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Abstract

A continuous time dynamic system of an unsteady state fugacity model is presented. Properties of this model as
stability are studied. In order to evaluate numerical results a discretization preserving the stability and yielding the
positivity property of the model is used. Finally, algorithms to determine the values of the fugacities, the concentrations
and the dissipation time are given. The above study is illustrated with numerical results in a three compartmental
environmental system. © 1998 Elsevier Science Inc. All rights reserved.
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1. Introduction

The thermodynamic concept of fugacity was introduced in 1910 for Lewis [1] in order to ex-
plain the behaviour of the real gases with respect to that of ideal gases, in the study of free energy
corresponding to an expansion process, isotherm, reversible and infinitesimal.

The fugacity is a thermodynamic magnitude related to the chemical potential and characterized
by the leak trend of a substance in a compartment [2,3]. The fugacity express the chemistry ac-
tivity of a substance and has been applied mainly in thermodynamic problems implicating
equilibrium among phases, especially in computations encountered in chemical separation pro-
cesses such as liquid extraction, distillation and adsorption.

Mathematical models based on the thermodynamic theory of the fugacity are outlined fre-
quently by a linear system of equations describing the bulk balance of a chemical substance in an
ecosystem constituted by compartments. Thus, when all fugacities are equal and constant in all
compartments the concentrations are evaluated directly, this case corresponds to the well-kilown
‘Level I Fugacity Model’ or ‘Level II Fugacity Model’ if in addition there are reactions and
advections (see [4]). ‘Level III Fugacity Model’ supposes that the distribution of the substance is
not in equilibrium and that each fugacity can have different values, which are determined by a
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linear system of equations when there are reactions, advections, emissions and transfers of the
substance among compartments in stationary state [5,6]. In addition, there is another model
describing the unsteady state behaviour of a substance in the environment, which permits to
observe substances whose emissions vary with the time and to determine the time in which the
system reaches the steady state. This last model, known as ‘Level IV Fugacity Model’, usually is
described by a system of differential equations (3) (see [7]).

In this work, we will present a proposal of the multiphase fugacity environmental ‘Level IV’
model for a ecosystem constituted by » compartments where the fugacities change with the time in
response to m emissions and they are determined by a continuous time dynamic control system
describing the total bulk balance of the substance.

Some non-stationary models for the study of the kinetic of a substance in the environment have
been proposed for the analysis of the concentrations changing with the time [8-10]. But, it seems
that none of them presents a mathematical formalism through control theory.

The mathematical unsteady state fugacity model of a substance in an ecosystem for continuous
time control system permits to analyse the asymptotic stability and the non-negativity of the
corresponding discrete system. More precisely, we will see that the fugacity model can be solved as
a positive discrete time control system obtained by discretizing the continuous time control
system. Further, we will prove that the continuous and the discrete time control systems are both
asymptotically stable and that the discrete system is non-negative. The numerical algorithms
presented indicate that this control model turns out to be easy to compute. Finally, we illustrate
our model by a numerical example studying the insecticide fenitrothion in the fugacity multiphase
model constituted by air, water and bottom sediment.

2. Notations and definitions

The distribution of a small quantity of a substance between two compartments denoted by the
indices i and j, respectively, under constant temperature and pressure, yields constant concen-
tration ratios between these two compartments. The partition coefficient k; of the substance
between two compartments is then defined as the quotient C;/C; of the concentrations of the
substance in each one of the compartments.

The relationship between the fugacity and the concentration is given by C= Zf where C is the
concentration in mol m~3, f'is the fugacity given in Pascal (Pa) and the constant of proportionality
Z is the capacity of fugacity in mol m= Pa~!. The estimate of the capacity of fugacity Z; of a
substance in a compartment i depends on the nature of the compartment and of the partition
coefficient of the substance in this compartment.

For example, in the atmosphere the fugacity of a substance is equal to the partial pressure, the
one that can be expressed in terms of the concentration in the air C, and by the equation of the
ideal gases given by

f;l:CaRTO: (1)

where R =8.314 x Pa m® mol™! is the gas constant and 7° is the absolute temperature. By ex-
pression (1), the air capacity of fugacity is Z, = 1/RT°.

