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Abstract

I give explicit formulae for full propagators of vector and scalar fields in a generic spin-1 gauge model 
quantized in an arbitrary linear covariant gauge. The propagators, expressed in terms of all-order one-
particle-irreducible correlation functions, have a remarkably simple form because of constraints originating 
from Slavnov-Taylor identities of Becchi-Rouet-Stora symmetry. I also determine the behavior of the prop-
agators in the neighborhood of the poles, and give a simple prescription for the coefficients that generalize 
(to the case with an arbitrary vector-scalar mixing) the standard 

√
Z factors of Lehmann, Symanzik and 

Zimmermann. So obtained generalized 
√
Z factors, are indispensable to the correct extraction of physical 

amplitudes from the amputated correlation functions in the presence of mixing.
The standard Rξ gauges form a particularly important subclass of gauges considered in this paper. While 

the tree-level vector-scalar mixing is, by construction, absent in Rξ gauges, it unavoidably reappears at 
higher orders. Therefore the prescription for the generalized 

√
Z factors given in this paper is directly 

relevant for the extraction of amplitudes in Rξ gauges.
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1. Introduction

Bosonic fields can mix with each other, unless the symmetries tell us otherwise. In the Stan-
dard Model (SM) of particle physics (see e.g. [1]), there are four neutral elementary bosonic 
fields: scalar h0, vector γμ (photon), vector Zμ and (in renormalizable gauges) the scalar would-
be Goldstone field GZ associated with Zμ. While the mixing between h0 and the other fields 
requires a transfer of CP-violation from the quark sector (and therefore cannot appear at low 
orders of perturbation theory), there are dozens of SM extension in which Zμ is mixed with 
physical scalars already at one-loop; the singlet Majoron model [2] is perhaps the simplest ex-
tension of this sort.1 Therefore, it would be welcomed to have a simple prescription that gives, 
in the presence of a generic mixing, the physical amplitudes directly it terms of amputated cor-
relation functions. After all, in the case without mixing, there is a standard textbook algorithm, 
based on the 

√
Z factors of Lehmann-Symanzik-Zimmermann (LSZ), which does the job in a 

simple and elegant manner, see e.g. [5] for a nice description (with a derivation) in English.
The standard first step in the LSZ-reduction [5] is to study the behavior of propagators with 

resummed quantum corrections, and 
√
Z’s are square roots of the residues (up to the i factor) 

of resummed propagators at the poles. However, despite many beautiful papers devoted to the 
study of physical (and unphysical) states in covariant gauges, of which I specifically mention 
here Refs. [6,7], the complete and concise expressions for the resummed propagators of bosonic 
fields, in a generic gauge model and a generic linear covariant gauge, were not given in the 
literature, to the best of my knowledge. The present paper fills that gap, and completes the LSZ 
algorithm.

In fact, the present paper is a completion of my two earlier papers [3,4], where the reader 
may find a more comprehensive list of relevant references. Inspired by the analysis of 2-by-2 and 
3-by-3 mixing of Majorana fermions in [8], and almost generic (though complicated) analyses of 
n-by-n fermionic mixing in [9] and [10], I gave in [3] a simple prescription for handling mixed 
fermions in a completely generic case, with no dependence whatsoever on particular renormal-
ization conditions, including situations in which multiple states are associated with a single pole. 
A generic prescription for dealing with mixed scalars in non-gauge theories was also given in 
[3]. Next, in [4] I provided a prescription for handling mixed vector-scalar systems in the Landau 
gauge.

Before generalizing the results of [4] to an arbitrary linear covariant gauge, in order to 
make the present paper as self-contained as possible, I will recapitulate here the generalized 
LSZ algorithm in purely scalar theories. Suppose that {φj } is a set of renormalized (in some 
convenient renormalization scheme) scalar fields. Without loss of generality I assume that φj

are Hermitian and have vanishing vacuum expectation values (VEVs). The renormalized one-
particle-irreducible (1PI) correlation functions of scalars (with resummed quantum corrections) 
can be parametrized in the following way

�̃kj (−p,p) = S(p2)kj =
[
p21− M2

S(p2)
]
kj

, (1)

where M2
S(s) = M2

S(s)� is a symmetric matrix. I emphasize here that all the relevant objects 
have been already renormalized, only because the procedure described below has, in principle, 
nothing to do with renormalization. In fact, the minimal subtraction schemes are by far the most 

1 In fact, already in the SM there are nontrivial one-loop corrections to the photon-Zμ mixing. The Landau-gauge 
description of this mixing (in the formalism used in this paper) can be found in [4].
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popular ones these days, and (in this class of schemes) one always faces the problem of extracting 
physical results from renormalized correlation functions.

