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Abstract—Conventional low-level feature based saliency 

detection methods tend to use non-robust prior knowledge and do 

not perform well in complex or low-contrast images. In this paper, 

to address the issues above in existing methods, we propose a 

novel deep neural network (DNN) based dense and sparse labeling 

(DSL) framework for saliency detection. DSL consists of three 

major steps, namely dense labeling (DL), sparse labeling (SL) and 

deep convolutional (DC) network. The DL and SL steps conduct 

initial saliency estimations with macro object contours and 

low-level image features, respectively, which effectively 

approximate the location of the salient object and generate 

accurate guidance channels for the DC step; the DC step, on the 

other hand, takes in the results of DL and SL, establishes a 

6-channeled input data structure (including local superpixel 

information), and conducts accurate final saliency classification. 

Our DSL framework exploits the saliency estimation guidance 

from both macro object contours and local low-level features, as 

well as utilizing the DNN for high-level saliency feature extraction.  

Extensive experiments are conducted on six well-recognized 

public datasets against sixteen state-of-the-art saliency detection 

methods, including ten conventional feature based methods and 

six learning based methods. The results demonstrate the superior 

performance of DSL on various challenging cases in terms of both 

accuracy and robustness.  

 
Index Terms—Saliency detection, deep neural network, dense 

labeling, sparse labeling, macro object contour, low-level feature 

 

I. INTRODUCTION 

ALIENCY detection, which originates from the contrast 

detection of human visual system [3], has experienced 

drastic developments in the researches of computer vision in 

recent years. Its ultimate goal is to mimic the intrinsic functions 

of human visual system, by which the understanding of the 

surrounding environment can be conducted accurately and 

effortlessly. Since emergence, saliency detection is functioning 

as an important preprocessing step in computer vision, which is 

widely applied in various image analysis tasks such as image 

segmentation [4], object detection [5], [6], object tracking [7], 

picture collaging [8], [9], and color filtering [10], [11], etc. 

Early researches of saliency detection mostly focus on 

human eye fixation [3], [12], [13], which approximates the 

visual attention of semantic objects in a given image, such as 

human faces, texts, or daily objects [12], [14]. The detection 

results of eye fixations, however, are often presented as sparse 

dots without details about the objects. On the other hand, the 

recently emerged salient object detection is capable of locating 

and segmenting the whole salient object with complete 

boundary details [15], and hence has received broad research 

interests.  

Salient object detection (or simply saliency detection) aims 

to locate the most informative and attention-catching object in 

an image [16]. To achieve such objective, an intuitive way is to 

take advantage of the low-level features within the input image 

itself, which is the core idea of most conventional saliency 

detection methods. These features include but are not limited to: 

color [3], [13], histogram [17], [18], spatial distribution [19], 

[20], color filter response [10], [11], spectrum [21], [22], data 

architecture [1], [23], and background prior [24], [25], etc. 

These low-level feature based saliency detection methods are 

usually efficient to conduct, since no training process is 

involved. They have shown promising results both in 

bottom-up approaches [21], [26-30] and in top-down 

approaches [18], [31], [32]. Nevertheless, at least three major 

drawbacks hinder their performances: (1) Without feature 

abstraction and learning, their hand-crafted low-level features 

are only effective on relatively high contrast images and do not 

perform well on images with complex foreground / background 

contexts. This drawback, however, can be readily solved via 

high-level feature learning, which is seen in Fig. 1a. (2) Most of 

the prior knowledge applied in low-level feature based methods 
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Fig. 1.  A glimpse of our proposed DSL method. From left to right: input 

images; saliency maps by a low-level feature based method [1]; saliency maps 

by a learning based method [2]; saliency maps by DSL; ground truth. 
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is largely empirical with specific pre-assumptions, e.g. image 

boundary regions are assumed as background [1], [25], or 

image center regions are assumed as foreground [19], [33]. 

These pre-assumptions are easily violated on broader datasets 

with more unusual-patterned images, such as the example in 

Fig. 1b. (3) Each low-level feature is usually advantageous only 

on a specific aspect, e.g. color histogram is good at 

differentiating texture patterns, while frequency spectrum is 

good at differentiating energy patterns. It is generally difficult 

to combine different low-level features into a single algorithm 

to benefit from them all. Although some integration trials have 

been made [18], [34], these specially designed algorithms are 

bulky and inefficient due to the large number of features 

involved.  

On the other hand, the deep neural network (DNN) [35], 

which has experienced drastic developments in recent years, 

has shown its powerfulness in extracting high-level features 

[36], [37], enabling us an excellent machine learning tool to 

address the aforementioned issues in conventional saliency 

detection methods. The successes of DNNs stem from their 

capacity of establishing deep architectures that greatly facilitate 

the abstraction and learning of complex features among the 

training data, especially large-scale datasets. There have been 

initial studies about the application of DNN on the task of 

saliency detection, such as [2], [38]; these methods, however, 

are merely using DNNs as binary (i.e. foreground and 

background) classifiers, with either the original RGB data or 

hand-crafted features as inputs. This leaves these methods with 

two drawbacks: (1) Using RGB or low-level feature alone in 

the saliency classification is non-optimal, as they both have 

their own advantage and are complementary in representing the 

images; (2) Using DNNs only as binary classifiers apparently 

ignores their powerful capacity in dense labeling [37], [39], 

[40], which is able to directly output a saliency map instead of a 

single label with the same input data.  

 In this paper, to utilize the advantages of DNN in complex 

saliency feature extraction, as well as to address the 

aforementioned two issues of existing DNN-based methods, we 

propose a novel DNN-based saliency detection method that 

conducts both dense and sparse labeling (DSL) with 

multi-dimensional features. Our method consists of a 

multi-network framework, which includes three major steps. In 

the first step, we establish a dense labeling (DL) network, 

which takes whole images as inputs and directly outputs initial 

saliency estimations based on macro object contours. In the 

second step, a sparse labeling (SL) network is established, 

which outputs another initial saliency estimation based on 

superpixel-wise low-level image features. The results of DL 

and SL, together with the original RGB image and a superpixel 

indication channel, are then integrated as a 6-channeled input 

structure to the final deep convolutional (DC) network, which 

is another sparse labeling network that conducts accurate 

superpixel-wise classification of the final saliency map. Fig. 2 

exhibits the flowchart of our proposed DSL method, in which 

the first two DNNs (DL and SL) are independently trained by 

the same dataset, while the last DC network takes in the results 

of DL and SL, and is trained by another dataset due to their 

serial topology.  

