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Summary

Small area estimation is a widely used indirect estimation technique for micro-level geographic
profiling. Three unit level small area estimation techniques—the ELL or World Bank method,
empirical best prediction (EBP) and M-quantile (MQ) — can estimate micro-level Foster, Greer, &
Thorbecke (FGT) indicators: poverty incidence, gap and severity using both unit level survey and
census data. However, they use different assumptions. The effects of using model-based unit level
census data reconstructed from cross-tabulations and having no cluster level contextual variables
for models are discussed, as are effects of small area and cluster level heterogeneity. A simulation-
based comparison of ELL, EBP and MQ uses a model-based reconstruction of 2000/2001 data from
Bangladesh and compares bias and mean square error. A three-level ELL method is applied for
comparison with the standard two-level ELL that lacks a small area level component. An important
finding is that the larger number of small areas for which ELL has been able to produce sufficiently
accurate estimates in comparison with EBP and MQ has been driven more by the type of census
data available or utilised than by the model per se.

Key words: empirical best prediction; ELL; M-quantile; small area estimation; unit record census data.

1 Background

Traditional national surveys are designed to obtain national and regional statistics. Micro-
level administrative unit statistics are either not directly estimable (if they contain no sample)
or have estimates with standard errors too large to be useful (because sample sizes are small).

Model-based methods for small area estimation (SAE) estimate local parameters with greater
efficiency by borrowing strength from other ‘similar’ areas (Rao & Molina, 2015). Generally,
the survey data include both the variable(s) of interest and the potentially related auxiliary
variables. Whether or not census data is used in any form, model-based SAE methods use
regression-type techniques and are usually classified into two broad groups based on data
availability. Unit level SAE methods are used when suitable data are available at unit level;
© 2019 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute. Published by
John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.
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otherwise, area level SAE methods are applied. A linear or non-linear mixed model then uses
the survey data to obtain the small area statistics via the auxiliary information.

National and local administrative authorities place increasing importance on small area statis-
tics for policy development and implementation. In the developing world, where available, aid
agencies also use small area estimates of poverty-related indicators to focus their programmes.
Basic model-based SAE methods estimate small area linear parameters such as means and
totals and are not suitable for estimating non-linear functions such as quantiles and distribution
functions. In poverty mapping studies based on equivalised expenditure or income measured
at household (HH) level, the most used poverty indicators: poverty incidence (more properly
called poverty prevalence), poverty gap (PG) and poverty severity (PS) are non-linear functions
of the income or expenditure distribution function (Foster et al., 1984). Modified SAE methods
are required for estimating such non-linear poverty indicators.

Not all SAE methods do so, but the three methods discussed in this paper [World Bank
method (ELL), empirical best prediction (EBP) and M-quantile (MQ)] use linear rather than
non-linear models and, in addition to survey data, use auxiliary variables available as unit
records (or model-based unit records) from a census and/or administrative database. The small
area estimates are then based on aggregates of predictions from the survey model, of the vari-
able of interest or some linear or non-linear function of it, for every census unit record. The
principal advantages of incorporating unit record census data can include ability to model even
non-linear functions of unit level responses using a linear model and considerably increased
accuracy. Conditional on the model being correct, an adequate match between survey and cen-
sus area codes and between the auxiliary variables’ survey and census data, this in turn allows
small areas to be much smaller for a given accuracy than when there is only survey data. How-
ever, actual unit record census data are not universally available, so a model-based unit record
census dataset may need to be reconstructed from a limited number of census cross-tabulations
that are assumed to provide sufficient statistics for the actual census. This same model-based
census reconstruction is also commonly used in spatial microsimulation (see Haslett et al.,
2010). Consequences of using model-based unit record census data include (i) no continuous
auxiliary variables are available for the modelling of the survey data, (ii) unknown additional
error is introduced into the SAEs through an implicit and often untestable census model and (iii)
(cf. when the actual unit record census data are available) it is not possible to use cluster level or
sub-cluster averages as contextual variables to reduce the size of random effects because they
are known only for survey clusters not for every cluster in the census. There is also an interme-
diate situation where actual unit record data are available so that not all auxiliary variables need
to be categorical, but either the required match between survey and census areas at cluster (or
sub-cluster) level is not available, or for some other reason, contextual variables are not used.

A set of six papers, all of which use EBP or MQ, illustrate the underlying data-dependent
issues. Tzavidis et al. (2010), Giusti et al. (2012), Marchetti et al. (2012), Tzavidis et al. (2013),
Marchetti et al. (2018) and Marhuenda et al. (2017) all use some form of unit record census
data. Marhuenda et al. (2017) use EBP with categorical data and model-based unit record cen-
sus data and consider a three-level model that includes variation at domain and subdomain level
and seek small area estimates at both these levels. However, their subdomains are not survey
clusters but are much larger and without actual unit record census data they cannot model clus-
ter level variation. The other five papers all use some form of MQ and have available actual unit
record census data. Marchetti et al. (2018) mention the possibility of using but do not use aux-
iliary variables at cluster level (i.e. contextual variables) and extend MQ to include cluster level
as well as small area level random effects in their three-level MQ model. Giusti et al. (2012),
Marchetti et al. (2012) and Tzavidis et al. (2013) do not explicitly mention contextual variables,
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while Tzavidis et al. (2010) mention them but do not use them at cluster or sub-cluster level.
Given the utility of fine level contextual variables for reducing the size of random effects and
reducing small area root mean square error (RMSE) (as discussed in detail in Haslett, 2016),
the central question is why they are not being used except in ELL-type models.

In answer, one reason contextual variables are so seldom used is that in some countries,
there are often a relatively limited number of candidate or utilised auxiliary variables for small
area models, none of which are aggregated at the required cluster or sub-cluster level for the
entire census. To use such finely aggregated variables as contextual requires the clusters (or
sub-clusters) used for survey design be known and are entirely matchable by area to the census
data. However, survey and census often use a different frame, even if the survey and census are
essentially contemporaneous, but the survey is conducted before or at around the same time
as the census. Time differences between survey and census exacerbate this problem as well as
raising issues concerning retention of model structure between survey and census. Recording or
recovering all changes in area designations, while critical and time consuming for SAE where
contextual variables are to be used, is a task of rather more limited importance for government
statistical agencies usually focused on delivering survey and census results separately and not
on these two data sources’ fine level interconnection. Consequently, specifying clusters and
sub-clusters so that census aggregates can be used in survey models as contextual variables can
be very time consuming and is not always feasible, even if full actual unit record census data
are available.

So whether the problem is census unit record data access or that there are major and perhaps
insurmountable difficulties matching survey and census area codes at cluster or sub-cluster
level, the underlying issue is data availability for either confidentiality or logistical reasons. We
return to these important data-related issues later.

The SAE method for poverty mapping using both survey and census unit record data was
first developed by Elbers, Lanjouw and Lanjouw (2002, 2003) and is also known colloquially
as the World Bank method or the ELL method. The ELL method develops a two-level (cluster
and HH) nested error regression model (Battese et al., 1988) using survey data at HH level
and uses the model to make equivalised income or expenditure predictions at HH level for
all census observations. These are then aggregated to small area level. Mean squared error
(MSE) is estimated via a bootstrap procedure where the fitted model, the estimated regression
parameters plus their modelling error and the residuals from the survey-based regression are
used multiple times as inputs. Due to its apparent simplicity, extensive data availability, and
the PovMap software that is freely available from the World Bank (Zhao & Lanjouw, 2009),
ELL has been implemented in many developing countries. Variants of and improvements to
the method have been used by the World Bank and others, for example, in Thailand (Healy et
al., 2003), Cambodia (Fujii, 2004; Haslett et al., 2013), South Africa (Alderman et al., 2002)
Brazil (Elbers et al., 2004), Bangladesh (BBS & UNWFP, 2004; Haslett et al., 2014), the
Philippines (Haslett & Jones, 2005) and Nepal (Haslett & Jones, 2006; Haslett et al., 2014) The
ELL method has also been extended to estimating prevalence of child undernutrition at small
area level (BBS & UNWFP, 2004; Haslett & Jones, 2006;Haslett et al., 2013; Haslett, Jones &
Isidro, 2014; Haslett et al., 2014) using a model with an additional variance component at child
level.

