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End-User Development for Interactive Data 
Analytics: Uncertainty, Correlation and User 

Confidence  

 
Jianlong Zhou, Syed Z. Arshad, Xiuying Wang, Zhidong Li, Dagan Feng, and Fang Chen 

Abstract— This paper investigates End-User Development (EUD) for interactive data-analytic interfaces – building upon the 

ideas of making machine learning transparent. The research is carried out in a business operation environment (water pipe 

failure prediction in our case) motivated to integrate advanced analytics into decision-making processes of an urban Internet of 

Things (IoT) concept. We explore effects of revealing uncertainty and correlation on user confidence in a data-driven decision 

making scenario. It was found that user confidence varied significantly amongst various user groups when different machine 

learning models were displayed with/without supplementary information. Galvanic Skin Response (GSR) signals were analyzed 

and shown as reasonable indices for predicting user confidence levels. Supplementary data visualizations (of inherent 

uncertainty and correlation in data) contributed to explicability principles while GSR indexing added towards correctibility 

principles. We recommend transparent machine learning as the key to effective EUD for interactive data analytics.  

Index Terms— Correlation, decision making, Galvanic Skin Response, machine learning, uncertainty, user confidence  

——————————      —————————— 

1 INTRODUCTION

HE Internet of Things (IoT) helps people to improve 

their experiences in their work and life by seamlessly 

integrating a large number of smart objects with the Inter-

net [1]. Human-Computer interface, which is one of three 

important foundations of IoT [2], promises to further inte-

grate computing devices into human environment. In these 

interfaces, the computer anticipates the needs as it learns 

and grows from the evolving history of interaction with the 

human. The learning here refers to automated Machine 

Learning (ML). These interfaces would be better contextu-

ally aware of both the user and the environment.  

We consider End-User Development (EUD) to be the 

natural consequence of the IoT condition. Users would like 

their user interfaces to be flexible enough to accommodate 

any changing user requirements. Moreover they might also 

like this evolutionary process to be friendly enough that 

users can program these changes into their interface when-

ever needs arise. Burnett and Kulesza [3] argued to “enable 

ordinary users to customize, control and ‘fix’ Internet of 

Things applications that are trying to help them”. And the 

approach they have worked on is known as “explanatory 

debugging” [4]. Explanatory debugging is an interactive 

machine learning approach in which the system explains to 

users how it made each of its predictions (i.e. the explaina-

bility principle), and the user then explains any necessary 

corrections back to the learning system (i.e. the correctibil-

ity principle). This effort can be considered as part of mak-

ing ML transparent. However we focus on the improved 

decision making by uncertainty communication through 

physiological signal analysis that helps the system under-

stand the user confidence in real-time.  

The role of human in IoT is no longer that of a simple us-

er.  Things that differentiate a person participating in IoT 

from a traditional cyber-physical component are their (a) 

cognitive abilities (b) unpredictability and (c) motivational 

factors [5]. In this study we restrict ourselves to explore the 

cognitive abilities of the human with regards to uncertainty 

and correlation visualizations and how predictable would 

be their decision making behavior with respect to ensuing 

user confidence. This in turn helps us recommend valuable 

parameters for end-user development design. 

Furthermore, much of data analytics in IoT is based on 

ML techniques that make use of data from various IoT sen-

sors to make IoT appear “smart” in decision making [6]. By 

attempting to make the ML procedures transparent, we 

hope to provide users greater insights into the rationale 

behind the solutions made by IoT systems and thereby 

improve mutual trust between the user and systems. Once 

the user realizes how sure/certain a system is of its analy-

sis and recommendations – there would lesser cases of 
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overconfidence or underconfidence in system performance, 

thereby setting upper and lower bounds for end-user de-

velopment scenarios. 

Fig. 1 explains the bigger picture for EUD for interactive 

data analytics with making ML transparent as the key-

contributing factor in this paper. In this scheme, cognitive 

computing tries to make computers more user-friendly, 

and anticipates what the user is trying to do (by monitor-

ing the user generated signals and environment) as well as 

provides an appropriate response. This information contex-

tualizes the potential range of responses, which are there-

fore more personalized [7]. Such personalization is either 

deliberately done by the user or gradually learned over 

time using ML over user interaction data. EUD in this 

scheme is seen as an extension of personalization. Mean-

while the decision analytics interface is powered by the 

automated ML techniques, which continuously learn from 

the raw IoT data. The key here is the bidirectional connec-

tion between personalization and automated ML. Personal-

ization helps guide how analytics is to be presented and 

transformed to the user, whereas ML of interaction data 

helps customize the personalization component. Transpar-

ency is when both are able to benefit each other for the 

achievement of the common system goal of better decision 

making. Based on this scheme, we give more background 

on IoT and humans in data analytics-driven decision mak-

ing in the following subsections. 

 

Fig. 1.  Bigger picture of EUD for interactive data analytics. 

1.1  Humans in the Loop and Decision Making 

IoT is inherently about human [3], [8] – providing in-

formation to human and getting feedback from human. 

Therefore, the human factors on the IoT system play signif-

icant roles on the success of the IoT. Furthermore, the mul-

timodal interface trend in Human-Computer Interaction 

(HCI) [9] tries to build interfaces intelligent enough to ac-

tively incorporate user’s intuitions and load. In case of in-

teractive data analytics, the key HCI research questions 

would be (see Fig. 2): (a) what aspects of data would users 

like to see on screen? (b) how could the desired data as-

pects be best visualized? and (c) how much control can be 

transferred for the user to adequately manipulate the visu-

alized data? Here we concern ourselves mainly with the 

first two questions. 

 

Fig. 2.  Interactive data analytics: An HCI perspective. 

Decision making is an important research topic in HCI 

with the fast growing use of intelligent systems. With rap-

idly increasing data in fields such as infrastructure and 

society, users are looking to integrate their “Big Data” and 

advanced analytics into business operations in order to 

become more analytics-driven in their decision making. As 

a result, we continuously find ourselves coming across ML-

based appealing viewgraphs and other predictions that 

seem to work (or have worked) surprisingly well in practi-

cal scenarios. This popularity of machine learning and pre-

dictive analytics has created a growing demand for similar 

tools in non-computing communities besides ML experts. 

People with no background in ML, would also like to use 

these powerful techniques to their benefit such as in IoT.  

1.2  Data Analytics and IoT 

Recently, the application of the IoT paradigm to an ur-

ban context is of particular interest under the Smart City 

concept [10], which is called urban IoT. Urban IoTs are 

designed to support the Smart City vision, which aims at 

supporting added-value services for the administration of 

the city and for the citizens. For example, the infrastructure 

management such as water pipe failures management is 

one of significant aspects in the Smart City. Proper mainte-

nance of water pipes of a city requires the continuous mon-

itoring of the actual conditions of pipes and identification 

of the pipes that are most subject to failures. By analyzing 

the collected data with machine learning, the urban IoT 

may provide predictions on pipe conditions in order to 

make decisions of management and maintenance of pipes. 

