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A bstract

A continuous tim e dynam ic system o f an unsteady state fugacity m odel is presented. Properties o f this m odel as 
stability are studied. In  o rder to evaluate numerical results a discretization preserving the stability and yielding the 
positivity property  o f  the m odel is used. Finally, algorithm s to determ ine the values o f  the fugacities, the concentrations 
and the dissipation tim e are given. The above study is illustrated w ith num erical results in a three com partm ental 
environm ental system. © 1998 Elsevier Science Inc. All rights reserved.
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1. Introduction

The therm odynam ic concept o f fugacity was introduced in 1910 for Lewis [1] in order to ex­
plain the behaviour of the real gases with respect to that o f ideal gases, in the study of free energy 
corresponding to an expansion process, isotherm, reversible and infinitesimal.

The fugacity is a therm odynam ic m agnitude related to the chemical potential and characterized 
by the leak trend o f a substance in a com partm ent [2,3]. The fugacity express the chemistry ac­
tivity o f a substance and has been applied mainly in therm odynam ic problems implicating 
equilibrium among phases, especially in com putations encountered in chemical separation pro­
cesses such as liquid extraction, distillation and adsorption.

M athem atical models based on the therm odynam ic theory of the fugacity are outlined fre­
quently by a linear system of equations describing the bulk balance o f a chemical substance in an 
ecosystem constituted by compartm ents. Thus, when all fugacities are equal and constant in all 
com partm ents the concentrations are evaluated directly, this case corresponds to  the well-known 
‘Level I Fugacity M odel’ or ‘Level II Fugacity M odel’ if in addition there are reactions and 
advections (see [4]). ‘Level III Fugacity M odel’ supposes tha t the distribution o f the substance is 
not in equilibrium and that each fugacity can have different values, which are determined by a

C orresponding au th o r. Tel.: +34 96 387 7660; fax: +34 96 387 7669: e-mail: rb ru@ m at.upv .es.

0307-904X/98/S 19.00 © 1998 Elsevier Science Inc. All rights reserved.
PI I : S 0 3 0 7 - 9 0 4 X ( 9 8 )  1 0 0 4 7 - 1

mailto:rbru@mat.upv.es


486 R. Bru el al. / Appl. Math. Modelling 22 (1998) 485-494

linear system of equations when there are reactions, advections, emissions and transfers o f the 
substance among com partm ents in stationary state [5,6]. In addition, there is another model 
describing the unsteady state behaviour o f a substance in the environm ent, which perm its to 
observe substances whose emissions vary with the time and to determine the time in which the 
system reaches the steady state. This last model, known as ‘Level IV Fugacity M odel’, usually is 
described by a system o f differential equations (3) (see [7]).

In this work, we will present a proposal of the m ultiphase fugacity environm ental ‘Level IV’ 
model for a ecosystem constituted by n com partm ents where the fugacities change with the time in 
response to m  emissions and they are determined by a continuous time dynamic control system 
describing the total bulk balance o f the substance.

Some non-stationary models for the study of the kinetic o f a substance in the environm ent have 
been proposed for the analysis o f the concentrations changing with the time [8-10]. But, it seems 
tha t none o f them  presents a m athem atical formalism through control theory.

The m athem atical unsteady state fugacity model o f a substance in an ecosystem for continuous 
time control system permits to analyse the asymptotic stability and the non-negativity o f the 
corresponding discrete system. M ore precisely, we will see tha t the fugacity model can be solved as 
a positive discrete time control system obtained by discretizing the continuous time control 
system. Further, we will prove tha t the continuous and the discrete time control systems are both 
asymptotically stable and that the discrete system is non-negative. The numerical algorithms 
presented indicate tha t this control model turns out to be easy to compute. Finally, we illustrate 
our model by a numerical example studying the insecticide fenitrothion in the fugacity m ultiphase 
model constituted by air, water and bottom  sediment.

2. Notations and definitions

The distribution o f a small quantity o f a substance between two com partm ents denoted by the 
indices i and j ,  respectively, under constant tem perature and pressure, yields constant concen­
tration ratios between these two compartm ents. The partition coefficient ky of the substance 
between two com partm ents is then defined as the quotient CJCj o f the concentrations of the 
substance in each one o f the compartm ents.