Our proposed DSL has the following three key contributions: 

(1) The DNN-based dense and sparse labeling are combined 

for initial saliency estimation in our method, in which DL 

conducts dense labeling that maximally preserves the global 

image information and provides accurate location estimation of 

the salient object, while SL conducts sparse labeling that 

focuses more on local features of the salient object. 

(2) For the two steps that conduct sparse labeling, i.e. SL and 

DC, both low-level features and RGB features of the image are 

applied as the network inputs. Such multi-dimensional input 

features enable the complementary advantage of low-level 

features and RGB features, by which the image is more 

accurately abstracted and represented. 

(3) In the last DC step, the 6-channeled input structure 

provides significantly better guidance in generating the final 

saliency map. On the one hand, the combined initial saliency 

 
Fig. 2.  Flowchart of our DSL method. The three major steps DL, SL and DC are highlighted in yellow. An input image is first processed by DL and SL, 

respectively; the resulting initial saliency estimations are then concatenated with the image RGB channels and the superpixel indication channel to form the 

6-channel input of DC, which is used to generate the final saliency map. 
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estimations from the DL and SL steps provide accurate location 

guidance of the salient object, effectively excluding any false 

salient region, as shown in Fig. 1c; on the other hand, the 

superpixel indication channel precisely represents the current 

to-be-classified superpixel, which leads to more consistent and 

accurate saliency labeling (Fig. 1d). 

Experiments are conducted against sixteen state-of-the-art 

saliency detection methods, including ten conventional 

methods and six learning based methods. The results exhibit 

dominant advantages of our DSL method in terms of both 

accuracy and robustness.  

The remainder of this paper is organized as follows. Section 

II briefly reviews related works. Section III describes the 

details of our proposed DSL method. Section IV presents the 

experiment results as well as discussion. Finally, Section 0 

concludes this paper. 

II. RELATED WORKS 

In this section, we briefly review three categories of related 

works, namely saliency detection, DNN-based sparse labeling, 

and DNN-based dense labeling. 

A. Saliency Detection 

From the perspective of computer vision, the methods of 

saliency detection are broadly categorized into two groups, 

namely bottom-up methods and top-down methods.  

The bottom-up methods are largely designed for 

non-task-specific saliency detections [41], in which low-level 

features are mainly involved as fundamentals for the detections. 

These features are usually data-driven and hand-crafted. As a 

pioneer, Itti et al. [3] present a center-surround model that 

integrates color, intensity and orientation at different scales for 

saliency detection. In the work of Cheng et al. [17], pixel-wise 

color histogram and region-based contrast are utilized in 

establishing the histogram-based and region-based saliency 

maps. Achanta et al. [21], propose a frequency-tuned method 

based on color and luminance, in which the saliency value is 

computed by the color difference with respect to the mean pixel 

value. Jiang et al. [19] establish a 2-ring graph model that 

calculates saliency values of different image regions by their 

Markov absorption probabilities. To overcome the negative 

influence of small-scale high-contrast image patterns, Yan et al. 

[30] propose a multi-layer approach that optimizes saliency 

detection by a hierarchical tree model. Yang et al. [1] exploit 

the graph-based manifold ranking in extracting foreground 

queries for the final saliency map, in which the four image 

boundaries are used as background prior knowledge. In the 

work of Li et al. [42], the image boundaries are refined before 

being used as background prior knowledge, and a random-walk 

based ranking model is applied for saliency optimization. And 

in the work of Qin et al. [23], the saliency of different image 

cells is computed by synchronous update of their dynamic 

states via the cellular automata model. These bottom-up 

methods are generally hindered by the aforementioned three 

limitations of the low-level features. 

On the other hand, the top-down saliency detection methods 

are usually task-driven. These methods break down the saliency 

detection task into more fundamental components, and 

task-specific high-level features are frequently involved as 

prior knowledge. Supervised learning approaches are 

commonly used in detecting image saliency. In the work of 

Yang et al. [32], joint learning of conditional random field 

(CRF) is conducted in discriminating visual saliency. Lu et al. 

[43] apply a graph-based diffusion process to learn the optimal 

seeds of an image to discriminate object and background. Mai 

et al. [44] train a CRF model to aggregate saliency maps from 

various models, which benefits not only from the individual 

saliency maps, but also from the interactions among different 

pixels. And in the work of Tong et al. [45], samples from a 

weak saliency map are exploited as the training set for a series 

of supply vector machines (SVMs), which are subsequently 

applied to generate a strong saliency map. Although learning 

processes are conducted among the top-down saliency 

detection methods, their high-level features are still mostly 

extracted via linear approaches, which are insufficient in 

dealing with the highly-random natural images. On the contrary, 

in our DSL method, multiple DNN architectures are adopted to 

extract high-level nonlinear data features, which are 

experimentally validated to have state-of-the-art performances 

in various challenging image cases. 

B. DNN-Based Sparse Labeling 

Deep neural network is a branch of machine learning that has 

experienced drastic developments in the last decade. First 

proposed by LeCun et al. in 1989 [35], the DNNs, and 

especially the convolutional neural networks (CNNs), are 

designed to model high-level nonlinear data features by 

multiple complex processing layers [46]. DNN is remarkably 

successful in image classification [5], [47], [48], object 

detection [37], [39], semantic segmentation [40], [49], [50], 

face recognition [51], [52], pose estimation [53], and pedestrian 

behavior estimation [54], [55], etc.  

Sparse labeling is the fundamental application of DNN in 

classification tasks. The idea is to generate a single class label 

for each input sample [56], such as an image. Many 

state-of-the-art network models are designed under this scheme, 

including AlexNet [47], OverFeat [48], Clarifai [57], VGG [58], 

and GoogLeNet [5], etc. Recently, initial studies have emerged 

towards the application of DNN in saliency sparse labeling. For 

instance, Wang et al. [38] train two separate DNNs with image 

patches and object proposals for local and global saliency; Zhao 

et al. [2] establish a multi-context DNN model for 

superpixel-wise saliency classification; and Li et al. [59] 

propose a multi-scale DNN model for feature extraction, the 

outputs of which are then aggregated for the final saliency map.  

