
1 
 

Potential improvements of lung and prostate MLC tracking 1 

investigated by treatment simulations  2 

 3 

Jakob Toftegaard1, Paul J. Keall2, Ricky O’Brien2, Dan Ruan3, Floris Ernst4, Noriyasu Homma5, Kei Ichiji5, Per Rugaard 4 
Poulsen1 5 

 6 

1Department of Oncology, Aarhus University Hospital, 8000 Aarhus C, Denmark 7 

2 Radiation Physics Laboratory, Sydney Medical School, University of Sydney, 2006 NSW Australia 8 

3Department of Radiation Oncology, University of California, Los Angeles, California 90095  9 

4Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck 23562, Germany 10 

5Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai 980-8579, 11 

Japan 12 

 13 

Corresponding author: 14 

Per Rugaard Poulsen 15 

Aarhus University Hospital 16 

Nr Brogade 44, 8000 Aarhus C, Denmark 17 

Tel: +4578462651 18 

Fax: +4578464522 19 

Email: per.poulsen@rm.dk 20 

  21 

mailto:per.poulsen@rm.dk


2 
 

Abstract 22 

Purpose/objectives: Intrafraction tumor motion during external radiotherapy is a challenge for the treatment accuracy. A 23 

novel technique to mitigate the impact of tumor motion is real-time adaptation of the MLC aperture to the motion, also 24 

known as MLC tracking. Although MLC tracking improves the dosimetric accuracy, there are still residual errors. Here, we 25 

investigate and rank the performance of five prediction algorithms and seven improvements of an MLC tracking system by 26 

extensive tracking treatment simulations.  27 

Materials and Methods: An in-house developed MLC tracking simulator that has been experimentally validated against an 28 

electromagnetic guided MLC tracking system was used to test the prediction algorithms and tracking system 29 

improvements. The simulator requires a Dicom treatment plan and a motion trajectory as input and outputs all motion of 30 

the accelerator during MLC tracking treatment delivery. For lung tumors, MLC tracking treatments were simulated with a 31 

low and a high modulation VMAT plan using 99 patient-measured lung tumor trajectories. For prostate, tracking was also 32 

simulated with a low and a high modulation VMAT plan, but with 695 prostate trajectories. For each simulated treatment, 33 

the tracking error was quantified as the mean MLC exposure error, which is the sum of the over-exposed area (irradiated 34 

area that should have been shielded according to the treatment plan) and the under-exposed area (shielded area that 35 

should have been irradiated).      36 

First, MLC tracking was simulated with the current MLC tracking system without prediction, with perfect prediction 37 

(Perfect), and with the following five prediction algorithms: Linear Kalman filter (Kalman), Kernel density estimation (KDE), 38 

Linear adaptive filtering (LAF), Wavelet-based multiscale autoregression (wLMS), and Time variant seasonal 39 

autoregression (TVSAR). Next, MLC tracking was simulated using the best prediction algorithm and seven different 40 

tracking system improvements: no localization signal latency (1), doubled maximum MLC leaf speed (2), halved MLC leaf 41 

width (3), use of Y backup jaws to track motion perpendicular to the MLC leaves (4), dynamic collimator rotation for 42 

alignment of the MLC leaves with the dominant target motion direction (5), improvements 4 and 5 combined (6), and all 43 

improvements combined (7). 44 
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Results: All results are presented as the mean residual MLC exposure error compared to no tracking. In the prediction 45 

study, the residual MLC exposure error was, 47.0% (no prediction), 45.1% (Kalman), 43.8% (KDE), 43.7% (LAF), 42.1% 46 

(wLMS), 40.1% (TVSAR) and 36.5% (Perfect) for lung MLC tracking. For prostate MLC tracking. it was 66.0% (no prediction), 47 

66.9% (Kalman) and 63.4% (Perfect) . For lung with TVSAR prediction, the residual MLC exposure error for the seven 48 

tracking system improvements was 37.2%(1), 38.3%(2), 37.4%(3), 34.2%(4), 30.6%(5), 27.7%(6), and 20.7%(7). For prostate 49 

with no prediction, the residual MLC exposure error was 61.7%(1), 61.4%(2), 55.4%(3), 57.2%(4), 47.5%(5), 43.7%(6), and 50 

38.7%(7). 51 

Conclusion: For prostate, MLC tracking was slightly better without prediction than with linear Kalman filter prediction. For 52 

lung, the TVSAR prediction algorithm performed best. Dynamic alignment of the collimator with the dominant motion axis 53 

was the most efficient MLC tracking improvement except for lung tracking with the low modulation VMAT plan, where jaw 54 

tracking was slightly better. 55 

 56 

1 Introduction 57 

Intrafractional motion limits the accuracy of current radiotherapy of moving targets1-3. Tumor motion blurs the delivered 58 

dose and requires enlarged margins to encompass the tumor target within the high dose volume. With the increased use 59 

of hypofractionated regimens with few high dose fractions delivered as stereotactic body radiation therapy (SBRT), it 60 

becomes critical to deliver the correct dose to a target with tight margins. Accurate high dose treatments may be obtained 61 

with real-time motion management.  62 

Tracking is a promising real-time motion management technique where the treatment is continuously adapted to the 63 

tumor motion. Tracking is an option on two commercially available accelerators, the robotic CyberKnife4 accelerator and 64 

the gimbal mounted Vero accelerator5. These systems are highly specialized and not in widespread clinical use. Two 65 

strategies for performing tracking on a conventional accelerator have been proposed. In 2001 Keall et al. proposed to shift 66 

the MLC aperture to follow the tumor motion6 (MLC tracking) and in 2005 D’Souza et al. proposed to shift the treatment 67 
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couch to counteract the tumor motion7 (Couch tracking). MLC tracking has been used clinically since 2013 based on a 68 

