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  Abstract i 

Abstract 

  Since the size of metal components plays a pivotal role in determining the reactivity 

and selectivity of the heterogeneous catalysts; enormous efforts are invested in 

downsizing the metal particles to atomic level for ultimate catalysis over last decade. 

Single atoms (SAs) become an interesting research field towards material synthesis 

and performance optimization for diverse catalytic reactions. Significantly, various 

single atoms show remarkable catalytic activity and selectivity toward a variety of 

electrocatalytic reactions, including hydrogen evolution reaction (HER), oxygen 

evolution reaction (OER), oxygen reduction reaction (ORR), CO oxidation reaction, 

CO2 reduction reaction, water gas shift reaction, and hydrogenation with a high 

efficiency. It is noteworthy that the same foreign isolated substitutions can be tuned to 

show distinguishing catalytic activities via anchoring on different supports.  

Thus, three different strategies have been developed to fabricate a series of 

sustainable catalysts. We prepared a quasi-Pt-allotrope nanostructure, which is 

composed of metallic Pt3Co hollow core (H-PtCo) and a N-doped carbon shell, which 

is modified with single-atom Pt on it (Pt1N-C). An ordered intermetallic PtBi clusters 

with the monatomic Pt layer (PtBi@Pt) is also constructed and uniformly dispersed 

over cross the graphene. In addition, single-atom sites (M1), including platinum (Pt1), 

ruthenium (Ru1), iridium (Ir1), iron (Fe1), palladium (Pd1), and nickel (Ni1), on two 

distinct domains of the hybrid support, four-fold N/C atoms (M1@NC) and center of 

Co octahedral (M1@Co) have been synthesized in this thesis. 

   First of all, the Quasi-Pt-allotrope catalyst: Hollow PtCo@single-atom Pt1 

nanoarchitecture enables the inner and exterior spaces easily accessible, exposing 



   

 

 

Abstract  ii 

extra-high active surface area and active sites for the penetration of both aqueous and 

organic electrolytes. Moreover, the novel Pt1N-C shells not only effectively protects 

the H-PtCo cores from agglomeration, but also increase the efficiency of the ORR in 

virtue of the isolated Pt atoms. These advanced features endow it with overwhelming 

ORR performance, so that it exhibits stable ORR without any fade over a prolonged 

10000 cycle test at 0.9 V in HClO4 solution. Density functional theory calculations 

reveal that the single atom Pt, forming part of the PtNC3 structure, can provide a 

comparable highly active ORR efficiency to Pt (111). Furthermore, this material can 

offer efficient and stable ORR activities in various organic electrolytes, indicating its 

great potential for next-generation lithium-air batteries as well. 

For the second work, the ordered PtBi intermetallic (PtBi@Pt) supported on 

graphene matrix, which is fabricated from single-atom Pt mixed with PtBi catalyst 

(PtBi/SA Pt) via a single-atom self-assembling (SAS) method. The PtBi@Pt with 

ultrafine size (~2 nm) delivers an extremely high mass activity of 9.01 mA μgPt-1, 

which is 8-fold more active than commercial Pt/C; significantly, in-situ Fourier 

transform infrared spectroscopy indicates that ethanol is completely oxidized to CO3
2- 

on the PtBi@Pt, accompanied by 12 electron transfer, as is further demonstrated by 

the density functional theory results, which significantly outperforms other reported 

catalysts for the EOR under alkaline conditions. 

   For the third work, we report a general π-electron assisting strategy to anchor diverse 

single-atom sites (M1), including platinum (Pt1), ruthenium (Ru1), iridium (Ir1), iron 

(Fe1), palladium (Pd1), and nickel (Ni1), on a heterogeneous support. It is confirmed 

that the π-electrons of the precursor (pentagon imidazole) are vital for the formation 

of M1 active sites on the support, which could significantly immobilize metal ions and 

prevent them from aggregation with each other during initial process. It is novel that 
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the M1 can simultaneously anchor on two distinct domains of the hybrid support, four-

fold N/C atoms (M1@NC) and center of Co octahedral (M1@Co), which are expected 

to serve as bi-functional electrocatalysts towards HER and OER, respectively. 

Amongst, a catalyst of Ir1 exhibits the most excellent water splitting performance, 

showing a low applied potential of 1.603 V to achieve 10 mA cm-2 in 1.0 M KOH 

solution with cycling over 5 h. The density functional theory (DFT) calculations 

speculate that the Ir1@Co (Ir) sites can accelerate the OER and Ir1@ NC3 sites are 

responsible for the enhanced HER, clarifying the unprecedented performance of this 

bi-functional catalyst toward full water splitting.  

It can be concluded that the three strategies have been developed in this thesis, 

which successfully broaden the practical applications in proton exchange membrane 

fuel cells, EOR, water splitting, and lithium-air batteries, which are all considered as 

the most efficient and clean next-generation technology for the conversion of chemical 

energy. Our works are of significance to show the mechanism of preparation of single 

atoms, atomic structures of the prepared materials, theoretically and experimentally 

explain the mechanism of how the interaction between single atom and varieties of 

supports affects their surface chemistry, catalytic performance as well. Thus, I believe 

this thesis work can provide more insights on the design of efficient ORR, OER, EOR, 

and HER electrocatalysts.   
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Figure 1-1. (a) Left panel: aberration-corrected HAADF-STEM image of a Pt/ZnO 
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(B), highly disordered Pt subnano clusters (C), reconstructed surface atoms of Pt 

nanoparticles (D), strained lattices of Pt (E), and highly unsaturated Pt atoms attached 

to the Pt nanocrystal (F); Right panel: schematic illustration of the various types of 

metal clusters, trimers, dimers, and monomers dispersed onto the ZnO {101̅0} surface. 

During a catalytic reaction, all these various “sites” may contribute to the observed 

catalytic performance. Reproduced with permission. Copyright 2016, American 

Chemical Society. (b) Schematic diagrams illustrating SAs on different supports: 

metal oxides, two-dimensional materials, and the surface of metal NCs (from left to 

right). Reproduced with permission. Copyright 2017, Elsevier. 

Figure 2-1. Adsorption geometries of metals on CeO2(111) and MgO(100). (a–c) Top 

view of adsorbed late transition metals on the CeO2(111) surface at the threefold 

hollow site (Ag) (a), twofold oxygen bridge site (Ir) (b) and oxygen side-bridge site 

(Pd) (c). (d) Adsorbed metals on MgO(100) all prefer the anionic oxygen site. The 

black rectangle represents the unit cell used in the study. Metal–support interactions 

on CeO2(111) and MgO(100) supports. a–c, Isostructural charge density difference 

plots of Ir/CeO2(111) (e),  Ag/CeO2(111) (f) and Ir/MgO(100) (g). Blue denotes 
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depletion of electron density while green represents accumulation. The isosurface level 

is ± 0.005 e Bohr−3. Reproduced with the permission. Copyright 2018, Nature 

Publishing Group. 

Figure 2-2. (a) Carbon nanocones doped with Ni(II) and N atoms. Structures 1–6 

tetradentate nanocone ligand. (b) Schematic diagrams of the molecular orbitals that 

contain major Ni dz2 and s atomic orbital contributions for the cones of structures 1-

6. (c) Electron spin density (ESD) surface ( e/bohr3) of capsules 7, nanocapsule 7 is 

obtained from a 180°  cone frustrated by three pyrrole defects (top left); 8  is obtained 

by twelve B and six N atom doping of 7 (top middle); Nanocapsule 9 is obtained from 

180° and 120°  bottom cones, fused as in (12,0) CNT. The top portion differs from the 

carbon 180° cone in three N–C substitutions and a Ni atom at the tip instead of a C 

atom. The bottom portion differs from the carbon 120° cone in four N–C substitutions 

and a Ni atom at the tip instead of two C atoms (top right). Nanocapsule 10 contains 

Fe(II) and Ni(II). The octahedral coordination of Fe(II) is completed by the addition 

of a 2,2’-bipyridine (bpy) ligand (bottom left). Electrostatic potential (ESP) of capsule 

10 in the interval e mapped on the 0.0004 e/bohr3 total electron density surface 

(bottom right). Reproduced with the permission. Copyright 2009, Elsevier. 

Figure 2-3. (a) Optimized structures of different substrates: (I) Pristine graphene (g). 

(II) Pyridinic N1-doped graphene (g-P-N1). Optimized structures of (III) Pt1 

adsorption on pristine graphene (g-Pt1), (IV) Pt1 adsorption on g-P-N1 (g-P-N1-Pt1). 

The grey, blue and cyan balls denote the carbon, nitrogen and platinum atoms, 

respectively. Reproduced with permission. Copyright 2015, Nature Publishing Group. 

(b) The EXAFS fitting curves of Pt-ISA/NG at R space. Copyright 2018, American 

Chemical Society. (c) Comparison between the experimental Ru K-edge XANES 
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spectrum of Ru-N/G-750 and the theoretical spectrum calculated from the depicted 

structures using the full-potential FDM. Copyright 2017, American Chemical Society. 

(d) The proposed Co/Ni/Fe‐Nx architectures. Reproduced with permission. Copyright 

2016, Wiley-VCH; Reproduced with permission. Copyright 2017, American Chemical 

Society; Reproduced with permission. Copyright 2017, Wiley-VCH. (e) The fitting 

results of the EXAFS spectra of Ru SAs/N−C. Copyright 2017, American Chemical 

Society. 

Figure 2-4. (a) Structural model of an ideal, truncated octahedral nanoparticle with an 

optimal single-atomic-site coverage. Although strictly not representative of the 

nanoparticles synthesized here, this model provides a reasonable estimate of the upper 

concentration limit for such single-atom Pt sites.  I-IV, Models that depict the proposed 

evolution of PtAu surface structures from single-atom Pt sites (II) to few-atom Pt 

clusters (III) to a complete Pt shell (IV) as a result of increased Pt content. (b) DFT-

calculated binding of CO at PtAu surfaces. I–III, Illustration of CO adsorption modes 

on model (111) lattices of pure (I), few-atom (II) and single-atom (III) Pt surfaces that 

shows the apical (i), bridging (ii), hexagonal close-packed hollow (iii) and face-centred 

cubic hollow (iv) coordination sites. IV,Calculated adsorption energies for the 

indicated CO adsorption sites. Copyright 2018, Nature Publishing Group. (c) The 

measured valence photoemission spectra (hν =  150 eV) of an AgCu alloy that 

contained 0.3 at% Cu and metallic Ag reveal the narrow Cu 3d states at a binding 

energy of ~2.5 eV. (d) The difference spectrum of AgCu and Ag, plotted with a Cu 

reference spectrum, demonstrate that the Cu 3d states in AgCu are one-fifth the width 

they are in bulk Cu. (e) Spin density isosurfaces of substituted 1H-MoS2 at Θ=1/48. 

The dashed line denotes the 4 × 4 supercell used in the calculations, green and gray 
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distributions correspond to positive and negative values, respectively. Copyright 2018, 

Nature Publishing Group. 

Figure 2-5. (a) Structure and energetics of the anchored Pt2+ species on ceria 

nanoparticles determined by theory. The Pt2+ is strongly bound at the (100) nanofacets 

of the ceria nanoparticle. Color coding of atoms: red O, beige Ce4+, brown Ce3+, blue 

Pt, white H. Reproduced with permission. Copyright 2014, Wiley-VCH. (b) 

Illustration of Pt nanoparticle sintering, showing how ceria can trap the mobile Pt to 

suppress sintering. Cubes appear to be less effective than rods or polyhedral ceria. 

Reproduced with permission. Copyright 2016, American Association for the 

Advancement of Science (AAAS). (c) Illustration of the different ability on oxidizing 

CO via altering the relative chemical potentials between SAs and metal nanoparticles 

(NPs) on ceria. Reproduced with permission. Copyright 2017, American Chemical 

Society. (d) Schematic illustration of the 0.2Pt/m-Al2O3-H2 synthesis process: 

Aluminum isopropoxide, P123, and H2PtCl6 mixture ethanolic solution self-assembled 

into a gel after ethanol evaporation at 60 °C. The gel was calcined at 400 °C and 

reduced in 5% H2/N2 at 400 °C, forming the single atom catalyst 0.2Pt/m-Al2O3-H2. 

Reproduced with permission. Copyright 2017, Nature Publishing Group. 

Figure 2-6. (a-c) HAADF-STEM images of Ir1/FeOx sample, Au1/FeOx sample and 

Pt1/FeOx sample. Reproduced with permission. Copyright 2014, American Chemical 

Society; Reproduced with permission. Copyright 2015, Springer; Reproduced with 

permission. Copyright 2011, Nature Publishing Group. (d) The k3-weighted Fourier 

transform spectra (the above) and the normalized XANES spectra (the bottom) of 

sample A (Pt1/FeOx), sample B (Pt1/FeOx with loading mass of 2.5 wt% Pt), PtO2 and 

Pt foil. Reproduced with permission. Copyright 2011, Nature Publishing Group. (e) 
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The proposed reaction pathways for CO oxidation on the Pt1/FeOx catalyst (sample A). 

Reproduced with permission. Copyright 2011, Nature Publishing Group. 

Figure 2-7. (a) Schematic illustration of the synthetic process for the Ru1/Co1/Fen 

catalysts on nitrogen-doped graphene (NG). Reproduced with permission. Copyright 

2015, Nature Publishing Group; Reproduced with permission. Copyright 2017, 

American Chemical Society; Reproduced with permission. Copyright 2018, Wiley-

VCH; respectively. (b) STEM image of Co1-NG, inset is the SEM image of NG. (c) 

Left: Wavelet transforms for the Co1-NG and Co-containing graphene (Co-G). 

Reproduced with permission. Copyright 2015, Nature Publishing Group. Right: 

Fourier transform magnitudes of the experimental Ru K-edge EXAFS spectra of the 

Ru-N/G samples prepared under different conditions along with reference materials. 

(d) The Fourier transforms are not corrected for phase shift. WT for the k3-weighted 

EXAFS signal of sample Ru-N/G-750. The maximum at 5.5 Å−1 is associated with the 

Ru-N(O) contributions. Reproduced with permission. Copyright 2017, American 

Chemical Society and (e) The STEM image of high density atomic Fe dispersion on 

NG. Reproduced with permission. Copyright 2018, Wiley-VCH (f) Theoretical 

calculations and proposed mechanism on the nitrogen-coordinated Fe catalytic site. a) 

Free energy diagram for electrochem-ical CO2 reduction to CO on Fe–N4 moieties 

embedded on graphene sheets. The proposed associative mechanism involves the 

following steps: (1) CO2 + * + H+ + e− → COOH*, (2) COOH* + H+ + e− → CO* + 

H2O, (3) CO* → CO + *, where * denotes the active site on the catalyst surface. b) 

Top view of the optimized structures for Fe–N4 moieties embedded on graphene layer 

and potential nitrogen-substitution. Reproduced with permission. Copyright 2018, 

Wiley-VCH (g) The schematic illustration of the formation of Co1/N‐C (900). 
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Reproduced with permission. Copyright 2016, Wiley-VCH. (h) Schematic illustration 

of the synthetic process for the Fe-SAs/CN and Ni-SAs/CN. Reproduced with the 

permission. Copyright 2017, American Chemical Society; (i) Schematic illustration of 

the synthetic process for single-Co-atom catalysts via pyrolyzing Fe-Co prussian blue 

analogue. Reproduced with the permission. Copyright 2018, American Chemical 

Society. 

Figure 2-8. STM images showing atomically dispersed Pd atoms in a Cu(111) surface 

and hydrogen atoms that have dissociated and spilled over onto the Cu surface. (a) Pd 

alloys into the Cu(111) surface preferentially above the step edges as evidenced by the 

rumpled appearance of the upper terrace (scale bar indicates 5 nm). (Inset) Atomic 

resolution of the Pd/Cu alloy on the upper terrace showing individual, isolated Pd 

atoms in the surface layer appearing as protrusions (scale bar, 2 nm). (b) Schematic 

showing H2 dissociation and spillover at individual, isolated Pd atom sites in the Cu 

surface layer. (c) Islands of H atoms imaged after hydrogen uptake appear as depressed 

regions on the clean Cu(111) lower terrace (scale bar, 5 nm). (Inset) High-resolution 

image of individual hydrogen atoms on Cu(111) (scale bar, 2 nm). Images recorded at 

5 K. Reproduced with permission. Copyright 2012, American Association for the 

Advancement of Science (AAAS). (d-g) STM images of Pd/Cu alloys with a range of 

stoichiometries: (d) 0.01 ml Pd, (e) 0.1 ml Pd, (f) 1 ml Pd and (g) 2 ml Pd. Scale bars: 

5nm. Imaging conditions 0.05–0.15 V, 0.1–1.0 nA. Pd/Cu alloys were formed at 380 

K. Reproduced with permission. Copyright 2013, Royal Society of Chemistry. (h) 

Proposed reaction pathway for semi-hydrogenation of acetylene over silica-supported 

Cu alloyed Pd SAC: dissociation of H2 and Spill over of H atoms (left), adsorption and 
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hydrogenation of Acetylene (middle), and desorption of π-Bonded Ethylene (right). 

Reproduced with permission. Copyright 2017, American Chemical Society. 

Figure 2-9. (a) TEM image of Pt–MoS2 with the inset showing a typical MoS2 layer 

distance of 0.62 nm. (b) HAADF-STEM images of Pt–MoS2 showing that the single 

Pt uniformly disperse in the 2D MoS2 plane. (c) The relation between currents (log(i0)) 

and ∆GH
0 presents a volcano curve. The left and right sides of the volcano plot adopt 

two sets of scales for better visibility. The inserted graphs point to different 

configurations of doped MoS2 as coordinated with four (left) and six (right) S atoms. 

The adsorption sites for H atoms are marked by the red dashed circles. The studied 

metal atoms are located in the Periodic Table as shown by the inset at the bottom. 

Green balls: Mo; yellow balls: S; blue and purple balls: doped metal atoms. 

Reproduced with permission. Copyright 2015, Royal Society of Chemistry.   

Figure 2-10. (a) The schematic illustration of Au catalysts on different supports: CeO2, 

FeOx, and ZnO for methanol steam reforming and water-gas shift; (b) Steady-state 

WGS reaction rates over gold–metal oxide catalysts on various substrates; (c) 

Comparison of SRM rates at 250 °C over Au–ZnO and Au–CeO2 nanoshapes. 

Reproduced with permission. Copyright 2011, Royal Society of Chemistry.  (d) 

Specific rate of wet CO oxidation over dry Pt1/Fe2O3, Pt1/ZnO, and Pt1/γ-Al2O3 SACs; 

(e) The turn over frequency (TOF) comparison of Pt1 single atoms on different metal 

oxide supports for dry CO oxidation at 140 oC. Reproduced with permission. Copyright 

2017, American Chemical Society. 

Figure 2-11. (a) Measured energy of a Ag atom, relative to its energy in bulk Ag 

(solid), versus the Ag particle size to which it adds, for Ag particles on the four 

substrates. Reproduced with permission. Copyright 2010, American Association for 

http://www.chemspider.com/Chemical-Structure.22421.html
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the Advancement of Science (AAAS).  (b) The proposed Co-N-C architecture toward 

the target reactions and stability of this catalyst paralysed at different temperatures and 

acid leaching. Reproduced with permission. Copyright 2015, American Chemical 

Society. (c) TEM image and HRTEM images of a Ag-HMO nanorod with a [001] 

growth direction with Auto-correlation function analysis showing a corresponding 

simulated image; (d) Single-atom Ag chains inside the tunnels of the HMO viewed 

from the [011] and [001] directions, respectively, and atom arrangement on the (001) 

facet of Ag-HMO; (e) in situ XRD patterns of the formation of Ag-HMO at different 

temperature. Reproduced with permission. Copyright 2012, Wiley-VCH. 

Figure 2-12. (a) Schematic illustration of the reduction of CO2 with H2 on Pd/Al2O3 

and Pd/MWCNT catalysts. Reproduced with permission. Copyright 2013, American 

Chemical Society. (b)  Support effect for selectivity of ORR reaction with Pt1 catalysts. 

Reproduced with permission. Copyright 2016, American Chemical Society. (c) CO 

Faradaic efficiency at various applied potentials with different catalysts for CO2 

reduction in aqueous solution. Reproduced with permission. Copyright 2018, Nature 

Publishing Group. (d) Faraday efficiency (%) to the products of CO2 reduction under 

applied voltage of -0.5, -1, and -1.5 V vs Ag/AgCl (3M  KCl)  for Fe1-N-C sample and 

corresponding turnover frequency (h-1 cm-2). Reproduced with permission. Copyright 

2018, Nature Publishing Group. 

Figure 3-1. The general procedure of this thesis project. 

Figure 4-1. (a) Schematic illustration of the fabrication process for H-PtCo@Pt1N-C. 

(b) Scanning electron microscope (SEM) image of ZIF-67-50. (c) Annular bright field 

(ABF) image of Co@PtCo@Co@Pt1N-C. (d) Annular bright field (ABF) image of H-

PtCo@Pt1N-C. 
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Figure 4-3. SEM image and histogram of the diameters of ZIF-67-25 particles. 

Figure 4-4. SEM image and histogram of the diameters of ZIF-67-0 particles.  

Figure 4-5. (a) HAADF-STEM image at low magnification, and (b) Histogram of the 

diameters of Co@PtCo/Pt@Co@Pt1N-C particles. 

Figure 4-6. (a) STEM-EDS elemental maps of Co, N, C, and Pt for the selected 

Co@PtCo@Co@Pt1N-C particle. (b) Line profile analysis from the indicated white 
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Figure 4-7. (a, b) TEM images at different magnifications of Co@PtCo@Co@Pt1N-

C obtained at 300 ℃; (c, d) TEM images of Co@PtCo@Co@Pt1N-C at different 

magnifications obtained at 400 ℃; (e, f) TEM images of Co@PtCo@Co@Pt1N-C at 

different magnifications obtained at 500 ℃; (g, h) TEM images of 

Co@PtCo@Co@Pt1N-C at different magnification obtained at 600 ℃; (i) Schematic 

illustration of the evolution of intermediate Co@PtCo@Co@Pt1N-C particles. 

Figure 4-8. (a) Low-magnification high-angle annular dark field (HAADF) image of 

H-PtCo@Pt1N-C. (b) High-resolution HAADF image of H-PtCo@Pt1N-C. (d) The 

corresponding 3D electron signal intensity, and (e-g) STEM-EDS maps of elemental 
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Figure 4-9. The electronic intensity measured along R1 on the hollow PtCo alloy 
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Figure 4-15. HAADF-STEM image and STEM-EDS maps of PtCo/NPC. (a) 

HAADF-STEM image. (b-d) STEM-EDS maps.  
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C in TEGDME. 

Figure 4-21. The ORR activities of ZIF-67-50-750. 
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Figure 4-25. The ORR activity of Pt1@N-C. 
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and Pt/C before and after 10000/5000 potential cycles respectively. (c-g) Structure 

models used in DFT calculation. The single atom Pt is modelled as a four-coordinated 
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dehydrogenation pathways on (a) PtBi(0001) and (b) Pt-PtBi(0001), respectively. The 

favored kinetic pathway is illustrated by a solid line and the unfavored one by a dashed 

line. The optimized intermediates and transition states are inserted. Blue: Pt; purple: 

Bi; red: O; grey: C; white: H. 
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Chapter 1 

1.  Introduction 

1.1. Research Background 

Heterogeneous catalysts by supported metal nanostructures are extensively used in 

most industrial processes. In order to make use of alternative energy sources, including 

biomass, solar or nuclear for the future, it is imperative to explore favourable 

heterogeneous catalysts for fuel cells and photovoltaic cells. A heterogeneous catalyst 

is consisted of metal components finely dispersed/coordinated/stabilized on a variety 

of supports. Unless one very specialized synthesis techniques are utilized, it is 

extremely challenging to obtain metal nanoclusters dispersed onto high-surface-area 

supports with exactly the same atomic configuration and number of atoms. Since the 

size of metal components plays a pivotal role in determining the reactivity and 

selectivity of the heterogeneous catalysts; enormous efforts are invested in downsizing 

the metal particles to atomic level for ultimate catalysis over last decade. Single atoms 

(SAs) become an interesting research field towards material synthesis and 

performance optimization for diverse catalytic reactions.    

Practically, when the metal loading ratio is high (>1 wt %) with conventional 

methods, for example wet chemical methods, the supported metal catalysts are usually 

presented as broad size distributions with irregular morphology, such as nanoparticles, 

nanoclusters, and isolated metal single atoms. As shown in Figure 1-1a, an atomic 

resolution electron micrograph clearly displays the Pt nanoclusters deposited onto the 
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surfaces of ZnO nanobelts via a modified deposition-precipitation method. It is evident 

that there are diverse architectures of Pt nanoclusters, including single atoms (A), 

faceted clusters (B), highly disordered or amorphous-like clusters (C), large Pt clusters 

(D), and strained clusters (E). Accordingly, a schematic illustration presents the 

various types of Pt clusters, trimers, dimers and monomers on the ZnO surfaces.[1] 

During catalytic processes, these nanoparticles and sub-nanoclusters possess multiple 

active sites and surface defects including steps, edges, and kinks, which can affect the 

selectivity and activity toward different reaction paths. In order to elucidate and 

understand reaction pathways, the most effective strategy is to take advantages of well-

defined atomically distributed metal active centers.[2]  

 

Figure 1-1. (a) Left panel: aberration-corrected HAADF-STEM image of a Pt/ZnO 

nanobelt model catalyst shows the presence of Pt single atoms (A), faceted Pt clusters 

(B), highly disordered Pt subnano clusters (C), reconstructed surface atoms of Pt 

nanoparticles (D), strained lattices of Pt (E), and highly unsaturated Pt atoms attached 

to the Pt nanocrystal (F); Right panel: schematic illustration of the various types of 

metal clusters, trimers, dimers, and monomers dispersed onto the ZnO {101̅0} surface. 

During a catalytic reaction, all these various “sites” may contribute to the observed 
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catalytic performance. Reproduced with permission.[1] Copyright 2016, American 

Chemical Society. (b) Schematic diagrams illustrating SAs on different supports: 

metal oxides, two-dimensional materials, and the surface of metal NCs (from left to 

right). Reproduced with permission.[3] Copyright 2017, Elsevier. 

The low-coordination environment of metal SAs could expose more catalytically 

active sites, achieving the ultimate specific activity of per metal atom. The terminology, 

single-atom catalysts (SACs), was firstly introduced in 2011 by Zhang and co-workers, 

in which they reported Pt SAs (Pt1) dispersed on FeOx with high CO oxidation 

activity.[2b] Unique single-atom metals are expected to deliver extraordinary catalytic 

performance. Meanwhile, the intrinsic quantum size effects with electrons 

confinement are responsible for discrete energy level distributions and distinctive 

HOMO-LUMO gaps. More importantly, it is found that the supports not only act as 

physical carriers to support the SAs but also catalytically or chemically impact on the 

catalytic properties of SACs. The understanding on atomic-local environments of SAs 

due to the nature of the interactions between metal SAs and supports is essential but 

still very ambiguous.  

   The concept of strong metal-support interaction (SMSI) was brought out in 

heterogeneous catalysis field in 1980s,[4] which can describe the huge changes in 

chemisorption properties of Pt and other group VIII metals when they were dispersed 

on titanium oxide. This SMSI that produced large electronic perturbations for small Pt 

particles in contact with CeO2(111) can significantly enhance the ability of the admetal 

to dissociate the O−H bonds in water.[5] Similarly, this SMSI effect is believe to alter 

the charge state of the metal by electron transfer between metal SAs and a support, 

which is responsible for the activated reactants and enhanced catalytic properties of 
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the SAs.[6] Later on, another hypothesis, electronic metal-support interactions (EMSI), 

was brought out by Rodriguez et al. based on the results of valence photoemission 

measurements and density functional theory (DFT) calculations.[5] Campbell 

concluded that the electronic perturbations can lead to upshift in the d-band centres 

(εd) relative to the Fermi level based on the EMSI, thus enhancing chemical and 

catalytic properties.[7] Even though the understanding has been deepened from SMSI 

to EMSI,[8] a thorough theory only could be built up via developing a perfect catalyst 

with structurally fixed and spatially uniform single-atom active sites, in which the 

intrinsic metal effects, including the electronic quantum size effect[9] and structure-

sensitivity geometric effect[10], could be tactfully avoided. On the other hand, the 

metal-support interaction is associated with the charge transfer between metal species 

and supports, having a great influence on catalytic effects. Therefore, it is essential to 

understand the SMSI for tuning the activity, selectivity and stability of heterogeneous 

SACs. 

    SACs have been extensively investigated in the past several years. Comprehensive 

information has been provided in terms of the dispersion of the atoms, the interaction 

between single atoms and the support, and even in-situ dynamics of single atoms 

during catalysis. The developments on both atomic-resolution characterization 

techniques and theoretical modelling are unveiling the mysteries of SACs. Some 

reviews on SACs have been published in recent years,[11] but, to the best of our 

knowledge, none of them underlines the critical roles of supports. Over decades, 

research community has devoted to find effective approaches to strongly anchor the 

metal SAs to form highly stable and reactive catalytic active centres for desired 
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catalytic reactions, yet, it remains a grand challenge to guide the prediction and design 

of highly stable and reactive SACs under realistic conditions.  

1.2. Objectives of the Research 

The main science initiatives of preparing single atoms is to maximize the size effect 

of catalysts so that the use of single atoms would be more sustainable and extremely 

reduces the cost. However, the catalytic capability of single atom is dependent on the 

correlation with support surface, which leads to the polarization of these heteroatomic 

bonds and substantial charge transfer from the active metal to the support through 

strong metal-support interactions. These efforts have been focused on both developing 

and deploying technologies capable of distinctive catalytic properties, as well as those 

capable of improving the efficiency of the activity and selectivity with combining 

traditional metallic materials.  

The objectives of the research are to (1) design single atoms on the carbon shell to 

improve the ORR activity of the ultra-refined metallic Pt3Co particles; (2)  prepare a 

superior catalyst with Pt-skin on order PtBi intermetallic (PtBi@Pt) supported on 

graphene matrix with Pt single atoms to increase the efficiency on EOR; (3) 

successfully stabilize the single metal atom species (M1= Pt1, Ir1, Pd1, Ru1, Fe1, and 

Ni1) on distinc substrate, leading to the formation of a serials of M1@Co/NC catalysts, 

which subsequently corresponds to two different active sites of M1@Co and M1@NC, 

simultaneously accelerating OER and HER.  

1.3. Thesis Structure 

In this thesis, we highlight the roles of supports and understand the atomic-local 
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environments of SACs based on SMSI effects in terms of theoretical calculation and 

practical experiments. This review will involve the significant progress on the 

synthesis of novel SACs on various supports. We will then primarily focus on 

understanding the selection of supports on synthesis of SACs that are stable against 

sintering. Moreover, the underlying mechanisms for various SACs fabrication and 

corresponding electrocatalytic applications are summarized, which lead to a better 

understanding of the role of single-atom species, supports selection, and SMSI effects 

for catalytic properties. Besides, in order to study the influence of the single atom and 

heterostructures in energy conversion applications, detailed structural 

characterizations, electro-catalytic properties are performed, and their relationship is 

also discussed in depth in this thesis. The scope of this thesis work is briefly outlined 

as follows: 

    Chapter 1 introduces the background of single-based materials and extends their 

importance and significance in catalyst area. 

Chapter 2 presents a literature review on recent progress in preparation of single 

atoms on variety support, showing their strong and alternative interaction, which 

impact their intrinsic catalytic properties.  

Chapter 3 presents the detailed preparation methods, as well as the structural and 

electrochemical characterization techniques for materials with heterostructures. 

Chapter 4 investigates the performance of the hollow PtCo@single-atom Pt1 on 

nitrogen doped carbon towards superior oxygen reduction reaction. 

Chapter 5 introduces the fabrication of Ordered Platinum-Bismuth Intermetallic 

Clusters with Pt-skin, which is utilized for High Efficient Electrochemical Ethanol 
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Oxidation Reaction. 

Chapter 6 introduces a general method of π-electron assisting preparation of single-

atom sites on a heterogeneous support as bi-functional electrocatalysts towards full 

water splitting. 

Chapter 7 summarizes the works in this thesis and provides some outlooks for the 

design and synthesis of materials and for applications in catalytic areas.  
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Chapter 2 

2.  Literature Review 

2.1. The synergistic electronic effects between atomic 

dopants and supports 

  The foreign atoms implanted on a specific supports could change the electronic 

structure through the lattice distortion. These changes are based on the field of 

condense matter physics and will result in the materials features in a vast array of 

practical applications. However, the electronic structures are affected over the type and 

quantity of dopants. Recently, tremendous types of metal atoms have been employed 

as dopants in atomic level and investigated through attaching with various host 

materials, including metal compounds, carbon, modified carbon, and nano-sized metal 

particles over the years. The different local structure of these substrates provides 

alternative coordination environment and electronic correlation with atomic dopants. 

These effects play an essential role in a wide range of applications and must be 

investigated in advance. We listed the change of electronic structure with showing how 

the different metal atoms change the physical properties of the host materials.  

2.1.1 The electronic structure of atomic dopants on metal 

oxides 

The metal oxides were considered a very important class, which provides a controlled 

method for studying fundamental details concerning metal/oxide interfaces and also 
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creates a vast array of technologically significant applications. With the development 

of advances in the nanotechnical engineering of metal oxides, the modification on 

metal oxides were widely investigated from particle to single atom. The atomic 

dopants shown the unique quantum size effects, allowing modification and control of 

the electronic structure, and consequently the surface chemistry, chemical reactivity 

of the supports through incorporation of judiciously selected impurity atoms in 

otherwise inert substrates. Over the past decades, plenty of works theoretically and 

experimentally confirmed that the atomic-level metal doped metal oxides significantly 

affected their electronic structures, such as the absorption edges, fermi level, and band 

gap, which indeed further change their functionality in energy conversion system12-15. 