PovMap has now been extended (version 2.5: Van der Weide, 2014) to include the EBP
method of Molina & Rao (2010) who used empirical Bayes or best prediction (EBP) under a
finite population to estimate the Foster, Greer and Thorbecke (FGT) poverty measures (Foster
et al., 1984). Their method produces estimators with minimum MSE that are ‘best predictors’
through Monte Carlo (MC) approximation under the assumption that the transformed welfare
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variable (usually log HH income or expenditure) follows a nested error regression model with
normally distributed errors. The EBP method generates simulated values by making indepen-
dent draws from the conditional distribution of unobserved values given the observed values and
associated values of auxiliary variables. EBP is based on an area-specific two-level nested error
regression model that includes small area level and HH level effects, while the ELL method
is based on cluster-specific two-level model using cluster and HH variability with contextual
variables from the census (intended to substitute for any non-zero mean random effect in every
small area even the non-sampled ones). EBP has been used mostly in European Union Mem-
ber States (EU-MS) using the Income and Living Conditions (EU-SILC 2012) survey datasets.
Molina & Rao (2010) applied the EBP method to estimate poverty incidence and gap by sex
for the 50 provinces in Spain.

Both ELL and EBP methods are based on standard linear random effects models with pos-
sibly strong distributional assumptions and formal specification of the random part. They may
be non-robust to outliers in the response variable, although outliers used in the survey-based
model do not necessary imply outliers or non-robustness in the aggregated small area estimates.

An alternative approach to SAE, which like ELL and EBP uses unit record (or model-based
unit record) census data, is the MQ method proposed by Chambers and Tzavidis (2006) and
Tzavidis and Chambers (2007), which is based on quantiles of the conditional distribution of
response variable given the covariates (Breckling & Chambers, 1988). Unlike ELL and EBP,
MQ is distribution-free and automatically provides outlier robust inference and relaxes assump-
tions of random errors in the traditional unit level nested error regression model. MQ has been
used in poverty mapping studies by Tzavidis et al. (2010) and been applied to estimate poverty
indicators at local administrative level in European countries including Albania (Tzavidis et al.,
2008), Tuscany (Marchetti et al., 2012), Italy (Giusti et al., 2011) and Poland (Marchetti et al.,
2018)

M-quantile does not specify small area or cluster level variation explicitly because it puts
aside boundary issues when developing the model. ELL and EBP can suffer from model mis-
specification if there is an untenable parametric specification of random errors or under the
influence of marked outliers. However, because they usually aggregate tens of thousands of
units if not more, unit level based SAE methods can be remarkably stable to changes in model
and/or parameter estimates, providing important auxiliary variables are not omitted.

The three SAE methods for poverty mapping are based on different assumptions. No method
is uniformly best. All can be criticised: ELL for assuming small area level homogeneity (even
though it uses detailed area specific contextual variables from the census or GIS sources), EBP
for assuming cluster homogeneity and MQ for assuming cluster homogeneity indirectly.

The aim of this article for developing world poverty studies is to compare and con-
trast, to the extent possible, these three unit level SAE methods all of which use unit level
or model-based unit record census data. This includes numerical comparison via a simula-
tion study and a model-based reconstruction of 2000 and 2001 Bangladesh data. Section 2
describes the FGT poverty indicators and the three unit level SAE methods (ELL, EBP and
MQ); Section 3 compares these three SAE methods; Section 4 outlines construction, based on
datasets from Bangladesh, of a simulated census dataset and the sample design used to select a
sample from it and compares SAEs for the three methods. Section 5 discusses findings of this
simulation study, and Section 6 concludes with a summary and discussion of statistical issues
around selection of a SAE method for poverty mapping in developing countries.

2 Small Area Methodologies for Poverty Estimation

Consider a finite population of size N divided into D small domains or small areas of size
N1; N2; : : : ; ND and let Eik be the equivalised income or expenditure for individual k belong-
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372 S. DAS AND S. HASLETT

ing to i -th domain. If Eik is less than a poverty line ´, the k-th individual will be considered
as below the ‘poverty line’. The Foster et al. (1984) FGT poverty measures for domain i are
calculated as

F˛i D N
�1
i

NiX
kD1

F˛ikI i D 1; 2; : : : ;D I ˛ D 0; 1; 2; (1)

where F˛ik D .1 �Eik=´/
˛ I .Eik < ´/, where I (.) is an indicator function. The FGT

poverty indicators F˛i are then defined as poverty incidence (or head count ratio) if ˛ D 0,
PG if ˛ D 1 and PS if ˛ D 2. Poverty incidence is the proportion of the population
with income/consumption level below the poverty line; PG measures the income/consumption
expenditure shortfall for those below the poverty line; and PS, by squaring difference for those
below the poverty line, places particular emphasis on the very poor.

When there is a random sample, each sample HH is assigned a sampling weight based on its
probability of selection, non-response rate, calibration to some defined population distribution,
trimming etc. HH level sampling weights need to be adjusted for a measure of HH size. So
within small area i , the direct estimate of each FGT measure F˛i is the weighted mean taken
over all sampled HHs in small area i after adjusting each HH for its measure of size.

When there is no sample in a small area, synthetic estimators can be used to calculate poverty
indices through model-based SAE methods based on the auxiliary information (Rao & Molina,
2015), but no small area-specific adjustments are then possible unless there are contextual vari-
ables (see Haslett, 2016). Often, a significant number of small areas are not covered in sample
for ELL, but as compensation, there are contextual variables for every small area; for EBP and
MQ without contextual variables, having sample in every small area is preferable so as to pro-
vide a sample-based direct area-specific adjustment (area-specific random effects in EBP and
area-specific regression coefficients in MQ). If spatial information is available, for example,
adjacency of all areas, partial adjustment is possible even for non-sampled areas based on the
location information and areal smoothing.

ELL, EBP and MQ for poverty estimation are outlined in Sections 2.1 to 2.3.

2.1 The World Bank Method

In the World Bank poverty mapping methodology, a regression model is developed between
the log-transformed response variable Yijk D log

�
Eijk

�
and the explanatory variables

�
Xijk

�
available from a sample for an HH income or expenditure survey contemporaneous with the
census. Here, yijk is the response for the k-th HH in the j -th cluster of the i -th area. Standard
methods of fitting regression models cannot be used due to the complex sampling designs (e.g.
stratification and/or clustering) for selecting the survey HHs. Moreover, because HHs tend to
be clustered into villages or other small geographic or administrative units within small areas
and are often relatively homogenous, it is common to have a cluster [primary sampling unit
(PSU)] random effect in the model, along with the cluster level or sub-cluster level contextual
variables available for all census clusters or sub-clusters that are part of the ¹xijkº in the survey
model after area matching between survey and census. So a nested error linear regression model
(Battese et al., 1988) has HHs at level one and clusters at level two:

yijk D xTijk“.2/ C uij C "ijk i D 1; : : : ;D j D 1; 2; : : : ; Ci k D 1; 2; : : : ; Nij

uij � N
�

0; �2
u.2/

�
"ijk � N

�
0; �2

".2/

�
:

(2)

In the simplest form of ELL, cluster-specific and HH-specific errors uij and "ijk are assumed
to follow a normal distribution with constant variance components, although generally, ELL
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makes no distributional assumptions for these model errors. The sub-script 2 of “.2/, �
2
u.2/ and

�2
".2/ indicates a two-level model. The model can be extended to three-level hierarchical model

if individual level data are available (say children within HH). Alternatively, a three-level ELL
model could instead include a small area level error.

The FGT poverty measures are non-linear functions of yijk , generally the log expenditure
or income, fitted on a per capita basis to the survey data using model (2) and then used for
prediction of income or expenditure for every person in the census via back transformation. The
income or expenditure predictions are then transformed to the three different FGT measures
and aggregated to provide their small area estimates.

For standard error estimation conditional on the model being correct, ELL uses the bootstrap
to generate L pseudo-censuses via the conditional distribution of yijk , within all N census
HH units (not just the sampled ones) by adding non-parametrically simulated values of cluster-
specific

�
u�ij

�
and HH-specific errors

�
"�
ijk

�
to each estimated fitted value

�
xT
ijk
O“
�

.2/

�
where

O“
�

.2/ is redrawn parametrically (once for each pseudo-census) from the distribution of O“.2/. This
gives a total of LN HH level predictions, each of which includes the contextual variables for the
census cluster or sub-cluster to which the HH belongs.