Varian Trilogy accelerator and an in-house developed MLC tracking system8. Couch tracking so far is not in clinical use. 69 

Although no vendors of conventional linear accelerators offer clinically approved tracking solutions, tracking is an option 70 

in research mode on a TrueBeam accelerator (Varian Medical System, Palo Alto, CA).  71 

The MLC tracking procedure can be divided into three steps: Real-time target localization with prediction to overcome 72 

tracking system latencies, MLC leaf fitting of the MLC aperture to the predicted target position, and MLC leaf adjustment 73 

to the fitted leaf positions. Although MLC tracking improves the dosimetric accuracy, there are still residual dosimetric 74 

errors due to limitations of the accelerator and tracking system. These limitations can be associated with each of the three 75 

tracking steps9. A major limitation for real-time target localization is the latency between target movement and MLC 76 

adaptation. The finite width of the MLC leaves hinders exact MLC fitting to motion perpendicular to the MLC leaves. The 77 

MLC leaves have a limited acceleration and speed that result in MLC adjustment errors. The overall MLC tracking 78 

performance is typically dominated by the poorest performing parts in the tracking chain. Therefore, it is important to 79 

identify and improve these parts. Unlike other tracking systems, the MLC perform both tracking and possibly dynamic plan 80 

modulation, which might limit the capability of MLC tracking due to the limited leaf dynamics. However, MLC tracking has 81 

some advantages over the other tracking techniques: It can be applied with a standard linac, it can adapt to 82 

deformations10 and rotations11, and it is the obvious first choice for tracking on an MR-linac. 83 

Tracking system improvements can be divided into software and hardware changes. Software changes could be more 84 

accurate prediction algorithms, improved leaf-fitting algorithms or new methods for controlling existing hardware. For 85 

example, Fast et al.12 used the jaws to help tracking the target motion, Pommer et al.13 and Falk et al.14 investigated MLC 86 

tracking improvements by reduced VMAT plan complexity, and Murtaza et al.15 created prostate VMAT plans with the 87 

collimator dynamically aligned to the dominant prostate motion axis to reduce motion perpendicular to the MLC leaves. 88 

Hardware changes could be a faster real-time localization system or an MLC with thinner11 or faster leaves. Software 89 

changes are often cheaper and easier to implement than hardware changes, and several linac vendors have research 90 

versions of their control software that allow experimental software without conflicting with the clinical software. 91 
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While experiments constitute the backbone for proof-of-principle tests and characterization of MLC tracking, experiments 92 

can only be used to investigate the current implementation of a tracking system, and this only for a relatively small 93 

dataset with limited statistical power. In contrast, realistic tracking simulations allow exploration of new tracking 94 

approaches and potential tracking system improvements not yet realized experimentally. With large-scale simulations, it is 95 

possible to obtain better statistics while focusing on one isolated parameter at a time in the tracking chain to explore its 96 

significance for the overall tracking performance. This is important in order to identify the most useful tracking system 97 

improvements prior their implementation. In this paper, we use realistic MLC tracking simultations to investigate and rank 98 

a range of potential improvements of current MLC tracking systems based on their ability to improve MLC tracking of both 99 

prostate and lung tumor motion.   100 

2 Material and methods 101 

In this study, we first determine the best prediction algorithm for MLC tracking (Section 2.A) and then investigate further 102 

tracking system improvements incorporating the optimal prediction algorithm (Section 2.B). For all analysis, we used an 103 

experimentally validated MLC tracking simulator16. The simulator emulates the behavior of Calypso electromagnetic 104 

guided  MLC tracking on a TrueBeam accelerator equipped with a Millennium MLC (Varian Medical Systems)17. The 105 

simulator requires a Dicom treatment plan and a motion trajectory as input. It simulates all accelerator motions and MU 106 

delivery and outputs log files similar to the TrueBeam accelerator with these parameters as well as the MLC exposure 107 

error. The MLC exposure error describes the discrepancy between the actual MLC aperture and the ideal MLC aperture, 108 

which is the planned MLC aperture at the current gantry angle shifted to the current target position in beam’s eye view9. 109 

The MLC exposure error is quantified as the sum of the under-exposed MLC area (area in beam’s eye view that should 110 

receive irradiation, but is shielded by the MLC or jaws) and over-exposed MLC area (irradiated area that should be 111 

shielded)9. It is calculated for all three MLC tracking steps combined (localization, fitting, adjustment) by comparing the 112 

actual MLC aperture with the ideal aperture and for each of the three MLC tracking steps individually by comparing the 113 

output aperture of the step with the output aperture of the preceding step as described in Ref. 9. The MLC exposure error 114 

is used in this study as a surrogate for the dosimetric error since previous studies have shown that it correlates well with 115 
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the dose error of a given plan in terms of gamma failure rate9,18, dose differences15, and dose volume histogram values15. 116 