1.3 EUD for Interactive Data Analytics 

Different from information visualization for data under-

standing [11], ML-based predictive analytics is like a “black 

box” for many of non-ML users, to which they simply pro-

vide their source data and colorful viewgraphs and/or 

recommendations are displayed as output [12]. The user is 

more or less unconfident in the ML model output when 

making decisions based on the ML model output and thus 

also unconfident in the ML models themselves. Therefore it 

is highly critical to know how the information presented in 

the user interface on data and ML models affect user confi-

dence in order to make effective decisions.  

Fig. 3 shows a typical ML-based data analysis pipeline. 

In this pipeline, users need to consider how certain or un-

certain of the prediction results are when making decisions. 

Furthermore, from the input data perspective, statistical 

information of data such as correlation between variables 

can describe how much target values are related to features 

in input data of the model. The correlation may affect us-
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ers’ decision making based on their domain experiences, 

e.g. users may have experiences that the older the water 

pipes are, the higher the failure rate is. The user might be 

risking too much by ignoring uncertainties or correlations, 

while over-conservative safety certification or having low 

confidence could possibly be wastage of the incredible po-

tential of ML.  

 

Fig. 3.  ML-based data analysis pipeline. 

Furthermore, it was found that Galvanic Skin Response 

(GSR), which corresponds to the electrical conductance of 

the skin, as a low-cost and robust physiological signal, re-

flects the process of decision making, in particular, of the 

emotional sanctioning of an active go-ahead [13]. GSR is 

often used as an indicator of affective processes and emo-

tional arousal. Many scientific findings indicate that emo-

tions play an essential role in decision making, and various 

cognitive tasks. These motivate us to investigate how phys-

iological signals such as GSR are used to communicate con-

fidence in data analytics-driven decision making under 

varying uncertainty and correlation conditions.  

However, little work is done on the EUD for interactive 

data analytics in the IoT by investigating user confidence in 

data analytics-driven decision making under conditions 

such as the revealing of uncertainty and correlation. Such 

investigation will benefit the effective EUD for interactive 

data analytics by setting up the communication between 

machine learning and users as shown in Fig. 1. This paper 

aims to investigate relationships between uncertain-

ty/correlation and user confidence in data analytics-driven 

decision making in the urban IoT in order to design effec-

tive user interface for interactive data analytics systems. 

We also investigate GSR features that can be used to com-

municate user confidence in decision making. Different 

from other HCI communication approaches such as semi-

otic engineering for communication between designers and 

users at interaction time [14], our physiological signal-

based user confidence communication allows to adapt the 

presentation of decision conditions automatically for effec-

tive decision making. Such communication helps the de-

sign of intelligent user interface in IoT where user confi-

dence is automatically identified and perceived explicitly. 

Based on the investigation, we demonstrate that the trans-

parent machine learning is the key of the EUD for interac-

tive data analytics in IoT. A user study was performed to 

investigate the impact of revealing uncertainty and correla-

tion information on user confidence.  

2 RELATED WORK 

2.1 User Uncertainty and Decision Making 

Making decisions is one of the most complex cognitive 

processes. For example, Morgado et al. [15] reviewed the 

impact of stress in decision making in the context of uncer-

tainty and found that this cognitive process involves sever-

al sequential steps including analysis of internal and exter-

nal states, valuation of options available and action selec-

tion.  

“Uncertainty” is defined in many ways. For a user, it can 

be a psychological state in which the decision maker lacks 

knowledge about what outcome will follow from which 

choice. This aspect of uncertainty is popularly known as 

“risk”. Risk refers to situations with a known distribution 

of possible outcomes (probabilities) [16]. “Ambiguity” is 

the other kind of uncertainty, where outcomes have un-

known probabilities and research in neurosciences [17] 

indicates that decision making under ambiguity does not 

represent a special, more complex case of risky decision 

making. 

It was thought that people prefer to bet on events they 

know more about, even when their beliefs are held con-

stant, i.e. they are averse to ambiguity [18]. However, this 

was shown to be otherwise by [19] in their study respond-

ing to degrees of uncertainty. Their experiments and corre-

sponding neurological observations showed that many 

people are more willing to bet on risky outcomes than am-

biguous ones. These findings motivate us to account for 

both risk (i.e. uncertainty due to known probabilities) and 

ambiguity (i.e. uncertainty due to unknown probabilities) 

while investigating variations in user confidence due to 

uncertainty. 

2.2 Presenting Model Uncertainty 

Probability remains the language of uncertainty. Several 

investigations have been carried out to understand better 

ways of presenting uncertainty inherent in data. One earli-

er effort includes that of Ibrekk and Morgan [20] who in-

vestigated graphical communication of uncertain quanti-

ties to well-educated semi and non-technical people. It was 

suggested that communicating uncertainty should not fo-

cus just on the problems of communicating to “semi tech-

nical and lay people”. We pay heed to this advice and the 

subject groups we consider in our experiment involve both 

experts (ML & non-ML) and general staff. 

Furthermore, cognitive load is known to affect people’s 

use of graphical displays. Allen et al. [21] studied the po-

tential of graphical displays to communicate uncertainty 

when end users were under cognitive load. The research 

suggested that interpreting basic characteristics (like “point 

reading”) of uncertainty data is unharmed under condi-

tions of limited cognitive resources, whereas more deliber-

ative processing, like synthesizing information, is negative-

ly affected. “Synthesizing” here corresponds to cognitive 

capacity demanding Type 2 processing as explained by 

Stanovich and Toplak [22]. Type 2 processing is further 

discussed later. In our current design we maintain cogni-

tive load to be same over all experimental conditions and 

keep sessions times minimal. We do this because [23] has 
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shown that individual cognitive load can vary over longer 

periods of activity which is then reflected in changing be-

havioral patterns.  

2.3 Correlation and Decision Making 

Good decision-making often requires people to perceive 

and handle a myriad of statistical correlations [24]. How-

ever, Eyster and G. Weizsacker [24] found that people have 

limited attention and often neglect correlations in financial 

decision making. Ye [25] used the weighted correlation 

coefficients to rank the alternatives and get the best alterna-

tive in multi-attribute decision making. Liao et al. [26] used 

correlation coefficients of hesitant fuzzy linguistic term set 

in the process of qualitative decision making in traditional 

Chinese medical diagnosis. However, little work is done on 

how correlation affects user confidence, especially decision 

making based on ML models learned from historical data.  

