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Abstract: We study the effect of a strong and low frequency (ω < Δ, the superconducting gap) 

electrical field on a superconducting state. It is found that the superconducting gap decreases with the 

field intensity and wavelength. The physical mechanism for this dependence is the multi-photon 

absorption by a superconducting electron. By constructing the state of a superconducting electron 

dressed by photons, we determined the dependence of the superconducting gap on 𝐸/𝜔  and 

temperature. We show that the critical temperature is determined by the parameter 𝐸/𝜔 which is 

distinct from that induced by the heating effect. The result is consistent with experimental findings. 

This result can be applied to study the terahertz nonlinear superconducting metamaterials. 
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In the past two decades, a great deal of works has been done in terahertz field, which is mainly 

because the attractive properties of high-power, long-wavelength, tunable laser sources and other and 

other potential applications. Several research groups in this area have produced innovative studies of 

nonlinear effects and ultrafast controlling carriers and spin dynamics. Terahertz lasers have been 

applied to investigate nonlinear transport and optical properties in an electron gas. Terahertz 

phenomena like resonant absorption1, the LO-phonon bottleneck effect2, terahertz cyclotron 

resonance3, terahertz photon-induced impact ionization4, photon-enhanced hot-electron effects5 and 

terahertz photon-assisted tunneling6 have all been intensely studied. 

Terahertz radiation is widely used to study the properties of superconducting materials because 

the gap energy of many superconductors is of the order of a few terahertz. When a superconductor is 

under an electromagnetic radiation whose frequency is greater than the Copper-pair gap energy, the 

electrons can absorb a photon and the pair can be broken. Direct pair breaking does not occur under a 

field with frequency lower than gap energy. However, recent experimental measurements7-9 have 

revealed that sub-gap terahertz radiation can have a very strong effect on the superconducting 

properties. By using a high intensity terahertz radiation to study the ultrafast dynamics in 

superconducting thin film,7-9 it was found that  that at low temperatures the superconductivity of NbN 

thin films can be suppressed in the terahertz region by optical pulses.7-12 The experiment revealed that 

in the region 0.4-1.2 THz, the corresponding energy is smaller than gap energy of NbN film.9 Even at 

the maximum THz pulse energy, the calculated photon number is also 100 times smaller than the 

carrier density of NbN. However, the measurement of complex conductivity shows clear nonlinear 

effects at low temperatures and intense THz electric field. These experiments suggest that there may 

be a strong nonlinear process at the low frequencies whereby electrons can interact with multiple 

photons.   

In this work, we will employ a model which involves superconducting Floquet states and uses the 

Bogoliubov-de Gennes (BdG) equation to describe the electron-multi-photon interaction. With this 

model the Cooper pair can be broken even when the incident photon energy is below the 

superconducting gap due to simultaneous absorption of multiple photons. Energy gap and current 

density are the most useful quantities in understanding this phenomenon. We first calculate the new 

form of the energy gap which is dependent on electron-photon coupling strength 𝐸/𝜔 , then the 

current and other transport information can be derived. This inherently shows that all physical 
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quantities are strongly dependent on the parameter 𝑎2 = (
𝑒2

8𝑚
)(

𝐸

𝜔
)2 in energy unit. For the notational 

convenience, we simply denote 𝐸/𝜔 for a. 

Our analysis involves two steps. First, we calculate the single electron states under an intense 

radiation. The result is an electron dressed with photons. Next we apply the dressed electron states to 

solve the superconducting gap equation. Here, we choose the laser field to be along the x direction; 

𝑬 = 𝐸cos(𝜔𝑡)𝑒𝑥 , so the vector potential is 𝑨 = −(𝐸/𝜔)sin(𝜔𝑡)𝑒𝑥 . The transformation between 

electron gas under intense laser radiation and single electron is given by13,14 

                             𝑈† [𝑖
𝜕

𝜕𝑡
−

(𝒑−𝑒𝑨)2

2𝑚
]𝑈 = 𝑖

𝜕

𝜕𝑡
−

𝒑2

2𝑚
.                      (1) 

where 𝑈† = exp{𝑖2𝛾1𝜔𝑡 + 𝑖𝛾1 sin(2𝜔𝑡) + 𝑖𝛾0𝑘𝑥[1 − cos(𝜔𝑡)]} , 𝛾0 = 𝑒𝐸 ∕ (𝑚𝜔2)  and 𝛾1 =