For each simulated treatment, the MLC exposure error was calculated for and averaged over all time points along the 117 

treatment delivery. The MLC exposure error was weighted with the dose rate or, equivalently, with the number of MU 118 

delivered at each time point in order to account for dose rate variations when calculating this surrogate for the dosimetric 119 

errors. 120 

MLC tracking was simulated with a low and a high modulation single arc VMAT plan for prostate and lung with 358 121 

degrees gantry rotation and the MLC leaves moving in the cranio-caudal direction19. The arc delivery time was 60-74s. The 122 

lung and prostate treatments were simulated with 99 lung tumor trajectories obtained with the Cyberknife Synchrony 123 

system20 and 695 prostate trajectories captured with Calypso21, respectively. The mean [range] of the motion range of the 124 

trajectories was 2.74mm [0.02mm-15.9mm] (LR), 7.13mm [0.15mm-42.2mm] (CC), and 3.01mm [0.14mm-13.4mm] (AP) 125 

for lung, and 0.64mm [0.26mm-4.5mm] (LR), 1.78mm [0.40mm-14.4mm] (CC), and 1.88mm [0.47mm-16.0mm] (AP) for 126 

prostate. Figure 1 shows the dominant motion direction for each trajectory, represented as the first principal component 127 

in a polar plot. Further information about the trajectories can be found in the references20-21.  128 

A two-sided Wilcoxon rank test was used to test for significant reductions of the mean MLC exposure error with each MLC 129 

tracking system improvement. 130 

2.A Prediction 131 

The accuracy of five prediction algorithms (b-f in Table 1) was investigated and compared with no prediction (a) and 132 

perfect prediction (g) for lung tumor motion. Three of the algorithms are used in existing prototype MLC tracking systems, 133 

while the two others represent state-of-the art prediction algorithms (Table 1). The linear Kalman filter prediction17 (b) 134 

estimates the noise reduced slope of the target position and predicts the future position by linear extrapolation with the 135 

estimated slope. It only requires a few samples to start predicting, and it generally overestimates the amplitude of 136 

respiratory target motion. 137 

Algorithms (c-f) use training data for prediction. The kernel density estimation (KDE) predictor22 (c) estimates the target 138 

position as a weighted linear combination of the observed positions in the training data set. Each weight factor is 139 
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calculated from the similarity between an input vector consisting of the last observed target positions and the training 140 

data. KDE usually predicts well if the training data are representative of the predicted target position, but if the patient for 141 

example breathes deeper than observed in the training data, training data with this behavior must be acquired before the 142 

algorithm can perform a proper prediction. 143 

The linear adaptive filtering (LAF) predictor23 (d) first performs a low pass filtering of the training data. The prediction is 144 

performed by creating an input vector based on the last observed target positions and finding the position in the training 145 

data that minimizes the sum of squared distances between the input vector and the training data.  146 

The wavelet-based multiscale auto regression (wLMS) predictor24 (e) performs an à trous wavelet decomposition of the 147 

input signal. The predicted position is found with the assumption of a fixed periodicity of the wavelets, albeit different for 148 

each decomposition scale. The weights for each wavelet are found by least-squares fitting of a part of the incoming 149 

signal’s history, again individual for each scale. 150 

The time-variant seasonal autoregressive (TVSAR) predictor25 (f) is based on a seasonal autoregressive method (SAR), 151 

which assumes oscillating target position with a fixed period. It predicts the position based on the position at the same 152 

phase of the previous oscillations. TVSAR extends the SAR method with a time variant correction for fluctuations in the 153 

period by estimating the current phase and the corresponding time position of this phase in the previous periods. 154 

Moreover, the residuals from the predicted oscillating components are adaptively compensated by using a normal 155 

autoregressive model. 156 

During MLC tracking, the TrueBeam accelerator predicts a new target position every 10ms based on the latest Calypso 157 

position measurements. The simulations assumed a fixed Calypso measurement rate of 25Hz and a fixed time interval 158 

TSignal= 54ms from measurement to arrival of the measured position into the tracking system16. TSignal = 54ms corresponds 159 

to the mean value found in a series of TrueBeam tracking experiments17. Furthermore, the position predictions every 160 

10ms were assumed to occur 5ms, 15ms, 25ms, and 35ms after arrival of the Calypso measurements.  161 

In order to determine the optimal prediction lengths for a perfect prediction algorithm, MLC tracking of a circular MLC 162 

aperture was simulated with a sinusoidal target motion with 15mm peak-to-peak amplitude and 4s period. A perfect 163 
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prediction algorithm was used that looked up the target position in the trajectory a user defined time step forward. This 164 

time step was adjusted until the phase difference between the sinusoidal target motion and MLC aperture motion was 165 

zero. The prediction lengths found by this method were 106ms, 116ms, 126ms, and 136ms depending on the age of the 166 

latest arrived Calypso measurement (i.e. 5ms, 15ms, 25ms, and 35ms after position arrival). These prediction lengths were 167 

therefore used for prediction algorithms (c)-(f). However, for the linear Kalman filter, shorter prediction lengths of 86ms, 168 

96ms, 106ms 116ms were used, since these values are used by the current Truebeam MLC tracking system with the linear 169 