3 EXPERIMENT 

3.1 Case Study 

This research used water pipe failure prediction as a case 

study [27]. Water supply networks constitute one of the 

most crucial and valuable urban assets. Identifying an ac-

curate predictive measure for imminent failure of water 

pipes would allow utility companies to prioritize preven-

tive repairs that would cost significantly less than full-scale 

failures. Thus, utility companies use outcomes from failure 

prediction models, to make renewal plans based on risk 

levels of pipes and also reasonable budget plans for pipe 

maintenance. However, different models based on alterna-

tive features may be available resulting in different possi-

ble budget plans. This experiment is set up to determine 

what criteria of choice are in favor of a model, and what 

parameters influence the user confidence during the deci-

sion process. 

3.2 Experiment Data 

Water pipe failure prediction uses historical pipe failure 

data to predict future failure rate [27]. The historical data 

contain failure records of water pipes, and various attrib-

utes of water pipes, such as laid year, length, diameter size, 

surrounding soil type, etc. Actual historical data was sam-

pled and customized for the simulation of this experiment.  

In this study, predictive models are simulated and they 

are based on different pipe features (e.g. size) with the ref-

erence of Hierarchical Beta Process (HBP) used in water 

pipe failure prediction [27]. The model performance curve 

was presented to let the participants evaluate different 

models. The model performance is the functional relation-

ship between proportion of the network inspected and the 

proportion of pipe failures detected. Fig. 4 shows the per-

formances of two models. For example, in Fig. 4 (a), the 

model based on the feature “Size” has better performance 

than the one based on the feature “Laid Year”, because the 

formal one detects more failures than the latter for a given 

pipe length.  

In machine learning, uncertainty can be traced to many 

sources ranging from input values to nature of model rep-

resentation to final output decision values. Here we con-

cern ourselves mostly with uncertainty associated with 

output decision values.  Specifically, model uncertainty 

here refers to an interval within which the true value of a 

measured quantity would lie. For example, in Fig. 4 (b), in 

order to detect 50% of the failure rate, the uncertainty in-

terval of the inspected length is [5%, 55%] for the model 

based on the feature “Size” (it is also called model “Size” 

for short and similar to other models), and is [35%, 45%] 

for model “Laid Year”: the model “Laid Year” is said to 

have less uncertainty in prediction than the model “Size” 

because the former has smaller uncertainty interval than 

the later. Model output uncertainty usually spans as a band 

in the model performance diagram as shown in Fig. 4 (b) 

and Fig. 4 (c). By considering model output uncertainty, 

the relationship between two models may have two cases 

as shown in Fig. 4: 1) models with overlapping uncertainty, 

and we call overlapping models (see Fig. 4 (b)), and 2) 

models with non-overlapping uncertainty, and we call 

non-overlapping models (see Fig. 4 (c)). In Fig. 4 (b), the 

model with lower uncertainty overlaps completely the 

model with higher uncertainty, whereas in Fig. 4 (c), the 

two bands are disjoint. 

 
                      (a)                                                      (b) 

 
                                                          (c) 

Fig. 4.  Performance of predictive models: (a) without uncertainty, (b) 
with overlapping uncertainty, (c) with non-overlapping uncertainty. 

Furthermore, as represented in Fig. 3, correlation is not 

associated with a model, but with input data. Correlation 

in this experiment refers to the correlation between one 

pipe feature (e.g. pipe size) and the pipe failure rate in his-

torical records.  It describes how much the target value 

“failure rate” is related to a given feature in historical rec-

ords. The correlation is often described by correlation coef-
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ficient. It illustrates a quantitative measure of correlation 

and dependence. The correlation in this experiment is dis-

played as 2D bar charts with the horizontal axis as features 

and the vertical axis as the correlation coefficients. For ex-

ample, in Fig. 5, the feature “Laid Year” (Year) and “Size” 

have a correlation coefficient of 0.75 and 0.45 respectively 

with the failure rate, which means that the feature “Laid 

Year” is more related to the failure rate than the feature 

“Size”. 

 

Fig. 5.  Correlation between features and target values. 

3.3 Task Design 

In this subsection, tasks are designed to investigate how 
uncertainty and correlation affect user confidence in deci-
sion making. In each task, different diagrams for two ML 
models with other decision making information are pre-
sented to participants for decisions. Based on diagrams 
presented to participants, the tasks are divided into four 
categories: control tasks, uncertainty-based tasks, correla-
tion-based tasks, and combinational tasks.  

3.3.1 Control Tasks 

A Control Task (CT) is used as the basis to test the effects 
of uncertainty and correlation on user confidence. In the 
CT task, only the model performance diagram (Fig. 4 (a)) 
without uncertainty/correlation information is presented. 

3.3.2 Uncertainty-Based Tasks 

Uncertainty-based tasks are used to evaluate the effects 
of different uncertainty patterns on user confidence. Based 
on two cases of relationships between two models under 
uncertainty as shown in Fig. 4 (b) and Fig. 4 (c), two uncer-
tainty tasks are designed: (1) Overlapping Uncertainty 
Task (OLUT), where only the model performance diagram 
with overlapping uncertainty  is presented to participants 
(see Fig. 4 (b)); (2) Non-Overlapping Uncertainty Task 
(Non-OLUT), where only the model performance diagram 
with non-overlapping uncertainty  is presented to partici-
pants (see Fig. 4 (b)).  

3.3.3 Correlation-Based Tasks  

Correlation-based tasks are used to evaluate how differ-
ent correlation patterns affect user confidence in decision 
making. Considering model performance and correlation 
together, we divided relations between them into two cate-
gories:  

− Correlation and performance of model output share 
the same trend (Fig. 6 (a)). That is, the correlation be-

tween a feature and the pipe failure rate is high and 
the associated model performance is also high, or the 
contrary. 

− Correlation and performance of model output do not 
share the same trend (Fig. 6 (b)). That is, the correla-
tion is high, but the associated model performance is 
low, or the contrary. 

 

 
(a) 

 

 (b) 

Fig. 6.  Correlation-based tasks: (a) Same Trend Correlation Task, 
(b) Non-Same Trend Correlation Task. 

According to these categories, two correlation-based 
tasks are designed in this study: (1) Same Trend Correla-
tion Task (STCT) (see Fig. 6 (a)); (2) Non-Same Trend Cor-
relation Task (Non-STCT) (see Fig. 6 (b)). 

3.3.4 Combinational Tasks 

Combinational tasks are used to investigate user confi-
dence in decision making when both uncertainty and cor-
relation are presented to participants during decision mak-
ing. According to two uncertainty cases and two correla-
tion cases as mentioned, four combinational tasks are de-
signed in this study: 

− Non-Same Trend Correlation and Overlapping Uncer-
tainty Task (Non-STC+OLU), where model perfor-
mance with overlapping uncertainty and correlation 
do not share the same trend; 

− Same Trend Correlation and Overlapping Uncertainty 
Task (STC+OLU), where model performance with 
overlapping uncertainty and correlation share the 
same trend; 

− Non-Same Trend Correlation and Non-Overlapping 
Uncertainty Task (Non-STC+Non-OLU), where model 
performance with non-overlapping uncertainty and 
correlation do not share the same trend; 
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− Same Trend Correlation and Non-Overlapping Uncer-
tainty Task (STC+Non-OLU), where model perfor-
mance with non-overlapping uncertainty and correla-
tion share the same trend. 