The relationship between the fugacity and the concentration is given by C = Z f  where C is the 
concentration in mol m “3, / i s  the fugacity given in Pascal (Pa) and the constant of proportionality 
Z  is the capacity of fugacity in mol m -3 P a-1. The estimate o f the capacity o f fugacity Z, of a 
substance in a com partm ent i depends on the nature of the com partm ent and o f the partition 
coefficient o f the substance in this compartm ent.

F or example, in the atm osphere the fugacity of a substance is equal to  the partial pressure, the 
one that can be expressed in terms of the concentration in the air Ca and by the equation o f the 
ideal gases given by

/a  =  CaRT°. (1)

where ^  =  8.314 x Pa m 3 m ol-1 is the gas constant and 7° is the absolute tem perature. By ex­
pression (1), the air capacity o f fugacity is Z a =  1 ART0.

The fugacity o f a substance dissolved in water is approxim ated by its partial vapour pressure, 
the one that is proportional to its concentration in water, tha t is,

/w =  # C W, (2)
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where H  is the H enry’s constant in Pa m 3 mol 1. Consequently, the capacity o f fugacity of water is 
Z w =  \/H .

For the other com partm ents, the capacity of fugacity is expressed as the product o f the ca­
pacity o f fugacity in water or in air, by using the density o f the com partm ent and the adsorption 
coefficient [6,11]. F o r example, for the bottom  sediment the capacity o f fugacity is evaluated by 
expression Z s =  k dpsZ w, where k d is the adsorption coefficient and ps in kg m “3 is the density o f the 
dry soil, consequently, the fugacity or concentration in this com partm ent can be calculated by 
equation

Cs = Ps Zv„/s-
In an unsteady state, the fugacities are functions o f time and they can be determined as a 

system of ordinary differential equations, describing the total bulk balance during an infinitesimal 
time interval d t. In this balance, the storage capacity o f a substance in a com partm ent i is given by 
the product o f its volume Vt and by its capacity of fugacity Z,.

The biological and chemistry reactions are supposed to be a first order process where the rate 
o f reaction is rt in m in-1 and the reaction com ponent for each com partm ent is r ^ Z , .

W hen there is a gradient o f fugacity between two com partm ents i and j  it results a flow o f the 
substance in the direction of this gradient. The flow o f the substance is the product of the dif­
ference (ft -  f j ) by the transfer dy between these two com partm ents. The coefficients o f trans­
ference dy and djt are equal and positive. The differences (/j- -  f )  are positive or negative 
depending on the direction o f the transfer determined by the relative values o f f  and f .

The advection in a  com partm ent i can be introduced in the model as a first order process. In 
fact, the advection can be considered as a constant speed defined as the algebraic sum between the 
entry flow G,CBi and the exit flow G,Cj or in terms of fugacity as G iZ f ,  where G, is the m atter flow 
in m 3 m h r 1 entering into com partm ent i with concentration CBi and leaving this com partm ent 
with concentration Q .

The emissions in com partm ent i, as a function o f the time in mol m in-1, are denoted by 
Ej = Ei(t). In this position we are supposing that there is no t any effect o f dilution, that is, the 
volume Vj o f  each one of the com partm ents is constant.

3. Fugacity model of a continuous and discrete time system

Given a com partm ent i and a com partm ent j  there exist the following excluding possibilities for 
transferring substance between these two compartments: (a) there is a contact area between 
com partm ent i and com partm ent j ,  in this case, there is a positive gradient while the equilibrium 
of the fugacities will no t be reached among these two com partm ents; (b) there is no contact area 
between com partm ent i and com partm ent j ,  consequently, there is no t any possibility o f a direct 
transfer o f the substance among these two compartm ents. These two possibilities are fundam ental 
in the position and in the analysis o f the fugacity model for a continuous time control system.