Kalman filter16. Use of the shorter prediction lengths compensates to some degree for the tendency of the linear Kalman 170 

filter to overestimate the amplitude of respiratory motion. 171 

It should be noted that the applied prediction lengths are shorter than the time lag of 146ms between sinusoidal target 172 

motion and MLC aperture motion found in previous MLC tracking experiments when no prediction was applied17. These 173 

experiments showed that a prediction length of 146ms should be used if the tracking system only predicted the target 174 

position once every 40ms immediately after receiving a new Calypso measurement. However, a shorter prediction length 175 

should be used when the target position is predicted every 10ms because the waiting time between position signals is 176 

smaller and because the MLC adjustments are smaller26-27.  177 

To evaluate the prediction algorithms, each trajectory was adjusted to position zero at the start of the trajectory, and 178 

VMAT MLC tracking treatments starting 60s into the trajectory were simulated. At each time point, the preceding 20s 179 

motion was used as training data for prediction algorithms (c)-(f). Lung treatments were simulated with all prediction 180 

algorithms. The accuracy of each prediction algorithm was quantified as the 3D root mean square (RMS) difference 181 

between the real-time predicted position and the actual future target position after the optimal prediction length (106ms, 182 

116ms ,126ms, and 136ms) during each simulated treatment. Furthermore, the impact of the prediction on the MLC 183 

tracking accuracy was quantified as the mean MLC exposure error for each simulated treatment. 184 

Prostate motion is mainly driven by effects likes bladder filling and rectal filling without the periodicity of respiration. 185 

Therefore, no prediction was used in the first clinical trial of MLC tracking of prostate cancer8 performed with the Trilogy 186 

based research MLC tracking system. On the other hand, the Varian TrueBeam MLC tracking system uses the linear 187 
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Kalman filter as the default option. For these reasons, prostate treatments were simulated with no prediction (a), with 188 

linear Kalman filter prediction (b) and with perfect prediction (g), but not with the prediction algorithms (c)-(f) that assume 189 

periodic motion. Similar to lung, the 3D RMS prediction error and the mean MLC exposure error were calculated for each 190 

simulated prostate treatment.  191 

To enable stratification of the results according to motion magnitude, the motion trajectory during each simulated 192 

treatment was transformed to its principal component coordinate system and the motion range along the first principal 193 

component was determined.  194 

2.B Tracking system design improvements  195 

The best performing prediction algorithm from the preceding section was used in a simulation study to investigate and 196 

rank potential MLC tracking system improvements . As summarized in Table 2 and described more detailed below, 197 

simulations were performed for five individual MLC tracking system improvements and two combinations hereof, i.e. 198 

seven improvements in total. While these improvements could all be investigated and compared using the same set of 199 

VMAT plans, other strategies for improved tracking that require replanning (e.g. reduced VMAT plan complexity13-14) were 200 

not included in this study. 201 

The first improvement (No localization latency (1)) assumed that the Calypso position signals reach the tracking system 202 

instantaneously after the localization instead of the current mean delay of TSignal = 54ms16. While zero localization latency 203 

is unrealistic, it was chosen here to investigate the maximal impact of latency reduction. The simulated tracking system 204 

still has residual latencies from the waiting time between localization signals and time used for leaf fitting and leaf 205 

adjustment. The shorter latency reduces the required prediction length and thereby the real-time localization errors.  206 

The second improvement (Fast MLC (2)) emulated the effect of faster MLC leaves by multiplying the current maximum 207 

speed, acceleration, and de-acceleration of the MLC leaves16 with a factor of two. As an example, the maximum leaf speed 208 

was increased from 2.5 cm/s to 5.0 cm/s. This improvement reduces the MLC adjustment errors.  209 

 210 

 211 
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Improvements (3)-(6) all aimed at better MLC fitting to motion perpendicular to the MLC leaves as summarized in Figure 2 212 

and described in the following. Improvement (3) used an MLC with 2.5 mm leaf width instead of the 5 mm of the 213 

Millennium MLC. The simulations used an MLC with 2.5mm width for all leaves unlike the Varian HD-MLC, which has 32 214 

leaf pairs of 2.5 mm width at the center and 14 leaf pairs of 5mm width on each side. 215 

Improvement (4) used jaw tracking as implemented by Fast et al. for an MLC tracking system based on an Elekta Agility 216 

accelerator12. Jaw tracking reduces the leaf fitting error by opening the leaves adjacent to the MLC aperture and placing 217 

the Y-jaws at the MLC aperture border (Figure 2). The Y-jaws follow the target motion perpendicular to the MLC, which 218 

eliminates leaf-fitting errors from the first and last leaf pair in the MLC aperture. 219 

Improvement (5) used dynamic rotation of the collimator during the VMAT treatment to reduce target motion 220 

perpendicular to the MLC leaves as proposed by Murtaza et al. for prostate MLC tracking15. The collimator was aligned 221 

with its leaves parallel with a dominant tumor motion direction. The collimator rotation θ was calculated by Equations (1) 222 

and (2). 223 

   (

𝑥𝑝

𝑦
𝑝

𝑧𝑝

) = (
cos ∅ 0 − sin ∅

0 1 0

sin ∅ 0 cos ∅

) ∙ (
𝑥

𝑦

𝑧
)    (1) 224 

           𝜃 = tan−1 𝑥𝑝

𝑦𝑝
       (2) 225 
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Here, (𝑥, 𝑦, 𝑧) and (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) are the dominant tumor motion direction in IEC 61217 patient coordinates and in beam eye 226 

view, respectively, and ∅ is the gantry angle. Since all VMAT fields were coplanar, no transformation was needed to 227 

account for couch rotation. 228 

For lung tumors, the first principal component of the first minute of each trajectory was used as a patient-specific 229 