3.3.5 Task Procedures 

According to the water pipe failure prediction frame-
work, the decision tasks we investigated on are: each user 
was told that he/she would be a manager of a water com-
pany. The water company plans to repair XX% (the exact 
number was provided during the task) pipe failures in the 
next financial year. He/she was asked to make a budget 
plan, i.e. a budget in network length, using water pipe fail-
ure prediction models learned from the historical water 
pipe failure records. Two ML models were provided for 
each budget task. Participants were required to make deci-
sions by selecting one of presented ML models and then 
making budget plan based on the selected ML model. The 
budget plan needs to meet following requirements:  

− Check as short length of pipes as possible (low cost); 
− The budget uncertainty interval should be as small as 

possible (high accuracy). 

Participants’ budget plan was required to report the fol-
lowing information:  

− The length of pipes to be detected; 
− The prediction model used for the decision. 

All tasks were conducted with two rounds. The first 
round used the feature pair of “Size – Laid Year” and the 
second round used the feature pair of “Material – Pres-
sure” for ML models. Except feature name differences, two 
rounds used same model performance diagrams to avoid 
any bias. In summary, there were 18 tasks conducted ([1 
Control Task + 2 Uncertainty-based Tasks + 2 Correlations-
based Tasks + 4 Combinational Tasks] × 2 Rounds = 18 
Tasks). 

At the beginning of each decision making task, a blank 
screen (with an “X” displayed at the centre of the screen) 
was displayed for 6 seconds in order to allow the partici-
pant have a rest and “reset” his/her cognitive load state 
[28]. Then the participants started a task under various 
conditions. Participants were told that they were compet-
ing against other people to reach the best budget plan in a 
given time period (1.5 minutes/task) in order to push them 
to make their efforts for tasks. The task orders were ran-
domized during the experiment. 

3.4 Participants and Apparatus 

26 participants were recruited from three groups with 
different background, with the range of ages from twenties 
to forties and an average age of 30 years: 1) 9 researchers 
who were doing ML or data mining research (ML re-
searchers), 2) 8 researchers who were not doing ML or data 
mining research (non-ML researchers), and 3) 9 administra-
tive staff. Of all participants, 9 were females. Educational 
qualifications were largely postgraduate (13 PhDs, 6 Mas-
ters, 4 Bachelors, 3 other).  

GSR devices from ProComp Infiniti of Thought Tech-
nology Ltd were used to collect skin conductance respons-

es of subjects. GSR sensors were attached to subjects’ left 
hand fingers. All participants were right-handed. Different 
tasks were presented on a 21-inch Dell monitor with a 
screen resolution of 1024 by 768 pixels. 

3.5 Data Collection 

After each decision making task, participants were 
asked to rate the confidence level of the budget plan they 
made and the difficulty level of the task using a 9-point 
Likert scale (1: least difficult/confident, and 9: most diffi-
cult/confident). Participants were asked to rate how help-
ful the presentation of uncertainty/correlation is for deci-
sion making. At the end of each round, participants were 
also asked to rate the usefulness of uncertainty and correla-
tion on helping them more confident in decision making. 
Participants were also asked to rank tasks according to 
difficulty levels of tasks. Besides subjective ratings, skin 
conductance responses of subjects were collected with GSR 
sensors during the task time. 

4 HYPOTHESES 

The following hypotheses are posed in our study:  

− For uncertainty effects: 

 Understanding of uncertainty of model output 

would help users more confident in decision making 

(H1); 

 Uncertainty patterns would affect user confidence 

and users would be more confident in decision mak-

ing under non-overlapping uncertainty than under 
overlapping uncertainty (H2); 

− For correlation effects: 

 Revealing of correlations between features and tar-

get values would help users more confident (H3); 

 When correlation and model performance share the 
same trend, users would be more confident (H4); 

− For combinational effects: 

 When correlation and performance of model output 

shared the same trend, non-overlapping uncertainty 

would make users more confident (H5); 

 When correlation and performance of model output 

do not share the same trend, participants would be 

more confident in models with overlapping uncer-
tainty than with non-overlapping uncertainty (H6); 

− For physiological responses: 

 Confidence variations because of the revealing of 

uncertainty and correlation would result in differ-
ences of physiological measurements (H7). 

5  ANALYSIS OF SUBJECTIVE RATINGS 

We performed Friedman tests with post-hoc analysis us-
ing Wilcoxon signed-rank tests to analyze the mean differ-
ences in participant responses for each category of tasks.  

5.1 Analyses of Uncertainty-Based Tasks 

Fig. 7 shows average subjective ratings of participants’ 
confidence in decision making in uncertainty-based tasks 
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and the control task. A Friedman test showed that there 
was a statistically significant difference among the three 
tasks in confidence levels, χ2(2) = 13.481 , p<.001. The 
post-hoc Wilcoxon tests with a Bonferroni correction ap-
plied resulting in a new significance level set at p<.017 
(0.05/3 = 0.017 because we have three conditions/tasks) 
was applied to find pair-wise differences between tasks. 

It was found that users were significantly more confi-
dent in Non-OLUT task than in OLUT task (Z=79.0, 
p<.001). The result suggests that when uncertainty was 
presented to users, non-overlapping uncertainty made 
users more confident in decision making than overlap-
ping uncertainty as we expected (H2). However, we did 
not find significant differences between Control task and 
OLUT task or between Control task and Non-OLUT task 
as we expected (H1). 

 

Fig. 7.  Average subjective ratings of participants’ confidence in deci-
sion making in uncertainty-based tasks 

5.2 Analyses of Correlation-Based Tasks 

A Friedman test found a statistically significant differ-
ence among three tasks in confidence levels, χ2(2) =
22.086, p<.001. The post-hoc Wilcoxon tests (a signifi-
cance level at p<.017) found a significant difference be-
tween Control Task and Same Trend Correlation Task 
(Z=167.5, p=.008). The result suggests that revealing of 
correlations between features and target values helped 
users more confident in decision making as we expected 
(H3). It was also found that participants were significant-
ly more confident in Same Trend Correlation Task than in 
Non-Same Trend Correlation Task (Z=105.0, p<.001). The 
result suggests that when correlation and performance of 
model output shared the same trend, users were more 
confident in decision making as we expected (H4).  