Let / ,  — { /€  N: the set o f indices i ^  j  o f com partm ents in which there exists a contact area 
with com partm ent /}-

The variation rate o f the fugacity in the time, for each one o f the com partm ent, is calculated 
using the total bulk balance, which is described by the following system o f ordinary differential 
equations:

VtZt ~  =  E, +  GiCm +  Y d f i f j  ~ ( G‘Z‘ + r‘ V‘z > + Y f l j  J f" ^
j€J, \  jeJ: J

where f  =  f { t ) ,  with f ( t )  = f f ,  for all i =  1 ,2 , . . . ,  n.
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The system expressed by Eq. (3) can be written as the following continuous time control 
system:

f  =  Af +  Bu,

where f  =  f(i) is the fugacity derivative vector o f com ponents [/}] =  d f /d t .

GiZj + riVjZi + Y2jeJi dij

(4)

A — [a,y] —
&ki ' Vlzl if k  =  i,

&ki
dki
v,z, in e J l'

. a/a =  0  if k £ J i
is the n x  n state m atrix, f  =  f(f) is the state vector o f fugacity o f com ponents [/]} = f ( t ) ,  B =  I„ is 
the identity m atrix o f order n and u =  u(7) is the control vector o f components
[«,] = (Ei + GiCxyViZi.

3.1. Example

F or a simple ecosystem constituted by air ( /=  1), water (i =  2) and bottom  sediment (z' =  3), 
system (3) is determined by the system of ordinary differential equations:

V\Z\ =  E\ +  G\CB\ + d2\ f i  — (d\2 +  G\Z\ +  r\ V \Z \)f\ ,

VlZl = Eo G2CB2 +  d \lf\ +  <̂32/3 {d2\ +  2̂3 +  G1Z2 +  t 2 V2Z2) f2,

P3Z3 =  £3 +  G^Cb3 +  djifl — (^32 +  G3Z3 +  ^3 ^Z^fs

with the initial conditions /i(0 )  =  / f \  f 2{0) =  / 2° and f 3(0) =  / 3°, or by the continuous time 
control system (4) where the matrices A and I3, are respectively,

A -

— (G\Z\ +  d\i + r\ V\Z\)
V\Z\
d\2

W 2

0

a 21

V &
— {G2Z2 +  Ai -I- d2i +  r2 V2Z2 ) 

V2Z 2

2̂3
W i

0

i/32

V&2
— (G 3 Z 3  +  d^2 +  r3V3Z3)

'1  0 O'
I3 =  0 1 0 

_0 0 1
The vectors f  =  f(i), f  =  f(i), u =  u(i), fo =  f(0) are, respectively,

f  = d /i d/ 2  d/ 3 

d t di d t f «  =  [ /H 0 /2 ( 0 /3 « ] T,

u(0 =  [{El + G\CB\)/V \Z \ (E2 +  G2CB2)/V 2Z2 ( £ 3  +  G2CBi)/V 3Z3]T, and f(0) =  [f? . In this
example J\ = {2}, J2 =  { 1; 3} and J\ =  {2}.
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Now we return to Eq. (4) which admits the following integral solution in [0; t\ (see [12]): 
t

f(f) =  eA'f(0) +  J e A^ \ u ( t )  dr. (5)
o

Let m  be the num ber o f emissions and let T  be the time interval between each emission. 
Discretizing Eq. (5), see [12] for details, for each t =  kT , where k  =  0 , 1 , 2 , . . . ,  (m — 1) we have

f((*  +  l ) r )  =  W(T) f {kT)  +  H (T)u(kT), (6)
where

T

w (T) =  eAT, H(T)  = J e Ml n dx, x =  T - t .
o

W hen the time interval T  between each emission is fixed, the matrices W(7~) and H (I )  are 
constants. We are supposing that the emissions El =  E ^t)  and consequently the vectors u =  u(/) 
are constant in a given interval between any two consecutive instants o f emissions, that is, 
u =  u(£7), for k T ^ t <  kT + T.

