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A hybrid computational approach for option pricing

Song-Ping ZHU ∗ Xin-Jiang HE †

Abstract

In this paper, we propose a novel numerical approach for option pricing with the

combination of the MC (Monte Carlo) simulation and the PDE (partial differential

equation) approach. Our motivation originates from the fact that within a finite life

time of an option contract, the underlying price as well as the range of volatility are

expected to vary within a relatively small region centered around the current value

of the underlying and the volatility and hence there is no need to compute option

prices for the underlying and the volatility values beyond this region. Thus, our

hybrid approach takes the advantage of both the MC simulation and PDE approach

to form an approach that takes the MC simulation as a special case with the region

being extremely small and the PDE approach as another special case with the region

being extremely large. Through numerical experiments, we demonstrate that such a

hybrid approach enhances computational efficiency, while maintaining the same level

of accuracy when either the MC simulation or the PDE approach is used alone for

the option prices computed within a suitably chosen interested region.
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1 Introduction

Stochastic volatility models have received a lot of attention since modeling volatility with

another stochastic process is believed to better capture different properties of underlying

returns [11]. However, it needs to be pointed out that the introduction of another stochastic

source has also increased the model complexity. As a result, it is very difficult to find

closed-form pricing formula for European options, although there are several models, such

as the Stein-Stein model [25] and the Heston model [13], for which analytical solutions

can be found. For American options and exotic options, the analytical tractability under

stochastic volatility models becomes even worse as it is almost impossible to find any

analytical solution for the problems associated with these options. Therefore, numerical

approaches must be resorted to when pricing options and proposing innovative numerical

schemes with high efficiency becomes a key focus of the research in terms of pricing options

under stochastic volatility models.

In the literature, a number of different numerical approaches have been proposed and

adopted to efficiently price options. One of the most basic ones is the so-called binomial

tree approach [8], in which a tree of the underlying price is generated and option prices

are evaluated backwards from the expiry time to the current time. A distinguished feature

of this particular method is that it is very straightforward to implement. Although this

method can clearly reflect the construction of the replicating portfolio, it may cause some

biases since the underlying price actually does not discretely change within a two-valued

framework. As another basic approach, the MC simulation technique, which directly simu-

lates the dynamics of the underlying price to find option prices without using any boundary

conditions, is also quite popular in option pricing [3, 21, 24] as it has two main advantages;

the first is that it can easily deal with path dependent options, and it can handle high-

dimensional pricing problems in which options are written on multiple underlying assets.

However, this approach is quite often “synonymous” to inefficiency in the option pricing

world, due to the requirement of a large number of paths being generated to achieve ade-
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quate accuracy, especially for low dimensional problems [16]. Being different from the above

two methods, both of which directly simulate the underlying price process, the finite dif-

ference method, which is based on the discretization of differential operators, can certainly

be employed if a PDE (partial different equation) system governing option prices is derived

first. Then, depending on how a differential operator is discretized, different schemes, such

as the explicit method, implicit scheme, the ADI (alternating direction implicit) method

[18], the predictor-corrector scheme [27] and many others, form all the specific approaches

under the umbrella of the PDE approach. This method is firstly applied to option pricing

by Schwartz [23] and Brennan & Schwartz [4], and it has been widely used by many others

[7, 15]. One of the main advantages for the finite difference method is that a set of option

prices can be obtained simultaneously for one time step with a relatively small amount

of computational time, while an obvious disadvantage is that the imposition of boundary

conditions imposed at infinity for any option pricing PDE system demands a truncation of

the computational domain to finite one and such a truncation inevitably introduces errors.

It should be further remarked that the entire computational domain still needs to be

discretized, even after the replacement of an infinite domain with a finite domain, and such

a “global” discretization, like many paths generated in the MC simulations, also wastes

computational resources on computing option prices on the grids that one has no interest

on. Therefore, on one hand, a large enough computational domain should be preserved

so that the truncation errors could minimized, while, on the other hand, the truncated

domain needs to be kept reasonably small so that the discretization of the computational

domain with a reasonable resolution does not demand huge computational resources.

A natural question is whether or not there is an approach that can avoid the “cons” of

both the MC and PDE approaches while keeping all the “pros” of these two approaches.