For example, the dopants change the band bending associated with the Fermi level can 

be very different even on the same face of same materials, because the position of 

Fermi level highly depended on the doped impurities and defects at very low 

concentrations16. If we use the TiO2 as a prototype, the impurity doping or ion 

implantation on TiO2 can narrow its wide band gap in order to create fascinating 

photocatalysts which is not only operated under ultraviolet (UV) light but also natural 

light. It has been found that the metal, such as 3d transition metal (V, Cr, Mn, Co, Ni, 

Fe), doped TiO2 can tune the localized structure and energy level. For instance, the 

dopants, including V, Cr, Mn, or Fe had the localized level of the t2g state lying in the 

band gap, the Co was even situated at the top of the valance band (VB). However, the 

Ni dopant are rather delocalized, thus significantly contributing to the formation of the 

Valance band with the O p and Ti 3D electrons16. Similarly, the 3d metal doped ZnO 

can alter the magnetic states form the spin-glass state to the ferromagnetic state, and 

also stabilize the ferromagnetic state due to the double-exchange mechanism17. Thus, 
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we believed that it is significant to have the reasonable localized structure and design 

new functional material through coordinating metal dopants with suitable metal oxides 

in atomic level. Quantum mechanical calculations also support the model proposed 

above, wherein the individual transition metal adatoms, such as Cu, Co, and Ni, are to 

be highly cationic on oxide surfaces. The isolated Cu on a cluster model of ZnO 

(0001̅)-O show the Cu is with charge and electronic character as same as the bulk CuO, 

forming oxidation state of Cu2+ ions12.  

 

Figure 2-1. Adsorption geometries of metals on CeO2(111) and MgO(100). (a–c) Top 

view of adsorbed late transition metals on the CeO2(111) surface at the threefold 

hollow site (Ag) (a), twofold oxygen bridge site (Ir) (b) and oxygen side-bridge site 

(Pd) (c). (d) Adsorbed metals on MgO(100) all prefer the anionic oxygen site. The 

black rectangle represents the unit cell used in the study. Metal–support interactions 

on CeO2(111) and MgO(100) supports. a–c, Isostructural charge density difference 

plots of Ir/CeO2(111) (e),  Ag/CeO2(111) (f) and Ir/MgO(100) (g). Blue denotes 

depletion of electron density while green represents accumulation. The isosurface level 

is ± 0.005 e Bohr−3. Reproduced with the permission.18 Copyright 2018, Nature 

Publishing Group. 
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  As discussed above, detailed discussion of atomic dopants on metal oxide is of high 

significance and recently, Senftle’s group did a systematic study on the interaction 

between single atoms and oxide supports via DFT.18 They concluded that the 

adsorption sites of single-atom transition metals on metal oxides supports includes 

threefold hollow sits, twofold oxygen bridge sites, oxygen side-bridge sites, and 

anionic oxygen sites. For example, based on energetically favourable configurations, 

Ag is favourably adsorbed at a threefold hollow site, Ir is bonded at a twofold oxygen 

bridge site, while Pd is located at an oxygen side-bridge site on the CeO2(111) 

substrate (Figure 2-1a-c); In contrast, all metal single atoms are adsorbed above the 

anionic oxygen on the MgO(100) surface (Figure 2-1d). To better understand the 

electronic mechanism of SMSIs, they simulated the electronic structures of two metal 

atoms with two oxide support: low oxygen affinity Ag and high oxygen affinity Ir and 

reducible CeO2(111) and irreducible MgO (100). As illustrated in Figure 2-1e, 

significant charge transfer takes place between Ir and the surface, which results in the 

charge redistribution from Ir adatom towards neighbouring oxygen and cerium atoms, 

thereby the formation of an Ir2+ states. Figure 2-1f demonstrates that the charge transfer 

between Ag and CeO2(111) are less, only forming an Ag+ state by reducing one Ce 

atom. By comparing the charge density difference plots of Ir1/CeO2(111) and 

Ag1/CeO2(111), green band linking Ir and Ce atoms is observed, which indicated a 

charge accumulation and revealed the presence of metal-metal binding. For the 

irreducible MgO (100), it is unable to readily accept electron density from a metal 

adatom but instead reduces the metal adatoms. The metal-support interactions are 

localized onto one surface oxygen via transferring electron density from the support to 
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the adsorbed Ir (Figure 2-1g). Therefore, the metal-oxide supports effect can be 

determined by factors as fellows. (1) Oxide formation enthalpy of metals: metals with 

high oxygen affinity, such as vanadium, would bind to any oxide supports stronger 

than those with low oxygen affinity, such as silver. (2) The adsorption strength of 

supports: typically, the reducible surface is able to accept donated electrons upon 

single-atom adsorption. The irreducible oxide supports do not interact strongly with 

metals. (3) Metal-metal interactions: besides the presence of metal-oxygen-metal 

bonds, the metal-metal interactions between the adatom metal and the support metal 

should be considered, which also play a role in determining the overall metal-support 

effects. These properties can be used to empirically screen interaction strengths 

between metal-support pairs, thus aiding the design and synthesis of single-atom 

catalysts on oxide supports. 

2.1.2 The electronic structures of single atoms on 

carbonaceous supports 

  Carbonaceous nanostructures were intensively used as supports to coordinate with 

boron, nitrogen and metal atoms since their rigid skeletons possess planar sp2 

molecular orbitals sandwiched between overlapping unsaturated delocalized 

electrons19. Also, the modified carbonaceous materials, which were functionalized by 

physisorption, impurity dopants and covalent bonding, have been widely used in 

molecular sensing, controlling, drug delivering, catalysts, and batteries20-23. Especially, 

developing stable metal-doped carbon nanostructures are highly attractive in catalytic 

applications.  
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Figure 2-2. (a) Carbon nanocones doped with Ni(II) and N atoms. Structures 1–6 

tetradentate nanocone ligand. (b) Schematic diagrams of the molecular orbitals that 

contain major Ni dz2 and s atomic orbital contributions for the cones of structures 1-

6. (c) Electron spin density (ESD) surface ( e/bohr3) of capsules 7, nanocapsule 7 is 

obtained from a 180°  cone frustrated by three pyrrole defects (top left); 8  is obtained 

by twelve B and six N atom doping of 7 (top middle); Nanocapsule 9 is obtained from 

180° and 120°  bottom cones, fused as in (12,0) CNT. The top portion differs from the 

carbon 180° cone in three N–C substitutions and a Ni atom at the tip instead of a C 

atom. The bottom portion differs from the carbon 120° cone in four N–C substitutions 

and a Ni atom at the tip instead of two C atoms (top right). Nanocapsule 10 contains 

Fe(II) and Ni(II). The octahedral coordination of Fe(II) is completed by the addition 

of a 2,2’-bipyridine (bpy) ligand (bottom left). Electrostatic potential (ESP) of capsule 

10 in the interval e mapped on the 0.0004 e/bohr3 total electron density surface 

(bottom right). Reproduced with the permission.24 Copyright 2009, Elsevier. 
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 At the early stage, researchers were looking into the catalytic activity of metal-ligands 

complex, such as Co-phtalocyanines25. With the further development, these complexes 

were sintered as metal-nitrogen-carbon catalysts. In particularly, when the metal atoms 

formed isolated metallic center, these metal atoms were called single atom. 

Interestingly, the host carbonaceous materials were strongly affected by the metal 

dopants in ground states, axial coordination, stability, electric field, spin and charge 

density. For instance, the different binding sites caused by metal dopants have different 

geometrical and electronic environment, because the distortion of metal atoms breaks 

the plane of symmetry and makes themselves coordinationally unsaturated, binding 

with different types of ligands. As shown in Figure 2-2a, the charges slightly decrease 

from the flat 1 and 4 to the buckled 3 and 6, but the buckling of the structure results in 

an asymmetric distribution of the Ni 4s and 3d orbital lobes, meaning that the ligands 

approached different electronic environment from the top and from the bottom (Figure 

2-2b). Although the two ligand binding sites of cones 5 possess different geometries, 

they have similar electronic structure due to its unique bowl –shaped ligand. These 

results shows that even same metal atom doped on the same materials, once they have 

different geometries, the electronic structures and the bonding environment would 

hugely affected. In the real applications, nitrogen doped carbon was always used to 

anchor single atoms, the co-doped nitrogen and metal atom (capsule 8) would spread 

the spin density over large part of the capsule of the undoped one (capsule 7) and 

theoretically, the induce of two different metal coordination (capsule 9) can further 

increase the spin polarization (Figure 2-2c). The largest metal atom charge is obtained 

for the Fe atom of capsule 10 due to its highly charge polarized24. 
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Figure 2-3. (a) Optimized structures of different substrates: (I) Pristine graphene (g). 

(II) Pyridinic N1-doped graphene (g-P-N1). Optimized structures of (III) Pt1 

adsorption on pristine graphene (g-Pt1), (IV) Pt1 adsorption on g-P-N1 (g-P-N1-Pt1). 

The grey, blue and cyan balls denote the carbon, nitrogen and platinum atoms, 

respectively. Reproduced with permission.26 Copyright 2015, Nature Publishing 

Group. (b) The EXAFS fitting curves of Pt-ISA/NG at R space.27 Copyright 2018, 

American Chemical Society. (c) Comparison between the experimental Ru K-edge 

XANES spectrum of Ru-N/G-750 and the theoretical spectrum calculated from the 

depicted structures using the full-potential FDM.28 Copyright 2017, American 

Chemical Society. (d) The proposed Co/Ni/Fe‐Nx architectures. Reproduced with 

permission.29 Copyright 2016, Wiley-VCH; Reproduced with permission.30 Copyright 

2017, American Chemical Society; Reproduced with permission.31 Copyright 2017, 

Wiley-VCH. (e) The fitting results of the EXAFS spectra of Ru SAs/N−C.32 Copyright 

2017, American Chemical Society. 
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  Furthermore, the co-doped nitrogen can stabilize these metal atoms from aggregating, 

forming metal particles. Typically, there are three types of N in the N-doped C, 

including graphitic-N, pyrrolic-N, and pyridinic-N.27,32,33 The pyrrolic-N and 

pyridinic-N are located in a π conjugated system,34 and their p-electrons are believed 

to stabilize metal single atoms. In order to understand the electronic and structural 

properties between single metal atoms and N-doping supports. X-ray absorption 

spectroscopy (XAS) has been utilized to probe metal-support interface. For the Pt1, 

Liu et al. found that individual Pt single atoms could be homogeneously anchored on 

N-doped carbon black (N: 2.7 wt. %). In contrast, when the carbon support without N-

doping, besides the Pt1 atoms, Pt nanoparticles co-existed as well with the same Pt 

loading ratio (0.4 wt.%) and synthesis procedures. This result indicated that the N-

doping of carbon support plays a critical role in effectively anchoring Pt1 atoms and 

prevent their aggregation. As illustrated in the Figure 2-3a, the pyridinic (P)-N has 

been identified as the strong anchoring sites for Pt single metal atoms due to the 

modified interfacial interaction. The adsorption energy of Pt1 on g-P-N1 is -5.35 eV, 

which is much lower than that on pristine graphene (-1.56 eV). This suggests that the 

Pt1 can be selectively trapped strongly by g-P-N1 site and thus improve and stabilize 

the dispersion of Pt single atoms on N-doped graphene surface, confirming the vital 

role of support properties on the formation of single atoms.35 Recently, Li’s group 

achieved a high Pt1 loading ratio up to 5.3 wt. % on N-doped graphene via a Na2CO3 

salt-assisted one-pot pyrolysis strategy27. A main peak at 1.61 Å in the FT-EXAFS 

curve for this sample corresponds to Pt-N coordination and can be further calculated 

to be Pt-N4 configuration (Figure 2-3b). On the N-graphene support, Ru-N4 moieties 

are represented by a porphyrinic or pyridinic geometry (Figure 2-3c)28. The ZIF-8-
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derived Fe1/NC and Ni1/NC, and Zn/Co-ZIF-67-derived Co1/NC show a 4, 3, and 2 

metal coordination number with surrounding N atoms, respectively (Figure 2-3d)29-31. 

With precise N-coordination, the high metal loadings of 1.5-4 wt % is achieved. For 

the Ru1/N-C from UiO-66-NH2, the Ru loading ratio is only 0.3 wt %, which 

corresponds a coordination environment of Ru-N(C2) in Figure 2-3e32.  

2.1.3 The electronic structures of single atoms on alloy and 

other supports  

 

Figure 2-4. (a) Structural model of an ideal, truncated octahedral nanoparticle with an 

optimal single-atomic-site coverage. Although strictly not representative of the 

nanoparticles synthesized here, this model provides a reasonable estimate of the upper 

concentration limit for such single-atom Pt sites.  I-IV, Models that depict the proposed 

evolution of PtAu surface structures from single-atom Pt sites (II) to few-atom Pt 

clusters (III) to a complete Pt shell (IV) as a result of increased Pt content. (b) DFT-

calculated binding of CO at PtAu surfaces. I–III, Illustration of CO adsorption modes 
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on model (111) lattices of pure (I), few-atom (II) and single-atom (III) Pt surfaces that 

shows the apical (i), bridging (ii), hexagonal close-packed hollow (iii) and face-centred 

cubic hollow (iv) coordination sites. IV,Calculated adsorption energies for the 

indicated CO adsorption sites. 36 Copyright 2018, Nature Publishing Group. (c) The 

measured valence photoemission spectra (hν =  150 eV) of an AgCu alloy that 

contained 0.3 at% Cu and metallic Ag reveal the narrow Cu 3d states at a binding 

energy of ~2.5 eV. (d) The difference spectrum of AgCu and Ag, plotted with a Cu 

reference spectrum, demonstrate that the Cu 3d states in AgCu are one-fifth the width 

they are in bulk Cu.37 (e) Spin density isosurfaces of substituted 1H-MoS2 at Θ=1/48. 

The dashed line denotes the 4 × 4 supercell used in the calculations, green and gray 

distributions correspond to positive and negative values, respectively.38 Copyright 

2018, Nature Publishing Group. 

In general, the surface metal-matal bond created large perturbations in the electronic, 

chemical, and catalytic properties of metal center39. Especially, it is believed that the 

dissimilar metal atoms can produce charge transfer, which is the key role in modifying 

the chemical properties of the metal matrix layers and determining the cohesive energy, 

comparing with the bulk alloys. Since the isolated metal atom shown a tendency to 

fully use of the large number of valence orbitals, controlling the donation and 

acceptance of electrons, the single atom would provide a useful way to tune a metal 

catalyst’s electronic structure and thus enhance its performance via its isolating 

activation ad desorption steps40. For instance, Peng’s group compared the adsorption 

energy of CO on pure Pt surface, few Pt atoms and single Pt atom on Au particles as 

shown in Figure 2-4a. The results shown that the CO adsorption is weakened and 

reduced from -1.268Ev on bulk Pt to -1.063 eV and -1.032eV on few-atom and single-
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atom surfaces (Figure 2-4b). Thus, this weakened CO adsorption can keep CO from 

poisoning the surface and enhance the formic acid oxidation (FAO) reaction36. Also, 

scientists found that the d band of 0.5eV for the single metal Cu (solute atom) doped 

on Ag (matrix atom) became several times narrower than those of 2.5eV for bulk 

material Cu (Figure 2-4c). The computational calculation and photoemission 

spectroscopy measurements revealed that the solute’s d states resemble those of a free 

atom, whereby the d-electron orbitals are nearly degenerated, showing a clear charge 

transfer (Figure 2-4d). Especially, when it is in dilute concentrations, the solute-solute 

bonding disappeared and exhibited a weak interaction with the electronic states of the 

matrix element due to the minimal energetic and spatial overlap between the solute 

and matrix atoms37.  

  Besides metal oxides, carbon-based materials, and metal alloy, there are other 

supports, which was also used as host materials, including metal sulphides, metal 

nitrides, and metal carbides. The different host materials provides varieties of local 

structures due to the change of thickness, phases, and strains. The alternation of the 

local environment of foreign atoms arise a series of differences of the surface 

engineering, such as orbital exchange-coupling interaction, the electronic band gap, 

electron density, and adsorption energy. For instance, Li’s group calculated the change 

of structural, electronic, and magnetic properties of MoS2 through using a full range 

of substitutional dopants form non-metal to metal atoms. As shown in Figure 2-4e, 

both of the non-metal and metal doping shows a more stable configurations compared 

with the pristine ones. The spin resolved densities of the non-metal substitutions (H, 

B, N, F) indicated that the spin polarizations are mainly localized on dopants and 

adhesive atoms, while the polarizations of metal substitutions (V, Cr, Mn, Fe, Co) are 
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mostly localized on the metal atoms. Also, based on the TDOS and PDOS, it is 

suggested that the impurity states of non-metal are hybridized between 2p states of 

non-metal atom and 4d states of nearest Mo atoms, rarely contribution from the 3p 

states of S atom. The impurity states of metal atoms, however, origin form both the 4d 

orbital of metal atoms and Mo atoms38. 

  Thus, the theoretical predictions have many times confirmed that the heterogeneous 

dopants hugely affected the local structure of host materials, changing their 

performance in various potential applications as well. It is of highly significance to 

prepare these promising single-atom based materials in the real use. Fortunately, 

researchers have developed ways to achieve these ideal single atom structures through 

considering the unique properties of varieties of supports, such as metal oxide, carbon, 

modified carbon, and metal particles. 

2.2. Support effects for SACs synthesis  

The SACs is hardly stable since the surface energy is ultimately high due to the 

smallest particle size. The strong interaction between metal and support plays an 

essential role in creating stable and finely dispersed SACs and prevents them from 

aggregation. Three factors, including precursors, supports, and synthetic procedures, 

are ultimately critical in controlling the interactions and optimizing the dispersion of 

isolated metal atoms. The essential prerequisite of SACs fabrication is to rationally 

select supports with specific adsorption sites, which could stabilize single atoms under 

realistic reaction conditions with elevated temperatures and pressures. Three 

representative supports with different local environments have been displayed, 

including metal oxides, two-dimensional materials, and the surface of metal 
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nanoclusters. Correspondingly, we displayed the commonly used supports and devoted 

to understand the interaction between single atoms and these classic supports, which 

lays significant foundation for the design and synthesis of single-atom catalysts. Table 

2-1 provides a partial list of the supports and synthesis methods for producing 

supported SACs.  

2.2.1 Metal oxides 

 The study of metal particles on oxide supports have received intensive attentions in 

heterogeneous catalysis, owing to the key role of the nature of the interaction of a metal 

particle with an oxide support in catalytic activity and selectivity. Low-index oxide 

facets of oxide supports are conducive to adsorption of metal catalyst, such as CeO2 

(111)41,42 and Fe3O4 (001)43-45, in which the surface cation vacancy structures render 

extraordinary thermal stability of precious metal adatoms and prevent them 

agglomeration into clusters at high temperature (700 K)46-48. The support with oxidic 

defects is preferred with surface oxygen anions and OH- groups as ligands, which lone 

electron pairs on oxygen for dative coordination and lead to the stronger interaction of 

unsaturated surface centres with isolated metal species, such as on ZnO,64,90 MgO,91 

Fe2O3,
90 Al2O3,

90 and TiO2.
92 To design SACs, it is crucial to select a support which 

allows creation of defined metal sites on the surface and inhibits the aggregation of the 

metal atoms toward nanoparticles. A single metal atom could substitutionally replace 

a surface cation of a metal oxide support, stabilizing the single metal atoms via a 

charge-transfer mechanism. Many studies suggest that surface defects of oxide-

supported metal clusters could provide anchoring sites for metal clusters and even 

single atoms.93-95 The single metal atom might strongly anchor into the support due to 

its interaction with the neighbouring oxygen anions in a form of metal-O-support 
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bonding, leading to the realization of isolated single atoms. Moreover, the metal-metal 

interactions between the adatom metal and the support metal can partially determine 

metal atom adsorption energy as well. 

Table 2-1. A partial list of the supports and synthesis methods for producing supported 

SACs towards various catalytic reactions. 

Support SAs Methods Applications Ref 

CeO2 Au1 

Pt1 

 

Coprecipitation-

calcination; 

Atom trapping; 

Deposition-

precipitation; 

Preferential oxidation of 

CO (PROX); 

CO oxidation; 

49-51 

Al2O3 Pt1 

 

 

Au1 

Mass-selected soft-

loading; 

Sol-gel calcination 

method; 

Impregnation-

precipitation; 

Laser ablation; 

CO oxidation; 

Hydrosilylation reactions; 

 

NO oxidation; 

52-56 

FeOx Ir1 

Au1 

Pt1 

Coprecipitation-

calcination; 

Adsorption method 

Water gas shift (WGS) 

reaction; 

CO oxidation; 

57-61 
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 Coprecipitation-

calcination 

Reduction of NO by H2; 

Hydorogeneation of 

nitroarenes 

TiO2 Pd1 

Pt1 

Impregnation-

calcination 

 

Styrene hydrogenation; 

CO oxidation; 

62,63 

ZnO Pt1 

Au1 

Adsorption method Methanol Steam Reforming 64 

ZnZrOx Au1 Impregnation-

calcination 

Ethanol dehydrogenation 65 

MnO2 Ag1 Annealing method HCHO oxidation 66 

SiO2 Pt1 Impregnation-

calcination 

CO oxidation; WGS  67 

VO2 Rh1 Adsorption method Ammonia–borane 

hydrolysis 

68 

WOx Pt1 Impregnation-

calcination 

Selective hydrogenolysis of 

glycerol 

69 

MoS2 Pt1 

Ni1 

Co1 

Hydrothermal 

method; 

Hydrothermal 

method- calcination; 

hydrogen evolution reaction 

(HER); 

Hydrodeoxygenation 

reaction (HDO) 

70,71  
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TiN, TiC Pt1 IWI method Oxygen reduction reaction 

(ORR) 

72,73 

Graphene 

(G) 

Pt1 

Co1 

In1 

Pd1 

Ni1 

Electron beam; 

Atomic layer 

deposition (ALD); 

Sputtering tool; 

Chemical exfoliation 

Methanol oxidation reaction 

(MOR); 

Hydrogenation of 1,3-

butadiene; 

HER; 

74-77 

Carbon Nb1 

Au1 

Arc-discharge 

approach; 

Impregnation-

calcination 

ORR; 

Acetylene 

hydrochlorination 

78,79 

N-doped 

Graphene/ 

carbon 

black 

Co1 

Ru1 

Pt1 

 

Iyophilization-

annealing; 

Impregnation-

calcination; 

HER; 

CO2 reduction; 

ORR; 

 

26,28,35 

C3N4 Pd1 

Pt1 

Co1 

 

Deposition-

precipitation; 

Impregnation-

calcination； 

Hydrogenations; 

Photocatalytic H2 

Evolution; 

Visible-light CO2 reduction; 

80-82 
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 Iyophilization-

annealing; 

ORR; 

OER; 

ZIF-67 

derivatives 

Co1 Hydrothermal 

method-pyrolysis; 

Dielectric barrier 

discharge plasma 

treatment; 

ORR; 

OER; 

29,83 

ZIF-8 

derivatives 

Fe1 

Ni1 

Hydrothermal 

method-pyrolysis; 

Precipitation-

pyrolysis; 

ORR; 

CO2 electroreduction; 

30,31 

UiO-66 

derivatives 

Ru1 Impregnation-

calcination 

Hydrogenation of Quinoline 32 

Porphyrinic 

Triazine-

based 

frameworks 

Fe1 Ionothermal 

synthesis- pyrolysis 

ORR; 84 

Cu particle Pd1  

Ni1 

 

Galvanic replacement 

method; 

Hydrogenation of butadiene 

to butenes; 

Selective hydrogenation of 

phenylacetylene; 

85-89 
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Incipient wetness 

coimpregnation 

method; 

Semihydrogenation of 

acetylene; 

Non-oxidative 

dehydrogenation of ethanol 

to acetaldehyde; 

 

 

Figure 2-5. (a) Structure and energetics of the anchored Pt2+ species on ceria 

nanoparticles determined by theory. The Pt2+ is strongly bound at the (100) nanofacets 

of the ceria nanoparticle. Color coding of atoms: red O, beige Ce4+, brown Ce3+, blue 

Pt, white H. Reproduced with permission.96 Copyright 2014, Wiley-VCH. (b) 

Illustration of Pt nanoparticle sintering, showing how ceria can trap the mobile Pt to 

suppress sintering. Cubes appear to be less effective than rods or polyhedral ceria. 

Reproduced with permission.51 Copyright 2016, American Association for the 
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Advancement of Science (AAAS). (c) Illustration of the different ability on oxidizing 

CO via altering the relative chemical potentials between SAs and metal nanoparticles 

(NPs) on ceria. Reproduced with permission.97 Copyright 2017, American Chemical 

Society. (d) Schematic illustration of the 0.2Pt/m-Al2O3-H2 synthesis process: 

Aluminum isopropoxide, P123, and H2PtCl6 mixture ethanolic solution self-assembled 

into a gel after ethanol evaporation at 60 °C. The gel was calcined at 400 °C and 

reduced in 5% H2/N2 at 400 °C, forming the single atom catalyst 0.2Pt/m-Al2O3-H2. 

Reproduced with permission.53 Copyright 2017, Nature Publishing Group. 

2.2.1.1. CeO2 

Ceria surfaces with a limited amount of low coordinated surface sites can adsorb noble 

metal atoms and remain them stable in real reaction conditions.42,96 Via the DFT 

simulation (Figure 2-5a), Bruix et al. selected the cuboctahedral Ce40O80 nanoparticles 

as a representative model of nanostructured ceria, which features a truncated 

octahedral shape with O-terminated (111) and a fraction of (100) nanofacets. The (100) 

surface is much less stable than the (111) surface of ceria.98 They identified (100) 

nanofacets as an effective surface to achieve atomically stabilized dispersion without 

bulk diffusion. The Pt2+ (d8) ions are well confined in square O2- surface pocket at a 

(100) nanofacet of CeO2, forming a square-planar PtO4 unit as a Pt2+-containing 

moiety. The theoretical calculation speculated that the adsorption energy of the 

anchored Pt1 is high enough to withstand thermally-induced agglomeration into large 

nanoparticles and activity loss by diffusion into the CeO2 bulk.96 Dvorak and 

colleagues emphasized the importance of defect sites on oxide support for single-atom 

catalyst stabilization. They realized the single Pt2+ dispersion at the step edges of 

highly defined monolayer ceria (111) surfaces. Jones and colleagues found that 



                                                                               

 

 

Chapter 2: Literature Review  28 

conditions under which nanoparticles emit mobile species are ideal to form single 

atoms if the mobile species can be effectively captured. Initially, a vapor-phase was 

utilized to transfer Pt from a metal foil to alumina.99 As shown in Figure 2-5b, when 

the Pt/La-Al2O3 was physically mixed and sintered at 800 oC in flowing air, the ceria 

rods and polyhedrals can similarly trap the mobile Pt at the surface to effectively 

suppress sintering. In contrast, the cubic CeO2 shows the lowest reactivity. They 

demonstrated that the Pt single atoms were randomly anchored on the ceria surfaces 

without any preference for specific facets. Atom trapping is feasible for preparing 

single-atom catalysts, which requires a supply of mobile atoms, a support that can bind 

the mobile species, and reaction conditions that are favourable to Ostwald ripening.51 

Qiao et al. prepared two CeO2-supported Au SAs with loading ratio of 0.05 and 0.3% 

Au by a simple adsorption strategy, which were denoted as 0.05Au1/CeO2 and 

0.3Au1/CeO2, respectively The atomic high-angle annular dark-field scanning 

transmission electron microscopy (HAADF-STEM) images showed that Au1 atoms 

were situated on the Ce columns of CeO2 nanocrystallites, implying that the Au1 atoms 

were very likely anchored onto the surface Ce vacancy sites.49 Most recently, Li’s 

group revealed that Au1 prefer to anchor at CeO2 step sites rather than terrace surface 

or on Au NPs (Figure 2-5c). Moreover, for CO oxidation, they found that Au1 exhibit 

little redox coupling with the irreducible support and only weakly bind CO; but the 

positively charged Au+ could be formed due to the strong coupling with the reducible 

support, leading to vastly stable CO adsorption.97  

2.2.1.2. Al2O3 

Various modification has been made on Al2O3 to accommodate single atoms, such as 

porous Al2O3, θ-Al2O3, and γ-Al2O3.
52-56 Comparing with FeO and MgO, single atoms 
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doped on Al2O3 can modify Langmuir−Hinshelwood (L-H) mechanism due to the inert 

nature of Al2O3, which was considered to be favorable to keep the high active single 

atoms from agglomeration. Noble metals, such as Pt and Au, have been successfully 

trapped on these Al2O3 based materials. It was reported that the single atoms, like Pt1, 

can be anchored in the inner surface of the support, allowing these atomic species 

stable under oxidative and reductive atmospheres at high temperatures. It is believed 

that these trapped single atoms can modify the inert Al2O3 and show exceptional 

catalytic performance.52  

 Significantly, they developed a modified sol-gel solvent vaporization self-assembly 

method (Figure 2-5d), which spontaneously assembled into a highly ordered, 

hexagonally arranged mesoporous structure with Pt precursor encapsulated in the 

matrix.42 Besides the single Pt atoms, Au single atoms modified the inert Al2O3. It is 

found that the aluminium oxide clusters can react with single atom Au, attracting O2, 

forming AuAl3O3
+, AuAl3O4

+, and AuAl3O5
+ cluster under thermal collision 

conditions. The attracted O2 molecular on the gold-aluminium bond plays a key role 

on the catalytic oxidation of carbon monoxide (CO). Specifically, the extra O atom on 

the AuAl3O5
+ clusters make the Au-Al bond cleave and release valence electrons, 

which reduce oxygen and break the O-O bond, assisting to improve the cycling 

performance of CO.56 These results indicate that Al2O3 support is very vital to form 

unique active bonds with these single atoms in the oxidized catalytic reaction. 
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Figure 2-6. (a-c) HAADF-STEM images of Ir1/FeOx sample, Au1/FeOx sample and 

Pt1/FeOx sample. Reproduced with permission.100 Copyright 2014, American 

Chemical Society; Reproduced with permission.58 Copyright 2015, Springer; 

Reproduced with permission.61 Copyright 2011, Nature Publishing Group. (d) The k3-

weighted Fourier transform spectra (the above) and the normalized XANES spectra 

(the bottom) of sample A (Pt1/FeOx), sample B (Pt1/FeOx with loading mass of 2.5 wt% 

Pt), PtO2 and Pt foil. Reproduced with permission.61 Copyright 2011, Nature 

Publishing Group. (e) The proposed reaction pathways for CO oxidation on the 

Pt1/FeOx catalyst (sample A). Reproduced with permission. 61 Copyright 2011, Nature 

Publishing Group. 

2.2.1.3. FeOx 

 As early as 1999, Boccuzzi et al. reported that FeO(OH)x surfaces are necessary for 

the preparation of active Au1/FeOx catalysts via FTIR study.101 Via a co-precipitation 
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method, Ir1/FeOx catalysts were synthesised with loading ratio of 0.01 wt. %, which 

were denoted as 0.01Ir1/FeOx and 0.22Ir1/FeOx, applying into water-gas shift (WGS) 

and CO oxidation. The 0.01Ir1/FeOx achieved one of the most active catalysts reported 

for WGS. On the other hand, the 0.22 Ir1/FeOx was verified a higher energy barrier 

than Pt1/FeOx catalysts for CO oxidation, which is responsible for its lower activity. 

This work revealed the fundamental mechanism of isolated surface atoms and could 

contribute to design various single-atom catalysts with high activity.57,102 A similar 

0.03Au1/FeOx (Au loading ratio of 0.03 wt.%) was prepared via the modified co-

precipitation method by the same group, serving as an important catalyst candidate for 

CO oxidation. In spite of high activity, it is surprising that it is extremely stable, even 

at a high temperature (400 oC). They further elucidated the mechanism for the 

formation of ultrastable single gold atoms, in which the concept of strong covalent 

metal-support interactions (CMSI) was firstly introduced. They proposed that Au1 

atoms were positively charged by occupying Fe vacancy sites of the FeOx support, 

realizing the strong CMSI between Au atoms and the lattice O atoms of the support 

surface.58 Qiao et al. pioneeringly reported the synthesis of sing-atom Pt supported on 

iron oxide (Pt1/FeOx) via a co-precipitation method. The Pt loading ratio is 0.17 weight 

percent (wt.%). The low Pt loading ratio and high surface area of FeOx nanocrystallite 

support simultaneously promote the isolated single atoms dispersion. A serial of the-

state-art-of techniques are exploited to discern the only dispersion of isolated Pt, 

including aberration-corrected high-angle annular dark-field scanning transmission 

electron microscopy (HAADF-STEM) images and X-ray absorption (XAS) spectra. 

As displayed in Figure 2-6a-c, for Pt1/FeOx catalyst, they demonstrated that the 

structure defects and the hydroxyl groups derived from poorly crystallized and large-
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surface area FeOx support plays a critical role in stabilizing the Pt single atoms. 

Furthermore, extended X-ray absorption fine structure (EXAFS) and X-ray adsorption 

near-edge structure (XANES) spectra were measured and analysed to reveal the 

presence of Pt-O coordination and the positive charges of Pt single atoms due to the 

SMSI effect between Pt and FeOx support. They concluded that the electron transfer 

from Pt atoms to the FeOx surface leads to the positive charge of Pt atoms; The strong 

electrostatic and covalent interactions between high-valent single Pt atoms and the 

FeOx surface are responsible for the stability of the single Pt atoms on the FeOx support, 

ultimately accounting for the excellent catalytic activity of the Pt1/FeOx catalyst on CO 

oxidation.61 The HAADF-STEM images visually show the dispersion and 

configuration of Ir1 and Au1 single atoms (marked by the white circles) on the surface 

of FeOx supports (Figure 2-6d-e). Inspired by these works, Li et al. investigated the 

catalytic properties of various single-atom catalysts M1/FeOx (M = Au, Rh, Pd, Co, Cu, 

Ru, and Ti) by means of density functional theory (DFT) computations, which shed 

light on developing superior catalysts for CO oxidation. As illustrated in Figure 2-6f, 

the most stable sites for all the single metal atoms are vacancy-free 3-fold hollow sites, 

which induced significant charge transfers from the single-metal atoms to iron-oxide 

surface. The DFT calculation verified that the high stability could be indicated by the 

strong binding energies and diffusion barriers of the single-metal atoms on the FeOx 

support.  Generally, oxygen vacancies are inevitable, in which the binding strengths of 

the single metal atoms to the less coordinated oxygen (two M-O bonds) are weakened 

and the electron transfers from metal atoms to the surface are reduced as well (Figure 

2-6g).103  

2.2.1.4 TiO2 
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Defects on reducible oxides, such as TiO2, can stabilize atomically dispersed metal 

atoms and attract researchers to develop various strategies of doping single noble 

atoms. For instance, it has been reported that the ethylene glycolate (EG)-stablized 

ultrathin TiO2 nanosheets can uniformly load Pd single atoms with a high ratio of 1.5%. 