In our proposed DSL method, the SL and DC steps are based 

on DNN sparse labeling, which generate a single saliency label 

for each superpixel sample from the input image. 

C. DNN-Based Dense Labeling 

On the other hand, the dense labeling is a newly arising 

application of DNN that has drawn much attention. Unlike 

sparse labeling, dense labeling aims to predict a complete label 

mask (instead of a single label) based on the input sample, with 
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either identical or reduced size. Since much more per-sample 

label information can be generated than sparse labeling, 

DNN-based dense labeling has greatly facilitated many 

previously challenging tasks such as object detection and 

semantic segmentation, in terms of both accuracy and 

efficiency. In [39], Szegedy et al. propose the idea of 

DNN-based object detection via DNN regression and 

multi-scale refinements. Girshick et al. [37] combine CNNs 

with bottom-up region proposals to localize and segment 

objects. Long et al. [40] propose the idea of fully convolutional 

network (FCN), which achieves dramatic improvements in 

semantic segmentation. And in the work of Chen et al. [50], 

responses from CNNs are combined with fully connected CRF, 

which overcomes the poor localization property of CNN itself. 

In our proposed DSL method, the DL step conducts 

DNN-based dense labeling that directly outputs an initial 

saliency estimation of the input image. 

III. PROPOSED ALGORITHM 

As introduced in Section I, our DSL method has three major 

steps, namely DL, SL and DC, as shown in Fig.2. Considering 

the topological structure of the three steps, two independent 

training datasets 
1T  and 

2T  are used, in which 
1T  is used for 

DL and SL, and 
2T  is used for DC. 

A. Dense Labeling of Initial Saliency Estimation 

Dense labeling is a category of classification in which each 

pixel in the input image is assigned a label indicating the type of 

object it most likely belongs to. Saliency detection can be 

treated as a binary dense labeling case, since the salient 

(foreground) and background regions can be seen as two 

separate objects.  

We establish our dense labeling baseline model by referring 

to [40], which has achieved state-of-the-art performance in 

dense labeling tasks such as semantic segmentation. Our DL 

network architecture is shown in TABLE I. The main 

differences between DL and a normal CNN are that DL takes 

enlarged input images (up to 384*384), and the last few 

originally fully-connected (fc) layers are converted to 1*1 
convolutional layers. As a result, the heatmaps (instead of 

scalar labels) of foreground and background can be directly 

generated at layer conv8, both with size 12*12. We then apply 

the bilinear interpolation to upsample the heatmaps from 12*12 
( 8convM ) to 224*224 ( 32deconvM ), which is the input size of the 

following DC step. For each to-be-interpolated pixel on 

32deconvM , its upsampled value is calculated by bilinear 

interpolation of its closest four values on 8convM , as indicated in 

Fig. 3: 
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where [0,1]l  stands for the salient (foreground) layer and 

background layer. Note that all coordinates are normalized to 

 
Fig. 3.  Bilinear interpolation from the conv8 layer to the deconv32 layer. 

 

 
Fig. 4.  Example outputs of the DL step. First row: images; second row: 

outputs of the DL network; third row: ground truth.  

 

TABLE I 
ARCHITECTURE OF OUR DL NETWORK 

Layer Type Output Size 
Conv (size, 

channel, pad) 
Max Pooling 

input in 384*384*3 N/A N/A 

conv1_1 c+r 384*384*64 3*3,64,1 N/A 

conv1_2 c+r+p 192*192*64 3*3,64,1 2*2 

conv2_1 c+r 192*192*128 3*3,128,1 N/A 

conv2_2 c+r+p 96*96*128 3*3,128,1 2*2 

conv3_1 c+r 96*96*256 3*3,256,1 N/A 

conv3_2 c+r 96*96*256 3*3,256,1 N/A 

conv3_3 c+r+p 48*48*256 3*3,256,1 2*2 

conv4_1 c+r 48*48*512 3*3,512,1 N/A 

conv4_2 c+r 48*48*512 3*3,512,1 N/A 

conv4_3 c+r+p 24*24*512 3*3,512,1 2*2 

conv5_1 c+r 24*24*512 3*3,512,1 N/A 

conv5_2 c+r 24*24*512 3*3,512,1 N/A 

conv5_3 c+r+p 12*12*512 3*3,512,1 2*2 

conv6 c+r+d 12*12*4096 7*7,4096,3 N/A 

conv7 c+r+d 12*12*4096 1*1,4096,0 N/A 

conv8 c 12*12*2 1*1,2,0 N/A 

deconv32 us 384*384*2 N/A N/A 

loss sm+log 1*1 N/A N/A 

Annotations - in: input layer; c: convolutional layer; r: ReLU layer; p: pooling 
layer; d: dropout layer; us: upsampling layer; sm: softmax layer; log: log loss 

layer. 
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[0,1] to facilitate calculation. After that, similar to the softmax 

regression in normal CNNs, we take each two pixels on 

32deconvM  with the same x  and y  coordinates (but at different 

layers) as a pair, and apply the softmax function on them: 
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The L2 loss is then computed between the pixel-wise ground 

truth G  and 
smM :  
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   (3) 

where “==” means the logical “equal to”. Eq. (3) is later used in 

the back-propagation for training.  

As mentioned at the beginning of Section III, the DL 

network is trained by the training set 1T . After desired 

validation results are obtained, it is used to test the training set 

2T , the results of which are then used as part of the 6-channeled 

inputs in training the DC step, as Fig. 2 shows. Fig. 4 illustrates 

example outputs of DL. It is observed that DL is capable of 

producing accurate contours of the salient object, which 

contains much more boundary information than the bounding 

box approximation in [39]. In addition, it also has shown high 

robustness in various challenging scenarios, such as low 

contrast images (Fig. 4c) and complex images (Fig. 4d).  

B. Sparse Labeling of Initial Saliency Estimation 

Similar to the DL step which produces initial saliency 

estimation with macro object contours, the SL step produces 

initial saliency estimation with low-level image features. 

The idea of the SL step is to conduct superpixel-wise sparse 

labeling of the image based on its corresponding low-level 

features. Each image is first segmented into superpixels by the 

SLIC method [60]. We adopt a zoom-out-like feature fusion of 

each superpixel [49], which consists of 708 local features, 204 

neighborhood features, and 4096 global features (5008 features 

in total for each superpixel). 

