe, Preston, & Evans, 2016; Murray et al., 2015; Thomas, McCabe, 

& Ballard, 2014; Thomas, McCabe, & Ballard, 2017); (iii) Dynamic Temporal and Tactile 

Cueing [DTTC] (Edeal & Gildersleeve-Neumann, 2011; Maas, Butalla, & Farinella, 2012; 

Strand & Debertine, 2000); (iv) Motor Speech Treatment Protocol [MSTP] (Namasivayam et 

al., 2015a; Namasivayam et al., 2015b); and (v) Ultrasound biofeedback (McCabe et al., 

2016; Preston, Brick, & Landi, 2013; Preston, Leece, & Maas, 2016). The sixth approach, 

Integrated Phonological Awareness, simultaneously targets phonological literacy skills and 

segmental speech motor skills (McNeil, Gillon, & Dodd, 2009; McNeill, Gillon, & Dodd, 

2009, 2010). The majority of these six approaches explicitly incorporate PML (see Chapter 1 

for an overview as well as Maas, Gildersleeve-Neumann, Jakielski, & Stoeckel, 2014; Maas 

et al., 2008). Currently, the highest level of evidence obtained for treatments for CAS has 

been Level II (NHMRC, 2009), with the first RCT in CAS published in 2015 comparing 

NDP3 with ReST (Murray et al., 2015).  

In the RCT by Murray et al. (2015), NDP3 and ReST treatments were administered 

using closely distributed practice (four 50 minute sessions per week for three weeks) with a 

high dose within sessions (at least 100 production trials per session) (Murray, McCabe, & 
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Ballard, 2012). Feedback schedules adhered to the specific protocol of each treatment. NDP3 

treatment prescribes high frequency immediate feedback (i.e. on 100% of production trials) 

incorporating both KR and KP with metaphoric, kinematic and tactile articulation cues 

provided as needed (Murray et al., 2012). ReST prescribes a short period of pre-practice 

which incorporates high frequency KR+KP with metaphoric, kinematic and tactile 

articulation cues provided as needed, followed by a longer period of practice during which 

children receive intermittent KR feedback on a fading schedule following a three second 

delay (Murray et al., 2012). A Cochrane review recently concluded that these two treatments 

demonstrated similar effectiveness for children with CAS (Morgan, Murray, & Liégeois, 

2018). However, as discussed in Chapter 1, translation of these treatment conditions to the 

Australian clinical context remains a challenge due to the high level of contact with a 

clinician. 

Recent research evidence has emerged supporting the efficacy of the ReST 

intervention delivered via alternative methods. Tele-practice delivery of clinician-led 

intervention, matching the recommended high dose frequency and large number of practice 

trials recommended by Murray et al. (2014; see also Murray et al., 2015), generated treatment 

and generalisation gains that were similar to the gains reported following face-to-face 

implementation of ReST (Thomas, McCabe, Ballard, & Lincoln, 2016). Combining clinician-

delivered with parent-delivered ReST intervention demonstrated mixed results, with some 

children achieving treatment and generalisation gains that were similar to tradition clinician-

led intervention and other children making more modest or equivocal improvements (Thomas 

et al., 2017). These studies included small samples but the authors suggested that smaller 

gains may have been the result of within-child factors or the ability of the parents to judge the 

accuracy of their child’s productions and to adhere faithfully to the treatment protocol 

(Thomas et al., 2017). 
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One of the critical considerations, when exploring alternate service delivery options 

for CAS, is how these options will affect the structure of the treatment protocol and how 

different PMLs can be incorporated. For example, Thomas and colleagues (2014) explicitly 

investigated the effect of lower dose frequency (i.e., less closely distributed practice). They 

reported that twice weekly ReST intervention over six weeks resulted in similar treatment 

gains compared with ReST four times per week (i.e. equivalent cumulative intervention 

intensity to Murray et al., 2015). However, children receiving the lower session frequency 

showed stable performance in the maintenance period rather than the ongoing improvement 

after treatment concluded that was noted by Murray et al. (2015).  

In light of the fact that NDP3 is the most frequently used intervention for CAS in 

Australia (Gomez, McCabe, & Purcell, 2018)), and that the recent RCT showed similar 

efficacy for NDP3 and ReST, it is timely to consider the impact of alternative service 

delivery methods on treatment efficacy for CAS using NDP3 intervention. Furthermore, it is 

likely that future tablet-based speech therapy apps utilising ASR and ASA will need to use 

real-word stimuli; NDP3 uses real words while ReST uses pseudo-words which cannot be 

automatically recognised. Currently, there has been no well-controlled study published that 

investigates alternatives to face-to-face intensive implementation of NDP3.  

The NDP3 contains over 500 picturable stimulus items presented in a hierarchy from 

least to most complex on the theoretical basis that motor learning is complex and children 

need to engage in frequent, systematic practice in order to progress from foundation levels 

(i.e. single sounds, simple consonant and vowel syllables, single syllable words) to more 

complex speech patterns (i.e. two to three syllable words, phrases and sentences) (Murray et 

al., 2012; Williams & Stephens, 2004). Three individual goals are selected for each child, at 

different levels of the hierarchy of stimulus complexity, based on a comprehensive 

assessment of their speech sounds, prosody, vocal and nasal quality (Williams & Stephens, 
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2004). This provides variable practice of speech targets. Goals include learning new speech 

sounds or speech patterns; combining known speech behaviours into new and more complex 

word shapes; as well as lexical, phrasal and sentential stress, as children move through the 

hierarchy from single syllables to polysyllabic words and phrases (Murray et al., 2012; 

Williams & Stephens, 2004). Children receive KR and KP on 100% of production attempts 

with the aim of achieving 90% accuracy on spontaneous productions (i.e. no clinician cues or 

input) across 12 trials.  In this way, treatment sessions following the NDP3 protocol are most 

similar to the pre-practice phase of a PML approach to intervention. The program was 

originally recommended for use in 1-hr treatment sessions once or twice per week with a 

clinician, supported by 20 minutes daily home practice in between sessions (Williams & 

Stephens, 2004). 

Chapter 6 presents the results of an experimental study manipulating feedback 

conditions during intensive treatment of CAS using the NDP3. Whereas previous studies 

exploring the feedback principle during motor learning for speech have manipulated feedback 

schedules (i.e. immediate versus delayed feedback, e.g. Austermann Hula, Robin, Maas, 

Ballard, & Schmidt, 2008) or feedback frequency (i.e. feedback on every attempt versus 

feedback which reduces in frequency to 50% or 10%, e.g. Maas et al., 2012), this study 

directly compares the response to intervention in two groups receiving high frequency 

feedback of different types (i.e. KR+KP versus KR only). The study is designed to explore 

the potential for mobile technology, such as apps with in-built ASA technology, to facilitate 

the high intensity practice necessary for learning new motor speech behaviours. Chapter 6 

explicitly compares two groups of children receiving NDP3 treatment via tablet-based 

stimulus presentation using a custom designed app. One group received traditional high 

frequency KR+KP feedback four days per week in accordance with the published NDP3 

treatment protocol (Murray et al., 2012; Williams & Stephens, 2004) and the other group 
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receiving high frequency KR+KP feedback from the clinician one day per week and high 

frequency KR feedback only on the other three days per week. The latter group is a 

simulation of the common service delivery model of one face-to-face session with a clinician 

per week supported by home practice (Sugden, Baker, Munro, Williams, & Trivette, 2017). 

In this case, the study design simulates home practice using an app which, in the future, could 

be equipped with in-built ASA providing the KR feedback on whether each speech attempt is 

recognised or evaluated as correct against a stored exemplar. A parallel-group design, with 

participants matched for age and severity of CAS, was used. Stratified randomisation was 

employed to randomly assign one child from within each matched pair to one treatment group 

and the other child within a pair to the alternate group. The study contributes additional Level 

II evidence on the efficacy of NDP3 for treating CAS.  

 

 

 

 

 



93 
 

 

 

 

 

 

Chapter 6: Tablet-based delivery of intensive speech 

therapy in children with childhood apraxia of speech: 

Influence of type of feedback 

  



94 
 

Paper 3: Tablet-based delivery of intensive speech therapy in children with Childhood 

Apraxia of Speech: Influence of type of feedback 

The paper presented in this chapter has been submitted for publication as follows: 

McKechnie, J., Ahmed, B., Gutierrez-Osuna, R., Murray, E., McCabe, P. & Ballard, K.J. 

(submitted). Tablet-based delivery of intensive speech therapy in children with 

Childhood Apraxia of Speech: Influence of type of feedback. Journal of 

Communication Disorders. 

 

 Author Contribution Statement 

As co-author of the above paper and primary supervisor, I confirm that Jacqueline 

McKechnie made the following contributions: 

• Conception of the research questions in collaboration with co-authors 

• Literature reviews 

• Collection of data 

• Data entry and data analysis/interpretation in collaboration with co-authors 

• Writing of the first draft of the paper, with subsequent drafts developed in 

collaboration with co-authors 

• Journal submission  

 

Kirrie J. Ballard 

Date: 27.2.19 



95 
 

Tablet-based delivery of intensive treatment in childhood apraxia of speech: Influence 

of type of feedback 

Jacqueline McKechnie 1,2*, Beena Ahmed 3,4, Ricardo Gutierrez-Osuna5, Elizabeth Murray1, 

Patricia McCabe 1, & Kirrie J. Ballard 1 

 

1 Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia 

2 Faculty of Health, University of Canberra, Bruce, ACT, Australia 

3 Texas A&M University at Qatar, Doha, Qatar 

4 Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia 

5 Texas A & M University, College Station, TX, USA 

* Present address of corresponding author 

Keywords: childhood apraxia of speech, mobile technology, service delivery, principles of 

motor learning  

Running head: Tablet-based treatment for CAS: Influence of feedback 

Address for Correspondence: 

Jacqueline McKechnie  

Faculty of Health Sciences 

University of Sydney 

Lidcombe, NSW 2141 

Email: jacqueline.mckechnie@sydney.edu.au 

  

mailto:jacqueline.mckechnie@sydney.edu.au


96 
 

Abstract. 

Purpose: This randomised controlled trial explored the influence of different types of 

feedback on response to intervention for children with childhood apraxia of speech (CAS). 

This was a preliminary study investigating the feasibility and effectiveness of using mobile 

technology that, in the future, could be equipped with automatic speech recognition (ASR) 

software providing feedback on speech production accuracy. Such technology has potential to 

bridge the gap between recommended intervention intensity as supported by research and 

typical intervention intensity provided by clinicians in the community. 

Method: 14 children with CAS, aged 4-10 years, participated in a parallel group design, 

matched for age and severity of CAS. Both groups attended a university clinic for 1-hour 

therapy sessions 4 days a week for 3 weeks. One group received high frequency feedback 

comprised of both knowledge of results (KR) and knowledge of performance (KP), in the 

style of traditional, face-to-face intensive intervention on all days (KP group). The other 

group received high frequency KR+KP feedback on 1 day per week and high frequency KR 

feedback only on the other 3 days per week (KR group), simulating the service delivery 

model of one clinic session per week supported by app-based home practice. Linear mixed 

effects modeling was used to test the effects of group (KP, KR), time (pre-treatment, 1-

week,1-month and 4-months post-treatment) and their interaction on both treated and 

untreated items.  

Results: Both experimental groups responded to treatment, with positive gains to treated and 

untreated words over time and no significant differences between groups at any time point. 

However, only the KP group made significant gains immediately post-treatment. Small 

sample size and large within group variability likely reduced statistical power to detect group 

differences. Survey data indicated that children and their families generally viewed app-based 

interventions in a positive light. 
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Conclusion: Mobile technology has the potential to increase motivation and engagement with 

therapy and to mitigate barriers associated with distance and access to speech pathology 

services. Further research is needed to explore the influence of type and frequency of 

feedback on motor learning and how these parameters interact with task, child and context-

related factors. 
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1. Introduction.  

Childhood apraxia of speech (CAS) is a disorder of speech motor control that causes 

substantial disruption to development of intelligible and natural sounding speech (ASHA, 

2007). The speech of children with CAS is notable for substitutions and distortions of speech 

sounds and altered prosody. CAS often persists throughout childhood and, due to its effect on 

learning of speech sounds and speech prosody, it can negatively impact the acquisition of 

phonological awareness and literacy skills (McNeill, Gillon & Dodd, 2009; Lewis, Freebairn, 

Hansen, Iyengar & Taylor, 2004). As a disorder of speech motor control, it is often 

recommended that CAS treatment apply principles of motor learning (PML) including high 

frequency of treatment sessions and high numbers of practice trials per session (Maas et al., 

2008; Schmidt & Lee, 2011). However, parents often report difficulty accessing, attending 

and affording this level of clinical care and a willingness for alternative service delivery 

methods to alleviate these burdens (Ruggero, McCabe, Ballard, & Munro, 2012). It is here 

that mobile technology can play a role in giving children with CAS access to engaging high 

intensity speech therapy that follows the best-practice PML. The current study explores the 

implications for application of motor learning principles when relying on mobile technology 

for service delivery. 

1.1 Treatment for CAS 

There are different approaches to treatment for CAS currently used around the world. 