Step 1: Fit model (2) to the sample data .ys; xs/ to obtain O“.2/, Ov
�
O“.2/

�
, O�2

u.2/ and O�2
".2/,

allowing for the complex survey design. Some adjustments to the original ELL method are
recommended (see, e.g. Haslett et al., 2010).
Step 2: Generate the values of the regression parameters from the corresponding parametric
distribution as “�.2/ � N

�
O“.2/; Ov

�
O“.2/

��
.

Step 3: Generate the cluster-specific and HH-specific random errors independently and iden-
tically either parametrically or non-parametrically from the empirical distributions of the
residuals (often ‘unshrunk’ to match the required variances O�2

u.2/ and O�2
".2//. Non-parametric

methods are usually recommended, as usually the distribution of neither set of residuals is
known.
Step 4: Generate L (say, L D 100 to 500) pseudo-censuses each of size N with bootstrap
income or expenditure

°
y
�.l/

ijk
I l D 1; 2; : : : ; L

±
from the survey model and the unit-record

census data via the bootstrap superpopulation model y�
ijk
D xt

ijk
“�.2/ C u

�
ij C "

�
ijk

.

Step 5: Calculate the FGT poverty measures F �.1/˛i from each bootstrap population or pseudo-
census for each small area. The ELL estimates with their MSE are calculated as

OFELL˛i D L�1
LX
lD1

F
�.l/
˛i and mse

�
OFELL˛i

�
D L�1

LX
lD1

°
F
�.l/
˛i �

OFELL˛i

±2
: (3)

The HH-specific errors (sometimes called idiosyncratic errors) are allowed to be het-
eroskedastic in the ELL method. Elbers et al. (2003) provide a specific heteroskedasticity
model. In practice, this heteroskedasticity model usually has an R2 of less than 5%, so in the
simulation in Section 4, HH level errors are assumed homoskedastic.

In ELL, the basic idea is to increase the predictive power of the fitted regression model (often
gauged by a high R2 value) and to reduce as much as possible the ratio of between-cluster

variation to total variation O�2
u.2/

�
O�2
u.2/ C O�

2
".2/

��1
, because it is the between-cluster variation

that is principally responsible for high standard errors for the SAEs. Explanatory variables at
different hierarchical levels such as HH, sub-cluster, cluster and small area can be considered
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in the survey regression model. In practice, it is cluster level or sub-cluster level variables
(included in the regression as contextual variables) and HH level variables (all known for every
census observation) that are most useful. The principal criticisms of the ELL method are that its
survey model contains no small area level random effect and that the model is synthetic because
it contains no small area-specific adjustments. The counterclaim is that any non-zero small
area-specific effects are controlled in the regression via contextual variables that are available
at (sub-)cluster level from the census for all small areas, even the non-sampled ones. We will
return to these issues later.

An ELL method based on three-level model (three-level ELL) that includes small area spe-
cific random effects instead of the standard two-level model (two-level ELL) can be constructed
using a three-level version of the super-population model. The three-level model solves the
problem of underestimated MSE if small area specific non-zero mean random effects exist even
after using contextual variables. However, in applications small areas for ELL are often much
smaller than for EBP or MQ because ELL routinely uses actual rather than model-based census
unit record data and contextual variables. Because few small areas contain more than one sam-
pled cluster, for ELL, it is very difficult to get unbiased and efficient estimates of any small area
level variance components. In what follows, the ELL estimators based on two-level and three-
level models are denoted respectively by ELL.2L and ELL.3L. ELL.3L differs from ELL.2L in
having small area level random effects in the model.

2.2 The Empirical Best Prediction Method

In the EBP method, the small area or domain of interest (which is an aggregate of clusters)
is considered to have a non-zero mean small area specific random effect in the model for the
response variable. The two-level nested error regression model is

yik D xTik“.2/ C �i C "ik i D 1; ::;D k D 1; ::; Ni

�i � N
�

0; �2
�.2/

�
"ik � N

�
0; �2

".2/

�
;

(4)

where �i and "ik are small area-specific and HH-specific random errors, respectively. The FGT
estimator is split into sample and non-sample parts as

F˛i D N
�1
i

2
4X
k2sd

F˛ik C
X
k2rd

F˛ik

3
5 for ˛ D 0; 1; 2;

and the non-sample part is then predicted based on an MC approximation. The best predictor
of F˛i under the squared error loss is given by

OF˛i D Eyri

�
F˛i jysi

�
D

Z
F˛if

�
yri jysi

�
dyri ;

wheref
�
yri jysi

�
is the joint density of yri (vector of non-sample y in area i/ given ysi (vector

of sample y in area i/. The basic procedure of EBP method to obtain the estimate of F˛i is

Step 1: Fit the nested-error model (4) to the survey data .ys; xs/. For example, Molina & Rao
(2010) use ML or REML for a simple random sample, and note that more generally for a
complex survey, a ‘suitable estimator’ can be used to obtain O“.2/ O�

2
�.2/ and O�2

".2/.
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Step 2: Generate L independent realisations of yri

°
y.l/ri ; l D 1; 2; ::; L

±
from the condi-
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, Xsi and Xri are matrices of sample and non-sample explanatory

variables in the i -th area. The non-sample values of X are from a model-based census (i.e. a
‘census’ generated from a set of contingency tables, the margins of which are treated as suffi-
cient statistics). The MC approximation is simplified via y.l/
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Step 3: Calculate F .l/˛i using the vector y.l/i D

°
yTsi ; y

T .l/
ri

±
and then average over L replicates

to obtain the EBP estimates as OF EBP
˛i � L

�1
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F
.l/
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In EBP, the MSE estimator of OF EBP
˛d

is calculated separately via a parametric bootstrap method
(González-Manteiga et al., 2008). The basic steps are

Step 1: Obtain O“.2/; O�
2
�.2/ and O�2

".2/ following a suitable survey-based estimation method.

Step 2: Generate domain effects ��i � N
�
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�
and HH effects "�
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�
independently and then calculate bootstrap population income values y�

ik
via y�
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��i C "
�
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for all model-based census HHs.
Step 3: Calculate domain-specific F �˛i by aggregating the bootstrap population values.
Step 4: Then refit the nested error model (4) with the bootstrap elements y�

ik
belonging to the

sample and calculate the bootstrap model parameters denoted as O“
�

.2/, O�
2�
�.2/ and O�2�

".2/; obtain

the bootstrap EBP estimator of F �˛i denoted by OF �EBP
˛i through MC approximation method.

Step 5: Repeat Steps 2–4 a large number of times, say, B D1 000.
Step 6: Let F �.b/˛i be the true value calculated at Step 3 and OF �EBP.b/

˛i be the EBP estimate
calculated at Step 5 in the b-th .b D 1; ::; B/ bootstrap replicate; then the estimated MSE of

OFEBP˛i is defined by mse
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Molina and Rao (2010) pointed out that, in the simplest case of estimating a small area mean,

the EBP approach leads to E
�
Ny�i
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!
, while the ELL

method provides a synthetic regression estimators E
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ijk2siCri
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ijk
“.2/ because

for ELL, E
�
u�ij

�
D 0 and E

�
"�
ijk

�
D 0 even for a specific small area, i . Thus, unless ELL

incorporates contextual variables, the ELL estimator will be less efficient than EBP estimator.
However, if the number of small areas is large so that there are small areas with no sampled
clusters, the EBP method will essentially reduce to a type of ELL method (Haslett, 2013). In
reality, if a large number of small areas are not sampled in the survey then ultimately the EBP
approach will produce synthetic estimates for these, like ELL, but without adequate contex-
tual variables. This is why EBP requires sample data in every small area, but ELL does not
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necessarily. ELL with unit level census data and matching between survey and census cluster
(or sub-clusters) codes can consequently produce small area estimates with acceptable MSE
for areas much smaller in size than EBP when EBP has only model-based census unit record
data, because ELL can generate cluster or sub-cluster means as contextual variables for every
small area not just the sampled ones. However, this is a twin-edged sword as ELL small area
estimates require much greater care than often taken with survey model fitting, and there can
be a temptation to make small areas much too small. The relative merits of EBP and ELL are
not however universal. For example, the simulation in Molina and Rao (2010) uses sample and
census sizes that are very much smaller than in developing world application, and unit record
census data that being model-based lacks contextual variables at cluster (or even small area)
level. Then, as Molina and Rao (2010) note, ELL estimates are entirely synthetic and biased,
and EBP outperforms ELL.