The EG modified TiO2 nanosheets were critical to anchor Pd single atom and induce 

strong Pd-O interfaces to activate H2 in a heterolytic pathway rather than the homolytic 

pathway on conventional Pd heterogeneous catalysts. Pd1/TiO2 demonstrated a better 

hydrogenation of polar unsaturated bonds, owing to the yields of Hδ- and Hδ+. The 

Pd1/TiO2 were also considered as an excellent catalyst for removing nitrogen oxides 

(NO).62 Alternatively, Phillip’s group used these ultra-refined nanosized TiO2 particles 

(~5 nm) to separate Pt atoms via depositing precious metal atom on each TiO2 particles 

to prevent the agglomeration. To use different ratio of additive, the Pt atoms were 

successfully loaded on TiO2 particles with morphology of single atom, clusters, and 

particles. This work provided a characterization approach to evaluation the catalytic 

activity of each Pt single atom site, that is, using the correlated scanning transmission 

electronic microscopy (STEM) imaging and CO probe molecule infrared spectroscopy 

(IR), the strong IR signatures of CO bound from Pt single atoms shows a two-fold 

great than these Pt peroxided clusters.52 Besides the coordination of single atoms on 

TiO2, He’s group demonstrated that Au single atoms can be obtained via the reaction 

between Au3+ with TiO2, forming AuTi2O5
-. The closed-shell gold containing 

heteronuclear oxide AuTi2O5
- are reactive toward CO oxidation than the 

corresponding open-shell titanium oxide cluster anions. The essential role of Au single 

atoms have been confirmed by theoretical calculations, indicating that gold atom can 

act as a CO trapper and electron acceptor.104 
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2.2.1.5 Other metal oxides 

Besides these popular metal-oxides based substrates mentioned above, variety of other 

metal oxides, including manganese oxide (MgO), vanadium oxide (VO2), amorphous 

silica (SiO2), and tungsten oxide (WOx), have also been realized that can use for 

coordinating single atoms. For instance, ZnO NWs consisted primarily of (1010) facets 

were utilized for the single Pt1 and Au1 atomic dispersion. The single atoms were 

identified to anchor at the surface Zn lattice sites and stabilized by the lattice oxygen. 

Moreover, the theoretical calculations confirmed that the coordination binding 

between single precious metal atoms and oxygen can largely enhance the reaction 

activity, and change the reaction selectivity. When utilized in methanol steam 

reforming (MSR), the Pt1/ZnO exhibited 1000 times higher turnover frequency than 

the pristine ZnO. The MSR experiments showed that Au1/ZnO and Pt1/ZnO catalyst 

delivered much higher conversion than the ZnO NWs, which was 28 %, 43%, and 

~10%, respectively. By contrast, the Pt1/ZnO outperformed due to its high selectivity 

of ~88% toward CO2.
64 Wang et al. reported a ZnZrOx support by incorporating ZnO2 

to modulate the acidity of the ZrO2 surface, which could provide more binding sites 

for atomic gold and much better stabilizes them against growth than either of the neat 

oxides. With the loading ratio of ~0.5 wt%, the active Au-Ox suface species could 

suppress undesired dehydration reaction and form acetaldehyde and hydrogen with 

100% selectivity for ethanol at low temperature (200 oC), even in the presence of 

water.65 The isolated Au-Ox species, therefore, play a key role in the activation of 

ethanol and its subsequent dehydrogenation reaction. Significantly, hollandite-type 

manganese oxide nanorods (HMO) can insert with Ag chains to expose the terminal 

Ag site, forming Ag single atom. This strategy was elaborately designed with the 
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amount of Ag to open the HMO tunnels to expose catalytically active sites of Ag atoms. 

Also, the strong intrinsic EMSI played a key role in improving the activation ability 

towards oxidation, due to the high depletion of the d electronic state of the silver active 

sites.66  

2.2.2. N-doped Carbonaceous supports 

It is ideal to utilize carbonaceous supports in SACs with the viewpoint of low cost. 

Direct single-atom adoption on graphene by ion implantation is of limited success. 

Meanwhile, the strong covalent C−C bonds render a substitutional doping by diffusion 

less efficient and compatible with tight thermal budget.105 Thus, utilization of surface 

uncapped sites or aggregation inhibitors on the carbonaceous supports is vital to 

successfully stabilize the single metal atom species. Several reports have achieved 

single-atom doping on graphene via multi-step procedures with complex graphene 

modifications and inaccessible loading techniques, such as Pt1, Co1, In1, Pd1, and 

Ni1.
74-77 Additionally, the single-atom niobium and gold realized atomically dispersion 

in graphitic layers of carbon.78,79 Since the anchoring sites on the C supports are 

acquired with limit but not always abundant, which is prone to result in extremely low 

concentrations of single metal atoms, thus depriving the general utilization of this type 

of support. 

2.2.2.1 Nitrogen-doped graphene 

It is ideal to atomically disperse single atoms on thin two-dimensional substrate, which 

represents the ultimate low-end limit for SACs, exposing the most active sites with 

enlarged active surface area. Practically, nitrogen-doped graphene with rich anchoring 

sites and ideal 2D graphitic framework served as the most accessible support. As 



                                                                               

 

 

Chapter 2: Literature Review  36 

shown in Figure 2-7a, Tour’s Fannealing graphene oxide (GO) and small amounts of 

Co, Ru, and Fe salts in a gaseous NH3 atmosphere.26,28,106 A hybrid with atomically 

dispersed Co onto nitrogen-doped graphene (Co1-NG) was obtained (Figure 2-7b), 

which showed that the Co1-NG possessed the similar morphology to graphene without 

any particles. The presence of Co1 atoms was confirmed by the bright dots. They 

performed extended X-ray absorption fine structure (EXAFS) analysis at the Co K-

edge. The wavelet transform (WT) analysis (Figure 2-7c) indicated that Co single 

atoms are in the ionic state with nitrogen atoms. Hence, nitrogen doping on the 

graphene could serve as sites for Co atomic dispersion. The maximal efficiency of Co 

SAs enables the Co1-NG as a highly active and robust HER catalyst in both acid and 

base media. Combined with the low-cost and scalable preparation method, the Co1-

NG is expected to be a promising candidate to replace Pt for water splitting 

applications.26 For the Ru1-NG, the EXAFS Fourier transforms and WT in Figure 2-

7d displayed the signal at ~1.5 Å and one WT intensity maximum at 5.4 Å-1, which 

are associated with the presence of Ru-N(O).28 Meanwhile, atomic Fe single atoms and 

clusters on NG (Fen-NG) was fabricated via the similar process, which was estimated 

for CO2 reduction to CO (Figure 2-7e). With Fe-N4 moieties embedded in N-doped 

graphene. The high selectivity and activity of CO2 to CO is ascribed to the synergetic 

effect of the Fe-N4 moieties and N-doping on the graphene surface (Figure 2-7f).106 In 

addition, it is reported that there are some other organic group can be used to modify 

the carbon, showing a strong interaction with single atoms. Yan’s group demonstrated 

that the phosphomolybdic acid (PMA)-modified active carbon stabilized the Pt single 

atoms with a high Pt loading mass (close to 1%). It shown that the same loading mass 

of Pt atoms were severely aggregated without the modification of PMA, forming 
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particles. The thermodynamic and kinetic control were considered as the key role to 

successfully synthesize single atom materials, that is, the various sites can provide 

vacancy to accommodate Pt atoms and the kinetic barrier of agglomeration for atoms 

anchored on spatially separated PMA species is substantially higher than those on 

support without modification.107 

 

Figure 2-7. (a) Schematic illustration of the synthetic process for the Ru1/Co1/Fen 

catalysts on nitrogen-doped graphene (NG). Reproduced with permission.26 Copyright 

2015, Nature Publishing Group; Reproduced with permission.28 Copyright 2017, 

American Chemical Society; Reproduced with permission.106 Copyright 2018, Wiley-

VCH; respectively. (b) STEM image of Co1-NG, inset is the SEM image of NG. (c) 
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Left: Wavelet transforms for the Co1-NG and Co-containing graphene (Co-G). 

Reproduced with permission.26 Copyright 2015, Nature Publishing Group. Right: 

Fourier transform magnitudes of the experimental Ru K-edge EXAFS spectra of the 

Ru-N/G samples prepared under different conditions along with reference materials. 

(d) The Fourier transforms are not corrected for phase shift. WT for the k3-weighted 

EXAFS signal of sample Ru-N/G-750. The maximum at 5.5 Å−1 is associated with the 

Ru-N(O) contributions. Reproduced with permission.32 Copyright 2017, American 

Chemical Society and (e) The STEM image of high density atomic Fe dispersion on 

NG. Reproduced with permission.106 Copyright 2018, Wiley-VCH (f) Theoretical 

calculations and proposed mechanism on the nitrogen-coordinated Fe catalytic site. a) 

Free energy diagram for electrochem-ical CO2 reduction to CO on Fe–N4 moieties 

embedded on graphene sheets. The proposed associative mechanism involves the 

following steps: (1) CO2 + * + H+ + e− → COOH*, (2) COOH* + H+ + e− → CO* + 

H2O, (3) CO* → CO + *, where * denotes the active site on the catalyst surface. b) 

Top view of the optimized structures for Fe–N4 moieties embedded on graphene layer 

and potential nitrogen-substitution. Reproduced with permission.106 Copyright 2018, 

Wiley-VCH (g) The schematic illustration of the formation of Co1/N‐C (900). 

Reproduced with permission.29 Copyright 2016, Wiley-VCH. (h) Schematic 

illustration of the synthetic process for the Fe-SAs/CN and Ni-SAs/CN. Reproduced 

with the permission.30 Copyright 2017, American Chemical Society; (i) Schematic 

illustration of the synthetic process for single-Co-atom catalysts via pyrolyzing Fe-Co 

prussian blue analogue. Reproduced with the permission.108 Copyright 2018, 

American Chemical Society. 
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2.2.2.2 Metal organic frameworks-derived nitrogen-doped 

carbon 

It remains challenge to fully control the synthesis of well-defined isolated atoms. 

Because the concentration of metal atoms is supposed to be extremely low to avoid 

aggregation, especially on the incorporated support. A strategy considered to solve this 

situation is to assembly organic ligands, which is expected to anchor single atoms and 

show thermal stability. It is believed that MOF structure is the best option, owing to 

the easy accessibility and numerous ligands dispersed on the architectural structures. 

It is well known that metal-organic frameworks (MOFs) are consisted with metal-

containing nodes and organic linkers, in which the metal sites are atomically dispersed. 

Direct pyrolysis of MOFs are expected to be an ideal route for preparing various single 

atoms based on the versatility of metal ions and ligands. However, this approach is 

highly challenging due to the high-temperature pyrolysis tends to rapidly convert 

single-atom metal ions into aggregated nanoparticles. Li’s group has made significant 

breakthrough on this direction, in which they utilized low-boiling-point Zn atoms (mp 

420 oC, bp 907 oC) as a template so that to free abundant N-rich defects after Zn 

evaporated at high temperature. As a result, another metal can closely anchored 

through N-coordination to form isolated metal single atoms without aggregation 

during pyrolysis.109 Specifically, as illustrated in Figure 2-7g, a ZIF-67-like Zn/Co 

bimetallic MOF (BMOF) was synthesized, in which Zn2+ replaced a certain proportion 

of Co2+ sites, thereby expanding the distances of adjacent Co atoms. The Zn2+ ions can 

be used as separators to adjust the distance of adjacent Co atoms and prevent the 

formation of Co-Co bond. Also, the leaving Zn2+ sites generate free N sites during 
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pyrolysis, which can further provide thermal stability for these active single atoms. 

The single atom Co nodes are in-situ reduced and anchored into the nitrogen-doped 

porous carbon with Zn evaporated at high temperature. It is impressive that the Co 

loading ratio is as high as 4 wt%.29 Furthermore, zeolitic imidazolate frameworks (ZIF-

8) served as an effective precursor for the synthesis of Fe and Ni single atoms in an N-

carbon matrix (Fe-SAs/CN and Ni-SAs/CN).30,31 Fe(acac)3 and Ni(NO3)2 were 

selected as metal sources, which could be trapped into molecular-scale cages of ZIF-8 

with cavity diameter (dc) of 11.6 angstrom and pore diameter (dp) of 3.4 angstrom. As 

illustrated in Figure 2-7h, after pyrolysis at 1000 oC under Ar atmosphere, ZIF-8 

transformed into nitrogen-doped porous carbon with the evaporation of Zn. Meanwhile, 

Ni(NO3)2 within the cage were reduced by carbonization of the organic linker, leading 

to the formation of isolated single iron atoms anchored on nitrogen species.30 All 

MOF-derived single atoms showed superior electrocatalytic activities, owing to the 

synergistic effect between transition metals and N species, which will be discussed in 

details later. The broad range of ligands on MOFs has variety of selectivity. For 

example, the numerous free amine groups (-NH2) at the skeleton of UiO-66-NH2 are 

considered as a critical role to access the atomically isolated dispersion of single atom 

sites of Ru. It is suggested that Ru metal ions can be adsorbed within the MOFs 

channels by the strong coordination interaction between the electron lone pair of 

nitrogen and d-orbital of Ru atoms. The Ru SAs/N-C shows a selectivity of 99% 

toward chemoselective hydrogenation of functionalized quinolones, which is much 

more effective than that of Ru nanoparticles on NC (Ru NCs/C).32 The successful 

synthesis of single atom material and applications on catalytic reaction via 

coordination of organic ligands attracts more investigation on MOFs structures. 
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Wang’s group reported a feasible method to produce coordinative unsaturated metal 

sites through dielectric barrier discharge plasma treatment. The irradiated ZIF-67 

create single Co atoms as catalytic centres for oxygen evolution reaction (OER). Both 

of experimental results and theoretical calculation demonstrated these unsaturated Co 

sites plays a critical role to achieve high activity of OER.83 Also, Cao’s group reported 

that the atomic Fe species can be anchored on porous porphyrinic triazine-based 

frameworks (FeSAs/PTF) with a high loading of 8.3 wt. %. The FeSAs/PTF shows 

excellent ORR activity, long-term durability, and good methanol tolerance in both 

alkaline and acidic media.84 Most recently, Zhang’s group produced single-Co-atom 

catalysts via pyrolyzing Fe-Co prussian blue analogue followed by acid leaching. They 

utilized Fe doping and different calcination temperature to modulate the contents of 

pyrrolic N in the obtained N-doped graphene shells, which are favourable to form 

abundant CoN4 sites (Figure 2-7i).33 

Thus, the strategy of using MOFs structure as substrates has been proved that it can 

effectively coordinate with variety of atoms with a high loading mass (>1%), 

indicating its easy control and huge potential for broader applications. 

2.2.2.3 Graphitic carbon nitride (g-C3N4) 

Graphitic carbon nitride (g-C3N4) consists of 2D conjugated planes packed together 

with tri-s-triazine repeating units through interlayer van der Waals interactions with 

lattice-hole structure. The characteristic N-coordinating cavities formed by the tri-s-

triazine structure serve as potential scaffold for firmly anchoring isolated single atoms. 

Stable single-site Pd species was strongly trapped into the six-fold cavities of 

mesoporous g-C3N4, which offered the first stable single-site heterogeneous catalyst 
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for hydrogenations of alkynes and nitroarenes. This Pd1/g-C3N4 catalyst exhibited high 

activity and selectrivity (>90 %), which is associated to the facile hydrogen activation 

and alkyne adsorption on the atomically dispersed Pd1 sites.80 Li et al. successfully 

dispersed isolated single Pt atoms on g-C3N4 with loading amount of 0.16 wt %.  Since 

g-C3N4 itself is a promising stable and active catalyst for photocatalytic water 

splitting,110-112 the Pt1/g-C3N4 represents a new and highly efficient photocatalytic 

system for H2 evolution. The synergistic co-catalyst of single-atom and g-C3N4 

provides a new strategy to modulate the electronic structure, leading to a prolonged 

lifetime of photogenerated electrons due to the isolated single Pt atoms induced, 

intrinsic change of the surface trap states. The Pt1/g-C3N4 eventually achieves 

tremendously enhanced photocatalytic H2 generation performance, showing 8.6 times 

higher than that of Pt nanoparticles on the per Pt atom basis, and nearly 50 times of 

that for bare g-C3N4.
81 Furthermore, DFT calculation was applied to investigate the 

Pd1/g-C3N4 and Pt1/g-C3N4. 

 For phtocatalytic CO2 reduction, which concluded that HCOOH is the preferred 

product on the Pd1/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while 

the Pt1/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier 

of 1.16 eV.113 Qiao’s group developed a range of molecule-level g-C3N4 coordinated 

single Co atoms (Co1/g−C3N4) as a new-generation catalysts for these oxygen 

electrode reactions, including ORR and OER in alkaline media. The high activity of 

Co1/g−C3N4 catalyst with a desired molecular configuration originates from the 

precise Co−N2 coordination in the g-C3N4 matrix. Moreover, the reversible ORR/OER 

activity trend for a wide variety of transition metals/g−C3N4 complexes has been 
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constructed to provide guidance for the molecular design of this promising class of 

catalysts.82 

2.2.3 Single atom alloys (SAAs) 

One alloying method has been developed to stabilize the single atoms with another 

metal to form an alloyed SAs, in which one metal is completely isolated by the second 

one. By virtue of the synergistic effect of the bimetallic catalysts, the alloyed SAs 

exhibit geometric and electronic structures different from those of the single atoms 

that was prepared by anchoring on the support. Sykes’s group has done significant 

contribution in this system by both theoretical model and real catalytic experiments. 

As revealed via the scanning tunnelling microscopy (STM), Figure 2-8a clearly 

displayed rumpled appearance of the upper terrace, indicating Pd preferentially alloys 

into the Cu(111) surface above the step edges. The atomic resolution of the Pd/Cu 

alloy on the upper terrace (inset) shows the isolated Pd atoms in the surface layer 

appearing as protrusions.  They found that a single atom alloy, with individual Pd 

atoms in a Cu (111) surface, could show lower energy barrier for both hydrogen 

dissociation and subsequent desorption (Figure 2-8b and c). The facile hydrogen 

dissociation at Pd SAs and weak binding on Cu substrate synergistically result in high 

hydrogenation selectivity of styrene and acetylene in contrast to pure Cu or Pd metal 

alone.85 A PdCu SAA with trace amount of Pd (0.18 at%) was reported to demonstrate 

high activity and selectivity for the hydrogenation of butadiene to butenes. As shown 

in Figure 2-8d, the concentration of the Pd relative to the host Cu surface is critical. 

When the Pd coverage is low, Pd could exsit in the form of individual, isolated atoms 

into the Cu surface layer. The larger scale bar image in Figure 2-8e indicates that the 

alloying site is the ascending step edges. When Pd coverages increase, Pd islands could 
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be observed on the surface as seen in Figure. 2-8f and g.86 By the same method, they 

also synthesized Cu-alloyed Pd single atoms supported on Al2O3 via the galvanic 

replacement method, which exhibited both high conversion and styrene selectivity for 

selective hydrogenation of phenylacetylene.87 More recently, Pei et al. successfully 

synthesized silica gel supported Cu-alloyed Pd SAA by a simple incipient wetness 

coimpregnation method (Figure 2-8h). They found that this PdCu/SiO2 exhibited a 

high selectivity of ~85% with 100 % complete acetylene elimination toward the 

semihydrogenation of acetylene. The IB-metal-alloyed Pd SACs were also 

systematically compared with Cu-alloyed Pd SAC, in which similar active sites and 

catalytic mechanisms were revealed for the three catalysts. The further DFT 

calculation results indicated that the distinct conversion and selectivity of Pd atoms in 

the IB metal alloys is ascribed to the electron transfer between the IB mentals and Pd.88 

Similarly, it is reported that a trace amount of Ni was employed to atomically disperse 

on Cu particles forming NiCu alloy (NiCu SAA). In-situ diffused reflectance infrared 

Fourier transform spectroscopy (DRIFTS) was employed in this work and identified 

that the C-H activation is the rate determining step of the dehydrogenation reaction on 

all the copper catalysts. The presence of Ni single atoms shown unique catalytic 

activities in the selective non- oxidative ethanol dehydrogenation reaction, owing to 

the exceptional low C-H bond activation barrier achieved via the effects between Ni 

isolated atoms and Cu particles. Also, comparing with Cu/SiO2 monometallic 

nanoparticles, the NiCu SAA facilitated the formation of acetaldehyde in a low 

temperature of 150 ℃, showing a direct evidence of the key role in C-H bond scission 

of ethanol dehydrogenation.89 
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Figure 2-8. STM images showing atomically dispersed Pd atoms in a Cu(111) surface 

and hydrogen atoms that have dissociated and spilled over onto the Cu surface. (a) Pd 

alloys into the Cu(111) surface preferentially above the step edges as evidenced by the 

rumpled appearance of the upper terrace (scale bar indicates 5 nm). (Inset) Atomic 

resolution of the Pd/Cu alloy on the upper terrace showing individual, isolated Pd 

atoms in the surface layer appearing as protrusions (scale bar, 2 nm). (b) Schematic 

showing H2 dissociation and spillover at individual, isolated Pd atom sites in the Cu 

surface layer. (c) Islands of H atoms imaged after hydrogen uptake appear as depressed 

regions on the clean Cu(111) lower terrace (scale bar, 5 nm). (Inset) High-resolution 

image of individual hydrogen atoms on Cu(111) (scale bar, 2 nm). Images recorded at 

5 K. Reproduced with permission. 85 Copyright 2012, American Association for the 

Advancement of Science (AAAS). (d-g) STM images of Pd/Cu alloys with a range of 

stoichiometries: (d) 0.01 ml Pd, (e) 0.1 ml Pd, (f) 1 ml Pd and (g) 2 ml Pd. Scale bars: 
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5nm. Imaging conditions 0.05–0.15 V, 0.1–1.0 nA. Pd/Cu alloys were formed at 380 

K. Reproduced with permission. 86  Copyright 2013, Royal Society of Chemistry. (h) 

Proposed reaction pathway for semi-hydrogenation of acetylene over silica-supported 

Cu alloyed Pd SAC: dissociation of H2 and Spill over of H atoms (left), adsorption and 

hydrogenation of Acetylene (middle), and desorption of π-Bonded Ethylene (right). 

Reproduced with permission. 88 Copyright 2017, American Chemical Society. 

2.2.4 Metal sulphides, nitrides, and carbides 

2.2.4.1 MoS2 

 

Figure 2-9. (a) TEM image of Pt–MoS2 with the inset showing a typical MoS2 layer 

distance of 0.62 nm. (b) HAADF-STEM images of Pt–MoS2 showing that the single 

Pt uniformly disperse in the 2D MoS2 plane. (c) The relation between currents (log(i0)) 
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and ∆GH
0 presents a volcano curve. The left and right sides of the volcano plot adopt 

two sets of scales for better visibility. The inserted graphs point to different 

configurations of doped MoS2 as coordinated with four (left) and six (right) S atoms. 

The adsorption sites for H atoms are marked by the red dashed circles. The studied 

metal atoms are located in the Periodic Table as shown by the inset at the bottom. 

Green balls: Mo; yellow balls: S; blue and purple balls: doped metal atoms. 

Reproduced with permission.70 Copyright 2015, Royal Society of Chemistry.   

 In some case, though the single atoms are not catalytically active, they unexpectedly 

play important role in enhancing the catalytic activity of support. Liu et al. reported 

atomic Co dispersed on MoS2 monolayers, in which the Co-doping create many sulfur 

vacancy sites in MoS2 basal planes, leading to excellent activity, selectivity, and 

stability for the hydrodeoxygenation reaction (HDO) of 4-methylphenol at 180 °C with 

no detectable sulfur loss from the catalyst system.71 Bao’s group reported that the 

catalytic activity of in-plane S atoms of MoS2 can be trigged via single-atom Pt doping 

for hydrogen evolution reaction (HER). The significant enhancement was attributed to 

the tuned adsorption behaviour of H atoms on the in-plane S sites neighbouring the 

doped Pt single atoms. The Pt1/MoS2 was synthesised by a one-pot hydrothermal 

method, leading to the formation of flower-like 2D MoS2 nanosheets with uniform 

dispersion of bright Pt SAs shown in Figure 2-9a and b. The triggering mechanisms of 

various metal SAs have been investigated via DFT calculations. As shown in Figure 

2-9c, the metal atoms could substitute the Mo atoms in the MoS2 matrix, leading to 

two different configurations of doped MoS2. Some metal atoms, including V, Ti, Fe, 

Mn, Cr, etc., tend to remain in the middle to bond with six S atoms, which can be 

anticipated to possess low activity due to their weak binding ability with H. While 
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other metal atoms, such as Pt, Ag, Pd, Co, Ni, etc., are prone to shift toward one side 

and bond with only four S atoms but with other two S atoms unsaturated, leading to 

distinctly high adsorption behaviours of H atoms on the two unsaturated S atoms and 

thereby high HER activity. It is clear the Pt-MoS2 shows higher HER activity than Ni- 

and Cu-doped MoS2, which are owing to the overly strong adsorption of H* by the 

unsaturated S atoms neighbouring the dopants (Ni and Cu) on the left side of the 

volcano plot.70 

2.2.4.2 TiC and TiN 

TiN and TiC were considered as promising candidates for the metallic support material 

in PEMFCs, and methanol direct fuel cells, demonstrating clear advantages over 

traditionally used acidic susceptible carbon-based supports, including good electrical 

conductivity and its high resistance to corrosion and acid attack. In a view of 

combination of the high-efficiency single atom material and stable TiN, Soon’s group 

developed a theoretical strategy to anchor Pt single atoms via producing N-vacancy on 

the surface. Comparing to the clean TiN surface, TiN surface vacancies is energetically 

favourable of Pt atoms. The author also further shown the charge density differences, 

when Pt bonded with N vacancies and Ti vacancies. For the N vacancy, it demonstrated 

that Pt atoms embedded into the TiN surface experiences a significant increase in the 

occupation of the 5d states due to coordination by the four neighboring surface Ti 

atoms, where the electronegativity of Pt (Pauling value of 2.28) is large than that of Ti 

(Pauling value of 1.54). For Pt atom adsorption on Ti vacancies, the charge 

redistribution is directional and both N and Ti atoms are involved in the charge transfer, 

leading to the depletion of the planar Pt 5d states and the unfavourable Pt adsorption 

energy.114,73 Via DFT calculation, Back et al. explored a range of SACs, where 
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transition-metal atoms (M=Ag, Au, Co, Cu, Fe, Ir, Ni, Os, Pd, Pt, Rh, and Ru) are 

doped at surface defect sites of TiC and TiN. The iridium-doped TiC (Ir1@d-TiC) was 

theoretically evaluated as highly active and selective CO2 reduction catalysts.115 

2.3. Support effects for catalytic reactions 

Properties of supports, including nanocrystal shape and exposed facet, would strongly 

influence the catalytic performance of SACs. 

2.3.1 Activity  

 SACs can typically accelerate a wide range of reaction, such as CO oxidation,52,61 

methane conversion,116 water-gas shift (WGS) reaction,57,92 and other important 

reactions,78,117 which could achieve orders of magnitude higher activity than their NP 

counterparts. For the WGS reaction, it is impressive that SACs on oxide supports are 

always more active than their NP counterparts based on turnover frequency 

(TOF),57,67,118,119 since the NPs only serve as spectators during the WGS reaction. In 

contrast, some SACs might be inferior in catalytic activity than their NP counterparts 

for CO oxidation, and it should be pointed out that the advantages of SACs are 

multifarious and not always limited to activity but depend on a variety of factors on a 

case-by-case basis.61,67,120  

It is readily comprehensible that the types of SACs directly determine the catalytic 

performance when anchored on the same support. Taking M1/FeOx as examples, when 

anchored on FeOx support for CO oxidation. Pt1 could deliver 2-3 times more active 

than Pt NPs;61 Au1 is comparable to its NP counterpart,58 while Ir1 and Rh1 are less 

active than their NP counterparts.102,103 The catalytic activity for single atoms on the 

same FeOx support show a trend with the order Au1> Pt1> Ir1≈ Rh1, which is oppositely 
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corresponding to the absorption strength of CO on metal sites because the weak CO 

adsorption is favourable and could significantly enhance the adsorption and activation 

of O2. On the other hand, the stabilization of SACs and catalytic properties are closely 

related to the support effect. It is noticeable that surface of the FeOx support is 

dominated by Fe3O4 with abundant oxygen vacancies and hydroxyl groups, which are 

believed to provide reactive O atoms for the reactions and play critical roles in the 

oxidation reactions, especially for WGS and CO oxidation.121  The impact of surface 

O atoms is revealed via in-situ spectroscopy that surface lattice O atoms of the FeOx 

support could assist the single atoms to directly participate in CO oxidation.122 

Meanwhile, the research on Pt1/CeO2 also confirmed the important role of surface O 

atoms. A steam treatment at 750 oC was conducted, which was expected to afford 

active surface lattice O atoms in the vicinity of Pt 2+, leading to high activity for low-

temperature CO oxidation.123  Moreover, the applications of SACs are extended to 

electrocatalytic reactions.124-126 Besides the requirements on the nature and number of 

active sites as these in thermocatalytic reactions, the activity of the catalysts in 

electrocatalysis additionally relies on the properties with high electrical conductivity. 

For the application, N-doped C is considered as one of the most promising supports to 

synthesis a serials of atomically dispersed metal single atoms, leading to M1-N-C 

electrocatlysts, including Co1-N-C,26,29,127,128 Fe1-N-C,129,130 Ni1-N-C,77 and Cu1-N-

C131 materials. Li’s group has developed a general method for the preparation of single 

atoms via N coordination with the assistance of ZIF-8 and ZIF-67. Impressively, the 

ZIF-derived Co1-N-C and Fe1-N-C could exhibit superior ORR performance than 

commercial Pt/C catalysts in alkaline electrolyte, which achieve half-wave potentials 

of 0.881 and 0.900 V, respectively. The high activity is ascribed to that the single Co 
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and Fe atoms could transport electrons to absorbed OH species.29,129 Moreover, a 

catalyst consisted of Pt1 on N-doped graphene nanosheets also outperform the Pt NP 

and commercial Pt/C catalysts for HER in acidic media. The superior activity of Pt1 

was proven to result from the partially unoccupied Pt 5d-like orbitals, which are 

favourable to absorb H and resulted H2.
132 In addition, Pt1 on N-doped carbon black 

can be utilized as a high-active catalyst for four-electron ORR in an acidic media, in 

which the Pt single atoms are bonded with single pyridinic N atoms to form Pt1-N1 

active sites. This active sites surprisingly cleave O2 on one Pt atom via 4e- transfer but 

poor binding for CO.35 The application of supported single atoms has recently 

extended to photocatalytic conversions. Ideally, the supports are supposed to absorb 

solar light and also stabilize the anchored single atoms. The g-C3N4 is accordingly 

regarded as a promising candidate owing to its high stability, excellent visible-light 

absorption, and capability to bind noble metal centres through N donor atoms. Pt1 on 

g-C3N4 (Pt1/g-C3N4) exhibited 50 times higher photocatalytic HER activity than g-

C3N4 and eight times higher TOF per atom than Pt NP/g-C3N4. It is ascribed to that the 

Pt single atoms could change the surface trap states of g-C3N4, thereby enhancing 

photo-generated electron–hole separation.81 Additionally, g-C3N4 support is believed 

to deliver H atoms to Pt1 and Pd1 single atoms via DFT calculation, which render them 

high active catalysts for CO2 phtoreduction.113 Due to the unknown nature of the active 

sites, the N donor atoms vary from two to six, in which the materials typically have 

metals bound to four N atoms. Beyond the intrinsic activity of M1-Nx active sites, the 

pore structure and electrical conductivity of the carbon matrixes could impact on mass 

and electron transport of the catalysts, leading to case-by-case performance. In some 
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case, they even are inactive in reactions that require two or more neighbouring metal 

atoms to activate these conversions. 

 

Figure 2-10. (a) The schematic illustration of Au catalysts on different supports: CeO2, 

FeOx, and ZnO for methanol steam reforming and water-gas shift; (b) Steady-state 

WGS reaction rates over gold–metal oxide catalysts on various substrates; (c) 

Comparison of SRM rates at 250 °C over Au–ZnO and Au–CeO2 nanoshapes. 

Reproduced with permission.133 Copyright 2011, Royal Society of Chemistry.  (d) 

http://www.chemspider.com/Chemical-Structure.22421.html
javascript:popupOBO('CHEBI:25741','c0cp02009e','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=25741')
javascript:popupOBO('CHEBI:35223','c0cp02009e','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=35223')
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Specific rate of wet CO oxidation over dry Pt1/Fe2O3, Pt1/ZnO, and Pt1/γ-Al2O3 SACs; 

(e) The turn over frequency (TOF) comparison of Pt1 single atoms on different metal 

oxide supports for dry CO oxidation at 140 oC. Reproduced with permission.90 

Copyright 2017, American Chemical Society. 

Impressively, when anchored on different shapes of the same supports or different 

supports, the same type of single atoms could exhibit different activity and selectivity. 