1) Local Features 

The local features are on the smallest scope in our feature 

extraction, which focus on the current superpixel itself, as the 

red regions in Fig. 5 indicate. Due to the narrow scope, the local 

features tend to have large variance among neighboring 

superpixels. There are 708 local features in total, including 204 

color features, 4 location features, and 500 local CNN features. 

Color: We first extract the bounding box of the current 

superpixel, and then calculate its histograms for each of the 

three channels in both RGB and L*a*b color spaces, with 32 

color bins each. In addition, the mean and variance for each of 

the three channels in the two color spaces are also calculated. 

This yields 32*3*2 + 2*3*2 = 204 color features. 

Location: We compute the min / max x  and y  coordinates 

of the current superpixel’s bounding box, and conduct 

normalization to the size of the image. This yields 4 location 

features in the range of [0, 1]. 

Local CNN: The last part of local feature is a representation 

of the current superpixel by a local convolutional network, 

which is fine-tuned from the LeNet model for hand-written 

digit recognition [61]. TABLE II shows the architecture of the 

local CNN, which has four convolutional layers separated by 

batch normalization [62], max pooling and ReLU layers. It 

takes the bounding box of the current superpixel in the L*a*b 

color space as input (resized to 28*28*3), and outputs a binary 

label that indicates the current superpixel being salient or 

background. We select the output of conv3, which is the 

activation value of the last fully connected layer fc4, as the 

local CNN feature. This yields 500 CNN features. 

2) Neighborhood Features 

The neighborhood features are on the second scope in our 

feature extraction, which focuses on the neighboring regions of 

the current superpixel. The neighboring region is defined as the 

second order neighboring superpixels of the current superpixel, 

as the blue regions in Fig. 5 indicates. They are designed to 

reflect an intermediate level of features of the current 

superpixel, which are more enriched than the local features, but 

 
Fig. 5.  Flowchart of the SL step. The input image after superpixel segmentation is processed by local, neighborhood and global feature extractions for the 

complete feature vector. The sparse labeling network then takes in the complete feature vector and conducts image-feature-based initial saliency estimation. 
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are less macro-scoped than the global features. Due to its 

definition, the neighborhood features are expected to have 

lower variance among different superpixels than the local 

features. We adopt the same set of color features defined in the 

previous section as the neighborhood features, which yields 

204 features. 

3) Global Features 

The global features consist of representations of the whole 

image, as the yellow region (outer boundary) in Fig. 5 indicates. 

We use a CNN designed for ImageNet classification to generate 

the global features. By considering the overall performance, the 

VGG-16 model [58] is adopted, which is the same model used 

in the DC step  (see Section IV.B for detailed discussion). 

Images are resized to 224*224 before being fed into the 

network, and the 1*1*4096 activation value of the last fully 

connected layer is taken as the global feature. Following [49], 

we directly use the pre-trained network without fine-tuning. 

4) SL Network Training 

By performing the feature extraction steps above, a 1*5008 

feature vector will be generated per superpixel per image. We 

then establish the SL network with three fully connected layers 

(see Section IV.B for detailed discussion), which takes the 

feature vectors as inputs, and output a binary label indicating 

the saliency of the current superpixel. After training for enough 

epochs, the SL network is used to generate the low-level feature 

based initial saliency channel for the next DC step. 

C. Sparse Labeling of Final Saliency Map 

While the DL and SL steps are designed to provide coarse 

initial saliency estimations, the DC step is designed to generate 

the final saliency map with superpixel-wise binary sparse 

labeling, i.e. obtain the saliency of each individual superpixel in 

the image via DNN-based classification, and then integrate 

them together to form the complete final saliency map, as 

shown in Fig. 2. Considering the overall performance, we adopt 

the VGG-16 [58] as the baseline model of our DC network (see 

Section IV.B for detailed discussion). TABLE III shows the 

architecture of the DC network. The input structure of DC, 

being one of our key novelties, is 6-channeled data with fixed 

size as 224*224*6. The first three channels are the RGB data 

from the image; the fourth and fifth channels are the initial 

saliency estimations from the DL and SL steps, respectively 

(both resized to 224*224); and the sixth channel is the 

superpixel indication channel, which precisely marks the 

current to-be-classified superpixel, as the “Superpixel 

indication channel” in Fig. 2 indicates.  

To obtain the superpixel indication channel, we first segment 

the image into superpixels, also by the SLIC method used in 

Section III.B. The to-be-classified superpixel is then selected 

and marked on a 224*224 black background, i.e. assigning the 

pixels within the superpixel as maximum intensity, while all the 

other pixels remain zero. Note that the superpxiel indication 

channel is the only channel to differentiate the inputs of 

different superpixels from the same image. Hence, provided 

that the number of images and number of superpixels per image 

are assigned by imN  and spN , respectively, there will be 

im spN N
 
samples in total.  

Let 
iY  be the activation value of the fc8 layer for the i-th 

superpixel, whose size is changed from the originally 1000 to 2, 

indicating binary classification (salient or background). A 

softmax loss layer is applied afterwards to compute the 

logarithm loss, with spN
 
as the batch size: 

   
1

1
log (1 )log(1 ) ,

spN

T

DC i i i i C j j

i jsp

J G P G P W W
N




        (4) 

where 

 

   

exp (1)

exp (0) exp (1)

i

i

i i

Y
P

Y Y



 (5) 

is the softmax probability of i  being salient; [0,1]iG   is the 

ground truth label of i ; C  is the weight decay parameter; j  

stands for the layers with trainable weights of the DC network; 

and jW  is the weight vector of layer j . 

We then train DC by the 2T  dataset, as mentioned at the start 

of Section III, with spN
 
samples per batch and imN

 
batches in 

total. As for testing, the probability iP  in (5) is adopted as the 

saliency value for the superpixel i, which is assigned to all the 

pixels within i. And the final saliency map is formed when all 

TABLE II 
ARCHITECTURE OF OUR LOCAL CNN 

Layer Type Output Size 
Conv (size, 

channel, pad) 
Max Pooling 

input in 28*28*3 N/A N/A 

conv1 c+b+p 12*12*20 5*5,20,0 2*2 

conv2 c+b+p 4*4*50 5*5,50,0 2*2 

conv3 c+b+r 1*1*500 4*4,500,0 N/A 

fc4 fc+r 1*1*2 1*1,2,0 N/A 

loss sm+log 1*1 N/A N/A 

Annotations - in: input layer; c: convolutional layer; b: batch normalization 

layer; p: pooling layer; r: ReLU layer; fc: fully connected layer; sm: softmax 

layer; log: log loss layer. 