Inverting the matrix in Eq. (1) we get the (connected) propagator

G̃ kj (p,−p) = i
[(

p21− M2
S(p2)

)−1
]kj

, (2)

that has, as proved in [3,4], the following behavior about the poles

G̃kj (p,−p) =
∑

�

∑
r

ζ̃ k
S[�r ]

i

p2 − m2
S(�)

ζ̃
j

S[�r ] + [non-pole part] . (3)

It is clear that the pole masses m2
S(�) are solutions to the following equation

det(s1− M2
S(s))

∣∣
s=m2

S(�)
= 0 . (4)

It is also easy to believe that the coefficients ζ̃S[�1], ζ̃S[�2], . . . , form the basis of the corresponding 
eigenspace (in this notation m2

S(�) �= m2
S(�′) for � �= �′)

M2
S(m2

S(�)) ζ̃S[�r ] = m2
S(�) ζ̃S[�r ] . (5)

It turns out [3,4] that to prove the behavior (3), one just needs to find eigenvectors satisfying the 
following normalization/orthogonality conditions

ζ̃ �
S[�r ]

[
1− M2 ′

S (m2
S(�))

]
ζ̃S[�q ] = δrq , (6)

where M2 ′
S (s) ≡ dM2

S(s)/ds.2 Such eigenvectors always exist (in perturbation theory) for real 

and complex poles [3,4]. Moreover, for real poles, one can always find eigenvectors ζ̃ j

S[�q ] that 

obey (6) and are themselves real.3

From the representation (3) of the propagator it is clear how to generalize the LSZ algorithm 
to the case of (purely scalar) mixing. Indeed, Eq. (3) immediately shows that the asymptotic field 
φφφj associated with the renormalized field φj has the following form

φφφj =
∑

�

′ ∑
r

ζ̃
j
S[�r ]	

�r , (7)

where 	�r are free Hermitian scalar fields of mass mS(�) with canonically normalized propaga-

tors, and such that states created/annihilated by 	�r and 	�′
r′ �= 	�r are orthogonal to each other. 

(Strictly speaking, asymptotic fields 	�r exist only for real pole masses mS(�), and therefore I 
put the prime on the first sum in (7).) In other words, to obtain the correctly normalized (i.e. 
consistent with unitarity) amplitude of the process involving a particle corresponding to 	�r , one 

2 Note that the eigenvectors corresponding to different pole masses are, in general, not orthogonal to each other beyond 
the tree-level.

3 Of course, Eq. (6) implicitly assumes that infrared divergences are absent, so that the derivative M2 ′
S

(m2
S(�)

) is finite. 
It is however worth saying that, even if certain matrix elements of M2 ′

S
(m2

S(�)
) are IR-divergent, one can still use the 

normalization conditions (6) by replacing M2 ′
S

(m2
S(�)

) �→ M2 ′
S

(q2) and taking the q2 → m2
S(�)

limit, as long as limit 
of the left-hand-side of (6) is finite (see Ref. [4]). Such IR-divergences are therefore spurious and do not change the 
structure of the asymptotic states, in contrast to the “physical” IR-divergences which are usually handled by introducing 
an IR-cutoff.
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has to contract the eigenvector ζ̃ j

S[�r ] with the amputated correlation functions Aj ...(p, . . .) of the 
renormalized scalar fields φj for p2 = m2

S(�).
Now I will explain how to generalize this algorithm to the mixing in gauge theories, beyond 

the Landau gauge, what is the main subject of this paper.

2. Vector-scalar mixing in the generic case

As before, I can assume that vector (Aα
μ) and scalar (φj ) fields are Hermitian. The gauge 

fixing Lagrangian in a generic linear covariant gauge has the following form [6] (see also [11,1])

Lgauge−fix = hαf α + 1

2
ξαβhαhβ , f α = −∂μAα

μ − Uα
j (φ

j + vj ), (8)

where hα are Nakanishi-Lautrup fields (see e.g. [1]),4 while ξαβ and Uα
j are matrices of gauge 

fixing parameters (ξαβ is symmetric). As before I assume that φj has a vanishing VEV, and 
therefore vj is an all-order VEV of the field φj + vj in the “symmetric phase”. Note that (as is 
clear from, for instance, the path-integral representation), the quantum corrected propagators in 
the scalar-vector sector are independent of whether one decides to keep Nakanishi-Lautrup fields, 
or integrates them out. However, the corresponding 1PI functions do depend on this decision. 
Nonetheless, it is well known that there are no quantum corrections to the gauge fixing terms 
in linear gauges (see e.g. [11]); in other words, the renormalized 1PI generating functional �[ ]
to all orders of perturbation theory depends on hα only through (the integral of) the tree-level 
gauge-fixing Lagrangian (8). Thus, the “effective” 1PI two-point functions in the vector-scalar 
sector, obtained by integrating out hα’s, differ from the “primordial” ones only by the terms 
originating from the “effective” gauge-fixing Lagrangian

Leff

gauge−fix = −1

2
(ξ−1)αβf αf β .

