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Abstract 

 

Aim: To assess whether stimulus-induced modifications of electromyographic activity 

observed on scalp EEG have a prognostic value in comatose patients after cardiac 

arrest.  

 

Methods: 184 adult patients from a multi-centric prospective register who underwent 

an early EEG after cardiac arrest were included. Auditory and somatosensory 

stimulation was performed during EEG-recording. EEG reactivity (EEG-R) and EMG 

reactivity (EMG-R) were retrospectively assessed visually by board-certified 

electroencephalographers, and compared with clinical outcome (cerebral performance 

category, CPC) at three months. A favorable functional outcome was defined as CPC 

1-2, an unfavorable outcome as CPC 3-5. 

 

Results: Both EEG-R and EMG-R were predictors for good outcome (EEG-R: 

accuracy 72% (95%-CI: 66-79), sensitivity 86% (78-93), specificity 60% (50-69); 

EMG-R: accuracy 65% (58-72), sensitivity 61% (51-75), specificity 69% (60-78)).  

When reactivity was defined as EEG-R and/or EMG-R, the accuracy was 73% (67-

70), the sensitivity 94% (90-99), and the specificity 53% (43-63). 

 

Conclusion: Taking EMG into account when assessing reactivity of EEG seems to 

reduce false negative predictions for identifying patients with favorable outcome after 

cardiac arrest. 

 

Keywords: cardiac arrest; coma; prognostication; EEG; EMG; reactivity 
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1. Introduction  

 

Prognostication in comatose patients after cardiac arrest (CA) remains a challenging 

task for clinicians in the intensive care unit [1]. One of the main diagnostic and 

prognostic tools is the electroencephalogram (EEG). While the vast majority of 

existing prognostic modalities target identification of subjects with poor outcome [1], 

several EEG features have been shown to be associated with either favorable or 

unfavorable outcome. EEG reactivity (EEG-R), namely the modification of EEG 

background following external stimulation, has been recognized as a predictor for 

good prognosis in comatose patients at the intensive care unit [2,3], in particular for 

patients with hypoxic/anoxic encephalopathy after CA [4–9]. There is however no 

uniform definition of EEG-R. For instance, recommendations of the American 

Clinical Neurophysiology Society define reactivity as a “change in cerebral EEG 

activity to stimulation (...), [which] may include change in amplitude or frequency, 

including attenuation of activity” [10]. By contrast, appearance of rhythmic or 

periodic patterns after stimulation (“SIRPIDs”) is considered a predictor for poor 

functional outcome [11].  

 

Besides cerebral activity, scalp-EEG electrodes often register electromyogram (EMG) 

activity, especially on the frontal and temporal regions - due to the tonic and phasic 

contraction of the frontal and temporal muscles [12]. Usually, electromyographic 

reactivity (EMG-R), that is modifications of the muscle activity after stimulus, is not 

taken into account in the definition of reactivity [10]. This point was explicitly 

addressed in a recent consensus survey, in which 88% of the 24 international EEG 

experts who participated declared that EMG-R should not qualify as EEG reactivity 

[3]. Currently, EMG activity in comatose patients after CA is rather considered as an 

artifact, that if too abundant may be suppressed pharmacologically [13] or with 

computational methods [14] to ensure better interpretation of the EEG.     

 

However, muscle activity is regulated by the central nervous system, and varies with 

different vigilance states, both in physiological and pathological conditions; for 

example muscle atonia is a hallmark of Rapid-Eye-Movement sleep [15]. Motor 

response to pain (visually assessed, for instance within the Glasgow Coma Scale) is a 
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predictor for outcome after CA [16]. Frontalis EMG was used for arousal detection 

during general anesthesia [17], and currently several proprietary algorithms for 

monitoring sedation depth based on EEG incorporate high frequencies (> 30Hz) [18] , 

which on the scalp mainly correspond to muscle activity.  

 

In this paper, we systematically investigate the prognostic value of EMG-R observed 

during scalp-EEG, either isolated or in conjunction with EEG-R, for identifying 

patients with good outcome in the early phase after cardiac arrest. 