These include motor-based approaches, linguistic approaches and multi-modal 

communication approaches. In a systematic review of the evidence on treatment for CAS, 

Murray and colleagues (2014) identified three treatment protocols as having the strongest 

levels of evidence to support their use in a clinical setting to achieve positive treatment, 

maintenance and generalization effects. These included Dynamic Temporal and Tactile 
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Cueing [DTTC], Rapid Syllable Transition Treatment [ReST], and Integrated Phonological 

Awareness Intervention. There was suggestive evidence for ten other treatment approaches 

including the Nuffield Dyspraxia Programme – Third Edition (NDP3; Williams & Stephens, 

2004), commonly used across Australia as best-practice (Gomez, McCabe, & Purcell, 2018). 

This review then led to the first and, currently, only randomized controlled trial of treatment 

for CAS, comparing the NDP3 and ReST (Murray, McCabe, & Ballard, 2015). Results of the 

RCT indicated that both NDP3 and ReST treatments resulted in similar positive treatment 

outcomes, particularly for generalization to real words.  The NDP3 demonstrated greater 

immediate gains in speech accuracy and ReST treatment lead to better maintenance of 

treatment gains and generalization to untreated pseudo-words (Murray et. al., 2015). 

However, a subsequent Cochrane review (Morgan, Murray, & Liégeois, 2018) offered a more 

conservative interpretation of these findings based on a re-analysis. This suggested no 

reliable difference existed between the two treatment groups on acquisition or maintenance of 

targets based on small absolute mean differences in accuracy scores between the groups and 

that both treatment protocols demonstrated a similar, moderate level of evidence (Morgan et 

al., 2018). Therefore, due to NDP3’s use of real words and their potential to be analysed with 

ASR, NDP3 is applied in the current study. 

Virtually all treatments for CAS focus on segmental aspects of speech production 

such as sounds, syllable and word shapes, and consistency of production over repeated 

attempts. Several approaches have incorporated early practice for production of 

suprasegmental features, particularly lexical and phrasal stress (e.g. Ballard, Robin, McCabe 

& McDonald, 2010; Strand, Stoekel & Baas, 2006). Some have designed stimuli that can 

simultaneously stimulate phonological awareness and early reading skills (e.g. McCabe, 

McDonald-D’Silva, van Rees, Ballard & Arciuli, 2014; Moriarty & Gillon, 2006).  

Regardless of the specific therapy approach, the majority of studies have advocated for 
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incorporating one or more of the principles of motor learning (see Schmidt & Lee, 2011; 

Maas et al., 2008 for a review). 

1.2 Principles of Motor Learning  

Much of what we know about PML has come from limb movement studies in non-

disordered populations or investigations involving adults with acquired apraxia of speech 

(AOS) or dysarthria. Limb movement studies have demonstrated that greater long-term 

learning occurs when practice of motor targets is variable, randomized, and frequent, with 

delayed feedback provided on an intermittent schedule (see Maas et al, 2008 for a review). 

However, investigation into adult motor speech disorders revealed that some participants 

benefited more from low frequency feedback and others from high frequency feedback, with 

similar mixed results when exploring the effects of delayed versus immediate feedback 

(Austermann Hula, Robin, Maas, Ballard, & Schmidt, 2008). The type of feedback received 

also influences acquisition and retention effects. Specific augmented feedback about how a 

movement was performed and what to adjust on the next trial (i.e. Knowledge of 

Performance, KP) enhances acquisition but potentially inhibits maintenance of skill post-

treatment. In contrast, feedback on the outcome or accuracy of the motor movement (i.e. 

Knowledge of Results, KR) leads to greater maintenance of skill (Schmidt & Lee, 2011). 

However, KR is most effective when the learner has some internal representation of the target 

movement program and some ability to self-evaluate and self-correct (see Maas et al., 2008 

for a review). 

Few studies have explicitly investigated the influence of specific principles of motor 

learning in CAS. The principles that have been studied include (a) amount of practice, where 

providing ~ 150 trials per session leads to greater treatment, generalization and maintenance 

effects than only 30-40 trials per session (Edeal & Gildersleeve-Neumann, 2011); (b) 
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treatment intensity, where twice weekly treatment sessions led to significantly better 

outcomes than once per week treatment sessions (Namasivayam, Pukonen, Goshulak, Hard, 

Rudzicz, Rietveld, Maassen, Kroll & van Lieshout, 2015); (c) practice schedule (i.e., blocked 

versus random practice; Maas & Farinella, 2012), where findings were mixed across 

participants;  (d) feedback frequency (i.e., low versus high frequency feedback; Maas et al., 

2012) where findings were also mixed across participants (see Maas et al 2014 for a review); 

and (e) distribution of practice (i.e. closely distributed at four times weekly for three weeks 

versus less closely distributed at twice weekly for six weeks; Thomas, McCabe & Ballard, 

2014) where findings indicated comparable outcomes between the two distribution methods.  

In their RCT comparing treatment outcomes from the NDP3 and ReST treatments, 

Murray and colleagues (2015) suggested that the type and frequency of feedback provided to 

children may have influenced children’s responses to intervention. Although both groups 

made significant improvements with treatment, the NDP3 group with KR + KP feedback on 

100% of trials tended toward slightly greater improvement on treated targets immediately 

post-treatment (i.e. greater acquisition) than the ReST group with 50% KR feedback only. 

Conversely, the ReST group showed slightly greater maintenance of treatment effects than 

the NDP3 group. While the robustness of these differences has been questioned (Morgan et 

al., 2018), they are consistent with previous work arguing that high frequency KR + KP 

feedback confers an acquisition advantage, while low frequency KR feedback confers a 

maintenance advantage (e.g. Maas et al., 2008; Schmidt & Lee, 2011). This is worth further 

investigation given that others have reported equivocal effects for high versus reduced 

frequency feedback when treating CAS (Maas, Butalla & Farinella, 2012). The current study 

was designed to specifically investigate the influence of the type of feedback received during 

speech production practice when therapy was delivered using mobile technology that has 
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potential to provide KR feedback only via automated speech recognition. To isolate the effect 

of feedback type, we maintained feedback frequency at 100% for both experimental groups. 

1.3 Service delivery 

Despite research consistently demonstrating that best practice intervention frequency 

for speech sound disorders, including CAS, is between 2 and 4 sessions per week (Murray, 

McCabe, & Ballard, 2014; Namasivayam et al., 2015; Sugden, Baker, Munro, Williams, & 

Trivette, 2018; Thomas, McCabe, & Ballard, 2014), these intervention frequencies are 

uncommon in clinical practice (Gomez et al., 2018; Ruggero et al., 2012; Sugden, Baker, 

Munro, Williams, & Trivette, 2017). Parent involvement and home practice activities are 

routinely prescribed by treating clinicians as a way to supplement face-to-face therapy 

sessions (Lim, McCabe, & Purcell, 2017; Sugden, Baker, Munro, & Williams, 2016; Sugden 

et al., 2017). Homework can also provide the frequent and regular practice of speech 

production targets that is needed for children to acquire new skills and habitualise these new 

movement skills, as well as different but related movement skills, into non-intervention 

contexts (Gordon-Brannan & Weiss, 2007; McLeod & Baker, 2017; Olswang & Bain, 2013). 

Effective home practice requires that the child be motivated to engage in their practice 

activities and that parents or carers can be available to supervise the practice sessions and 

provide feedback on the accuracy of the child’s productions. However, parents and children 

perceive speech practice as “work” (McAllister, McCormack, McLeod, & Harrison, 2011; 

Thomas, McCabe, & Ballard, 2017). It is here that computer-based or app-delivered home 

practice can be useful for increasing a child’s engagement and motivation to participate in 

speech homework (Hair, Monroe, Ahmed, Ballard, & Gutierrez-Osuna, 2018; Nordness & 

Beukelman, 2010; Toki & Pange, 2010). 

1.4 Computer-based treatment approaches  
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Software packages designed to act as a virtual speech-language pathologist (SLP) can 

be effective for a range of paediatric and adult speech disorders (Chen et al., 2016; Furlong, 

Erickson, & Morris, 2017). Seven out of the 20 studies reviewed in Chen et al. (2016) and six 

out of the 14 studies reviewed by Furlong et al. (2017) reported on computer-based treatment 

programs that were designed to provide speech production feedback to the user. Most of 

these provided only implicit feedback on accuracy using visual cues such as waveforms or 

animated response-contingent reactions. When feedback on speech accuracy was explicit, it 

was experimenter/clinician controlled and judged. None of the included studies in either 

review included mobile technology. 

The efficacy or effectiveness of therapy delivered via most tablet and smartphone 

applications, however, has not been empirically tested. This may be due in part to the risks in 

running time- and cost-intensive experimental trials in the fast turnover environment of the 

app market, along with the relative low cost and low risk of the products themselves 

(Edwards & Dukhovny, 2017). A recent evidence-based analysis of the quality and potential 

therapeutic benefit of mobile applications for children’s speech disorders found that less than 

3% of more than 5000 identified apps met criteria that would warrant full evaluation 

(Furlong, Morris, Serry, & Erickson, 2018). Of that 3% (132 unique apps that were 

appraised), only 19 apps (14%) were deemed to have therapeutic potential (Furlong et al., 

2018). 

The majority of available computer- or app-based intervention tools offer digital 

stimulus presentation via engaging graphics and sound effects. They typically do not provide 

the child with explicit feedback on the accuracy of their productions (KP or KR) nor offer 

remote and/or automated assessment for the SLP to monitor. The lack of integrated, 

automated feedback is largely due to the challenges involved in developing ASR software 

which can provide decisions on speech production accuracy that are highly reliable with 
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expert clinician judgements and delivered in a timely manner (see McKechnie et al., 2018 for 

a review). There has been limited research on computer-based or mobile technology 

approaches for CAS, perhaps due to the historical challenges in defining a relatively 

homogeneous group of children for testing and developing computerised approaches that 

treat the range of CAS features, not just segmental accuracy. 

1.5 Service delivery for CAS using mobile technology 

To address the mismatch between the need for children with CAS to receive intensive 

treatment and the reality of service delivery models in Australia and elsewhere, our group 

have developed Tabby Talks, which is a multi-tiered system for facilitating remote access to 

speech pathology services (Parnandi et al., 2015; Parnandi et al., 2013). Tabby Talks consists 

of three components: (1) android platform software running on mobile tablets, (2) server-

based learning management software (i.e., Moodle) running a speech analysis engine to 

evaluate children’s speech attempts offline for assessment of progress in therapy, and (3) a 

clinician interface allowing for the remote management and updating of clients and therapy 

exercises (see Table 1).  

Table 6.1. Features available in the Tabby Talks multi-tiered system for facilitating remote access to 
speech pathology services. 

App features (online real-time) Server features (offline) 
- Real-speech audio models 
- Coloured flash cards 
- Swipe features and simple memory 

game 
- Record and playback function  
- Animated cartoon cat providing 

motivational feedback 
- Star chart and medals for reaching 

milestones 
- [ASR-ready]1  

- Speech recognition software 
- Individual case files 
- Access to saved audio recordings of 

every production trial, for each child 
- Graphs of session by session accuracy 
- Bar charts presenting star and medal 

data for each practiced word or goal. 
 

Note. 1ASR=automatic speech recognition / analysis. At the time of this study, the tablet-based app 
was ASR-ready. ASR was not used here as reliability of the app-compatible algorithms was still being 
tested. 
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The first step in testing a service delivery system such as Tabby Talks in CAS is to 

examine the impact of app-delivered therapy on learning, given that some parameters of the 

treatment session may change when feedback is based on automated speech analysis 

delivering only KR feedback (i.e. right / wrong decisions). While the PML approach 

advocates KR feedback for best maintenance of treatment effects, a learner must first be 

trained in producing the target movement skills accurately through what is referred to as pre-

practice. Pre-practice, unlike practice, is where the clinician/trainer provides detailed KP 

feedback to guide and shape performance so that the learner can experience the sensorimotor 

consequences of performing the targeted movement(s) correctly. Pre-practice serves to guide 

the learner in developing an internal reference of correctness that can be accessed later during 

practice, once KP is removed, to guide self-evaluation and self-correction. Therefore, we 

propose that Tabby Talks can be used to provide high intensity and frequent practice on 

speech behaviors that the child has begun to acquire, in between the weekly in-clinic pre-

practice sessions with the speech pathologist.  

1.6 Purpose 

This study aims to explicitly investigate the influence of type of feedback on response 

to treatment to determine the feasibility for such technology and software to provide an 

effective supplement to face-to-face intensive treatment. Here, Tabby Talks was populated 

with stimuli from the NDP3 (with permission from the authors, Williams & Stephens, 2004). 

Traditionally, NDP3 treatment is delivered face-to-face, multiple times per week, with 100% 

frequency of both KR and KP feedback (Williams & Stephens, 2004; Murray et. al. 2015). 

Here, we compared this traditional approach with a simulation of home-based app-delivered 

treatment where face-to-face therapy is delivered once per week with 100% frequency of KR 

and KP and, the remaining sessions are conducted in the style of home practice with only KR 
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feedback provided at 100% frequency, simulating app-delivered, ASR-based feedback 

conditions.  