It turns out that the “primordial” 1PI two-point functions are much closer to the physical reality 
(this fact is not particularly surprising, as they are independent of gauge-fixing parameters at the 
tree level), and therefore, in this paper, the hα’s are not integrated out. The additional advantage 
of such an approach is that one has, at every intermediate stage, a nonsingular transition to the 
Landau gauge (ξ = 0 = U ).

I use the following convention

δ

δφ̂j (p)

δ

δφ̂k(p′)
� [φ, . . .]

∣∣∣∣
0

= (2π)4δ(4)(p′ + p) �̃kj (p
′,p) , (9)

where F(x) ≡ ∫
d4p e−ipxF̂(p), and 0 denotes the stationary point. I have chosen the following 

parametrization of the complete 1PI 2-point functions in the Aα
μ, φj and hα sector; for vectors:

�̃
μν
αβ (−q, q) ≡ −ημν

[
q21− M2

V (q2)
]
αβ

+ qμqνLαβ(q2) , (10)

for the scalar-scalar two point function I employ once again Eq. (1), and parametrize the mixed 
vector-scalar correlation functions as follows

4 I apologize for a potentially confusing notation: hα ’s have nothing in common with the Higgs field h0 mentioned 
earlier.
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�̃
μ
αj (−q, q) ≡ i qμ Pαj (q

2) = −�̃
μ
jα(−q, q) . (11)

Finally, the functions involving Nakanishi-Lautrup multipliers have, to all orders of perturbation 
theory, the tree-level form

�̃αν
β (−q, q) ≡ i δα

β qν = −�̃να
β (−q, q) ,

�̃α
j (−q, q) = −Uα

j = �̃ α
j (−q, q) ,

�̃αβ(−q, q) ≡ ξαβ . (12)

For the reader’s convenience, I list also the tree-level approximations to the full 1PI 2-point 
functions:

Lαβ(q2) = δαβ +O(h̄) , M2
V (q2)αβ = (Tαv)�(Tβv) +O(h̄) ,

Pαi(q
2) = −δij (Tαv)j +O(h̄) , M2

S(q2)ij = ∂ϕi ∂ϕj V GI
tree(ϕ)|ϕ=v +O(h̄) ,

where Tα are real antisymmetric matrices forming the representation of the gauge Lie algebra on 
scalar fields φj (note that, in this notation, the matrix elements of Tα contain the renormalized 
gauge coupling constants), v is the all-order VEV of the scalar field ϕ = φ + v in the symmetric 
phase (of course, to the leading order, v can be replaced with its h̄0 term), and V GI

tree(ϕ) is the 
gauge-invariant ((Tαϕ)j ∂ϕj V GI

tree(ϕ) ≡ 0) and independent of gauge-fixing parameters tree-level 
potential of Hermitian scalar fields.

To find the connected propagators with (resummed) quantum corrections, one needs to solve 
the equation

�̃IJ (−p,p) G̃JK(p,−p) = i δ K
I , (13)

where I , J and K run over components of bosonic fields φn, Aα
μ and hβ . I have chosen the 

following parametrization of G̃JK(p, −p); in the vector-vector block:

G̃βδ
νρ (q,−q) = −i

[
ηνρ − qνqρ

q2

][
V (q2)−1

]βδ + i
qνqρ

q2 A(q2)βδ , (14)

in scalar-scalar and vector-scalar blocks:

G̃ jn(q,−q) = i Hjn(q2) , G̃βn
ν (q,−q) = qνE

βn(q2) = −G̃nβ
ν (q,−q) , (15)

the block that mixes the Nakanishi-Lautrup fields hβ with vectors is written as

G̃ δ
β ρ(q,−q) = −qρJ δ

β(q2) = −G̃ δ
ρβ(q,−q) , (16)

while the hβ -φn and hβ -hγ blocks can be parametrized as

G̃ n
β (q,−q) = i I(q2)nβ = G̃ n

β(q,−q) , G̃βγ (q,−q) = i Kβγ (q2) . (17)

Before discussing relations between 1PI two-functions originating from the Slavnov-Taylor iden-
tities of Becchi-Rouet-Stora symmetry (STids) [12,13], I should stress that those relations are 
valid only at the stationary points of the 1PI generating functional �[ ]. However, in certain 
applications, e.g. in order to calculate the effective potential of scalar fields,5 one needs the prop-
agators in the presence of an arbitrary constant scalar background ϕj which differs from the VEV 