dominant motion direction. For prostate, a patient-specific dominant motion direction may not be detectable from an 230 

arbitrary trajectory with possible very small motion, but a common motion direction for all patients can be used 231 

instead15,30. The common population-based prostate motion direction was found as the first principal component of a 232 

trajectory obtained by concatenating the first minute of the 695 prostate motion trajectories15. The dominant motion 233 

directions for all trajectories are shown in Figure 1. 234 

A variance analysis was performed for both lung and prostate to quantify the fraction of motion (variance) that occurred 235 

along the dominant motion direction (i.e. along the MLC leaves) during the simulated treatments with dynamic collimator 236 

rotation. The analysis was conducted by transforming the motion trajectory to the principal component coordinate system 237 

and calculating the fraction of motion variance along the first principal component: 238 

𝐯𝐚𝐫𝑃𝐶1 =
𝑣𝑎𝑟(𝐓1)

𝑣𝑎𝑟(𝐓1)+𝑣𝑎𝑟(𝐓2)+𝑣𝑎𝑟(𝐓3)
                 (3) 239 

Here, 𝑇1is calculated from Equation (1) while 𝑇2 and 𝑇3 denote motion along axes orthogonal to the dominant motion axis.  240 

Jaw tracking (4) and dynamic collimator rotation (5) are software improvements that use the existing MLC tracking 241 

equipment. It is obvious to combine them, which was done as improvement (6). Finally, improvement (7) consisted of all 242 

improvements (1)-(5) combined. 243 

The impact of each MLC tracking system improvement was investigated by simulating MLC tracking treatments with the 244 

low and high modulation VMAT plans and the lung tumor and prostate motion trajectories. For lung, the simulated 245 

treatments started 9 minutes (instead of 1 minute) into the trajectory to obtain larger temporal separation between 246 

determination of the dominant motion direction for the dynamic collimator rotation improvement (5) and the actual 247 
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treatment. However, for four trajectories a waiting time of only 4 minutes was used because the trajectories were shorter 248 

than the required 10 minutes. 249 

For each simulated treatment, the mean MLC exposure error was calculated for the individual steps of real-time target 250 

localization, leaf-fitting, and leaf/jaw-adjustment, and for all three steps combined9.  251 

Results 252 

3.A Prediction 253 

Figure 3 shows the actual lung tumor position and the predicted position of the five prediction algorithms for an 254 

illustrative time interval of two breathing cycles. As seen, the linear Kalman filter prediction overshot at the extrema, 255 

while KDE predicted the end of the second exhale phase too early because this exhale phase was longer than in the 256 

previous cycles. The three other algorithms were quite accurate with TVSAR being most accurate. 257 

The mean RMS prediction error and MLC exposure error for all trajectories are shown in Figure 4 (lung) and Figure 5 258 

(prostate) in order of increasing prediction error. The MLC exposure error is presented as the mean residual MLC exposure 259 

error compared to no tracking, i.e. 0% means perfect tracking and 100% means no improvement over non-tracking 260 

treatments.  261 

For lung tumor motion, all prediction algorithms performed better than the use of no prediction (Figure 4). TVSAR had the 262 

lowest prediction errors and MLC exposure errors. Averaged over both VMAT plans the mean residual MLC exposure error 263 

was 36.5% (Perfect), 40.1% (TVSAR), 42.1% (wLMS), 43.7% (LAF), 43.8% (KDE), 45.1% (Kalman) and 46.8% (No prediction). 264 

For perfect prediction, the residual MLC exposure error is the error caused by leaf fitting and leaf adjustment. It is worth 265 

noticing that the ordering of localization errors was not directly translatable to the MLC exposure error. As an example, 266 

wLMS and LAF had larger localization errors than KDE for intermediate lung tumor motion (5-10mm motion range), but 267 

smaller MLC exposure errors. Small oscillations were observed for the wLMS and LAF algorithms, which increased the 268 

localization error, but since the MLC cannot adapt to these fast oscillations they did not increase the MLC exposure errors. 269 
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Compared to the current linear Kalman filter prediction, the mean residual MLC exposure error was significantly reduced 270 

by LAF (p=0.001), KDE (p=0.005), wLMS (p < 0.001), and TVSAR (p < 0.001) prediction. 271 

For prostate motion, use of no prediction resulted in more accurate target localization than the linear Kalman filter 272 

prediction, which is the default prediction for TrueBeam MLC tracking (Figure 5, left). The mean residual MLC exposure 273 

error was significantly smaller without prediction (66.0%) than with the linear Kalman filter prediction (66.9%) (p < 0.001), 274 

but larger than perfect prediction (63.4 %). The MLC exposure error was, however, nearly identical with and without 275 

prediction because the MLC exposure error for prostate MLC tracking is governed by MLC fitting errors rather than real-276 

time localization errors. 277 

While both lung and prostate prediction errors clearly increased with motion magnitude (Figures 4-5, left), the reported 278 

residual MLC exposure errors decreased with motion magnitude (Figure 4-5, right). This is because the MLC exposure error 279 

is reported relative to the error without MLC tracking. Large target motion results in large MLC exposure errors without 280 

MLC tracking and therefore relatively large exposure error reductions with MLC tracking.  281 