We provide a positive answer to this question by proposing a hybrid approach that is a

combination of the MC simulation technique and the PDE approach (which is referred

to as “the MCPDE method” hereafter), with an aim of utilizing the strengths of both
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these approaches for certain types of options. Our motivation originates from the fact

that short-term options are dominating in most of derivative markets, which means that

the probability for a dramatic change in the underlying price or the volatility taking place

within finite life time of an option contract is quite low. Thus, option traders will probably

only need to focus on pricing options with the underlying price and the range of volatility

being expected to vary within a relatively small region centered around the current value

of the underlying and the volatility and hence there is no need to compute option prices

for the underlying and the volatility values beyond this region. To take the advantage of

this particular need, our newly proposed MCPDE method focused on a reasonably small

computation domain (referred to as the “interested domain” hereafter) centered around

the current point of the state variable, M(S0, v0), as illustrated in Figure 1. Within the

interested domain ABCD, the PDE approach is adopted to provide accurate calculations

on a set of grid points with decent resolution. On the other hand, the MC simulations

are adopted to generate the needed boundary values on the boundary of the interested

domain, so that the PDE approach adopted for the computation of option values within

the domain can be actually carried out. In this way, computational resources are not wasted

on discretizing the domain beyond the interested domain, based on an assumption that the

computational resources required to generate the needed boundary values on the boundary

of Domain ABCD through the MC simulations are still less than those required by the PDE

approach to compute all the grid values outside of Domain ABCD, if the interested domain

ABCD is sufficiently small. Such an assumption is reasonable as once can imagine that

our hybrid approach takes the MC simulation as a special case, on one hand, when the

interested domain shrinks down to a point, while it, on the other hand, takes the PDE

approach as another special case when the the interested domain becomes the entire semi-

infinite domain in the original problem. Therefore, the efficiency of the MCPDE method

must sit somewhere between the MC simulations and the PDE approach, while the values

of a small set of option values can be computed within the interested domain. It should
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be pointed out that our proposed MCPDE method is completely different from the mixed

PDE/MC method proposed in [20], where the stochastic volatility is simulated with the MC

simulations and then European option prices are determined through the pricing formula

for the Black-Scholes model with a time-dependent volatility.

In order to verify this concept and show the accuracy of the newly proposed approach,

we use the pricing of European options under the Heston model as a benchmark example

since it possesses a closed-form pricing formula for European options. To demonstrate the

efficiency of the newly proposed hybrid approach, we take a special PDE approach, the

ADI approach, as an example for the PDE implemented inside an interested domain, and

compare the computational times needed to obtain option prices with the same resolution

of an interested domain with purely ADI method, purely MC simulation and the MCPDE

method.

The rest of the paper is organized as follows. In Section 2, a new numerical approach

combining Monte-Carlo simulation and the ADI method is introduced. In Section 3, nu-

merical experiments are carried out to show the accuracy as well as efficiency of the new

approach, followed by some concluding remarks given in the last section.

2 A new numerical approach

In this section, we formally introduce the MCPDE method to evaluate options. It should

be particularly emphasized that this approach can be easily extended to other stochastic

volatility models, and we choose the Heston model as an example to illustrate the newly

proposed approach since it possesses a closed-form pricing formula for European options,

with which its accuracy can be easily assessed.

To start, let us denote St and vt as the underlying price and the volatility respectively.

Then, the dynamics of the Heston model under the risk-neutral measure can be specified
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Figure 1: A schematic diagram.

as

dSt

St

= rdt+
√
vtdW1,t,

dvt = k(β − vt)dt+ σ
√
vtdW2,t, (2.1)

where r is the risk-free interest rate, k is the mean-reverting speed, β is the mean-reverting

level, and σ is the volatility of volatility. W1 and W2 are two standard Brownian motions

with correlation ρ. If we further let U(S, v, t) denote the price of a European call option,

then the governing PDE for U has been shown in many previous papers (e.g., see [12, 13])

∂U

∂t
+

1

2
vS2∂

2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
+ rS

∂U

∂S
+ k(β − v)

∂U

∂v
− rU = 0. (2.2)
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Introducing a new variable, the time to expiry τ = T − t, the terminal value problem can

be transformed into an initial value problem. On the other hand, to eliminate the variable

coefficients in PDE (2.2), we adopt the log-transform as x = log(S). Therefore, PDE (2.2)

can be transformed into
∂U

∂τ
= AU, (2.3)

where the operator is defined as

A = a(v)
∂2

∂x2
+ b(v)

∂2

∂v2
+ c(v)

∂2

∂x∂v
+ d(v)

∂

∂x
+ e(v)

∂

∂v
− r, (2.4)

with

a(v) =
1

2
v, b(v) =

1

2
σ2v, c(v) = ρσv, d(v) = r − 1

2
v, e(v) = k(β − v).