TABLE III 
ARCHITECTURE OF OUR DC NETWORK 

Layer Type Output Size 
Conv (size, 

channel, pad) 
Max Pooling 

input in 224*224*6 N/A N/A 

conv1_1 c+b+r 224*224*64 3*3,64,1 N/A 

conv1_2 c+b+r 112*112*64 3*3,64,1 2*2 

conv2_1 c+b+r 112*112*128 3*3,128,1 N/A 

conv2_2 c+b+r 56*56*128 3*3,128,1 2*2 

conv3_1 c+b+r 56*56*256 3*3,256,1 N/A 

conv3_2 c+b+r 56*56*256 3*3,256,1 N/A 

conv3_3 c+b+r 28*28*256 3*3,256,1 2*2 

conv4_1 c+b+r 28*28*512 3*3,512,1 2*2 

conv4_2 c+b+r 28*28*512 3*3,512,1 N/A 

conv4_3 c+b+r 14*14*512 3*3,512,1 2*2 

conv5_1 c+b+r 14*14*512 3*3,512,1 N/A 

conv5_2 c+b+r 14*14*512 3*3,512,1 N/A 

conv5_3 c+b+r 7*7*512 3*3,512,1 2*2 

fc6 fc+r 1*1*4096 7*7,4096,0 N/A 

fc7 fc+r 1*1*4096 1*1,4096,0 N/A 

fc8 fc+r 1*1*2 1*1,2,0 N/A 

loss sm+log 1*1 N/A N/A 

Annotations - in: input layer; c: convolutional layer; b: batch normalization 
layer; p: pooling layer; r: ReLU layer; fc: fully connected layer; sm: softmax 

layer; log: log loss layer. 
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of the superpixels in the current image have obtained their 

corresponding saliency values, as indicated in Fig. 2. 

The major advantage of DC is attributed to its 6-channeled 

input structure. Unlike existing DNN-based methods like [2], 

[38] that only use RGB or other features from the current image 

itself, DC integrates two coarse guiding channels via dense 

labeling (DL) and sparse labeling (SL). The two guiding 

channels provide reliable prior knowledge with learned 

high-level features from the entire training dataset, and can 

accurately approximate the salient region as well as exclude 

false salient proposals. The 6-channeled input structure also 

contains the superpixel indication channel, which directly and 

precisely marks the current to-be-classified superpixel, unlike 

[2] which only vaguely indicates the superpixel by putting it to 

the image center. The examples in Fig. 6 exhibit the combined 

strength of the DL, SL and DC steps. Note that DL and SL 

contribute complementarily to the DC step (i.e. the final output 

of DSL), especially in cases where one of DL or SL encounters 

difficulty in estimating the initial saliency accurately, as seen in 

Fig. 6c and Fig. 6d. The combination of DL and SL thus 

significantly increases the overall robustness of DSL. 

IV. EXPERIMENTS 

A. Experiment Setup 

1) Datasets 

Since DL and SL are both serially connected to DC (Fig. 2), 

it is necessary to use two independent training sets for DL / SL 

and DC respectively, in order to conduct fair trainings. 

For the training of DL and SL, we use the DUT-OMRON 

dataset [1], which contains 5,168 manually selected high 

quality images and corresponding pixel-wise ground truth. We 

randomly select 80% of the images for training, and the rest 20% 

images for validation.  

For the training of DC, we use the MSRA10K dataset [17], 

which contains 10,000 randomly chosen images from the 

MSRA dataset [13], and their corresponding pixel-wise ground 

truth. To make the comparison with state-of-the-art methods 

fair, we follow [2] and randomly choose 80% of the images for 

training, and the rest 20% images for validation. 

For testing, we adopt six well-recognized public datasets, 

namely ECSSD [30], PASCAL-S [63], SED1 [64], SED2 [64], 

THUR15K [65], and HKU-IS [59]. The ECSSD dataset 

contains 1,000 complex images with diversified contexts. The 

PASCAL-S dataset is a subset of the PASCAL-S VOC 

segmentation challenge [66], which contains 850 images with 

highly challenging backgrounds. The SED1 and SED2 are two 

datasets designed for saliency detection, with 100 images each; 

the images of SED1 contain one salient object, while the 

images of SED2 contain two salient objects. The THUR15K 

dataset contains 15,000 images, among which we only use the 

6,233 images with pixel-wise ground truth. For the HKU-IS 

dataset, we only use the 1,447 images in the test set that have no 

overlap with any of our comparison methods’ training set in our 

following experiments.  

2) Evaluation Metrics 

Following a recent saliency detection benchmark [67], we 

choose the precision-recall (PR) curve, F-measure, and mean 

absolute error (MAE) as our evaluation metrics.  

The precision and recall values are obtained by binarizing the 

saliency map with integer thresholds between 0 and 255. The 

precision value equals to the ratio of retrieved salient pixels to 

all the pixels retrieved, while the recall value equals to the ratio 

of retrieved salient pixels to all salient pixels in the image. The 

PR curve is plotted by the precision and recall values at each 

threshold point.  

The F-measure is a weighted average between precision and 

recall, which is calculated as: 

 
2

2

(1 )
,

precision recall
F

precision recall






 



 (6) 

where 2  is set to 0.3 based on most existing methods. As 

suggested in [68], the average F-measure of a PR curve equals 

to its maximum single-point F-measure.  

The MAE is the mean of the absolute difference between the 

saliency map S  and the pixel-wise ground truth G : 

 

1

1
( ) ( ) .

N

i

MAE S i G i
N 

   (7) 

Different to precision, recall and F-measure, smaller MAE 

means higher performance. 

3) Implementation 

Our method is implemented on MatConvNet [69], which is a 

MATLAB toolbox of CNN with various extensibilities. The 

machine used for our experiments is a PC with Intel 6-Core 

i7-5820K 3.3GHz CPU, 64GB RAM, GeForce GTX TITAN X 

12GB GPU, and 64-bit Ubuntu 14.04.3 LTS. Software 

dependencies include CUDA 7.0 and cuDNN v3. All images 

are stored on SSD, which accelerates reading speed. The source 

code of our proposed DSL method is available online: 

https://github.com/yuanyc06/dsl.  

