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Abstract: We present a theoretical study of terahertz (THz) radiation induced by surface 
plasmon polaritons (SPPs) on a graphene layer under modulation by a surface acoustic wave 
(SAW). In our gedanken experiment, SPPs are excited by an electron beam moving on a 
graphene layer situated on a piezoelectric MoS2 flake. Under modulation by the SAW field, 
charge carriers are periodically distributed over the MoS2 flake, and this causes periodically 
distributed permittivity. The periodic permittivity structure of the MoS2 flake folds the SPP 
dispersion curve back into the center of the first Brillouin zone, in a manner analogous to a 
crystal, leading to THz radiation emission with conservation of the wavevectors between the 
SPPs and the electromagnetic waves. Both the frequency and the intensity of the THz radiation 
are tuned by adjusting the chemical potential of the graphene layer, the MoS2 flake doping 
density, and the wavelength and period of the external SAW field. A maximum energy 
conversion efficiency as high as ninety percent was obtained from our model calculations. 
These results indicate an opportunity to develop highly tunable and integratable THz sources 
based on graphene devices. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Terahertz (THz) radiation, which describes electromagnetic waves with frequencies in the 0.1–
30 × 1012 Hz range, is one of the most important types of radiation for light sources in the fields 
of sensing and imaging because of promising properties that include low photon energy, broad 
spectral information, and high penetration of nonpolar materials [1]. At present, THz 
technology is widely used in fields including semiconductor science [2], noninvasive flaw 
detection [3], substance identification [4], and security inspection [5]. A THz radiation source 
with broad bandwidth, high intensity and frequency tunability is highly desirable. Several 
approaches, including photoconductive antennas [6], optical rectification [7], air plasmons [8], 
quantum cascade lasers [9], and free-electron beam excitation have been used to produce THz 
wave emission. 

Among these approaches, free-electron THz radiation sources are of particular interest 
because of their high light radiation powers and continuously tunable radiation frequencies 
[10,11]. In contrast to traditional free-electron THz sources, in which a beam of electrons is 
accelerated to almost the speed of light c using an electron accelerator with large associated 
facilities requirements, excitation of THz radiation by a relatively low energy electron beam 
moving on top of graphene layers was recently proposed as a new THz source [11–16]. In this 
approach, surface plasmon polaritons (SPPs) with resonance frequencies in the 1–30 THz range 
are excited by a beam of moving electrons with speeds of less than 0.1c on top of graphene 
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these studies, the SAW fields were used to generate “dynamic” grating on the metal surfaces 
[29–31] or graphene layers [32–34] to interact with surface plasmon or light. 

In this work, we present a theoretical study of SAW-modulated THz radiation from SPP 
resonance in a graphene layer that has been excited using a beam of moving electrons. The 
system is illustrated schematically in Fig. 1(a). In our gedanken experiment, the graphene layer 
is aligned on an n-doped molybdenum disulfide (MoS2) flake with an odd number of layers that 
has strong piezoelectricity properties and forms a heterostructure with the graphene layers. The 
graphene layer and the MoS2 flake are laid on a quartz substrate with a dielectric constant of 

04.2ε  (where 0ε  is the permittivity of a vacuum). Application of an external SAW field to the 

MoS2 flake layer causes the charge carriers of this piezoelectric semiconductor to be 
periodically separated in space and results in the material having the dielectric response of free 
electrons with the same period. By summing the dielectric responses of the ions and the 
SAW-modulated free electrons [35], a periodic permittivity structure is realized dynamically 
on the MoS2 flake. In our system, this MoS2 flake with periodic permittivity acts as a periodic 
dielectric microstructure to fold the excited graphene SPP dispersion into the center of the BZ 
and this leads to matching of the momentums. 