Here, the initial condition is U(x, v, τ)|τ=0 = max(ex−K, 0). Usually, the domain [−∞,+∞]×

[0,+∞] should be truncated as [−Xmax, Xmax] × [0, Vmax] with Xmax and Vmax chosen to

be large enough so that the boundary conditions at infinity can be regarded as a good

approximation for those at the truncated points. However, as stated above, this can waste

computational time on computing values of the unknown function in the area that we have

no interest in.

In contrast, our MCPDE approach combines the MC simulation method and the PDE

method to avoid such kind of waste. In particular, it directly generates the boundary value

for our interested domain by simulation with the MC method so that we will be able to

save certain amount of time. If we denote the interested domain as [X1, X2]× [V1, V2], then

the boundary values we need to generate are actually U(x, V1, τ), U(x, V2, τ), U(X1, v, τ)

and U(X2, v, τ). It should be pointed out that simulating the Heston model with the

MC approach is an interesting problem itself due to the presence of the Cox-Ingersoll-

Ross process, and a number of different schemes are proposed, such as the coordination

changing scheme [19], the exact simulation scheme [5, 6] and so on. We refer interested

readers to [22] for a detailed comparison of several different schemes. Euler schemes are
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also quite popular since it is simple and efficient to implement, and even in the case that

a more efficient exact simulation approach would be established for the Heston model in

the future, it will still remain useful for strongly path-dependent options and stochastic

volatility extension of certain markets [1, 2]. Thus, what we adopt here is one particular

kind of Euler schemes proposed by Higham & Mao [14], which is specified as

St+∆t = St + rStdt+
√

|vt|StdW1,t,

vt+∆t = vt + k(β − vt)∆t+ σ
√
|vt|dW2,t, (2.5)

where | · | means taking the absolute value.

With the initial condition and all the boundary values in hands, we are able to price

options in the interested domain with PDE approaches. In the following, we choose one

kind of the most popular PDE approaches, the ADI method, since it is a very useful

tool for solving parabolic equations on rectangular domains. Generally speaking, it is of

great efficiency since it can reduce a two-dimensional problem to a succession of many

one-dimensional problems, whose final matrix is tridiagonal and can thus be easily solved.

Before the ADI method is formally applied, the time derivative of U should be discretized

in advance. We first split the operator A as

A = A0 + A1 + A2, (2.6)

such that A0, A1 and A2 represent the mixed derivative, the spatial derivative in the x

direction and the spatial derivative in the v direction respectively, i.e.,

A0 = c(v)
∂2

∂x∂v
,

A1 = a(v)
∂2

∂x2
+ d(v)

∂

∂x
− 1

2
r,

A2 = b(v)
∂2

∂v2
+ e(v)

∂

∂v
− 1

2
r.
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Then, if a uniform discretization in the τ direction is performed with the step size being

∆τ =
T

Nτ

, applying the first-order implicit Euler scheme to PDE (2.3) yields

Un+1 − Un

∆τ
= (A0 + A1 + A2)U

n+1 +O(∆τ),

with Un = U(x, v, n∆τ), which can be rearranged as

[I −∆τ(A0 + A1 + A2)]U
n+1 = Un +O(∆τ 2).

Similarly, the first-order explicit Euler scheme of (2.3) can be derived as

Un+1 = [I +∆τ(A0 + A1 + A2)]U
n +O(∆τ 2).