(𝑒𝐸)2 ∕ (8𝑚𝜔3). The state of a single electron dressed by photons is given by U†ψ, and ψ is the 

single electron state in the absence of the radiation field. 

The BdG equation for superconductors subject to an intense terahertz field can be written in the 

form15 

                        𝑖
𝜕

𝜕𝑡
𝛹 = [

(𝒑−𝑒𝑨)2

2𝑚
𝛥

𝛥∗ −
(−𝒑−𝑒𝑨)2

2𝑚

]𝛹 = 𝐻0𝛹.                    (2) 

where 𝛥 = |𝛥|exp(𝑖𝜒) . The coupling between an electron and a photon can be eliminated by a 

unitary transformation  𝑇† [𝑖
𝜕

𝜕𝑡
− 𝐻0] 𝑇 = 𝑖

𝜕

𝜕𝑡
𝐼 − 𝐻 , where 𝑇† = [

𝑈∗ 0
0 𝑈

] , and 𝐼  is a 2x2 unit 

matrix and 𝐻 = [

𝒑2

2𝑚
�̂�

�̂�∗ −
𝒑2

2𝑚

],  with �̂� = 𝑇†𝛥𝑇.  The wave function of the system can be written 

in the form of Floquet states13,14,16 

      Φ = 𝑇†Ψ = (
𝜙1

𝜙2
) = (

𝑈∗𝑢𝑘𝑒
𝑖𝜒∕2

𝑈𝑣𝑘𝑒
−𝑖𝜒∕2

)exp(𝑖𝑘 ⋅ 𝑟 − 𝑖𝜖𝑡).        (3) 

Then from (2) we have 

𝑖 (
[−𝑖𝜖 − 𝑖𝜖′𝑡 + 𝑖2𝛾1𝜔 − 𝑖2𝛾1𝜔 cos(2𝜔𝑡) − 𝑖𝛾0𝜔𝑘𝑥 sin(𝜔𝑡)]𝜙1

[−𝑖𝜖 − 𝑖𝜖′𝑡 − 𝑖2𝛾1𝜔 + 𝑖2𝛾1𝜔 cos(2𝜔𝑡) + 𝑖𝛾0𝜔𝑘𝑥 sin(𝜔𝑡)]𝜙2
) = [

ℏ2𝑘2

2𝑚
�̂�

�̂�∗ −
ℏ2𝑘2

2𝑚

] (
𝜙1

𝜙2
).    (4) 

By letting α(t) = 2𝛾1𝜔 − 2𝛾1𝜔 cos(2𝜔𝑡) − 𝛾0𝜔𝑘𝑥 sin(𝜔𝑡)  and noting Φ∗Φ = 1 , then the new 

form of BdG equation can be written (ε𝑘 + α(t))𝑢𝑘 + |𝛥|𝑣𝑘 = (𝑡𝜖)′𝑢𝑘  and −(ε𝑘 + α(t))𝑣𝑘 +

|𝛥|𝑢𝑘 = (𝑡𝜖)′𝑣𝑘 , where ε𝑘 = ℏ2𝑘2 ∕ (2𝑚)  and uk and vk are superconducting coherent factors 
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defined by 𝑢𝑘 =
1

√2
(1 +

ε𝑘+α(t)

(𝑡𝜖)′
)
1∕2

, 𝑣𝑘 =
1

√2
(1 −

ε𝑘+α(t)