The fugacity of a substance dissolved in water is approximated by its partial vapour pressure,
the one that is proportional to its concentration in water, that is,

fu = HC,, (2)
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where H is the Henry’s constant in Pa m® mol~!. Consequently, the capacity of fugacity of water is
Z= U1, ‘

For the other compartments, the capacity of fugacity is expressed as the product of the ca-
pacity of fugacity in water or in air, by using the density of the compartment and the adsorption
coeficient [6,11]. For example, for the bottom sediment the capacity of fugacity is evaluated by
expression Z; = kqpsZw, where k4 is the adsorption coefficient and p; in kg m~3 is the density of the
dry soil, consequently, the fugacity or concentration in this compartment can be calculated by
equation

= By 2o s

In an unsteady state, the fugacities are functions of time and they can be determined as a
system of ordinary differential equations, describing the total bulk balance during an infinitesimal
time interval dz. In this balance, the storage capacity of a substance in a compartment i is given by
the product of its volume V; and by its capacity of fugacity Z;.

The biological and chemistry reactions are supposed to be a first order process where the rate
of reaction is ; in min~! and the reaction component for each compartment is r;V;Z;.

When there is a gradient of fugacity between two compartments i and j it results a flow of the
substance in the direction of this gradient. The flow of the substance is the product of the dif-
ference (f; — f;) by the transfer d; between these two compartments. The coefficients of trans-
ference d; and d; are equal and positive. The differences (f; — f;) are positive or negative
depending on the direction of the transfer determined by the relative values of f; and f.

The advection in a compartment i can be introduced in the model as a first order process. In
fact, the advection can be considered as a constant speed defined as the algebraic sum between the
entry flow G;Cp; and the exit flow G;C; or in terms of fugacity as G;Zf;, where G; is the matter flow
in m*® min~! entering into compartment i with concentration Cp; and leaving this compartment
with concentration C;.

The emissions in compartment i, as a function of the time in mol min~', are denoted by
E;=E{(¢). In this position we are supposing that there is not any effect of dilution, that is, the
volume V; of each one of the compartments is constant.

1

3. Fugacity model of a continuous and discrete time system

Given a compartment i and a compartment j there exist the following excluding possibilities for
transferring substance between these two compartments: (a) there is a contact area between
compartment i and compartment j, in this case, there is a positive gradient while the equilibrium
of the fugacities will not be reached among these two compartments; (b) there is no contact area
between compartment i and compartment j, consequently, there is not any possibility of a direct
transfer of the substance among these two compartments. These two possibilities are fundamental
in the position and in the analysis of the fugacity model for a continuous time control system.

Let J;={j € N: the set of indices i # j of compartments in which there exists a contact area
with compartment i}.

The variation rate of the fugacity in the time, for each one of the compartment, is calculated
using the total bulk balance, which is described by the following system of ordinary differential
equations:

vz Y _E, - ViZ;
Zi— = Ei+ GiCoi+ Y dufy— | GZi+rViZi+ Y dy | fin (3)

dr JeJi JEJi

where f; = fi(¢), with f;(¢) = f0, foralli=1,2,...,n.
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The system expressed by Eq. (3) can be written as the following continuous time control
system:

f = Af + Bu, (4)
where f = f(¢) is the fugacity derivative vector of components [f,] =df;/ds,

,

_<GiZi+riV;Zi+ZjEJidij>
A= [ay] = d -
— i S
Qp = I/;Zl lkaJZ,
| @ =0 if k & J;

is the n X n state matrix, f = f(¢) is the state vector of fugacity of components [f;] = f;(¢), B=1, is
the identity matrix of order n» and u=u(f) is the control vector of components
[w)] = (Ei + G:Cs:)/ ViZ:.

3.1. Example

For a simple ecosystem constituted by air (i=1), water (i=2) and bottom sediment (i=3),
system (3) is determined by the system of ordinary differential equations:

d

"z % =E1 + G\Cp + dorfo — (dia + GiZy + nVIZi) N1,
df

Wz, ({ = Ey + Go.Cr + dinfi + daofs — (do1 + dos + GoZy + 1 W25) fo,
dfs

%Z“di Ez +G3Cps + d?3f7 — (ds2 + G3Z3 + 3 WBZs)f3

with the initial conditions fi(0) = f?, /2(0) = /3 and f3(0) = f2, or by the continuous time
control system (4) where the matrlces A and I;, are respectively,

—(G1Zy +dp +nVZ)) da 0 ]
"z, "z
A= ds —(Ga2Zy + dyy + do3 + 1 h2) dy
A hZs %2 ’
0 da3 —(G3Z3 + dsy + r3V3Z3)
L V3Zs V3Zs i
[1 0 0
L=|0 1 0
0 0 1