 

2. Methods 

 

Patients and treatment 

Patients were recruited in the Intensive Care Department of two university hospitals 

in Switzerland, in Lausanne (Centre Hospitalier Universitaire Vaudois) and Bern 

(Inselspital). The cohort was part of a prospective multi-centric register [4]. The study 

protocol was approved by the ethical commissions of each hospital (number VD-

116/13). For the present study, we included comatose patients after cardiac arrest 

(CA) who underwent an EEG during controlled normothermia (CNT) at 36°C. The 

recruitment period in Lausanne was from January 2015 (establishment of controlled 

normothermia) until March 2017; since recruitment in Bern started later (June 2016), 

we extended the recruitment period for 6 months (until September 2017). Recruitment 

periods were determined before start of the analysis.  

 

CNT was performed using ice packs or intravenous ice-cold fluids together with a 

feedback controlled cooling device (Arctic Sun System, Medivance, Louisville or 

Thermogard XP, ZOLL Medical, Zug, Switzerland) for 24h. During CNT either 

propofol (4 mg/kg/h) or midazolam (0.1 mg/kg/h) and fentanyl (1.5 μg/kg/h) were 

given for analgesia and sedation, and vecuronium, rocuronium, or atracurium for 

controlling shivering if needed. In Lausanne, three patients were given myorelaxants 

during EEG recording to reduce artifacts. 

  

Decision to remove life supporting treatment was taken 72h after CA or later, if two 

of the following criteria were met 1) unreactive EEG background in a recording 
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performed at least 36h after CNT and off sedation, 2) treatment-resistant myoclonus, 

3) bilateral absence of N20 in SSEP, 4) incomplete return of brainstem reflexes [4]. In 

Bern, an additional criteria for withdrawal of intensive care support was the 

association of extensive hypoxic/ischemic lesions on the MR-scan with a serum 

neuron-specific enolase level twice above 33 μg/l. 

 

The clinical outcome was prospectively assessed with the Cerebral Performance 

Category (CPC) [19] at three months, by phone interview. A CPC value of 1 (no 

deficits) or 2 (minor deficits) was considered as a favorable outcome, whereas a CPC 

of 3 (severe deficits), 4 (vegetative state) or 5 (death) was considered an unfavorable 

outcome).  

 

EEG recordings 

All EEGs were performed during CNT. At the Lausanne University Hospital, Video-

EEG (Viasys Neurocare, Madison, WI) recordings were performed for 20–30 min 

with 19 electrodes according to the international 10-20 system, with reference placed 

near FpZ. The sampling rate was usually 250Hz, in a few cases 1000 Hz. Recordings 

were available to treating clinicians for detection and treatment of epileptic seizures, 

but were not taken into account for the decision to continue or withdraw treatment on 

the third day. At the Bern University Hospitals EEGs were performed at 1200 Hz 

using a 63 active ring electrode array (g.HIamp, g.tec medical engineering, Graz, 

Austria) using the 10-10 system, referencing to the right ear lobe. Only the electrodes 

from the 10-20 system were considered in the present study. Recordings in Bern were 

performed in the context of a research project involving a mismatch negativity 

paradigm [20,21], after which 10 minutes of baseline EEG and then EEG during 

stimulations were recorded. Traces were not available to treating clinicians, however 

a minority of patients underwent an additional EEG shortly before or after the study 

EEG in case of clinical suspicion of seizures.  

 

Stimulation and reactivity 

Stimulation was performed with repetitive auditory stimuli (usually calling the 

patient’s name, then hand clapping) and somatosensory stimuli (combining peripheral 

stimuli such as finger nail compression, and central stimuli such as bilateral nipple 

pinching or sternum friction) by a certified EEG-technician (Lausanne), or a board-
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certified neurologist (Bern). Passive eye opening was not taken into account for 

determining reactivity, as this procedure was not systematically performed on all 

patients. In both centers, beginning and end of stimulus (lasting from 1 to several 

seconds) was marked during the recording. 

 

Three board-certified electroencephalographers (MC, AS, and FZ) blind to clinical 

outcome performed the visual analysis for reactivity retrospectively. By default, a 4th 

order Butterworth band-pass filter between 0.5 and 70 Hz was applied, and the EEG-

traces were displayed on 10-second epochs using a longitudinal bipolar montage. 