3.B Tracking system design improvements 282 

Figure 6 presents an illustrative example from a prostate treatment simulation with three of the improvements and the 283 

current tracking system. The target offset perpendicular to the MLC leaves was much smaller with the dynamic collimator 284 

rotation (Figure 6.a), and this translated directly into smaller MLC exposure error for the leaf fitting step (Figure 6.b) and 285 

for the entire MLC tracking chain (Figure 6.c). For the half leaf width MLC, the leaf-fitting MLC exposure error decreased 286 

abruptly to zero after 19 seconds as the perpendicular target offset reached 2.5mm (Figure 6.b), whereas the MLC 287 

exposure error continued to increase for the original 5mm leaf width MLC.  Jaw tracking reduced the leaf fitting MLC 288 

exposure error to a high degree during most of the treatment as it eliminated fitting errors at the extreme boundaries of 289 

the MLC aperture. Comparing Figure 6.b and 6.c shows that some of the gain by improved MLC fitting was lost to extra 290 

leaf-adjustment at the end, in particular for the half leaf width MLC. 291 

Figure 7 shows the mean residual MLC exposure error as compared to no tracking for all improvements and without other 292 

improvements than the optimal prediction strategy (TVSAR for lung , no prediction for prostate). For prostate, the total 293 
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mean residual MLC exposure error compared with no tracking was 61.7% (1), 61.4% (2), 55.4% (3), 57.2% (4), 47.5% (5), 294 

43.7% (6) and 38.7% (7) when averaged over both VMAT plans. For lung, it was considerably smaller: 37.2% (1), 38.3% (2), 295 

37.4% (3), 34.2% (4), 30.6% (5), 27.7% (6) and 20.7% (7). Not surprisingly, combining all the improvements reduced the 296 

MLC exposure error the most.  297 

Looking at the individual improvements (1)-(5), dynamic collimator rotation (5) had the smallest residual MLC exposure 298 

error for prostate treatments and for lung treatments with the high modulation VMAT plan. For the low modulation lung 299 

VMAT plan, jaw tracking (4) performed slightly better. Half MLC leaf width (3) reduced the MLC exposure error to a high 300 

degree for prostate, but only slightly for lung because the improved MLC fitting came at a cost of more leaf adjustment 301 

errors. For prostate, the MLC exposure improvement was largest for large motion. 302 

Figure 8 shows the mean MLC exposure error reduction for each of the three MLC tracking steps (target localization, leaf 303 

fitting, leaf adjustment) and for the total error. The figure shows the MLC exposure error reduction relative to the current 304 

MLC tracking system without other improvements than the optimal prediction strategy. Negative values indicate 305 

increased MLC exposure error of the MLC tracking step. Not surprisingly, no localization latency (1) reduced the target 306 

localization error due to shorter prediction lengths, but for lung tumor motion it also reduced the leaf adjustment errors 307 

because it lead to fewer extreme excursions that the MLC had to adjust to. Jaw tracking and half leaf width substantially 308 

reduced the leaf fitting errors, but they also increased the leaf adjustment errors, especially for lung treatments. On the 309 

other hand, dynamic collimator rotation improved both MLC fitting and leaf adjustment. 310 

For the lung tumor trajectories, 83% of the motion (variance) occurred along the dominant tumor motion direction, i.e. 311 

parallel to the MLC leaves for treatments with dynamic collimator rotation, while the remaining 17% was either 312 

perpendicular to the MLC leaves or in-depth along the beam axis. For prostate, 60% of the motion variance was along the 313 

dominant motion direction. 314 

All tracking system improvements significantly reduced the mean MLC exposure error relative to the current system with 315 

optimized prediction (p < 0.01).  316 

 317 
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Discussion 318 

In this study, large-scale MLC tracking simulations were used to investigate and rank the MLC tracking accuracy of several 319 

prediction algorithms and potential MLC tracking system improvements. The best localization accuracy was obtained 320 

without prediction for prostate motion and with the TVSAR prediction algorithm for lung tumor motion. Software 321 

improvements of the MLC tracking system by dynamic collimator rotation or jaw assisted MLC tracking were more 322 

efficient than the probably more expensive hardware improvements of a faster localization system or an MLC with faster 323 

or thinner leaves. The analysis of MLC exposure errors for each of the three steps in the tracking chain (Figure 8) gave 324 

valuable insight into the particular characteristics of each MLC tracking system improvement. As an example, some of the 325 

improvements in the MLC fitting step gained by thinner MLC leaves or jaw tracking was shown to be lost in the leaf 326 

adjustment step due to more motion required by the leaves or jaws.  327 

Prostate motion prediction was only investigated with the linear Kalman filter and not with prediction algorithms that rely 328 

on semi-periodic motion. The lung motion prediction study included a wider range of prediction algorithm performances 329 

than in previous comparative studies of prediction algorithms29,31. The study is to our best knowledge the first 330 

investigation of the impact of the prediction algorithm on the MLC tracking accuracy. Large prediction error reduction by 331 

the best algorithms only lead to quite modest reductions in the MLC tracking error (Figures 4-5) because the tracking error 332 

was governed by other links in the MLC tracking chain than target localization. A limitation of the prediction part of the 333 

study was that the prediction algorithms were only investigated for the specific conditions used in the MLC tracking 334 

simulations, i.e. only for the prediction lengths required for the Varian TrueBeam tracking system and with the assumption 335 

of temporally equally spaced position signals measured without noise. The relative ranking of the algorithms might change 336 