(𝑡𝜖)′
)
1∕2

. The energy spectrum can be easily 

calculated as following, 

    |
(𝑡𝜖)′ − ε𝑘 − α(t) −�̂�

−�̂�∗ (𝑡𝜖)′ + ε𝑘 + α(t)
| = 0.                  (5) 

Through some simple operations, the final energy spectrum can be given as  

                          𝜖(𝑡) =
±

𝑡
∫ √(ε𝑘 + α(t′))2 + |𝛥|2𝑑t′
𝑡

0
 

          =
±

𝑡
∫ √(ε𝑘 + 2𝛾1𝜔 − 2𝛾1𝜔 cos(2𝜔t′) − 𝛾0𝜔𝑘𝑥 sin(𝜔t′))2 + |𝛥|2𝑑t′
𝑡

0
.        (6) 

The modified energy gap can be derived through the self-consistency equation 

�̂� = 𝑉 ∑ (1 − 2𝑓𝑘)𝜙1𝜙2
∗

𝑘 = 𝑉∑ (1 − 2𝑓𝑘)
�̂�

(𝑡𝜖)′𝑘  where 𝑓𝑘 is Fermi-Dirac distribution.  

By replacing the summation with an integration, the final form can be rewritten as 

            1 = 𝑁(0)𝑉 ∫
1

√(ε𝑘+α(t))
2+|𝛥|2

tan(
1

𝑡
∫ √(ε𝑘+α(t

′))2+|𝛥|2𝑑t′
𝑡
0

2𝑘𝐵𝑇
)𝑑ε𝑘

𝐸𝐷

0
,     (7)                                                       

where 𝐸𝐷 is Debye energy. The gap function determined from (7) is time dependent because the 

system is under a time dependent field. Due to the very short period of the field, the parameter α(t) 

in will be approximated by its time average over one cycle.  

 

 

 

FIG.1. The temperature dependent energy gap under various parameters E/ω. 

 

Figure 1 shows temperature dependent superconducting gap under various electrical field strength. 

In general by increasing𝐸 ∕ 𝜔 the energy gap narrows and the critical temperature decreases. The 
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gap approaches zero as the E/ω becomes greater than 0.082. This limiting value is not exact due to the 

time average used in our calculation. 

 

This can be explained as follows. The photon energy emitted by a terahertz field is about 

4.13567meV with 𝜔 = 1012Hz. This energy is smaller than the superconducting energy gap 2|𝛥| at 

0K which is only about 5meV. Hence one photon is unable to provide sufficient energy to break the 

Cooper pairs directly. However, the coupling energy induced by photon is about 0.8(𝐸 𝜔⁄ )2ε𝑘 which 

can effectively modulate the scope of the superconducting energy gap. This indicates that the 

superconducting energy gap can be overcome with multiple photons whose individual energy is less 

than the band gap. The coupling coefficient is proportional to the parameter (𝐸 𝜔⁄ )2. Obviously, this 

phenomenon is a typical nonlinear effect. 

 

Furthermore, the numerical results of energy gap can be used to calculate the number of 

superconducting carriers. By taking into account the thermal population of the quasiparticle 

excitations of the Cooper pairs (Bogoliubov quasiparticles), BCS theory predicts:17,18 

                  𝑛 = 𝑛𝑠(𝑇) = 𝑛𝑠(0) [1 −
2

𝑘𝐵𝑇
∫ 𝑓(𝜀, 𝑇)[1 − 𝑓(𝜀, 𝑇)]
𝜀𝐹

0
𝑑𝜀],          (8) 

where 𝑓(𝜀, 𝑇) = [1 + exp(√𝜀𝑘2 + |𝛥|2/𝑘𝑇)]
−1

. We obtain,                                                               

             𝑛 = 𝑛𝑠(𝑇) = 𝑛𝑠(0) [1 −
1

2𝑘𝐵𝑇
∫ sech2(√𝜀𝑘2 + |𝛥|2/2𝑘𝑇)
𝜀𝐹

0
𝑑𝜀],       (9) 