However, the examiners were allowed to modify the settings if desired, and were free 

to use a notch filter 48-52 Hz. EEG-R was defined as a clear modification of the 

amplitude and/or the frequency of the EEG background occurring during or at most 3 

seconds after the application of the stimulus. Appearance or modification of periodic 

or rhythmic patterns, as defined by the ACNS guidelines [10], in absence of 

background modification, was not considered as EEG-R. EMG-reactivity (EMG-R) 

was defined as a clear modification of amplitude of the muscle activity, or of the 

number of channels on which muscle activity was seen. To enforce these criteria, 

examiners were not asked to judge the presence or absence of reactivity, but to report 

separately the effect of auditory and of somatosensory stimulus on 1) the amplitude of 

EEG background, 2) the frequency of EEG background and 3) the EMG activity 

using the categories increase, decrease or no modification clearly attributable to 

stimuli. Each recording was analyzed independently by two examiners (each 

examiner was attributed randomly 2/3 of recordings); in case of disagreement, a 

consensus was reached and/or the opinion of the third examiner was required.   

 

In addition, background EEG continuity was visually assessed according to [10]. In 

particular, we considered two sub-groups of EEG patterns. Firstly, with either a 

continuously suppressed background (with or without superimposed periodic 

patterns) or a burst-suppression (defined as >50% of the traces <10 μV). In 

accordance with the terminology introduced by Westhall et al [22], we called this sub-

group “highly malignant pattern” (even though the original description was made in 

recordings performed at least 72h after CA). Secondly, the sub-group consisting of 

EEGs with continuous background or only stimulus-induced suppression/attenuation.  
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Statistics 

The primary goal of this study was to compare the sensitivity and specificity for good 

outcome of reactivity defined as a modification of EEG background (EEG-R) versus 

reactivity defined as a modification of EEG background and/or modification of EMG 

activity (EEG-R and/or EMG-R). Differences in sensitivity and specificity were 

assessed with a McNemar test (performed on patients with favorable outcome and 

unfavorable outcome, respectively). Pairwise agreement between examiners was 

assessed with Cohen’s κ, whereby only the presence (and not the type) of 

modifications was considered. For patients’ demographics, differences between 

groups were assessed with Mann-Whitney-U tests for numerical values and with Chi-

square tests for categorical data. Statistical analysis was performed with the Machine 

Learning and Statistics Toolbox from Matlab R2017a (Version 9.2, Matworks, 

Natwick, MA) for Mann-Whitney-U and Chi-square tests, and with SPSS (Version 

25, IBM, Armonk, NY) for McNemar’s test and Cohen’s κ. 

 

3. Results 

 

During the recruitment period, 144 patients from Lausanne and 40 patients from Bern 

were included (total 184, 45 women). The mean age (± SD) was 63.4 (± 15.0) years. 

90 patients had favorable, and 94 patients unfavorable outcome at three months (of 

which 82 died). All EEGs were recorded during CNT; the mean latency was 21 (±7) 

hours after CA. The patients’ demographics are shown in Table 1. 

 

115 recordings showed EEG reactivity (EEG-R); 84 recordings showed EMG 

reactivity (EMG-R), from which 70 with presence of EEG-R and 14 in absence of 

EEG-R (typical examples are presented in Figure 1); 129 recordings showed at least 

one type of reactivity (EEG- and/or EMG-R). The inter-rater agreement for EEG-R 

was 87% (κ: 74), for EMG-R 83% (κ: 65). The resulting inter-rater agreement for 

reactivity defined as EEG- and/or EMG-R was 91% (κ: 78).  

 

The performance of the different types of reactivity for predicting clinical outcome is 

presented in Table 2. As expected, EEG-R was a predictor for favorable outcome, 
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whereby the sensitivity was higher than the specificity. EMG-R alone was also a 

predictor for favorable outcome, however the accuracy was slightly lower. Finally, 

combining EEG-R and/or EMG-R lead to a significant increase of sensitivity 

compared to EEG-R alone (94% vs. 86%, p = 0.008, McNemar), at the cost of a lower 

specificity (53% vs. 60%, p=0.03, McNemar). Accordingly, the negative predictive 

value (NPV) increased from 81% to 91% (whereas accuracy and positive predictive 

value were not affected).  

 

Combining background reactivity and continuity 

Table 3 shows the influence of EMG-R when reactivity was associated to background 

EEG continuity for prognostication. A continuous background was often associated 

with favorable outcome; however, the sensitivity was low. Also considering EEG-R 

as marker for favorable outcome (continuous background and/or EEG-R) 

considerably increased the sensitivity; including EMG into the definition of reactivity 

further increased it.  