5 See e.g. [15] for a recent determination of the 2-loop effective potential for an arbitrary renormalizable model in a 
subclass of gauges considered in the present paper.
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vj . For this reason, I give also (in Appendix A) formulae for propagators which are completely 
generic solutions to Eqs. (13), and do not rely on the STids; those formulae are not needed in 
what follows – it is in fact much simpler to solve (13) once again in the presence of STids, in-
stead of trying to simplify the results from the Appendix. Nevertheless, there are two relations, 
satisfied by a generic solution to Eqs. (13), which are important in what follows6

A(q2)αδ = Uα
jE

δj (q2) − ξαβJ δ
β(q2) , (18)

q2 Eγn(q2) = Uγ

jH
jn(q2) − ξγαI(q2)nα . (19)

Additionally, the transverse part of (14) is also (independently of STIds) easy to express in terms 
of the 1PI two-point function (10)

V (q2) = q21− M2
V (q2) . (20)

From now on, I assume that we are at the (physical – see below) stationary point of the 
1PI generating functional, so that STids [12,13] (see also [11] for an introduction, and [4] for 
a derivation in the present notation7) yield relations between the 1PI 2-point functions; namely 
there exist matrices B(q2)

j
γ and �(q2)αγ such that form-factors of 1PI 2-point functions satisfy 

the following constraints

Pβj (q
2)B(q2)jγ =

{
q2 Lαβ(q2) + [M2

V (q2) − q21]αβ

}
�(q2)αγ , (21)

and

q2 Pαj (q
2)�(q2)αγ = S(q2)ij B(q2)iγ . (22)

In fact, there is a concrete prescription for calculating �(q2) and B(q2) in perturbation theory: 
let Ls be the BRS-exact part of the (tree-level) Lagrangian [11]

Ls = s
{
ωα[f α + ξαβhβ/2]} + Lα s(ωα) + Ki s(φ

i) + K̄a s(ψa) + Kμ
α s(Aα

μ) ,

where s is the nilpotent BRS-differential [11], the first term on the right-hand-side contains (in 
addition to gauge-fixing terms from Eq. (8)) the vertices involving ghost ωα and antighost ωα

fields, ψa represents Majorana fields (i.e. natural counterparts of Hermitian bosonic fields), while 
Ki , K̄a , Kμ

α and Lα are external sources (antifields) controlling the quantum corrections to BRS 
transformations [12,13,11]. Then, the matrices B(q2)

j
γ and �(q2)αγ are given by the following 

derivatives at the stationary point:

δ

δω̂γ (p)

δ

δK̂i(q)
�

∣∣∣∣
0

= (2π)4δ(4)(q + p)B(q2)iγ , (23)

δ

δω̂γ (p)

δ

δK̂
μ
α (q)

�

∣∣∣∣
0

= (2π)4δ(4)(q + p)
{
i qμ �(q2)αγ

}
. (24)

At the lowest order one finds

6 It is, perhaps, also worth saying that even though (18)-(19) follow from (13), they can be also obtained independently 
of (13), as they express the non-renormalization theorem for gauge-fixing terms in the form appropriate for connected 
(rather that 1PI) generating functional.

7 Since I keep the hα fields, the STids have exactly the same form as in the Landau gauge, thus the derivation from [4]
applies in the present context.
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B(q2)iγ = (Tγ v)i +O(h̄) , �(q2)αγ = −δα
γ +O(h̄) , (25)

in particular STids can be easily verified at the tree-level. Of course, at higher orders, the calcu-
lation of diagrams with external lines of Kμ

α , etc. is no different from calculations of diagrams 
involving the propagating fields Aμ

α , etc. (apart from simplifications due to vanishing propaga-
tors).

Strictly speaking, STids (21)-(22) are satisfied only if 〈hα〉 = 0 at the stationary point of 
�[ ]; however in practice one can always find stationary points obeying this condition (see e.g. 
[14] and references therein), in particular equation 〈hα〉 = 0 can be interpreted as the Dashen’s 
vacuum realignment condition (see e.g. [1]) for the effective potential Veff (φ, h) that exhibits 
explicit breaking of the symmetry under global gauge transformations. In fact, the stationary 
points violating 〈hα〉 = 0 are inherently unphysical, as they lead to spontaneous breaking of the 
BRS symmetry and thus violate the quartet mechanism of Kugo and Ojima [7], that is necessary 
for decoupling of unphysical modes from the physical S matrix.