For instance, ceria with various shapes, including rods, cubes, and polyhedral, were 

utilized as supports of 1% Au. Gold was poorly dispersed and aggregated into 

nanoparticles when deposited on the CeO2 nanocubes (100), which was inactive for 

the low-temperature WGS reaction. In contrast, most of the gold on the (110) facets of 

CeO2 nanorods was atomically dispersed with high activity. This results manifests that 

the (110) have more binding sites for gold than the (100) polar surfaces of CeO2.
134 

Furthermore, as illustrated in Figure 2-10a, various oxide supports, including CeO2, 

ZnO and FeOx single crystal, are utilized to compare the substrate effect.133 Boucher 

et al. found that ZnO (0001) surfaces are the favourable supports for the active Au 

sites toward water-gas shift (WGS).133,135 It is evident that activation energy and 

conversion rates of the Au-FeOx are lower compared to Au-CeO2 and Au-ZnO for 

WGS reaction tests. The possible reason for the lower activity is a weaker interaction 

of the Au with iron oxide surface. They suspect an instability/deactivation of the Au–

FeOx nanoshapes under reaction conditions (Figure 11b).  Moreover, the “shape effect” 

of oxide supports is examined for both WGS and MSR reaction. The WGS reaction of 

Au/FeOx catalysts depends on the iron oxide shape in experiments with gold deposited 

on single crystals of nano-Fe3O4, (i.e., octahedra (111) and cubes (100), Figure 2-

10b).133 As shown in Figure 11c, both Au-CeO2 and Au-ZnO are active catalysts for 
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the SRM reaction. It is evident that Au-CeO2 delivered higher reaction rates, which is 

attributed to the better dispersion of Au on CeO2 (110) surfaces, leading to more Au-

O active sites. This Au-O species serve as the active sites for methanol reactions, in 

which the CeO2 (110) surfaces that can disperse gold atomically are also superior to 

CeO2 nanocubes presenting (100) surfaces.135-137 Au–ZnO samples with a large 

fraction of ZnO (0001) surfaces exposed (polyhedra and short rods) are active for the 

MSR reaction (Figure 2-10c). Liu et al. carried out a systematic investigation on 

support effects via dispersing single Pt1 on highly reducible Fe2O3, reducible ZnO, and 

irreducible γ-Al2O3. It was proven that Pt1/Fe2O3, Pt1/ZnO, and Pt1/γ-Al2O3 are all 

active for CO oxidation and the reducibility of the supports determine the catalytic 

performance of Pt1 SACs (Figure 2-10d and e). At 140 oC, the TOF value of that 

Pt1/Fe2O3 is larger than that of the Pt1/ZnO, which are much larger than that of Pt1/γ-

Al2O3. The TOF of a Pt1 atom supported on Fe2O3 and ZnO is about 50 and 18 times 

higher than that of a Pt1 atom supported on γ-Al2O3.
90 Such a huge difference in the 

TOF value of one Pt1 atom suggests that that the interaction between single metal 

atoms and support as well as surface properties of supports control the catalytic 

behaviour of SACs.  

2.3.2 Stability 

Stability of SACs is an important factor that often hinders the application of SACs. 

Due to their high surface-free energy and the low coordination number, SACs are 

prone to sinter/ripen with time and catalytic processes, agglomerating into their 

thermodynamically stable state, such as particles.95,138 
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Thermally stable SACs can be successfully synthesized. Campbell and his co-workers 

found that small particles have a much lower heat adsorption than large particles, 

indicating the lower onset temperature for Ostwald ripening.139,140 Moreover, they 

measured the energies of Ag atoms in Ag NPs supported on CeO2 and MgO surfaces, 

which demonstrated that Ag NPs with any sizes below 1000 atoms had much higher 

stability on reduced CeO2(111) than on MgO(111) (Figure 2-11a). This effect was 

found to be a result of strong bonding to both defects and CeO2(111) terraces.141 Single 

metal atoms are in principle easier to aggregate than metal NPs, and thus stronger 

metal–support interactions (SMSI) are required for the stability of SACs. For instance, 

both experimental results and DFT calculations revealed that Pt atoms prefer to be on 

the four-fold hollow sites. Flytzani-Stephanopoulos’s group introduced alkali ions (Na 

or K) on zeolites and mesoporous oxides, to stable the single-site cationic An-O(OH)x 

- species.142 They also prepared single-atom-centric Pt sites stabilized by sodium 

through –O ligands, which are active and stable in WGS reaction from ~120 to 400 

oC.143 Qiao et al. reported that the Au1/FeOx catalysts were not only highly active but 

also extremely stable, even at temperatures as high as 400 °C; they proposed the single 

Au1 atoms located at Fe vacancy sites of the FeOx nanocrystallites via strong covalent 

metal-support interaction (CMSI),  thus immobilizing the Au1 atoms on the support 

surface.58 Additionally, atomically dispersed Au on FeOx supports also were proven to 

show a remarkable stability in heat treatments up to 500 °C.144 

Even though thermally stable SACs can be successfully synthesized on various 

supports, it is predictable that chemical or reaction stabilization of these surface single 

atoms remains to be a challenge due to the presence of oxidative or reducing reactants 

and high temperature under operating conditions. Reaction stability of SACs is of great 
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importance to design more robust catalysts.  For instance, reactants, such as CO, NO, 

H2, and O2, were confirmed to affect or induce dramatically the sintering, disruption, 

and re-dispersion of supported metal particles and single atoms.47,145,146 CO induced 

the coalescence of Pd adatoms supported on Fe3O4(001) surfaces at room 

temperature.47 For the Pt/Fe3O4 system, the CO-induced mobility leads to the 

agglomeration of Pt into subnanometer clusters, but on the other hand the presence of 

CO stabilizes the smallest clusters against decay.145 The strong interaction between the 

reactant and the metal adatom is essential for the synthesis of a catalyst with high 

thermal and chemical stability. Kyriakou et al. anchored single Pd atoms in the lattice 

matrix on Cu(111) surfaces to obtain an extremely stable SAC with strong Pd–Cu 

bonds.85 Zhang's group prepared a series of single-atom Co–N–C catalysts with single 

Co atoms strongly bonded with four pyridinic N atoms, which showed high stability 

for the chemoselective hydrogenation of nitroarenes and aerobic oxidative cross-

coupling of primary and secondary alcohols.147,148 As shown in Figure 2-11b, the 

single atom Co-N-C catalyst was derived from pyrolysis of Co-phenanthroline 

complexes on a mesporous carbon support, which was proposed to be Co1 bonded with 

N within graphitic sheets. This catalyst showed high catalytic activity toward the target 

reactions with turnover frequency of 3.8 s-1. Impressively, the Co single atoms in the 

Co-N-C structure are highly stable against sintering during pyrolysis (< 800 oC) and 

acid leaching.147 Tang’s group developed Ag1-hollandite manganese oxide (HMO) 

catalyst with excellent thermal and chemical stability by initially depositing Ag NPs 

on HMO surfaces, and then annealing the sample at 500 °C in air. As revealed by 

Figure 2-11c, the HRTEM images confirmed that single-atom Ag linear chains were 

successfully synthesized via a simple thermal process. Figure 2-11d illustrated several 
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models of this sample viewed from different directions with atom arrangement on the 

(001) facet of Ag-HMO. Moreover, temperature-dependent in situ XRD recorded the 

formation of this single atom Ag chain from 50 to 380 oC, in which the diffraction 

intensity of Ag(111) gradually decreases along shifting to lower Bragg angles and then 

totally disappears after 230 oC. The hollandite crystal structure remains unchanged in 

the whole process. Thus, Ag atoms can diffuse into the HMO tunnels to form a Ag 

atom chain inside, which exposed the end atoms on the surfaces to achieve SAC 

(Figure 2-11e).66,149 This Ag1-HMO catalyst possessed four strong Ag–O bonds and 

one Ag–Ag bond, thereby showing high thermal stability at a temperature as high as 

500 °C. Even when part of Ag–O bonds were broken during reactions such as HCHO 

oxidation, strong Ag–Ag bond can maintain the exposed single Ag atoms to be at a 

steady state after high temperature annealing or chemical reactions (Figure 12c). 66 
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Figure 2-11. (a) Measured energy of a Ag atom, relative to its energy in bulk Ag 

(solid), versus the Ag particle size to which it adds, for Ag particles on the four 

substrates. Reproduced with permission. 141 Copyright 2010, American Association 

for the Advancement of Science (AAAS).  (b) The proposed Co-N-C architecture 

toward the target reactions and stability of this catalyst paralysed at different 

temperatures and acid leaching. Reproduced with permission. 147 Copyright 2015, 

American Chemical Society. (c) TEM image and HRTEM images of a Ag-HMO 

nanorod with a [001] growth direction with Auto-correlation function analysis 

showing a corresponding simulated image; (d) Single-atom Ag chains inside the 

tunnels of the HMO viewed from the [011] and [001] directions, respectively, and 

atom arrangement on the (001) facet of Ag-HMO; (e) in situ XRD patterns of the 

formation of Ag-HMO at different temperature. Reproduced with permission.66 

Copyright 2012, Wiley-VCH. 

2.3.3 Selectivity 

Selectivity becomes crucial when molecules present two or more reacting groups and 

only one of them has to be transformed. Thus, a selective catalyst has to “recognize” 

and preferentially interact with the desired chemical group, while avoiding the 

transformation of the others. Single atoms feature with the uniformly dispersed, 

strongly anchored, and typically electron-deficient nature, which determine the 

regulable selectivity via changing the mode and strength of the reactant, intermediate 

and/or product adsorption or by changing the reaction pathway.  

    The tuning of SACs has been to the benefit of many reactions, especially selective 

hydrogenation.   The frequently used catalysts hydrogenations are noble metals. Facile 
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dissociation of reactants and week binding of intermediates are key requirements for 

efficient and selective catalysis. Unfortunately, the highly active noble metals are not 

chemoselective, which is usually addressed by utilizing stoichiometric reducing agents, 

realizing high chemoselectivity in the expense of lowering catalytic activity. The 

heterogeneous catalysts with high chemoselecitivity and activity are highly desired. 

Based on the uniform geometry of single atoms and their good capability for H2 

dissociation,85 Zhang’s group reported novel FeOx supported Pt single-atom and 

pseudo-single-atom structure as highly active and chemoselective catalyst on 

hydrogenation of functionalized nitroarenes. The strong metal-support interaction 

leads to significant electron transfer from the Pt atoms or ensembles to the FeOx 

support. The presence of positively charged Pt centers, the absence of Pt-Pt metallic 

bonding and the reduced metal oxide surfaces are synetically favourable to the 

absorption of nitro groups, which determines significantly improved performance.49 

The selectivity of a nitro group into an amino group has been investigated by catalysing 

with various heterogeneous single atoms. The Pt1/FeOx shows outstanding activity and 

chemoselectivity with low Pt1 loading ratio (0.08 wt.%),60 giving rise to a TOF of 

~1500 h-1 and 99% selectivity to 3-aminostyrene from 3-nitrostyrene. The high 

chemoselectivity is due to the partially anionic O atoms of the –NO2 group can strongly 

binds with the isolated cationic Pt centers. This favourable phenomenon is more 

effective when introducing alkali metal cations to Pt1/FeOx with high Pt loadings, 

leading to >20-fold mass activity with similarly high TOF values and 

chemoselectivities.150 It should be pointed out that the support plays a critical role in 

tuning selectivity for hydrogenation of nitroarenes. On the other hand, Pd1 exhibited 

high activity and selectivity for the selective hydrogenation of C≡C bonds, C=C bonds, 
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and other unsaturated systems.76,80,85,87,88,151,152 Interestingly, no matter what supports 

are, the Pd1 without the Pd-Pd bonding always show superior performance, which is 

due to the multinuclear sites could strongly bind ethylene and promote the further 

hydrogenation to ethane. The product selectivity of hydrogenation of CO2 is very 

sensitive to the size the active sites. The single atoms can easily release CO with 

relatively few H atoms present to further reduce CO; while NPs surface with many H 

atoms is favourable to the formation of CH4. Despite of the size effect, the strong 

metal-support interaction (SMSI) could tune the chemical state of single atoms and 

thus have significant impact on the reaction selectivity. For instance, Kwark et al. 

demonstrated fundamentally different activity and selectivity via comparing Pd1 and 

traditional 3D Pd cluster on different supports for the reaction of CO2 reduction. 

(Figure 2-12a). For instance, Pd1,
117 Ru1,

153 and Rh1
154 are highly selective for the 

pathway of CO formation as part of the reverse WGS reaction. In contrast, the 

corresponding particles tend to induce CH4 as the major product due to the size 

effect .This support effect can be emphasized by Yang et al. via anchoring single-atom 

Pt catalyst on two different supports of titanium carbide and titanium nitride toward 

ORR reaction (Figure 2-12b). Experimentally, they and co-workers synthesized two 

platforms: TiC and TiN to anchor Pt single atoms, showing there were big difference 

in catalytic activity, selectivity and stability. The oxygen reduction current density of 

Pt1/TiC was almost two times larger than that of Pt1/TiN at all potential ranges. Also, 

the Pt1/TiC catalyst showed higher activity and higher selectivity toward H2O2 than 

Pt1/TiN. However, unlike the single-atom catalysts, Pt particles on TiC and TiN 

demonstrated a similar performance of ORR activity and selectivity toward H2O2, 

indicating that support effect had essential role on their unique catalytic ability and 
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selectivity. The DFT calculation was performed in this work to further explain the 

reason how the atomic dispersed active sites synergistically affect the ORR chemistry 

combining with support. Pt1/TiN facilitate the dissociation of OOH* to O and OH 

rather than to the molecularly intact state, indicating the oxygen-oxygen bond would 

be dissociated more easily on Pt1/TiN than on Pt1/TiC. The energy profile shown that 

Pt/TiN (100) requires two successive energy uphill steps (0.52 and 0.94 eV) to produce 

H2O2, opposite to the case for Pt/TiC (100) at the same reaction coordinates. The 

adsorption energies of oxygen species on TiC and TiN predicted that there is less 

formation of H2O2 on than that on Pt/TiC, resulting in differences on activity and 

selectivity. The obtained Pt1/TiC showed higher activity, stability, and selectivity for 

electrochemical oxygen reduction to H2O2 production than Pt1/TiN. DFT calculations 

indicated that oxygen species preserved as oxygen–oxygen bonds on the Pt1/TiC 

catalyst, which leads to high selectivity toward H2O2 production. In contrast, Pt1/TiN 

have strong affinity into oxygen species, possibly resulting in surface poisoning 

species. The work clearly confirms that the supports in SACs could actively participate 

in the surface reaction but not just provide anchoring sites for single atoms.73 DFT 

calculations found that the catalytic activity of TiC is expected to be active and 

selective for CO2 reduction to CH4, while TiN is limited for this process due to strong 

oxygen affinity.104 

Similarly, single atom catalysts are also conclusive to the electrochemical reduction of 

CO2 over the HER due to the stronger surface absorption for CO2 reduction 

intermediates than that of H atoms and being cationic of the active metal 

atoms.30,115,155-158 In particular, Ni1-N-C catalysts are highly selective for the 2H+/2e- 

electro-reduction of CO2 to CO with high Faradaic efficiency (> 90%). 30,158  Figure 
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2-12c showed that the single-atom A-Ni-NSG (single nickel atoms dispersed on 

nitrogenated graphene with a sulphur precursor) electrode exhibits a maximum 

Faradaic efficiency (CO) of about 97% at around−0.5 V (versus RHE). Further 

reduction of CO to methane is completely suppressed because of the weak binding of 

CO to the single Ni atom site. Notably, the two single-Ni-atom catalysts maintain 

greater than 80% selectivity towards CO formation, even at very negative applied 

potentials, and this selectivity is almost independent of the proton concentration.158 

Fe1-N-C catalysts are active and selective toward the formation of CH3CO2H with 

selectivity of 61% and Faradaic efficiency of 97.4% (Figure 2-12d) at very low 

potential.159 The selectivity of ORR reactions could be deliberately tuned from a 4e- 

(4H+ + 4e− + O2→2H2O) to a 2e- (2H+ + 2e− + O2→H2O2) pathway via taking 

advantage of single atoms. For instance, Pt1-TiN,72 Pt1-Hg,160 and Pd1-Hg-C161 exhibit 

high selectivity of H2O2, which is due to the absence of metal-metal bonding. Thus, 

these SACs do not possess the reducing equivalents to reduce O2 to H2O, which 

generally requires at least two adjacent active metal sites. Also, Gu et al. has proposed 

that the interaction between Pt1/Au1 atoms and Zn (10-01) nanofacets leads to 

positively charged Pt1 and Au1 atoms, which could facilitate the adsorption of reaction 

intermediates during MSR and thus modify the reaction pathways.64  
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Figure 2-12. (a) Schematic illustration of the reduction of CO2 with H2 on Pd/Al2O3 

and Pd/MWCNT catalysts. Reproduced with permission.117 Copyright 2013, 

American Chemical Society. (b)  Support effect for selectivity of ORR reaction with 

Pt1 catalysts. Reproduced with permission.73 Copyright 2016, American Chemical 

Society. (c) CO Faradaic efficiency at various applied potentials with different 

catalysts for CO2 reduction in aqueous solution. Reproduced with permission.158 
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Copyright 2018, Nature Publishing Group. (d) Faraday efficiency (%) to the products 

of CO2 reduction under applied voltage of -0.5, -1, and -1.5 V vs Ag/AgCl (3M  KCl)  

for Fe1-N-C sample and corresponding turnover frequency (h-1 cm-2). Reproduced with 

permission.159 Copyright 2018, Nature Publishing Group. 

2.4. Conclusions  

SACs have gained increasing interest due to very different catalytic behaviours from 

that of nanoparticles and bulk counterparts. In this review, the support effect has been 

emphasized both on SACs fabrication and catalytic behaviours. A variety of supports 

have been explored, on which diverse single metal sites can be successfully anchored 

on these substrates without agglomeration. For instance, the metal oxides, such as ZnO, 

MgO, 91 Fe2O3, Al2O3, and TiO2, can modify with lone electron pairs oxygen defects, 

such as oxygen vacancies, the ethylene glycolate and hydroxyl groups, to define metal 

species. The coordination between supports and metal species leads to strong 

interaction, inhibiting the aggregating of anchored metal sites. Thus, various ingenious 

designs have been developed via creation of defects, introducing organic ligands, and 

their inert surface structure of materials, the favour facets as well. Similarly, carbon-

vacancy, sulphur-vacancy, and the nitrogen-vacancy in supports, such as graphene, 

MoS2 and TiN, were also found to show strong interactions with metal ions forming 

single atom sites. Also, the nitrogen-doped carbon is the most commonly used carbon 

based supports to stabilize single atoms. Fortunately, these nitrogen doped carbon 

supports have a plenty of carbonaceous sources, meaning that the metal species can be 

coordinated via many ways, such as nitrogen sources-sintering carbon, graphitic 

carbon nitride, metal organic frameworks. The nitrogen sources-sintering carbon, such 

as NH3, has been considering that the formed pyridinic (P)-N has the strong anchoring 
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sites for single metal atoms due to the modified interfacial interaction. This suggests 

that the metal atoms can be selectively trapped strongly by C-N site and thus stabilize 

the dispersion of single atoms on carbon surface, confirming the vital role of support 

properties on the formation of single atoms. The pyrolysis process of the nitrogen 

contained organic structure can strongly stabilize varieties of metal species, forming 

metal-Nx-C structure. Compared with carbon-based supports, the formation of single 

atoms on metal-based surface exhibits different geometric and electronic structures, 

that is, only a trace amount of heterogeneous metal species can be doped to form 

bimetallic catalysts.  

On the other hand, the support surface through strong metal-support interactions leads 

to the polarization of these heteroatomic bonds and substantial charge transfer from 

the active metal to the support. These electron-deficient single metal sites are 

responsible for distinctive catalytic properties. It has been clear that the coordination 

environments, quantum size effect, and the strong electronic interaction between the 

SACs and the supports were building the bridge to probe more advanced functional 

catalysts in atomic level. The supports were definitely playing an essential role to 

determine those key catalytic characters and showing how to rationally design an 

efficient support-SACs structure to enhance the activity and selectivity in each special 

reaction. For instance, oxygen surface chemistry remains a key challenge for the 

design of a number of important future electrochemical conversion and storage devices, 

such as fuel cells, Li-air batteries, or electrolysers. It has been proved that single atom 

dopants are the underlying causes for activity enhancements on oxygen reduction 

reaction and oxygen evolution reaction (ORR and OER), owing to their electronic 

metal-support interaction. The unique electronic structure of different elements, 
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however, needs suitable coordination atoms to conduct their activity and reduce the 

energy barriers. 
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Chapter 3 

3.  Experimental Procedure 

3.1. Overview 

The general procedure of this thesis work is demonstrated in Figure 3.1. Generally, the 

aiming elements were uniformly dispersed on support precursor, these elements were 

followed by reducing in high temperature, forming single-atom based materials.  The 

structural properties of the as-prepared samples were characterized by a series of 

techniques, such as XRD, Raman spectroscopy, SEM, XPS, FT-IR, AFM, TEM and 

DFT. Their electrochemical catalytic performances were evaluated by measuring the 

ORR, EOR, and water splitting. 
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Figure 3-1. The general procedure of this thesis project. 

3.2. Chemicals and Materials 

The chemicals and materials used in this thesis are listed in Table 3.1. 
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Table 3-1. Chemicals and materials used in this thesis. 

Chemicals Formula Purity (%) Supplier 

Ethanol C2H5OH 100 

Chem-Supply Pty. 

Ltd. 

Ethanol C2H5OH 96 

Chem-Supply Pty. 

Ltd. 

Cobalt(II) nitrate 

hexahydrate 

Co(NO3)2·6H2O >98 Sigma-Aldrich 

Potassium 

tetrachloroplatinate(II) 

K2PtCl4 >98 Sigma-Aldrich 

2-methylimidazole C4H6N2 >99 Sigma-Aldrich 

Nafion@117  5 % in H2O  Sigma-Aldrich 

Potassium hydroxide KOH >90 Sigma-Aldrich 

Zinc nitrate hexahydrate Zn(NO3)2·6H2O 99 Sigma-Aldrich 

Platinum(II) 

acetylacetonate 

C10H14O4Pt 99 Sigma-Aldrich 

Iridium(II) 

acetylacetonate  

C10H14O4Ir 99 Sigma-Aldrich 

Palladium(II) 

acetylacetonate  

C10H14O4Pd 99 Sigma-Aldrich 

Ruthenium (III) 

acetylacetonate 

C15H21O6Ru 97 Sigma-Aldrich 

Iron(III) acetylacetonate Fe(C5H7O2)3 99 Sigma-Aldrich 
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Nickel (II) 

acetylacetonate 

C10H14O4Ni 99 Sigma-Aldrich 

Bismuth(III) nitrate 

pentahydrate 

Bi(NO3)3·5H2O 98 Aldrich 

Chloroplatinic acid H2PtCl6 

8 wt. % in 

H2O 

Sigma-Aldrich 

Methanol CH3OH >99.9% Sigma-Aldrich 

3.3. Materials Preparation 

The methods used to prepare materials in this thesis mainly are carbonization method. 

3.3.1.  Carbonization Method 

ZIF-67 were used as carbonization precursor to prepare single atom materials in the 

first and third work. In a typical synthesis, 2-methylimidazole (1.97 g) was dissolved 

in a mixed solution of 30 ml methanol and 10 ml ethanol. Co(NO3)2·6H2O (1.746 g) 

was dissolved in another mixed solution of 30 ml methanol and 10 ml ethanol. 0.125 

mmol K2PtCl4 was dissolved in 2.56 ml deionized water. The above three solutions 

were then mixed under continuous stirring for 30 mins, and the final solution was kept 

for 20 h at room temperature. The purple precipitate was collected by centrifugation, 

washed in ethanol several times, and dried at 80 °C. Finally, the purple precipitate was 

then annealed at 600 °C under 5% hydrogen/argon for 3 h. This resultant product was 

denoted as Co@PtCo@Co@Pt1N-C. The Co@PtCo@Co@Pt1N-C which was 

immersed in a certain concentration of hydrochloric acid solution (37 wt %) to remove 

the cobalt oxide. The final product was then formed, denoted as H-PtCo@Pt1N-C.   
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 Also, for preparing single atom on heterogeneous support (Co and carbon), 100 mg 

ZIF-67 powders mixed with 50 ml ethanol by ultra-sonification for 30 mins to form a 

homogeneous dispersion. 0.0075 mmol platinum (II) acetylacetonate, iridium (II) 

acetylacetonate, palladium acetylacetonate, ruthenium (III) acetylacetonate, nickel (II) 

acetylacetonate, and iron (III) acetylacetonate were then added into the dispersion with 

rigorously stirring until ethanol were evaporated out, forming ZIF-67-

Pt/Ir/Pd/Ru/Fe/Ni mixtures respectively. Finally, the mixture was annealed at 600 °C 

(Pt/Ir/Pd/Ru)/700 °C (Fe/Ni) under argon for 2 h. These resultant products were 

denoted as (Pt/Ir/Pd/Ru/Fe/Ni)1@Co/CN.  

Similarly, for the preparation of single-atom Pt mixed with PtBi catalyst (PtBi/SA Pt)，

the H2PtCl6 and Bi(NO3)3·5H2O precursors, containing 0.68 mL of 0.039 M H2PtCl6 

ethanol solution and 0.88 mL of 0.01 M Bi(NO3)3·5H2O ethanol solution, respectively, 

were mixed, and 0.02 g of GO was dispersed in the mixture. The mixture, containing 

GO, Pt and Bi precursors, were ultrasonicated until ethanol was evaporated; then the 

mixture was heated 12 h in an oven at 80 °C. Then, the precursors were first reduced 

at 600 °C in 5 vol % H2 in nitrogen for 12 h, denoted as PtBi/SA Pt. When further 

reduced at 600 °C in 5 vol % H2 in nitrogen for another 12 h, novel monatomic Pt layer 

on ordered PtBi intermetallic clusters (PtBi@Pt) was formed.  

3.4. Characterization Techniques 

3.4.1.  XRD 

XRD is a general and rapid analytical technique primarily used to identify the 

composition and crystal structures of the materials via analyzing the diffraction 
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patterns. The analyzed sample needs to be finely grounded and uniformly mixed before 

testing.  

    X-rays are a kind of light radiation which is induced by the atomic inner electrons 

under the bombardment of the high-speed electrons. Typically, the crystals can be used 

as gratings for the X-rays since the wavelengths of the X-rays are comparable with the 

interplanar spacings of the crystals. When the X-rays arrive at the lattice planes of the 

crystal materials, interference will occur if the Bragg's law (2dsinθ = nλ) is satisfied. 

Here, d refers to the lattice spacing, θ represents the angle between the incidence X-

ray and the lattice plane, n is any integer, and λ is the wavelength of the incident X-

ray. In this doctoral work, the composition and the crystal structures of the as-prepared 

powders were characterized by a GBC MMA X-ray diffractometer (Scientific 

Equipment LLC, Hampshire, IL, USA) in UOW. The radiation used in the XRD 

measurement was Cu-Kα1 (40 kV, 25 mA, λ=0.15418 nm). 

3.4.2.  Raman Spectroscopy 

Raman spectroscopy is a kind of spectroscopic techniques which can be used to 

investigate the molecular vibration, rotation and a series of other low-frequency modes 

of a material. Raman scattering is a type of the inelastic scattering, and the typical laser 

light used in the Raman scattering could be visible light, near-infrared light or the near-

ultraviolet light. The energy of the laser photons will be shifted down and up when the 

laser light interacts with the system phonons. The information on the phonon modes, 

which reflect the symmetry of molecules and chemical bonds, can be obtained by the 

energy shift. In this work, the mapping mode (one spectrum per 250 seconds) was 

adopted to capture the Raman spectra (Lab RAM HR, Horiba Jobin Yvon SAS) of the 
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samples one by one. 

3.4.3.  SEM 

The SEM is a type of electron microscope. It can create images for the surfaces of the 

materials by scanning the surfaces with a focused electron beam. The information on 

the surface morphology and composition of the materials can be produced via the 

interaction between the electrons and the atoms in the materials. Generally, the 

electron beam scans in a raster scan pattern, and the images are generated by 

combining the beam's position with the detected signal. In this work, the morphology 

of the as-prepared samples was detected by a field emission scanning electron 

microscope (JSM-7500FA, JEOL, Tokyo, Japan) in UOW. 

3.4.4.  XPS 

XPS is a type of quantitative spectroscopic technique. It can be used to determine the 

elemental composition, experimental formula as well as the chemical and electronic 

states of the elements contained in the tested materials. XPS spectra are collected by 

irradiating a sample with X-rays while simultaneously measuring the kinetic 

energy and amount of escaped electrons with the depth in the range from 1 nm to 

10 nm ejected from surface of the tested samples. In this work, XPS was conducted at 

the Photoelectron Spectroscopy Station (Beamline 4W9B, Tsinghua University) with 

the resolution of 0.05 eV. All the XPS data were analyzed using the commercial 

CasaXPS 2.3.15 software package. Before analysis, the spectra were calibrated by C 

1s = 284.8 eV. 

https://en.wikipedia.org/wiki/Raster_scan
https://en.wikipedia.org/wiki/Spectrum
https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Kinetic_energy
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Nanometre
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3.4.5.  FT-IR 

FT-IR is a spectroscopic technique which can be used to analyze the molecular 

structures and chemical compositions via detecting the materials’ characteristic 

absorption of infrared radiation with different wavelengths. For the molecules, 

especially the organic molecules, the atoms that make up the chemical bonds or 

functional groups are in the state of constant vibration. As the frequency of the 

vibration is comparable to the frequency of the infrared vibration, vibration absorption 

can be occurred for the chemical bonds or functional groups in the molecules when 

the molecules are irradiated by the infrared light. Different chemical bonds or 

functional groups present different absorption frequencies which are located at 

different position in the FT-IR spectrum, hence, information on the chemical bonds or 

functional groups in the molecules can be obtained. In this work, the FT-IR spectrum 

was characterized by using a Shimadzu FTIR Prestige-21 in UOW with the range from 

4000 cm-1 to 500 cm-1. 

3.4.6.  AFM 

AFM is a very high resolution type of scanning probe microscopy, with demonstrated 

resolution on the order of fractions of a nanometer. The information is gathered by 

touching the surface with a sharp tip. It has three major abilities: force measurement, 

imaging, and manipulation. Herein, in this work, an atomic force microscope (MPF-

3D, Asylum Research, Santa Barbara, USA) was utilized to generate topographic 

images and evaluate the thickness of the atomically thin transition metal oxide 

nanosheets. 
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3.4.7.  TEM and STEM 

TEM is a microscopy technique in which the beam of accelerated and focused 

electrons is transmitted through a sufficiently thin specimen to form an image. TEM 

can be employed to investigate the morphology, crystal structure, and electronic 

structure of a specimen. SAED is a crystallographic experimental technique that can 

be used inside the TEM. As a diffraction technique, SAED can be employed to 

examine crystal defects and crystal structures. SAED is distinguished 

from conventional TEM in that the electron beam is focused on a size-limited spot 

which scans over the sample in a raster pattern. The rastering of the beam across the 

sample makes it available for various analysis techniques such as mapping by 

EDS, EELS, and  HAADF imaging. These signals can be obtained simultaneously, 

allowing direct correlation of the image and quantitative data. In this doctoral work, 

the TEM observations of the samples were carried out using a JEM-2011F (JEOL, 

Tokyo, Japan) and a probe-corrected JEOL ARM200F (equipped with a cold field 

emission gun, a high resolution pole-piece, and a Centurio EDS detector) at 80 kV for 

upconversion nanoparticles and 200 kV for other samples in UOW. 

3.4.8.  DFT 

Density functional theory is a quantum mechanical modelling method used in the 

investigation of the electronic structures for the multiple electronic systems. It has 

wide application in physics and chemistry, especially in investigating the properties of 

the molecules and condensed matt. The objective of the DFT method is the electronic 

density instead of the wavefunctions, hence, it is more convenient than the classic 

modelling method like the Hartree-Fock. The common application of DFT is achieved 

https://en.wikipedia.org/wiki/Conventional_transmission_electron_microscope
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via Kohn-Sham method. In the frame of Kohn-Sham DFT, the complicated many-body 

system is simplified to a system in which the electron with no interaction with others 

moves in the effective potential field. The effective potential field includes the external 

potential field and the influence of Coulomb interactions between electrons. DFT is 

the most versatile and popular computational method in condensed matt, 

computational physics and computational chemistry.  

3.4.9.  XAS 

X-ray absorption spectroscopy (XAS) is a widely used technique for determining the 

local geometric and/or electronic structure of matter. The experiment is usually 

performed at synchrotron radiation facilities, which provide intense and tunable X-ray 

beams. Samples can be in the gas-phase, solution, or as solids. The X-ray Absorption 

Near-Edge Structure XANES introduced in 1980 and later in 1983 called also 

NEXAFS (Near-edge X-ray Absorption Fine Structure) which are dominated by core 

transitions to quasi bound states (multiple scattering resonances) for photoelectrons 

with kinetic energy in the range from 10 to 150 eV above the chemical potential, called 

"shape resonances" in molecular spectra since they are due to final states of short life-

time degenerate with the continuum with the Fano line-shape. In the high kinetic 

energy range of the photoelectron the scattering cross-section with neighbor atoms is 

weak and the absorption spectra are dominated by EXAFS (Extended X-ray 

Absorption Fine Structure) where the scattering of the ejected photoelectron of 

neighboring atoms can be approximated by single scattering events. In this work, X-

ray absorption spectroscopy (XAS) experiments were carried out at the applied X-ray 

absorption fine structure spectroscopy (XAFS) beamline P65 at the PETRA III 

(Deutsches Elektronen-Synchrotron, DESY, Hamburg). The storage rings of PETRA 
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III were operated at the electron energy of 6 GeV with a beam current of 100 mA. 

XAS spectra were recorded in quick-XAFS (QXAFS) method in transmission mode 

using an ionization chamber of Pt foil. The intensity of the monochromatic X-ray beam 

was monitored respectively by three consecutive ionization detectors. All the XAS 

spectra were processed using DEMETER software package. The data was normalized 

and analyzed via using Athena and Artemis software. 

 

3.5. Electrochemical Measurements 

3.5.1.  Linear Sweep Voltammetry (LSV) 

LSV is a commonly used method to detect catalytic activity towards the 

OER/ORR/HER, which is performed on a rotating ring-disk electrode (RRDE). LSV 

is a voltammetric method where the potential between the working electrode and a 

reference electrode is swept linearly in time, and the current at the working electrode 

is recorded simultaneously. Oxidation or reduction of the species is registered as a 

peak at the potential where the species begins to be oxidized or reduced. 