 

Burst-suppression and a continuously suppressed background, collectively referred to 

as “highly malignant pattern”, were both strongly associated with unfavorable 

outcome. However, six patients with burst suppression had a favorable outcome. All 

six had non-identical bursts (as defined in [23]) and no highly epileptiform bursts [10] 

- and all showed one type of reactivity (two had EEG-R and the remaining four had 

EMG-R; no patient showed both reactivities). As such, adding the absence of 

reactivity as necessary criterion increased the specificity for unfavorable outcome 

from 93% to 96% for EEG-R, and to 100% for EEG-R and EMG-R.  

 

4. Discussion 

 

This retrospective analysis of prospectively collected EEG in comatose patients after 

CA shows that taking changes of muscle activity into account when judging reactivity 

of an EEG trace increased significantly the sensitivity for good outcome.  

 

Currently, most guidelines recommend to discard muscle activity when judging 

reactivity on scalp EEG [10,16], However we show, to the best of our knowledge for 
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the first time, that EMG-R can contribute meaningfully to prognostication after 

cardiac arrest. When considered alone, changes in EMG activity after stimulus 

correctly predicted the outcome for about two-thirds of patients. The benefit of EMG-

R was greater when combined with “classical” EEG-R.   

 

These results are of relevance for clinicians confronted with the decision to continue 

or withdraw intensive care support in comatose patients after CA. For outcome 

prediction based on reactivity, consequences of a false negative (falsely predicting 

that a patient will not have a favorable outcome, when he actually would) are 

undoubtedly more harmful than a false positive (falsely predicting good outcome for a 

patient who in fact will have a poor functional outcome). Using EEG and/or EMG-R 

instead of EEG-R alone reduced the percentage of errors (false negatives) in patients 

with absence of reactivity from 19 % to 9 % (1-NPV).   

 

Also when reactivity was combined with another important feature of EEG analysis, 

namely background continuity, inclusion of EMG-R could reduce false negatives for 

detecting favorable outcome (or false positives for detecting unfavorable outcome). 

 

Physiological and practical aspects of EMG-R  

Several mechanisms might explain why EMG-R brings additional information to 

EEG-R when interpreting reactivity. One obvious reason is that the presence of EMG 

activity can impair EEG interpretation (“muscle artifacts”). In these cases, judging 

reactivity on EMG increases the signal-to-noise ratio. Conversely, EMG-R is difficult 

to assess when very little EMG activity is present, a situation which usually improves 

the EEG readability. Because of this complementarity and conflicting requirements 

for EEG- or EMG-quality, examiners in this study disagreed on both EEG-R and 

EMG-R in only 4 subjects. 

 

We also observed that the EMG baseline (that is, in absence of stimulation) was often 

more stable than the EEG baseline. Moreover, stimulus-induced EMG-modifications 

lasted often longer than EEG-modifications. This point is illustrated in Figure 1a: it is 

possible that the nociceptive stimulus did induce a flattening of the EEG, but this 

flattening was also observed every few seconds during baseline condition 

(discontinuous EEG). By contrast, in the same example, EMG activity was not 
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present before the stimulus, and persisted for almost one minute after the stimulus. 

EEG background can also be difficult to assess for other reasons, for instance in 

presence of periodic patterns or epileptiform activity (Figure 1b).  

 

EEG-R contributes to prognostication by assessing afferent (sensory) pathways, 

thalamic relays and the cerebral cortex [24]. By contrast, EMG-R does not necessarily 

require cortical activation, but requires functional efferent pathways at the brain stem 

level (cranial nerves V and VII for temporal and frontal muscles, respectively). One 

can postulate that in a few cases in which the cortical activity was still recovering 

after the anoxic-ischemic phase, or still severely impaired by sedation during CNT, 

EMG-R could help identify patients with a still functioning brainstem.  

 

Strengths and limitations 

We investigated a relatively large number of patients from a prospectively acquired 

and well characterized multi-centric cohort. Each stimulus modality was performed at 

least twice. The requirement to describe specifically the effect of stimulation on 

amplitude and frequency of EEG activity resulted in a high inter-rater agreement, 

which was comparable to or higher than in previous studies [25,26]. The transposition 

to “real-world” conditions is supported by the fact that no patient was excluded due to 

EEG artifacts.  