Thus, if the emissions E ^kT )  for each com partm ent i are known, for the corresponding times 
k = 0 , 1 , 2 , . . . ,  (m — 1), and consequently the control vectors u(kT), then, it is possible to compute 
the fugacities and the respective concentrations in these times for each one o f the com partm ents 
i = 1 , 2 , . . .  ,n,  using Eq. (6). N ote that u(i) =  0, for all t ^  m T, and in this case system (4) is 
determined by

f((Jfc +  1)T) =  W(T) f ( kT)  for k ^ m .  (7)

We will see below that the discretization (6) has the property o f m aintaining the stability of 
Eq. (5).

In the model given by Eq. (4) and the corresponding solution (5), or alternatively the dis­
cretized model (6) we suppose that: (i) the volume o f each com partm ent is constant, (ii) the 
emissions are known for each time k T  in the time interval [0; (m  -  1)7] and (iii) for the times 
outside o f that interval the emissions are null.

4. Analysis of the model

In this section we deal with some properties o f our model. F irst we study the stability o f the 
continuous time control system described by the m atrix equation (4). Later, we will prove that 
the discrete model (6) is asymptotically stable. In addition, since we are modelling fugacities, it 
is im portant to know the non-negativity of the discrete time control system given by matrix 
equation (6) (i.e. all matrices o f (6) has only non-negative entries). In the following theorems we 
will use the terminology, corresponding to non-negative matrices used by Berman and 
Plemmons [13],

Theorem 1. The discrete control system defined by the pair (W( 7), H(7")) is a positive system, that is, 
the components o f  the matrices W(7~) and H(T) are non-negatives.

Proof. The m atrix A is essentially non-negative since there exists a constant <5 > 0 sufficiently 
large, for example 5 > m axi=12 „[a,-,-], such that (A+<5I) > 0. Then, by Theorem  (3.12) of [13], 
W(T)  = eAT 0. By the m onotony o f the integral we have H(T) =  dr ^  0. □
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As a practical consequence o f this theorem  one can deduce that if we apply non-negative 
controls and the initial conditions are non-negative then we always obtain non-negative state 
vectors that in our problem  are fugacities. In fact, this is the definition o f positive discrete time 
control systems, and this is equivalent to the matrices W(T) and H (7) are non-negatives.

W ith the following theorem  we can assure that system (4) is stable because the m atrix A has 
eigenvalues with negative real parts (see [14]).

Theorem 2. Let A be the m atrix o f  system (4),  -A  is positively stable, that is, its eigenvalues have 
positive real part.

Proof. First, by the definition o f the problem  all param eters dtj are positive. Furtherm ore, it is 
observed that

then -A  is strictly diagonal dom inant. Since -A  has positive diagonal elements then the Ge- 
rschgorin’s disks are in the positive semiplane. From  both properties we deduce that the eigen­
values o f -A  have positive real part and consequently - A  is positively stable. Then A has 
eigenvalues with negative real part. In addition A is no t singular. □

The discretization (6) m aintains the stability of the original continuous time control system, 
then the point where all fugacities vanish is asymptotically stable for system (6). By completeness, 
we give the short p roo f of this result for our particular matrices.

Theorem 3. The discrete positive control system  (W(7), H (7)) is asymptotically stable, that is, the 
point where all fugacities are null is an equilibrium stable point.

Proof. If  a, are the eigenvalues of A then, e'-,r are the eigenvalues of W (7). By Theorem  2 the 
eigenvalues A,- have negative real part, then we have |e/-, r | <  1 and therefore, | | W ( —» 0, when 
p  —> +oo. Hence the system (W (7), H (7)) is asymptotically stable. □

5. Algorithm to compute the settling time

To determine the needed time to get low concentrations in all com partm ents, we have to 
compute the time for which the fugacities vanish, after the emissions finish. This time is called 
fugacity settling time. The fugacity  settling time is defined as the time required for the fugacity 
values stay within a range o f the final value. The settling time can be conceived as the time re­
quired so that the system arrives and stays within a range o f the equilibrium point. It can be 
computed by the following algorithm  whose convergence is guaranteed by Theorem 3.