To maintain experimental control, other conditions were held constant across the two 

groups: children in both treatment conditions attended the clinic for all therapy sessions, all 

sessions were delivered by trained student speech-language pathologists under the 

supervision of experienced clinicians, all treatment stimuli were delivered via the Tabby 

Talks app, and the student clinicians delivered all feedback verbally. The only treatment 

variable that we manipulated was the type of feedback received. Future studies will examine 

the feasibility of using our ASR algorithms for delivery of the KR feedback in home-based 

therapy. 

1.7 Research Aims and Hypotheses 

This study aimed to compare two methods of feedback during tablet-delivered NDP3 

treatment, and to compare both methods to our historical data for traditional paper-based 

delivery of NDP3 (Murray et al., 2015). We also invited participants to complete a 

questionnaire exploring satisfaction with the treatment process; motivation and engagement 

with therapy activities; app features, likes, and dislikes; ease of use; and interest in further 

treatment using the app. We hypothesized that: 

(i) Tablet-based delivery of NDP3 using high frequency KR+KP feedback would 

obtain similar treatment outcomes to Murray et. al.’s (2015) traditional paper-

based delivery of NDP3. 

(ii) Compared to participants in the high frequency KR+KP group and the traditional 

paper-based NDP3 group, participants in the high frequency KR condition may 

demonstrate smaller treatment gains immediately post-treatment (i.e. evidence of 
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slower acquisition and generalization) but greater maintenance at 1- and 4- 

months post-treatment (i.e. evidence of more robust learning).  

(iii) The experimental groups would demonstrate at least similar long-term outcomes 

to Murray et. al.’s (2015) traditional NDP3 delivery. 

(iv) Participants would report overall satisfaction with tablet-based intervention 

including: high levels of child motivation, enjoyment and engagement with 

therapy activities; preference for tablet-based activities as compared with 

traditional paper-based activities; and willingness to use tablet-based intervention 

in the future.  

 

2. Method  

This study was approved by the Human Research Ethics Committee at the University of 

Sydney (Protocol number 2013/703). All parents provided written informed consent for their 

child to participate and children older than 6 years of age provided written assent.  

2.1 Participants 

Recruitment occurred via university research volunteer websites, advertisement in 

magazines of relevant professional associations, as well as flyers to community-based SLPs, 

social media forums for SLPs and special interest groups for CAS.  

Inclusion criteria were (1) confirmed clinical diagnosis of CAS by the research team, 

as described below, (2) aged between 4 and 12 years at the time of treatment, (3) age 

appropriate receptive language skills, indicated by a standard score of ≥ 85 on the receptive 

language index of the Clinical Evaluation of Language Fundamentals – Fourth Edition 

(CELF-4; Semel, Wiig & Secord, 2006) or CELF-Preschool-Second Edition (CELF-P2; 

Wiig, Semel & Secord, 2006), (4) normal or adjusted to normal hearing and vision, (5) the 
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child and at least one parent being native English speakers, and (6) no other diagnosed 

genetic, developmental or acquired diagnosis (e.g. autism spectrum disorder, dysarthria or 

intellectual disability). 

A total of 38 children were referred. Referral sources were first interviewed by phone 

or via email to rule out potential contraindications to the inclusion criteria above. 

Comprehensive assessments were carried out in two stages. Assessments to determine 

eligibility for participation in the study included (1) a case history questionnaire; (2) hearing 

screening to exclude undiagnosed hearing impairment; (3) Peabody Picture Vocabulary Test 

– Fourth Edition (PPVT-4) (Dunn & Dunn, 2007) which is highly correlated with 

psychometric assessments of cognitive functioning and used here to exclude potential 

intellectual disability; (4) CELF-4 or CELF-P2 Australian Standardizations to exclude 

delayed receptive language skills; and (5) the Oral and Speech Motor Protocol (Robbins & 

Klee, 1987) to exclude oral-structural or dysarthria diagnoses. In addition, speech samples for 

perceptually judging the presence and severity of CAS were obtained through administration 

of (6) The Goldman-Fristoe Test of Articulation – Second Edition (GFTA-2) (Goldman & 

Fristoe, 2000); (7) the DEAP Inconsistency subtest (Dodd, Hua, Crosbie, Holm & Ozanne, 

2002); (8) Single Word Test of Polysyllables (Gozzard, Baker & McCabe, 2004, 2008); and 

(9) NDP3 assessment (Williams & Stephens, 2004). Three experienced SLPs (first, fifth and 

sixth authors) independently confirmed diagnosis of CAS based on the presence of the three 

consensus-based features of CAS: (1) inconsistent errors on consonants and vowels, (2) 

difficulty transitioning between sounds and syllables; and (3) prosodic difficulties (ASHA, 

2007). A flowchart demonstrating the outcome at each stage of the referral and 

screening/eligibility process for each of the 38 referred children is shown in Figure 1.  
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Figure 6.1. CONSORT flowchart of participant assignment, treatment and follow up. 

  

Assessed for eligibility (n=38) 

Excluded (n= 22) 
♦   Not meeting inclusion criteria (n= 8) 
♦   Declined to participate in assessment 

(n=9) 
♦   Behaviour/attention difficulties (n= 3) 
♦   Declined to participate after 
assessment (n=2) 

Analysed  (n=7) 
♦ Excluded from analysis (no follow up data) 
(n=1) 

Lost to follow-up (discontinued intervention; 
missed> 3 consecutive sessions) (n=1) 

Allocated to KP group (n=8) 
♦ Received allocated intervention (n=8) 
♦ Did not receive allocated intervention (n=0) 

Lost to follow-up (discontinued intervention; 
missed> 3 consecutive sessions) (n=1) 

 

Allocated to KR group (n=8) 
♦ Received allocated intervention (n=8) 
♦ Did not receive allocated intervention (n=0) 

Analysed  (n=7) 
♦ Excluded from analysis (no follow up data) 
(n=1) 

 

Analysis 

Follow-Up 

Randomised (n= 16) 

Enrollment 

Allocation 
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Fourteen children were included in the study: 13 males and 1 female aged between 4 

and 11 years, with a mean age of 6;7 years (SD = 2;5; range of 4;1 to 10;10 years). Two sets 

of twins participated. Severity of CAS, ranged from mild to severe, as measured by Percent 

Consonants Correct (PCC; Shriberg, Austin, Lewis, McSweeny & Wilson, 1997) for the 

Single Word Test of Polysyllables. Inter-rater reliability was > 85% for point-to-point 

transcription reliability on both these tests (Kratochwill et al., 2010). Demographic data are 

presented in Table 2. There were no significant differences between the two groups on any of 

the baseline variables (i.e. age, primary and secondary outcome measures or CAS severity; 

see Table 2).  
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Table 6.2. Comparison of pre-treatment variables by group for children with apraxia of 
speech assigned to either the Knowledge of Performance (KP) or Knowledge of Results (KR) 
feedback group. 

Note: t = t-test statistic; DEAP = Diagnostic Evaluation of Articulation and Phonology 
(Dodd, Hua, Crosbie, Holm & Ozanne, 2002); Single Word Test of Polysyllables (Gozzard, 
Baker & McCabe, 2004, 2008); PPC = percent phonemes correct; PVC = percent vowels 
correct; PCC = percent consonants correct; GFTA-2 = Goldman-Fristoe Test of Articulation 
– Second Edition (Goldman & Fristoe, 2000); Speech disorder severity was based on PCC 
from the Single Word Test of Polysyllables; CELF-P2 = Clinical Evaluation of Language 
Fundamentals – Preschool – Second Edition (Semel, Wiig & Secord, 2006); CELF-4 = 
Clinical Evaluation of Language Fundamentals – Fourth Edition (Wiig, Semel & Secord, 
2006). 

 KP group (n=7) KR group (n=7)   
Variable assessed M (SD) Range M (SD) Range t p 

Demographic       

Age in months 81.7 (32.3) 50 - 129 83.6 (33.7) 54 - 131 -0.11 .92 
Sex 7 Male  6 Male  

1 Female 
   

Had previous speech 
treatment? 

7/7  7/7    

Primary outcome measures at baseline 
Accuracy on items treated 18.6 (15.2) 0 - 42.3 20.5 (13.0) 0 - 36.4 -0.25 .81 
Accuracy on items 
expected to generalize 

55.2 (12.5) 41.8 -77.3 51.6 (20.6) 24.5 -76.1 0.40 .70 

Secondary outcome measures at baseline 
DEAP Inconsistency 48.0 (20.0) 16 - 64 46.3 (15.6) 24 – 68 

 
0.18 .86 

Single Word Test of Polysyllables 
PPC 68.9 (19.9) 37 -89 62.8 (29.8) 24 - 92 0.49 .66 
PVC 72.7 (16.8) 45 - 91 70.0 (23.2) 39 - 92 0.26 .80 
PCC 66.0 (23.2) 32 - 96 57.4 (34.9) 12 - 93 0.54 .60 
Percent lexical stress 
matches 

62.5 (20.6) 34 - 90 55.9 (28.3) 24 – 88 0.50 .63 

GFTA-2       
Standard score 73.7 (24.3) 51 -109 72.3 (22.0) 40 - 102 0.15 .88 
PPC 75.0 (14.0) 52 - 91 69.8 (26.8) 36 - 97 0.45 .66 
PVC 82.6 (8.9) 65 - 91 81.8 (16.2) 61 - 99 0.11 .91 
PCC 70.8 (17.8) 45 - 95 62.9 (33.4) 17 - 97 0.55 .59 
Speech disorder severity       
Severe (< 50%) n = 2  n = 3    
Moderate-severe (50-65%) n = 1  n = 1    
Mild-moderate (65-85% n = 3  n = 0    
Mild (> 85%) n = 1  n = 3    
CELF-P2 / CELF-4        
Receptive language score 97.3 (13.3) 82 - 121 90.1 (7.6) 81 - 106 1.23 .24 
Expressive language score 84.7 (14.5) 66 - 107 85 (18.6) 63 - 112 0.03 .98 
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2.2 Design 

The study used a parallel-group design with groups matched by age and severity of 

disorder. Stratified randomisation was employed to assign pairs of children, age- and 

severity- matched, to each treatment condition; that is, one child from each pair was 

randomly assigned to one treatment group and the matched pair assigned to the other group. 

In this way, each child within the sets of twins was randomised to a different group. The KP 

Group received KR+KP feedback throughout all four sessions per week, while the KR Group 

received KR+KP feedback for the first session each week and then KR feedback only for the 

remaining three sessions in a week. All other components of the protocol were identical 

across the groups. Figure 2 provides an overview of the assessment and treatment timeline of 

the experiment.

 

Figure 6.2 Intervention timeline 
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2.3 Intervention 

The NDP3 was implemented as described by Williams and Stephens (2004, 2010) and 

operationalized by Murray and colleagues (Murray, McCabe & Ballard, 2012, 2015). Each 

child had three individualized speech production goals determined based on their pre-

treatment assessment results. Goals were selected to include new speech sounds as single 

sounds or in known syllable shapes, new syllable structures using known sounds, and 

prosodic accuracy (i.e. lexical or phrasal stress). Five NDP3 stimulus words or phrases were 

selected per goal. Whereas the children in the original RCT (Murray et al., 2015) completed 

their speech production practice within 18-minute blocks using play-based activities, the 

nature of using app-delivered intervention required some adjustments to be made. Here, each 

goal was targeted in a 16-minute block using list-based exercises (i.e. swiping through the set 

of words/phrases and producing each target) and/or a memory game within the Tabby Talks 

app, with 2 minutes of free play between each goal. The total number of production trials per 

session was kept consistent with the protocol of Murray et al. (2012; 2015). Children needed 

to achieve 90% spontaneous accuracy on each target item before new stimuli were introduced 

into the goal. Once all five stimuli within a goal reached criterion accuracy, the child was 

stepped up to the next level in the NDP3 hierarchy. Immediate feedback was provided on 

100% of production attempts throughout the sessions; however, the two groups differed in the 

type of feedback received during their treatment sessions. 

2.4 Feedback Conditions 

The KP Group received both KP feedback (i.e. specific, performance-based 

information about articulators/voicing/timing and how to adapt or change their production for 

next time) and KR feedback (i.e. on outcome accuracy only) on all production attempts (i.e. 

100% KR+KP feedback) on all four days per week, following the protocol of Murray et. al 
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(2015). Teaching and cueing were provided as needed through verbal instructions, 

articulation placement cues, visual-tactile cues, metaphors, analogies and modeling. 

The KR Group received 100% KR+KP feedback on one day per week, as described 

above; and 100% KR only feedback on the other three days per week. For children 

experiencing a high degree of difficulty (5 sequential incorrect responses), a brief period of 

KP feedback was introduced in order to establish a correct production before resuming with 

high frequency KR only (McCabe et al., 2014). While this departs from the goal of 100% KR 

feedback, this threshold for number of sequential errors is easily implemented in the app 

(Hair et al., 2018) and is necessary for duty of care. Clinicians collected data on the type of 

feedback provided to these children and engaged in continuous real-time monitoring of 

feedback type to ensure that a ratio of 80% KR to 20% KP was maintained for items on 

which a child was experiencing significant difficulty. 

For both groups, when a production was correct, the child was instructed to repeat the 

response three times, with KR feedback provided by the clinician. This procedure is 

consistent with the NDP3 manual and the protocol developed by Murray et al. (2012). To 

maintain experimental control, all sessions were delivered in a University clinic. Student 

speech pathologists provided the treatment and delivered all feedback under the supervision 

of the first, fourth and last authors.  