 

In this study we analyzed early EEGs performed during CNT. The reasons are, first, 

that early EEGs seem to have a better predictive value for good outcome [9,27], and 

second, that these EEGs were not taken into account for the final decision to continue 

or withdraw intensive care support. However, the timing of the EEG varied between 5 

and 30 hours after CA. This constitutes a limitation, as EEGs are known to vary 

during the first 30 hours after CA [9,28]. In particular, burst-suppression [28] or a 

suppressed background [9] can be observed early even in patients with favorable 

functional outcome, whereas at 72h after CA and after rewarming they are more 

specifically associated with unfavorable outcome [22,29]. In our cohort, no patient 

with suppressed background had a favorable outcome, as opposed to six patients with 

burst-suppression. It is known, however, that burst-suppression is a heterogeneous 

group (subcategories are for instance burst-suppression with or without identical 

bursts [23], highly epileptiform vs. not highly epileptiform bursts [10]). Our results 
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suggest that a combination of EEG-R and EMG-R can help reduce false positive 

prediction of poor prognosis in case of early burst-suppression without identical or 

highly epileptiform bursts (a pattern possibly due to early EEG, or to sedation). 

Follow-up studies are needed to better assess the benefit of EMG-R for 

prognostication at 72h after CA. 

 

A limitation of our study is that the administration or not of myorelaxants could only 

be retrieved in 144/184 patients, but since myorelaxants were administrated in a 

minority of patients during CNT (<10 %) this factor is unlikely to represent a relevant 

bias. As a surrogate we analyzed the proportion of patients with baseline EMG 

activity (prior to stimulation), which was not significantly different between patients 

with favorable or unfavorable outcome. Another possible limitation of our study is 

that visual stimuli were not taken into account, since it was not routinely performed in 

Bern; moreover stimulations in Bern were not always performed in the same 

standardized way than in Lausanne [30]. Finally, we only combined reactivity with 

one other aspect of EEG background, namely continuity. The additional value of 

EMG-R compared to EEG-R alone in relation to other elements of EEG analysis 

remains to be investigated.    

 

 

Conclusion and outlook 

Based on the results of our study, we propose that EMG should be considered in the 

assessment of reactivity. In particular in cases where EEG-R was difficult to interpret 

due to artifacts or non-stationarity, EMG-R could help reduce false negative for good 

outcome. However, our study was conducted on EEGs recorded early and within a 

relatively large time-window. Whether the complementarity of EMG-R and EEG-R 

holds 72h after CA and in absence of sedation remains to be confirmed. 
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Figure 

 

Figure 1: Examples of electromyographic reactivity (EMG-R) in absence of clear 

electroencephalographic reactivity (EEG-R). Longitudinal bipolar montage, 10-

second epochs, vertical bar = 100 μV. Timing of stimuli application is marked in 

green. (a) EEG of a 66-year old male, favorable outcome (CPC 1), recorded 19 h after 

CA. Appearance of muscle activity mainly on right frontal regions after release of a 

peripheric somatosensory stimulus (finger pinching) applied for about 7 seconds, 

discontinuous EEG without clear modification following stimulation. (b) EEG of a 

42-year old female, favorable outcome (CPC 2), recorded 26 h after CA. Clear 

reduction in tonic muscle activity after auditory stimulus (2 x call of patients name). 

The epileptiform activity prevents clear appreciation of EEG background reactivity. 

(c) EEG of a 73-year old female, favorable outcome (CPC 2), recorded 28 h after CA. 

Despite bolus of tracrium before recording a clear increase of muscle activity in 

response to finger pinching is seen (d) EEG of a 60 year old male, unfavorable 

outcome (CPC 5), recorded 14 h after CA. Increase of tonic muscle activity after 

auditory stimulus (hand clapping) over a suppressed EEG.   
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Tables 

 

Table 1: Patients demographics. 1) Continuous background or only stimulus-induced 

discontinuities (categories a or b1 according to [10]). 2) as defined in [22]. 3) 

Documented only for 144 patients. 

 

 

  

 Favorable outcome 
Unfavorable 
outcome p-value 

    N 90 94 n.a. 