As a result, the weighted average of implicit and explicit scheme can be obtained

[I − θ∆τ(A0 + A1 + A2)]U
n+1 = [I + (1− θ)∆τ(A0 + A1 + A2)]U

n +O(∆τ 2). (2.7)

It should be remarked that if θ = 0 or θ = 1, (2.7) degenerates to the explicit scheme

or implicit scheme, respectively. When θ takes the value of 1

2
, (2.7) becomes the Crank–

Nicolson scheme. In order to solve this problem separately in two directions with the ADI

method, (2.7) is further expressed as

(I − θ∆τA1)(I − θ∆τA2)U
n+1 = [I +∆τA0 + (1− θ)∆τA1 + (1− θ)∆τA2 + θ2(∆τ)2A1A2]U

n

+ [θ∆τA0 + θ2(∆τ)2A1A2](U
n+1 − Un) +O(∆τ 2). (2.8)

Since the order of Un+1 −Un is O(∆τ), [θ∆τA0 + θ2(∆τ)2A1A2](U
n+1 −Un) can certainly

be merged into the error term and thus we can obtain

(I−θ∆τA1)(I−θ∆τA2)U
n+1 = [I+∆τA0+(1−θ)∆τA1+(1−θ)∆τA2+θ2(∆τ)2A1A2]U

n+O(∆τ 2).
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Therefore, we finally arrive at the finite difference equation

(I−θ∆τA1)(I−θ∆τA2)U
n+1 = [I+∆τA0+(1−θ)∆τA1+∆τA2]U

n−(I−θ∆τA1)θ∆τA2U
n,

(2.9)

if we omit the terms of order O(∆τ 2).

With Equation (2.9) in hands, we are now ready to proceed to the ADI method. In

fact, there are different schemes, such as the Craig-Sneyd scheme [9] and the Hundsdorfer-

Verwer scheme [17]. What we adopt here is the Douglas-Rachford scheme [10] since it is a

two-step scheme, which is more convenient to be implemented. In particular, the first step

of the Douglas-Rachford scheme for our case is to compute an intermediate variable (we

denote it as Y ) from

(I − θ∆τA1)Y = [I +∆τA0 + (1− θ)∆τA1 +∆τA2]U
n, (2.10)

by fixing the variable in the v direction. If the interested domain [X1, X2] × [V1, V2] is

discretized with the number of steps in the x and v direction being set to be Nx and Nv

respectively, the value of a European option at a grid point can be expressed as

U(x, v, τ) = U(i∆x, j∆v, n∆τ) = Un
i,j. (2.11)

Moreover, the first-order and the second-order non-cross spacial derivatives are approxi-

mated by the standard central difference scheme, while the crossed spatial derivative is

calculated as

∂2Un
i,j

∂x∂v
=

Un
i+1,j+1 − Un

i−1,j+1

2∆x
−

Un
i+1,j−1 − Un

i−1,j−1

2∆x
2∆v

.

Therefore, Equation (2.10) can be split into (Nv − 1) algebraic equations, the matrix form
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of which can be derived as

B1Yj = P 1
j +R1

j , j = 1, 2, ..., Nv − 1, (2.12)

where R1
j is a (Nx − 1)-dimensional row vector, whose first element and last element are

θ∆τ(
aj
∆x2

− dj
2∆x

)Y0,j and θ∆τ(
aj
∆x2

+
dj
2∆x

)YNx,j, respectively, while other elements take

the value of zero. Yj = (Y1,j, Y2,j, ..., YNx−1,j)
′, P 1

j = (p11,j, p
1
2,j, ..., p

1
Nx−1,j)

′ with p1i,j ex-

pressed as

p1i,j = Un
i,j + cj∆τ

Un
i+1,j+1 − Un

i+1,j−1 − Un
i−1,j+1 + Un

i−1,j−1

4∆x∆v

+ (1− θ)∆τ(aj
Un
i+1,j − 2Un

i,j + Un
i−1,j

∆x2
+ dj

Un
i+1,j − Un

i−1,j

2∆x
− 1

2
rUn

i,j)

+ ∆τ(bj
Un
i,j+1 − 2Un

i,j + Un
i,j−1

∆v2
+ ej

Un
i,j+1 − Un

i,j−1

2∆x
− 1

2
rUn

i,j), (2.13)

and B1 is a tridiagonal matrix defined as

B1 =



1 + θ∆τ(
2aj
∆x2

+
1

2
r) −θ∆τ(

aj
∆x2

+
dj
2∆x

) 0

−θ∆τ(
aj
∆x2

− dj
2∆x

)
. . . . . .
. . . . . . −θ∆τ(

aj
∆x2

+
dj
2∆x

)

0 −θ∆τ(
aj
∆x2

− dj
2∆x

) 1 + θ∆τ(
2aj
∆x2

+
1

2
r)


.