2.3 The M-quantile Method

The MQ of order q for the conditional distribution of a random variable y given a vector of
P covariates x, is denoted byQq .yjxI / and defined as the solution of the estimating equationR
 q
�
'�1

�
y �Qq .yjxI /

��
f .yjx/ dy D 0 where  qis an asymmetric influence function.

Suppose .xk; yk/, k D 1; ::; n denotes the observed sample values of .x; y/ for individual
k. Then a linear MQ regression model for yk given xk assumes that the q-th MQ satisfies
Qq .yjx;  / D xT “ .q/, where the k-th element of y is yk and the k-th row of x is xk .

For a specified q and continuous  , the MQ regression parameters “ .q/ are estimated by

solving the estimating equations
nP
kD1

 q
�
'�1 ¹rk .q/º

�
xk D 0 where rk .q/ D yk � xt

k
O“ .q/;

 q .rk.q// D 2 
�
'�1rk.q/

�
¹q � I .rk.q/ > 0/C .1 � q/ � I .rk.q/ � 0/º; and ' is a suit-

able robust estimate of the scale of the residuals (say, mean absolute deviation estimate, i.e.
' D .0:6745/�1�medianjrk .q/ j/. Here,  is an appropriate influence function such as Huber
function  .u/ D u � I .�c � u � c/ C c � sgn .u/ � I .juj > c/ used with tuning constant
c D 1:345 by Tzavidis et al. (2010). Straightforward application of iteratively reweighted least
squares provides the solution of the estimating equations.

The basic idea of SAE with the MQ model is that, in the mixed effects model, the variability
in the conditional distribution of y given x does not depend on the pre-defined hierarchical
structure, but rather is characterised by the MQ coefficients of the population units. If there are
small area effects, units in the same cluster will tend to be similar, and this will be reflected in
the quantiles the units belong to. Similar data within clusters will result in such clusters having
a similar mixture of quantiles. This is how MQ captures area level random effects without
explicitly modelling them. The MQ coefficient qk for the population unit k with values yk and
xk is obtained via Qqk .xikI / D yik . When the conditional MQs are assumed to follow a
linear model, Qq .xI / D xT “ .q/, Tzavidis et al. (2010) proposed a bias corrected MQ
predictor of area-specific mean .�i / based on smearing method of Chambers and Dunstan
(1986):
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where O�i is the estimator of MQ coefficient .�i / for area i calculated by averaging the MQ
coefficients of the units in area i , O“ 
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O�i

�
is the area-specific regression coefficients and Oyik D
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ik
O“ 
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�
is an appropriate linear combination of the auxiliary variables.
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Straightforward estimation of FGT poverty indicators (1) is not possible in MQ method. Like
EBP, estimation of these non-linear parameters corresponds to the problem of estimating the
out-of-sample observations. Thus, MQ estimator of FGT indicators can be written as

OF
MQ
˛i D N

�1
d

2
4X
k2si

F˛ik C
X
k=2ri

OF˛ik=

3
5 i D 1; 2; : : : ;D ˛ D 0; 1; 2 ; (6)
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�
, and because the model is based on log

per capita income or expenditure, the estimate of per capita expenditure for the k-th non-
sampled HH is OEikk= D exp

h
xT
ik=
O“ 

�
O�i

�
C eik

i
where eik is a sample residual defined by

the MQ fitted model to .ys; xs/. Marchetti et al. (2012) proposed an alternative procedure to
calculate (6) following an MC simulation approach parallel to the EBP approach, and Marchetti
et al. (2018) have extended the usual two-level MQ model to a three-level model.

The MSE of O�MQ:CDi can be estimated analytically (Chambers et al., 2011), but the proce-
dure can be unstable when small area sample sizes are very small (Marchetti et al., 2012). A
non-parametric bootstrap was proposed instead by Marchetti et al. (2012) to estimate MSE for
small area means, poverty indicators and quantiles. The method uses an MQ small area model
to estimate the target small area parameter, and a bootstrap that may smooth the empirical dis-
tribution function for the residuals conditioned on small area. The bootstrap is used to generate
pseudo-censuses, and bootstrap estimates of the parameters are estimated from each of these.
Because there is more than one pseudo-census, this procedure permits estimation of both bias
and variance, and hence MSE, but it is very computationally intensive.

3 Comparison of World Bank, Empirical Best Prediction and M-quantile Methods

The three census unit level SAE methods of poverty estimation use different assumptions
and so work better in different situations. None of the three methods is uniformly better. All
have benefits and downsides. Which method is optimal or even usable depends on the available
data. A comparison of the technical aspects of SAE methods is given in Table 1. There ‘stan-
dard implementation’ indicates the situation where all the level-specific residuals are assumed
homoskedastic. More generally, ELL uses either homoskedastic or heteroskedastic HH level
random errors. MQ is also categorised as a two-level rather than a three-level model (cf.
Marchetti et al., 2018).

All three methods, ELL, EBP and MQ, also require unit level survey data used to create a
model to predict the outcome variable at unit-record level. ELL uses contextual variables at
cluster or sub-cluster level as a standard and actual unit record census data. EBP usually uses
model-based unit record data based on categorical variables only so does not have available any
contextual variables. More often than for EBP, in applications MQ has unit record census data
but, possibly, because of lack of access to cluster or sub-cluster code matching of survey and
census, has to the authors’ knowledge, never used contextual variables at cluster or sub-cluster
level.

This distinction is driven not by the methods per se but by data availability. The complexity
and utility of the survey model and hence the accuracy of the SAEs or the number of small
areas for EBP and MQ would be greatly enhanced if there were actual unit record census data,
more variables that appear in both survey and census as candidate variables for modelling and
contextual variables. Contextual variables, as used in ELL at cluster level, if used in EBP and
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Table 1. Comparison of standard implementation for SAE of ELL, EBP and MQ.

Requirements and assumptions ELL-2 ELL-3 EBP MQ

Unit level survey data Yes Yes Yes Yes
Model-based unit level census data No No Yes Yes
Actual unit level census data Yes Yes No No
Model-based census data created from available No No Yes Yes

cross-tabulations and an implicit log-linear model
Matching of survey and census households based NA NA Yes Yes

on implicit census log-linear model
Testing of implicit census log-linear model NA NA No No
Complete matching of survey and census clusters Yes Yes No No
Use of contextual variables available for all census Yes Yes No No

clusters in survey model and SAEs
Small area-specific random effects No Yes Yes No
Cluster-level random effects Yes Yes No No
Household-level random effects Yes Yes Yes No
Non-zero mean random effects conditional on each No No Yes No

small area
Sample required in every small area for small No No Yes Yes

area-specific adjustment
Distributional assumptions in survey model No No Yes No
Transformation to normality of survey data and No No Yes No

model residuals required
Sub-setting of survey data with separate models for No No No No

each subset
Influence of household level outliers in survey Limited Limited Limited No

model fit
Influence of household level outliers in SAEs Low Low Low No
Influence on survey model fit of outliers at cluster High High High No

level or for some cell in model-based census table
Influence of cluster level outliers on SAEs Low Low Low No
SAE RMSEs include estimation error in survey model Yes Yes No No

regression parameters
Parametric bootstrap for RMSE of survey model Yes Yes No No

regression parameter estimates
Error in estimation of survey parameter estimates Yes Yes No No

included in RMSE for the SAEs
Parametric bootstrap for RMSE of random error No No Yes No

components and hence SAEs
Non-parametric bootstrap for RMSE of random Yes Yes No Yes

error components
Sensitivity of SAEs to survey model High High Moderate Moderate

misspecification
Computational demand Moderate Moderate High High

Note ‘Standard implementation’ indicates homoskedasticity of all the level-specific residuals and a two-level
model for MQ. EBP, empirical best prediction; ELL, World Bank method; MQ, M-quantile; RMSE, root mean
square error; SAE, small area estimation.

MQ survey-based models could make error variances at small area and cluster level smaller;
the use of contextual variables would also allow the possibility that the small area effects in the
survey model are zero mean even when conditioned on each small area. For EBP, estimation
of a non-zero mean random effect for every small area is instead required, which is why EBP
requires every small area to be sampled. The population size of the small areas from EBP
using model-based unit record census data is consequently large, as it is for MQ with actual
unit record census data but without contextual variables even if MQ is three-level rather than

International Statistical Review (2019), 87, 2, 368–392
© 2019 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.