Female 16 (18%) 29 (31%) 0.039 

Age (±SD) [y] 61.3 (± 14.2) 65.6 (±15.5) 0.025 

Non-cardiac etiology 12 (13%) 31 (33%) 0.0016 

Asystole or pulseless electrical 
activity on site 18 (20%) 58 (62%) <0.001 

    Latency of EEG recording (±SD) [h] 20.5 (±6.3) 21.9 (±7.6) 0.22 

Continuous EEGs1 43 (48%) 18 (19%) < 0.001 

“highly malignant pattern” 2 

[suppressed/burst-suppression]  6 (7%) [0/6] 50 (53%) [17/33] < 0.001 

Baseline EMG activity present 54 (60%) 47 (50%) 0.17 

    Patients sedated with propofol 49 (54%)  39 (41%) 0.08 

Propofol dosis (±SD) [mg/kg/h] 2.3 (±1.1) 2.2 (±1.3) 0.36 

Patients sedated with midazolam 32 (36%) 25 (27%) 0.19 

Midazomal dosis (±SD) [mg/kg/h] 0.13 (±0.06) 0.10 (±0.05) 0.16 

Patients sedated with fentanyl 56 (62%) 44 (47%) 0.05 

Fentanyl dosis(±SD) [mg/kg/h]  1.15 (±0.7)  1.20 (±0.9)  0.75 

Patients with myorelaxants3 6/69 (9%) 5/75 (7%) 0.65 
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Table 2: Performance of reactivity for predicting favorable outcome (EEG-R, 

modification of EEG background after stimulus; EMG-R: modification of EMG 

activity after stimulus; EEG- and/or EMG-R: modification of EEG background and or 

EMG activity; 95% CI, 95%-confidence interval; PPV, positive predictive value; 

NPV, negative predictive value). 

 

 

  

Favorable 
outcome 

Accuracy (95% 
CI) 

Sensitivity 
(95% CI) 

Specificity (95% 
CI) PPV (95% CI) 

NPV (95% 
CI) 

EEG-R  72% (66-79)  86% (78-93) 60% (50-69)  67% (58-76)  81% (72-90) 

EMG-R 65% (58-72) 61% (51-71) 69% (60-78) 65% (55-76)  65% (56-74) 

EEG- and/or  
EMG-R  73% (67-80) 94% (90-99) 53% (43-63) 66% (58-74) 91% (83-99) 
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Table 3: Combining EEG background reactivity and continuity for predicting 

favorable or unfavorable outcome (95% CI: 95%-confidence interval; EEG-R: 

modification of EEG background after stimulus; EMG-R: modification of EMG 

activity after stimulus; highly malignant pattern: burst-suppression or suppressed 

background; PPV: positive predictive value; NPV: negative predictive value). 

 

Favorable outcome 
Accuracy 
(95% CI) 

Sensitivity (95% 
CI) 

Specificity (95% 
CI) 

PPV (95% CI) 
NPV (95% 
CI) 

Continuous background 65% (58-72) 48% (37-58) 81% (73-89) 70% (59-82) 62% (53-70) 

Continuous background or EEG-R 73% (67-80) 91% (85-97) 56% (46-66) 67% (58-75) 87% (78-95) 

Continuous background or EMG-R 69% (62-76) 74% (65-83) 64% (54-74) 66% (57-76) 72% (63-82) 

Continuous background or EEG-R 
or EMG-R 73% (67-80) 97% (93-100) 51% (41-61) 65% (57-73) 

94% (88-
100) 

      

Unfavorable outcome 
Accuracy 
(95% CI) 

Sensitivity (95% 
CI) 

Specificity (95% 
CI) 

PPV (95% CI) 
NPV (95% 
CI) 

Highly malignant pattern 73% (66-79) 53% (43-63) 93% (88-99) 89% (81-97) 66% (57-74) 

Highly malignant pattern without 
EEG-R 72% (66-79) 50% (40-60) 96% (91-100) 92% (85-100) 65% (57-73) 

Highly malignant pattern without 
EMG-R 71% (65-78) 46% (36-56) 98% (95-100) 96% (90-100) 63% (55-71) 

Highly malignant pattern without 
EEG-R or EMG-R 72% (65-78) 45% (35-55) 100% (100-100) 

100% (100-
100) 63% (55-71) 
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