The vectors f = f(z), f = f(¢), u = u(z), f,=1£(0) are, respectively,

B
_ [% = %} L0 =160 A0 LT,

W) = [(E1 + GiCa1)/ViZy (B2 + GyCr) [ VaZz (E3 + G3Ci3)/ V325", and £(0) = [£2 /2 f2]". In this
example J; = {2}, J, = {1; 3} and J, = {2}.
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Now we return to Eq. (4) which admits the following integral solution in [0; £] (see [12]):

£(£) = eME(0) + / AL u(r) dr. (5)
0

Let m be the number of emissions and let 7" be the time interval between each emission.
Discretizing Eq. (5), see [12] for details, for each t=kT, where k =0,1,2,...,(m — 1) we have
f((k+1)T) = W(D)E(kT) + H(T)u(kT), (6)
where
T
W(T)=e*, H(T)= /eA’In ds, s=T—1L
0

When the time interval 7 between each emission is fixed, the matrices W(7) and H(7) are
constants. We are supposing that the emissions E; = E;(¢) and consequently the vectors u=u(z)
are constant in a given interval between any two consecutive instants of emissions, that is,
u=u(k?), for kT<t < kT +T.

Thus, if the emissions E;(kT) for each compartment i are known, for the corresponding times
k=0,1,2,...,(m— 1), and consequently the control vectors u(kT), then, it is possible to compute
the fugacities and the respective concentrations in these times for each one of the compartments
i=1,2,...,n, using Eq. (6). Note that u(z)=0, for all 1 > mT, and in this case system (4) is
determined by

£((k + 1)T) = W(D)E(kT) for k = m. (7)

We will see below that the discretization (6) has the property of maintaining the stability of
Eq. (9).

In the model given by Eq. (4) and the corresponding solution (5), or alternatively the dis-
cretized model (6) we suppose that: (i) the volume of each compartment is constant, (ii) the
emissions are known for each time A7 in the time interval [0; (m — 1)7] and (iii) for the times
outside of that interval the emissions are null.

4. Analysis of the model

In this section we deal with some properties of our model. First we study the stability of the
continuous time control system described by the matrix equation (4). Later, we will prove that
the discrete model (6) is asymptotically stable. In addition, since we are modelling fugacities, it
is important to know the non-negativity of the discrete time control system given by matrix
equation (6) (i.e. all matrices of (6) has only non-negative entries). In the following theorems we
will use the terminology, corresponding to non-negative matrices used by Berman and
Plemmons [13].

Theorem 1. The discrete control system defined by the pair (W(T), H(T)) is a positive system, that is,
the components of the matrices W(T) and H(T) are non-negatives.

Proof. The matrix A is essentially non-negative since there exists a constant § > 0 sufficiently

large, for example 6 > max,_,, ,[aa], such that (A+4I) > 0. Then, by Theorem (3.12) of [13],
W(T)=¢eAT > 0. By the monotony of the integral we have H(T) = fgeA’I,, dt>0. O
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As a practical consequence of this theorem one can deduce that if we apply non-negative
controls and the initial conditions are non-negative then we always obtain non-negative state
vectors that in our problem are fugacities. In fact, this is the definition of positive discrete time
control systems, and this is equivalent to the matrices W(7) and H(7) are non-negatives.

With the following theorem we can assure that system (4) is stable because the matrix A has
eigenvalues with negative real parts (see [14]).

Theorem 2. Let A be the matrix of system (4), —A is positively stable, that is, its eigenvalues have
positive real part.

Proof. First, by the definition of the problem all parameters dj;; are positive. Furthermore, it is

observed that

G+ 1V + Zjeji d;j
Viz;

ViZ;

d;j

ViZ;

-3,

JeJdi

|as| = = Z]ai/lv

i#j

ViZ;

‘Gizi +T’iViZi’ % Z

JEJi
then —A is strictly diagonal dominant. Since —A has positive diagonal elements then the Ge-
rschgorin’s disks are in the positive semiplane. From both properties we deduce that the eigen-
values of —A have positive real part and consequently —A is positively stable. Then A has
eigenvalues with negative real part. In addition A is not singular. [

The discretization (6) maintains the stability of the original continuous time control system,
then the point where all fugacities vanish is asymptotically stable for system (6). By completeness,
we give the short proof of this result for our particular matrices.

Theorem 3. The discrete positive control system (W(T), H(T)) is asymptotically stable, that is, the
point where all fugacities are null is an equilibrium stable point.