Alternative Methods for Poverty Estimation 379

two-level, when EBP and MQ are compared with ELL using actual unit record census data
and contextual variables. So ELL can produce accurate estimates for a greater number of small
areas than EBP and MQ, but this is data rather than model driven. More developed countries,
where EBP and MQ have been most used, are more likely to necessitate the use of model-based
census data. In comparison, ELL has frequently been used in under-developed countries for
which unit record census data have been made available along with the linkage between all the
survey and census area codes, under strong confidentiality agreements.

Model-based unit record census data has an additional disadvantage over actual unit record
census data even without contextual variables. The margins used in a model-based census,
either as measured variables or their interactions, are from a limited set of cross-tabulations and
so are necessarily categorical. They provide sufficient statistics for an implicit log-linear model,
one which can only be tested using the limited number of tabulations available as margins. The
risk then without actual unit record census data is untestable, omitted variable bias in both the
model-based census data and the survey model, driven by limited data availability usually for
confidentiality reasons.

Although ELL can provide finer level SAEs than EBP and MQ due to data availability, there
are aspects of SAE modelling using ELL that can be difficult. Most are due indirectly to the
richer data sources and the model sensitivities this can introduce.

Firstly, ELL requires matching every survey cluster or sub-clusters with the identical area
in the census, and all census clusters or sub-clusters to be defined as they were at the time of
the survey for using the contextual variables in both modelling and prediction. If the survey
has been conducted using the previous census frame and there have been administrative area
updates for the new census, area code matching can be very time consuming. The theoretical
development of EBP and MQ methods instead also requires matching of census and survey
HHs which is impossible in most real-world applications. The sampling ratios are very small
however so that such matching for EBP and MQ is functionally redundant.

Secondly, because extensive unit record census data are used in ELL rather than model-based
census data, the number of variables available for the survey model can be large. This plethora
makes choice of a good model (including contextual variables) a non-trivial task. For exam-
ple, if all possible two-way and three-way interactions are included in the survey model, even
as a starting point, then the number of parameters can be close to the number of survey obser-
vations. This drives up R2, the proportion of variance explained by the fitted model, and can
too easily lead to model overfitting. Sub-setting of survey data into regions and fitting sepa-
rate models to each (Fujii, 2004; cf. Haslett et al., 2013) can further complicate this problem
and, even if R2 is high, can lead to disjointed small area estimates, and non-smooth small area
estimates at the boundary between regions that use different subset survey models. This is one
reason that spatial models, which smooth any type of SAEs over small area based on proximity,
need to be used with caution as they can mask even major underlying model misspecification.
Whether R2 is an appropriate or useful measure for a mixed model also needs to be considered.
Fitting MQ models that require parameter estimates for a given predictor variable to be ordered
by increasing quantile may be beneficial. However, different proportions of the quantiles are
usually found in different small areas, so MQ SAEs are much more stable; each comes from a
mixture of subset models rather than from only one.

Thirdly, for ELL in particular (although also for EBP and MQ), a question in census and sur-
vey needs to be the same in the language used to administer the question, and yield averages
that are not statistically different. To achieve this, variables can be transformed by a categorisa-
tion or re-categorisation within the question. Not being statistically different is required unless
the variable is a cluster or sub-cluster census mean used as a contextual variable.
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Empirical best prediction assumes the variable being modelled is normally distributed or can
be transformed to normality. It also has little choice, given it has only model-based census unit
record data, but to include a non-zero mean normally distributed random effect for each small
area level based on the sampled observations. ELL does not actually require normality but has
been criticised for not including a similar small area level random effect in the model (ELL.2L).
This could be a very strong criticism, because it could otherwise bias SAEs and underestimate
their standard error, but ELL also uses contextual variables available for every census HH based
on the cluster to which it belongs.

All three methods ignore either cluster-variability and/or area-variability if a three-level
superpopulation model holds. The MQ method is free from distributional assumptions for ran-
dom effects; however, small area-specific MQ coefficients behave similarly to area-specific
random effects. The ELL method uses contextual variables to control for or eliminate small
area level random variation but may nevertheless give biased SAEs with underestimated stan-
dard errors if a non-negligible amount of between-area variation remains in the distribution of
the response variable even after inclusion of contextual variables. A similar problem is also
expected in both EBP and MQ methods. In practice, for ELL, this is difficult to check from
national sample surveys because of its larger number of small areas than EBP and MQ. Where
this has been checked to the extent possible (Haslett & Jones, 2005, 2006; Haslett et al., 2013;
Haslett, Jones & Isidro, 2014; Haslett et al., 2014), the small area variance has been found to
be negligibly small. Nevertheless, in the simulation study of Section 4, non-negligible small
area effects are considered explicitly. Generally, design of national sample surveys with SAE
in mind would help (Haslett, 2012). The problem is not completely avoided by EBP and MQ
(although at cluster rather than small area level); cluster membership of the model-based census
HHs is not known from census cross-tabulations, so cluster level random effects and variances
are not estimable for all of the census clusters and hence cannot be included in the SAEs.

In developing countries like Bangladesh, the between-cluster variation in explanatory vari-
ables in the survey regression is often significantly higher than the between-area variation.
When the cluster level is ignored in the multilevel survey model specification, the cluster level
variance component merges with both the individual and small area level variance components
(Tranmer & Steel, 2001). In such situations, for EBP, the individual level and small area level
variance components will mislead about the distribution of the corresponding random errors. In
a similar manner, if the small area level random effect is found significant but ignored in ELL
method, the small area level variance component will be merged with cluster variance compo-
nent, and MSE of the SAE will be underestimated, possibly severely underestimated (Das &
Chambers, 2017).

Geographical specification of area and cluster are not needed to develop the MQ regression
model. Instead of area-specific random effect .�i /, the area-specific MQ coefficient .�i / is
calculated by taking the average of MQ coefficient of individual units .qk/ belonging to the
small area and then small area-specific MQ regression coefficients ˇ .�i / are estimated. The
small area-specific regression coefficients ˇ .�i / are then used to predict response values for
the individuals belonging to the area. In this sense, the MQ method also incorporates a form of
the between-area variation and ignores the between-cluster variation, except when a three-level
model is applied as in Marchetti et al. (2018).

The EBP method provides efficient estimates based on nested-error regression model under
the normality assumption for the target variable. For implementation, a correct transformation
of the skewed expenditure or income variable is needed to induce normality of the random
errors. Log transformations have been used, although not exclusively. Diallo and Rao (2014)
instead consider a skew–normal distribution for the random errors. Both the ELL and MQ
methods are formally free from requiring transformation because they do not assume normally
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distributed errors. This is why generalised least squares estimation is often used instead of ML
or REML in ELL (see Haslett et al., 2010).

Compared with ELL, computational demand for estimation of RMSE in EBP and MQ can
be very high, even for a relatively small number of small areas. If EBP and MQ were applied to
the unit record data from developing countries with appropriate model adjustments, rather than
to model-based unit record census data, the implementation of EBP and MQ method would be
even more time consuming and expensive. To reduce the computational demand, the compu-
tation can be performed separately by dividing both sample and population into several large
regions. Ferretti-and-Molina (2012) suggest such a fast algorithm for EBP.

The World Bank method has rather lower computational burden, but for census unit record
data, there can still be tens or even hundreds of millions of HHs, each requiring multiple
predictions via the bootstrap for RMSE estimation.

Even though EBP has normality assumptions that are not always met by real-world data,
relative to the EBP and MQ, it is for ELL that sensitivity of SAEs to survey model misspeci-
fication can be particularly high. Reasons have been given previously, and the risks need to be
balanced against the benefits of using ELL even when suitable data are available. When using
the World Bank’s PovMap software for ELL, short courses to relatively untrained staff are sel-
dom an adequate basis for producing sound estimates with appropriate standard or mean square
errors. Rather more than skill in PovMap’s programming syntax is required.

It is only possible to examine differences among the three methods when both between-
cluster and between-area variations exist in the distribution of response variable and the same
data are used. Section 4 provides such a comparison, but as for earlier studies, the benefits of
one method over another nevertheless remain principally dependent on whether the census data
used is model-based unit record census data or actual census unit records.