The com putation o f the matrices W (7) and H(T) when the m atrix A is known can be ac­
complished by the m athem atical scientific package M ATLAB [15], which calculates the expo­
nential o f a matrix through Pade’s approxim ations with the function expm using the comm and 
[W,H] =  c2d (A,I„,7).

Algorithm 1 (A pseudo-code algorithm  to compute the settling time).
Begin
Com pute matrices W(T) and H(T) by: [W,H] =  c2d (A,I„,7)
For k =  0 until (m -  1) calculate
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f((k+ l)T ) = W(T) f (kT)  + U (T)u(kT) 
for i =  1 until n compute 

Q (kT ) =  Z jfi(kT)
Let tol > 0 be a tolerance o f the origin.
F o r k  > m  compute 

i((k+ l)T ) =  W (T )f(kT )  + H (7)u(J) 
until [|f(k + 1)71| ^  tol 

for i=  1 until n compute 
Ci{{ k + \)T = Z if i{(k+ l)T)

End;

The first value o f k s =  k , for which the inequality o f Algorithm  1 is satisfied, determines the 
settling time ts = k sT  for the tolerance tol. The value o f tolerance can be established as a function 
o f the limits o f chrom atography detection o f the concentrations o f the substance in the com ­
partm ents.

6. Algorithm to compute the dissipation time

By Eq. (7), for each com partm ent, it is possible to com pute the instant time for which the value 
of the concentration reducedp%  o f the first value o f the concentration after the emissions finish. 
This time is called the dissipation time in the com partm ent i, denoted by fp and calculated by the 
following procedure:

Algorithm 2 (A pseudo-code algorithm  to compute the dissipation time).
Begin
Com pute matrices W (T) and H (7) by: [W,H] =  c ld  (A,I„,7)
F or k  ^  m  compute 

f((&+1) 7) =  W ( T)f(kT)
Ci(kT) =  Z f ( k T )  

until C,(kT) {(100 -/?)/100  ■ Q ((m  -  1 )T j 
End;

The first value o f k p — k , for which the inequality is satisfied, determines the dissipation time at 
level p % , fv — kpT  for the com partm ent i.

7. Numerical simulation

We have selected the insecticide fenitrothion to verify our model. Fenitro thion is an insecticide 
frequently used in crops and forest protection. For that, we have considered a hypothetical three 
com partm ents environm ental system consisting o f air, water and bottom  sediment with volumes 
o f 1.0 x  106, 1.0 x  104 and 1.5 x HP m 3, respectively. The sediment density and content volu­
metric o f carbon are, respectively, 1.5 x 103 kg m ~3 and 4.0%. In  this system, we apply in the air 
one mole o f the insecticide fenitrothion during 60 min, tha t is, E \(k) — 1/60 and E2(k) = E^ik) =  0 
for k  =  0 , 1 , 2 , . . . ,  59. According to Z itko and McLeese [16], the constant rate o f disappearance in 
minutes of the fenitrothion in air, water and bottom  sediment are respectively 4.76 x 10-4, 
3.80 x 10“4 and 2.85 x 10-5. H enry’s constant for the fenitrothion (see [17]) is 6.65 x 10-2 Pa m 3 
m ol-1. The coefficient o f adsorption k A for this substance in this bo ttom  sediment is 27 x 10-3 m 3
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Fig. 1 . Fugacities o f  fenitro th ion in  air, w ater and bo ttom  sedim ent before and  after the emissions, obtained  by Al­
gorithm  1 .

kg-1. The value o f T  and tol are 1 min and 1.0 x 10_u Pa, respectively. The exit advection flow in 
air, water and bottom  sediment are, respectively 6.87 x 102, 5.49 and 6.20 x 10-2 m 3 m in-1.

W ith these data we wish to  evaluate, during and after the emissions, the values o f the con­
centration and the fugacity o f fenitrothion in the air, water and bottom  sediment and then to 
determine the needed time to stabilize the fugacity, that is the fugacity settling time. In this ex­
ample the air is the only one com partm ent receiving emissions and we can consider that the 
advections are null for all com partm ents.