Once we have obtained the solution of the intermediate variable Y , we can move on to

the second step to find the solution to Un+1 through

(I − θ∆τA2)U
n+1 = Y − θ∆τA2U

n, (2.14)

by fixing the variable in the x direction since the operator in the left hand side of Equation

11



(2.14) is with respect to v only. Similarly, we only need to solve (Nx−1) algebraic equations

B2Un+1
i = P 2

i +R2
i , i = 1, 2, ..., Nx − 1, (2.15)

where all the elements of the row vector R2
i are zero except that the first and the last

element take the value of θ∆τ(
bj
∆v2

− ej
2∆v

)Ui,0 and θ∆τ(
bj
∆v2

+
ej
2∆v

)Ui,Nv respectively.

Un+1
i and P 2

i are defined as (Ui,1, Ui,2, ..., Ui,Nv−1)
′, P 2

j = (p2i,1, p
2
i,2, ..., p

2
i,Nv−1)

′ respectively,

with p2i,j expressed as

p2i,j = Yi,j − θ∆τ(bj
Un
i,j+1 − 2Un

i,j + Un
i,j−1

∆v2
+ ej

Un
i,j+1 − Un

i,j−1

2∆v
− 1

2
rUn

i,j). (2.16)

The Matrix B2 is also a tridiagonal matrix and it can be specified as

B2 =



1 + θ∆τ(
2bj
∆v2

+
1

2
r) −θ∆τ(

bj
∆v2

+
ej
2∆v

) 0

−θ∆τ(
bj
∆v2

− ej
2∆v

)
. . . . . .
. . . . . . −θ∆τ(

bj
∆v2

+
ej
2∆v

)

0 −θ∆τ(
bj
∆v2

− ej
2∆v

) 1 + θ∆τ(
2bj
∆v2

+
1

2
r)


.

By now, we have presented our MCPDE method for option pricing. In summary, once

a discretization of [X1, X2]× [V1, V2]× [0, T ] is chosen, the first step of our newly proposed

approach is to generate boundary values, Un
0,j, Un

Nx,j
, Un

i,0 and Un
i,Nv

for each n = 0, 1, ..., Nτ ,

i = 0, 1, ..., Nx, and j = 0, 1, ..., Nv by directly simulating Dynamic (2.1) with the MC

technique. Then the second step is to work out an intermediate variable Y with Equation

(2.12) and the obtained Un. It should be remarked here that we need to find the boundary

values for Y , i.e., Y0,j and YNx,j before we are able to solve Equation (2.12). In fact, the

calculation of Y on the two boundaries can be dealt with similarly by utilizing Equation

12



(2.14), which can yield

Y0 = (I − θ∆τA2)U
n+1
0 + θ∆τA2U

n
0 ,

YNx = (I − θ∆τA2)U
n+1
Nx

+ θ∆τA2U
n
Nx
, (2.17)

since we have generated all the boundary values for Un, n = 0, 1, ..., Nτ . Once we have

successfully obtained Y , the last step is to derive Un+1 with Equation (2.15).

Once a new numerical approach is proposed, its accuracy needs to be verified first.

Moreover, it is also of interest to show whether the new method is advantageous than

those existing methods, as far as the computational speed is concerned since our initial

aim is to find an alternative method, which can save us some time when pricing options

if we only focus on an interested domain with a high resolution. These two issues will be

illustrated in the next section.

3 Numerical examples and discussions

In this section, the accuracy of the newly proposed numerical approach is demonstrated

by making comparison of our results and those obtained through the closed-form pricing

formula for European options in the Heston model. Then, the computational time of our

approach, purely Monte Carlo approach and purely ADI approach to work out the same

set of option prices is presented for the purpose of assessing efficiency. Unless otherwise

stated, the values of parameters we use are listed as follows. The risk-free interest rate r is

assumed to be 0.03, while the correlation between the underlying price and the volatility

ρ is 0.8. The mean-reverting speed k and level β are set to 2 and 0.5, respectively. The

volatility of volatility σ and the initial value of the volatility v0 are chosen to be of the

same value 0.3. The time to expiry T is set to 1, and the number of time steps, Nτ , is 100,

while the number of paths in the MC simulation, NMC , is set to be 200,000. The lower

13



bound and the upper bound for the underlying price, X1 and X2, are chosen to be log(90)

and log(110), respectively. It should be pointed out that in the following, nx and nv are

used to denote the number of grid points in the x and v direction, respectively.