There have not been previous studies to compare the three methods simultaneously. Molina
and Rao (2010) compared ELL and EBP methods through a simulation study with model-
based unit record census data, no contextual variables, very small census and sample size, with
only area-specific random effects in the population model, very poor predictive power of the
regression model and small areas that are large relative to the entire area and population. They
indicated that ELL method may provide a poorer result than the direct estimator in such situa-
tions. This is however not a situation in which ELL is actually used. Betti et al. (2007) conducted
a simulation experiment to compare ELL and MQ methods utilising two real datasets: the Liv-
ing Standards Measurement Study 2002 and the Population Census 2001 of Albania. Using
the survey dataset, at first, they developed a two-level regression model considering HH at 1st
level and cluster at 2nd level and then generated a simulated population by drawing the regres-
sion parameters from their sampling distribution and resampling the level-specific errors from
the corresponding estimated residuals. The census population is consequently not actual unit
record census data, and contextual variables specific to each population cluster were not avail-
able. They found that ELL method produced more biased estimates than MQ, but the ranking
of the poverty estimates was not markedly different even given the bias. They also noted that,
as for EBP, there was a problem in MQ estimates for small areas (districts) not covered in the
survey.

Tzavidis et al. (2013) explicitly discussed various technical issues of SAE methods for
poverty mapping and conducted an empirical study as well as an application to Tuscany poverty
data to compare ELL and MQ methods. Note that unit record census data were model-based
without contextual variables. They found that MQ method is more efficient than the ELL
method and that sometimes ELL provides a poorer outcome than the direct estimates, as also
found by Molina and Rao (2010). However, as with the Molina and Rao (2010) simulation, the
ELL method when used in the developing world for poverty mapping is not based on this frame-
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work. The main reason for the Tzavidis et al. (2013) results is the purely synthetic behaviour of
ELL method when there are no contextual variables available for every population cluster and
there are small areas that include no sample. Souza et al. (2015) compare the ELL and EBP
methods using 2010 Census data of Minas Gerais state of Brazil where, unusually, information
on the target variable (per capita HH income) is collected. They conducted a simulation study
by selecting 400 samples following the design of the 2008–2009 Consumer Expenditure Sur-
vey from the actual census population and then applying ELL and EBP methods to estimate
poverty incidence and PG at municipality level. In the survey dataset, only 20% of municipal-
ities (195 out of 853) were available. They observed that the ELL estimator performed better
than the EBP estimator in terms of relative bias (RB) and relative root MSE (RRMSE).

Recently, Marchetti et al. (2018) compared the two-level and three-level MQ models with
EBP based on data from Poland that included a 2011 Census 20% subsample as unit record
census data, and the 2011 European Union Survey on Income and Living Conditions (EU-
SILC) with n D12 871 households. They found that for districts with sample size less than
15, EBP performed a little better in terms of coefficient of variation, but for all other sample
size classes, MQ tended to perform better. They noted that their conclusions are data specific.
Marchetti et al. (2018) also compared the two-level and three-level MQ models (MQ2 and
MQ3, respectively) via simulation and found ‘an overall good performance of MQ3 versus
MQ2’.

4 An Empirical-based Simulation Study

Empirical best prediction and MQ have generally used model-based unit record census data.
ELL usually has actual unit record census data with contextual variables at cluster level. So, it
is difficult to compare the three methods directly. Some data standardisation is necessary. Fur-
ther, if census data are simulated as here, then the generating model almost inevitably favour
one method over another. With these provisos, the model-based simulation study below com-
pares the three SAE methods for poverty under a scenario as similar as practical to that used in
developing countries. The first poverty mapping study in Bangladesh was conducted by BBS
& UNWFP (2004) using the Household Income and Expenditure Survey (HIES) 2000 (BBS,
2003) and a 5% sub-sample of unit record data from the Bangladesh Population and Hous-
ing Census 2001. The simulation is based on these two datasets. The available census data are
unusual in being sub-sampled; this required a model be used to simulate both census and survey.
A three-level linear model with small area, cluster and HH random effects, using parameters
estimated from HIES 2000 was used to simulate the census. This favours ELL.3L and disad-
vantages ELL.2L, EBP and MQ. Possibly due to using a different fitting techniques, small area
variance was estimated from HIES 2000 at about half the cluster level variance, a rather higher
ratio than in Cambodia (Haslett et al., 2013), Bangladesh (Haslett et al., 2014), the Philippines
(Haslett & Jones, 2005) or Nepal (Haslett et al., 2014). EBP requires sample in every small
area, so only small areas containing sample are used. Nevertheless, the simulation structure
used provides some valuable insights.

Table 2. Summary statistics of administrative units in Census 2001 and HIES 2000.

Division District Sub-district EA Household Population (‘000)

Census 2001 5 64 507 59 990 25 362 321 130 523
5% Census 2001 5 64 507 12 908 1 258 240 6 156
HIES 2000 5 63 295 442 7 428 38

Source: BBS and UNWFP (2004). EA, enumeration area; HIES, Household Income and Expenditure
Survey.
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Table 3. Summary statistics of EAs by sub-districts in Census 2001 and HIES
2000.

Number Mean SD Min Max

5% Census 2001 12 908 25.5 12.9 3 (0.02%) 79 (0.007%)
HIES 2000 442 1.5 1.9 1 (75.3%) 10 (0.03%)

Source: BBS and UNWFP (2004). EA: enumeration area; HIES, Household
Income and Expenditure Survey.

4.1 Structure of Census and Survey Datasets

Sample design for HIES 2000 used the 1991 Census as a frame and divided Bangladesh into
five divisions (Barisal, Chittagong, Dhaka, Khulna, and Rajshahi), 64 districts (Zila) and 507
sub-districts (Upzila). For 2001 Census, Sylhet division was created from sub-districts of the
Chittagong division. HIES 2000 structure has been maintained in the simulation. BBS initially
selected 5% of enumeration areas (EAs) from each sub-district (small domain) for analysis,
ostensibly by systematic sampling (BBS & UNWFP, 2004) although mapping of the sampled
HHs indicates clustering. Nevertheless, for confidentiality reasons, the 5% census data that is
the basis of the simulation cover all Bangladesh administrative units down to sub-district. HIES
2000 covers 63 districts and 295 sub-districts (Table 2). Table 3 indicates that there are at least
three EAs per sub-district in the 5% census dataset but more than 75% of sub-districts have
single EA in the survey dataset. In the census and survey simulation, only the 295 sub-districts
sampled in HIES 2000 are considered for comparison purposes to ensure all small areas are
sampled. The EAs are PSUs in HIES 2000 and hence the clusters in our simulation.

4.1.1 Sampling design of Household Income and Expenditure Survey 2000

For HIES 2000, the 14 strata were based on the residential classification of PSUs: urban,
rural and statistical metropolitan area. Two-stage sampling was used to select 442 PSUs from
14 strata by stratified random sampling at the first stage and then 10 or 20 HHs were drawn from
the selected PSUs by systematic sampling. The number of HHs sampled in the selected PSUs
ranges from 190 to 310 for rural and urban areas and 100 to 287 for statistical metropolitan
areas. Twenty HHs were selected in rural and urban areas and 10 HHs from SMAs. A total of
7 440 HHs were sampled (only 12 were excluded as missing or incomplete). The HIES PSU
classification differed from that of Census 2001, so detailed area matching at cluster level was
required (Table S1).

4.1.2 Sampling design for simulation study

In poverty analysis in developing countries, matching between census HHs and survey HHs
is not feasible. Even matching at PSU/cluster (or sub-cluster) level can be very time consum-
ing. Nevertheless, despite the benefit being slight in practice because survey size is usually
several orders of magnitude smaller than the census, matching between survey and census
units is maintained in the simulation. To ensure that all small areas contain sample, only 295
of 507 sub-districts are used, and these are partitioned into urban PSUs, rural PSUs and sta-
tistical metropolitan area PSUs. For each simulated sample, PSUs were selected randomly by
geographic location, and HHs were selected as for HIES 2000. Some HIES 2000 PSUs were
merged with neighbours so PSUs contained at least 40 HHs. Table S2 shows how the PSUs of
HIES 2000 were selected over the country. Thus, even though contextual variables are used in
the simulation, with this additional aggregation, they are somewhat less effective at describing
specific effects for small areas than in BBS and UNWFP (2004).
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Similarly to HIES 2000, 442 PSUs were selected with probability proportional to the number
of HHs and then HHs were selected randomly from the selected PSUs. The sampling ratio for
sub-districts ranges from about 0.28% to 5.15% with mean 0.98% and median 0.83%. Data on
HH expenditure are collected in the real survey but not in the real census (which is the reason
SAE is necessary). However, in the simulation, HH expenditure is simulated for all census HHs
in the 295 sub-districts to allow direct comparison with the census for each of the SAE methods.