B. Design Option Analyses 

1) Parameter of the DL Step 

The DL network is trained on the DUT-OMRON dataset for 

50 epochs, with 50-point logarithm space between 10
-3

 and 10
-4

 

as the learning rate. As described in Section III.A, the images 

 
Fig. 6.  Example outputs of the DL, SL, and DC steps. Note that DL and SL 

contributes complementarily to the DC step, which generates the final output 

of the proposed DSL method. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCSVT.2016.2646720

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/yuanyc06/dsl


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

are resized to 384*384*3 before put into the network. 

 To evaluate the network architecture of DL, we compare it 

against two state-of-the-art dense labeling models extended 

from [40], namely FCN-8s and FCN-16s. We fine-tune our DL 

network on each of the three models, and record the 

performance of the three architectures on the validation set of 

the 50
th

 epoch. The results are shown in TABLE IV.  

It is apparent that the proposed DL architecture has the 

optimal performance against the other two models, largely due 

to its less likelihood of over-fitting. Since the original object 

detection task in [40] was performed on a relatively large 

dataset (~30K images on the VOC2011 dataset), it was 

reasonable that the more complex models had higher 

performances (i.e. FCN-32s < FCN-16s < FCN-8s). On the 

other hand, in our DL step the training dataset is relatively 

small (only 5,168 images), thus more complex models are more 

vulnerable to over-fitting. As a result, it is the less complex 

model DL (FCN-32s) that performs the best.  

2) Parameter of the SL Step 

There are two networks to train for the SL step, namely the 

local CNN (Section III.B) and the SL network itself. We 

randomly select 2,000 images from the DUT-OMRON dataset 

for the local CNN, and the rest 3,168 images for the SL network. 

Both networks use 80% of their assigned images for training, 

and the rest 20% for validation. They are both trained for 50 

epochs, with 50-point logarithm space between 10
-2

 and 10
-4

 as 

the learning rate. We use the SLIC [60] method to generate the 

superpixels required, with 200 superpixels per image. As 

described in Section III.B, the input of the local CNN are 

superpixel patches resized to 28*28*3, while the input of the 

SL network are 1*5008 feature vectors of the superpixels.  

The local CNN is fine-tuned from LeNet [61], and the SL 

network is trained from scratch (since no baseline model 

available). To determine the optimal network architecture for 

SL, we change the network layer number (#layer) and 

parameter number per layer (#param) 2-dimensionally, and 

record the validation performances on the 50
th

 training epoch, 

as shown in TABLE V. The configuration that gives the best 

performance is #layer=3 + #param=2048, which are adopted in 

our following experiments. 

After determining the network architecture of SL, we further 

analyze the influence of its three types of features (i.e. local, 

neighborhood and global features) to the overall performance 

of our DSL method. The analysis is conducted on the two 

challenging datasets ECSSD and PASCAL-S, and we use seven 

different combinations of the features to train the SL network 

(the feature vector of SL is changed accordingly), and use the 

corresponding feature combinations in the testing processes. 

TABLE VI shows the evaluation results, in which using all 

three types of features contributes to the best performance in 

terms of both F-measure and MAE on both of the datasets. We 

thus adopt all three types of features for the SL step. 

TABLE IV 
PERFORMANCES OF THE PROPOSED DL NETWORK AGAINST TWO 

STATE-OF-THE-ART DENSE LABELING MODELS 

Model F-Measure MAE 

FCN-8s 0.670 0.149 

FCN-16s 0.727 0.137 

DL 0.747 0.128 

The F-measures and MAEs are recorded on the validation set at the 50th 

training epoch. The best results are marked in red. 

TABLE V 
PERFORMANCES OF THE SL NETWORK WITH DIFFERENT LAYER NUMBER 

(#LAYER) AND PARAMETERS PER LAYER (#PARAM) 

Configuration F-Measure MAE 

#layer=3, #param=1024 0.664 0.182 

#layer=3, #param=2048 0.670 0.171 

#layer=3, #param=4096 0.666 0.178 

#layer=4, #param=1024 0.661 0.180 

#layer=4, #param=2048 0.654 0.186 

#layer=4, #param=4096 0.652 0.193 

The F-measures and MAEs are recorded on the validation set at the 50th 
training epoch. The best results are marked in red. 

TABLE VI 
PERFORMANCES OF DSL WITH DIFFERENT SL FEATURE COMBINATIONS 

Dataset Feature of SL F-Measure MAE 

ECSSD 

local 0.783 0.213 

neighborhood 0.778 0.224 

global 0.795 0.181 

local + neighborhood 0.789 0.174 

neighborhood + global 0.801 0.166 

local + global 0.804 0.158 

all 0.808 0.126 

PASCAL-S 

local 0.777 0.178 

neighborhood 0.770 0.195 

global 0.782 0.143 

local + neighborhood 0.780 0.162 

neighborhood + global 0.786 0.136 

local + global 0.788 0.131 

all 0.791 0.122 

The best results are marked in red. 

TABLE VII 
PERFORMANCES OF THE DC STEP WITH DIFFERENT BASELINE MODELS ON THE 

TWO CHALLENGING DATASETS ECSSD AND PASCAL-S 

Dataset Model F-Measure MAE 

ECSSD 

AlexNet 0.802 0.133 

VGG-16 0.808 0.126 

GoogLeNet 0.807 0.129 

PASCAL-S 

AlexNet 0.782 0.128 

VGG-16 0.791 0.122 

GoogLeNet 0.789 0.127 

The best results are marked in red. 