Dose was controlled across both treatment groups. Treatment was delivered over 12 

1-hour sessions, four days per week for 3 weeks during school vacation periods. Children in 

the KP group received an average of 156.2 response trials per session (SD = 44.9) and the KR 

children an average of 142.5 (SD = 36.6), and these dose levels were not statistically different 

(t = 0.7348, p = 0.49).  
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The student clinicians received two days of training in providing treatment, 

transcription and data collection. Inter-rater reliability for point-by-point transcription after 

this training was ≥ 85%. To avoid potential clinician effects, each clinician was randomly 

allocated one child from each group and delivered two sessions per day – one child in the KP 

treatment condition and the other child in the KR feedback condition. The clinicians treated 

the same children for the 3-week block of treatment. The clinicians were, therefore, aware 

that treatment involved a comparison of two types of feedback, however, they remained 

blinded to the research hypotheses. To ensure adherence to the treatment protocol and avoid 

interference from one feedback condition to the other, treatment fidelity was measured in 

every session. 

Caregivers were informed that their child would be treated using the NDP3 but were 

blinded to the feedback condition their child was receiving. Caregivers were able to observe 

treatment via one-way mirrors and could speak to other caregivers in the waiting room. Two 

of the participating families included twins who were paired with one another and 

consequently allocated to different treatment groups; therefore, the caregivers from these two 

families were aware that the nature of the experiment involved manipulation of the feedback 

conditions. All caregivers remained blinded to the experimental hypotheses and were 

instructed that no home practice should be done during the study. Reports containing detailed 

descriptions of the children’s treatment condition, goals, progress, beneficial cues and 

strategies and recommendations for further treatment were provided to the caregivers after 

the 1-week post-treatment follow up assessment. No stimuli were provided to families and 

they were requested to refrain from practicing or resuming treatment until after the 1-month 

post-treatment assessment, which matched Murray et al.’s RCT (2015). 

2.5 Outcomes 
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All children completed an individualized experimental probe immediately prior to 

commencing treatment. Probes varied in length from 116 to 176 items (M = 148, SD = 15.3) 

and consisted of (a) treated NDP3 items, to test for a treatment effect; and (b) untreated items 

from the NDP3 Assessment, to test for generalization of any treatment effect. The untreated 

items represented a range of difficulty in the NDP3 hierarchy from one level below the 

lowest level of treatment complexity to two levels above the highest level of treatment 

complexity (see Appendix A). These untreated items were analysed as a set and not by 

difficulty level. 

Post-treatment assessments were conducted at 1-week, 1-month and 4-months post-

treatment as per Murray et al. (2015). At each of these time points, the children completed 

their experimental probe and the DEAP Inconsistency subtest as an additional measure of 

generalization. In addition, each child and their caregiver completed a user-experience 

questionnaire at 1-week post-treatment. At the 1-month post-treatment time point, the GFTA-

2 and Single Word Test of Polysyllables were also re-administered. All caregivers reported 

that their child had received no additional SLP input between the commencement of 

treatment and the 1-month post-treatment evaluation. Four children in each group reported 

resuming regular SLP services between 1-month and 4-months post-treatment. 

2.5.1 Primary Outcome Measures. The primary dependent variable was percent accuracy of 

responses on experimental probe stimuli, judged perceptually. To be judged correct and 

scored as 1, each word or phrase was required to have: (a) all phonemes produced accurately, 

including no phonetic distortions, (b) smooth transitions between sounds and syllables (i.e. no 

syllable segregations or within word groping), and (c) accurate prosody (i.e., lexical or 

phrasal stress) across syllables. If any error was perceived on sounds, transitions, or prosody, 

the item was judged incorrect and scored as 0. 
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2.5.2 Secondary Outcome Measures. A secondary outcome measure to further explore 

generalization effects was the score on the Inconsistency subtest of the DEAP. In addition, 

responses on the Single Word Test of Polysyllables and GFTA-2 were analysed to explore 

potential changes to percent phonemes correct (PPC), percent consonants correct (PCC), 

percent vowels correct (PVC) and prosodic accuracy (i.e. percent lexical stress match) of 

untreated single words.  

2.6 Recording equipment  

All treatment sessions were audio- and video-recorded using the Cinde 88 audiovisual 

system (Cinde, Melbourne, Australia) and the Bosch Video Management System (Bosch 

Sicherheitssysteme GmbH, Grasbrunn, Germany). In addition, treatment sessions were audio-

recorded using within-room digital voice recorders such as the Olympus VN-732PC or Sony 

Stereo ICD-UX200F digital voice recorder to enable off-line calculation of treatment fidelity 

and intra- and inter-rater reliability on the dependent variables. All pre- and post-treatment 

evaluations were audio- and video-recorded as above as well as audio-recorded using Roland 

Quad-Capture UA-55 [Roland, Los Angeles, CA] or Avid M-Track Audio [Avid, Burlington, 

MA] via an adjustable head-worn microphone (AKG C520, AKG Acoustics, Vienna, 

Austria) at 5cm mouth-to-microphone distance. 

2.7 Reliability and treatment fidelity 

2.7.1 Treatment sessions. Reliability for judgments of correct/incorrect on response trials was 

recorded for 25% of each treatment session. Mean inter-rater reliability was 88% (SD = 10.3) 

Treatment sessions were also closely monitored to ensure adherence to the treatment 

protocol. Data were collected on transcription accuracy, judgements of correct/incorrect, 

provision of appropriate feedback according to children’s allocated treatment group, 

provision of teaching/cueing where appropriate and eliciting three repetitions of a correctly 
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produced treatment target. These data were compiled to generate an overall measure of 

treatment fidelity. Mean fidelity was 84.7% (SD = 9.5).  

2.7.2 Experimental probes. Twenty-five percent of each probe assessment was re-rated to 

determine intra- and inter-rater reliability on primary outcome measures. For point-by-point 

transcription, mean intra-rater reliability was 89% (SD = 5.4) and mean inter-rater reliability 

was 84% (SD = 6.2). For judgments of correct/incorrect, mean intra-rater reliability was 92% 

(SD = 6.1) and mean inter-rater reliability was 87% (SD = 6.3). 

Reliability for point-by-point transcription accuracy was also calculated on 20% of 

the secondary outcome data. This included broad transcription of the DEAP inconsistency 

subtest and phonetic transcription (with diacritics for errors) on the GFTA-2 and Single Word 

Test of Polysyllables. Mean inter-rater reliability was 85% (SD = 9.8).  

2.8 Statistical Analysis 

All statistical analyses were run using IBM SPSS Statistics 24 for Windows (IBM 

Corp, 2016). A series of linear mixed effects models were run to test the effects of group (KP, 

KR), time (pre- and 1-week, 1-month and 4-months post-treatment) and their interaction on 

(a) treated items, exploring the treatment effect, (b) untreated but related items, exploring 

generalization of any treatment effect, and (c) the DEAP scores, also a measure of 

generalization. First order autoregressive and unstructured models were tested with and 

without the covariates of age and baseline severity (i.e. PPC score for the Single Word Test 

of Polysyllables), using Sidak adjustment for multiple comparisons for post hoc testing.  

To assess for treatment-related changes in the secondary outcome measures from the 

Single Word Test of Polysyllables and GFTA-2, repeated measures analysis of variance 

(ANOVA) was used. This analysis included the between-subjects factor of group (KP, KR) 
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and two-level within-subjects factor of time (pre, 1-month post) with 95% confidence 

intervals and alpha set at .05.  

2.9 Questionnaire 

 A 16-item questionnaire was developed using a combination of yes/no, multiple 

choice, likert scale and open-ended response types (see Appendix B). Parents completed the 

questionnaire using pen and paper during their child’s 1-week post-treatment session. 

Children over the age of 10 were invited to read and respond to the questions independently, 

with a clinician present to assist with any reading difficulties. Children under the age of 10 

responded to the questions in an interview format with the assessing clinician.  

Data from likert scale questions were collated to form condensed categories (e.g. ‘highly 

motivating’ and ‘motivating’ were combined). These data as well as binary and multiple-

choice questions were analysed using descriptive statistics to report frequencies. We used 

qualitative content analysis (Graneheim & Lundman, 2004) to explore the responses to open-

ended questions. The first author analysed each response by summarising meaning units, 

creating codes and identifying major themes. An independent rater conducted the same 

procedure for reliability. Themes were compared and potential sources of disagreement were 

discussed until consensus was reached. 

3. Results 

To assess for treatment and generalization effects, first order autoregressive and 

unstructured linear mixed effects models were tested with and without the covariates of age 

and baseline speech disorder severity (i.e. PPC score for the Single Word Test of 

Polysyllables). In all cases, except for age for the treated items, both covariates were 

significant. For all dependent variables, the unstructured model including the covariate of 

severity provided the best fit, with residuals being normally distributed. However, the 
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findings were the same when either covariate was included in the model; note that age and 

severity were highly correlated in this sample (Pearson r = .679, p = .008). Results for the 

unstructured models, covarying for severity, are reported here.  

3.1 Primary Outcomes 

Performance on treated words across all four time points for the two experimental 

groups and also for the historical comparison group from Murray et al. (2015) is shown in 

Figure 3A. Performance on untreated but related items is shown in Figure 3B. Means and 

standard deviations for all measures made over four time points are presented in Table 3. 

Individual data for all 14 participants for change in percent correct from pre- to immediately 

post-treatment is also graphed in Figure 4, for transparency.   

Table 6.3. Mean (SD) for treatment and generalization measures across the four test points for 
children with apraxia of speech assigned to either the Knowledge of Performance (KP) or Knowledge 
of Results (KR) feedback group. 

 Pre-treatment Post-treatment 
1-week 1-month 4-months 

Treatment 
group 

KP KR KP KR KP KR KP KR 

Primary 
outcomes 

        

Treated items 1 
 

18.6 
(15.2) 

20.5 
(13.0) 

43.7 
(24.7) 

23.8 
(17.1) 

45.7 
(27.2) 

28.1 
(22.7) 

59.0 
(24.7) 

45.1 
(14.6) 

Generalization 
items 1  

55.2 
(12.5) 

51.6 
(20.6) 

69.0 
(8.7) 

60.54 
(16.8) 

65.1 
(15.9) 

55.2 
(20.9) 

74.5 
(12.6) 

60.5 
(24.3) 

Secondary outcomes 
DEAP 
Inconsistency 

48  
(20) 

46.3 
(15.6) 

44 
(17.4) 

41.7 
(13.2) 

39.4 
(20.2) 

43.4 
(17.5) 

33.1 
(16.1) 

38.3 
(24.9) 

Single-word Test of Polysyllables 
  PPC 68.9 

(19.9) 
62.79 
(29.8) 

__ __ 78.0 
(11.5) 

66.0 
(23.3) 

__ __ 

  PVC 72.7 
(16.8) 

70.0 
(23.2) 

__ __ 78.4 
(9.1) 

67.1 
(19.2) 

__ __ 

  PCC 66.0 
(23.2) 

57.4 
(34.9) 

__ __ 77.6 
(14.4) 

66.5 
(30.1) 

__ __ 

  Percent lexical 
  stress matches 

62.5 
(20.6) 

55.9 
(28.3) 

__ __ 61.7 
(11.5) 

46.6 
(29.7) 

__ __ 

GFTA-2         
  Standard score 73.7 

(24.3) 
72.3 
(22.0) 

  78.6 
(25.6) 

72.4 
(25.8) 

  

  PPC  75.0 
(14.0) 

69.8 
(26.8) 

__ __ 79.9 
(11.1) 

72.2 
(24.5) 

__ __ 
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  PVC 82.6 
(8.9) 

81.8 
(16.2) 

__ __ 83.9 
(7.1) 

79.6 
(17.2) 

__ __ 

  PCC 70.8 
(17.8) 

77.7 
(14.9) 

__ __ 62.9 
(33.4) 

68.1 
(30.4) 

__ __ 

Note: 1Percent correct; DEAP = DEAP = Diagnostic Evaluation of Articulation and Phonology (Dodd et al., 
2002); PPC = percent phonemes correct; PVC = percent vowels correct; PCC = percent consonants correct; 
GFTA-2 = Goldman-Fristoe Test of Articulation – Second Edition (Goldman & Fristoe, 2000). 

3.1.1 Treatment Effects  

 There was no statistically significant difference when comparing average percent 

improvement from baseline for the KP group here and the traditional NDP3 group (See Table 

4).  

Table 6.4. Comparison of average gain (i.e. percent improvement from baseline) immediately post-
treatment for, (i) treated items and (ii) items expected to generalise, for the tablet-based Knowledge of 
Performance group (KP) and traditional NDP3 group (TRAD) from Murray et al. (2015). 

 KP group  
(N = 7) 

TRAD group  
(N = 13) 

Statistics 

 Mean (SD) Mean (SD) MD SE p 
Treated items  25.1 (21.6) 39.8 (17.3) 14.7 8.8 .113 
Items expected to 
generalise 

13.8 (5.9) 10.3 (8.6) 3.6 3.7 .346 

Note: MD = mean difference, SE = standard error, alpha was set at .05. 

 

For the two experimental groups here, adjusting for severity, the main effect of time 

was highly significant; however, the effect of group and the group by time interaction did not 

reach significance (see Table 5 and Figure 3A). Due to the exploratory nature of this study, 

with a relatively small participant sample, post hoc comparisons were explored (See Table 6). 