5.3 Analyses of Combinational Tasks 

A Friedman test found a statistically significant differ-
ence among four tasks in confidence levels, χ2(3) =
55.886, p<.001. The post-hoc Wilcoxon tests a new signifi-
cance level set at p<.0125 (0.05/4=0.0125, because we 
have four tasks) was then applied to find pair-wise differ-
ences between tasks. The post-hoc tests found that partic-
ipants were significantly more confident in STC+Non-
OLU Task than in STC+OLU Task (Z=89.0, p<.001). The 
result suggests that when correlation and performance of 
model output shared the same trend, non-overlapping 
uncertainty made users more confident in decision mak-
ing as we expected (H5). It was also found that partici-
pants were significantly more confident in STC+Non-

OLU than in Non-STC+Non-OLU (Z=10.0, p<.001). The 
result suggests that under the condition of non-
overlapping uncertainty, the same trend between correla-
tion and performance of model output made users more 
confident in decision making as we expected (H5). Partic-
ipants were also statistically significantly more confident 
in STC+Non-OLU Task than in Non-STC+OLU Task 
(Z=103.5, p=.002). It suggests that both the same trend 
scenario of correlation and the non-overlapping uncer-
tainty benefited user confidence in decision making. The 
post-hoc tests also found that participants were signifi-
cantly more confident in Non-STC+OLU Task than in 
Non-STC+Non-OLU Task (Z=149.5, p<.001). The result 
suggests that when correlation and performance of model 
output did not share the same trend, participants were 
more confident in models with overlapping (“ambigui-
ty”) uncertainty than models with non-overlapping 
(“risk”) uncertainty as hypothesized (H6).  This is maybe 
because of the popular assumption of human’s risk-
aversion in decision making [29]. 

6 ANALYSIS OF GSR RESPONSES 

In this section, GSR responses from subjects are ana-
lysed. Fig. 8 shows an example of GSR signals of a partic-
ipant in one task session. Various features are firstly ex-
tracted from GSR signals. GSR features are then used to 
classify confidence levels in order to show the potential of 
using GSR in indexing user confidence in decision mak-
ing in the next section. GSR responses during both task 
time and the period of displaying “X” are used to analyse 
user confidence. The GSR data analysis is divided into 
following steps: 1) data calibration, 2) signal smoothing, 
3) extrema detection, 4) feature encoding, and 5) feature 
significance test. 

6.1 GSR Features 

This subsection shows the steps to extract and encode 
GSR features in this study. The 6-second GSR values be-
fore the task start time during the displaying of “X” are 
used to calibrate GSR during the task time in order to 
compensate the differences between tasks of a subject. A 
Hann window function [30] is convoluted to GSR signals 
to remove noises. The smoothed signal is also normalized 
using Z-Normalization to omit subjective differences be-
tween various signals before the feature extraction. 

 

Fig. 8.  Extremas and extrema features of GSR. 

Both statistical and extrema-based features [31] are ex-
tracted and analysed. These features include (see Fig. 8):  
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− Mean of GSR (summation of GSR values over task time 

divided by task time)  μ𝒢; 

− Variance of GSR σ𝒢;  

− Task time length Tt;  

− Number of responses Sf, which is the number of peaks 

in a GSR signal;   

− Sum of duration Sd = ∑ Sdi;  

− Sum of magnitude Sm = ∑ Smi;  

− Sum of estimated area Sa = ∑ Sai.  

Sf , Sd , Sm , and Sa  are features of the GSR orienting re-
sponse [31]. The definition of magnitude Smi and duration 
Sdi are defined as shown in Fig. 8. The area of response is 
estimated by Sai = SmiSdi/2. 

6.2 GSR Feature Significance Test 

In this subsection, one-way ANOVA tests with post-
hoc analysis using t-tests were performed to evaluate con-
fidence discrimination of features among different tasks. 

6.2.1 Uncertainty-Based Tasks 

An ANOVA test found that features of Tt 
(F(2,39)=4.697, p=.013), Sd  (F(2,39)=3.817, p=.029), Sm 
(F(2,39)=3.539, p=.036), and Sa  (F(2,39)=4.52, p=.016) 
showed statistically significant differences among three 
tasks (two uncertainty-based tasks plus control task). 
Post-hoc analysis with t-tests were then conducted with a 
Bonferroni correction (significance level set at p<.017 as 
discussed in the previous section) for all pairwise differ-
ences of significant features. The post-hoc tests showed 
that OLUT task took significantly longer Tt  than Non-
OLUT task (t =2.592, p=.014). There were no other signifi-
cant differences found between tasks. Furthermore, we 
used a readjusted significance alpha level of 0.025 (0.05/2 
by considering actual two conditions of with/without 
uncertainty revealing) to see if we can find any other pair-
wise differences that we expected. Using this new alpha 
level, the results showed that OLUT task had significantly 
higher Sd  than both Control task (t=2.353, p=.024) and 
Non-OLUT task (t=2.396, p=.022).  

The results suggest that overlapping uncertainty made 
features such as Tt and Sd values increased significantly. 
Therefore, less confidence level tasks made task time 
length of Tt and GSR feature Sd values significantly high-
er.  

6.2.2 Correlation-Based Tasks 

An ANOVA test showed that GSR features of Sd 
(F(2,39)=3.477, p=.038), and Sa  (F(2,39)=4.13, p=.021) 
showed statistically significant differences among three 
tasks (two correlation-based tasks plus control task). The 
post-hoc t-tests with a Bonferroni correction (significance 
level set at p<.017 as discussed in the previous section) 
showed that Non-STC Task had significantly higher Sd (t 
=2.711, p=.010) and Sa  (t =2.889, p=.006) than Control 
Task. The post-hoc tests with a readjusted significance 
alpha level of 0.025 further found that Non-STC Task had 
significantly higher Sm (t =2.4, p=.021) than Control Task. 
It was also found that STC task had significantly higher Sa 
(t =2.352, p=.025) than Control Task. 

These results confirmed our findings in uncertainty-
based tasks that lower user confidence levels were corre-
lated to high GSR values of Sd, besides Sm and Sa.  

6.2.3 Combinational Tasks 

An ANOVA test did not find any significant differences 
among combinational tasks for all GSR features. Howev-
er, the pairwise t-tests with a Bonferroni correction (sig-
nificance level set at p<.05/2=.025 by considering that we 
have two conditions of uncertainty and correlation to be 
investigated in tasks) showed that Non-STC+Non-OLU 
task had significantly higher Sm  (t =2.328, p=.024) than 
Non-STC+OLU task. It was also found that Non-
STC+Non-OLU task had significantly higher Sa than both 
Non-STC+OLU task (t =2.619, p=.012) and STC+Non-
OLU task (t =2.431, p=.021).  

In a word, all results in this section confirmed that tasks 
with lower user confidence levels were correlated to high 
values of Sd, Sm, and/or Sa, as well as longer task time 
length Tt. All these confirm our hypothesis H7. 