To give an accurate description on the SAW-modulated THz radiations, we calculate the 
charge carrier distributions of the MoS2 flake under the SAW field by self-consistently solving 
a drift-diffusion model that was coupled with a time-dependent continuity equation and the 
Poisson equation. The periodic permittivity is then obtained using the Drude model with the 
calculated charge distributions. The SPP dispersion curves and the power intensity of the THz 
radiation are calculated thereafter by solving the Maxwell equations with the boundary 
conditions at the interfaces between regions I, II, and III, as illustrated in Fig. 1(b). The crossing 
points of the SPP dispersion curve with the electron beam are folded into the cone of the light 
line around the center of the BZ under the applied SAW field. This results in conservation of 
the momentum of the SPPs on graphene and the electromagnetic wave in a vacuum, and this 
leads to THz wave emission. We also show that both the frequency and the intensity of the THz 
radiation can be tuned by varying the chemical potential of the graphene layer, the doping 
density of the MoS2 flake, and the period and wavelength of the external SAW field. 
Additionally, a maximum conversion efficiency of as much as 0.9 can be obtained for the 
energy transition from the SPP resonance to THz radiation in free space. 

2. Theoretical methods 

2.1 Periodically distributed charge and dielectric response under the SAW field 

The spatiotemporal distributions of the electrons ( ),n z t  and the holes ( ),p z t  on the MoS2 

flake under the applied SAW field can be described using a 1D drift-diffusion model coupled 
with a time-dependent continuity equation [36,37] as follows: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2

, , , ,
, , ,B

p p p

p z t p z t p z t E z tk T
E z t p z t R z t

t q z zz
μ μ μ

∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂∂
 (1) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2

, , , ,
, , ,B

n n n

n z t n z t n z t E z tk T
E z t n z t R z t

t q z zz
μ μ μ

∂ ∂ ∂ ∂
= + + −

∂ ∂ ∂∂
 (2) 

where Bk  is the Boltzmann constant, T  is the temperature, q  is the electron charge, and 

nμ  and pμ  denote the electron and hole mobilities, respectively. The recombination rate 

( ),R z t  is expressed in the form of ( ) ( ) ( ), , ,RR z t C n z t p z t=  using the empirical 

recombination coefficient RC . The electronic field ( ),E z t  used in Eqs. (1) and (2) is the sum 
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of the piezoelectric field ( ) ,SAWE z t  that is induced by the external SAW field and the built-in 

field ( ),BE z t  that is induced by the spatially unbalanced distribution of the charge carriers. 

The built-in field can be calculated by solving the Poisson equation 

 
( ) ( ) ( ),

, ,B
D

E z t q
p z t n z t N

z ε
∂

= − +  ∂
 (3) 

with the dielectric permittivity ε and the donor impurity density DN , while the piezoelectric 

field caused by the SAW field is written as 

 ( ), sin[2 ]SAW SAW
SAW SAW

z t
E z t A

T
π

λ
 

= − 
 

 (4) 

with the SAW field wavelength SAWλ  and period SAWT . The intensity of the piezoelectricity 

field is described using the parameter SAWA . 

When the spatiotemporal charge distributions modulated using the external SAW field are 
calculated self-consistently by solving the coupled Eqs. (1)–(4) using the parameters given in 
Table 1, the dielectric response of the free charges ( ),r z tε  can be calculated approximately 

using the Drude model [38], given by 

 ( ) ( ) 2

2
0

,
, 1r

SAW

n z t q
z t

m
ε

ε ω
= −  (5) 

with the electron mass m  and the SAW field frequency SAWω . Because of the donor doping of 

the MoS2 flake, we only consider the dielectric response of the free electrons in the following. 
In principle, the mobile charge carriers in the graphene layer lead to an additional dielectric 
screening on the MoS2 flake. However, due to the much faster transport speed of the electron 
beam comparing to the SAW field, the effect of this additional screening can be viewed as a 
homogeneous reduction of the relative permittivity in MoS2 flake without breaking the periodic 
dielectric structures. Screening induced by the electron beam in graphene layer is therefore not 
taken into account in the periodic dielectric structures [39]. 