For the KP group, there was a significant improvement from pre- to 1-week post-treatment, 

the difference from pre- to 1-month post-treatment approached significance but was robust 

for the pre- to 4-months comparison. For the KR group, only the pre- to 4-month comparison 

reached significance. As shown in Figure 4, the effect for the KP group was driven by three 

participants who improved more than 30 percentage points from pre- to 1-week post-

treatment. 



122 
 

Table 6.5. Type III Tests of Fixed Effects for the dependent measure of treated 

items produced correctly in the one pre- and three post-treatment probes. 

Source Numerator df Denominator df F Sig. 

Intercept 1 12.123 2.274 .157 

Group 1 11.531 1.693 .219 

Time 3 12 19.267 .000 

Severity 1 11 5.030 .046 

Group * Time 3 12 2.084 .156 
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Figure 6.3. Mean performance at pre-treatment, 1-week, 1-month and 4-months post-
treatment for: A. treated items; B. untreated items; C. DEAP Inconsistency.   

Note: KP = 100% knowledge of results and performance feedback for all 4 sessions each 
week; KR = 100% knowledge of results and performance feedback on session 1 and 100% 
knowledge of results feedback on sessions 2 – 4 each week. Error bars represent standard 
error. DEAP = Diagnostic Evaluation of Articulation and Phonology (Dodd, Hua, Crosbie, 
Holm & Ozanne, 2002). 

 

Table 6.6. Post-hoc comparisons of average gain (e.g. percent improvement from baseline) for, (i) 
treated items and (ii) items expected to generalise, at each of the three post-treatment time points for 
the Knowledge of Performance (KP) group and Knowledge of Results (KR) group. 

 Pre-treatment to  
1-week post-treatment 

Pre-treatment to  
1-month post-treatment 

Pre-treatment to  
4-months post-treatment 

MD SE p MD SE p MD SE p 
Treated Items 
KP 25.1 6.4 .012* 27.0 9.0 .063 40.4 6.2 .000** 
KR 3.3 6.4 .997 7.6 9.0 .959 24.5 6.2 .011* 
Items expected to generalise 
KP 13.9 3.0 .004** 9.9 4.1 .174 19.3 4.0 .003** 
KR 9.0 3.0 .070 3.6 4.1 .948 9.0 4.0 .250 

Note: MD = mean difference, SE = standard error, * denotes p < .05, ** denotes p < .01. 

 

 

 

 

Figure 6.4 Individual percent change from pre-treatment to 1-week post-treatment for treated 
items, untreated items and the DEAP Inconsistency subtest. 
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Note: DEAP = Diagnostic Evaluation of Articulation and Phonology (Dodd, Hua, Crosbie, 
Holm & Ozanne, 2002). 
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To explore the issue of statistical power, we conducted a power analysis. First, the 

effect size (partial eta squared) for the group by time interaction was estimated using a 

traditional repeated measures ANOVA with group (KP, KR) and time (the first three time 

points only, free of influence from recommencement of community-based therapy). This 

yielded an effect size of ƞp
2  = 0.179. To achieve a statistically significant interaction with this 

effect size, the sample size would need to be 26 per group (total sample size of 52; with alpha 

0.05, power 0.8, 2 groups, 3 measurement time points, using G*Power v3.1.9.2).  Conversely, 

with the current total sample size of 14, the effect size would have needed to be 0.36 to reach 

significance. 

Long term outcomes for treated items between the two experimental groups in this 

study and the historical comparison group from Murray et al. (2015) was explored using 

repeated measures ANOVA with group (KP, KR, TRAD) and time. There were no significant 

differences between groups at the 4-months post-treatment time point (See Table 7).  

Table 6.7 Comparison of average accuracy at 4-months post-treatment for, (i) treated items and (ii) 
items expected to generalise, for the Knowledge of Performance group (KP), Knowledge of Results 
(KR) group and traditional NDP3 group (TRAD) from Murray et al. (2015). 

 KP group  
(N = 7) 

KR group 
 (N = 7) 

TRAD group  
(N = 13) 

Statistics 

 Mean (SD) Mean (SD) Mean (SD) F p 
Treated items 59.03 45.07 64.46 3.13 0.062 
Items expected to 
generalise 

74.45 60.5086 58.9869 1.87 0.175 

 

3.1.2 Generalisation effect  

Average gain (i.e. percent improvement from baseline) on items expected to 

generalize was similar between the KP group here and the traditional NDP3 group (see Table 

4). 

Considering the two experimental groups in this study, the first analysis considered 
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the untreated word set. Adjusting for severity, the main effect of time was highly significant; 

however, the effect of group and the group by time interaction did not reach significance (see 

Table 8 and Figure 3B). Again, due to the exploratory nature of the study, post hoc tests with 

Sidak adjustment for multiple comparisons were examined. Pre-treatment performance was 

compared to each of the three post-treatment time points for the two groups (see Figure 3B 

and Figure 4). For the KP group, there was a significant improvement from pre- to 1-week 

post-treatment, the pre- to 1-month post-treatment comparison was not significant, but the 

pre- to 4-months post-treatment was significant. For the KR group, the pre- to 1-week post-

treatment approached significance, and no other comparisons were significant (See Table 6). 

Long term outcomes for items expected to generalize were compared between the two 

experimental groups in this study and the historical comparison group from Murray et al. 

(2015) using repeated measures ANOVA with group (KP, KR, TRAD) and time. There were 

no significant differences between groups at the 4-months post-treatment time point (See 

Table 7).  

Table 6.8. Type III Tests of Fixed Effects for the dependent measure of untreated related items 

produced correctly in the one pre- and three post-treatment probes. 

Source Numerator df Denominator df F Sig. 

Intercept 1 11.611 34.659 .000 

Group 1 11.362 3.383 .092 

Time 3 12.000 14.233 .000 

Severity 1 11.000 108.354 .000 

Group * Time 3 12.000 1.292 .322 
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The second analysis considered performance on the DEAP inconsistency subtest. 

Adjusting for severity, no main effects or the interaction were significant (see Table 9, Figure 

3C, and Figure 4). As expected, there were no significant post hoc comparisons across time 

points for either group. 

Table 6.9 Type III Tests of Fixed Effects for the dependent measure of Inconsistency Score on the 

Diagnostic Evaluation of Articulation and Phonology (Dodd et al., 2002) at the pre- and the three 

post-treatment probes. 

Source Numerator df Denominator df F Sig. 

Intercept 1 11.305 164.863 .000 

Group 1 11.149 .179 .680 

Time 3 12.000 2.915 .078 

Severity 1 11.000 43.316 .000 

Group * Time 3 12.000 .880 .479 

 

3.2 Secondary Outcome Measures: Generalization Effects 

Statistical analysis of the four outcome measures derived from the Single Word Test 

of Polysyllables (PCC, PVC, PPC and percent lexical stress match) and GFTA-2 (PCC, PVC, 

PPC and Standard Score) (See Table 10) demonstrated no group or interaction effect for any 

measure in either test. For the Single-Word Test of Polysyllables only, there was a large 

significant main effect of time (pre-treatment to 1-month post-treatment) for PCC and a large 

significant main effect of time for PPC (Cohen, 1969). 
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Table 6.10. Results of statistical comparisons made for the secondary outcomes measured at only two time points between the Knowledge of 
Performance (KP) and Knowledge of Results (KR) feedback groups. 

 

 Pre-treatment to 1-month post-treatment 
Single word test of polysyllables PPC PVC PCC % LS match 
 F p ƞp

2 F p ƞp
2 F p  ƞp

2 F p ƞp
2 

Group 0.613 .449 .049 0.607 .451 .048 0.497 .494 .040 0.811 .386 .063 
Time 5.358 .039* .309 0.214 .652 .018 11.423 .005* .488 1.769 .208 .128 
Group * Time 1.235 .288 .093 1.947 .188 .140 0.180 .180 .015 1.276 .281 .096 
     
GFTA-2 PPC PVC PCC Standard score 
 F p ƞp

2 F  p ƞp
2 F  p ƞp

2 F  p ƞp
2 

Group 0.379 .550 .031 0.159 .697 .013 0.444 .518 .036 0.101 .756 .008 
Time 1.804 .204 .131 0.025 .878 .002 3.489 .086 .225 0.459 .511 .037 
Group * Time 0.216 .651 .018 0.349 .565 .028 0.076 .788 .006 0.404 .537 .033 

Note. Effect (ƞp
2) = partial eta squared with .01 representing a small effect, .06 representing a medium effect and .14 representing a large effect. * denotes 

significant at p < .05. 
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3.3 User experience questionnaires 

Questionnaires were completed by thirteen of the children. One child declined to 

participate in the survey. Questionnaires from parents reporting on their perception of their 

child’s experience were returned by all twelve of the parents. The parents of twins completed 

one questionnaire per child.  

3.3.1 Closed-ended questions 

Frequency of responses to each of the binary and multiple-choice questions are shown 

in Figure 5A-G. 
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Figure 6.5A-G: Participant responses to user experience surveys 
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3.3.1.1 Enjoyment, engagement and motivation: The majority of children (10/13) and parents 

(12/14) reported that the child enjoyed using the tablet to practice their speech production 

targets (Figure 5A). Eight out of fourteen children reported being able to maintain focus on 

the therapy activities and 3/14 reported not being able to maintain focus, while parent 

responses were mixed (Figure 5B). Half of all children (7/13) and 9/14 parents reported 

finding the tablet-based activities motivating (Figure 5C). Four parents reported that their 

child had a neutral response to tablet-based activities.  

3.3.1.2 Using the app: According to both child and parent responses, experiences were mixed 

as to whether the children needed help navigating the various app features during therapy (see 

Figure 5D). A range of features were selected for needing assistance, with no strong tendency 

for any one feature (See Figure 5E). Some parents (3/14) commented that their child mostly 

followed clinician instructions for operating the app or the clinician navigated the app for the 

child (3/14 parents).  

3.3.1.3 Willingness to use apps in future: The majority of children (9/13) and parents (11/14) 

reported a preference for tablet-based practice compared with traditional paper-based 

activities (Figure 5F). All but one parent (13/14) reported a willingness to engage in tablet-

delivered intervention more than once per week. The children were more varied in their 

responses: 6/14 indicated that they would use the app once a week or more, 2/14 that they 

would use it only once per month, 2/14 that they would not use it for speech practice, and 

2/14 did not respond (Figure 5G). 

3.3.2 Open-ended questions 

The survey captured data on the users’ likes and dislikes about the tablet-based 

exercises, reasons for preference toward tablet- vs paper-based exercises. Responses fell into 
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two main themes of the app/equipment and the experience. Additional feedback was invited 

in a final open-ended question. 

3.3.2.1 The app/equipment: Most of the app features were identified as ‘likes’. Most 

commonly mentioned was the feature for playing back a child’s audio recordings (4 children, 

6 parents). Also reported as ‘likes’ by both children and parents were: listening to an audio 

model, the memory game, the reward stars, and the pictures. Three parents commented that 

tablet-based treatment was preferable because the app made home practice easier to set up 

and repeat. In contrast, the one parent who preferred paper-based activities noted their 

versatility: “more adaptable…you can do more activities with paper”. 

Few children or parents mentioned aspects of the app or equipment that they disliked. 

Two children commented that the headset microphone was uncomfortable. Three parents 

wanted greater interactivity with the app and games that provide a greater range of 

motivators: “it’s just like flash cards” (parent of KR7), and “add visuals to the tablet images 

to show rate and emphasis within words” (parent of KR5).  

3.3.2.2 The experience: Four children commented that tablet exercises were “fun”. Fun, 

enjoyment and variety were also listed as reasons for children (2/13) and parents (5/14) 

preferring tablet-based activities. Three children reported that they liked learning new words 

and achieving goals; although, two children commented that they disliked practising difficult 

words.  

Three children and one parent commented that the therapy program was “too long” 

and another two that there were “lots of words to do”. The most common dislike of parents 

was the repetitive nature of the activities (6/14).  

3.3.2.3 Other feedback: The final survey question invited other comments or feedback. Three 

parents expressed gratitude for having been involved. Two parents reported that they felt their 



134 
 

child was too young for the type of intensive treatment provided in the study. Two parents 

commented that their child was frustrated by KR-style feedback but one commented that they 

could see the benefit of using KR to encourage the child to “think more about their own 

speech”. Two parents expressed concern that their child’s behaviour had been negatively 

affected by participating in the study, and in one of these cases had also negatively impacted 

her child’s approach to therapy. In both cases, the child was in the KR condition. 

4. Discussion 

This study compared two methods of feedback during tablet-delivered NDP3 treatment. 

This investigation is a necessary first step towards determining whether app-delivered 

right/wrong (KR) feedback during intensive at-home practice of new motor speech targets 

can effectively facilitate acquisition and maintenance of new segmental and suprasegmental 

speech patterns. Such technology has the potential to bridge the gap between optimal service 

delivery intensity in CAS and current service delivery models in Australia. 