7 USER CONFIDENCE CLASSIFICATION BASED ON 

GSR FEATURES 

This section examines GSR for indexing confidence lev-
els quantitatively. Such indexing can be used in interac-
tive data analytics-driven decision making applications in 
order to let users perceive their confidence levels in deci-
sion making in real-time automatically. Support Vector 
Machine (SVM), Naïve Bayes (NB), Random Forest (RF), 
and C4.5 classifiers were applied for classification of con-
fidence levels in decision making based on GSR features. 
These classifiers are widely used for feature classification 
in machine learning. SVM can be advantageous for cap-
turing complex relations in data without manual inter-
vention. The Naïve Bayes classifier applies Bayes theo-
rem, which considers each feature to have contributed 
independently. While it can be trained very efficiently, it 
nonetheless contains oversimplified assumptions like 
independence of features. Random Forest combines mul-
tiple decision trees during training of data. It predicts the 
class by combining decisions from individual trees. C4.5 
is an algorithm to build decision trees for feature classifi-
cations. The leave-one-out method was used in the cross 
validation. The four classifiers are compared in order to 
identify the best classifiers in indexing confidence levels. 

7.1 Uncertainty-Based Tasks 

In uncertainty-based tasks, all seven identified features 
including four identified significant features (Sd, Sa, Sm , 
Tt) were used to examine two-class as well as three-class 
classifications of confidence levels. According to statistical 
results of subjective ratings as shown in Fig. 7, Non-
OLUT Task and Control Task were considered as high 
confidence level tasks while OLUT Task was used as low 
confidence level task in two-class classifications. In three-
class classifications, Non-OLUT Task was considered as 
high confidence level task, Control Task was considered 
as middle confidence level task, and OLUT Task was con-
sidered as low confidence level task.  

The classification accuracies are shown in Table 1. The 
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results show that both Random Forest and C4.5 with Sd 
(Accuracy: 72.2%) outperform any other classifiers for 
two-class classification. Both Random Forest with Sd (Ac-
curacy: 59.3%) and Naïve Bayes with Tt (Accuracy: 59.3%) 

outperform any other combinations for three-class classi-
fication. The results suggest that GSR especially features 
of Sd and Tt can be used to indicate user confidence levels 
in decision making effectively. 

 
TABLE 1 

User confidence classification accuracies with GSR features in uncertainty-based tasks 

(All: all GSR features, Sig.: all significant features). 

 2-Class 3-Class 

𝑆𝑑 𝑆𝑎 𝑆𝑚 𝑇𝑡 Sig. All 𝑆𝑑 𝑆𝑎 𝑆𝑚 𝑇𝑡 Sig. All 

SVM 0.574 0.611 0.519 0.537 0.500 0.630 0.426 0.370 0.407 0.389 0.407 0.407 

RF 0.722 0.556 0.519 0.648 0.667 0.611 0.593 0.389 0.333 0.519 0.574 0.463 

NB 0.704 0.685 0.593 0.593 0.667 0.611 0.519 0.352 0.296 0.593 0.482 0.407 

C4.5 0.722 0.204 0.426 0.593 0.704 0.593 0.482 0.204 0.482 0.574 0.574 0.444 

 

7.2 Correlation-Based Tasks 

Similar to the previous subsection, all seven identified 
features including two identified significant features (Sd, 
Sa) were used to examine two-class as well as three-class 
classifications of confidence levels in correlation-based 
tasks. In two-class classifications, STCT Task and Control 
Task were considered as high confidence level tasks while 
Non-STCT Task as low confidence level task in two-class 
classifications based on subjective ratings. In three-class 
classifications, STCT Task was considered as high confi-
dence level task, Control Task was considered as middle 
confidence level task, and Non-STCT Task was consid-

ered as low confidence level task based on subjective rat-
ings as discussed before. 

The classification accuracies are shown in Table 2. The 
results show that C4.5 with both Sd  and all significant 
GSR features (Accuracy: 72.2%) outperforms other classi-
fiers in two-class classifications. In three-class classifica-
tions, C4.5 with all significant GSR features (Accuracy: 
48.3%) outperforms other classifiers. The results confirm 
that GSR features especially Sd can be used to index user 
confidence levels in decision making effectively as found 
in the uncertainty-based tasks. 

 
   TABLE 2 

User confidence classification accuracies with GSR features in correlation-based tasks 

(All: all GSR features, Sig.: all significant features). 

 2-Class  3-Class 

𝑆𝑑 𝑆𝑎 Sig. All  𝑆𝑑 𝑆𝑎 Sig. All 

SVM 0.552 0.379 0.589 0.466  0.362 0.400 0.414 0.448 

RF 0.621 0.621 0.552 0.569  0.310 0.448 0.345 0.448 

NB 0.638 0.621 0.638 0.552  0.448 0.400 0.431 0.345 

C4.5 0.707 0.448 0.707 0.672  0.417 0.345 0.483 0.414 

 

7.3 Combinational Tasks 

All seven identified features as well as significant ex-
treme features identified in uncertainty and correlation 
based tasks were also used to examine two-class as well 
as three-class classifications of confidence levels in com-
binational tasks. In two-class classifications, STC+Non-
OLU Task and Non-STC+OLU Task were considered as 
high confidence level tasks, while STC+OLU Task and 

Non-STC+Non-OLU Task as low confidence level task 
based on subjective ratings. In three-class classifications, 
STC+Non-OLU Task was considered as high confidence 
level task, Non-STC+OLU Task was considered as middle 
confidence level task, and STC+OLU Task and Non-
STC+Non-OLU Task were considered as low confidence 
level task based on subjective ratings. 

 
TABLE 3 

User confidence classification accuracies with GSR features in combinational tasks 

(All: all GSR features, Ext.: extreme features of 𝑆𝑑, 𝑆𝑎, 𝑆𝑚). 

 2-Class  3-Class 

𝑆𝑑 𝑆𝑎 𝑆𝑚 Ext. All 𝑆𝑑 𝑆𝑎 𝑆𝑚 Ext. All 

SVM 0.640 0.302 0.545 0.488 0.500 0.581 0.419 0.523 0.523 0.477 

RF 0.570 0.570 0.570 0.535 0.454 0.465 0.419 0.442 0.407 0.395 

NB 0.605 0.628 0.545 0.593 0.593 0.547 0.488 0.535 0.547 0.454 

C4.5 0.570 0.628 0.535 0.500 0.465 0.535 0.326 0.535 0.535 0.349 
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The classification accuracies are shown in Table 3. The 
results show that SVM with the GSR feature Sd outper-
forms other classifiers in both two-class (Accuracy: 64.0%) 
and three-class (Accuracy: 58.1%) classifications. The re-
sults also confirm that GSR features especially Sd can be 
used in indexing user confidence effectively. 