Underlying price

90 92 94 96 98 100 102 104 106 108 110

O
p

ti
o

n
 p

ri
c
e

14

15

16

17
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19

20

21
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23

Our price

Analytical formula

Figure 2: Comparison of European put option prices calculated with our approach and
analytical formula

Depicted in Figure 2 are European put option prices calculated from the MCPDE

method and the analytical formula. What can be observed first is that option prices

are a monotonic decreasing function of the underlying price, which is consistent with the

property of European puts. Moreover, we can observe an excellent agreement between

option prices calculated with the MCPDE method and the analytical formula; the relative

errors between the two prices on the boundaries and internal grid points are approximately

0.3% and less than 0.1%, respectively.

One may be interested in how the accuracy is affected by the number of grids in the

x and v directions, and thus we also present the relative errors (based on the difference

between the option prices calculated from the MCPDE method and those from the an-
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Table 1: Accuracy with different grid resolutions (S = 99.5)
v0 = 0.1 v0 = 0.2 v0 = 0.3 v0 = 0.4 v0 = 0.5

nv = nx = 5 14.281(0.03%) 16.337 (0.24%) 18.076 (0.12%) 19.710(0.14%) 21.249 (0.01%)
nv = nx = 9 14.296(0.12%) 16.298 (0.01%) 18.125 (0.14%) 19.742(0.03%) 21.258 (0.05%)
nv = nx = 13 14.294(0.12%) 16.290 (0.04%) 18.134 (0.19%) 19.734(0.02%) 21.315 (0.32%)
nv = nx = 17 14.282(0.03%) 16.289 (0.05%) 18.105 (0.04%) 19.729(0.04%) 21.320 (0.35%)

alytical formula) of numerical results under different grid resolutions in Table 1. In this

example, the interested domain is chosen as [S, v] ∈ [90, 110]× [0.1, 0.5], which means that

the prices in the first and last column of Table 1 are the values on the boundary and

were thus generated with Monte Carlo simulation (the number of paths used is fixed to

be 200,000). From Table 1, one can indeed conclude that the MCPDE method provides

satisfactory results, with the maximum relative error being less than 0.4%, even with the

most crude grid resolution when the number of grids in the x and v directions is only 5.

One can also observe that while the relative errors on the boundary grids are roughly of

the same order, i.e., independent from the grid resolution for the PDE approach being

applied inside the interested domain as expected, the relative errors inside the interested

domain decrease as the number of grids in the interested domain increases. This suggests

that a sufficient grid resolution is needed inside the interested domain, in order to achieve

a balanced relative error level between the calculation carried out on the internal grid

through the PDE approach and that carried on the boundary grid through the MC simu-

lations. Such a balance is optimal in terms of computational resources not being wasted on

either over-accurate boundary values being calculated with “too many” paths in the MC

simulations or under-accurate boundary values with unjustified grid resolution inside the

interested domain. For this particular example, one can see that by the time the number

of spacial interval reaches 16, we have already achieved enough accuracy.

Another interesting topic that is worth of investigation is the influence of the number

of paths used in simulating the boundaries on the accuracy of the obtained option prices.

In order to demonstrate this point, option prices calculated through the MCPDE method

15



Table 2: Accuracy with different numbers of paths used in MC simulation (S = 99.5)
v0 = 0.1 v0 = 0.2 v0 = 0.3 v0 = 0.4 v0 = 0.5

NMC = 100 12.022(15.80%) 15.651 (3.96%) 17.894 (1.13%) 19.789(0.27%) 19.817 (6.73%)
NMC = 200 13.207(7.50%) 16.469 (1.06%) 18.148 (0.27%) 19.481(1.30%) 20.226 (4.80%)
NMC = 1000 14.415(0.96%) 16.310 (0.08%) 18.760 (3.66%) 19.9644(1.15%) 20.879 (1.73%)
NMC = 10000 14.230(0.33%) 16.263 (0.21%) 18.041 (0.32%) 19.764(0.14%) 21.682 (2.05%)
NMC = 100000 14.250(0.19%) 16.302 (0.03%) 18.109 (0.06%) 19.818(0.41%) 21.320 (0.35%)

with different numbers of paths (the interested domain is assumed to be [S, v] ∈ [90, 110]×

[0.1, 0.5]) and the relative errors between the obtained values and those computed from the

analytical formula are shown in Table 2. As expected, both relative errors at the boundary

and those at the inner grid points generally show a downward trend when the number

of paths used in MC simulation of the boundaries is enlarged. In particular, the average

relative error for the case of 100 simulation paths is the highest, 5.58%, which decreases

to 2.99% and 1.52% when the number of paths increases to 200 and 1,000 respectively.