Proof. If /; are the eigenvalues of A then, e“” are the eigenvalues of W(T). By Theorem 2 the
eigenvalues /; have negative real part, then we have |e*”| < 1 and therefore, |W(7)||” — 0, when
p — +oo. Hence the system (W(T), H(T)) is asymptotically stable. [J

5. Algorithm to compute the settling time

To determine the needed time to get low concentrations in all compartments, we have to
compute the time for which the fugacities vanish, after the emissions finish. This time is called
fugacity settling time. The fugacity settling time is defined as the time required for the fugacity
values stay within a range of the final value. The settling time can be conceived as the time re-
quired so that the system arrives and stays within a range of the equilibrium point. It can be
computed by the following algorithm whose convergence is guaranteed by Theorem 3.

The computation of the matrices W(7) and H(7) when the matrix A is known can be ac-
complished by the mathematical scientific package MATLAB [15], which calculates the expo-
nential of a matrix through Padé’s approximations with the function expm using the command
[WH]=c2d (AX,,T).

Algorithm 1 (A pseudo-code algorithm to compute the settling time).
Begin
Compute matrices W(T) and H(T) by: [W,H]=c2d (A,L,,7)
For k=0 until (m — 1) calculate
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f((k+1)T) = W(DIKT) + H(Du(kT)
for i=1 until n compute
CikeT) = Zf(kT)
Let tol > 0 be a tolerance of the origin.
For k > m compute
f(k+1)T) =W(DIT) + H(Du(T)
until ||f(k + 1)77| < tol
for i=1 until » compute
Ck+t)T=Zf((k+1)T)
End;

The first value of ks =k, for which the inequality of Algorithm 1 is satisfied, determines the
settling time #, = k7 for the tolerance tol. The value of tolerance can be established as a function
of the limits of chromatography detection of the concentrations of the substance in the com-
partments.

6. Algorithm to compute the dissipation time

By Eq. (7), for each compartment, it is possible to compute the instant time for which the value
of the concentration reduced p% of the first value of the concentration after the emissions finish.
This time is called the dissipation time in the compartment i, denoted by t, and calculated by the
following procedure:

Algorithm 2 (A pseudo-code algorithm to compute the dissipation time).
Begin
Compute matrices W(7) and H(7) by: [W,H] =c2d (A,L,,T)
For k > m compute

f((k+1)T) = W(D(KT)

C(kT) = Zfi(kT)
until Ci(kT) < {(100 — p)/100 - C((m — )T}
End;

The first value of k, = k, for which the inequality is satisfied, determines the dissipation time at
level p%, &, = k, T for the compartment .

7. Numerical simulation

We have selected the insecticide fenitrothion to verify our model. Fenitrothion is an insecticide
frequently used in crops and forest protection. For that, we have considered a hypothetical three
compartments environmental system consisting of air, water and bottom sediment with volumes
of 1.0 x 10%, 1.0 x 10* and 1.5 x 10* m3, respectively. The sediment density and content volu-
metric of carbon are, respectively, 1.5 x 10°> kg m™ and 4.0%. In this system, we apply in the air
one mole of the insecticide fenitrothion during 60 min, that is, E,(k) = 1/60 and E,(k) = E3(k) =0
fork=0,1,2,...,59. According to Zitko and McLeese [16], the constant rate of disappearance in
minutes of the fenitrothion in air, water and bottom sediment are respectively 4.76 x 1074,
3.80 x 10~* and 2.85 x 107°. Henry’s constant for the fenitrothion (see [17]) is 6.65 x 1072 Pa m?
mol~!. The coefficient of adsorption k4 for this substance in this bottom sediment is 27 x 1073 m3
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Fig. 1. Fugacities of fenitrothion in air, water and bottom sediment before and after the emissions, obtained by Al-
gorithm 1.

kg~!. The value of T and tol are 1 min and 1.0 x 10~!! Pa, respectively. The exit advection flow in
air, water and bottom sediment are, respectively 6.87 x 102, 5.49 and 6.20 x 1072 m?® min~".

With these data we wish to evaluate, during and after the emissions, the values of the con-
centration and the fugacity of fenitrothion in the air, water and bottom sediment and then to
determine the needed time to stabilize the fugacity, that is the fugacity settling time. In this ex-
ample the air is the only one compartment receiving emissions and we can consider that the
advections are null for all compartments.
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Fig. 2. Concentrations of fenitrothion in air, water and bottom sediment before and after the emissions, obtained by
Algorithm 1.
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