1,OE+Ol

1,OE+00

1,0E-01

l,0E-02

i L,0E-fl3

e l,0Er04
c

g
l,0E-05

ao 1,0E~06
o
o

vj l,0E-07

I,0E-08

l,0E-09

1,0E-10

1,0E-U

Time (m inutes)

■♦•Air “hW ater rh  Sediment

Fig. 2. C oncentrations o f fenitro th ion  in air, w ater and bottom  sedim ent before and  after the emissions, obtained by 
A lgorithm  1.



494 R. Bru et al. I Appl. Math. Modelling 22 (1998) 485—494

References

[1] G .N . Lewis, The law o f physico-chem ical change, Proc. Am. A cad. Sci. 34 (1901) 49.
[2] D . M ackay, S. Paterson, C alculating fugacity, Environ. Sci. Technol. 15 (1981) 1006-1014.
[3] D. M ackay, S. Paterson, Fugacity revisited, Environ. Sci. Technol. 16 (1982) 654A -660A.
[4] J. K oprivnjak, L. Poissant, E valuation and application o f  a  fugacity m odel to  explain the partitioning of 

contam inants in the St. Lawrence river valley, W ater, A ir and Soil Pollution 97 (1997) 379-395.
[5] S. Paterson, D. M ackay, The Fugacity C oncept in E nvironm ental M odelling, in: O. H utzinger (Ed.), The 

H andbook of E nvironm ental Chem istry, vol. 2, P art C, Springer, Berlin, 1985, pp. 121-145.
[6 ] J. Cam pfens, D. M ackay, Fugacity-based model o f PCB bioaccum ulation in complex aquatic food webs, Environ. 

Sci. Technol. 31 (1997) 577-583.
[7] D . M ackay, M ultim edia E nvironm ental Models: The Fugacity A pproach, Lewis Publishers, A nn A rbor, M I, 

1991, p. 257.
[8 ] Y. Cohen, A.P. R yan, M ultim edia modelling o f environm ental transport: T richloroethylene test case, Environ. 

Sci. Technol. 19 (1985) 412-417.
[9] Y. M atoba, J. O hnishi, M. M atsuo, Indoor sim ulation o f insecticides in broadcast spraying, Chem osphere 30 

(1995) 345-356.
[10] W. Stiver, D. M ackay, L inear superposition in modelling con tam inant behaviour in aquatic systems, W ater 

R esearch 29 (1995) 329-335.
[11] E. Bacci, Ecotoxicology o f O rganic C ontam inants, Lewis Publishers, Boca R aton , F lorida, 1994, p. 165.
[12] K. O gata, D iscrete-Tim e C ontrol Systems, Prentice-Hall, Englew ood Cliffs, NJ, 1995, p. 745.
[13] A. Berm an, R .J. Plem m ons, N onnegative M atrices in the M athem atical Sciences, Classics in A pplied 

M athem atics, SIA M , Philadelphia, PA, 1994, p. 340.
[14] D .G . Luenberger, In troduction  to D ynam ic Systems, Wiley, New Y ork, 1979, p. 446.
[15] M athW orks Inc., The S tudent E dition o f  M ATLAB, Prentice-Hall, Englew ood Cliffs, N J, 1992, p. 820.
[16] V. Z itko, D .W . McLeese, E valuation  o f hazards o f pesticides used in forest spraying to the aquatic environm ent, 

C anadian  Technical R eport o f  Fisheries A quatic Sciences, G overnm ent o f C anada, December, 1980. p. 21.
[17] O. Yenigiin, D. Sohtorink, C alculations with the level II fugacity m odel for selected organophorus insecticides, 

W ater, A ir and Soil Pollution 84 (1985) 175-185.
[18] K. K aw ata, A. Y asuhara, D eterm ination  o f fenitrothion and  diazinon in air. Bull. E nviron. C ontam . Toxicol. 52 

(1994) 419-424.
[19] N ational Research Council o f  C anada, Fenitrothion: The effects o f its use on environm ental quality and its 

chem istry, A ssociate Com m ittee on Scientific Criteria for E nvironm ental Quality, N R C C  No. 14104, 1975, p. 162, 
O ttaw a, Canada.