The Fermi sphere is shifted by K when electric field is applied. The energy difference of two electrons 

in Cooper pairs can be written as 

                   ε1 − ε2 =
ℏ2

2𝑚
(𝑘𝐹 + 𝐾)2 −

ℏ2

2𝑚
(𝑘𝐹 − 𝐾)2 = 2

ℏ2

𝑚
𝑘𝐹𝐾.         (10) 

If ε1 − ε2 is equal to the energy gap, the critical momentum of Fermi sphere K can be calculated by 

ℏ𝐾 = ∆
𝑚

ℏ𝑘𝐹
 . This leads to the critical velocity of superconducting carriers 𝑣𝑠 =

∆

𝑚𝑣𝐹
 .                        

The supercurrent density can be expressed as 

𝑗𝑠 = 𝑒𝑛𝑠𝑣𝑠 =
𝑒𝑛𝑠∆

𝑚𝑣𝐹
.                          (11) 

In the calculation, the Debye temperature is 330K (equivalent to 0.02844eV).19,20 Therefore, the 

critical temperature Tc and the thermodynamic parameter N(0)V are approximately 16.35K and 0.32 

respectively.21-23 We also choose the electric field used in experiment which is about 3 × 106V/m.9 
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From Eq.(7) we derive the critical point that the energy gap disappears to be 𝐸 ∕ 𝜔 ≈ 0.0817. we 

compute the variation of energy gap with changing of parameter 𝐸 ∕ 𝜔 from 0 to 0.0817. 

 

 

      

 

FIG. 2. The relation between ratio of superconducting carriers and energy gap (a), temperature (b), 

parameters(𝐸 𝜔⁄ )2(c). 

 

For superconducting carriers, the formula (9) agrees well with the numerical results of energy gap. 
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Figure 2(a) reveals that wider energy gaps can sustain more superconducting carriers under different  

𝐸

𝜔
 . The decrease of superconducting carriers becomes more rapid as the energy gap is reduced or the 

parameter 
𝐸

𝜔
is increased. In figure 2(b), the superconducting carriers drop to zero decaying faster as 

𝐸

𝜔
approaches its critical value. This is similar to the situation in the top sub-figure. For the critical 

parameter E/ω=0.082 the superconducting carriers concentration approaches to zero within 0.1K 

with the current model.  As  
𝐸

𝜔
  increases, the strength of the electric field rises quickly if the 

frequency is kept constant. This will dramatically increase the electron energy in Cooper pairs and 

reduce the superconducting energy gap. Conversely, more Cooper pairs will be destroyed due to 

excitation and therefore, producing a lower superconducting carrier density. Overall, larger electric 

field leads to reduction of energy gap and superconducting carrier concentration. The relation between 

superconducting carrier density and E/ωunder various temperatures is also displayed in figure 2(c). 

It reveals that the energy gap under lower temperature can sustain a larger E/ωvalue. 

In general, increasing the parameterE/ωbreaks the Cooper pairs in three aspects. First of all, the 

external electric field can increase the kinetic energy of Cooper pairs. If the field strength is strong 

enough, it can accelerate the pairs to the critical velocity which leads to pair breaking. This is mainly 

because electric field augments the kinetic energy of Cooper pairs. Secondly, the frequency also plays 

an important role in the process of pair breaking. From the wave function of a dressed electron, Eq.(4), 

one can observe that the superconducting phase is very different from the unperturbed superconductor. 

The superconducting phase contains a complex factor dependent on both the frequency and strength 

of the applied field. This complex phase factor destroys the phase stiffness which also greatly 

contributes to the pair breaking. Finally, increasing the frequency of the electric field leads to higher 

incident photon energies which can ensure that the electrons have a higher probability to exceed the 

energy gap. These three reasons together result in the change of carrier density. 

The electron-photon coupling dramatically modifies the energy gap and the maximum of critical 

current, as shown in figure 3(a). The relation between critical current and temperature shown in figure 

3(b) is consistent with the temperature-dependent energy gap given in figure. 1. 
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FIG. 3 the relation between current density and energy gap (a), temperature (b), 

parameters (𝐸 𝜔⁄ )2(c). 