We hypothesized that (i) tablet-based delivery of NDP3 using high frequency KP 

feedback would obtain similar treatment and generalization outcomes to Murray et. al.’s 

(2015) traditional paper-based delivery of NDP3, (ii) participants in the high frequency KR 

condition may demonstrate smaller gains immediately post-treatment (i.e. evidence of slower 

acquisition and generalization), compared with the KP group, but greater maintenance at 1- 

and 4- months post-treatment (i.e. evidence of more robust learning), and (iii) the 

experimental groups would demonstrate similar long-term maintenance of any treatment and 

generalization effects to Murray et. al.’s (2015) traditional NDP3 delivery. 

Our first hypothesis was confirmed in that the KP group made statistically significant 

gains in treated and untreated word accuracy, which were similar in magnitude to the 

traditional NDP3 treatment group from Murray et al. (2015). Our second hypothesis was 
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partially supported. Overall, for both treated and untreated words, no group effect was 

detected but the effect of time was highly significant. This suggests that children in both 

experimental groups responded to the treatment, with positive gains in treated and untreated 

words over time, regardless of the feedback condition. However, on closer examination of the 

data from the individual children, it was noted that 6/7 children in the KP group made 

substantive gains on treated words of 10 or more percentage points from pre- to 1-week post-

treatment, while only 2/7 children in the KR group did; and 3/7 KP children but no KR 

children improved >30 percentage points. Similarly, 6/7 KP children and only 3/7 KR 

children showed a 10 or more percentage point gain for untreated words, indicative of 

generalization. It is likely that the small sample size in this study meant insufficient power to 

detect a significant group by time interaction effect. Our power analysis suggested that a 

group size of 26 was needed to achieve a significant interaction for the treated words, or else 

a larger effect size of 0.36. To date, this is the only study that has examined the influence of 

feedback type on speech intervention in CAS. These data suggest that the influence of KP vs 

KR feedback needs to be further explored in a larger sample, to determine whether there is 

indeed an effect of feedback type or whether the differences observed are driven by other 

factors such as age, severity of CAS, or self-evaluation ability. 

The lack of significant improvement for the KR group immediately post-treatment 

appears consistent with the tendency for slower improvement with KR than KP. Although the 

KP group’s accuracy on both treated and untreated but related items at 1-week post-treatment 

reached significance, while the KR groups did not, there were no significant differences 

between the groups at any time point. This is likely because variability within groups was 

large, as shown in Figure 4.  

Regarding the third hypothesis, both tablet-delivered treatment groups had made similar 

long-term gains at 4-months post-treatment that were statistically significant compared to 
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pre-treatment performance level and similar to the gains made by the traditional NDP3 group 

in Murray et al. (2015). However, this also suggests that evidence of a significant treatment 

effect for the KP group here should be interpreted with caution. If treatment was responsible 

for accelerated changes in the KP group’s speech production skills, one might expect that 

their progression over time should remain accelerated when compared with the KR group. 

This was not the case. Instead, the KR group demonstrated similar achievements in speech 

production skills at the 4-month follow up assessment. This finding may be confounded by (i) 

the return to community-based treatment for 4/7 children in both groups and (ii) that 

community clinicians were likely to have been providing KP feedback, although we do not 

have any evidence to support this suggestion. The lack of significant treatment effect for the 

KR group, also makes it difficult to attribute the improved performance at the 4-month follow 

up to ‘maintenance’ 

The overall trend in improvement on both treated words and generalisation words differed 

between this study and the historical comparison study (Murray et al., 2015). Whereas, the 

traditional NDP3 group showed large improvement on treated words immediately post-

treatment with a tendency towards loss of skill at follow up due to 1/13 clients having poor 

maintenance (Murray, McKechnie, & Williams, 2017) both groups here continued an upward 

trajectory during the follow up period. Reasons for this are not clear but may be due to factors 

to do with the use of the tablet for stimulus presentation, audio recording or self-evaluation, 

or the reinstatement of community-based therapy for some children. In contrast, performance 

on generalisation words showed the opposite effect. Where the traditional NDP3 group 

showed a continuous upward trend in performance accuracy, the two experimental groups 

here showed similar gains in untreated real words immediately post-treatment, with a trend 

towards deterioration of skill at 1-month post-treatment, followed by continued improvement 

from 1-month to 4-months post-treatment. Given that children were able to return to their 
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regular speech pathology treatments following the 1-month post-treatment evaluation, this 

could explain the continued long-term improvements on all items. However, approximately 

half of all children did not resume treatment in this period and so it is likely additional but 

unidentified factors contributed to the trend for continued longer-term improvement. This is a 

desirable trend warranting further investigation into which child-related or treatment-related 

factors may have contributed to this observation.  

These results echo those of previous studies in CAS and AOS that have demonstrated that 

responses to different feedback types and frequencies vary across participants (Maas, Butalla 

& Farinella, 2012; Austermann Hula, Robin, Maas, Ballard & Schmidt, 2008). Variation in 

response to different feedback types and frequency may be influenced by strength of internal 

representation of the specific speech behaviours targeted and/or pre-treatment level of 

proficiency. Target selection was individualised for each participant, resulting in some 

treatment and/or generalisation targets being relatively more difficult than others. Stimulus 

selection may therefore have served as a confound within and between participants (Maas et 

al., 2012; Wambaugh et al., 2017). This confound is almost impossible to avoid in these 

studies as treatment must address the sounds in error for each individual child. This is 

mitigated in part by limiting the sounds to those that are stimulable for a correct response and 

selection of three goals crossing different levels of proficiency (e.g. single sound to word 

level). Nonetheless, the children still vary in their ability to self-evaluate, ease in production, 

ability to attend and comply with the training context, and their motivation.  

Feedback from participants was generally positive. The majority of respondents reported 

that tablet-based therapy was motivating, enjoyable and preferred compared with traditional 

paper-based formats. Most of the existing features of the Tabby Talks app were regarded 

favourably; however, suggestions for improvement included the need for a larger range of 

games and increased interactivity.  



138 
 

4.1 Limitations and future directions 

The sample size of the study was small and within-group variability was large, thus 

limiting the power of our statistical analyses. CAS is relatively rare (Shriberg, Aram, & 

Kwiatkowski, 1997a) but much larger sample sizes may be possible with multi-centre 

collaboration. Our power analysis suggests that a sample size of about 26 per group is 

desirable and this would also allow exploration of other child-related factors that might 

influence or predict response to intervention. Alternatively, larger scale analyses may be 

possible through meta-analyses of studies which have used similar outcome measures. 

Future research should explore alternative feedback type and frequency conditions 

and combinations. The feedback frequency and schedule used for the KR group in this study 

involved 100% pre-practice with KR+KP on day 1 and 100% practice with KR only on days 

2 to 4 and was designed to mimic the common Australian service delivery model of once per 

week face-to-face with a clinician with a home-practice program with less rich feedback from 

an app or a parent. This model deviates from the schedule used in our previous work with 

PML, wherein a period of pre-practice with KR+KP is provided at the beginning of every 

session, and the child only progresses to practice with KR alone when they reach a 

predetermined threshold of success (Ballard, Robin, McCabe, & McDonald, 2010; Iuzzini & 

Forrest, 2010; McCabe et al., 2014). It is possible that the children in the KR group here did 

not receive sufficient pre-practice to develop a stable internal reference of correctness. This 

could explain why predominantly KR feedback appeared less effective than KR+KP 

feedback in stimulating improvement at 1-week post-treatment in this study.  

It is also possible that the effects of feedback type were mediated by the frequency of 

feedback. High frequency feedback was used here, even though low frequency feedback has 

been recommended in the PML approach (Schmidt & Lee, 2011). This was in order to 
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examine the effect of KR versus KP feedback types without the potential confound by 

potentially positive effects of low frequency feedback. However, high frequency feedback 

has been demonstrated to increase response variability if participants continually change their 

performance in different ways each time they are presented with feedback on error (Wulf & 

Shea, 2004). The within-group variability observed in this study may have been related to the 

high frequency feedback schedule. There was some suggestion that other aspects of the 

guidance hypothesis were supported, however, in that high frequency feedback guides the 

individual towards the correct response and that performance accuracy decreases when 

feedback is withdrawn (Salmoni, Schmidt, & Walter, 1984). That is, the tendency towards a 

drop in average accuracy at 1-month post-treatment such that performance was no longer 

significantly higher than pre-treatment across the entire sample may have been related to 

removal of feedback post-treatment. On the other hand, the finding here of an upward 

trajectory of improvement from1-month post-treatment to 4-months post-treatment seem to 

reflect the opposite effect, similar to some non-speech motor learning studies in children 

where higher frequency feedback has been shown to lead to greater learning and longer-term 

retention (Chiviacowsky, Wulf, de Medeiros, Kaefer, & Wally, 2008). Clearly, the influence 

of type and frequency of feedback on motor learning in children and how these principles 

may interact with specific task and child factors, is still not entirely clear. 

Evidence from Iuzzini and Forrest (2010), who demonstrated variable reinforcement 

schedules only effected changes in accuracy during the third week of treatment, even after 

establishing a threshold of success, suggests that the KR group in this study may have 

benefited from a longer treatment period in order to establish acquisition of targets; or a 

longer period of pre-practice (Miller, Plante, Ballard, & Robin, 2018). Future research could 

explore whether the KR-based practice needs to be delivered for longer duration, or for more 

trials, to obtain a similar level of acquisition to KR+KP-based practice, and consequently to 
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greater maintenance and generalization of these gains. Alternatively, a more gradual 

progression from predominantly KR+KP feedback into predominantly KR feedback (see 

Strand, Stoekel & Baas, 2006), gradual transition from immediate high-frequency feedback to 

delayed and reduced frequency feedback (Ballard et al., 2010; McCabe et al., 2014; Schmidt 

& Lee, 2011), or feedback fading based on successful execution of speech targets may be 

beneficial. One suggestion is to structure the feedback schedule beginning with three sessions 

of KR+KP and one session of KR in the first week, gradually progressing to one session of 

KR+KP and three sessions of KR in the third week of treatment. A similar gradual shift was 

employed by Thomas et al. (2017) who explored parent-training in ReST treatment as a 

method of achieving recommended intervention frequency for children with CAS, albeit with 

limited success.  

Another factor that may have influenced the findings here was that clinicians were 

instructed to shift to KP feedback when children in the KR group produced five sequential 

incorrect productions of their selected treatment words. This was necessary in order to uphold 

our ethical duty of care for the children involved in the treatment, as extended intensive 

practice of incorrect motor plans could be harmful for learning as well as for motivation and 

engagement. This was monitored so that the ratio of KR and KP feedback over the study for 

these children was maintained at 80% KR to 20% KP trials. In clinical practice, such apps 

would typically be recommended for supervised use in the home environment. Clinicians 

would engage in progress monitoring and intervene, when required, in order to either provide 

coaching for the parent to assist their child to achieve more difficult speech production targets 

or to schedule a clinic visit in order to provide some additional pre-practice and KP-style 

feedback. For example, we have now implemented a threshold system where the therapy app 

discontinues delivery of a specific stimulus after a set number of incorrect responses (Hair et 

al., 2018), allowing a parent or clinician to step in and provide additional coaching with KP. 
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Future research is needed to explore within-participant factors in order to determine which 

children would be most suited to intensive practice with high frequency KR-style home 

practice conditions as delivered in this study. 

The home practice condition was simulated in this study, as clinicians delivered all 

feedback. This was done for two main reasons. First, this maintained experimental control. 

Secondly, while automated speech analysis algorithms running offline on computers are 

becoming more accurate at identifying errors in children’s speech (Shahin, Ji, & Ahmed, 

2018), software that can run in real-time on a tablet is less sophisticated. Our speech analysis 

software for the tablet had not yet been sufficiently developed to meet clinically acceptable 

levels of reliability with human perceptual judgment and so was not incorporated into the 

tablet when this study was conducted. In response to the participants’ feedback about the 

need for greater interactivity and variety of games, the research team is continuing to develop 

a wider range of games and alternative ASR algorithms in order to improve the gaming 

quality of an app designed for speech behaviour change. The team are currently trialing the 

effectiveness a new app using integrated ASR to determine the effectiveness of tablet-

delivered treatment and ASR-generated feedback in a real home setting.  

5. Conclusions 

Mobile technology has the potential to increase the engagement and motivation of clients 

and to facilitate intensive practice of speech production targets (e.g., Hair et al., 2018). 

Combined with less frequent direct clinical contact via face-to-face sessions or telehealth, it 

can also mitigate barriers of distance and access to services for rural and remote families. 