4.1.3 Construction of simulated census data

Simulated censuses were constructed using a model fitted to the actual 2000 HIES data plus
contextual variables at sub-district rather than (sub-)cluster or (sub-)PSU level from the 2001
5% census. The model is given in (7). This simulated census data should be distinguished from
the pseudo-census data or its equivalent generated for every such census population to estimate
MSE for the SAEs; this is required even if real, complete census data were available.

In the BBS and UNWFP (2004) study, 30 explanatory variables (including separate cate-
gories for categorical variables and two-way interactions) were used at HH or sub-district level
(Table S3) in a robust regression model that accounts for complex survey design and gives con-
sistent covariance matrix estimates. To simplify simulation, multilevel analysis, which includes
hierarchical structure in the survey regression model, has instead been used to fit survey models
for log-transformed per capita consumption expenditure to develop two-level and three-level
survey-based models.

Summary results for the multilevel models are given in Table 4. Null models, those without
auxiliary regression variables, indicate the significant contribution of PSUs

�
�2
u

�
and sub-

districts
�
�2
�

�
in variation of response variable. When auxiliary variables are added to the null

model, both between-cluster and between-area variations are reduced. Although the variance
component at sub-district level is very small, it is found still significant after including 30
explanatory variables; 75% of sub-districts have only single cluster that complicates estima-
tion. The small but significant small area variance component may reflect the use of contextual
variables at sub-district rather than at the less aggregated (sub-)cluster level (due to limited
area code information) and different survey model fitting techniques. Both marginal and con-
ditional R2 values (Nakagawa & Schielzeth, 2013) are slightly higher in the three-level model.
So a three-level model has been used to generate log-transformed per capita HH expenditure
for each simulated census is

yijk D xTijk“.3/ C �i C uij C eijkI “.3/ �MN
�
O“.3/; Ov

�
O“.3/

��
�i � N .0; 0:0086/ ; uij � N .0; 0:0186/ ; eijk � N .0; 0:1135/ ;

(7)

where ‘MN’ stands for multivariate normal and “.3/ is the vector of regression parameters under
the three-level model. The regression coefficients are given in Table S4.

4.2 Simulation Process

In the simulation study, SD500 censuses are simulated with expenditure for every HH (rather
than only the sampled HHs) based on the superpopulation model (7). ‘True’ FGT measures
were then calculated for each of the 500 simulated censuses. Then a sample was drawn from
each population (i.e. from each simulated census) using the HIES 2000 design FGT measures
were then estimated for two-level ELL (ELL.2L), three-level ELL (ELL.3L), EBP and MQ
using the survey model applied to each simulated census dataset (without using the original
simulated expenditure). RB and RRMSE are calculated based on these 500 artificial popula-
tions. The Spearman rank correlation between the ‘true’ FGT measures from the simulated
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Table 4. Two-level and three-level regression models fitted by restricted maximum likelihood
(REML).

Model df Marginal R2 Conditional R2 P value O�2
" O�2

u O�2
�

2-L: Null 3 — 0.4102 0.2178 0.1515 —
3-L: Null 4 — 0.3970 < 0:01 0.2177 0.0770 0.0663
2-L: Full 33 0.5941 0.6733 0.1135 0.0275 —
3-L: Full 34 0.5962 0.6744 < 0:01 0.1135 0.0186 0.0086

census and the estimated FGT measures from the SAE methods (using the upper poverty line
from BBS & UNWFP, 2004) has been calculated at small area level for each S .

In ELL, L D 500 pseudo-censuses were generated for each simulated population. Esti-
mates of root MSE (ERMSE) of estimated FGT measures were calculated in parallel with
FGT measure estimation. ERMSEs were calculated separately in both EBP and MQ methods
via bootstrap procedures; to reduce the computation burden, ERMSEs were calculated using
L D 100 pseudo-censuses. To maintain comparison, ERMSEs for ELL were also re-calculated
using only L D 100 pseudo-censuses. For EBP, for each simulated population, FGT measures
were calculated by generating L D 100 out-of-sample vectors based on the responses of the
same sample units, while in the MQ method, for each bootstrap population,R D 5 samples were
drawn via SRSWOR from each area, and then FGT measures were estimated via L D 100 out-
of-sample vectors from each sample. More samples may have reduced bias. The performance
of the RMSE estimators are shown by comparing the area-specific estimated RMSE with the
simulated true RMSE based on 100 of the S D 500 simulated populations and by calculating
coverage rates (CRs) of nominal 95% confidence interval for the RMSE estimators.

5 Simulation Results

The distributions of area-specific RB and RRMSE are shown as percentages in Figure 1
and Figure 2, respectively. Despite ‘over-aggregated’ contextual variables, and a completely
parametric bootstrap, the figures indicate that both ELL.2L and ELL.3L are performing better
than EBP and MQ in terms of both RB and RRMSE for all the FGT indicators, perhaps not
surprisingly because an ELL3L model was used to generate the data.

The EBP estimator is likely to overestimate and the MQ estimator to underestimate. These
trends are obvious when FGT measure shifts from poverty incidence to PS. No significant dif-
ferences are observed between the two ELL estimators in either RB or RRMSE. Both ELL
estimators provide lower and more stable RBs and RRMSEs than EBP and MQ. The EBP esti-
mator provides higher RB and RRMSE with large variation. Although MQ estimator provides
downwardly biased RB, RRMSEs are lower than those of EBP estimator.

The number of sampled PSUs per area is expected to have substantial influence, because
about 75% sampled areas have single sampled cluster. To examine this, RB and RRMSE of
four estimators are plotted by dividing the areas into those with single and multiple clusters
sampled per small area. Figure 3 shows that ELL estimators perform in the similar manner,
but EBP and MQ estimators behave differently. The EBP estimator shows stable distributions
of RB and RRMSE for small areas with multiple clusters when compared with those with
single cluster. The MQ estimator behaves similarly to the ELL estimators for the single-sampled
cluster small areas but interestingly shows higher negative RBs and smaller RRMSE for the
areas with multiple clusters. So estimates from EBP and MQ are markedly influenced by the
number of sampled clusters per small area. The additional advantage ELL has in the simulation
reflects the design of HIES2000 that has many small areas with only one sampled cluster.
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Figure 1. Distribution of relative bias (%RB) of ELL.2L, ELL.3L, EBP and MQ estimators of Foster, Greer and Thorbecke
poverty indicators over 500 simulations. EBP, empirical best prediction; ELL, World Bank method; HCR, head count ratio;
MQ, M-quantile; PG, poverty gap; PS, poverty severity. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 2. Distribution of relative RMSE (%RRMSE) of ELL.2L, ELL.3L, EBP and MQ estimators of Foster, Greer and
Thorbecke poverty indicators over 500 simulations. EBP, empirical best prediction; ELL, World Bank method; HCR, head
count ratio; MQ, M-quantile; PG, poverty gap; PS, poverty severity; RMSE, root mean square error. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 3. Distribution of %RB and %RRMSE of ELL.2L, ELL.3L, EBP and MQ estimators for HCR over 500 simulations
by areas with single and multiple sampled clusters. EBP, empirical best prediction; ELL, World Bank method; HCR, head
count ratio; MQ, M-quantile; RB, relative bias; RRMSE, relative root mean squared error. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 4. Distribution of rank correlations between the true Foster, Greer and Thorbecke measures and their estimates
by ELL.2L, ELL.3L, EBP and MQ estimators over 500 simulations. EBP, empirical best prediction; ELL, World Bank
method; HCR, head count ratio; MQ, M-quantile; PG, poverty gap; PS, poverty severity. [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 5. Average of estimated RMSE of estimated Foster, Greer and Thorbecke measures by ELL.2L, ELL.3L, EBP and MQ
estimators against the true simulated RMSE over 100 simulations. EBP, empirical best prediction; ELL, World Bank method;
HCR, head count ratio; MQ, M-quantile; PG, poverty gap; PS, poverty severity; RMSE, root mean square error. [Colour
figure can be viewed at wileyonlinelibrary.com]

The distribution of Spearman rank correlations between true and estimated FGT are plotted
in Figure 4 to examine whether the bias issue changes small area ranking of their poverty
estimates. The MQ estimator provides good performance in ranking sub-districts (small areas)
according to poverty, even though it has significant downward RB. Performance of the MQ
estimator also remains the same for all three FGT measures. ELL and EBP estimators show
a slightly downward trend with increasing degree of the FGT measures. The EBP estimator
shows the poorest correlations for all FGT measures.