 

Figure 3(c) shows the isothermal curve, shows the relationship between E/ωandcritical current 

density. It shows that the maximum current density appears at 
𝐸

𝜔
 and zero current emerges as 

𝐸

𝜔
→

∞  in each curve with higher temperatures showing zero current at smaller values of 
𝐸

𝜔
 . The 

expression of supercurrent also clearly indicates that the isothermal curve is monotone decreasing 
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with increasing the parameter 
𝐸

𝜔
 and temperature but increases with energy gap.  

From Eq. (11), one can see that the critical current only relates to two variables: carrier density 

and energy gap which in-turn are dependent on temperature. This can be understood by observing the 

𝛥 − 𝑇 phase diagram in Figure. 1. where the curves with larger parameters a 
𝐸

𝜔
 clearly show a lower 

critical temperature. This can be attributed to a larger 
𝐸

𝜔
 breaking more Cooper pairs. The higher 

electric field and frequency can break the bonding strength and phase stiffness of Cooper pairs which 

leads to lower superconducting carrier density. From current density, one can calculate the 

supercurrent by multiplying the factor 𝑒𝑁(0) ≈ 4 × 1010m-3. This result is reasonable in comparison 

with experimental data.9 

We also give a simple analysis on the imaginary conductivity from supercurrent. First, the current 

is proportional to the external electric field strength and inversely proportional to frequency. This 

implies that the conductivity decreases with increasing electric field strength9 and can be explained 

phenomenologically by the relationship between energy gap and supercurrent carrier density. When 

strength of the applied electric field rises, the velocity of superconducting carrier will increase. This 

implies that the energy gap only leaves a little space (in terms of energy gap) for the supercurrent to 

reach its critical value. But, the higher speed of the superconducting carriers means it will be more 

easily to transform into normal carriers and the decline in superconducting carrier leads to a decrease 

in supercurrent. Therefore, the conductivity drops continually as the electric field frequency increase.9 

When the frequency of photon rises, the supercurrent driven by photons will be converted into 

normal current under constant field strength. As the photon energy becomes higher, the Cooper pairs 

easily achieve their critical velocity after absorbing part of photon energy. The extra photon energy 

will further accelerate the Copper pairs. Then, the velocity of superconducting carriers will exceed the 

critical velocity which leads to the breakup of Cooper pairs. The decrease in superconducting carrier 

density leads to the decline in supercurrent and conductivity. Therefore, the conductivity drops 

continually as the frequency grows, which agrees with experimental measurements.9 

Our result shows a low frequency field can significantly suppress the superconducting state in the 

nonlinear regime. In linear regime, gap can be overcome by absorption of a photon with energy greater 

than the Cooper pair gap. The absorption rate in this process is independent of the field and the can 

only occur when the photon energy of greater than the gap. Nonlinear absorption occurs when the 
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field intensity is strong. In the nonlinear regime, Copper pairs can absorb multiple photons with energy 

lower than the gap energy. Because the absorption of n photons is proportional to the nth power of the 

electrical field, the gap becomes dependent on the field. This indicates that the superconductivity can 

be suppressed and a strong field at low frequencies. Like the temperature effect, the gap can approach 

zero under a strong field. In our model, this occurs when E/ω exceeds 0.082. This limiting field is only 

approximate due to the time average used in our calculation. In general, the nonlinear absorption 

reduces the gap size and the critical temperature, the temperature regime where the superconductivity 

is retained becomes smaller. 

In summary, we have qualitatively and quantitatively determined the effect of an intense field whose 

frequency is below the superconducting gap on the Copper pair breaking. Frequency and field 

dependent superconducting energy gap is obtained. The result is in reasonable agreement with 

experiments. Our result provides a basis for tuning superconductivity with a strong sub-gap electrical 

field. 

Acknowledgment: This work is supported by the Australia Research Council (DP160101747). 
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