3.5.2.  Cyclic Voltammetry (CV) 

CV is a commonly used technique to study the redox reactions in a catalysis (EOR) or 

battery system, through which the following can be determined: the intermediates 

participating in the redox reaction, the stability of the reaction products, the electron 

stoichiometry, the electron transfer kinetics, and the reversibility of a reaction. CV 

curves usually display a hysteresis in the absolute potential between the anodic and 

cathodic peaks due to the polarization that is caused by a slow diffusion rate and the 
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intrinsic activation barrier obstructing the electron transfer between the electrodes. In 

a typical CV measurement, the potential of the cell is scanned at a specified rate with 

the response current collected. Herein in this work, the CV data were recorded on a 

Biologic VPM3 electrochemical workstation in UOW. 

3.5.3.  Li-O2 Battery Measurements 

 The electrochemical performances of lithium oxygen batteries were investigated 

using 2032 coin-type cells with air holes on the cathode side. For the preparation of 

the H-PtCo@Pt1N-C cathode electrode, 90 wt % catalyst and 10 wt % poly(1,1,2,2-

tetrafluoroethylene) (PTFE) were mixed in an isopropanol solution. The resulting 

homogeneous slurry was coated on carbon paper. After that, the electrodes were dried 

at 120 ºC in a vacuum oven for 12 h. All the Li-O2 batteries were assembled in an Ar-

filled glove box (Mbraun, Unilab, Germany) with water and oxygen contents below 

0.1 ppm. They contained lithium metal foil as the counter electrode and a glass fiber 

separator (Whatman GF/D). One electrolyte consisted of 1 M LiCF3SO3 in 

tetraethylene glycol dimethyl ether (TEGDME), and the other one consisted of 0.1 M 

LiClO4, redox mediator tetrathiafulvalene (TTF) in dimethylsulfoxide (DMSO). All 

the assembled coin cells were stored in an O2 purged chamber which was connected 

to a LAND CT 2001 instrument. The galvanostatic discharge-charge tests were then 

conducted on the battery testing system with the specific capacity of 200 mAh g-1, and 

the capacity was calculated based on the mass of active materials in the cathode. 
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Chapter 4 

4.  The Quasi-Pt-allotrope catalyst: Hollow 

PtCo@single-atom Pt1 on nitrogen doped 

carbon towards superior oxygen reduction  

4.1. Introduction 

Electrocatalysis plays a pivotal role in electrochemical energy conversion and storage 

technologies, including water electrolysers, metal-air batteries, and proton-exchange 

membrane fuel cells[162]. The exploration of low-cost and high-performance 

electrocatalysts is playing the most essential and imperative role in the development 

of fuel cells. Platinum-based bimetallic nanomaterials have been considered as 

efficient catalysts for the oxygen reduction reaction (ORR)[162d, 163]. In contrast to 

monometallic Pt catalysts, the Pt3Ni (111) surface has a much lower overpotential and 

is 10-fold more active toward the ORR than the Pt (111)[164]; similarly, Pt3Co[165], 

PtCu[166], and PtFe[167] have shown enhanced ORR performance compared to 

commercial Pt/C. Researchers are struggling to boost the ORR activity by optimizing 

the nanostructures of PtM alloys, where M is a metal, such as by decreasing particle 

sizes[168] or dealloying PtM to expose increased active sites[169], as the electrocatalytic 

reactions only take place on the catalyst surface[170]. Unfortunately, even though they 

have favorable structures, high activity Pt-based catalyst materials are easily degraded 

and are extremely vulnerable to agglomeration during annealing and cycling tests, 
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leading to the rapid failure of their catalytic performance[171]. For example, Mallika et 

al.[172] pointed out a common trend: although Pt3Co nanoparticles with a smaller size 

initially show higher ORR performance than these with a larger size, the smaller 

nanoparticles are more unstable against agglomeration compared to the larger particles 

and will lead to more rapid activity decay during cycling. On the other hand, 

combinations of noble metals such as Pd@Pt are formed into core@shell structures to 

increase the ORR efficiency and simultaneously maintain the stability of their 

nanostructure over time,[173] but this greatly increases the expense, and there is still a 

significant drop from their initial ORR performance. It is still a huge challenge to 

fabricate efficient and stable nanostructures for the next-generation electrocatalysts. 

Carbon, as one of the most widely used frameworks in composites, is essential to 

increase the conductivity and stabilize the nanoarchitectures of samples, such as metal 

organic frameworks[174]. Significantly, it has been reported that the carbon-based 

core@shell structure, such as FeS@C[175], and Si@C[176], can very effectively protect 

these highly active materials from agglomeration and collapse, leading to optimized  

electrochemical performance over prolonged cycling. Also, the modification of the 

carbon, with different dopants, is a general strategy to improve the ORR performance 

of the carbon. Recently, single-atom Pt, as a new frontier of functional materials, has 

been received intensive attention in ORR advancement due to its superior size 

effect[177]. The synergistic effect between single atom and carbon can accelerate the 

sluggish ORR kinetics, so that this combination is being recognized as one of the most 

promising strategies in the design of the potential affordable catalysts. The calculated 

overpotential of single atom Pt-N/C (1.74 V), however, is still higher than that of Pt 

(111), which is generally 0.69-1.69 V. Thus, from the fundamental perspective, it is 
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rational to construct a stable nanostructure by virtue from low overpotential bimetallic 

PtM alloy, protective carbon, and single atom dopants, achieving a high active 

composite towards superior ORR performance. 

Herein, we demonstrate the synthesis of a quasi-Pt-allotrope: Pt3Co nanospheres with 

an internal hollow structure (H-PtCo), which, in turn, are surrounded by an N-doped 

carbon shell with single-atom Pt anchored to it (Pt1N-C). The intermetallic H-PtCo 

with its internal cavities and uneven surface can expose abundant active sites and 

efficiently achieve high ORR activity. The Pt1N-C is critical, because it not only can 

provide accessible tunnels for electrolyte penetration and fast electron diffusion, but 

also stabilizes the hollow structure in the center and protects these highly-active fine 

nanoparticles from agglomeration. In-situ synthesis of the multifunctional C shell and 

the creation of internal cavities for ultra-refined Pt-based nanoparticles are difficult 

and have only now been realized. When tested in 0.1 M HClO4 solution, the mass 

activity of H-PtCo@Pt1N-C is 1.2 mA µgPt
-1 at 0.9 V vs. reversible hydrogen electrode 

(RHE), which is one of the most remarkable ORR performance among all reported Pt-

Co/C systems. After 10000 cycles, the mass activity of H-PtCo@Pt1N-C at 0.9 V 

remains 1.26 mA µgPt
-1 without any fade. These results indicate that H-PtCo@Pt1N-C 

can boost the ORR activity with greatly enhanced durability. More importantly, the 

single atoms Pt in shells forming Pt-NC3 is confirmed that they are favorable to prompt 

ORR performance via the DFT calculation. Also, when tested in tetraethylene glycol 

dimethyl ether (TEGDME) and dimethylsulfoxide (DMSO)-based organic electrolytes, 

the discharge overpotential of H-PtCo@Pt1N-C was only 0.05 V, indicating that this 

sample has an efficient ORR capability in organic electrolytes as well. Furthermore, 

this synthesis method sheds light on a plausible strategy for various ultra-refined 
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bimetallic catalysts; the superior ORR performance of H-PtCo@Pt1N-C holds great 

promise for its practical applications in next-generation proton exchange membrane 

fuel cells and lithium-air batteries. 

4.2. Experimental Section 

4.2.1.  Materials 

Potassium tetrachloroplatinate(II) (K2PtCl4, 98%), Cobalt(II) nitrate hexahydrate 

(Co(NO3)2 6H2O, ACS reagent grade, ≥ 98%), 2-methylimidazole (C4H6N2, 99%), 

Nafion@117 solution (5 wt %, dispersed in a binary solvent of water and lower 

aliphatic alcohols), potassium hydroxide (KOH, reagent grade, 90%), and commercial 

Pt black (20 wt. % Pt loading on Vulcan XC72) were purchased from Sigma-Aldrich. 

All the chemical reagents were used as received without any further purification. 

4.2.2.  Materials Preparation 

4.2.2.1.  Synthesis of H-PtCo@Pt1N-C 

In a typical synthesis, 2-methylimidazole (1.97 g) was dissolved in a mixed solution 

of 30 ml methanol and 10 ml ethanol. Co(NO3)2·6H2O (1.746 g) was dissolved in 

another mixed solution of 30 ml methanol and 10 ml ethanol. 0.125 mmol K2PtCl4 was 

dissolved in 2.56 ml deionized water. The above three solutions were then mixed under 

continuous stirring for 30 mins, and the final solution was kept for 20 h at room 

temperature. The purple precipitate was collected by centrifugation, washed in ethanol 

several times, and dried at 80 °C. Finally, the purple precipitate was then annealed at 

600 °C under 5% hydrogen/argon for 3 h. This resultant product was denoted as 

Co@PtCo@Co@Pt1N-C. The Co@PtCo@Co@Pt1N-C which was immersed in a 
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certain concentration of hydrochloric acid solution (37 wt %) to remove the cobalt 

oxide. The final product was then formed, denoted as H-PtCo@Pt1N-C. 

4.2.2.2.  Synthesis of Pt1N-C. 

 In a typical synthesis, 2.5 mg H2PtCl4 was mixed with 50 mg ZIF-8 forming mixture. 

Then, the mixture was dried up via stirring and sintered at 900 °C for 3 hours in argon. 

4.2.2.3.  Synthesis of nitrogen doped carbon (NPC).  

Zinc acetate, oleic acid, and benzimidazole were used as the ZnO template, the carbon 

source, and the nitrogen source, respectively. 0.2 g and 0.8 g benzimidazole were 

respectively ground with 2 g oleic acid and 2 g anhydrous zinc acetate to obtain 

uniform mixtures, and the mixtures were annealed at a ramp rate of 3 °C min−1 under 

flowing argon gas as the temperature was increased from room temperature to 700°C, 

at which they were held for 2 h. The resulting products were immersed in a certain 

concentration of hydrochloric acid solution (37 wt %) to remove the resultant zinc 

oxide, and they were then dried in an oven at 80 °C, after the pH was adjusted to neutral 

with distilled water, to yield nitrogen-doped porous carbon (NPC).  

4.2.2.4.  Synthesis of Pt/NPC.  

In a typical synthesis, 0.02 g of NPC was mixed in 0.68 mL of an aqueous solution of 

0.039 M K2PtCl4. The mixture was ultra-sonicated until the solvents were fully 

evaporated. The mixture with NPC-containing K2PtCl4 was typically heated overnight 

in a blast oven at 80 °C. The precursors then solidified and shrank to form crystals. 

Finally, the precursors were reduced at 300 °C in forming gas (10 vol % H2 in argon) 

for 3 h, and the temperature was then raised to 700 °C for 3 h. A Pt/NPC sample was 

collected when the product was Coled down to room temperature. 
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4.2.2.5.  Synthesis of PtCo/NPC.  

The fabrication method for PtCo/NPC was the same as that for Pt/NPC, except for the 

addition of Co(NO3)2·6H2O. 0.02 g of NPC was mixed in the precursors K2PtCl4 and 

Co(NO3)2·6H2O, consisting of 0.68 mL of 0.039 M K2PtCl4 water solution and 0.88 

mL of 0.01 M Co(NO3)2·6H2O ethanol solution. 

4.2.3.  Structural characterization.  

The morphologies of the samples were investigated by field-emission scanning 

electron microscopy (FESEM; JEOL JSM-7500FA) and transmission electron 

microscopy (TEM, JEOL 2011, 200 kV). The high-angle annular dark-field scanning 

TEM (HAADF-STEM) images and the scanning TEM energy dispersive X-ray 

spectroscopy (STEM-EDS) data were acquired on the transmission electron 

microscopy system (TEM, JEOL ARM-200F, 200 kV). The XRD patterns were 

collected by powder X-ray diffraction (XRD; GBC MMA diffractometer) with Cu Kα 

radiation at a scan rate of 4 ° min-1. The bonding on H-PtCo@Pt1N-C was determined 

by XPS (PHOIBOS 100 Analyser from SPECS, Berlin, Germany; Al Kα X-rays). 

4.2.4.  Electrochemical Measurements.  

Before the glassy carbon electrode (GCE) was used, it was consecutively polished with 

1.0 and 0.05 μm alumina powder, rinsed with deionized water, and sonicated first in 

ethanol and then in water. Electrochemical experiments were carried out in 0.1 M 

HClO4 by using a computer-controlled potentiostat (Princeton 2273 and 616, Princeton 

Applied Research) in a conventional three-electrode cell at room temperature. 

Typically, working electrodes were prepared by mixing the catalyst with deionized 

water + isopropanol + 5% Nafion® (v/v/v = 4/1/0.05). For all Pt-based catalysts, the Pt 
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loading on the rotating disk electrode (RDE) was calculated as 10.1 µgPt cm-2. A Pt 

wire was used as the counter electrode and Ag/AgCl (KCl, 3M) was used as the 

reference electrode, with all potentials referred to reversible hydrogen electrode (RHE). 

Thus, the potential with respect to RHE can be calculated as follows: E(RHE) = 

E(Ag/AgCl) + 0.059 × pH + 0.210. Before testing, flowing N2/O2 was bubbled through 

the electrolyte in the cell to achieve an N2/O2-saturated solution. The cyclic 

voltammetry (CV) profiles were obtained in N2- or O2-saturated 0.1 M HClO4 solution 

at a scan rate of 50 mV s-1. The electrochemical surface area (ECSA) was determined 

by the integrating the hydrogen desorption charge on CVs. The oxygen reduction 

reaction (ORR) testing was carried out in O2-saturated 0.1 M HClO4 solution at 

different rotation rates with a scan rate of 10 mV s-1. Accelerated durability tests were 

performed at room temperature in O2-saturated 0.1 M HClO4 solution by applying 

cyclic potential sweeps between 0.6 and 1.1 V versus RHE at a scan rate of 50 mV s-1 

for 10000 cycles or 5000 cycles. The kinetic current (𝐼𝑘) can be calculated using the 

Koutecky-Levich (K-L) equation, which is expressed by 

1

𝐼
=

1

𝐼𝑘
+

1

𝐼𝑑
 

where 𝐼 is the measured current and 𝐼𝑑 the diffusion limited current. 

The K-L plot is based on the Levich equation:  

𝐼𝑑 = 0.62𝑛𝐹A𝐷2 3⁄ 𝜐−1 6⁄ 𝜔1 2⁄ 𝐶𝑂2
 

where n is the number of electrons transferred; F is Faraday’s constant (96,485 C mol-

1); A is the area of the electrode (0.196 cm2); D is the diffusion coefficient of O2 in 0.1 

M HClO4 solution (1.93 × 10-5 cm2·s-1); 𝜐 is the kinematic viscosity of the electrolyte 

(1.01 × 10-2 cm2∙s-1); 𝜔 is the angular frequency of rotation, 𝜔 = 2π𝑓/60, where f is 
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the RDE rotation rate in rpm and 𝐶𝑂2
 is the concentration of molecular oxygen in 0.1 

M HClO4 solution (1.26 × 10-6 mol·cm-3).  

4.2.5.  Li-O2 Battery Measurements.  

The electrochemical performances of lithium oxygen batteries were investigated using 

2032 coin-type cells with air holes on the cathode side. For the preparation of the H-

PtCo@Pt1N-C cathode electrode, 90 wt % catalyst and 10 wt % poly(1,1,2,2-

tetrafluoroethylene) (PTFE) were mixed in an isopropanol solution. The resulting 

homogeneous slurry was coated on carbon paper. After that, the electrodes were dried 

at 120 ºC in a vacuum oven for 12 h. All the Li-O2 batteries were assembled in an Ar-

filled glove box (Mbraun, Unilab, Germany) with water and oxygen contents below 

0.1 ppm. They contained lithium metal foil as the counter electrode and a glass fiber 

separator (Whatman GF/D). One electrolyte consisted of 1 M LiCF3SO3 in 

tetraethylene glycol dimethyl ether (TEGDME), and the other one consisted of 0.1 M 

LiClO4, redox mediator tetrathiafulvalene (TTF) in dimethylsulfoxide (DMSO). All 

the assembled coin cells were stored in an O2 purged chamber which was connected 

to a LAND CT 2001 instrument. The galvanostatic discharge-charge tests were then 

conducted on the battery testing system with the specific capacity of 200 mAh g-1, and 

the capacity was calculated based on the mass of active materials in the cathode. 

4.2.6.  DFT calculation.  

The first-principles calculations were performed under the framework of density 

functional theory (DFT) calculations as implemented in the Vienna Ab initio 

Simulation Package (VASP)[178]. The Perdew-Burke-Ernzerhof(PBE)[179] exchange-

correlation functional within the generalized gradient approximation (GGA) is used in 
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this study. The projector augmented wave pseudopotential was employed for 

describing the electron-core interactions, combining the plane-wave basis set of 520 

eV energy cut-off for the valence electrons. The vacuum is set about 20 Å in a 

perpendicular direction to avoid the interaction between the periodic images. The 

Brillouin zone is sampled with a 5 × 5 × 1 k-point grid. The convergence criteria for 

the energy and residual force are set to 10-5 eV and 0.02 eV / Å, respectively. 

The free energy change of reaction was defined by,  

ΔG(U, pH) = ΔG + ΔGpH + ΔGU      (1) 

ΔG = ΔE + ΔZPE ‒ TΔS         (2) 

ΔGpH = ‒kT∙ln[H+] = kT∙ln10∙pH  (3) 

ΔGU=eU                      (4) 

where ΔE is the total energy change of the reaction, ΔZPE is the difference on zero-

point-energy of the system during the reaction, ΔS is the entropy change during the 

reaction. And all these parameters can be obtained by routine calculations[180].   

The ORR half-reaction was considered by four elementary steps: 

1) O2(g)+H++*-->OOH*-e 

2) OOH*+ H+-->O*+H2O-e 

3) O*+ H+-->OH*-e 

4) OH*+ H+-->*+H2O-e       
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4.3. Results and Discussion 

 

Figure 4-1. (a) Schematic illustration of the fabrication process for H-PtCo@Pt1N-C. 

(b) Scanning electron microscope (SEM) image of ZIF-67-50. (c) Annular bright field 

(ABF) image of Co@PtCo@Co@Pt1N-C. (d) Annular bright field (ABF) image of H-

PtCo@Pt1N-C. 

  

Figure 4-2. SEM image and histogram of the diameters of ZIF-67-50 particles. 
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Figure 4-3. SEM image and histogram of the diameters of ZIF-67-25 particles. 

 

Figure 4-4. SEM image and histogram of the diameters of ZIF-67-0 particles.  

  Inspired by the synthesis of zeolitic imidazolate framework-67 (ZIF-67)[181], H-

PtCo@Pt1N-C was fabricated as illustrated in Fig. 4-1a.  Pt salts (K2PtCl4) was added 

at the beginning, which can modify the coordination between methylimidazolate 

anions and cobalt cations, leading to a decrease in the particle size. The smallest 

average diameter of the modified ZIF-67 was around 100-250 nm (ZIF-67-50), 

obtained by adding 50 mg Pt salt (Fig. 4-1b, Fig. 4-2 in the Supporting Information). 

In a sharp contrast, when the Pt salts was decreased to 25 and 0 mg, the diameter of 

products increase to 500-800 (ZIF-67-25) and 850-1050 nm (ZIF-67-0) (Fig. 4-3 and 

4-4), respectively. We thus believe that the decrease in the particle size is mostly due 

to the change of the pH value, which is consistent with previous work reported by 

Ming Hu’s group[182]. The increased concentration of OH-, which is provided by the 
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dissociation of Pt salt (K2PtCl4), probably forms prenucleation clusters with Co2+, so 

that it prevents the Co2+ from supporting the growth of ZIF-67[183].  

 

Figure 4-5. (a) HAADF-STEM image at low magnification, and (b) Histogram of the 

diameters of Co@PtCo/Pt@Co@Pt1N-C particles. 

When the ZIF-67-50 was calcinated at 600 oC, ultra-refined intermediate nanoparticles, 

denoted as Co@PtCo@Co@Pt1N-C, were produced, with main particle size around 

10 nm in a range from 2 to 45 nm according to the low magnification scanning 

transmission electron microscope (STEM) images (Fig. 4-5). The high-angle annular 

dark field (HAADF) image and energy dispersive spectroscopy (EDS) mapping 

analysis provide evidence that the Pt phase is well ring-dispersed in the middle of Co 

with nitrogen doped carbon as shell (Fig. 4-1c, Fig. 4-5a). The synchronous increase 

in the Co prior to Pt also confirms that the Pt atoms are rare on the external Co shell 

and restricted in the middle only (Fig. 4-5b).  
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Figure 4-6. (a) STEM-EDS elemental maps of Co, N, C, and Pt for the selected 

Co@PtCo@Co@Pt1N-C particle. (b) Line profile analysis from the indicated white 

rectangle R1 in (a), where the increased intensity of Co prior to Pt indicates that the 

Co shell wraps the PtCo core. 
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Figure 4-7. (a, b) TEM images at different magnifications of Co@PtCo@Co@Pt1N-

C obtained at 300 ℃; (c, d) TEM images of Co@PtCo@Co@Pt1N-C at different 

magnifications obtained at 400 ℃; (e, f) TEM images of Co@PtCo@Co@Pt1N-C at 

different magnifications obtained at 500 ℃; (g, h) TEM images of 

Co@PtCo@Co@Pt1N-C at different magnification obtained at 600 ℃; (i) Schematic 

illustration of the evolution of intermediate Co@PtCo@Co@Pt1N-C particles. 

 To reveal the mechanism behind the formation of Co@PtCo@Co@Pt1N-C 

intermediate, we further investigated the morphology of the intermediates obtained at 

the different temperature. The Pt phase, which is not connected to imidazole groups, 

tends to aggregate into nanoparticles at a lower temperature (300oC) with a possible 

slight amount of Co species to form the PtCo@Co core (Fig. 4-7). With inceasing 

temperature, more Co fragments begin to aggregate and wrap the PtCo@Co core, 

subsequently leading to the the external Co shells and the formation of 

Co@PtCo@Co@Pt1N-C. Co serves as a hard template and matrix to create inner 

cavities/active sites and accommodate Pt phases. Subsequently, the final product, 

elaborate H-PtCo@Pt1N-C nanoparticles with well-constructed hollow structures, 

could be obtained after acid etching the Co away. The high resolution annular bright 

field (ABF) image of H-PtCo@Pt1N-C indicates that the carbon shell coated on the 

particle surface is only 4 atomic layers thick (Fig. 4-1d).   



 

 

 

Chapter 4: The Quasi-Pt-allotrope catalyst: Hollow PtCo@single-atom Pt1 on nitrogen 

doped carbon towards superior oxygen reduction                                                      93 

 

Figure 4-8. (a) Low-magnification high-angle annular dark field (HAADF) image of 

H-PtCo@Pt1N-C. (b) High-resolution HAADF image of H-PtCo@Pt1N-C. (d) The 

corresponding 3D electron signal intensity, and (e-g) STEM-EDS maps of elemental 

distributions of H-PtCo@Pt1N-C. SA: single atom. 

 Specifically, the low magnification HAADF image of H-PtCo@Pt1N-C shows that 

this approach can achieve uniform hollow structures with bright shells (Fig. 4-8a). The 

high-resolution HAADF image clearly shows the presence of the porous carbon shell, 

which can directly provide physical segregation from other particles and protect the 

particles from agglomeration, thus maintaining excellent structural stability of the 

interior core. In addition, it is interesting that bright spots with high contrast (yellow 

circles) can be clearly seen on the carbon shell, indicating the isolated single Pt atoms 
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(Pt1) were doped into the carbon lattice (Fig. 4-8b), so that the whole image resembles 

looks like a moon hanging in the sky surrounded by stars. Moreover, Fig. 4-8c presents 

a hollow structure with holes and shows lattice spacing of 0.23 nm, which is indexed 

to the (111) planes of PtCo alloy.  

  

Figure 4-9. The electronic intensity measured along R1 on the hollow PtCo alloy 

shows there is an intensity-collapse, which is 7.5 nm, corresponding to the inner 

diameter of the hollow structure. 

 

Figure 4-10. Annular dark field (ADF)-STEM image of H-PtCocore@Pt1N-Cshell and 

its corresponding EDS spectrum, revealing that the atomic ratio of Pt to Co is 2.75. 

 The holey structure of H-PtCo@Pt1N-C assists in providing tunnels for O2 to flow in 

and form internal-external double active layers, which can enhance the catalytic 

performance. The collapse of the electron signal intensity measured along H-

PtCo@Pt1N-C further confirms the hollow structure with an inner diameter of 7.5 nm 
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(Fig. 4-9). Also, the uneven intensity of H-PtCo@Pt1N-C shows that the particle has a 

rugged surface, which further increases the active sites in combination with the hollow 

nanostructure (Fig. 4-8d). The STEM-energy dispersive spectroscopy (EDS) 

elemental mapping shows the Pt and Co projected distributions within the particle (Fig. 

4-8e-f), and further STEM-EDS analysis reveals an average Pt/Co atomic ratio of 

about 2.75, indicating that the main phase in H-PtCo@Pt1N-C is Pt3Co (Fig. 4-10). 

Also, a line profile extracted from the particle, as shown by the blue arrow in Fig. 4-

11, confirms that the Pt has a synchronous change with Co.  

 

Figure 4-11. Line profile analysis along the indicated blue rectangle in H-PtCo@Pt1N-

Cshell. 

 The high-resolution HAADF as shown in Fig. 4-12a illuminates that the high-contrast 

bright spots, which are considered as Pt1, are uniformly dispersed on the carbon shell 

at a high density without any aggregation. The focused and under-focused Pt atoms in 

the HAADF image (bright and dark one as shown in Figure 4-12a) indicate that Pt1 

atoms are doped in different depths, implying a three-dimensional distribution of Pt1 

in H-PtCo@Pt1N-C. The inverse fast Fourier transform (FFT) image, which was taken 

from a small area (red rectangle in Fig. 4-12a), shows that the bright Pt atoms are each 

evenly anchored in middle of a quadrangle of the nitrogen-doped carbon (the yellow 

rectangles), indicating the synergistic super lattice between Pt and N-C support (Fig. 
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4-12b). The formation of Pt1 is likely determined by the on N-doped C support, in 

which there is strong electronic metal-support interactions (EMSI) in the form of Pt-

N-C bonding. Also, the measured distance of the bond of C(N)-Pt-C(N) on the first 

shell was around 3.6 Å (Fig. 4-12d), which is very near the value from the theoretical 

simulated atomic model as shown in Figure 4-12c. The elemental mapping further 

confirmed that the element Pt evenly distributed in the C matrix (Fig. 4-12e-h). 

 

Figure 4-12. (a) HAADF image of H-PtCo@Pt1N-C focused on single Pt atoms doped 

on carbon shell. (b) The FTTI-HAADF image of H-PtCo@Pt1N-C derived from the 

red rectangle in Figure 4-12a, with the inset showing the arrangement of atoms. (c) 

Simulated model of carbon/nitrogen-Pt single atoms. The blue ball represents 
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nitrogen/carbon atoms, the yellow ball represents Pt atoms. (d)The electronic intensity 

profile the distance diagonal atoms in first shell is 3.6 Å. (e-h) STEM-EDS maps of 

elemental distributions. High resolution (i) Pt 4f and (j) Co 2p XPS spectra of H-

PtCo@Pt1N-C. 

  As is well-known, Pt1 as a new frontier in heterogeneous catalysis could exhibit 

unexpected properties due to its atomic scale and superior activity, which is expected 

to play an active role in synergistically boosting ORR properties of the sample. The 

surface composition and valence state of H-PtCo@Pt1N-C were investigated by X-ray 

photoelectron spectroscopy (XPS). As shown in Fig. 4-12i, the binding energies at 

72.13 eV and 74.89 eV in the Pt spectrum correspond to the Pt 4f2/7 and Pt 4f5/2 peaks 

of the H-PtCo@Pt1N-C, which can be deconvoluted into four peaks at 71.19 eV, 72.27 

eV, 74.68 eV, and 77.21 eV, respectively, indicating the presence of metallic Pt and 

oxidized Pt[184]. This result is consistent with the co-existed status of metallic Pt in the 

PtCo alloy and oxidized Pt1 single atoms. Also, the high resolution XPS spectrum of 

Co2p shows the coexistence of Co0, Co3+, and Co2+, indicating the presence of metallic 

Co and possibly the residue of cobalt oxides (Fig. 4-12j).   

 

Figure 4-13. Typical SEM images of NPC at different magnifications. 
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Figure 4-14. Schematic illustration for of fabrication processes for PtCo/NPC and 

Pt/NPC.  

 To verify the functions of the hollow structure and bimetallic effect, ultra-refined solid 

Pt3Co alloy nanoparticles (PtCo/NPC) and solid Pt nanoparticles (Pt/NPC) were 

respectively prepared as comparison, respectively. A new Nitrogen-doped porous 

carbon (NPC) with nanopores was synthesized as a framework for both samples (Fig. 

4-13), as it has been reported that the nanoporous carbon can prevent the Pt particles 

from growing big size[185]. The fabrication process was shown in Fig. 4-14.  
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Figure 4-15. HAADF-STEM image and STEM-EDS maps of PtCo/NPC. (a) 

HAADF-STEM image. (b-d) STEM-EDS maps.  

 

Figure 4-16. (a) TEM image of PtCo/NPC at low magnification. (b) Histogram of the 

diameters of PtCo/NPC particles based on Fig. 4-16a. 

 

Figure 4-17. (a, b) Typical TEM images of Pt/NPC at different magnifications. Inset 

of (b) is a histogram of the diameters of Pt/NPC particles based on Fig. 4-17a. 

The experimental details for all the samples are presented in the Supporting 

Information. The HAADF-STEM images show the nanoparticles sizes of PtCo/NPC 

and Pt/NPC varying between 4 and 8 nm (Fig. 4-15, 4-16, and 4-17), which are 

comparable to those of H-PtCo@Pt1N-C. Additionally, the structure-simulation 

models confirm that there are structural differences amongst these three samples in 

terms of hollow structures and metallic Pt3Co phase (Fig. 4-18). As shown in Figure 
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S16, H-PtCo@Pt1N-C, PtCo/NPC, and Pt/NPC have particles of a similar size, varying 

between 4 and 8 nm. Also, the random intensity variations observed between the 

atomic columns suggest that the alloyed Pt-Co face-centered cubic phase is disordered. 

Compared to the typical hexagonal structure of Pt/NPC (Fig. 4-18c), the H-

PtCo@Pt1N-C (Fig. 4-18a) and PtCo/NPC (Fig. 4-18b) possess a more spherical 

appearance, indicating that they are smoother, with a smaller extent of low-

Cordination surface atoms. The structure-simulation models show the structural 

differences between H-PtCo@Pt1N-C (Fig. 4-18d), PtCo/NPC (Fig. 4-18e), and 

Pt/NPC (Fig. 4-18f). There is a cavity in the center of the H-PtCo@Pt1N-C particle, 

but not in the PtCo/NPC. In particular, to gain better insight into the structure of the 

dark-contrasted nanoparticles, the three-dimensional (3D) variations of HAADF 

intensity were compared between H-PtCo@Pt1N-C (Fig. 4-18g) and PtCo/NPC (Fig. 

4-18h). In this model, the contrast varies linearly with the mass and the thickness of 

the analyzed area, and is proportional to the square of the mean atomic number Z of 

the specimen. Thus, the observed color-contrast difference may come from the 

different structures: hollow and solid. 
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Figure 4-18. HAADF-STEM images of (a) H-PtCo@Pt1N-C, (b) PtCo/NPC, and (c) 

Pt/NPC. Structure-simulation models of (d) H-PtCo@Pt1N-C, (e) PtCo/NPC, and (f) 

Pt/NPC. Variations of HAADF intensity for (g) H-PtCo@Pt1N-C and (h) PtCo/NPC. 

The X-ray diffraction (XRD) patterns of all these samples are indexed to a face-

centered cubic (fcc) structure, corresponding to the (111), (200), (220), and (311) 

planes of Pt metal and Pt3Co alloy, respectively (Fig. 4-19). As shown in the X-ray 

diffraction (XRD) patterns, the peaks at 39.7, 46.2, 67.4, and 85.7° of Pt/NPC and Pt/C 

are indexed to pure Pt metal with a face-centered cubic (fcc) structure, corresponding 

to the (111), (200), (220), and (311) planes, respectively. These peaks in H-

PtCo@Pt1N-C and PtCo/NPC are shifted to higher angles, suggesting that Pt has been 
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incorporated with Co to form an alloy phase with concomitant lattice construction. The 

four broad diffraction peaks at 40.5, 47.1, 68.8, and 87.6°are indexed to the Pt3Co alloy 

(JCPDF no. 29-0499), showing typical fcc Pt features as well. 
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Figure 4-19. XRD patterns of H-PtCo@Pt1N-C, PtCo/NPC, Pt/NPC, Pt/C, and 

Co@zNPC, with the inset showing an enlargement of the indicated range. 

Fig. 4-20a shows the ORR polarization curves of different catalysts recorded at room 

temperature at a sweep rate of 10 mV s-1 with a rotation rate of 1600 rpm in O2-

saturated 0.1 M HClO4 solution. It is evident that H-PtCo@Pt1N-C has the highest 

onset potential, which is 60 mV higher than that of commercial Pt/C. The onset 

potential increases in the sequence: Pt/NPC < Pt/C < PtCo/NPC < H-PtCo@Pt1N-C. 