Table 1. Parameters Used in the Model Calculations 

Electron mobility  nμ  215
2 1 1 cm V s− −

 [40] 

Hole mobility  pμ  70
2 1 1 cm V s− −

 [40] 

Dielectric constant of MoS2 
ΙΙε  4.2 0ε  [41] 

Dielectric constant of quartz 
ΙΙΙε  4.2 0ε  

Recombination coefficient 
RC  3

2 1cm s−
 [42] 

Intrinsic semiconductor 
in  1.4561

6 210 cm−×  

2.2 SPP dispersion and THz radiation with periodic dielectric structure 

When an electron beam moves on top of the graphene layer, the electromagnetic fields in the 
vacuum region, the periodic permittivity region and the substrate (regions I, II and III, 
respectively, as labeled in Fig. 1) are written as 
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 (7) 

where 2 2
1 0 zk k k= − , 2 2

2 0 ,II zk k kε= −  and 2 2
3 0III zk k kε= − , where 0  k  is the 

wavevector in a vacuum,  zk  is the wavevector of the SPP modes in the z-direction, and IIε  

and IIIε  are the permittivities of regions II and III, respectively. The electromagnetic field 

coefficients 1A – 4A  are obtained by solving Eqs. (6) and (7) with the following boundary 

conditions: 

 ( )Ι ΙΙ ΙΙ Ι i ΙΙ| | | | |,i
z y d z y d z y d x x x y d g z y dE E E H H H Eσ= = = = =+ = − − =  (8) 

and 

 ΙΙ IΙΙ ΙΙ ΙIΙ
0 0 0 0,| | | |z y z y x y x yE E H H= = = == =  (9) 

The electromagnetic field  induced by the moving electron beam is then written as [11,15,16] 

 

( )

( )

02

         
2

c z

c z

ik y b d ik zi c
z

ik y b d ik zi
x

qk
E e e

q
H e e

ωε
− − −

− − −

 = −

 =

 (10) 

where 2 2
0c zk k k= −  and 0/zk vω= , where the speed of the electron beam is 0v . The 

electron conductivity of the graphene layer is then calculated using the Drude model as [16,43] 

 ( )
2

2 1
2 ln 1

c

Bk TcB
g

B

iq k T
e

k Ti

μμσ
π ω τ

−

−

  
 = +  + 

 +    
 (11) 

where the tunable chemical potential is cμ  and the electron lifetime is .τ  

Using the calculated electromagnetic field amplitude in region III ( 4A ) with the boundary 

conditions given in Eqs. (8) and (9), the power intensity of the THz radiation is then calculated 
as 

 ( ) 23
4

0

1
Re Re

2 2z z xP E H A
κω

ωε ε
ΙΙΙ ΙΙΙ

ΙΙΙ

 
 = − × =   

 
 (12) 

with 
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and 

 22 3

2 3

i dM e κε κ ε κ
ε κ ε κ

ΙΙΙ ΙΙ

ΙΙΙ ΙΙ

−
=

+
 (14) 

where iκ  (i = 1, 2 and 3) denotes the equivalent wavevector of ik  when folded into the center 

of the BZ. 
To obtain the dispersion relationship of the SPP resonance, we apply the following 

boundary conditions along with Eqs. (6) and (7): 

 ( )Ι ΙΙ ΙΙ Ι Ι,| | | |z y d z y d x x y d g z y dE E H H Eσ= = = == − =  (15) 

and 

 ΙΙ IΙΙ ΙΙ IΙΙ
0 0 0 0,| | | |z y z y x y x yE E H H= = = == =  (16) 

The SPP dispersion is then given as 

 2 1 0 1 2 2 023 ΙΙΙ 2

3 ΙΙΙ 2 1 0 1 2 2 0

II gi d

II II g

e κ κ ωε ε κ κ σ κ ωεε κ ε κ
ε κ ε κ κ ωε ε κ κ σ κ ωε

ΙΙ
+ +−

=
+ − −

 (17) 

where the averaged permittivity of region II is IIε . 

3. Results and discussion 

3.1 Periodic dielectric structures induced by the SAW field 

In Figs. 2(a) and 2(b), we plot the spatial distribution of the electron concentration and the 
corresponding dielectric response of the MoS2 flakes when doped with DN  = 1.0 × 1010 cm−2 