I need just one additional identity to invert the matrix of 1PI 2-point functions; in linear gauges 
the ghost-antighost 1PI 2-point function is not independent of matrices B(q2)iγ and �(q2)αγ ap-

pearing in the STids (see e.g. [11]); in particular, the ghost-antighost propagator G̃(q2)
β
α satisfies 

(to all orders)

i[G̃(q2)−1]αβ = −q2�(q2)αβ + Uα
jB(q2)

j
β . (26)

Clearly, G̃(q2) has only unphysical poles, and therefore one expects that it can be useful for 
extraction of unphysical poles from propagators of bosonic fields. In fact, as the first STids-
triggered simplification, one finds that the mixed propagators involving the hβ fields are simply 
given by (cf. Eqs. (16)-(17))

J
β
δ(q

2) = i �(q2)βγ G̃(q2)
γ
δ , Ij

δ(q
2) = i B(q2)jγ G̃(q2)

γ
δ , (27)

and that Kαβ(q2) = 0, i.e. the hα-hβ propagator vanishes. Thus, the asymptotic field associated 
with hα describes zero-norm states, which have non-vanishing scalar products only with unphys-
ical bosonic states [7].

To express the scalar-scalar propagator Hjn(q2) in a simple form, I need to define the follow-
ing (non-symmetric!) matrix (cf. Eq. (1))

T (q2)ij = S(q2)ij − Pαi(q
2)Uα

j , (28)

then (using the matrix-multiplication)

H(q2) = T (q2)−1 S(q2) [T (q2)−1]� − ξαδ Iα(q2)Iδ(q
2)� , (29)

where Iδ is a vector of Ij
δ propagators from Eq. (27). Note that H(q2) is explicitly symmetric; 

nonetheless the STids allows us to rewrite H(q2) in a form that is even more useful for extraction 
of physical poles. Using the relation

T (q2) = 1

q2 S(q2)σ (q2) , where σ(q2)ij ≡ q2 δ i
j − C i

α(q2)Uα
j , (30)

with

Cj
γ (q2) ≡ B(q2)

j
β [�(q2)−1]βγ , (31)

one gets
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H(q2) = (q2)2 σ(q2)−1 S(q2)−1 [σ(q2)−1]� − ξαδ Iα(q2)Iδ(q
2)� . (32)

Thus every massive root of det(S(q2)) = 0 yields a singularity of the scalar-scalar propagator, 
what justifies my earlier claim that the 1PI correlation functions in the presence of hα fields are 
more physical than their counterparts obtained by integrating hα’s out. I will have more to say 
about the structure of poles later on, but first I will complete the list of propagators. The mixed 
vector-scalar propagator has the form

Eδn(q2) =W(q2)
γ

i [T (q2)−1]ni J δ
γ (q2) , (33)

where

W(q2)
γ

j ≡ Uγ

j − ξγαPαj (q
2) , (34)

while J δ
γ is the propagator from Eq. (27). Note that W(q2) is momentum independent only

at the tree-level; the standard Rξ gauges (see e.g. [1]) are defined by the ‘t Hooft’s condition 
W(q2) = O(h̄), and thus the scalar-vector mixing reappears in the Rξ gauges at the quantum 
level.

Last but not least, one gets the scalar part of the vector-vector propagator (14) (recall that the 
transverse part is given by (20) independently of STids)

A(s)αδ = 1

s
Uα

j U δ
n Hnj (s) + 1

s
ξαδ − ξδβ�(s)αε i G̃(s)εβ − ξαβ�(s)δε i G̃(s)εβ , (35)

where s ≡ q2 while G̃(s) is the ghost-antighost propagator.
The above formulae are valid to all orders of perturbation theory; nonetheless they have an 

amusing consequence at the tree-level: all the tree-level propagators, in contrast to the Rξ gauges, 
are first order polynomials in ξ . Indeed, masses of unphysical modes are produced entirely 
by the Uα

i parameter which (in the Rξ gauges) becomes a function of ξ , once the ‘t Hooft’s 
fine-tuning condition W(q2) = O(h̄) is imposed. In particular, the Uα

i parameter cures the 
1/q4 IR-singularities which appear in the second term of the scalar-scalar propagator (32) for 
Uα

i = 0 �= ξαβ (of course, since Iα = 0 in the unbroken phase, these singularities exist only in 
spontaneously broken gauge theories).

The behavior of the scalar-scalar propagator i H jn(q2) about the massive roots q2 = m2
S(�) �=

0 of det(S(q2)) = 0 follows immediately from Eq. (32). I use the parametrization of S(q2) given 
in (1). Suppose that we have the eigenvectors ζ̃ k

S[�r ] obeying Eqs. (5)-(6); defining

ζ k
S[�r ] = m2

S(�) [σ(m2
S(�))

−1]kj ζ̃
j
S[�r ] , (36)

one gets (cf. Eq. (3))

G̃kj (q,−q) ≈
∑

r

ζ k
S[�r ]

i

q2 − m2
S(�)

ζ
j
S[�r ] , for q2 ≈ m2

S(�) �= 0 . (37)

In theories without physical massless scalars, all the remaining poles of the scalar-scalar propa-
gator are unphysical (see the discussion in Appendix B). The only naturally massless scalars are 
Goldstone bosons of nonlinearly realized exact global symmetries; since these days such symme-
tries are quite commonly considered as inconsistent with quantum gravity, I will not give here the 
generic prescription for the ζ k

S[�r ]-like vectors associated with them; nonetheless such a prescrip-
tion can be obtained by studying the first term in Eq. (32) more carefully, once a concrete model 
is chosen. It is, however, worth saying that a simple and generic prescription for ζ k vectors 
S[�r ]
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corresponding to the physical Goldstone bosons exists in the Landau gauge [4], and shows that 
their directions are fixed by the spontaneously broken gauge symmetry rather than the underlying 
global symmetry.