By comparison of user confidence classification per-
formance in three task categories, we can see that GSR 
shows the best performance in uncertainty-based tasks in 
indexing user confidence. This is maybe because that un-
certainty affected user confidence in decision making 
more than correlation or their combinations. 

8 DISCUSSIONS 

   This section first looks at the possible interpretation of 
overlapping and non-overlapping uncertainty presenta-
tions and then analyze the behavior and responses of re-
lated subject groups accordingly. The possible interpreta-
tion of correlation on user confidence is also discussed. 
This is followed by a discussion regarding some experi-
mental limitations regarding user confidence theoretical 
framework. Finally, we look implications of this research 
for End-User Development. 

8.1  Overlapping & Non-overlapping Uncertainty 
Presentations 

We are already familiar with a useful distinction that 
uncertainty with known probabilities is known as risk 
while uncertainty with unknown probability is referred to 
as ambiguity. Referring to Fig. 4 (c), we see that uncer-
tainty can be clearly got for each model (at all points) 
since it is non-overlapping. This results in the model se-
lection very easy. Simply pick a model that detects more 
failures for least pipe length checked. After model selec-
tion, budget estimate is simply a matter of point reading 
wherever steepest curve tops (the optimum point). Uncer-
tainty in user budget estimate can be matched to model 
uncertainty depicted by thickness of the line at that point. 
This type of uncertainty presentation is very close to risk. 
From a cognitive perspective, making use of this visual 
presentation should involve more of Type 1 processes 
that are less demanding of cognitive capacity, holistic, 
automatic and relatively fast [22].   

On the other hand, overlapping uncertainty presenta-
tion depicts thick overlapping model lines (Fig. 4(b)). It is 
no longer clear which model would be the better choice. 
Much of the decision now depends on the preferences of 
the user. In case of complete overlap, the model with 
greater potential gains also is associated with greater po-
tential losses, whereas the model in the middle is more 
modest in both regards. Trying to make use of this visual, 
the decision maker comes across ambiguous patches 
where probability is not exactly known for given particu-
lar points. Budget estimation is no longer a point reading 
task. Thus the user must make some mental valuations of 
the ambiguous visual and then decide accordingly. Again 
from a cognitive perspective, making use of this visual 
presentation would involve more of Type 2 processes that 
are more demanding of cognitive capacity, analytic, con-
trolled and relatively slow [22].   

8.2 Accepting Uncertainty and its Impact 

In response to a separate questionnaire in the experi-
ment, all subjects had unanimously agreed to the useful-
ness of presenting uncertainty as supplementary material. 
They also agreed to the helpful role of uncertainty when-
ever it was presented. However, when uncertainty was 
actually presented, the user confidence generally de-
creased and the decision making time significantly in-
creased for cases of overlapping uncertainty. Only for 
non-overlapping uncertainty presentation did time re-
duce for some subjects as compared to the case of no un-
certainty presentation. To understand this peculiar trend 
we split up the data to investigate tendencies in each sub-
ject group. Group-wise data are presented in Fig. 9 to Fig. 
12. 

 

Fig. 9.  Average subjective ratings of participants’ confidence in deci-
sion making by subject groups. 

 

Fig. 10.  Average subjective ratings of difficulty levels of decision 
making tasks by subject groups. 

8.2.1 General Staff 

Clearly the general staff seemed to be most confident 
when no uncertainty was presented, then became slightly 
less confident with non-overlapping uncertainty and fi-
nally least confident with overlapping uncertainty scenar-
io (see Fig. 9). This is validated by task difficulty ratings 
that show general staff found the overlapping uncertainty 
task to be most difficult (see Fig. 10). It also shows up in 
user decision making time where general staff seem to 
take the longest time for overlapping uncertainty tasks 
(see Fig. 11). Finally this results in large varied budget 
estimations (see Fig. 12), which can be evidence of general 
staff not being sure or confident. A possible explanation 
for this trend could be that although general staff may 
think uncertainty can be useful in predictive decision 
making, yet they were not well versed in its usage when 
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uncertainty was actually presented.   

8.2.2 Machine Learning Experts/Researchers 

Machine Learning experts are the only subject group 
that seem most confident with non-overlapping uncer-
tainty (see Fig. 9). This is actually the right attitude as 
non-overlapping uncertainty scenario clearly communi-
cates the inherent uncertainty – making the choice of 
model very easy and budget estimation just a matter of 
point reading. This is also matched by the lowest decision 
making time for non-overlapping uncertainty scenarios 
(see Fig. 11). Clearly the machine learning experts had the 
best professional understanding of probability and recog-
nized the relevant non-overlapping uncertainty tasks to 
be the easiest, as evidenced by completion in least time 
(see Fig. 11) and with most confidence. These observa-
tions are as expected. From a cognitive perspective, for 
ML experts this is a case of known probabilities and they 
feel confident taking up the risk.  

 

Fig. 11.  Average task time in decision making by subject groups. 

 

Fig. 12.  Average budget estimation of tasks by subject groups. 

8.2.3 Non-Machine Learning Experts/Researchers 

Non-ML experts seem to fall somewhere between the 
two subject groups of general staff and machine learning 
experts. Most non-ML experts find overlapping uncer-
tainty task to be more difficult (see Fig. 10) and report 
least confidence (see Fig. 9) when making corresponding 
decisions in it. Also that overlapping uncertainty task is 
the case which takes them the longest time to complete 
(see Fig. 11). These observations can be interpreted to be 
in line with overlapping uncertainty presentation being 
viewed as ambiguous uncertainty. However, not all of 
these non-ML experts seem very profound in their per-
ception of probabilistic uncertainty via these visual types. 

Some of them reported most confident when no uncer-
tainty was presented (see Fig. 9) and coupled with fo-
cused budget estimates (see Fig. 12) – this can possibly be 
interpreted as a tendency to over rely on learning models.  

Overall, we can say that only the ML experts probably 
understood and benefitted from the presentation of un-
certainty in these overlapping and non-overlapping type 
visuals. General staff and non-machine learning experts 
may have agreed to uncertainty presentation being use-
ful, but were not able to fully benefit from what was be-
ing communicated.  

8.3 Correlation and Confidence 

This study found that revealing of correlations between 
features and target values did help users more confident 
in decision making. It was also found that the pattern 
between correlation and model performance affected user 
confidence in decision making. For example, when corre-
lation and model performance shared the same trend, 
users tended to be more confident in their decisions. This 
was maybe because of the “grounding communication” 
referred to by psychologists [32]. Because of grounding, 
confidence in decision making was resolved through a 
drive towards a mutual understanding or common 
ground (correlation has the same trend with the perfor-
mance).  

 

Fig. 13.  Average subjective ratings of task difficulty. 

 

 

Fig. 14.  Choice of models in decision making. 