With continued advancements in technology and the development and integration of accurate 

and reliable ASR software, mobile games are likely to become an effective supplement to 

face-to-face intervention. This has particular benefit for older children who can then practice 
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independently and take greater responsibility for their remediation. It may also be helpful for 

some parents who find it difficult to provide reliable feedback on their child’s productions 

(Thomas et al., 2017; Thomas, McCabe, Ballard, & Bricker-Katz, 2018). However, further 

research is required to understand how the parameters of therapy, and therefore the 

effectiveness of that therapy, can change with app-based exercises and with ASR versus 

parent or clinician generated feedback. Post-hoc comparisons in the current study suggest that 

provision of predominantly KR feedback on speech accuracy yielded small and perhaps 

negligible gain compared to KP feedback; however, for the 3-week block of therapy, gains 

under the KP feedback were not well-maintained. In building apps, it is important to build in 

flexibility so that practice can adhere to appropriate motor learning principles that may vary 

depending on the age and skill level of the child and that stimulate optimal long-term learning 

in a time and cost effective manner. Additional research is required to develop algorithms for 

prescribing these variations in practice and feedback conditions for children with CAS.  
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Appendix 6A. Generalisation items based on participants’ treatment items 

Participant’s NDP3 
treated items 

Participant’s generalisation items 
Untreated related items of 
similar or lesser 
complexity 

Untreated related items of 
greater complexity 

Single sounds Consonants and vowels in 
isolation 

CV and VC words 
CVCV words 

CV and VC words Consonants and vowels in 
isolation 
Additional untreated CV and 
VC stimuli 

CVCV words 
CVC words 

CVCV words CV and VC words 
Additional untreated CVCV 
stimuli 

CVC words 
Multisyllabic words 

CVC words CVCV words 
Additional untreated CVC 
stimuli 

Multisyllabic words 
Consonant cluster words 

Multisyllabic words CVC words 
Additional untreated 
multisyllabic stimuli 

Consonant cluster words 
Phrases and sentences 

Consonant cluster words Multisyllabic words 
Additional untreated 
consonant cluster stimuli 

Phrases and sentences 

Phrases and sentences Consonant cluster words 
Additional untreated phrases 
and sentences 
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Appendix 6B: Participant satisfaction and software usability questionnaire 

Participant number______________________________ 

Date____________________________ 

Child’s gender (circle)  M F 

Person completing this form: 

□ Parent 

□ Child 

□ Clinician 

Did you/your child enjoy using the tablet for their speech therapy activities? 

□ Yes 

□ No 

Did you/your child need any help completing the activities on the tablet? 

 □ Yes 

□ No 

If yes, please tell us what your child needed help with: 

□ Selecting an exercise 

□ Moving between images/activities 

□ Starting the recording 

□ Stopping the recording 

□ Accessing the audio model 

□ Navigating back to the home page 

□ Internet access / connectivity for uploading recordings to the server 

□ Other…. (please specify) 

___________________________________________________________________________ 

Do you want to elaborate on any items you ticked above? 

 

 

 

Was your child able to maintain focus/attention on the exercises? 

□ Yes 
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□ No 

How motivating did your child find the therapy sessions? 

│_____________│_________________│________________│_______________│ 

Highly            Motivating     Neither motivating  Discouraging              Highly 
motivating                  nor Discouraging                                                discouraging 
                                      
 

What did you/your child like about the exercises on the tablet? 

 

 

 

What did you/your child dislike about the exercises on the tablet? 

 

 

  
 
In future, would you prefer to do these exercises: 

□ On the tablet 

□ Using paper cards/worksheets 

Please elaborate on your answer… 

___________________________________________________________________________ 

If tablet-based exercises were available to you, how often would you want to use them with 
your child? 

□ Never      □ 2 or 3 times a week 
□ Once a month    □ 4 or more times a week 
□ 2 or 3 times a month   □ Once a day 
□ 4 or more times a month    □ 2 or 3 times a day 
□ Once a week    □ 4 or more times a day 
 

Other (Please specify) 
___________________________________________________________________________ 

Any other comments/feedback….? 

___________________________________________________________________________ 
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Chapter 7: Clinical implications and future directions for 

mobile technology and childhood apraxia of speech  
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 This doctoral research was motivated by a desire to explore the potential for mobile 

technology to overcome some of the barriers to optimal intervention intensity that were 

identified in Chapter 1. The studies presented in this thesis contribute to our understanding of 

whether such technology is capable of effectively supplementing face-to-face clinical services 

by (i) providing accurate identification of errors in children’s speech for diagnostic/progress 

monitoring purposes (i.e. feedback to clinicians); (ii) automated feedback to the child during 

speech production practice; (iii) engaging and motivating the child during speech production 

practice and (iv) facilitating changes to speech behaviours. These studies also highlight how 

the use of mobile technology will influence the way in which treatment protocols, based around 

principles of motor learning, are designed and implemented. This can support clinical decision 

making around which children are likely to benefit from such treatment protocols and lays a 

foundation for future research comparing optimal service delivery models. 

Automatic speech analysis tools: Accuracy and clinical utility.  

 The findings from paper 1 and paper 2 (Chapters 2 and 4, respectively) suggest that 

automated speech analysis (ASA) tools can be effectively used to assess the intelligibility of 

disordered speech or to estimate the severity or degree of impairment. However, they are not 

yet reliable enough in their analysis of phoneme level accuracy or lexical stress patterns when 

applied to disordered or mispronounced speech. For tools that aim to have therapeutic benefit 

for children with speech sound and prosodic errors, error detection accuracy and feedback 

provision must be sufficient to minimise both false acceptance of error productions and false 

rejection of accurate productions. 

The best performing tools reviewed in McKechnie et al. (2018) were those applied to 

phoneme level analysis that were either speaker-dependent or specifically trained on 

populations of disordered speakers. While this increased the performance accuracy of the 
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specific ASA tool being investigated, this level of specificity necessarily limits the 

transferability of the tool to other populations and other word sets. In order for ASA tools to 

have wider clinical applicability, larger scale investigations using large corpi of typical and 

disordered children’s speech are required. However, access to such large databases, 

especially of disordered speech, remains difficult. Until reliable models can be developed 

from large child speech databases, researchers have focused on testing methods that use a 

small amount of knowledge to guide the performance of models trained on adult speech. For 

example, Chapter 4 used knowledge about the phonemic errors in the sample to guide the 

lexical stress classification model towards correct classification of lexical stress patterns in 

children. 

Interestingly, the results of the automated lexical stress classification study found no 

advantage for applying a knowledge driven approach, incorporating the specific phonemic 

mispronunciations made by the participants in our sample, to the preliminary phoneme 

segmentation and forced alignment analysis steps. One possible explanation for this is that 

ASA tools make their decisions based solely on acoustic information that may not be readily 

or consciously perceived/discernible by the listener, creating a potential mismatch between 

what the listener ‘hears’ and what the ASA tool ‘hears’. This is supported by the findings of 

Skinder, Strand and Mignerey (1999) who reported no acoustic differences between typically 

developing speakers and speakers with suspected CAS, even though listeners had perceived 

differences in lexical stress accuracy between the two groups. There, the authors suggested 

that listener perception of stress might be affected by segmental errors. An alternative 

explanation for the mismatch between auditory perceptual judgement of stress and automated 

or acoustic analysis of stress is offered by Munson and colleagues (2003). Their findings 

indicated no group differences in the use of acoustic correlates of stress production even 

though speakers with suspected childhood apraxia of speech (here, referred to as CAS) were 
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perceived to have matched the target stress contour less often than speakers with 

phonological disorder. The authors suggested that participants with CAS were able to 

produce acoustic differences between stressed and unstressed syllables but that these 

differences may not be consistently perceived by listeners (Munson et al., 2003).  These 

findings suggest that listener perception of relative difference in acoustic features across 

adjacent syllables may be affected by the degree of difference produced. That is, the degree 

of acoustic contrast produced by speakers with CAS may not be sufficient for the listener to 

perceive that the target stress pattern has been correctly executed.  This is likely to be the case 

if speakers with CAS produce a de-stressed but unreduced vowel within the weak syllable 

instead of fully reducing the vowel to a schwa. De-stressed unreduced vowels can be 

categorised as acoustically distinct from both stressed vowels and unstressed reduced vowels, 

however, human listeners preferentially make a binary distinction, and tend to categorise de-

stressed unreduced vowels with stressed vowels (Fear, Cutler, & Butterfield, 1995).  

Normative data on the developmental trajectory of lexical stress contrastiveness 

contributes further support for the theory that development of adult-like lexical stress 

contrasts (i.e. production of shorter syllable durations and rising intensity contours), for 

weak-strong (WS) words in particular, is linked to the physiological development of the 

speech motor system. Children as young as three years old are able to produce strong-weak 

(SW) patterns with adult-like acoustic contrasts (Ballard, Djaja, Arciuli, James, & van Doorn, 

2012), whereas, the degree of acoustic contrast achieved during the production of weak-

strong (WS) patterns continues to differ from that of adults even up to the age of 11 (Arciuli 

& Ballard, 2016). These acoustic differences were present for WS words despite having been 

deemed accurately produced based on auditory-perceptual judgment. Taken together, these 

findings support the theory of CAS as a disorder of speech motor control. 

Future directions: Developing ASR algorithms. 
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Speech recognition algorithms designed for use in therapeutic applications will need to be 

developed and tested using larger corpi of disordered speech. This may be possible for some 

speech disorders such as dysarthria, which can result from a number of different aetiologies 

in both children and adults, for example, the TORGO database (Rudzicz, Namasivayam & 

Wolff, 2012. However, other disorders such as CAS are relatively rare (Shriberg, Aram, & 

Kwiatkowski, 1997a) and behavioural manifestation of these disorders can be heterogenous. 

Collating large enough databases of speech from children with speech sound disorders is a 

challenge that will require multi-centre research collaborations, however, if achieved, large 

databases and machine learning will be able to further inform researchers of the optimal 

features and algorithms necessary to advance the field towards successful ASR approaches to 

disordered speech. 

Further research is also needed to explore different ASR algorithms, both for phoneme 

verification and lexical or phrasal stress classification, in order to increase sensitivity and 

specificity and reduce false acceptance and false rejection rates to within a clinically 

acceptable threshold. Earlier work from the collaborators on our team had developed a 

lattice-based pronunciation verification method using Hidden Markov Model Deep Neural 

Network (HMM-DNN) acoustic models specifically for disordered speech (Shahin, Ahmed, 

McKechnie, Ballard, & Gutierrez-Osuna, 2014). The main limitation of these methods has 

been that their effectiveness depends upon participants producing only errors which have 

been included as probable pronunciation variants in the system’s search lattice (Shahin, Ji, & 

Ahmed, 2018). When errors are unexpected or deviate from those the model has been 

programmed to analyse, the performance accuracy of the ASR is decreased. Shahin and 

colleagues (2018) have recently developed and tested an alternative pronunciation 

verification approach based on a One-Class Support Vector Machine (OCSVM) model. This 

approach learns the place and manner of articulation and the voicing features for each 
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phoneme and uses this to evaluate speech input. It compares the input to the learned phoneme 

model and decides if it is a match or a mismatch (Shahin et al., 2018). When compared with 

the performance of traditional Goodness of Pronunciation models, the OCSVM performed 

with greater phoneme verification accuracy and reduced false acceptance and false rejection 

rates (Shahin et al., 2018). While these types of approaches are gaining traction and more 

consistently approaching our clinical threshold, they are still focused on adult speech with 

little known about their performance with children’s speech, typical or disordered. 

Automatic speech analysis tools: Findings and implications for intervention. 

 The results from paper 3 (Chapter 6) suggest that children with CAS benefit from 

intensive clinician-led intervention incorporating knowledge of results (KR) and knowledge 

of performance (KP) feedback in order to acquire new motor speech behaviours. These 

findings are in line with what previous research has demonstrated in regards to optimal 

intervention intensity for speech sound disorders, including CAS, that higher dose frequency 

improves outcomes (e.g. Kaipa & Peterson, 2016; Murray, McCabe, & Ballard, 2014; 

Murray, McCabe, & Ballard, 2015; Namasivayam et al., 2015). Some children made 

substantive gains in the simulated home practice/ASR-based feedback condition receiving 

predominantly KR feedback on three out of four sessions per week, consistent with evidence 

from the motor learning field. However, many other children showed maintained 

improvement in speech production skills following the mixed KR+KP feedback condition, 

which is not entirely consistent. One possible explanation for the mixed pattern of 

improvement among children in the KR group is related to age and stability of the pre-

treatment motor plans for treated targets. The four children who made positive gains in the 

KR condition were aged seven or under, while the two children who showed negative change 

were over the age of ten years. While it is thought that a less stable internal reference of 

correctness may inhibit ability to learn from simple KR feedback, these findings suggest that 
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an overly stable, or over-practiced but erroneous movement pattern may also inhibit learning 

through KR feedback alone. This hypothesis could be tested in future larger-scale studies. 

The session structure used in this study has been previously untested in children with 

CAS. Earlier research from our team included a pre-practice phase for some portion of every 

intervention session. Pre-practice periods typically continued until participants had produced 

five of their selected treatment targets correctly (Ballard, Robin, McCabe, & McDonald, 

2010; McCabe et al., 2014; Murray et al., 2015; Thomas, McCabe, & Ballard, 2014; Thomas, 

McCabe, Ballard, & Lincoln, 2016). The protocol employed by Thomas and colleagues 

(2014; 2016) included 25 minutes in each of the first two 50 minute sessions in a treatment 

block followed by 10 minutes at the start of each subsequent session, while the protocol 

described by Murray and colleagues (2015) allowed for the majority of the first two sessions 

in a treatment block to comprise pre-practice, followed by 10-15 minutes pre-practice at the 

start of each subsequent session. Research from the Mayo clinic team also described a 

gradual decrease in feedback specificity indicative of a shift from pre-practice KP guidance 

to more KR, however, the authors did not disclose whether a specific threshold of production 

accuracy was necessary to trigger reductions in KP (Strand, Stoekel & Baas, 2006). Caution 

is warranted when extrapolating existing guidelines for PML from nonspeech motor literature 

to speech treatment for CAS. These guidelines have been challenged by studies from Maas 

and colleagues (Maas, Butalla, & Farinella, 2012; Maas & Farinella, 2012). Their team 

compared the recommended low frequency feedback during practice with high frequency 

feedback and found that around half of the children in their study benefited from low 

frequency feedback, while half benefited from high frequency feedback (Maas et al., 2012). 