for other prediction lengths or more realistic position sample modeling with varying sampling rates and measurement 337 

noise. Furthermore, the investigated algorithms are only a subset of existing prediction algorithms, and there might be 338 

algorithms that are more accurate. Different techniques can be applied to improve the presented algorithms: Individual 339 

prediction algorithm parameters could be optimization based on a trajectory acquired before treatment start, prediction 340 

could be performed simultaneously for all three coordinates32, and several prediction algorithms could be run in parallel 341 

with real-time selection of the best performing algorithm for the actual motion33. 342 
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Prostate MLC tracking was only very modestly affected by the improved target localization of no localization latency or the 343 

improved MLC adjustment of faster MLC leaves (Figure 7). Improved MLC fitting by thinner MLC leaves, jaw tracking or 344 

dynamic collimator rotation had a much larger impact because MLC exposure errors for prostate mainly arise from the 345 

limited MLC fitting to persistent target offsets perpendicular to the MLC leaves17. The MLC exposure error reduction by 346 

dynamic collimator rotation was about twice the reduction by thinner MLC leaves or jaw tracking (Figure 8, lower). Unlike 347 

prostate tracking, lung MLC tracking was affected by improvements in all three parts of the MLC tracking chain. For the 348 

high modulation lung VMAT plan, no localization latency, faster MLC leaves, thinner MLC leaves and jaw tracking gave 349 

similar MLC exposure error reductions, while dynamic collimator rotation gave 4-5 times larger reductions (Figure 8, upper 350 

right). For the low modulation lung VMAT plan, jaw tracking was much more efficient and outperformed dynamic 351 

collimator rotation because the jaws formed a larger part of the MLC aperture and therefore could eliminate a larger 352 

fraction of the MLC fitting errors (Figure 8, upper left).  353 

Thinner MLC leaves improved leaf fitting to a high degree for both tumor sites, but it also increased leaf motion and 354 

therefore leaf adjustment errors. The added leaf motion was only minor for prostate due to small target motions while it 355 

was much larger for the respiratory moving lung targets, leading to only a minor total improvement (Figure 8). Pommer et 356 

al.13 experimentally compared MLC tracking with a Millennium MLC and HDMLC for prostate and found better MLC 357 

tracking with thinner MLC leaves in good agreement with these results. The same study also found larger MLC exposure 358 

errors for more modulated VMAT plans13, which is also what we observed when comparing high and low modulation 359 

VMAT plans. Besides improved MLC fitting, thinner MLC leaves may also allow VMAT planning with more conformal dose 360 

distributions to the tumor shape. This advantage of thinner MLC leaves was not investigated in the current study. 361 

Furthermore, the study only investigated MLC fitting to a pre-defined MLC aperture generated during planning for a 5mm 362 

leaf width MLC. Fitting directly to an ideal fluence would be more in favor of thin MLC leaves than the current study. 363 

The effect of jaw tracking is directly related to the plan complexity since only MLC fitting errors at the edge of the MLC 364 

aperture are eliminated (Figure 2(4)). For this reason, jaw tracking was particularly good for the low modulation lung 365 

VMAT plan, which was almost conformal with very little modulation. The improvements were much smaller for the high 366 

modulation lung and prostate plans, but also for the low modulation prostate plan because it had leaf pairs at the edges 367 
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that opened and closed during the VMAT delivery, which made jaw tracking inefficient. The ranking of the jaw tracking 368 

strategy relative to the other tracking system improvements may change if other VMAT plans were studied. 369 

The simulations of MLC tracking with dynamic collimator rotation used the same MLC apertures as function of gantry 370 

angle as in the original static collimator VMAT plans. While this naturally will give distorted 3D dose distributions, the use 371 

of unchanged aperture shapes allowed direct comparison of the MLC exposure errors between all tracking system 372 

improvements in the study. In a recent simulation study for prostate cancer, Murtaza et al. demonstrated that dynamic 373 

collimator rotation VMAT plans can be generated with the same plan quality as clinically applied static collimator plans, 374 

but with significantly reduced MLC tracking errors14. A limitation of the dynamic collimator rotation is that the dominant 375 

tumor motion direction must be known at the time of treatment planning. For prostate, both the current study and the 376 

study by Murtaza et al.15 showed that a population-based tumor motion direction is sufficient. For lung tumors, the 377 

simulations in this study used a motion direction recorded 10 minutes before the actual treatment simulation, which is not 378 

feasible in a clinical workflow. Instead, a 4DCT scan can be used to find the dominant motion axis. Worm et al.34 found for 379 

liver SBRT that the motion directionally in the planning 4DCT was stable throughout the SBRT treatment course. A 380 

limitation of the dynamic collimator approach is that the collimator angle becomes a function of the gantry angle, 381 

whereby the degree of freedom in selecting the collimator angle during treatment planning is lost. Although this was 382 

shown not to degrade the plan quality for prostate VMAT15 it may be a more serious limitation for more complex VMAT 383 

planning. 384 

A limitation of this study was the small number of investigated treatment plans. The treatment plans have previously been 385 

used to investigate the performance of different MLC tracking systems9,19,35,36. They were designed to span the range of 386 

clinical complexity with the low modulation plans being nearly conformal arc plans and the high modulation plans being 387 

considerably more complex with 1.75 times as many MU as the low modulation plans.  388 