Thus, excluding theories with physical massless scalars, the asymptotic field φφφj correspond-
ing to the renormalized scalar field φj has the form analogous to (7)

φφφj =
∑

�

′ ∑
r

ζ
j

S[�r ]	
�r + . . . , (38)

where 	�r are canonically normalized free scalar fields corresponding to real pole masses (as 
indicated by the prime on the sum over �), while the ellipsis indicates the contributions of unphys-
ical asymptotic states. (As is clear from the discussion above, even in the presence of physical 
massless scalars, Eqs. (38) and (36) give the contributions of physical massive scalars to the 
asymptotic scalar fields φφφj .)

The reader might be worried that the prescription (36) for the ζ j

S[�r ] coefficient depends, 
through the σ(m2

S(�)) matrix, on the 1PI correlation functions of antifields (23)-(24). I could 
argue that, in principle, the σ(q2) function can be expressed in terms of S(q2) and the mixed 
scalar-vector 1PI two-point function Pαi(q

2), cf. Eqs. (30) and (28), although obtaining σ(m2
S(�))

in this way necessarily involves taking the limit q2 → m2
S(�). In practice, however, one should 

notice that the number of diagrams contributing to the correlation functions of antifields is al-
ways significantly smaller than the number of diagrams contributing to Pαi(q

2). Therefore the 
form (36) of the prescription for ζ j

S[�r ] is actually quite convenient, as it is (owing to the STids!) 
completely independent of Pαi(q

2), as well as of the scalar part Aαδ(q2) of the vector-vector two 
point functions. In fact, the same is true for the prescription that gives us the asymptotic vector 
fields (see below). Thus, the functions Pαi(q

2) and Aαδ(q2) are not needed in practice.
Using the simple form of the propagators listed above, it is also easy to find the asymptotic 

vector fields Aα
μ associated with the renormalized vector fields Aα

μ

Aα
μ =

∑
λ

′ ∑
r

ζ α
V [λr ]A

λr
μ + Uα

j

∑
�

′ ∑
r

1

m2
S(�)

ζ
j

S[�r ]∂μ	�r + . . . , (39)

as before the ellipsis represents the contributions of unphysical asymptotic states. The first term 
in (39) represents the spin-1 operators inferred from the transverse part of the vector-vector 
propagator (14); in particular the ζα

V [λr ] coefficients and the pole masses m2
V (λ) are obtained by 

the following replacements in Eqs. (4)-(6)

M2
S(q2) �→ M2

V (q2) , m2
S(�) �→ m2

V (λ) , ζ̃S[�r ] �→ ζ α
V [λr ],

where M2
V (q2) parametrizes the 1PI two-point function of vector fields (10). The coefficient Aλr

μ

in Eq. (39) is a free Hermitian vector field of mass mV (λ) (in the unitarity gauge for mV (λ) �= 0, 
or the Coulomb gauge for mV (λ) = 0) with canonically normalized propagator; the states cre-

ated/annihilated by Aλr
μ and A

λ′
r′

μ �= Aλr
μ are orthogonal to each other, and the prime on the sum 

over λ has the same meaning as for scalars. Note that the form of the second term in (39), 
which involves only on the objects present already in Eq. (38), follows unambiguously from 
the representation (19) of the vector-scalar propagator, as well as (up to a sign) from the scalar 
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part (35) of the vector-vector propagator.8 Using the generic form (given in [4]) of (unphysical) 
quantum fields having propagators with higher-order poles, one can also verify that unphysical 
states in Eqs. (38)-(39) form (together with their Faddeev-Popov counterparts) the standard quar-
tet representations of the asymptotic BRS operator [7],9 thereby ensuring unitarity of transition 
amplitudes between physical states.

Eq. (39) shows, in particular, that the amputated correlation functions of renormalized vector 
fields Aα

μ produce nontrivial contributions to amplitudes of scalar particles created by 	�r , just 
as the correlation functions of scalars φj do. It is also easy to check directly from Eq. (36) that, in 
the special case of Rξ gauges, the coefficient Uα

j ζ
j

S[�r ] vanishes at the tree level.10 Nonetheless, 

even in the Rξ gauges, non-vanishing contributions to Uα
j ζ

j
S[�r ] are generated by the quantum 

corrections. Therefore Eqs. (39) and (36), may come in handy even in this special case.