TABLE VIII 
PERFORMANCES OF DIFFERENT DESIGN OPTION CONFIGURATIONS ON THE TWO 

CHALLENGING DATASETS ECSSD AND PASCAL-S 

Dataset Configuration F-Measure MAE 

ECSSD 

 

Config i: Baseline 0.724 0.187 

Config ii: DC only 0.750 0.171 

Config iii: DL+DC 0.788 0.147 

Config iv: SL+DC 0.772 0.162 

Config v: DL+SL+DC 0.808 0.126 

PASCAL-S 

 

Config i: Baseline 0.681 0.168 

Config ii: DC only 0.729 0.148 

Config iii: DL+DC 0.777 0.140 

Config iv: SL+DC 0.759 0.143 

Config v: DL+SL+DC 0.791 0.122 

The best results are marked in red. 
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3) Parameter of the DC Step  

The DC network is trained on the MSRA10K dataset. We 

first feedforward MSRA10K through DL and SL to obtain the 

two initial saliency channels of its images, and then form the 

6-channeled inputs for DC. The DC network is trained for 20 

epochs, with 20-point logarithm space between 10
-2

 and 10
-4

 as 

the learning rate. The superpixels are generated by the SLIC 

method as well, with 200 superpixels per image.  

To determine the best baseline model, we fine-tune the DC 

network on three state-of-the-art image classification models, 

namely AlexNet [47], VGG-16 [58], and GoogLeNet [5]. We 

record their performances on the two challenging datasets 

ECSSD and PASCAL-S in TABLE VII. It is observed that 

VGG-16 has the best overall performance than the other two 

models, and previous works have proved its steadiness and 

robustness in various computer vision tasks [40], [70-72]. We 

thus adopt VGG-16 as our baseline model for the DC step. 

4) Contribution Comparison 

Next, we examine the contributions of the three steps (i.e. 

DL, SL and DC) in improving the performance of our method. 

We take the “pad-and-center” method in [2] as the comparison 

baseline, and compare five different configurations below: 

i. Baseline: the local pad-and-center model in [2]; the 

network takes padded image as input (224*224*3) (without the 

superpixel indication channel); 

ii. DC only: the input of DC is thus 224*224*4 (with the 

superpixel indication channel, but without the DL and SL 

channels); 

iii. DL and DC: the input of DC is thus 224*224*5 (with the 

superpixel indication channel, but without the SL channel); 

iv. SL and DC: the input of DC is thus 224*224*5 (with the 

superpixel indication channel, but without the DL channel); 

v. Complete DSL model: the DC network takes the 

224*224*6 input with all of the 6 channels. 

Similarly to the previous section, we record the 

performances of the five configurations above on the two 

challenging datasets ECSSD and PASCAL-S. The results are 

listed in TABLE VIII. We see that the complete DSL 

framework (Configuration v: DL+SL+DC) notably 

outperforms the other four configurations, which indicates that 

DL, SL and DC all have significant contributions in improving 

the overall performance of DSL. 

C. Comparison with Conventional Methods 

 Next, we compare our proposed DSL method with ten 

state-of-the-art conventional (non-learning based) saliency 

detection methods, namely SF [10], GR [73], MC [19], MR [1], 

DSR [20], HS [30], RBD [25], RR [42], BSCA [23], and BL 

[45]. All of the ten methods are published after 2012, and the 

last three methods are recently published in 2015. As 

mentioned in Section IV.A, the experiments are conducted on 

the six datasets ECSSD, PASCAL-S, SED1, SED2, THUR15K 

and HKU-IS. The results are shown in Fig. 7 and TABLE IX.  

We first notice that DSL not only achieves the best 

performance on all of the dataset in terms of both F-measure 

and MAE, but also exceeds the comparison methods with 

dominant advantages. We first analyze the two challenging 

datasets ECSSD and PASCAL-S, where DSL’s PR curves are 

greatly higher than the comparison methods, and its F-measures 

and MAEs have shown significantly large gaps against the 

second best methods. To be more specific, its F-measures are 

12.5% and 18.2% higher than the second best (0.808 to 0.718, 

and 0.791 to 0.669), and its MAEs are 78.6% and 65.6% lower 

than the second best (0.126 to 0.225, and 0.122 to 0.202). We 

attribute the greatly improved performance of DSL to its 

integrated structure of multiple DNNs, in which both dense and 

sparse labeling show their strength in extracting the high-level 

features of the image, as well as their combined advantage that 

further boost the saliency classification accuracy.  

(a) (b) (c)

(d) (e) (f)  
Fig. 7.  PR curves of DSL against ten state-of-the-art conventional saliency detection methods. (a) ECSSD; (b) PASCAL-S; (c) SED1; (d) SED2; (e) 
THUR15K; (f) HKU-IS. 
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TABLE IX 

QUANTITATIVE EVALUATION RESULTS OF DSL AGAINST TEN STATE-OF-THE-ART CONVENTIONAL SALIENCY DETECTION METHODS 

Dataset Metric SF GR MC MR DSR HS RBD RR BSCA BL DSL 

ECSSD 
F-Measure 0.549 0.642 0.703 0.708 0.699 0.698 0.686 0.710 0.718 0.716 0.808 

MAE 0.268 0.317 0.251 0.236 0.226 0.269 0.225 0.234 0.233 0.262 0.126 

PASCAL-S 
F-Measure 0.496 0.604 0.668 0.612 0.651 0.645 0.659 0.639 0.669 0.663 0.791 

MAE 0.241 0.301 0.232 0.259 0.208 0.264 0.202 0.232 0.224 0.249 0.122 

SED1 
F-Measure 0.665 0.791 0.844 0.841 0.819 0.825 0.829 0.843 0.832 0.840 0.901 

MAE 0.234 0.224 0.164 0.143 0.160 0.163 0.144 0.141 0.155 0.190 0.099 

SED2 
F-Measure 0.783 0.785 0.775 0.771 0.793 0.791 0.826 0.769 0.780 0.787 0.858 

MAE 0.171 0.192 0.180 0.164 0.140 0.195 0.130 0.161 0.158 0.189 0.108 

THUR15K 
F-Measure 0.469 0.551 0.610 0.573 0.611 0.585 0.596 0.590 0.609 0.606 0.730 

MAE 0.193 0.264 0.199 0.209 0.139 0.250 0.163 0.185 0.216 0.261 0.123 

HKU-IS 
F-Measure 0.588 0.672 0.723 0.689 0.735 0.706 0.725 0.711 0.722 0.716 0.858 

MAE 0.183 0.266 0.201 0.192 0.133 0.253 0.150 0.175 0.210 0.257 0.125 

For each row, the top 3 results are marked in red, blue and green, respectively. 