This result unambiguously proves the critical functions of both the bimetallic alloy and 

the cavities in the unique sample. The highest onset potential for H-PtCo@Pt1N-C is 

partially attributed to the interior cavities, which are likely to provide more active sites 

and modify the electronic and structural properties of PtCo alloy. Compared with the 
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current density of Pt/C, the H-PtCo@Pt1N-C has a comparable diffusion-limited value, 

~5.4 mA cm-2. The rotation-rate-dependent current-potential curves of H-PtCo@Pt1N-

C are presented in Fig. 4-20b (inset). The number of electrons transferred (n) is 

estimated to be ~4.0 at 0.75-0.9 V from the slopes of the Koutecky-Levich plots, 

indicating the nearly complete reduction of O2 to H2O on the surface of the H-

PtCo@Pt1N-C. As shown in Fig. 4-20c, the mass activity of H-PtCo@Pt1N-C can be 

calculated to be 1.2 mA µgPt
-1 at 0.9 V, which corresponds to 3.4, 10, and 8 times 

higher than those of PtCo/NPC (0.35 mA µgPt
-1), Pt/NPC (0.12 mA µgPt

-1), and Pt/C 

(0.15 mA µgPt
-1), respectively. Moreover, the mass activity comparison of these 

catalysts at 0.85 V also demonstrates that H-PtCo@Pt1N-C could deliver the best 

electrocatalytic performance. The kinetic current (𝐼𝑘 ) can be calculated using the 

Koutecky-Levich equation (for details, see the electrochemical testing section in the 

Supporting Information). Fig. 4-20d compares the specific activity ( 𝐼𝑘 ) for H-

PtCo@Pt1N-C, PtCo/NPC, Pt/NPC, and Pt/C. At 0.9 V, the specific activity of H-

PtCo@Pt1N-C is 2.39 mA cmPt
-2, which is much higher than that for PtCo/NPC (0.7 

mA cmPt
-2), Pt/NPC (0.24 mA cmPt

-2), and Pt/C (0.3 mA cmPt
-2). The superior 

performance of H-PtCo@Pt1N-C toward the ORR was further evaluated in a lithium-

O2 cell with different organic electrolytes. One electrolyte consists of 1 M LiCF3SO3 

in tetraethylene glycol dimethyl ether (TEGDME); the other one consists of 0.1 M 

NaClO4 in dimethylsulfoxide (DMSO). Fig. 4-20e shows the discharge-charge profiles 

of H-PtCo@Pt1N-C in TEGDME and DMSO, respectively. At a current density of 20 

mA g-1, the average discharging voltage is ~2.91 V in both TEGDME and DMSO. The 

extremely low overpotential of 0.05 V implies that the practical ORR potential is very 

close to the thermodynamic potential of the reaction, 2𝐿𝑖+ + 2𝑒− + 𝑂2 → 𝐿𝑖2𝑂2 , 
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indicating the excellent ORR performance of H-PtCo@Pt1N-C in organic electrolytes. 

Furthermore, the H-PtCo@Pt1N-C possesses durability towards the ORR over 5 cycles, 

with only a minor increase in the overpotential (Fig. 4-20f). All these results verify 

that the unique H-PtCo@Pt1N-C nanoparticles could achieve outstanding ORR 

performance in both aqueous and organic electrolytes.  

 

Figure 4-20. (a) ORR polarization curves for H-PtCo@Pt1N-C, PtCo/NPC, Pt/NPC, 

and Pt/C in O2-saturated 0.1 M HClO4 solution at room temperature, collected with a 

rotation rate of 1,600 rpm at a sweep rate of 10 mV s-1. (b) Koutecky-Levich plots 

from the ORR data for H-PtCo@Pt1N-C at different potentials, with the inset in (b) 

showing the rotation-rate-dependent current-potential curves. (c) Comparison of mass 
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activities for H-PtCo@Pt1N-C, PtCo/NPC, Pt/NPC, and Pt/C at 0.85 and 0.9 V. (d) 

Comparison of specific activities (Ik) for these samples. (e) Discharge-charge profiles 

of H-PtCo@Pt1N-C in TEGDME and DMSO. (f) Cycling stability of H-PtCo@Pt1N-

C in TEGDME. 

   For further investigated the synergistic effect between PtCo hollow structure and 

single Pt atoms, H-PtCo@Pt1N-C were processed at a higher-temperature 750 °C (ZIF-

67-50-750). Compared with H-PtCo@Pt1N-C, the diffusion-limited current density for 

the ORR polarization curves of ZIF-67-50-750 increased to 6.0 mA cm-2, which is 

probably accounted for the increased conductivity (Fig. 4-21). The specific activity of 

ZIF-67-50-750 at 0.9V, however, had a minor decreased. The deformation of hollow 

structure and agglomeration of single Pt atoms on carbon surface were observed via 

the STEM-HAADF image of ZIF-67-50-750 (Fig. 4-22), which was considering as the 

reason of fading ORR performance of ZIF-67-50-750. Also, Pt1N-C were synthesized 

to confirm the special role of Pt atom in ORR reaction (Fig. 4-23 and 4-24).  
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Figure 4-21. The ORR activities of ZIF-67-50-750. 
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Figure 4-22. The HAADF image of ZIF-67-50-750 on hollow structure (a) and carbon 

surface (b). 

 

Figure 4-23. The HAADF images of Pt1N-C with low and high magnifications. 

 

Figure 4-24. The STEM elemental mapping and EDS spectrum on Pt1N-C.  

The onset ORR potential of Pt1N-C had a severe decrease compared with H-

PtCo@Pt1N-C, but still shown a better ORR performance than the ZIF-67 derived 

nitrogen doped carbon (Co-NC) (Fig. 4-25). The Koutecky-Levich plots of Pt1-N-C at 
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different potentials were further tested, which suggested that the Pt1-N-C had a four 

electrons ORR pathway (Fig. 4-26). These results indicated that the unique 

nanostructure, including the ultra-fined PtCo alloy, and effective C shell with Pt1, 

synergistically endows the H-PtCo@Pt1N-C with enhanced ORR performance.   
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Figure 4-25. The ORR activity of Pt1@N-C. 

 

Figure 4-26. The rotation-rate-dependent current-potential curves of Pt1N-C and the 

Koutecky-Levich plots from the ORR data for Pt1N-C at different potentials. 
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Figure 4-27. (a) ORR polarization curves for H-PtCo@Pt1N-C before and after 10000 

potential cycles. (b) Comparative ORR mass activities of H-PtCo@Pt1N-C, PtCo/NPC, 

and Pt/C before and after 10000/5000 potential cycles respectively. (c-g) Structure 

models used in DFT calculation. The single atom Pt is modelled as a four-coordinated 

structure, which is PtNC3 (c), PtN2C2 (d), and PtN3C (e) respectively. Pt(111) (f) also 

was used for comparison. (g) Free energy diagram of the ORR on PtNC3 (a), PtN2C2 

(b), PtN3C, and Pt(111). 

 When tested in O2-saturated 0.1 M HClO4 solution, an accelerated durability test 

between 0.6 and 1.1 V shows that there is no obvious shift at 0.9 V and only a 4.5% 

loss of diffusion-limited current density for the ORR polarization curves of H-

PtCo@Pt1N-C after 10000 cycles (Fig. 4-27a). In stark contrast, the PtCo/NPC and 

Pt/C show a larger negative shift in their ORR polarization curves, with 77% and 60% 

loss of mass activity (Fig. 4-27b, Fig. 4-28). 
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Figure 4-28. (a) Comparative ORR activities of PtCo/NPC before and after 5000 

potential cycles. (b) Comparative ORR activities of Pt/NPC before and after 5000 

potential cycles. 

Table 4-1. Detailed information on the samples in Fig. 4-29. 

Number catalyst electrolyte MA@0.9V/mA·µg-1 Reference 

1 PtCo3 0.1M HClO4 0.34 [2] 

2 PtCu3Co 0.1M HClO4 0.37 [2] 

3 PtCu2Co2 0.1M HClO4 0.37 [2] 

4 PtCuCo3 0.1M HClO4 0.49 [2] 

5 Acid-treated Pt3Co 0.1M HClO4 0.35 [3] 

6 Annealed Pt3Co 0.1M HClO4 0.31 [3] 

7 Pt3Co -700 0.1M HClO4 0.52 [1] 

8 Pt3Co -400 0.1M HClO4 0.16 [1] 

9 Pt3Co /C 0.1M HClO4 0.136 [4] 

10 Pt3Co /C-200 0.1M HClO4 0.129 [4] 

11 Pt3Co /C-500 0.1M HClO4 0.217 [4] 

12 Pt3Co /C-800 0.1M HClO4 0.34 [5] 

13 Pt 75 Co 25 /C (500) 0.1M HClO4 0.33 [6] 

14 Pt 75 Co 25 /C (500) 0.1M HClO4 0.97 [6] 
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15 Pt 75 Co 25 /C (500) 0.1M HClO4 0.96 [6] 

16 D-PtCo3/HSC 0.1M HClO4 0.46 [7] 

17 D-PtCo/HSC 0.1M HClO4 0.49 [7] 

18 PtCo hollow nanowires 0.1M HClO4 0.17 [8] 

19 PtCo nanowires 0.1M HClO4 0.793 [9] 

20 Pt9Co/C 0.1M HClO4 0.103 [10] 

21 Pt7Co/C 0.1M HClO4 0.129 [10] 

22 Pt5Co/C 0.1M HClO4 0.229 [10] 

23 Pt3Co/C 0.1M HClO4 0.434 [10] 

24 Pt2Co/C 0.1M HClO4 0.322 [10] 

25 Pt-Co/C-S 0.1M HClO4 0.154 [11] 

26 Pt-Co/C-T 0.1M HClO4 0.109 [11] 

27 Pt-Co/C-SB 0.1M HClO4 0.151 [11] 

28 Pt-Co/C-TB 0.1M HClO4 0.102 [11] 

29 Pt-Co/C-SH 0.1M HClO4 0.054 [11] 

30 Pt-Co/C-TH 0.1M HClO4 0.093 [11] 

31 PtNiCo nanowires 0.1M HClO4 4.2 [12] 

32 Pt3Co nanowires 0.1M HClO4 3.4 [13] 

33 H-PtCo@Pt1N-C 0.1M HClO4 1.2 this work 

34 H-PtCo@Pt1N-C    After 10000 

cycles 

0.1M HClO4 1.26 this work 
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Figure 4-29. Comparison of the mass activities of Pt-Co systems from reports in the 

literature and this work. The numbers in the figure represent the different samples. 

Detailed information on the samples is shown in Table 4-1. 

 

Figure 4-30. (a) HAADF-STEM image of a H-PtCo@Pt1N-C nanoparticle after 10000 

electrochemical cycles. (b) Electron signal intensity measured along the rectangle R2 
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in Fig. 4-30a. (c-e) STEM-EDS elemental maps. (f-h) Further particles demonstrate 

the stability of H-PtCo@Pt1N-C after electrochemical cycling. 

 

Figure 4-31. The HAADF image of single atom Pt and its corresponding elemental 

mapping.   

  Compared with the mass activity of Pt-Co/C systems reported in the literature that 

were tested under similar conditions at +0.9 V, it is impressive that H-PtCo@Pt1N-C 

in both the initial cycle and the 10000th cycle exhibits excellent electrocatalytic ORR 

performance (Table 4-1, Fig. 4-29). It is clear that the nanostructures and components 

of the H-PtCo@Pt1N-C are well preserved after 10000 cycles (Fig. 4-30), leading to 

the sustainable ORR durability. Slight Co loss (Fig. 4-30c-e) because of the acid 

environment suggests that these zones were practically effective, as they are shown to 

be electronically and ionically connected and accessible to oxygen. Also, these single 

Pt atoms are well maintain, showing their strong bonding with the carbon shell and 

high stability (Fig. 4-31). By sharp contrast, both commercial Pt/C and PtCo/NPC 

exhibit large size changes and substantial aggregation after 5000 cycles (Fig. 4-32, Fig. 

4-33) in agreement with their severe activity loss.  This unique nanostructure, 

including the ultra-refined PtCo alloy, abundant cavities, and effective C shell with Pt1 

and N codoping, synergistically endows the H-PtCo@Pt1N-C with enhanced ORR 

performance.   
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 It has been  confirmed many times in the previous reports that that Pt3Co can enhance 

the ORR activity in the previous reports via experiments and theoretical 

calculations[165, 186]. For further revealing the synergistic effects of the Pt-4N/C 

structure on the enhancement of ORR activity, first-principles calculations were 

performed and compared on different models of Pt-N/C coordination. The Pt single-

atom catalysts were modelled by a p(6×6) graphene slab with two C atoms substituted 

by a Pt atom to form a four-coordinated structure, where the C atoms adjacent to Pt 

could be substituted by N atoms to simulate the reaction centers in the experiments 

(Figure 4-27c, d, and e). The Pt(111) surface was modelled by a p(5×5) Pt(111) slab 

consisting of four atomic layers (Figure 4-27f). As shown in Figure 4-27g, the free 

energy change on the four elementary steps of the oxygen reduction reaction (ORR) 

suggest that the rate limiting step is the hydrogenation of the O2 molecule. The less 

number of N atoms adjacent to Pt in the four-coordinated structure corresponds to the 

smaller over-potential. In particular, the PtNC3 structure has the smallest over-

potential, which is 0.10 V higher than the Pt(111) in the calculations. The XPS result 

indicated that the atom ratio of carbon and nitrogen (C/N) was estimated as 5.2, 

implying that the PtNC3 was the most favored coordination in Pt-quadrangle structure 

(Fig. 4-34). These data are essentially in good agreement with the experimental 

observations on the comparable on-site potential with Pt/C (Figure 4-20) and Pt1N-C 

(Fig. 4-25). It also suggests that the limiting amount of N atoms adjacent to Pt to a low 

level may benefit the reactivity of the materials.   
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Figure 4-32. (a,b) Typical TEM images of Pt/C before cycling. (c-f) Representative 

TEM images of Pt/C after 5000 cycles. 

 

Figure 4-33. (a, b) Typical TEM images of PtCo/NPC before cycling. (c-d) 

Representative TEM images of PtCo/NPC after 5000 cycles. 
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Figure 4-34. The XPS spectrum of H-PtCo@Pt1N-C. 

4.4. Conclusion  

In summary, based on the participation of Pt salt in the coordination between 

methylimidazolate anions and cobalt cations, ultra-refined H-PtCo@Pt1N-C has been 

successfully constructed. Due to the synergistic effects between the hollow PtCo alloy 

cores and Pt single atoms/N co-doped C shells, the H-PtCo@Pt1N-C shows high mass 

activity over 10000 cycles in HClO4 solution and excellent ORR performance in 

organic electrolytes as well. This pioneering strategy will be expanded in attempts to 

develop a range of bimetallic catalysts via introducing noble metal compounds during 

the fabrication of various metal-organic frameworks (MOFs). More efforts will be 

subsequently devoted to discerning the synthesis mechanisms and investigating their 

ORR performance for practical applications. 

 



 

 

 

Chapter 5: Ordered Platinum-Bismuth Intermetallic Clusters with Pt-skin for Highly 

Efficient Electrochemical Ethanol Oxidation Reaction    117 

Chapter 5 

5.  Ordered Platinum-Bismuth 

Intermetallic Clusters with Pt-skin for 

Highly Efficient Electrochemical Ethanol 

Oxidation Reaction   

5.1. Introduction 

Fuel cells have been gaining increasing attention because they are efficient and green 

power sources suitable for portable electronic devices and automotive applications.187-

190 In comparison with H2 fuel cells, direct ethanol fuel cells (DEFCs), as one of the 

most promising renewable energy applications, have many obvious advantages, such 

as high energy density and inexhaustible availability from biomass.191-192 It is widely 

accepted that the ethanol oxidation reaction (EOR) involves two parallel oxidation 

pathways: complete oxidation and partial oxidation. The complete electro-oxidation 

of ethanol with the transfer of 12 electrons is accompanied by breaking the C-C bond, 

leading to the formation of CO2 (acid media) or CO3
2- (alkaline solutions), which is 

the C1 pathway. For incomplete oxidation (C2 pathway), the final oxidation product 

of ethanol is acetate, which the reaction is involved with the transfer of 4e-. Despite 

C1 pathway possessing higher electro-efficiency, most EOR electrocatalysts prefer the 

C2 pathway, which incompletely utilizes ethanol to form acetate as the final oxidation 
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product;193-194 According to previous reports, the proportion of Pt-based EOR 

electrocatalysts favoring the C1 pathway at room temperature is only 1% as the split 

of the C-C bond is kinetically hindered.195-197 To improve the ability on splitting the 

C-C bond and its selectivity, the most effective strategy is the modification of the 

electronic structure of Pt based electrocatalysts by introducing Rh;198-199 it is widely 

believed that synergistic reactions exist in such multicomponent systems, which could 

weaken the bonding of intermediates and offer additional adsorbed hydroxyl groups, 

OHads, to aid in the further oxidation of carbonaceous intermediates.200 Nevertheless, 

the production of Rh is extremely rare, even lower than that of Pt. Rational design of 

electrocatalysts can reduce cost and simultaneously allow them to work via the C1 

pathway, showing a very powerful objective for the EOR. 

It is a remarkable fact that those electrocatalytic reactions only take place on the 

surface of the catalysts;201 thus, intensive studies have been carried out to tuning the 

surface composition of bimetallic electrocatalysts.202-205 The most successful 

bimetallic electrocatalysts for controlling surface composition is the Pt-skin 

structure,206-208 which boosts the activity of electrocatalysts. Despite the fact that Pt-

skin of Pt3Co could enhance activity of EOR, it still goes through the incomplete 

oxidation pathway. Nevertheless, the prosperity of Pt-skin surface is dependent on the 

inner atoms, which cause the compressive or tensile strain of the Pt-surface; these 

strain effect will open up new idea to design electrocatalysts. A good example is that 

the PtPb/Pt core/shell nanoplates exhibit amazing activity when the materials is 

prepared with large biaxial tensile strain.209 Besides, the structure of catalysis also 

affect their electrochemical performance; thus great attention on the morphology of 

electrocatalysis such as nanowires,210, 211 nanoporous,212, 213 and nanoclusters214-216 
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materials, are paid. Based on this view, tuning the strain effect of the Pt-skin via 

exploiting favorable inner atoms and controlling the structure of electrocatalysis may 

achieve electro-oxididation ethanol via C1 pathway without a loss of catalytic 

performance.   

Herein, by introducing relatively cheap element Bi in the core, we report a superior 

catalyst with Pt-skin on ordered PtBi intermetallic (PtBi@Pt) supported on graphene 

matrix, which is fabricated from single-atom Pt mixed with PtBi catalyst (PtBi/SA Pt) 

via a single-atom self-assembling (SAS) method. The electrochemical performance 

towards the EOR of PtBi@Pt was first studied. It delivers a peak current density of 

9.01 mA μgpt
-1 with much higher activity than PtBi/SA Pt and Pt/C even after stability 

testing, which significantly outperforms other reported catalysts for the EOR under 

alkaline conditions. Moreover, in-situ Fourier transform infrared spectroscopy (FTIR) 

demonstrates that the final product of the EOR is CO3
2-, confirming the selectivity of 

the C1 pathway. 

5.2. Experimental Section 

5.2.1.  Materials Preparation 

5.2.1.1.  Synthesis of PtBi/SA Pt and PtBi@Pt   

Graphene oxide (GO) was synthesized by Hummers’ method. For the preparation of 

single-atom Pt mixed with PtBi catalyst (PtBi/SA Pt) ， the H2PtCl6 and 

Bi(NO3)3·5H2O precursors, containing 0.68 mL of 0.039 M H2PtCl6 ethanol solution 

and 0.88 mL of 0.01 M Bi(NO3)3·5H2O ethanol solution, respectively, were mixed, 

and 0.02 g of GO was dispersed in the mixture. The mixture, containing GO, Pt and 



 

 

 

Chapter 5: Ordered Platinum-Bismuth Intermetallic Clusters with Pt-skin for Highly 

Efficient Electrochemical Ethanol Oxidation Reaction    120 

Bi precursors, were ultrasonicated until ethanol was evaporated; then the mixture was 

heated 12 h in an oven at 80 °C. Then, the precursors were first reduced at 600 °C in 

5 vol % H2 in nitrogen for 12 h, denoted as PtBi/SA Pt. When further reduced at 600 °C 

in 5 vol % H2 in nitrogen for another 12 h, novel monatomic Pt layer on ordered PtBi 

intermetallic clusters (PtBi@Pt) was formed.  

5.2.1.2.  Synthesis of PtBi/C-12 and PtBi/C-24. 

For synthesis of PtBi supported on XC-72, GO is replaced by carbon black XC-72, 

and the following processes are the same with PtBi/SA Pt, PtBi@Pt. The 12 h and 24 

h thermal treatment are named as PtBi/C-12 and PtBi/C-24, respectively. 

5.2.2.  Characterization 

The XRD experiments were carried out on a Rigaku Dmax-3C diffractometer using 

Cu Kα radiation (40 kV, 30 mA, λ = 0.15408 nm). The X-ray photoelectron 

spectroscopy (XPS) measurements were conducted on using Al Kα radiation and fixed 

analyzer transmission mode. The morphology of PtBi/SA Pt and PtBi@Pt were 

investigated by field emission scanning electron microscopy (SEM; JEOL JSM-

7500FA), transmission electron microscopy (TEM) and high-angle annular dark field 

– scanning TEM (HAADF-STEM; JEOL ARM-200F, 200 keV). The sizes of the 

PtBi/SA Pt and PtBi@Pt particles were measured from about 200 nanoparticles. The 

loadings of Pt and Bi in the PtBi/SA Pt were determined by nergy dispersive X-ray 

spectroscopy (EDX) to be about 5.43% and 5.63%; and the loading of Pt and Bi for 

PtBi@Pt was 5.70% and 5.85%, respectively.  
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5.2.3.  Electrochemical Measurements.  

A glassy carbon electrode (GC) is polished by Al2O3 powder with 5, 1, and 0.3 mm, 

washed with water under the ultrasonic bath. A certain amount of catalyst (PtBi/SA Pt 

or PtBi@Pt) ink is dropped on a GC electrode, and then left it to dry. Nafion® solution 

is applied to form a thin layer on the surfaces of the catalysts. For comparison, the 

commercial Pt/C is prepared by the same process. The electrochemical measurements 

are conducted on a three-electrode electrochemical cell, a Pt foil as counter electrode, 

and linked to a PAR 263A potentiostat (EG&G). All electrode potentials have been 

quoted versus the mercury/mercury oxide reference electrode (Hg/HgO). The solution 

was de-aerated by bubbling high purity N2 through it for 15 min before measurements; 

meanwhile during the experiment, a flow of N2 is over it to form protection gas 

atmosphere. The electrochemical experiments are conducted at room temperature.  

Electrochemical in-situ Fourier transform infrared (FTIR) reflection spectroscopy 

measurements are carried out on a Nexus 870 spectrometer (Nicolet), and the detector 

is a cooled MCT equipped with a liquid nitrogen. A CaF2 disk is applied for the IR 

window. A thin layer configuration between the IR window with the working electrode 

by pushing the working electrode against the IR window before in-situ FTIR 

experiments.217 In-situ FTIR spectra are collected via multi-stepped FTIR 

spectroscopy (MSFTIR) and single potential alteration FTIR processes. The result 

spectra are transferring to the relative change in reflectivity, counted as below: 
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Where R(ER) and R(ES) are the independent beam spectra gathered at samples 

potential ES and reference potential ER. 

Density functional theory (DFT) calculations 

DFT are carried out on a Perdew-Burke-Ernzerhof (PBE) generalized gradient 

approximation (GGA) exchange-correlation functional through a Vienna Ab-initio 

Simulation Package (VASP) code.218-221 A projector-augmented-wave (PAW) 

pseudopotential is applied to describe the core electron interaction. The cut-off energy 

was set as 400 eV and the k-point sampling for Brillouin zone was 4x4x1. Significantly, 

the vacuum region layers are built more than 12 Å to make sure the slab interaction is 

eliminated. Since PtBi is in hexagonal P63/mmc phase, the (0001) surface would be 

the most stable. The PtBi(0001) surface with single Pt atom site, was used as a p(2x2) 

supercell including 16 Pt and 12 Bi atoms. The Pt(0001) surface with two adjacent Pt 

atoms was modelled by adding one extra Pt atom on the single Pt atom exposed surface. 

The bottom two layer Pt atoms and one layer Bi atoms are fixed in the slab; meanwhile 

the other atoms are relaxed under the optimization process. The transition states lie in 

a constrained optimization approach, forcing converge criteria under the 0.05 eV/Å in 

modified VASP.222-224 
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5.3. Results and Discussion 

 

 

Figure 5-1. (a) Schematic illustration of the SAS method: single Pt atoms self-

assembling on the surfaces of ordered PtBi intermetallic clusters to form PtBi@Pt. (b)-

(c), HAADF-STEM images of PtBi/SA Pt and PtBi@Pt. (d) Superlattice feature from 

(c), with its model structure. (e) Intensity of L1 and L2 in (c) across the clusters. (f) 

XRD patterns of Pt/C, PtBi/SA Pt and PtBi@Pt, and ordered PtBi intermetallic.215 

 The core-skin PtBi@Pt was gradually synthesized by controlling thermal treatment 

temperatures without using any surfactant or organometallic precursors. Firstly, an 
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intermediate, PtBi/SA Pt, is prepared by controlled thermal treatment method at 600 

ºC for 12 h. By increasing the thermal treatment time to 24 h, as illustrated in Figure 

5-1a, these single Pt atoms stabilized by graphene will migrate to the surface of the 

ordered PtBi intermetallic, and then self-assemble to form Pt-skin on the ordered PtBi 

intermetallic clusters. The formation of single Pt atoms in PtBi/SA Pt is mostly 

ascribed to that the functional groups of graphene could stabilize the single Pt atoms;225 

and part of the Pt will be reduced together with Bi by H2 at 600 ºC to form an ordered 

PtBi intermetallic. Figure 5-1b and Figure 5-2 show atomic resolution high-angle 

annular dark field (HAADF) scanning transmission electron microscope (STEM) 

images of PtBi/SA Pt, which demonstrate that isolated Pt single atoms are uniformly 

distributed at high density throughout the graphene, and PtBi clusters are also detected, 

with dimensions of ~1.3 ± 0.5 nm. There are so many single Pt atoms in the Figure 5-

1b and 5-2 that we have just circled some of them, demonstrating the presence of SA 

Pt in PtBi/SA Pt. In particular, the Bi columns could show higher intensity than the Pt 

columns, due to the fact that the atomic number Z of Bi is 83, which is higher than that 

of Pt (Z = 78).226 By comparing the brightness variation of Pt and Bi intensities in the 

HAADF images, we concluded that these single atoms were Pt. There are some Pt 

clusters (< 0.5 nm), containing 2-3 Pt atoms, in PtBi/SA Pt; the reason why PtBi/SA 

Pt exists in clusters is that it is difficult to stabilize pure metal atoms in graphene due 

to their mobility and instability;217 and at such high Pt loading level (~8.24%), it is 

easy to form clusters.227 
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Figure 5-2. (a) SEM image and (b-i) HAADF-STEM images of PtBi/SA Pt. (j) 

Histogram of nanoparticle sizes of PtBi/SA Pt. (k) EDS spectrum of PtBi/SA Pt. 
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Figure 5-3. (a) SEM and (b-h) HAADF-STEM images of PtBi@Pt with elemental 

mapping of Pt and Bi from f; (i) histogram of nanoparticle sizes of PtBi@Pt. 

 The image of PtBi@Pt (Figure 5-1c) demonstrates that most of these clusters are well 

dispersed on the graphene, accompanied by the SA Pt self-assembling on PtBi 

intermetallic. To determine the monatomic nature of the Pt layer on PtBi@Pt, we 

examined two sites by intensity analysis, which are shown in Figure 1e. Both sites 

have 1-2 atomic layer of Pt; Pt and Bi appear to be distributed alternately, as shown 

by the alternating brightness and darkness in Figure 5-1d, indicating that these PtBi 
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intermetallic clusters are ordered. Furthermore, the d-spacings of 2.15 Å and 2.22 Å 

correspond to the (110) and (012) planes of PtBi intermetallic, respectively, indicating 

that the clusters are viewed along the [001] zone axis.228 This inner PtBi intermetallic 

certain will have a tensile strain on the Pt-skin surface. The mean size of PtBi@Pt is 

evaluated to be ~2.0 ± 0.7 nm, as analyzed from 200 clusters (Figure 5-3), which 

indicates that after long time thermal treatment, SA Pt and Pt cluster could self-

assemble on the surface of PtBi cluster, and form bigger clusters. We also examined 

many areas of PtBi@Pt, and they do not present single Pt atoms, which suggests that 

most of the PtBi particles were converted to PtBi@Pt. When the support is replaced 

by XC-72, these SA Pt, Pt clusters and PtBi clusters agglomerated to PtBi 

nanoparticles (Figure 5-4, 5-5, 5-6).  

 

Figure 5-4. (a)-(b) TEM images of PtBi/C-12; (c) histogram of nanoparticle sizes of 

PtBi/C-12. 
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 To investigate whether the single Pt could be obtained on the carbon black XC-72, 

which is used as support in commercial Pt/C, we prepared the PtBi/C-12 and PtBi/C-

24, as shown in Figure 5-4 and Figure 5-5. However, unlike PtBi/SA Pt and PtBi@Pt, 

it could be clearly seen that both the nanoparticle size of PtBi/C-12 and PtBi/C-24 are 

inhomogeneous. Nevertheless, most of these two nanomaterials are small nanoparticle; 

the mean particle size of PtBi/C-12 was determined to be 2.1+ 1.3 nm and PtBi/C-24 

was 3.3+ 2.2 nm. It also indicates that under longer thermal treatment, the 

nanoparticles will sinter to form large particles. This result is corresponding to the self-

assembly phenomena in the PtBi/SA Pt and PtBi@Pt: via 24 h thermal treatment, the 

SA Pt would self-assemble on the surface of ordered PtBi nanoparticles, formation 

PtBi@Pt. The XRD of commercial Pt/C, PtBi/C-12, PtBi/C-24, and ordered PtBi of 

the reference196 are shown in Figure 5-6. It demonstrates that the PtBi phase in PtBi/C-

12 and PtBi/C-24 are also in ordered PtBi intermetallic phase, indicating that this 

method is an efficient way to prepare order PtBi intermetallic. From HRTEM in Figure 

5-4 and Figure 5-5, the crystal grains both these two PtBi/C-12 and PtBi/C-24 were 

clearly observed and the lattice spacing of 0.221 nm was corresponded to the [110] 

planes of PtBi. 

The X-ray diffraction (XRD) results in Figure 5-1f demonstrate that the PtBi phase in 

PtBi/SA Pt and PtBi@Pt is in good agreement with the ordered PtBi intermetallic 

phase.229 The broad peak at ~26º is assigned to the graphene.  
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Figure 5-5. (a)-(b) TEM images of PtBi/C-24; (c) histogram of nanoparticle sizes of 

PtBi/C-24. 
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Figure 5-6. (d) Wide-angle XRD patterns of commercial Pt/C, PtBi/C-12, PtBi/C-24, 

and ordered PtBi of the reference33. 

 

Figure 5-7. (a) XANES spectra, and (b) Fourier transform EXAFS spectra at the Pt 

L3-edge for the PtBi/SA Pt, PtBi@Pt, PtO2, and Pt foil. XPS spectra of Pt 4f (c) and 

Bi 4f (d) for PtBi/SA Pt and PtBi@Pt. 

 X-ray absorption fine structure (XAFS) can probe the local atomic and electronic 

structures of absorbing atoms, as shown in Figure 5-7a and 5-7b. The X-ray absorption 

near edge structure (XANES) spectra of PtBi@Pt and PtBi/SA Pt were similar to that 

of Pt foil (Figure 5-7a), suggesting that the Pt species in PtBi@Pt and PtBi/SA Pt may 

be mainly in the metallic state. Note that the first peaks of PtBi@Pt and PtBi/SA Pt 

both were at 11565.5 eV, left shifted towards that of Pt foil (11568.4 eV) and PtO2  

(11570.3 eV). This result may be attributed to the formation of Pt-Bi bonds. As shown 
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in the Extended X-Ray absorption fine structure (EXAFS) spectrum in R space (Figure 

5-7b), PtBi/SA Pt presented a weak peak at 1.96 Å from the Pt-O shell, suggesting the 

presence of single Pt atoms.230, 231 Another prominent peak at 2.52 Å was observed in 

PtBi/SA Pt, which was attributed to the presence of Pt-Pt bonds.231,232 It also suggested 

that the PtBi/SA Pt contains both single Pt atoms and PtBi clusters. Noted that the 

spectrum of PtBi@Pt is similar to that of Pt foil, indicating that there were no single 

Pt atoms, in correspondence with the STEM results. X-ray photoelectron spectroscopy 

(XPS) is applied to investigate the chemical states of Pt and Bi, as shown in Figure 5-

7. The Pt 4f7/2 spectrum can be deconvoluted into pure Pt (Pt0) and Pt2+; the binding 

energy (BE) of Pt0 in PtBi/SA Pt and PtBi@Pt are 71.60 and 71.35 eV, respectively. 

Interestingly, the BE of Pt0 in PtBi@Pt is near to that in pure Pt (71.2 eV), which 

indicates that the states of PtBi@Pt are close to those of metallic Pt. In contrast, the 

BE of Pt0 in PtBi/SA Pt is the highest; the difference in the values indicates that Pt in 

the ordered PtBi intermetallic has a strong interaction with Bi and that single Pt atoms 

are oxidized as Pt2+ (i.e. PtO).233 The XPS reflects the overall state of materials, thus 

demonstrating that it is mainly single Pt atoms that self-assemble to form the Pt-skin 

on PtBi@Pt. The Bi XPS spectrum in PtBi/SA Pt and PtBi@Pt is similar (Figure 5-

7b). Both of them only have Bi3+, and the BE is 159.0 eV; this also demonstrates that 

there is a strong interaction between Pt and Bi in the ordered PtBi intermetallic.234 
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Figure 5-8. (a) Cyclic voltammograms of catalysts in 1 M KOH, 50 mV s-1: Pt/C 

(black line), PtBi/SA (green line), and PtBi@Pt (red line).  