3. Conclusions

I gave explicit formulae for the propagators of a generic spin-1 gauge field theory model, valid 
to all orders of perturbation theory in the presence of mixing between vectors and scalars. Due to 
relations originating from the BRS symmetry, the propagators take a marvelously simple form, 
which is a convenient starting point for the study of their behavior about the physical (as well as 
unphysical) poles.

This way, I have arrived at Eqs. (38) and (39) which, accompanied by the explicit prescrip-
tion for the relevant coefficients, in particular Eq. (36), generalize the Lehmann-Symanzik-
Zimmermann algorithm to the case of an arbitrary mixing between bosonic fields in gauge 
theories. The treatment of spin-1/2 fermions in this framework can be found in [3].

Appendix A. Generic solution to Eq. (13)

In this section I give, for completeness, the generic solution to Eq. (13), which does not rely 
on the STids and therefore is valid not only at the stationary points of the 1PI effective action 
�[ ], but also, for instance, in the presence of an arbitrary constant scalar background. To this end, 
I need (in addition to (28) and (34)) the following combinations of form-factors of 1PI 2-point 
functions

Xαβ(q2) = q2Lαβ(q2) + M2
V (q2)αβ − q2δαβ , (40)

Qγi(q
2) = q2Pγ i(q

2) − Uβ
i Xβγ (q2) , (41)

and

�α
β(q2) = q2 δα

β − ξαγ Xγβ(q2) . (42)

8 To arrive at this conclusion it is enough to realize that all the terms in Eqs. (19) and (35) except the first ones do not 
have physical poles (cf. Eqs. (27)).

9 This can be done in an analogous way to the Landau gauge case, for which a detailed and completely generic proof 
can be found in [4].
10 In the Rξ gauges, Uα

j
is a (transposition of) null eigenvector of the tree-level contribution to M2

S
(0), as follows from 

the STids; thus Uα
j

is orthogonal to the eigenvector ζ̃ j
S[�r ] corresponding to a nonzero mass, and then Eq. (36) shows 

that ζ j = ζ̃
j +O(h̄).
S[�r ] S[�r ]
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The scalar-scalar propagator H(q2)ij is given by the inverse of the following matrix (the order 
of indices matters!)

[H(q2)−1]ij = T (q2)ji − Qγi(q
2)[�(q2)−1]γα Wα

j (q
2) , (43)

the vector-scalar propagator reads

Eβn(q2) = [�(q2)−1]βα Wα
j (q

2)H(q2)jn , (44)

the form-factor of Eq. (16) reads

J
β
δ(q

2) = [�(q2)−1]βδ + Qκj (q
2)Eβj (q2)[�(q2)−1]κδ , (45)

the scalar part A(q2)αδ of the vector-vector propagator is now a linear combination of J δ
β(q2)

and Eβn(q2) as given by Eq. (18), while the transverse part is given by (20). For completeness, 
I give here also the remaining two propagators that involve Nakanishi-Lautrup fields

I(q2)jε = Pεi(q
2)H ij (q2) − Xεγ (q2)Eγj (q2) , (46)

and

Kβα(q2) = Pβj (q
2)I(q2)jα − Xβγ (q2)J γ

α(q2) . (47)

Two comments are in order. Firstly, matrices Kβγ (q2), Aβγ (q2) and Hij (q2) are indeed sym-
metric, even though it requires some patience to verify this. Secondly, as is clear from the 
formulae given in the main part of the paper, none of the propagators corresponding to the actual 
stationary point of �[ ] has a pole at q2 such that det(�(q2)) = 0.

Appendix B. Unphysical poles

It is worth to take a closer look at the structure of the unphysical poles in the propagators of 
vector and scalar fields (see also [6]). To this end, in addition to STids (21)-(22), it is important to 
keep in mind that 1PI correlation functions in 4 dimensions do not have poles at finite orders of 
perturbation theory. Therefore, Eqs. (27) show that the form-factors J (q2) and I(q2) have only 
poles for q2 = m2

gh(λ) where m2
gh(λ) is one of the poles of the ghost-antighost propagator. Then 

Eq. (29) shows that, apart from poles at q2 = m2
gh(λ), the scalar-scalar propagator has only poles 

for q2 such that det(T (q2)) = 0. Finally, Eqs. (33) and (18) show that the same it true for the 
scalar-vector propagator and the scalar part of the vector-vector propagator. In other words, it is 
enough to study T (q2).