Similarly, when comparing the effects of blocked versus random practice of speech targets, 

the authors found that some children benefited from random practice, as recommended in the 
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nonspeech motor learning literature on PML, while others benefited more from blocked 

practice (Maas & Farinella, 2012).  

As discussed in Chapter 1, the recommended motor learning principles are now found in 

many treatment protocols; however, relatively little investigation has been carried out 

comparing the effects and potential interactions of the different principles in speech motor 

learning, specifically child speech. Clearly some children do not respond well to the 

recommended principles, at least at the time of their enrolment into a particular study. It is 

not possible to identify the factors influencing these participant differences without 

evaluation of large cohorts of children that are representative of the variability in the 

population. 

Future directions: Intervention protocols. 

 Once ASR algorithms have been optimised and rigorously evaluated against clinically 

acceptable reliability standards, additional research is warranted to determine which children 

might be best suited to a service provision model such as the one explored in Chapter 6 

(paper 3). In that study, clinician-delivered intervention was provided once per week 

followed by tablet-delivered intervention using automated feedback on speech production 

accuracy three days per week. Participant variables such as age, baseline level of proficiency 

on speech targets, severity of speech disorder, consistency of speech disorder, 

receptive/expressive language skills, accuracy of phonological representations and speech 

perception abilities need to be explored in order to identify factors predictive of a positive 

response to intervention and specific intervention approaches. Retrospective factor analysis 

conducted on 20 participants across two studies (McKechnie et al., 2016; Murray et al., 

2015), all of whom received clinician-led treatment four days per week for three weeks and 

received 100% KR+KP feedback using the Nuffield Dyspraxia Programme – Third Edition 



155 
 

(NDP3), found no significant correlations for speech production, mental function, or oral 

structure and function skills with individual difference scores immediately post-treatment 

(Murray, McKechnie, & Williams, 2017). However, the authors identified several factors, 

which predicted better maintenance of skill in the post-treatment follow up period. These 

factors included: greater speech inconsistency (i.e. reduced stability offers greater potential 

for change), speech targets at lower levels of the NDP3 goal selection hierarchy, lower 

expressive language skills and lower working memory skills (Murray et al., 2017). Within-

participant factors that were related to greater generalisation of skills to untrained speech 

behaviours included younger age and greater memory (the reverse effect compared to what 

was observed for treated behaviours) and phonological awareness skills (Murray et al., 2017). 

The finding of greater inconsistency predicting better maintenance of skill may be considered 

further support for the findings in Chapter 6 that the children aged 10 or over were those who 

did not respond to the KR only feedback condition. That is, these children potentially had 

more stable and inflexible motor plans due to the additional years spent practising incorrect 

movement patterns. This theory warrants further exploration using a more rigorous measure 

of movement stability such as the spatiotemporal index proposed by Smith and colleagues 

(1995). Findings of poorer expressive language and speech targets at lower levels of 

complexity on the NDP3 hierarchy predicting better maintenance is in contrast to what has 

been previously suggested in motor learning literature where targeting more complex targets 

leads to greater learning (see Schmidt & Lee, 2011). However, these findings may also reflect 

constraints within the available stimuli of the NDP3 program; for example, basic phrase and 

sentence stimuli that offer little prosodic variation. Importantly, this type of factor analysis 

needs to be extended to children in a KR-only group to explore which factors might predict a 

positive response to intervention using this feedback condition. Despite revealing some 

significant relationships, the analysis by Murray et al. (2017) was likely underpowered with 
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only 20 children. Likewise, the study reported in Chapter 6 was small and lacked the 

statistical power to perform such analyses. Power calculations indicated that, in order to 

detect large correlations between treatment outcomes and participant related factors, a 

minimum of 10 participants per experimental group was needed. To be sensitive to small 

correlations between treatment outcomes and within-participant factors, a sample size of 47 

was needed. This type of information about predictive factors for positive treatment outcomes 

would be clinically useful for practising SLPs to determine which of their clients might 

benefit from this type of practice.  

 Another area that would benefit from more insight into individual variation, is the 

influence of participant variables in response to different motor learning principles. Our study 

suggests that future research could experiment with the timing of the shift from 

predominantly KP+KR feedback to predominantly KR feedback. First, it is possible that a 

longer treatment period may have seen the KR group reach a similar level of acquisition to 

the KP+KR group and, subsequently, achieve greater maintenance and generalisation of these 

gains (see Iuzzini and Forrest, 2010, where gains in accuracy emerged only during the third 

week of treatment or Ballard, Robin, McCabe & McDonald, 2010, where all three 

participants required numerous trials before demonstrating improvement). A longer period of 

pre-practice may also be beneficial, as was demonstrated by Miller, Plante, Ballard & Robin 

(2018). Another suggestion would be to gradually transition from KP+KR feedback towards 

KR only feedback based on successful execution of a larger number of speech targets as in 

Strand, Stoekel and Baas (2006); or to employ a gradual shift in feedback similar to that used 

by Thomas, McCabe and Ballard (2017) in their investigation of the efficacy of parent-

implemented intervention. In that study, the authors commenced with three clinician-

delivered and one parent-delivered session per week, moving to two clinician-delivered and 

two parent-delivered sessions in the second week and finally one clinician-delivered and one 
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parent-delivered session in the third week of treatment (Thomas, McCabe, & Ballard, 2017). 

A similar gradual progression of type of feedback could be designed and explored.  

User perspectives on tablet-based intervention 

The use of tablets to engage in speech pathology intervention was generally received 

favourably. The majority of the 14 participants reported a preference for tablet-based therapy 

over traditional paper-based formats and willingness to use tablet-based intervention in the 

future as a motivating and enjoyable method of speech production practice. These findings 

echoed previous reports of clinicians’ and consumers’ desire for alternative service delivery 

formats as a means to overcoming some of the service delivery barriers discussed in Chapter 

1 (e.g. McAllister, McCormack, McLeod, & Harrison, 2011; Ruggero, McCabe, Ballard, & 

Munro, 2012).  

Literature on the use of apps in treatment of paediatric speech sound disorders is limited. 

Of the studies available, most focus on development stages of the app but have reported 

positive findings for overall level of enjoyment, engagement and participation from the 

children (Ahmed et al., 2018; Anjos et al., 2018; Byun et al., 2017; Hair, Monroe, Ahmed, 

Ballard, & Gutierrez-Osuna, 2018; Tommy & Minoi, 2016). Investigations into computer-

based interventions for children with speech disorders have also demonstrated that children 

generally enjoy and prefer computer-based approaches over traditional table-top approaches 

(Lan, Aryal, Ahmed, Ballard, & Gutierez-Osuna, 2014; Nordness & Beukelman, 2010; Tan, 

Johnston, Ballard, Ferguson, & Perera-Schulz, 2013; Toki & Pange, 2010; Wren & 

Roulstone, 2008). The use of apps in communication interventions for children with autism 

has been found to increase time on-task and decrease challenging behaviours; plus, children 

tend to demonstrate a preference for app-based approaches compared with traditional 

approaches (Flores et al., 2012; Ganz, Hong, & Goodwyn, 2013; Lee et al., 2015). Emerging 
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results regarding positive improvements to language (Cumming & Draper Rodriguez, 2013), 

emergent literacy (Brouwer et al., 2017) and prosody (Simmons, Paul, & Shic, 2016) have 

also been reported, though none of these apps used automated feedback on performance 

accuracy. In acquired neurogenic disorders, apps are successfully engaging adult clients with 

home practice in between clinic visits and achieving positive treatment outcomes for clients 

(e.g.  Des Roches, Balachandran, Ascenso, Tripodis, & Kiran, 2015; Des Roches & Kiran, 

2017; Kurland, Liu, & Stokes, 2018; Kurland, Wilkins, & Stokes, 2014). 

In 2018, 81% of 228 SLPs surveyed in the USA reported using apps in sessions 

(Benedon, 2018). 90% of these SLPs indicated that their primary purpose for using apps was 

for direct therapy and skills development. Speech sound production skills were the second 

most commonly reported skill for which apps were used in therapy (Benedon, 2018). Despite 

thousands of available apps in mobile stores, which purport to be useful for speech and 

language disorders, the majority are experimentally untested and little is known of their 

quality, effectiveness and efficiency. The lack of experimental investigation is likely related 

to the high turnover of the market as well as the cost and time involved in running 

experimental trials (Edwards & Dukhovny, 2017). A recent quality analysis of mobile 

applications for speech disorders found that less than 3% (132) of the more than 5000 apps 

identified warranted full evaluation and, of those that were subjected to full quality 

evaluation, only 19 (14%) were deemed to have potential for therapeutic benefit (Furlong, 

Morris, Serry, & Erickson, 2018). 

There is a powerful move in the computer science and eHealth fields toward co-design 

and this is also beginning to happen in the field of app development for childhood speech 

disorders (e.g. Ahmed et al., 2018; Hair et al., 2018). This work aims to ensure that apps on 

the market adhere to best practice in terms of theories of learning, engagement and nature of 

speech disorders. Sensitively designed tools can increase the likelihood that the apps are 
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facilitating meaningful behavioural change with no adverse effects such as developing 

maladaptive behaviours or therapy burn-out that could complicate the therapeutic process for 

clinicians. Considerable research is still required in this area to optimally serve the 

consumers.  

Future directions: Diversification of included games and activities. 

In response to participants’ desire for more games, greater interactivity and less repetitive 

practice when using apps for speech production practice (see Chapter 6 and also Ahmed et 

al., 2018), recent research has explored user perspectives on a suite of prototype speech-

controlled games using open-source games modified to be speech-controlled incorporating 

freely available speech recognition software, PocketSphinx (Ahmed et al., 2018; Hair et al., 

2018). In addition to the memory game that was included in the Tabby Talks app, Ahmed et 

al. (2018) examined the following four games: asteroids, where correctly pronounced words 

broke up asteroids that threatened to hit the spaceship; a game similar to Whack-a-Mole, 

where players were required to tap electronic ‘cards’ that flipped at random; a word search 

game where points accrue for words that the ASR deemed correctly produced; and a word 

pop game where correctly produced words caused bubbles to pop. Children reported enjoying 

the speech-controlled nature of the games and earning points and rewards, however, they also 

reported that the games quickly became boring and that they wanted games which were fast 

paced, more challenging and had multiple levels of difficulty.  Expert evaluation of ASR 

accuracy demonstrated that the ASR recognised fewer productions as correct compared with 

the researchers, with the highest accuracy being for adult productions, followed by typically 

developing children, and lowest accuracy scores for children with CAS (Ahmed et al., 2018). 

These findings are unsurprising in light of the demonstrated difficulties with accurate 

recognition of both typical and disordered child speech reported in the literature (Gerosa, 
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Giuliani & Brugnara, 2007; Yeung & Alwan, 2018; see also McKechnie et al., 2018 (Chapter 

2 in this thesis) for a review). 

 Using principles of participatory design, researchers from the same team developed a 

new game, similar in style to a Mario game, where game play is the goal but speech 

production practice is integrated, customisable for task difficulty and session dose, and 

speech practice earns coins for players to spend on customising their avatar in the game store 

(Hair et al., 2018). User feedback was largely promising, children reported high levels of 

engagement and motivation to keep playing (Hair et al., 2018). However, mobile ASR 

software continues to require optimisation. Studies are underway investigating the use of 

speaker-dependent, template-based models which are trained using a child’s own 

productions, both correctly and incorrectly pronounced, with the aim of facilitating more 

accurate judgments of accuracy for productions by each child. Also, domain-guided 

adaptation methods are being developed and explored to improve ASR accuracy in “low-

resource” contexts where large training databases are not available, although currently this 

work is focused on ASR for recognising accented speech in adults (e.g.Juan, Besacer, 

Lecouteux, & Tan, 2015). 

Conclusions. 

The studies contained in this thesis offer foundational information about the capacity 

for technology to motivate the learner to engage in intensive practice of speech targets; the 

adequacy of automated feedback on accuracy; and the potential to facilitate changes in 

speech behaviours. These results provide a necessary first step in evaluating optimal service 

delivery models for CAS. Once adequately trained for disordered speech, either through 

training with large databases or through new low-resource domain-guided adaptation of 

models trained previously with typical adult speakers, automated speech analysis tools may 
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be able to offer several advantages to clinicians. Such tools hold potential to expedite the 

objective assessment of lexical stress errors and/or speech sound production errors, which 

may address some of the reported challenges around caseload management and workload 

demands. Automated speech analysis systems, particularly when embedded into mobile 

applications, may also provide a method of bridging the gap between evidence-based 

intervention intensity and current clinical practice. Based on the results of the studies 

included in this thesis, these applications would be best suited for children who have already 

acquired an internal reference of correctness for each of their speech production targets and 

who can self-evaluate their productions and experiment with changing productions to be 

more accurate. Such tools can then be useful for facilitating intensive, engaging and 

motivating home practice that includes accurate feedback on production attempts. This, in 

turn, could facilitate positive and efficient treatment gains for children with speech sound 

disorders, including CAS.  
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