The two combined MLC tracking improvements (6) and (7) reduced the mean MLC exposure error more than any of the 389 

individual improvements, thereby demonstrating the added value of several MLC tracking system improvements. The 390 

combination of dynamic collimator rotation and jaw tracking was almost as good as all combinations combined, and it may 391 



18 
 

be the most obvious improvement to implement since it only requires changes in the treatment planning and accelerator 392 

software. Dynamic collimator rotation VMAT can be performed in research mode on a Varian TrueBeam accelerator while 393 

Fast et al. have implemented jaw tracking on an Elekta Agility accelerator12. 394 

Conclusion 395 

The performance of five prediction algorithms and no prediction for MLC tracking were extensively investigated with an 396 

experimentally validated tracking simulator. For lung MLC tracking, the TVSAR prediction algorithm performed best. For 397 

prostate MLC tracking, no prediction was slightly better than a linear Kalman filter prediction.  398 

Seven strategies for improving MLC tracking were tested with the simulator. All strategies reduced the mean MLC 399 

exposure error compared with the current implementation. Dynamic alignment of the collimator with the dominant 400 

motion axis resulted in the largest improvement on average, while using the backup jaws to track motion perpendicular to 401 

the MLC leaves led to the largest improvements for the low modulation lung plan. 402 
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 493 

Figure captions 494 

Figure 1: Polar plots of the first principal component vector showing the motion that occurs in the anterior-posterior and 495 

left-right direction when the tumor moves cranially for 99 lung tumor trajectories (left) and 695 prostate trajectories 496 

(right). The center of the polar plots corresponds to pure cranial motion. Each dot represents one trajectory. The yellow 497 

dot in the prostate figure is the global value used for prostate tracking with dynamic collimator rotation. 498 
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 499 

Figure 2: Examples of MLC exposure errors from MLC fitting to the target shift indicated by the red arrow without MLC 500 

tracking and with MLC tracking with the current TrueBeam MLC tracking system and MLC tracking system improvements 501 

(3)-(6) in Table 2. 502 

 503 

Figure 3: Actual and predicted motion during two breathing cycles of a lung tumor trajectory. 504 

 505 

Figure 4: 3D root-mean-square (RMS) prediction error (left) and mean residual MLC exposure error of MLC tracking 506 

relative to no tracking (middle: low modulation VMAT plan, right: high modulation VMAT plan) for the lung treatment 507 

simulations. Results are shown for trajectories with small (<5mm), medium (5-10mm) and large (>10mm) motion range as 508 

well as for all lung tumor trajectories.  509 

 510 

Figure 5: 3D root-mean-square (RMS) prediction error (left) and mean residual MLC exposure error of MLC tracking 511 

relative to no tracking (middle: low modulation VMAT plan, right: high modulation VMAT plan) for the prostate treatment 512 

simulations. Results are shown for trajectories with motion ranges below and above 3mm as well as for all prostate 513 

trajectories. 514 

 515 

Figure 6: Example of a prostate trajectory and the MLC exposure error as function of time during VMAT MLC tracking. (a): 516 

Prostate position in beam’s eye view (BEV) perpendicular to the MLC leaves with the original 90 collimator rotation and 517 

with dynamic collimator rotation (Improvement (5) in Table 2). (b-c): MLC exposure error from the MLC leaf fitting step (b) 518 

and from all three MLC tracking steps combined (c) for the current MLC tracking system and improvements with Half leaf 519 

width (3), Jaw tracking (4) and Dynamic collimator rotation (5). The numbers indicate the mean MLC exposure error over 520 

the presented time interval. 521 
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 522 

Figure 7: Mean residual MLC exposure error compared with no tracking for tracking system improvements (1)-(7) and 523 

without improvements (0). The results are stratified by the motion range of the trajectories as indicated in the legends. 524 

 525 

Figure 8: Mean MLC exposure error reduction relative to the current MLC tracking system with optimized prediction. All 526 

bars are normalized to the total mean MLC exposure error for the current system. 527 

 528 



 

Table 1: The investigated prediction algorithms. 

Name Short name Motivation 

(a) No prediction No prediction Lower limit if no prediction is applied 

(b) Linear Kalman filter Kalman Default algorithm for TrueBeam MLC tracking17.  

(c) Kernel density estimation22 KDE Used in ongoing clinical study of lung MLC tracking on a 

Trilogy accelerator28 

(d) Linear adaptive filtering23 LAF Implemented in the clinically used Trilogy MLC tracking 

system. 

(e) Wavelet-based multiscale 

auto regression24 

wLMS State-of-the-art. Best algorithm in comparative study with 

six prediction algorithms29 

(f) Time-variant seasonal 

autoregressive25 

TVSAR State-of-the-art algorithm 

(g) Perfect prediction Perfect Upper limit with optimal prediction algorithm 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Description of the seven MLC tracking system improvements 

Name Improvement 

(1) No localization latency No Calypso signal latency 

(2) Fast MLC  MLC with doubled maximum speed, acceleration and de-acceleration 

(3) Half leaf width  MLC with 2.5 mm leaf width instead of 5 mm 

(4) Jaw tracking Aperture edge defined by Y-jaws, open leaves at the aperture edge12 

(5) Dynamic collimator rotation  Aligning collimator with the previously measured first principal 

component of tumor motion projected onto the collimator plane for 

each gantry angle15 

(6) (4-5) combined Combination of jaw tracking and dynamic collimator rotation 

(7) (1-5) combined Combination of all improvements 
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