(black solid lines), 1.5 × 1010 cm−2 (red dash-and-dotted lines), and 2.0 × 1010 cm−2 (blue dashed 
lines). The amplitude, wavelength, and period of the applied SAW field were set at 8 kV/cm, 2 
μm and 2 ns, respectively, in these calculations. Because of the high in-plane carrier mobility of 
the MoS2 flake, the electrons and holes arrive at their equilibrium positions quickly, within 0.1 
ps after application of the SAW field. The charge carriers are subsequently transported 
“slowly” along the z direction with the propagation of the SAW. As shown in Fig. 2(a), the 
electrons are localized within SAW-induced periodic “valleys” of the conduction band 
minimum (CBM). The dielectric responses of these periodically distributed free electrons lead 
to periodic permittivity in these spaces, as indicated in Fig. 2(b). Comparison of Figs. 2(a) and 
2(b) shows that the “peak” permittivity values correspond to the “valleys” of the electron 
concentrations and vice versa, as indicated by Eq. (5). Additionally, we find that the dielectric 
screening effect decreases rapidly as the donor density of the MoS2 flake increases. A negative 
permittivity, which corresponds to the dielectric response of the metal, is obtained when the 
doping density is as high as 2.0 × 1010 cm−2. 
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Fig. 4. Dispersion curves of the SPPs (blue solid lines) along with the light line (blue dashed 
line) and the electron beam, which has a speed of 0.0096 c  (red dashed line). The crossing point 
of the electron beam and the SPP curve in the first BZ (highlighted in cyan) is labeled point A. 

As shown in Fig. 4, the radiation frequency is determined by the crossing point of the SPP 
dispersion curve and the electron beam. To tune this radiation frequency, we adjust the 
chemical potential of the graphene layer cμ  over the range from 0.35 to 0.55 eV, the MoS2 

flake doping density DN  from 1.0 × 1010 to 1.4 × 1010 cm−2, the SAW field period SAWT  from 

1.0 to 1.8 ns and the SAW field wavelength SAWλ  from 1 to 5μm. The SPP dispersion curves 

and their crossing points with the electron beam lines that were calculated using these 
parameters are presented in Figs. 5(a)–5(d). Because the size of the BZ varies with the different 
wavelengths of the SAW field, the x-axis in Fig. 5(d) is labeled with units of  2π / μm  rather 

than 2π / λ . Figure 5 shows that the slope of the SPP dispersion curves varies with changes in 
the chemical potential, the donor density, and the period and wavelength of the SAW field, and 
this forms a crossing region with the dispersion curve of the electron beam. We labeled this 
crossing region as the working region of the THz radiation and have highlighted it in green. 

In Figs. 6(a) and 6(b), we plotted the modulated THz radiation frequencies that were 
extracted from the working region by varying the wavelength and period of the SAW field. In 
this figure, the THz radiation frequencies were calculated using parameter sets of cμ  = 0.35 

eV and DN  = 1.2 × 1010 cm−2 (black lines), cμ  = 0.45 eV and DN  = 1.0 × 1010 cm−2 (red 

lines), cμ  = 0.45 eV and DN  = 1.2 × 1010 cm−2 (green lines), cμ  = 0.45 eV and DN  = 1.4 × 

1010 cm−2 (blue lines), and cμ  = 0.50 eV and DN  = 1.2 × 1010 cm−2 (cyan lines). The period 

and wavelength of the SAW field were fixed at 2 ns and 2 μm, respectively, in Figs. 6(a) and 
6(b) by varying the SAW field propagation velocity. Figure 6(a) shows that the radiation 
frequencies decrease from approximately 20 THz to a few THz when the SAW field 
wavelength increases from 0.5 to 5 μm. The red shift in the THz emission is the result of a 
reduction in the size of the BZ with increasing SAW field wavelength. In contrast to Fig. 6(a), 
we see a blue shift in THz emission with increasing SAW field period in Fig. 6(b). This blue 
shift can be understood from the curves in Fig. 5(c), where the slopes of the SPP dispersion 
curves increase with increasing SAWT  and thus shift the working region to a higher frequency 

range. Additionally, the blue shift in the THz radiation frequency with increases in the chemical 
potential of the graphene layer and the donor density in the MoS2 flake can be understood from 
the curves in Figs. 5(a) and 5(b), respectively. 
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Having considered modulation of the THz radiation via the SAW field wavelength, we now 
turn to the effect of the period of the SAW field on the THz emission. As Fig. 7(b) shows, the 
THz radiation intensity increases slowly when the SAW field period is less than 1.5 ns, and 
arrives at a peak value when SAWT  increases to approximately 1.8 ns. When the chemical 

potential cμ  and the doping density DN  are reduced, a SAW field with a long period is 

required to obtain the peak THz radiation value. In addition, the peak THz radiation values 
remain nearly constant for various doping densities and chemical potentials. As indicated by 
Eq. (5), the permittivity of the free electrons is proportional to the square of the SAW frequency 