 Cyclic voltammograms (CVs) of Pt/C, PtBi/SA Pt and PtBi@Pt in 1 M KOH solution 

are shown in Figure 5-8, where neither of the PtBi catalysts show any apparent 

hydrogen adsorption or desorption compared with Pt/C. This result indicates that the 

presence of Bi in the core would modify the electron state of the Pt surface and block 

the sites for adsorbing monatomic hydrogen, Hads. A similar characteristic has also 

been observed for the Pt-skin of Pt3Co and Pt3Ni, 193,201 which also suggests the 

presence of Pt-skin on the PtBi@Pt. Thus, the CV properties of both PtBi/SA Pt and 

PtBi@Pt could be assigned to the formation of ordered PtBi intermetallic.221, 201 
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Figure 5-9. CVs (a) and current-time curves (b) of PtBi@Pt, PtBi/SA Pt, and Pt/C in 

1 M KOH + 1 M CH3CH2OH solution, 50 mV s-1. (c)-(e), in-situ mass spectroscopy 

(MS) FTIR spectra of  PtBi@Pt (c), PtBi/SA Pt (d), and Pt/C (e) in 1 M KOH + 1 M 

CH3CH2OH. (f) Proportions of production from the C1 or C2 pathways estimated 

based on the in-situ MS-FTIR reaction products. 
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Figure 5-10. Cyclic voltammograms of catalysts in 1 M KOH + 1 M CH3CH2OH, 50 

mV s-1: Pt/C, PtBi/C-24, and PtBi/C-12. 
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Figure 5-11. The current-time curves of catalysts in 1 M KOH + 1 M CH3CH2OH, 50 

mV s-1: Pt/C, PtBi/C-12, and PtBi/C-24.  

The electrocatalytic characteristics of the EOR for these three catalysts were 

investigated in a basic medium (1 M CH3CH2OH and 1 M KOH), as shown in Figure 

5-9a, Figure 5-10 and 5-11. All of them exhibited one forward scan peak, 

corresponding to the oxidation of CH3CH2OH to intermediate products235, 236 and one 

reverse scan peak, typically assigned to the further oxidation of intermediate 

products.235, 236 Significantly, PtBi@Pt shows the highest peak current in the forward 

anodic scan of 9.01 mA μgpt
-1 at -0.114 V, when compared with PtBi/SA Pt (4.69 mA 

μgpt
-1 at -0.067 V), Pt/C (1.09 mA μgpt

-1 at -0.119) (Figure 5-12), and results in the 

recent literatures (Table 5-1).  

 

Figure 5-12. The comparison of mass activities for these electrocatalysts: PtBi@Pt, 

PtBi/SA Pt, PtBi/C-24, PtBi/C-12, and Pt/C at their peak current. 
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Figure 5-13. CVs of PtBi@Pt (a) and PtBi/SA Pt (b) before and after 5000 potential 

cycles between -0.4 and 0.1 V versus Hg/HgO in 1 M KOH + 1 M CH3CH2OH solution; 

scan rate: 50 mV s-1.  

  The electrocatalytic characteristics of the EOR for PtBi/C-24 and PtBi/C-12 in 1 M 

CH3CH2OH and 1 M KOH is shown in Figure 5-10. Significantly, the PtBi/C-24 

electrocatalyst shows the higher peak current in the forward anodic scan of 6.21 mA 

μgpt
-1 at -0.123 V, when compared with PtBi/C-12 (4.89 mA μgpt

-1 at -0.074 V), Pt/C 

(1.09 mA μgpt
-1 at -0.119). The current-time curves at -0.3 V (Hg/HgO) on PtBi/C-24 

and PtBi/C-12 catalysts at room temperature are shown in Figure S8. After 1800 s, the 

activity of PtBi/C-24 is still higher than those of PtBi/C-12 and Pt/C, demonstrating 

that PtBi/C-24 possesses better operation stability. The high activity of PtBi/C-24 

could be attributed that the surface composition of PtBi/C-24 may via a similar thermal 

treatment, formation of Pt-rich surface. To get a better understanding of the catalytic 

activity of these five catalysts for EOR, the current peak of mass activity at 0.90 V was 

calculated in Figure 5-12. The mass activity increased in the sequence: Pt/C < PtBi/SA 

Pt ≈ PtBi/C-12 < PtBi/C-24 < PtBi@Pt. This result also indicates that the PtBi@Pt, 

with well-sized-distribute, shows better electrochemical performance than that of 

uneven distributed of PtBi/C-24. It is widely acknowledged that the ratio of the 
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forward peak current (If) to the reverse peak current (Ir) reflects the toleration of 

electrocatalyst against poisoning.237 The value of If / Ir for PtBi@Pt is 1.59, which is 

higher than those of PtBi/SA Pt (1.06) and Pt/C (1.05), indicating that the PtBi@Pt 

electrocatalyst has the best tolerance to intermediate accumulation. The current-time 

curves at -0.3 V (Hg/HgO) on these three catalysts at room temperature are shown in 

Figure 5-9b. After 1800 s, the activity of PtBi@Pt is still higher than those of PtBi/SA 

Pt and Pt/C, demonstrating that PtBi@Pt possesses better operation stability. To 

further investigate the electrochemical durability of the PtBi@Pt and PtBi/SA Pt, they 

were evaluated in the potential range between -0.4 and 0.1 V versus Hg/HgO for 5,000 

cycles in 1 M KOH solution, as shown in Figure 5-13. After 5,000 sweeping cycles, 

PtBi@Pt also maintains a high mass activity of 7.08 mA μgPt
-1; under the same 

conditions, however, the PtBi/SA Pt only retains 2.10 mA μgPt
-1, representing almost 

50 % loss of mass activity. This high activity of PtBi@Pt could be attributed to the 

tensile strain of the Pt-skin surface arising from the inner ordered PtBi 

intermetallic,229,238 which may promote ethanol dehydrogenation; meanwhile, the 

better stability of PtBi@Pt may also originate from its special structure, in which the 

Pt-skin structure could prevent the loss of the interior Bi during CV and durability 

testing. 

 Unlike Pt-skin surface of Pt3Co@Pt only enhancing the activity via C2 pathway,7 the 

Pt-skin surface of PtBi@Pt may both improve the acitivity and selectivity of EOR. To 

evaluate the selectivity towards ethanol oxidation, in-situ FTIR was applied to identify 

the intermediate and final products of these three samples, as shown in Figure 5-9c-e. 

The signature peak at 1550 cm-1, found in all three samples, is attributed to the 

asymmetric stretching vibrations of the carboxyl group in CH3COOH, which is usually 
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applied to the analysis of incomplete oxidation of CH3CH2OH.193, 239 Notably, in none 

of these three samples can the signature peak of CO2 (2345 cm-1) be detected, 

suggesting that the KOH in solution reacts with CO2, leading to the formation of CO3
2-. 

Therefore, the symmetric stretching band of COO at 1415 cm-1 is coming from the 

superposition of bands from CO3
2- and CH3COO-, which represents the overall electro-

oxidation of CH3CH2OH.239 To investigate the capability for C-C bond breaking in 

CH3CH2OH, we compared the ratio of integrated intensities associated with total 

electro-oxidation (1415 cm-1) and incomplete electro-oxidation (1550 cm-1) at various 

working potentials, as shown in Figure 5-9f. The results show that the value in 

PtBi@Pt for the C1 pathway is above 90%, demonstrating that the compressive strain 

of the Pt-skin surface influenced by inner PtBi intermetallic could enhance the 

selectivity towards the C1 pathway.  Remarkably, the values for the C1 pathway in 

PtBi/SA Pt and Pt/C are reduced to 30% and 50%, respectively, indicating that the 

activity of both of them towards ethanol electro-oxidation is primarily via the C2 

pathway, especially at high potential (> -0.7 V). This result suggests that, although 

single Pt atoms and ordered PtBi intermetallic have high reactivity, they show very 

poor EOR selectivity; when single Pt atoms are segregated on the surface of PtBi 

intermetallic, PtBi@Pt not only has high activity, but also could completely oxidize 

ethanol to CO3
2-.  
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Figure 5-14. Energy profiles for the competitive α- (in blue) and β- (in red) 

dehydrogenation pathways on (a) PtBi(0001) and (b) Pt-PtBi(0001), respectively. The 

favored kinetic pathway is illustrated by a solid line and the unfavored one by a dashed 

line. The optimized intermediates and transition states are inserted. Blue: Pt; purple: 

Bi; red: O; grey: C; white: H. 

  According to the theoretical model proposed in the literature,240 the C1 product 

selectivity can be estimated quantitatively by comparing the barrier difference between 

α-dehydrogenation and β-dehydrogenation, i.e., ΔEa = Ea,α-CH - Ea,β-CH, where Ea is the 

activation energy. As shown in Figure 5-14 and Figure 5-15, on the PtBi(0001) surface 
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with a single Pt site, the α-C-H bond breaks to form CH3COH* (Ea,α-CH = 0.83 eV), 

which is more kinetically favored than the β-C-H bond (Ea, β-CH = 0.93 eV), formation 

of CH2CHOH*; as a result, the ΔEa of the PtBi(0001) surface with a single Pt site is -

0.1 eV, indicating that CH3CO* would be the predominate product on the surface 

derived from ethanol decomposition, which could then be oxidized to acetate. When 

more Pt atoms are adsorbed at the adjacent position near the single Pt site, impressively, 

the new surface is found to be very reactive towards the β-C-H bond breaking process; 

the calculated barrier for CH2CHOH* formation is 0.79 eV, which is lower than 0.93 

eV for CH3COH* formation. Therefore, the ΔEa of the Pt-PtBi(0001) is 0.14 eV, 

indicating that it mainly product is CH2CHOH*, which will form CH2CO*; this result 

also confirms that the tensile strain of the Pt-skin surface from the inner PtBi 

intermetallic would help the dehydrogenation of ethanol. Significantly, the CH2CO* 

acts as a further precursor for C-C bond splitting, demonstrating that it could proceed 

via the C1 pathway. This result is corresponding to the in situ FTIR results, 

demonstrating that ethanol will be oxidized to CO2 on PtBi@Pt. 
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Figure 5-15. Top and side views of models of PtBi(0001) surface (a) with single Pt 

atom site, and (b) with two adjacent Pt atoms site. Blue: Pt; purple: Bi. 

Table 5-1. A recent literature survey of the activity of EOR electrocatalysts in alkaline 

electrolytes. 

Electrocatalyst Electrolyte Mass activity of Peak 

current (mA μgPt
-1) 

References 

PtBi@Pt 1 M KOH + 1 M 

CH3CH2OH 

9.01 This work 

Pd/Ni(OH)2/rGO 1 M KOH + 1 M 

CH3CH2OH 

1.546 Adv. Mater. 2017, 

29, 1703057 
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Pt68Cu32 nanoalloy 0.5 M KOH + 0.5 M 

CH3CH2OH 

2.33 Nanoscale, 

2017, 9, 2963-

2968 

Pt black-PbO2 0.1 M KOH + 0.1 M 

CH3CH2OH 

1.162 New J. Chem., 

2017, 41, 12123 

PdCo@NPNCs 1 M KOH + 1 M 

CH3CH2OH 

1.245 J. Mater. Chem. A, 

2017, 5, 10876 

Au@(Pt + Pd)/C 1 M NaOH + 1 M 

C2H5OH 

8.99 Chem. Commun., 

2016, 52, 374 

Pd2S/C 0.5 M KOH + 0.5 M 

CH3CH2OH 

0.162 J. Power Sources 

2016, 336, 1. 

Pd3Sn1/NG 1 M KOH + 1 M 

CH3CH2OH 

3.0 RSC Adv. 2016, 6, 

19314 

PdCu2 0.1 M KOH + 0.1 M 

CH3CH2OH 

1.60 ACS Appl. Mater. 

Interfaces 2016, 8, 

34497. 

PdCo NTAs/CFC 1 M KOH + 1 M 

CH3CH2OH 

1.49 Angew. Chem. Int. 

Ed. 2015, 54, 3669  

Pd–PEDOT/GE 1.0 M NaOH + 1.0 

M ethanol 

4.50 J. Mater. Chem. A 

2015, 3, 1077. 

https://doi.org/10.1039/2040-3372/2009
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Pd/CB 1.0 M NaOH + 1.0 

M ethanol 

5.00 Int. J. Hydrogen 

Energy 2015, 40, 

12382. 

Pt-Pd 

(1:3)/RGO/GC 

1 M KOH + 1 M 

CH3CH2OH 

1.487 ACS Appl. Mater. 

Interfaces 2014, 6, 

3607 

Pd@CN 1 M KOH + 1 M 

CH3CH2OH 

2.52 Chem. Commun., 

2014, 50, 12637 

Pt-Pd CANs 0.5 M KOH + 1 M 

CH3CH2OH 

    1.08 J. Mater. Chem. A, 

2014, 2, 13840 

Pd-Ag 

nanoparticles 

1 M KOH + 1 M 

CH3CH2OH 

     1.6 J. Power Sources 

2014, 263, 13. 

Pt55Pd45 bimetallic 

alloy nanowires 

1 M KOH + 1 M 

CH3CH2OH 

1.02 Adv. Mater. 2012, 

24, 2326 

Bi38@Pt63/C 0.3 M C2H5OH + 

0.5 M NaOH 

4.8 Electrochim. Acta 

2017, 258, 933 

Pt50Bi50/C  1 M KOH + 1 M 

CH3CH2OH 

0.017 Electrochem. 

Commun. 2011, 

13, 143.  

https://doi.org/10.1039/2050-7496/2013
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Pt55Pd38Bi7/C  1 M KOH + 1 M 

CH3CH2OH 

2.3 RSC Adv., 2016, 6, 

58336. 

Pd95Bi5/C  1 M KOH + 1 M 

CH3CH2OH 

0.018 Int. J. Hydrogen.  

Eenerg. 2011, 36, 

10522.  

Pd20Bi1/C  1 M KOH + 1 M 

CH3CH2OH 

5.67 Electrochim. Acta 

2013, 99, 22 

5.4. Conclusion 

In summary, the core-skin PtBi@Pt was successfully prepared by the single Pt atoms 

self-assembling on the surface of PtBi intermetallic using the SAS method. Rather than 

utilizing compressive strain to enhance the EOR activity, the tensile strain of Pt-skin 

surface of PtBi@Pt was realized to achieve a very high mass activity of 9.01 mA μgPt
-

1, which is 8.26 times higher than that of Pt/C towards the EOR. Remarkably, the in-

situ FTIR spectra and DFT results demonstrate that PtBi@Pt has better selectivity 

towards the EOR, which mainly proceeds via the C1 pathway, while PtBi/SA Pt and 

Pt/C mainly go through the C2 pathway. Such Pt-skin surface synthesized from a 

general approach is promotional to enhance the catalytic activity and selectivity toward 

these multimetal active sites chemical reactions. 
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Chapter 6  

6.   𝛑 -electron assisting preparation of 

single-atom sites on a heterogeneous 

support as bi-functional electrocatalysts 

towards full water splitting 

6.1. Introduction 

Single-atom catalysts (SACs) hold a great promise for maximizing catalytic efficiency 

of supported metals by achieving the ultimate utilization of every single atom.241,242, 

243-246 Multifarious single atoms have been fabricated and demonstrated their ultimate 

size effects, such as Pt1
247-254, Ru1

255,256, Ir1
257, Fe1

258,259 and Pd1
250,260-263. Significantly, 

various single atoms show remarkable catalytic activity and selectivity toward a 

variety of electrocatalytic reactions, including hydrogen evolution reaction (HER)12, 

oxygen evolution reaction (OER)264,265, oxygen reduction reaction (ORR)249,255, CO 

oxidation reaction247,253,266, CO2 reduction reaction 250, water gas shift reaction257, and 

hydrogenation261 with a high efficiency. It is noteworthy that the same foreign isolated 

substitutions can be tuned to show distinguishing catalytic activities via anchoring on 

different supports. For instance, Yang et al. via anchoring single-atom Pt catalyst on 

two different supports of titanium carbide and titanium nitride toward ORR reaction, 

which shown the oxygen reduction current density of Pt1/TiC was almost two times 
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larger than that of Pt1/TiN at all potential ranges, suggesting a higher selectivity on 

producing H2O2 
267. It is believed that the strong metal support interactions (SMSI) can 

change the physical orbital science, band gap, electronic density, and surface chemistry 

of the SACs, thus exhibiting different catalytic selectivity for a wide variety of 

chemical reactions. On the other hand, electrochemical water splitting is regarded as 

the most efficient and clean technology for high-purity hydrogen generation. It can be 

utilized to convert intermittent renewable energy such as solar and wind into chemical 

energy stored by hydrogen fuel as well.268,269 The overall water splitting involves 

active electrocatalysis on anodic OER and cathodic HER. Nevertheless, it is rare that 

a catalyst is able to simultaneously and efficiently accelerate both OER and HER. 

Typically, Ir and Ru-based catalysts show superior performance for OER, while Pt-

based catalyst exhibits high activity toward HER.270,271 It is thus ideal but extremely 

challenging to construct a bi-functional catalyst with synergistic dual active sites that 

can simultaneously promote HER and OER. 

 Herein, zeolitic imidazolate framework-67 (ZIF-67) can serve as an ideal precursor to 

fabricate single metal atoms. It possesses unique π-electrons in the pentagon imidazole 

as aggregation inhibitors, which can initially bond with metal ions via strong 

π conjunction, thus successfully stabilize the single metal atom species. Moreover, the 

ZIF-67 can transform into a heterogeneous support with Co nanoparticles dispersed in 

N-doped porous carbon (Co/NC). This unique Co/NC support provides two distinct 

domains for generally anchoring various single metal ions (M1= Pt1, Ir1, Pd1, Ru1, Fe1, 

and Ni1), leading to the formation of a serials of M1@Co/NC catalysts. As shown in 

Figure 6-1, in a M1@Co/NC catalyst, both of Co and NC can serve as substrates for 

single atoms, respectively, which subsequently corresponds to two different active 
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sites of M1@Co and M1@NC, simultaneously accelerating OER and HER. Moreover, 

the M1@Co/NC catalysts demonstrate unique three dimensional (3D) isolated atomic 

dispersion of various metals by virtue of the distinctive tunneling effects of ZIF-67 

structure. Significantly, the obtained Ir1@Co/NC catalyst displays the highest activity 

toward overall water splitting, achieving an applied potential of 1.603 V vs. reversible 

hydrogen electrode (RHE) with 10 mA cm-2 in 1.0 M KOH solution. The catalytic 

activities are further clarified by the density functional theory (DFT) calculations, 

indicating that the IrNC3 are responsible for the efficient HER capability while the 

Ir@CoO (Ir) site is beneficial for the OER. 
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Figure 6-1. Detailed atomic resolution HAADF-STEM characterization and 

composition of M1@Co/NC. (a) The illustration of the working mechanism of the 

prepared electrodes. (b) Annular bright field image (ABF)-STEM images of 

Pt1@Co/NC with low magnification. (c) HAADF-STEM image of Pt1@Co/NC with 

high magnification. (d) HAADF-STEM image of Pt1@Co region, (e) FFTI-HAADF 

image of Pt1@NC area. FFTI-HAADF images of (f) Ir1, (g) Pd1, (h) Ru1, (i) Fe1, and 

(j) Ni1 on NC (above) and their corresponding FFTI-HAADF images on Co particles 

(below). 

6.2. Experimental Section 

6.2.1.  Materials 

Platinum(II) acetylacetonate (C10H14O4Pt, 99%), Iridium(II) acetylacetonate 

(C10H14O4Ir, 99%), Palladium(II) acetylacetonate (C10H14O4Pd, 99%), Ruthenium (III) 

acetylacetonate (C15H21O6Ru, 97%), Iron (III) acetylacetonate (C15H21O6Fe, 99%), 

Nickel (II) acetylacetonate (C10H14O4Ni, 99%), Cobalt(II) nitrate hexahydrate 

(Co(NO3)2 6H2O, ACS reagent grade, ≥ 98%), 2-methylimidazole (C4H6N2, 99%), 

Nafion@117 solution (5 wt %, dispersed in a binary solvent of water and lower 

aliphatic alcohols), and commercial Pt black (20 wt. % Pt loading on Vulcan XC72) 

and IrO2 were purchased from Sigma-Aldrich. All the chemical reagents were used as 

received without any further purification. 
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6.2.2.  Materials Preparation 

6.2.2.1.  Synthesis of ZIF-67 

In a typical synthesis, 2-methylimidazole (1.97 g) was dissolved in a mixed solution 

of 30 ml methanol and 10 ml ethanol (solution A). Co(NO3)2·6H2O (1.746 g) was 

dissolved in another mixed solution of 30 ml methanol and 10 ml ethanol. 0.125 mmol 

K2PtCl4 was dissolved in 2.56 ml deionized water (solution B). Solution A and solution 

B were then mixed under continuous stirring for 10 seconds, and the final solution was 

kept for 20 h at room temperature. The purple precipitate was collected by 

centrifugation, washed in ethanol several times, and dried at 80 °C. 

6.2.2.2.  Synthesis of (Pt, Ir, Pd, Ru, Fe, and Ni)1@Co/CN 

In a typical synthesis, 100 mg ZIF-67 powders mixed with 50 ml ethanol by ultra-

sonification for 30 mins to form a homogeneous dispersion. 0.0075 mmol platinum (II) 

acetylacetonate, iridium (II) acetylacetonate, palladium acetylacetonate, ruthenium 

(III) acetylacetonate, nickel (II) acetylacetonate, and iron (III) acetylacetonate were 

then added into the dispersion with rigorously stirring until ethanol were evaporated 

out, forming ZIF-67-Pt/Ir/Pd/Ru/Fe/Ni mixtures respectively. Finally, the mixture was 

annealed at 600 °C (Pt/Ir/Pd/Ru)/700 °C (Fe/Ni) under argon for 2 h. These resultant 

products were denoted as (Pt/Ir/Pd/Ru/Fe/Ni)1@Co/CN.  

6.2.3.  Characterization 

The high-angle annular dark-field scanning TEM (HAADF-STEM) images and the 

scanning TEM energy dispersive X-ray spectroscopy (STEM-EDS) data were 

acquired on the transmission electron microscopy system (TEM, JEOL ARM-200F, 
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200 kV). The XRD patterns were collected by powder X-ray diffraction (XRD; GBC 

MMA diffractometer) with Cu Kα radiation at a scan rate of 3 ° min-1. The bonding on 

Pt1@Co/CN was determined by XPS (PHOIBOS 100 Analyser from SPECS, Berlin, 

Germany; Al Kα X-rays). The loading mass was determined by the inductively 

coupled plasma optical emission spectrometry (ICP-AES, IRIS Intrepid ER/S, Thermo 

Elemental). The Fourier transform infrared spectroscopy (FTIR) was performed at 

room temperature on a Shimadzu Prestige-21. The Raman spectroscopy was used to 

determine the length of bond on Jobin Yvon HR800. The secondary ion mass 

spectrometer (SIMS) Cameca IMS 5FE7 was applied to determine the surface and near 

surface composition and cluster in materials. X-ray absorption spectroscopy (XAS) 

experiments were carried out at the applied X-ray absorption fine structure 

spectroscopy (XAFS) beamline P65 at the PETRA III (Deutsches Elektronen-

Synchrotron, DESY, Hamburg). The storage rings of PETRA III were operated at the 

electron energy of 6 GeV with a beam current of 100 mA. XAS spectra were recorded 

in quick-XAFS (QXAFS) method in transmission mode using an ionization chamber 

of Pt foil. The intensity of the monochromatic X-ray beam was monitored respectively 

by three consecutive ionization detectors. All the XAS spectra were processed using 

DEMETER software package. The data was normalized and analyzed via using 

Athena and Artemis software. 

6.2.4.  Density Function Calculation (DFT) 

All the density functional theory (DFT) calculations were performed with the Vienna 

Ab-initio Simulation Package (VASP)272-275. The projector augmented wave (PAW) 

potentials276 and Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional277 

were adopted in the calculations with a plane wave kinetic energy cutoff of 520 eV. 
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The spin-polarization was also took into account and the energy converge criteria was 

set to be 10-5 eV, and the force was converged to less than 0.05 eV/Å on each ion.  

  A 6×6 supercell with a periodic boundary condition along the x-y plane was employed 

to model the infinite graphene sheet. The vacuum space was set 15 Å in the z direction, 

which was used to avoid the interactions between periodic images. K-space was 

sampled using a 3×3×1 Gamma-Centered grid. The single atom Ir is modelled as a 

four-coordinated structure, which is IrNC3 and IrC4. 

To simulate surfaces, we applied three-dimensional slab models in this work. The (111) 

surface of Co was represented by a p(5×5) slab (a = 12.53 Å, b = 12.53 Å and c = 

25.00 Å) with four-atomic-layer, in which Co atom on the surface was substituted by 

Ir atom, which is Ir-Co. During the structural optimization, the bottom two layers were 

kept fixed, while the other layers were allowed to relax. K-space was sampled using a 

3×3×1 Gamma-Centered grid.  

At about 0.2 V versus RHE, CoO layer would be generated on the surface of metal Co, 

while at about 1.9 V versus RHE, Co2O3 would be generated on the surface of Co. In 

the reality, 1.5V was added in the experiment. In the result, the adsorption energies of 

oxygen-based intermediates on the (100) surface of CoO were calculated, also in 

which Co atom on the surface was substituted by Ir atom, which is called Ir1@CoO. 

The (100) surface of CoO was represented by p(4×4) slab with four layers thick. And 

the optimized lattice constants are a = b = 12.07 and c = 21.40 Å. During the structural 

optimization, the bottom two layer was kept fixed, while the top layers were allowed 

to relax. K-space was sampled using a 3×3×1 Gamma-Centered grid. 
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The mechanism of OER is assumed to proceed through four consecutive proton and 

electron transfer steps with HO*, O*, and HOO* intermediates, as shown below. 

H2O + * → HO* + H+ + e−                             (1) 

HO* → O* + H+ + e−                                 (2) 

H2O + O* → HOO* + H+ + e−                          (3) 

HOO* → O2(g) + * + H+ + e−                           (4) 

where * represents the surface active site. The free energy of the various intermediates 

298.15 K can be calculated by the following equation: 

G = E + ZPE − TS − eU                           (5) 

where E is the total energy change derived from DFT calculations, ZPE, S, U are 

the zero point energy changes, the entropy changes and the applied electrode voltage, 

respectively, T is the temperature at 298.15 K. At a pH ≠ 0, the free energy of H+ ions 

are corrected by the concentration dependence of the free energy: GpH(pH) 

=−kTln10·pH. 

  The free energy for H* adsorption was calculated to evaluate the activity of HER 

according to the following equation:  

GH* = EH* + ZPE − TS − G(pH)                    (6) 

EH* is the adsorption energy of an H* at the active site. 

First principle density functional theory (DFT) calculations have been performed to 

evaluate the most favorable sites of metal adsorption in ZIF67. The adsorption 

processes of six types of metals, i.e., Pt, Pd, Ir, Ru, Fe, Ni are examined 
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computationally. Meanwhile, three types of potential adsorption sites are identified 

depending on its nearest neighboring atoms with metal as N Site, Co Site and C Site. 

For all calculations, the Perdew-Burke-Ernzerhof (PBE) functional and projector 

augmented-wave (PAW)278-280 method are adopted using the Vienna ab initio 

simulation package (VASP). The dispersive van der Waals interactions between the 

MoS2 and BMLs were included using the DFT-D2 method of Grimme281,282. In each 

calculation, an energy cutoff of 500 eV were adopted while higher cutoff will have 

and energy difference of less than 0.01 eV. When performing the structure 

optimizations, the system is regarded as converged when the force per atom is less 

than 0.01 eV/Å. 

6.2.5.  Electrochemical Measurements 

Before the glassy carbon electrode (GCE) was used, it was consecutively polished with 

1.0 and 0.05 μm alumina powder, rinsed with deionized water, and sonicated first in 

ethanol and then in water. Electrochemical experiments were carried out in 1 M KOH 

by using a computer-controlled potentiostat (Princeton 2273 and 616, Princeton 

Applied Research) in a conventional three-electrode cell at room temperature. 

Typically, working electrodes were prepared by mixing the catalyst with deionized 

water + isopropanol + 5% Nafion® (v/v/v = 4/1/0.05). The loading mass on the rotating 

disk electrode (RDE) was calculated as 163 µg cm-2. A Pt wire was used as the counter 

electrode and Ag/AgCl (KCl, 3M) was used as the reference electrode, with all 

potentials referred to reversible hydrogen electrode (RHE). Thus, the potential with 

respect to RHE can be calculated as follows: E(RHE) = E(Ag/AgCl) + 0.059 × pH + 

0.210. Before testing, flowing N2 was bubbled through the electrolyte in the cell to 

achieve an N2-saturated solution. The HER and OER tests were carried out in N2-
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saturated 1 M KOH solution respectively with a scan rate of 10 mV s-1. The overall 

water splitting test was performed in a two-electrode system. The catalyst ink modified 

on carbon fibre was used as both the cathode and anode in overall water splitting. The 

loading mass on carbon fibre is 0.2 mg/cm2. Accelerated durability tests were 

performed at room temperature in 1 M KOH solution via constant voltage electrolysis 

at an applied potential of 1.6 V (Vs. RHE).  

 

Figure 6-2. Schematic illustration of the formation of M1@Co/NC. 

6.3. Results and Discussion 

As illustrated in Figure 6-2, when adding various metal ions (M2+, 

M=Pt/Ir/Pd/Ru/Fe/Ni) into the ZIF-67 dispersion, a serials of ZIF-67-M mixtures can 

be formed via strong coordination of M2+ with imidazole pentagon via electron 

absorption under continual stirring. During pyrolysis at 600-700 oC under Ar 
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atmosphere, ZIF-67 precursor transforms into the heterogeneous Co/NC support; 

Simultaneously, the coordinated M2+ are reduced into metal single atoms (M1) through 

the carbonization of the organic linkers, leading to the formation of isolated M1 

embedded in the Co and NC domains of the support (M1@Co/NC). The high angle 

annular dark field (HAADF) image of scanning transmission electron microscopy 

(STEM) with a low magnification shows that the representative Pt1@Co/NC (2.28 wt% 

Pt, confirmed by inductively coupled plasma optical emission spectrometry (ICP-

AES)) exhibits a rough dodecahedral shape without any striking-contrast particles 

observed on the surface (Figure 6-1b). The high-magnification HAADF image of the 

Pt1@Co/NC verifies that high-density Pt single atoms are uniformly dispersed on both 

Co nanoparticles and C matrices without agglomeration during the high-temperature 

annealing process of the ZIF-67-Pt mixture (Figure 6-1c). 

  The intensity mapping of high-resolution HAADF image demonstrates a highly 

contrast of electronic intensity of different atoms, that is, the high energy atoms 

correspond to red color and the low energy atoms show a gradient change to the blue 

color. The red spots, as shown in Figure 6-1d, correspond to the isolated Pt single 

atoms on the Co nanoparticles, which evidently occupy the position of Co atoms as 

illustrated in the white box. Hence, this portion of Pt1 is stabilized by alloying with Co 

atoms to form single atom alloys (SAAs). It is believed that the alloyed Pt1@Co SAAs 

can exhibit geometric and electronic structures different from those of the single atoms 

that are prepared by anchoring on the support. 262,283,284 Thus, the Pt1@Co are expected 

to show low energy barrier, high selectivity and activity for catalytic reactions.285 

Furthermore, the fast Fourier transform inversed high resolution HAADF (FFTI-

HAADF) image clearly shows a high-density of bright isolated Pt atoms dispersed on 
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the carbon layer (Figure 6-1e). More importantly, this synthetic strategy can be 

generalized for various metals, including iridium (Ir), palladium (Pd), Ruthenium (Ru), 

iron (Fe), and nickel (Ni) based on the abovementioned Co-alloying and N-

coordination interactions. The bright contrast single atoms of Ir (2.2 wt%, Ir1@Co/NC), 

Pd (1.9 wt%, Pd1@Co/NC), Ru (2.0 wt%, Ru1@Co/NC), Ni (1.8 wt%, Ni1@Co/NC), 

and Fe (1.3 wt%, Fe1@Co/NC) are uniformly dispersed on the Co/NC support without 

any particles observed (Figure 6-3).  

 

Figure 6-3. HAADF images for different M1@Co/NC with single-atom (a) Ir, (b) Pd, 

(c) Ru, (d) Ni, and (e) Fe at low magnification. 

 Moreover, as shown in Figure 6-1f-j, the high resolution HAADF images show that 

single atoms of Ir, Pd, Ru, Fe, and Ni are isolated in nitrogen doped carbon matrix 

(white rectangle), indicating the highly strong coordination effect between C/N groups 

and metal ions. Also, as shown in the images below (Figure 6-1f-j), these single atoms 

Ir1, Pd1, Ru1, Fe1, and Ni1, similar with Pt1, are successfully doped on Co crystal 
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without agglomeration. The STEM-energy dispersive spectroscopy (EDS) element 

mapping further confirmed that the expected elements Pt, C, N and Co uniformly 

distributed over the entire architecture (Figure 6-4). Similarly, the single atoms 

(Ir1/Pd1/Ru1/Fe1/Ni1) were uniformly dispersed in the substrates (Co/NC) (Figure 6-5, 

6-6, 6-7, 6-8, 6-9).  

 

Figure 6-4. HAADF image and STEM-EDS of Pt1@Co/NC. (a) HAADF image; (b-

e) elemental mapping of Pt1@Co/NC; (f) EDS. The STEM-EDS elemental mapping 

shows the expected Pt/Co/C/N were dispersed over the architecture. Also, the 

characteristic Pt peak was observed in the EDS, indicating the existence of Pt atoms. 



 

 

 

Chapter 6: π-electron assisting preparation of single-atom sites on a heterogeneous 

support as bi-functional electrocatalysts towards full water splitting                       158 

 

Figure 6-5. HAADF image and STEM-EDS of Ir1@Co/CN. (a) HAADF image; (b-e) 

elemental mapping; (f) EDS. 

 

Figure 6-6. HAADF image and STEM-EDS of Pd1@Co/CN. (a) HAADF image; (b-

e) elemental mapping; (f) EDS. 
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Figure 6-7. HAADF image and STEM-EDS of Ru1@Co/CN. (a) HAADF image; (b-

e) elemental mapping; (f) EDS. 

 

Figure 6-8. HAADF image and STEM-EDS of Fe1@Co/CN. (a) HAADF image; (b-

e) elemental mapping; (f) EDS. 
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Figure 6-9. HAADF image and STEM-EDS of Ni1@Co/CN. (a) HAADF image; (b-

e) elemental mapping; (f) EDS. 