Figures 1–4 represent a situation that is not feasible to measure outside a simulation study,
namely, assessment of RB and RRMSE over a number of different ‘equivalent’ populations
generated from a superpopulation. In real SAE problems, there is only one population. The
parallel in the simulation is to estimate RMSE separately for each population, then average. So
to gauge how well the various SAE methods estimate their accuracy, the area-specific averages
of estimated RMSEs over the S D 100 simulations are plotted against the true simulated RMSE
of FGT indicators in Figure 5. The mean and median of RB and RRMSE of the estimated
RMSE over areas are also given in Table S5.

Estimated RMSE of the ELL.3L estimator tracks the true simulated RMSE best, perhaps
unsurprisingly because it was used to generate the simulated censuses. The ELL.2L estimator
underestimates the true RMSE, because the simulated census data contain significant small area
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level variance estimated RMSEs for EBP and MQ also fail to track the true RMSE. With the
increasing degree of FGT measures from poverty incidence to severity, estimated RMSEs of
EBP shift towards the true RMSE while an opposite trend is observed for MQ. The mean and
median RBs of the estimated RMSE shown in Table S5 clearly shows that ELL.2L and MQ
severely underestimated the true RMSE for head count ratio and PG, while highly overestimated
for PS with higher RRMSE. EBP shows a decreasing trend of RB with the degree of FGT
indicators.

Average estimated RMSEs are plotted as a smoothed line against small area population size
in Figure 6. All estimated RMSE estimators show downward trend with increasing population
size, but performance varies for areas with large population depending on whether there are
multiple clusters in the small area. Both the EBP and MQ estimators show stable ERMSE for
the areas with smaller population size and steadily declining ERMSE for the larger areas. For
EBP, the difference between the true and estimated RMSEs gradually decreases with the degree
of FGT indicator but always shows lower ERMSE for the larger areas. The ELL estimators
show a similar trend in ERMSE for all FGT indicators.

The influences of the estimated RMSEs on CR are shown in Figure 7 via the smooth trend
of CRs with increasing population size. The CRs decrease with the population size for all

Figure 6. Average of estimated RMSE of estimated Foster, Greer and Thorbecke measures by ELL.2L, ELL.3L, EBP and
MQ estimators over 100 simulations against population size of each area. EBP, empirical best prediction; ELL, World Bank
method; HCR, head count ratio; MQ, M-quantile; PG, poverty gap; PS, poverty severity; RMSE, root mean square error.
[Colour figure can be viewed at wileyonlinelibrary.com]

Figure 7. Coverage rate (%CR) of ELL.2L, ELL.3L, EBP and MQ estimators of Foster, Greer and Thorbecke measures over
100 simulations against population size of each area. EBP, empirical best prediction; ELL, World Bank method; HCR, head
count ratio; MQ, M-quantile; PG, poverty gap; PS, poverty severity. [Colour figure can be viewed at wileyonlinelibrary.com]
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estimators except the ELL.3L estimator similar to the trend of ERMSEs. The ELL.2L estimator
shows a downward curve of CRs, essentially because the simulated census data use a three-
level not a two-level model. The EBP and MQ estimators also show under-CRs but perform
better than the ELL.2L estimator. The performance of EBP estimator improves with the degree
of FGT indicators, while there is no change for both the ELL.2L and MQ estimators. The lower
estimated RMSE and lower CR are due to ignoring the between-area variability in the ELL.2L
estimator and the failure of the EBP and MQ estimators to capture cluster level variation.

6 Concluding Remarks

To the extent possible, in the simulation study, the census and survey datasets generated
and used reflect data structures in developing countries where both cluster-homogeneity and
area-homogeneity assumptions can be violated, and the use of unit record census data with con-
textual variables can provide good area-specific adjustments even for non-sampled areas. We
included substantial small area level and cluster level variation in the simulation. We showed
that if only a census subsample is available, the contextual variables compromised, and the
census is best described by a three-level model with area and cluster effects, then: (i) the stan-
dard ELL estimator (ELL.2L) can fail to capture significant small area level variability; (ii) the
EBP estimator ignores cluster level variation and merges the cluster level variation with both
individual level and area level variation; and (iii) MQ when used as a two-level model fails to
capture cluster-specific random effects by not distinguishing small area-specific random effects
from cluster-specific effects.

Nevertheless, the simulation results also show that in terms of the small area estimates them-
selves, the standard ELL estimators can perform better than the more complex EBP and MQ
methods in terms of RB and RRMSE when most small domains have single cluster in the
sample and a negligible between-area variation exists in the population after using contex-
tual variables at cluster (or sub-cluster) level for both surveyed and non-surveyed small areas.
As expected, when the ratio of small area to cluster variance is relatively high and contex-
tual variables are compromised by aggregation to small area level, the basic ELL.2L estimator
underestimates the true RMSE of FGT estimates and hence shows a higher under-CR. In these
circumstances, the EBP and MQ estimators also show under-coverage but are still better than
the ELL.2L estimator.

As an option for future study, provided census and survey cluster matching were feasible, it
may be interesting to consider the performances of MQ and EBP in simulation with clusters
as small areas, followed by aggregation of estimates to actual small areas. Marhuenda et al.
(2017) consider such a ‘bottom-up build’ technique but instead use domains and subdomains.
When the majority of the model error is at cluster level, adopting this strategy would increase
performance of both EBP and MQ, especially if both were used in three-level form. This option
further strengthens the argument for more extensive data availability and/or modelling.

Reasons for the partial failure of EBP and MQ methods in the simulation are (i) higher
between-cluster than between-area variation; (ii) in EBP and MQ as two-level models, both
individual-specific and area-specific random errors are generated from distributions that do not
fully correspond with a three-level linear model; (iii) most small areas have only a single cluster
in the survey data that misguides prediction of the distribution function in EBP and MQ. (The
poverty mapping study of Minas Gerais state of Brazil by Souza et al., 2015 is another example
where 80% of target small areas were not in the survey dataset).

In terms of computational burden and not needing matching of survey and census HHs, the
ELL method is easier and faster than both EBP and MQ. Where most of the target administrative
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units are not available in the survey dataset, a separate calculation procedure is required in both
the EBP and MQ methods. For the non-sampled small areas (none of which were included
in the simulation) due to EBP’s and MQ’s estimation procedures for FGTs and their RMSEs
prediction power will be lower than for the sampled areas

The main criticism of basic ELL method is the underestimation of RMSE when area-
homogeneity assumption is violated. However, a three-level model-based ELL method can be
applied when the area variability is found significant in the regression model. From the sim-
ulation study, it is clear that the three-level ELL method performs better than the traditional
two-level ELL method for FGT estimates and their estimated RMSE, because in the simulation,
the over-aggregated contextual variables have not been able to ‘soak up’ all small area-specific
variation that has been incorporated into the simulated census data. Conversely, ELL.3L can be
sensitive because it may overestimate the true RMSE if there are no non-zero mean small area-
specific effects. For data like the simulated Bangladesh census unit record data, considering a
three-level model with an appropriate variance component estimation method is critical, even
if using it is thwarted by few small areas having more than one sampled cluster. Even when
good contextual variables are available, both two-level and three-level ELL models used at a
finer level are sensitive to how well the regression model is fitted to the survey data. ELL is
routinely used to fit models in which the small areas are fewer than when EBP and MQ are typ-
ically applied, but even for fewer small areas, EBP and MQ are sensitive to significant cluster
level variation when used as two-level models

Because actual census data are richer than model-based census data from cross-tabulations,
in ELL, the regression model tends to have larger predictive power but will usually require more
auxiliary variables, good contextual variables and considerable time and effort when model
fitting and testing. The better between-cluster and between-area variations are controlled, the
better the expected performance. For ELL, explanatory variables, especially census informa-
tion available at cluster or preferably sub-cluster level for both sampled and non-sampled units,
should be included in the regression model. Even high R2 via inclusion of more explanatory
variables in the model may not guarantee capture of area variability, so great care and consider-
able expertise is needed in the application of ELL methodology to avoid underestimated MSE
and poor CRs. On the other hand, although EBP and MQ can produce excellent SAE results,
especially where there are not a large number of small areas, without contextual variables, they
can be unsuitable when there is little or no sample in some of those small areas or where they
are applied as two-level rather than three-level models, and there is a significant cluster level
area component.
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