2
SAWω  and is inversely proportional to the square of the SAW period 

2

2 2
 SAW

SAW

T
π

ω
 

=  
 

. We 

therefore linked the SAW field period with the permittivity IIε . The maximum THz radiation 

intensity value is obtained under the condition 
( )

| 0M
II II

z II

II

P
ε ε

ε

ε =

∂
=

∂
. To obtain the value of M

IIε

, a SAW field with a short period is required to balance the effects of the high doping density 

DN  and the chemical potential cμ . In Fig. 7(d), we have plotted the THz radiation intensity 

that was presented in Fig. 7(b) as a function of the radiation frequency by using the relationship 
between the radiation frequency and the SAW field period given in Fig. 6(b). Interestingly, Fig. 
7(d) shows that both the intensity and the frequency of the THz radiation remain nearly 
constant for the various chemical potentials and doping densities. This behavior can be 
understood as follows. In systems with fixed chemical potential, the SAW field period changes 

with the variation of the doping density DN  to keep the value of IIε  constant and this leads 

to the same radiation intensity and frequency indicated by Eqs. (12)–(14) and Eq. (17). For 
systems with different chemical potentials, a SAW field with a long period is required to 
balance the reduction of the chemical potential for the peak THz radiation intensity value. 

To estimate the efficiency of the conversion of the SPPs into THz radiation, we calculate 

the conversion efficiency 
( )
( )

z

e

P

P

ω
η

ω
=  using the power intensity of the THz emission ( )zP ω  

and the total energy of the electromagnetic field induced by the electron beam ( )eP ω . The 

electromagnetic field energy is calculated using the relationship ( ) 1
Re

2
i i

eP E Hω  = − ×  . 

The efficiencies of THz radiation conversion via tuning of the wavelength and the SAW field 
period are presented in Figs. 8(a) and 8(b), respectively. These conversion efficiencies are 
calculated using the parameter sets cμ  = 0.35 eV and DN  = 1.2 × 1010 cm−2 (black lines), cμ  

= 0.45 eV and DN  = 1.0 × 1010 cm−2 (red lines), and cμ  = 0.45 eV and DN  = 1.0 × 1012 cm−2 

(green lines) with a fixed SAW field period SAWT  = 2.0 ns and wavelength SAWλ  = 2.0 μm in 

Figs. 8(a) and 8(b). When we compare Figs. 7 and 8, we see the same tuning of both the 
conversion efficiency and the radiation intensity produced by variation of the wavelength and 
the period of the SAW field. These results indicate that the large THz radiation intensity values 
originate from the high efficiency of the energy conversion from the SPP resonance to the THz 
light. Additionally, the maximum conversion efficiency of as much as 0.9 presented in Fig. 8 
indicates the feasibility of THz radiation generation using SAW field-modulated SPP 
resonance in graphene-MoS2 devices. 
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by an external SAW field. The spatial periodic permittivity of the MoS2 flake is obtained using 
the Drude model with self-consistently calculated charge carrier distributions that are 
modulated using the SAW field. By folding the crossing point of the SPP dispersion curve with 
the electron beam line in the center of the BZ to converge the momentum of the SPPs and the 
electron beam within the cone of the light line, the transformation of the SPPs into THz 
radiation is achieved. The frequency and intensity of the THz radiation can be tuned by varying 
the MoS2 flake doping density, the chemical potential of the graphene layer, and the period and 
wavelength of the applied SAW field. Based on our calculations, a maximum conversion 
efficiency of as much as 0.9 is obtained for the energy transformation from the SPP resonance 
to the THz emission. Our results suggest an exciting opportunity for development of 
dynamically tunable THz sources based on SPPs in a graphene layer. 
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