At the tree-level

T (q2) = q21− τ +O(h̄) , (48)

with a momentum independent (but non-symmetric) matrix τ ; τ has at most NS eigenvectors, 
where NS is the number of scalar fields φj (real non-symmetric matrices are not diagonalizable in 
general). Thus, in perturbation theory, T (q2) has at most NS poles (where a pole with degeneracy 
is counted as multiple poles, as usual). Let us try to find as many eigenvectors of τ as possible. 
Eq. (30) implies that every vector (36) obeys T (m2

S(�))ζS[�r ] = 0, as long as m2
S(�) �= 0, to all 

orders of perturbation theory. This gives us NS − Nker eigenvectors of τ at the tree-level, where 
Nker is the number of null eigenvectors of M2

S(0) or (equivalently) S(0). The STid (22) shows 

that, to all orders of perturbation theory, every vector Cj
γ (0), cf. Eq. (31), belongs to the kernel 
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of S(0). Of course, not all of Cj
γ (0) are linearly independent, but STids yield also the following 

equivalence (at every finite order of perturbation theory)

M2
V (0)αβ�β = 0 ⇔ Ci

β(0)�β(0) = 0 , (49)

(see [4], Eq. (150)), i.e. the number of linearly independent vectors Ci
β(0) is the same as the 

number of non-massless gauge bosons (what is obvious at the tree-level). Therefore, in models 
without physical massless scalars, Nker is the number of massive gauge bosons. It is interesting 
to note that Eq. (26) now implies that11

[G̃(0)−1]αβ [�(0)−1]βγ �γ = 0 , (50)

where �γ obeys one of the conditions in (49), and thus for every massless gauge boson there 
is a massless ghost field (recall that �(q2) is invertible at the tree-level and therefore it is also 
invertible at every finite order). Of course, the inverse theorem is, in general, not true (all ghosts 
are massless if Uα

i = 0). Nonetheless, since the Landau-gauge case was studied in details in [4]
and since non-Landau gauges with massless ghosts corresponding to broken gauge symmetries 
have severe IR divergences (cf. the second term in (29)), it is reasonable to assume that Uα

i

has been chosen in such a way that all massless ghosts correspond to massless gauge bosons. 
Additionally, I will assume the total number of independent vectors �gh(λr) obeying

[G̃(m2
gh(λ))

−1] [�(m2
gh(λ))

−1]�gh(λr ) = 0 , with m2
gh(λ) �= 0 , (51)

is equal to the number of massive ghosts (and thus, to the number of massive gauge bosons).12

This ensures that the propagator G̃(q2) has only simple poles in perturbation theory (note that 
the tree-level mass matrix of ghosts is not symmetric, and therefore this is not guaranteed even 
at the lowest order).

Under these assumptions it is easy to find the missing Nker eigenvectors of τ from (48). 
Comparing (26) with (30) one gets (to all orders)

σ(m2
gh(λ))

i
jC

j
γ (m2

gh(λ))�
γ

gh(λr )
= 0, (52)

and thus T (m2
gh(λ))ijC

j
γ (m2

gh(λ))�
γ

gh(λr )
= 0 if m2

gh(λ) �= 0. Let’s suppose that a linear combina-

tion of Cj
γ (m2

gh(λ))�
γ

gh(λr )
vanishes:

∑
λ

∑
r

X(λr )Cj
γ (m2

gh(λ))�
γ

gh(λr )
= 0. (53)

Contracting the above equation with Uα
j , using (51) and the explicit form (26) of the ghost-

antighost 2-point function we now get∑
λ

∑
r

X(λr )m2
gh(λ)�

γ

gh(λr )
= 0. (54)

11 In what follows, with a little abuse of notation, [G̃(q2)−1] represents the 1PI 2-point functions of ghosts, regardless 
of whether it is an invertible matrix or not.
12 This is merely a technical assumption: if it is not satisfied, then one has to study the relations between the generalized 
(rather than plain) eigenvectors of [G̃(m2 )−1] and T (m2 ), see e.g. [3] and references therein.
gh(λ) gh(λ)
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Under the assumptions listed above, �γ

gh(λr )
are linearly independent and correspond to m2

gh(λ) �=
0, thus (54) implies X(λr ) = 0, what proves that Cj

γ (m2
gh(λ))�

γ

gh(λr )
form the system of Nker

linearly independent vectors obeying T (m2
gh(λ))ijC

j
γ (m2

gh(λ))�
γ

gh(λr )
= 0.

To summarize, in theories without physical massless scalars, under a natural assumption that 
Uα

i produces masses for all ghosts that do not correspond to massless gauge bosons, the T (q2)−1

matrix has two kinds of poles: (1) physical poles at q2 = m2
S(�) �= 0 where m2

S(�) is a massive 

pole of S(q2)−1, and (2) unphysical poles at q2 = m2
gh(λ) �= 0, where mgh(λ) is a pole mass of a 

massive ghost. This statement is valid at every finite order of perturbation theory, not just in the 
tree-level approximation.
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