In a separate questionnaire, all subjects were asked to 
rate the difficulty of tasks. As shown in Fig. 13,  revealing 
correlation data made users confused and felt that deci-
sion making was significantly more difficult (Z=155.5, 
p<.001) when correlation did not share the same trend 
with model performance, which decreased the user con-
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fidence. However, when correlation shared the same 
trend with model performance, users did not feel the in-
creasing of difficulty with the introduction of correlation. 
Because of the increase in information by revealing corre-
lations, user confidence increased significantly. 

By reviewing models participants chose for decisions, 
most of participants chose high performance models (see 
Fig. 14). From Fig. 14, it was shown that the revealing of 
correlation affected the choice of models and decreased 
the number of participants who chose high performance 
models. The result suggests that the revealing of correla-
tion information affected both user’s decision and confi-
dence.  

A group-wise analysis similar to uncertainty-based 
tasks as presented previously was also conducted and 
found similar conclusions. For example, ML experts 
seemed most confident with same trend correlation tasks, 
while general staff were still most confident in tasks 
without correlation information. 

8.4 Some Limitations 

As mentioned earlier, we rely conceptually on “user 
confidence” ideas, as posited by [33], mainly because the 
study addressed user confidence and user uncertainty in 
the context of increasing information that was critically 
relevant to our investigations. However, there are several 
developments (in theoretical constructs of “user confi-
dence”) like role of individual differences in accuracy of 
confidence judgements [34], self-consistency model of 
subjective confidence [35] and collapsing confidence 
boundary model [36] that must be acknowledged. Here 
we justify briefly the relevance of our experimental de-
sign in the face of some of these developments.   

Generally speaking, quantitative studies of decision 
making have traditionally been based on three key behav-
ioral measures, namely, accuracy, response time (RT) and 
confidence. Here, confidence is the user’s degree of belief, 
prior to feedback, that the decision reached is correct.   

In a typical decision making scenario, once the problem 
scenario along with supplementary material is presented, 
several other factors can come into play as well. One such 
group of factors is individual differences that were inves-
tigated by [34]. Differences in experience, motivation, 
attitudinal predispositions etc. can have an impact on 
decision making process. However, such differences were 
minimized, in our case, as we categorized the subjects 
into professionally skilled groups relevant to predictive 
task at hand. Next, is the evidence gathering phase, which 
continues until the user feels comfortable enough to 
commit to a decision. It is here that studies have shown 
that the choice certainty (or confidence) is not just influ-
enced by evidence presented (or being gathered) but also 
by (decision) response time. Greater the time it takes to 
reach a decision, lower the confidence in that decision 
[37]. We avoided unlimited RT complications by having 
several similar decision making scenarios administered 
repeatedly with a soft encouragement for quick predictive 
decisions once the basic predictive scenario was under-
stood (in practice sessions). Only items that changed in 
actual testing procedure were supplementary viewgraph 
types and corresponding data values. 

GSR features derived for the indexing of user confi-
dence are based on 26 participants with four classical 
classifiers. Despite the reasonable classification accuracies 
of user confidence, more advanced GSR features and clas-
sification models with more participants could be devel-
oped to improve the user confidence classification per-
formance. 

8.5  End User Design for Interactive Data Analytics 

We believe that EUD is the necessary outcome of the 
IoT condition, because with the advent of IoT, common 
users will be faced with a situation where everything is 
digitally connected, giving rise to potential application 
situations that traditional developers may have never 
even thought of. Therefore it makes sense to pass on part 
of the “development” (or personalization/ customization) 
task to the common user. However, general guidelines for 
such EUD frameworks are still needed to provide the 
space in which common user can mold interface func-
tionalities to meet their needs. And it is these general 
guidelines that we have tried to investigate in the context 
of interactive data analytics interfaces.  

A key functionality of data analytics interface is to sup-
port user decision making activity. These interfaces pro-
vide this support by presenting on screen ML models 
learned from historical or streaming data.  As we have 
mentioned in discussion earlier, the key to effective pre-
dictive decisions is the user confidence. We explored ef-
fects of revealing correlation and uncertainty on user con-
fidence in the data-driven decision making scenario and 
found that user confidence varied significantly amongst 
various user groups when different ML models were dis-
played with/without supplementary information.  

This study demonstrated that physiological signals 
such as GSR features showed significant differences in 
user confidence levels among tasks. For example, an in-
teresting finding was that less user confidence in deci-
sions was correlated to higher values of GSR features of 
sum of duration Sd. This was maybe because that GSR 
signals reflect changes in the skin’s ability to conduct elec-
tricity and are used to indicate the extent of nerve re-
sponses. Less confidence in decisions made users more 
stressful and users’ skin was covered with more sweat, 
and resulted in the increase of GSR values. GSR features 
can be used to index confidence levels effectively in deci-
sion making.  

Some suggestion for EUD for interactive data analytics 
is that the interface can greatly benefit by including: 

− Components which show uncertainty and correlation 

information. This could help users be more confident 

in their decisions; 

− Information on user confidence levels which allows 

users make informed decisions. 

These components may also be incorporated into the 
framework of adaptive measureable decision making 
proposed in [38], therefore introduce confidence levels 
into data analytics-driven adaptive decision making pro-
cess. Such user confidence communication in data analyt-
ics-driven decision making is more meaningful to both 
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domain users and ML experts and therefore benefits the 
machine learning transparency. As shown in Fig. 1, the 
transparent machine learning in turn benefits and plays 
the key role in the effective EUD for interactive analytics. 

9 CONCLUSIONS AND FUTURE WORK 

Decision making in urban IoT systems is often driven 
by machine learning techniques. Human intuitions play 
significant roles on the success of urban IoT systems. This 
paper investigated effects of uncertainty and correlation 
on user confidence in decision making in order to design 
intuitive user interface for urban IoT systems. A user 
study found that both uncertainty pattern of model per-
formance, as well as the pattern between correlation and 
model performance affected user confidence significantly 
in decision making. Furthermore, the analyses of GSR 
signals showed that confidence levels in decision making 
can be effectively indexed with GSR features. These find-
ings have at least two benefits in real-world applications: 
1) to design intelligent user interface of decision-related 
IoT applications. The user interface, which shows user 
confidence in decision making in real-time, would en-
hance EUD and help users make informed decisions ef-
fectively; 2) to evaluate ML models by measuring user 
confidence in decision making based on ML output. Sup-
plementary data visualizations contributed to explicabil-
ity principles while GSR signal indexing added towards 
correctibility principles. We recommend transparent ML 
as key to effective EUD for interactive data analytics.  

Our future work will focus on analyzing other physio-
logical signals (e.g. blood volume pulse), and behavioral 
signals (e.g. mouse behavior) of participants for improv-
ing confidence classifications during ML-based decision 
making. Our ultimate goal is to set up a framework of 
measurable user confidence in predictive decision making 
in order to dynamically update EUD confidence parame-
ters in urban IoT systems. 
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