 

(a) (b) (c)

(d) (e) (f)

 

Fig. 8. PR curves of DSL against six state-of-the-art learning based saliency detection methods. (a) ECSSD; (b) PASCAL-S; (c) SED1; (d) SED2; (e) 
THUR15K; (f) HKU-IS. 

TABLE X 
QUANTITATIVE EVALUATION RESULTS OF DSL AGAINST SIX STATE-OF-THE-ART LEARNING BASED SALIENCY DETECTION METHODS 

Dataset Metric DRFI HDCT MCDL LEGS MDF DISC DSL 

ECSSD 
F-Measure 0.736  0.698  0.748  0.776  0.772 0.756  0.808 

MAE 0.226  0.166 0.175  0.182  0.174 0.208  0.126 

PASCAL-S 
F-Measure 0.694  0.652  0.700  0.762  0.768  0.744  0.791 

MAE 0.210  0.157  0.160  0.171  0.144  0.172  0.122 

SED1 
F-Measure 0.864  0.821  0.858  0.867 0.881 0.876  0.901 

MAE 0.149  0.183  0.087  0.185 0.158 0.118  0.099 

SED2 
F-Measure 0.823  0.792  0.785  0.802  0.844  0.780  0.858 

MAE 0.140  0.134  0.137  0.104  0.152  0.153  0.108 

THUR15K 
F-Measure 0.666  0.620  0.673  0.688  0.701  0.664  0.730 

MAE 0.169  0.163  0.192  0.155  0.140  0.084  0.123 

HKU-IS 
F-Measure 0.775 0.747 0.789 0.837 0.860 0.788 0.858 

MAE 0.161 0.155 0.181 0.146 0.209 0.180 0.125 

For each row, the top 3 results are marked in red, blue and green, respectively. 

 

TABLE XI 
EFFICIENCY COMPARISON (SECONDS PER IMAGE) 

Method DSR RBD LEGS MDF DSL 

Time (s) 0.525 0.341 1.75 1.48 0.695 

Code MATLAB MATLAB MATLAB MATLAB MATLAB 
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HDCT

 
Fig. 9. Example saliency maps of different methods. (a) – (c): images with low contrast objects; (d) – (f): image with complex foreground / background 
patterns; (g): image with highly interfering background. 

  

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TCSVT.2016.2646720

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

12 

DSL behaves similarly on the other four datasets, where it 

shows dominant advantages on both PR curves and evaluation 

metrics against all of the comparison methods. What is 

mentionable is that the advantage of DSL on SED2 is relatively 

small compared to its advantages on the other datasets. This is 

mainly due to the single-object training set we used, while all of 

the images in SED2 contain two salient objects. 

D. Comparison with Learning Based Methods 

Since DSL is learning based, it is not surprising that it has 

large performance improvements against the conventional 

saliency detection methods in Section IV.C. To further evaluate 

the effectiveness of DSL, we compare it against six 

state-of-the-art learning based methods, namely DRFI [18], 

HDCT [74], MCDL [2], LEGS [38], MDF [59] and DISC [70]. 

All of the six methods are published after 2013, and the last 

four methods are recently published in 2015. The experiments 

are conducted on the same six datasets in Section IV.C, and the 

comparison results are shown in TABLE X. 

It is observed that the overall performances of the learning 

based methods are significantly higher than those of the 

conventional methods in TABLE IX, due to the high-level 

features involved in their learning processes. Nevertheless, 

DSL still maintains significant advantages against the 

comparison learning based methods. It achieves optimal 

performance on five out of six F-measures, and three out of six 

MAEs, and achieves the second place on all of the other 

evaluations with close distance to the optimal. We note that 

MDF is the only method that uses the training set of HKU-IS 

(3,000 images) in its training process, so it is expected to have 

high performance on the test set of HKU-IS; nevertheless, DSL 

behaves closely against MDF in F-measure, and even achieves 

better MAE with significant advantage. We attribute the high 

performance of DSL to its combination of dense and sparse 

labeling that exploits both macro object contours and the local 

low-level image features. DSL’s superior performance against 

the state-of-the-art learning based methods further validates its 

effectiveness and robustness in various cases. 

To demonstrate the greatly improved performance of DSL 

more straightforwardly, we select typical saliency map 

examples of both conventional methods and learning based 

methods, which are assembled together in Fig. 9. We note that 

DSL exhibits high accuracy and robustness on various 

challenging scenarios, including images with low contrast 

objects (Fig. 9a - Fig. 9c), images with complex foreground / 

background patterns (Fig. 9d - Fig. 9f), and image with highly 

interfering background (Fig. 9g). 

E. Efficiency 

To evaluate the efficiency of DSL, we select two comparison 

methods from both the conventional methods and the learning 

based methods that have the highest performances among 

TABLE IX and TABLE X, namely DSR, RBD, LEGS and 

MDF. We record their average running time per image on the 

same machine described in Section IV.A.3), and the results are 

shown in TABLE XI. Since all of the five methods are 

implemented in MATLAB, the efficiency comparison is fair for 

coding language. It is observed that besides its premium 

performances against the comparison methods, DSL also 

achieves comparable running time to the conventional methods, 

and notably faster speed than the learning based methods. The 

three steps of DL, SL and DC take approximately 5%, 60% and 

35% of the total running time, respectively. 

F. Limitation 

As mentioned in Section IV.C, currently DSL’s high 

performance is only guaranteed on single-object images, which 

is mainly due to the single-object training set we used for the 

DL, SL and DC networks. This issue, however, is an inherent 

limitation with all learning based methods that depend on the 

training data. We can solve this issue by extending our training 

set with broader categories of images, which will be covered in 

our future works. 

V. CONCLUSION 

In this paper, we propose a novel DNN-based saliency 

detection method, DSL, which conducts dense and sparse 

labeling of image saliency with multi-dimensional features. 

DSL consists of three major steps, namely DL, SL and DC. The 

DL and SL steps conduct effective initial saliency estimations 

with both macro object contours and local low-level features, 

while the final DC network establishes a 6-channeled data 

structure as input, and conducts accurate final saliency 

classification. Our DSL method achieves remarkably higher 

performance against sixteen state-of-the-art saliency detection 

methods (including ten conventional methods and six learning 

based methods) on six well-recognized public datasets, in terms 

of both accuracy and robustness. As future research, we will 

explore adaptations of our method to other application areas, 

such as medical image segmentation and video data processing. 
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