By the time that the number of paths reaches 10,000, the average relative error is already

below 1% at only 0.61%, which implies that 10,000 simulation paths would be adequate if

one does not require a very high degree of accuracy, and such average relative error further

decreases to 0.21% when the number of simulation paths is 100,000.

Table 3: CPU time (seconds) with different approaches
MCPDE Monte-Carlo ADI

Single Point 19 0.8 2
nv = nx = 5 19 20.5 2
nv = nx = 11 42 99 9
nv = nx = 51 204 2127 208
nv = nx = 101 407 8471 804
nv = nx = 201 805 34721 3337

With the gained confidence of our newly proposed approach in terms of accuracy, we can

now proceed to examining computational efficiency. This is achieved through comparing

the computational time spent on calculating option prices with a pre-fixed relative error

being less than 1%. It should be remarked that although the interested domain is set to be

[S, v] ∈ [90, 110] × [0.1, 0.2], the operating domain of the purely ADI method is chosen to
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be [0, 1800]× [0, 5] to eliminate the effect of the truncation of boundaries [26]. Therefore, in

order to have the same grid resolution for the interested domain when using the purely ADI

method, the step size in both S and v direction of the operating domain [0, 1800] × [0, 5]

should be the same as that of the interested domain [90, 110]× [0.1, 0.2]. This will result in

the grid points in the direction of S and v used in the purely ADI method being respectively

90 and 50 times more than those corresponding ones when using the MCPDE method. In

this case, the recorded CPU times with different grid resolution are tabulated in Table 3.

Clearly, purely using the MC simulation is advantageous over the other two methods when

we are only interested in a small number of points as it only takes 0.8 seconds to obtain one

accurate option price compared with 19 seconds of our method and 2 seconds of purely ADI

method. The extreme case is when one wants to compute the option with one grid point.

In this case, naturally there is no need to use the PDE at all, as the interested domain

shrinks to a point. When the option prices need to be simultaneously computed in a finite

region in the state variable space, purely MC simulations could be computationally very

expensive and its total computational time increases sharply with the interested number of

points as shown in Table 3. In fact, more computational time than the other two methods

is needed when the grids in the x and v directions of the interested domain exceeds 5, and

more than 10 times of the computational time is needed to obtain the same set of option

prices if the number of spatial interval is over 50. On the other hand, when the number

of grids in the interested domain is still reasonably small, purely ADI method is clearly

the most efficient method (take nv and nx being equal to 11 as an example). When the

number of spatial interval reaches 50, the computational times associated with the MCPDE

method and purely ADI are roughly the same. Then, if one wants to achieve much fine

grid resolution within the interested domain for various practical reasons, superiority of

the MCPDE method over the other two becomes much clear, and the increasing trend

continues as the resolution inside the interested domain is further refined. By the time

when the number of spatial interval reaches 200, the computational time associated with
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the MCPDE method is only a quarter of that associated with the purely ADI method.

This has certainly demonstrated competitiveness of our newly proposed approach when

option traders need to compute option price in a particular region with high resolution.

4 Conclusion

In this paper, a novel numerical approach that combines both the MC simulation and

the PDE approach is proposed. The newly proposed MCPDE approach is suitable for

the option pricing task, in which a set of option prices need to be computed within a

small region of underlying asset and volatility (or interest rate) values with a reasonable

high resolution under a stochastic volatility (or stochastic interest rate) model. Under this

method, boundary values of the interested domain are generated with the MC simulation,

while option prices inside this region are calculated with the PDE approach. In this way,

the discretization with the same resolution as that inside the interested domain is avoided,

so that balanced accuracy and efficiency can be achieved for the need of computing option

prices on a finite set of grid points. Through numerical experiments, we have demonstrated

that the MCPDE approach is indeed superior over purely using Monte Carlo simulation or

the ADI approach when the number of spacial interval in the interested domain is over 50.
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