 

Figure 6-10. The HAADF images of the sectional view of Pt1@Co/NC with low 

magnification (a) and high magnification (b). The FFTI-HAADF image of Pt single 

atoms on Co (c) and C (d). 
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 In addition, as a representative sample, we investigate the dispersion of Pt1 single 

atoms in the Pt1@Co/NC via the focus ion beam scanning electron microscopy (FIB-

SEM) and the secondary ion mass spectrometer (SIMS). The FIB-SEM is applied to 

cut the Pt1@Co/NC, which could provide its sectional view via STEM (Figure 6-10). 

The corresponding HAADF images display the existence of uniform and high density 

isolated Pt atoms over the cross section of Pt1@Co/NC (Figure 6-10b), indicating the 

3D isolated atomic dispersion of Pt. Also, the single Pt atoms anchored on both of Co 

and NC (Figure 6-10c and d) indicates that, besides the surface, the single Pt atoms 

can be embedded in multiple inner layers of the Co/NC support, which is conducive 

to expose more active sites for water splitting. This is the first time to realize a 3D 

single atom dispersion, which is ascribed to the easy accessibility of zeolitic structure 

and numerous functional organic group anchored on each tunnel. The 3D radial 

dispersion of Pt1 is further analyzed via SIMS, which is a powerful tool to verify the 

element dispersion from the surface to depth (Figure 6-11). With time-sputtering from 

0s to 600s, the depth profiling of Pt1@Co/NC shows that the permanent and uniform 

signals of main elements (C, Co, Pt), indicating that Pt1 has fascinating vertical 

dispersion (Figure 6-12). 
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Figure 6-11. The brief working mechanism of SIMS. The primary ion beam is 

sputtering on the surface of specimens and meanwhile, the ejected secondary ions are 

collected and analyzed. With extending the sputtering time, the analyzed depth will 

increase. 

 

Figure 6-12. Time profiling of ions images of Pt, C and Co capturing on the same 

region of Pt1@Co/NC. With the increase of sputtering time, both of C and Co keep 

shows their locally high counts, indicating these two elements have a depth-elemental 

dispersion. 
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 Furthermore, the X-ray diffraction pattern (XRD) patterns of all M1@Co/NC samples 

are well consistent with the Co/NC, only showing three peaks at 44.2︒, 51.5︒, and 

75.9︒, which are indexed to be (111), (200), and (202) planes of Co (Figure 6-13), 

respectively. No other metals phases are formed in these M1@Co/NC, further implying 

that the loaded metals are very likely to be atomically dispersed in the support without 

forming nanoclusters/nanoparticles with M-M stacking. In addition, 

thermogravimetric analysis (TGA) indicates that the mass ratio of Co and C in the 

Co/NC support is 65% and 35%, respectively (Figure 6-14). 
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Figure 6-13. XRD patterns of Pt1@Co/NC, Ir1@Co/NC, Pd1@Co/NC, Fe1@Co/NC, 

Ni1@Co/NC, and Ru1@Co/NC.  

 

Figure 6-14. TGA curves of Co/NC performed in the air. The XRD pattern of resulting 

product shows the Co particle were oxidized to cobalt oxide (CoO). The calculation of 

mass ratio is based on the TGA curves and XRD result. 

 We, thus, have successfully developed a general strategy to synthesize 3D-dispersed 

single atoms, including precious elements and transition elements, on the 

heterogeneous support, which can lead to dual active sites with alternative electronic 

properties towards different catalytic reactions.  
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Figure 6-15. The confirmation of the Pt-𝜋 bond at the initial stage on imidazole group 

by DFT, UV-vis, and EELS. (a) Atomic configurations of three adsorption sites: N site; 

Co site; C site. (b) Calculated charge redistribution of C-C bond and C-N bond in ZIF-

67. The calculated two atoms in bond are denoted by red circles. The yellow and blue 

iso-surface indicates gain or loss of electron density due to bond formation. (c) The 

EELS spectra of ZIF-67. (d) The Uv-vis spectra of ZIF-67 and ZIF-67-Pt. (e) The 

illustration of the correlation between Pt cation and π electrons.  

Table 6-1. Calculated adsorption energy (eV/atom) of metals at different sites.  

Metal N Site C Site Co Site 

Pt -3.42 -3.22 -3.09 

Pd -2.22 -1.87 -1.79 

Ir -4.05 -3.52 -2.74 
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Ru -3.61 -3.28 -3.00 

Fe -1.52 -0.90 -0.82 

Ni -2.37 -2.01 -1.94 

 

   DFT calculations are performed to evaluate the favorable sites of metal adsorption 

in ZIF-67. The ZIF-67 possesses 3D staggered structure so that the correlated metal 

ion on pentagon imidazole can isolate each other without aggregation. The adsorption 

processes for six types of metals, including Pt, Pd, Ir, Ru, Fe, and Ni, are examined 

computationally. Meanwhile, three types of potential adsorption sites are identified 

depending on its nearest neighboring atoms with metal as N site, Co site and C site 

(Figure 6-15a). The calculated adsorption energy of metals at different sites are 

demonstrated (Table 6-1). It can be seen that for all metals, due to the fact that 

electronegativity of N is higher than that of C, the electron will be polarized to N atoms 

more than C atoms, which determines that N serves as the most favorable adsorption 

site. Meanwhile, Co site is the most unfavorable adsorption site for metal atoms, which 

is mainly due to the great coulomb repulsion between metal ions. The adsorption 

mechanism can be further speculated by understanding the deformation charge density. 

As can be inferred from Figure 6-15b, both C-C and C-N bonds can cause charge 

redistribution of all five atoms in the pentagon rings. That indicates the fact the 

conjugated π bond exist in such pentagon C-N substructures of ZIF-67. Additionally, 

the EELS spectrum indicates the existence of π electron on ZIF-67, further confirming 

that the delocalized π electron are significant in absorbing metal ions (Figure 6-15c). 

Moreover, three prominent peaks are observed in the UV−vis spectrum of ZIF-67: 257 
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nm (π → π*), 303 nm (midgap transition), and at 582 nm (λmax) (Figure 6-15d). In 

contrast, the ZIF-67-Pt with Pt ion adsorption leads to slight blue-shift of the λmax (582 

→ 579 nm), while a slight red-shift is observed in the midgap transition (303 → 308 

nm) and π transition, suggesting its P-type doping nature (basic nature, doping).286,287 

The EXAFS fitting curve of ZIF-67-Pt mixture suggests that the Pt1 are sit on the top 

the pentagon ring and binding with five nitrogen/carbon atoms (Figure 6-16). The 

FFTI-HAADF image and color mapping of the ZIF-67-Pt mixture at 25 ℃ also shows 

a clear evidence that the bright contrast Pt ions were trapped on the edges of the 

pentagon of 2-methylimidazole (Figure 6-17), indicating that Pt ions are initially 

anchored in the imidazole group before the thermal treatment. In addition, the Raman 

spectroscopy was applied to further determine the length, symmetry of bonds between 

Pt and N. Comparing with the pure ZIF-67, the Raman spectroscopy of ZIF-67-Pt 

shows a clearly positive peak shift of 66.4 cm-1, indicating the length of metal-N bond 

become shorter due to a higher polarized bond (Figure 6-18)288,289, which is consistent 

with the shorter theoretical bonding length of Pt-N (1.950 Å) than Co-N (2.207 Å) 

(Figure 6-19). Particularly, a control sample (Pt-Co/NC) was synthesized from the 

mixture consisted of the as-obtained Co/NC and Pt ions. Due to the absence of 

imidazole groups in the Co/NC substrate, the mixed Pt ions are severely aggregated 

into the formation of Pt particles but no isolated Pt atoms dispersed after annealing 

(Figure 6-20), implying that the imidazole groups of ZIF-67 play a key role in 

preparing Pt single atoms. Thus, these results point out the delocalized π electrons in 

imidazole groups are the most critical for single atoms, which serve as anchoring sites 

to initially form a strong bonding with the M ions and keep them isolated through the 

thermal carbonization (Figure 6-15e). 
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Figure 6-16. The EXAFS fitting curves of ZIF-67-Pt obtained at 25 °C and its 

corresponding fitting model. 

 

Figure 6-17. (a) FFTI-HAADF of ZIF-67-Pt. 
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Figure 6-18. Raman spectra of ZIF-67 and ZIF-67-Pt. If points at 253.4 cm-1, 266.8 

cm-1, 399.7 cm-1, and 410.4 cm-1 on ZIF-67 were set as A, B, C, and D, similar peaks 

A’, B’, C’, and D’ also can be found at 319.8 cm-1, 333.2 cm-1, 466.1 cm-1, and 476.8 

cm-1, which have a consistently 66.4 positive shift. 

 

 

Figure 6-19. The theoretical atomic structure of ZIF-67 and ZIF-67-Pt.  
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Figure 6-20. HAADF images of Pt-Co/CN. 

  The evolution of Pt1@Co/NC along with temperature was monitored in the range of 

room temperature (RT) to 600 oC. The valance of Pt speciation obtained in different 

temperatures can be determined from the normalized Pt L3-edge X-ray absorption near 

edge structure (XANES). The observation in Figure 6-21 suggests that Pt (II) were 

initially reduced during RT to 150 ℃ but gradually oxidized into a maximum positive 

valence state from 300 to 450 ℃, and then re-reduced to form Pt single atoms by the 

further increased temperature at 600 ℃. Also, the absorption threshold of Pt L3-edge 

in Pt1@Co/NC is close to that in ZIF-67-Pt precursor at RT, implying the similar Pt 

valence state of approximately +2. Notably, the X-ray photoelectron spectroscopy 

(XPS) of Pt1@Co/NC shows two typical fitting peaks of Pt2+, which is well consistent 

with the analysis of XANES (Figure 6-22). Similarly, the oxidized valence status are 

also observed via the XPS analysis on Ir1@Co/NC, Pd1@Co/NC, and Ru1@Co/NC 

(Figure 6-23). To investigate the coordination environment of Pt1, extended X-ray 

absorption fine structure (EXAFS) analysis was performed.  
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Figure 6-21. The normalized XANES spectra of ZIF-67-Pt mixture at different 

temperatures. 

 

Figure 6-22. High resolution Pt 4f, N 1s, C 1s XPS spectra of Pt1@Co/NC. 
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Figure 6-23. High resolution Ir 4f, N 1s, C 1s XPS spectra of Ir1@Co/NC, Pd 3d, N 

1s, C 1s XPS spectra of Pd1@Co/NC, Ru 3d, N 1s, C 1s XPS spectra of Ru1@Co/NC. 
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Figure 6-24. The local structure of the Pt single atoms in Pt1@Co/NC by EXAFS. (a) 

The K3-weighted Frourier transform (FT) spectra from EXAFS of ZIF-67-Pt mixture 

at different temperatures. (b) The K3-weighted Frourier transform (FT) spectra from 

EXAFS. Δk = 2.3-9.0 Å-1 for Pt1@Co/NC; but Δk = 3.0-10.45 Å-1 for Pt foil; EXAFS 

fitting of Pt-N/C shell (c), and Pt-Co shell (d) in R-space for Pt1@Co/NC. The inset is 

the model of the fitted structures of Pt-N/C shell and Pt-Co shell. 

 

Figure 6-25. The HAADF image of Pt1@Co/NC obtained at 300 °C. 

 The K3-weighted FT spectra from EXAFS of these samples obtained in different 

temperature, as shown in Figure 6-24a, points out that the Pt2+ ions are bonded with 

low coordination numbers (purple dash line) before 600 ℃ and formed Pt-Co bond 

with a high coordination numbers in a long R space (Green dash line) from 300 to 

600 ℃, which is consistent with the STEM result (Figure 6-25). Notably, a potential 

contribution from Pt-N(C) (1.9 Å) distance is detected without characteristic Pt-Pt 

distance (2.4 Å) by EXAFS (Figure 6-24b), indicating that the Pt has no characteristic 

Pt-Pt bonds, but exhibits low-atomic number neighbor in the first shell. Additionally, 

the EXAFS fitting suggests a coordination number of about 4 with N(C) (Figure 6-24c, 

Table 6-2), suggesting that the Pt atoms sit on the top of 4 N(C) atoms, which is in 
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good agreement with the speculation of HAADF. As the Pt-N and Pt-C bonds have a 

similar characteristic peak, they cannot be distinguished by EXAFS fitting12. The 

increasing temperature leads to the formation of Co nanoparticles in N-doped C. The 

best-fitting results of K-space and Fourier transforms in R space of Pt foil are also 

displayed in Figure 6-26. On the other hand, the scattering path of Pt-Co at 3.544 Å 

was fitted and shows a high consistence of Pt-6Co model in R space, as well as the K-

space (Figure 6-24d, Figure 6-27), indicating the single Pt atoms are doped in the space 

of Co octahedral. Based on the above analysis, the local atomic structure around 

isolated Pt atoms can be confirmed to be coordinated with four-fold N/C atoms on a 

porous carbon matrix and alloyed in the center of Co octahedral. 

Table 6-2. EXAFS data fitting results of Pt1@Co/NC 

Sample Shell N R (Å) σ2 ×102 ΔE0 (eV) r-factor (%) 

Pt1@Co/NC Pt-C/N 12 1.93 0.26 7.7 2.5 

 

Pt-Co 6 3.54 0.3 3.4 1.8 

N, the coordination number of the absorber-backscatter pair; R, the average absorber-

backscatter distance; σ2, the Debye-waller factor; ΔE0, the innerpotential correction. 

 

Figure 6-26. The EXAFS fitting curves of Pt foil. 

mailto:Pt1@Co/NC
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Figure 6-27. The EXAFS fitting curves of Pt-Co path of Pt1@Co/NC in K space. 

 

Figure 6-28. (a, c) Polarization curves of HER and OER of Pt1@Co/NC, Ir1@Co/NC, 

Pd1@Co/NC, Ru1@Co/NC, Ni1@Co/NC, Fe1@Co/NC, and commercial Pt/C, IrO2 

electrodes. (b, d) The corresponding Tafel slopes obtained from the polarization curves 

(a, c), respectively. (e) The overall over-potential of the corresponding electrodes 

obtained at 10 mA cm-2. (f) The polarization curves of overall water splitting with the 

Ir1@Co/NC catalyst. Inset is the image of two electrode system which is producing 

bubbles of H2 and O2 at an applied potential of 1.4V (Vs RHE). 
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 The electrochemically catalyzed HER and OER with the M1@Co/NC are evaluated 

in N2-saturated 1.0 M KOH solutions via using a typical three-electrode cell at room 

temperature. The linear sweep voltammetry (LSV) curves of the Pt1@Co/NC, 

Ir1@Co/NC, Pd1@Co/NC, Ru1@Co/NC, Ni1@Co/NC, and Fe1@Co/NC electrodes 

are shown in Figure 6-28a with a scan rate of 10 mV s-1 for HER. It is evident that both 

Ir1@Co/NC and Ru1@Co/NC shows the most positive onset potential, particularly the 

Ir1@Co/NC electrode exhibits a similar polarization curve with commercial Pt/C, 

which required 0.06 V to deliver the 10 mA cm-2 current density. Notably, the over-

potentials (η) achieving a 10 mA cm-2 current density increase in the sequence: 

Fe1@Co/NC < Pd1@Co/NC < Pt1@Co/NC < Ni1@Co/NC < Ru1@Co/NC < 

Ir1@Co/NC, indicating that the Ir1@Co/NC achieves a more fascinating HER 

performance. The Tafel plots as shown in Figure 6-28b, which is derived from the 

polarization curves (Figure 4a), indicates that the electrode of Ir1@Co/NC (89 mV dec-

1) has a the lowest Tafel slope than Ru1@Co/NC (183 mV dec-1), Fe1@Co/NC (260 

mV dec-1), Pd1@Co/NC (178 mV dec-1), Pt1@Co/NC (154 mV dec-1), and 

Ni1@Co/NC (237 mV dec-1). Particularly, the catalyst Ir1@Co/NC shows a 

comparable Tafel slope with Pt/C (79 mV dec-1), suggesting a favorable HER kinetic 

via a Volmer-Heyrovsky pathway.  

 On the other hand, the polarization curves as shown in Figure 6-28c revealed that the 

Ir1@Co/NC presented a superior OER catalytic activity. The over-potentials delivering 

a current density of 10 mA cm-2 are in the followed sequence: Ir1@Co/NC (343 mV) > 

IrO2 (385 mV) > Ni1@Co/NC (410 mV) > Pt1@Co/NC (458 mV) > Pd1@Co/NC (463 

mV) > Ru1@Co/NC (515 mV) > Fe1@Co/NC (515 mV). Also, Ir1@Co/NC shows a 

Tafel slope of 171 mV dec-1, which is better than Ni1@Co/NC (209 mV dec-1), 
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Ru1@Co/NC (179 mV dec-1), and Fe1@Co/NC (245 mV dec-1), indicating Ir1@Co/NC 

had a better OER kinetic due to a possibly high exchange current density (6-28d). The 

Pt1@Co/NC (124 mV dec-1) and Pd1@Co/NC (125 mV dec-1), however, presented a 

faster exchange current, which is near to the commercial IrO2. As summarized in 

Figure 6-28e, the overall over-potentials of HER and OER indicate that Ir1@Co/NC 

(407 mV) had a lower over-potential than these other electrodes (Fe1@Co/NC (925 

mV), Ni1@Co/NC (589 mV)), Pt1@Co/NC (758 mV), Pd1@Co/NC (810 mV), and 

Ru1@Co/NC (590 mV), suggesting that the Ir1@Co/NC is a highly efficient bi-

functional catalyst to achieve excellent performance with an low overall potential 

window in water splitting. Accordingly, we integrate two Ir1@Co/NC electrodes 

loaded on carbon paper (1.2 cm*1 cm) as water electrolysis anode and cathode in the 

electrolyte of 1.0 M KOH solution. It is clearly observed that the hydrogen and oxygen 

bubbles are formed when the applied potential is higher than 1.4 V (inset image, Figure 

6-28f). Also, the current density can achieve 10 mA cm-2 with a potential of 1.603 V, 

which is consistent with the supposed potential window. It is of highly significance 

that the Ir1@Co/NC catalyst can conduct a stable long-term overall water splitting over 

5 h with a set potential of 1.61 V via constant voltage electrolysis (Figure 6-29). The 

comparison of overpotentials and mass activities of reported overall water-splitting 

catalysts based on noble metals indicates that Ir1@Co/NC shows overwhelming mass 

activity with a comparable overall potential at current density of 10 mA cm-2, 

regardless of acid and base electrolytes (Table 6-3). 
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Figure 6-29. The stability test of Ir1@Co/NC at 1.61 V Vs. RHE. 

Table 6-3. The summary of the water splitting activity of recently reported bi-

functional noble metal based catalysts. 

Catalyst Electrolyte Mass activity 

mA cm-2 μgnoble 

metal
-1 

Overall 

potential at  

10 mA cm-2 

Reference 

Pt/CC–Ir/CC  0.5 M H2SO4 0.06  1.65 290 

Ir/GF 0.5 M H2SO4 0.2 1.55 290 

Ru2Ni2 SNs/C 1.0 M KOH 0.12 1.58 291 

IrW/C 0.5 M H2SO4 0.33 1.48 292 

IrNi0.57Fe0.82 0.5 M HClO4 0.05 1.64 293 

IrNi0.68 0.5 M HClO5 0.05 1.69 293 

IrCoNi/CFP 0.5 M H2SO4 1 1.64 294 

Pt-CoS2/ CC 1.0 M KOH 0.27 1.55 295 

 IrNi NCs  0.1 M HClO4 0.8 1.58 296 

mailto:Ir1@Co/NC%20at%201.65
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 Ir NCs 0.1 M HClO4 0.8 1.6 296 

Ir1@Co/NC 1.0 M KOH 2.27 1.6 This work 

  

 DFT calculations were performed to elucidate the electrocatalytic mechanism of the 

Ir1@Co/NC towards accelerated HER and OER. The local structure of Ir1 on Co/NC 

is confirmed via the fitting of EXAFS, similar with the coordination environment with 

Pt, in which the Ir1 are formed four-fold N/C atoms on a porous carbon matrix and 

alloyed in the center of Co octahedral (Figure 6-30). Additionally, the XPS result 

suggests that the atomic ratio of C and N is around 4.82 (Figure 6-31), which means 

that IrNC3 and IrC4 are the most supposed model for a four-coordination structure, as 

shown in Figure 6-32a-d.  

 

Figure 6-30. The K3-weighted Frourier transform (FT) spectra from EXAFS for 

Ir1@Co/NC and Ir foil (a); EXAFS fitting of Ir-N/C shell and Ir-Co shell (b) in R-

space for Ir1@Co/NC. The inset is the model of the fitted structures of Ir-N/C shell 

and Ir-Co shell. 

mailto:Ir1@Co/NC
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Figure 6-31. The XPS spectrum of Ir1@Co/NC. 

 To simulate Co surface, we applied three-dimensional slab models in this work. The 

(111) surface of Co was represented by a p(5×5) slab (a = 12.53 Å, b = 12.53 Å and c 

= 25.00 Å) with four-atomic-layer, in which a Co atom on the surface was substituted 

by a Ir atom, which corresponds to Ir1@Co as shown in Figure 6-32e and f. 

Additionally, it is well known that an oxidation layer would be easily generated on the 

Co surface forming CoO layers with an applied potential of OER, which is typically 

higher than 1.23 V (Vs. RHE).294,297,298 Thus, the adsorption energies of oxygen-based 

intermediates on the (100) surface of CoO are calculated as well, in which a Co atom 

on the surface is substituted by a Ir atom (denoted as Ir1@CoO) in Figure 6-32g and h.  
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Figure 6-32. DFT calculation of the structured Ir1 coordination. (a, c, e, g)Top views 

of IrNC3, IrC4, Ir@Co, and Ir@CoO respectively; (b, d, g, h) side views of IrNC3, IrC4, 

Ir1@Co, and Ir1@CoO respectively; gray, white, yellow, blue and red balls represent 

C, N, Ir, Co and O atoms. (i) The free energy diagrams for HER at pH=14 on IrNC3, 

IrC4, Ir1@Co (Co) and Ir1@Co (Ir). The reaction free energies of the intermediates on 

(j) IrNC3, (k) IrC4, (m) and (l) Ir1@CoO(Co) and (n) Ir1@CoO(Ir) (n) at pH = 14. 
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Figure 6-33.  (a) The optimized structures of H adsorptions on (a) IrNC3, (b) IrC4, (c) 

Ir-Co(Co) and (d) Ir-Co(Ir). 

  It is ideal that the free energy of H* adsorption for a good HER catalyst should be 

close to zero, which is beneficial for both adsorption of H* and desorption of H2. The 

optimized geometry of adsorption structure of H* intermediates on IrNC3, IrC4, 

Ir1@Co (Co) and Ir1@Co (Ir) model were shown in Figure 6-33. Figure 6-32i shows 

the free energy change of H* adsorption (GH*) for the Ir1@Co on the IrNC3, IrC4, 

Ir1@Co (Co), and Ir1@Co (Ir), respectively. Two possible H* adsorption 

configurations on of Co site (0.48 eV) and Ir (0.68 eV) site show large positive values 

and are far away from the neutral position, indicating that the Ir1@Co has a high barrier 

of the rate determining step in alkaline solution. In comparison, single atom Ir1 on a 

four-fold carbon structure shows they are in favor of the adsorption and dissociation 

of water molecules, showing a smaller GH*. Impressively, compared with IrC4 (0.46 

eV), the IrNC3 shows a smallest free energy of (-0.39 eV), indicating that trace of 

nitrogen atom can weaken the H* adsorption, leading to a low energy barrier for H* 

detachment.  

 The OER performance was also computed on the four possible catalytic sites and their 

free energies of the intermediates are plotted at pH=14, showing the different values 
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applied in different potential U (Figure 6-34). It is known that four elementary steps 

are involved in producing O2 as shown in Figure 6-32j-m. Amongst, the third step, of 

which an O* reacts with another H2O molecule to produce an OOH*, are the 

determined step. Variety of η are applied to decrease the uphill of free energy obtained 

at the equilibrium potential (U=0.40 V). In particular, the over-potential needed is 1.58 

V (Figure 6-32j), 1.52 V (Figure 6-32k), 0.61 V (Figure 6-32l), and 0.45 V (Figure 6-

32m) at pH = 14 for IrNC3, IrC4, Ir1@CoO (Co), and Ir1@CoO (Ir), respectively, 

indicating that the single atom Ir structured on the Co particles are the most efficient 

catalytic site in generating oxygen (Figure 6-34). Significantly, the same free energy 

GH* of the fourth and final steps (Figure 6-32m) means that the Ir1@CoO (Ir) can 

straight to producing OOH* and O2 without any further decreased free energy GH*. 

Also, comparing with IrNC3, IrC4, and Ir1@CoO (Co), Ir1@CoO (Ir) has the lowest 

free energy at the final step, implying the O2 can be easily desorbed from the surface, 

decreasing the poisoning effect. The computational calculation confirmed that the 

single atom Ir structured on the heterogeneous substrate can facilitate the transfer from 

H2O molecule to H2 and O2 in alkaline solution, thus simultaneously promoting the 

OER and HER. Particularly, one part Ir1@CoO (Ir) shows the lowest computed over-

potential of 0.45 V on OER while the other part Ir1@NC3 has the smallest free energy 

of 0.39 V on producing H2. Also, as illustrated by the projected density of states (PDOS) 

in Figure 6-32h, both of the free atom Ir1 doped NC and CoO shows a higher and 

narrow occupied states, which is majorly attributed by their d orbitals near Fermi level. 

This reveals that the single atom Ir1 can effectively improve the d-electron domination 

near the Fermi level and promote the electron transfer, leading to a higher conductivity 

and enhanced catalytic activity as well. Also, being alloyed with Co, Ir1 can 
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immediately weaken the adsorption energy with oxygen, resulting in reduced barrier 

of OER and improving the ability of accelerating the water splitting294. 

 

Figure 6-34. (a) The optimized structures of HO, O, and HOO adsorptions on (a) 

IrNC3, (b) IrC4, (c) Ir1@CoO (Co), and (d) Ir1@CoO (Ir).  

In order to experimentally verify the activity differences of Ir1 anchored on distinct 

substrates, a control sample Ir1@NC has been prepared (Fig. 6-35). In contrast to 

Ir1@Co/NC, the Ir1@NC shows a minor decrease of the overpotential for HER but a 

serious fading towards OER (Fig. 6-36), confirming that the Ir single atom on carbon 

matrix is mainly responsible for the high HER performance and the Co component in 

the support can also assist in improving the HER ability due to the enhanced 

conductivity. The results are well consistent with our experimental reulsts and DFT 

calculations. 
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Figure 6-35. The HAADF image of Ir1@NC with low resolution (a) and high 

resolution (b). (c-f) The elemental mapping images of Ir1@NC. (g) The EDS spectrum 

of Ir1@NC. The ZIF-8 has been selected as host materials to anchor Ir single atoms. 

The HAADF images and elemental mapping, EDS spectrum as well confirms that Ir 

single atom has been successfully prepared on nitrogen doped carbon matrix. Please 

note that the Ir1@NC will be leached in the 1M HCl acid before it is being used to test 

HER. 

 

Figure 6-36.  The performance comparisons of Ir1@NC and Ir1@Co/NC for (a) HER 

and (b) OER. 
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6.4. Conclusion 

In sum, through coordinating with the π electrons on imidazole group of ZIF-67, the 

bonding metals ions (Pt2+/Ir2+/Pd2+/Ru2+/Ni2+/Fe2+) can be stabilized as isolated single 

atoms anchored on the heterogeneous substrate, composed of nitrogen doped carbon 

matrix and cobalt nanoparticles, via a facile pyrolysis process. The formation 

mechanism and high reactivity of these atomically dispersed atoms are systematically 

explored by control experiments and DFT calculations. The high accessibility of 

numerous tunnels on ZIF-67 frameworks leads to unique 3D dispersion of single atoms, 

thus achieving an ultrahigh density of active sites. Such fascinating structures of the 

high active materials, such as Ir1@Co/NC, enable them as superior catalysts on 

reaction electrodes for HER and OER. The DFT calculations build a variety of possible 

Ir1 active sites, showing that Ir1@CoO (Ir) are responsible for the high OER 

performance, while the Ir1@NC3 leads to the superior HER efficiency. Such a 

synergistic structure simultaneously accelerate an efficient and stable ability on overall 

water splitting. This work sheds light on the synthesis of various single-atom catalysts 

with the high-efficiency and multifold active sites. 
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Chapter 7  

7.  General Conclusions and Outlook 

7.1. General Conclusions 

In this doctoral thesis work, the recent developments and the underlying mechanisms 

for various SACs fabrication and corresponding electrocatalytic applications are 

summarized, which lead to a better understanding of the role of single-atom species, 

supports selection, and SMSI effects for catalytic properties.  

 For instance, ZIF-67 was the excellent option being selected as support to anchor 

single atoms, owing to the easy accessibility and numerous ligands dispersed on the 

architectural structures. Also, , through coordinating with the π electrons on imidazole 

group of ZIF-67, the bonding metals ions (Pt2+/Ir2+/Pd2+/Ru2+/Ni2+/Fe2+) can be 

stabilized as isolated single atoms anchored on the heterogeneous substrate, composed 

of nitrogen doped carbon matrix and cobalt nanoparticles, via a facile pyrolysis process. 

Thus, we successfully build dual catalytic abilities via anchoring single atoms on 

alternative active sites, simultaneously promoting the HER and OER, on one material 

with efficient, stable, cheap characteristics. With the further control the thermal 

conditions, the combination between bimetallic structure and single atom can be 

prepared to show a synergistic effect on catalytic reaction. We demonstrate the 

synthesis of a quasi-Pt-allotrope: Pt3Co nanospheres with an internal hollow structure 

(H-PtCo), which, in turn, are surrounded by an N-doped carbon shell with single-atom 

Pt anchored to it (Pt1N-C). The intermetallic H-PtCo with its internal cavities and 
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uneven surface can expose abundant active sites and efficiently achieve high ORR 

activity. In addition, through tuning the self-assembling of the single atoms of Pt, the 

core-skin PtBi@Pt was successfully prepared on the surface of PtBi intermetallic using 

the SAS method, demonstarting a facinating EOR performance.  

Specifically, owing to the synergistic effects between the hollow PtCo alloy cores and 

Pt single atoms/N co-doped C shells, the H-PtCo@Pt1N-C shows the mass activity of 

H-PtCo@Pt1N-C is 1.2 mA µgPt
-1 at 0.9 V vs. reversible hydrogen electrode (RHE), 

which is one of the most remarkable ORR performance among all reported Pt-Co/C 

systems. After 10000 cycles, the mass activity of H-PtCo@Pt1N-C at 0.9 V remains 

1.26 mA µgPt
-1 without any fade. These results indicate that H-PtCo@Pt1N-C can boost 

the ORR activity with greatly enhanced durability. More importantly, the single atoms 

Pt in shells forming Pt-NC3 is confirmed that they are favorable to prompt ORR 

performance via the DFT calculation. Also, when tested in tetraethylene glycol 

dimethyl ether (TEGDME) and dimethylsulfoxide (DMSO)-based organic electrolytes, 

the discharge overpotential of H-PtCo@Pt1N-C was only 0.05 V, indicating that this 

sample has an efficient ORR capability in organic electrolytes as well. The tensile 

strain of Pt-skin surface of PtBi@Pt was realized to achieve a very high mass activity 

of 9.01 mA μgPt
-1, which is 8.26 times higher than that of Pt/C towards the EOR. 

Remarkably, the in-situ FTIR spectra and DFT results demonstrate that PtBi@Pt has 

better selectivity towards the EOR, which mainly proceeds via the C1 pathway, while 

PtBi/SA Pt and Pt/C mainly go through the C2 pathway. It is novel that the M1 can 

simultaneously anchor on two distinct domains of the hybrid support, four-fold N/C 

atoms (M1@NC) and center of Co octahedral (M1@Co), which are expected to serve 

as bifunctional electrocatalysts towards HER and OER, respectively. Amongst, a 
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catalyst of Ir1 exhibits the most excellent water splitting performance, showing a low 

applied potential of 1.603 V to achieve 10 mA cm-2 in 1.0 M KOH solution with 

cycling over 5 h. The density functional theory (DFT) calculations speculate that the 

Ir1@Co (Ir) sites can accelerate the OER and Ir1@ NC3 sites are responsible for the 

enhanced HER, clarifying the unprecedented performance of this bi-functional catalyst 

toward full water splitting.  

7.2. Outlook 

Single atoms have become a new frontier in the catalysis field, which possess the 

maximum atomic utilization efficiency and have an unsaturated coordination 

environment. With their unique electronic and structural properties, metal single atoms 

usually show outstanding catalytic performance towards various chemical reactions. It 

is challenging, however, to synthesize stable single metal-atom catalysts because of 

their high surface energy and tendency towards aggregation. Thus, it is exceedingly 

difficult to fabricate a large range of metal single atoms on the same support. More 

research should focus on a new strategy for the surface modification of the support, in 

which the formation of surface uncapped defects on the carbonaceous support is vital 

to successfully stabilize the single metal-atom species through N-coordination without 

aggregation. 

For future research, it is essential to develop more SACs with high thermal/chemical 

stability and excellent catalytic performance. It is should be pointed out that the current 

loading ratio of SACs is relatively low. In order to enhance the catalytic performance 

of various SACs, it is urgent to explore various strategies to achieve high loading ratio, 

such as developing synthesis methods and modifying the surface of supports. 
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Manipulating strong interactions between SACs and supports with abundant anchoring 

sites would hold great promise for this target. On the other hand, the understanding of 

the catalytic mechanism and performance based on the interactions between SACs and 

supports should be further deepened at the atomic scale by employing SACs as model 

systems with the aid of theoretical calculation and in situ characterization. Moreover, 

we believe the synergistic effect of different types of SACs is very critical in 

optimizing catalytic performance for diverse reactions. It opens a new avenue for 

structure design and material synthesis, in which a series of binary/ternary/multi-phase 

SACs are waiting to be explored. The further study on optimal doping levels and ratios 

is also significant and meaningful. Therefore, more efforts on the applications of SACs 

could be extended to a wide range of useful catalytic reactions for energy generation, 

water purification, gas emission control, and production of chemicals. Research along 

this SACs direction is expected to be very interesting and fruitful. 
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