
Chapter 1
Developing Self-Organizing Robotic Cells using
Organic Computing Principles

Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang
Reif

Abstract Nowadays industrial robotics applications, which are often designed and
planned with a huge amount of effort, have a fixed behavior during runtime and can-
not react to changes in their environment. Failures can hardly be compensated and
often can only be repaired by human involvement. The idea of Organic Computing
is to enable systems to possess life-like properties, such as self-organizing or self-
healing. In this chapter we present a layered architecture to bring these two worlds
together. Further it is discussed what are the requirements of the respective layers
to allow to engineer self-x properties into such systems. The presented approach
allows for developing self-organizing robotic applications that are able to take ad-
vantage of Organic Computing principles and therefore are more robust and flexible
during runtime.

1.1 Introduction

With respect to their structure, traditional automation systems are very static. The
material flow is fixed and every component is optimized according to the planned
system structure to reach maximum throughput. This approach is very suitable for
mass production as in the automotive industries, where one product is manufac-
tured for a considerable time. Even the use of industrial robots does not change
this situation. In fact, industrial robots are very flexible and, given an appropriate
tool, are able to perform a large variety of tasks [10]. However, the complex and
tedious programming of today’s industrial robots, the fixed wiring and difficult in-
tegration of additional devices, as well as the very static layout of shop floors do not
exploit the possible flexibility of robotic solutions. As a consequence, high effort is
needed to customize and adjust automation systems, making them hardly applicable

Alwin Hoffmann · Florian Nafz · Andreas Schierl · Hella Seebach · Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, 86135 Augsburg, Germany

1

Chapter accepted for Bio-Inspired Self-Organizing Robotic Systems © 2011 Springer-Verlag Berlin Heidelberg

The final authenticated version is available online at https://doi.org/10.1007/978-3-642-20760-0_11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/222971536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-20760-0_11

2 Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

for small-series production with varying products where regular adaptation is re-
quired. Moreover, failure tolerance and flexible optimization is hard to achieve with
traditional automation systems.

On the other hand, the idea of Organic Computing [3, 20, 39] and Autonomic
Computing [6, 15] is to develop systems which possess self-x properties, like self-
healing (i.e. the compensation of failures), self-optimization (i.e. the autonomous
optimization according to a given fitness function), or self-adaptation (i.e. the adap-
tation to new or changing tasks or a different system structure). In the context of
production automation, the goal is to provide architectures and techniques to build
organic automation systems, where organic means life-like behavior or more con-
cise that the systems are capable of autonomously adapting to changes in their en-
vironment. This behavior is often realized by the use of bio-inspired paradigms and
algorithms, e.g. genetic algorithms or pheromone-based approaches.

Hence, the well-designed combination of Organic Computing principles and
robot technology can lead to hyper flexible and robust automation systems. While
robots – mobile platforms as well as industrial manipulators – provide mechani-
cal flexibility and the ability to perform a large variety of different tasks, Organic
Computing introduces self-organization to the systems which enables them for self-
healing, self-optimization or self-adaptation. For example, an Organic automation
system can compensate failures due to its self-healing capabilities and continues to
operate in graceful degradation – a requirement for robotic systems which is get-
ting more and more important [11]. Especially in small and medium enterprises,
where there are phantom shifts at night, systems of this kind are welcome. Using
self-optimization allows for continuously and autonomously optimizing an automa-
tion system during its runtime and without external interaction. Finally, due to self-
organization, organic systems are reconfigurable by design and are easily able to
adapt to new tasks or products – a requirement in today’s globalized economy with
its turbulent markets and fast changing demands [17]. However, evolutionary ap-
proaches and bio-inspired principle which solely rely on the idea of emergence can-
not directly be applied to production systems. Emergence rather has to be controlled
and directed to accomplish a defined goal, i.e. manufacturing a product.

In this chapter, we want to outline how self-x properties and Organic Computing
principles can be applied to industrial robotic manufacturing cells [2]. In previous
work, we have introduced an approach for modeling and designing self-organizing
resource-flow systems based on Organic Computing principles [31] and showed
how to specify a behavioral corridor for this system class [8]. Moreover, we have
developed a guideline for systematically engineering self-organizing resource-flow
systems [30] and verified their functional correctness using formal methods [23].

Because robotic manufacturing cells usually constitute a resource-flow system,
where a product (i.e. the resource) is manufactured step-by-step, our approach can
be applied to the domain of industrial robotics. However, we identified three robotic-
specific challenges one is facing in order to build self-organizing robotic cells. These
challenges are ranging from uncontrolled emergence over the problems in the layout
of robotic cells to limitations in current software architectures and will be described
in detail in Section 1.2. Based on these challenges, we present a multi-layer architec-

1 Developing Self-Organizing Robotic Cells using Organic Computing Principles 3

ture (Section 1.3) which allows for developing self-organizing robotic manufactur-
ing cells using Organic Computing. Every layer addresses the system at a different
level of abstraction and has distinct responsibilities in order to comply with the ar-
chitectural requirements. In Section 1.4, we illustrate our approach with a simple but
evident case study. Finally, in Section 1.5, a conclusion is drawn and future research
steps are highlighted.

1.2 Challenges

From our point of view, the development of self-organizing robotic cells using Or-
ganic Computing principles poses three major challenges:

1. To render organic systems acceptable for industry, emergence must be controlled
to accomplish a defined goal.

2. To apply self-x properties, the layout of robotic cells must provide additional
degrees of freedom.

3. To utilize these additional degrees of freedom, robotic software architectures
must provide flexibility with regard to programming techniques, coping with ge-
ometric uncertainty and device integration.

These challenges and their influence on the development of organic automation sys-
tems are described in detail in the following sections.

1.2.1 Controlling Emergence

A main concept of self-organizing systems is emergence. Emergence describes the
appearance of complex system behavior caused by relatively simple and local inter-
actions of individuals without the control of a central instance. Hence, the system
behavior is not explicitly programmed, but a result of these local interactions. An
example of emergent behavior is an ant colony where no central control is present.
Instead, each ant is an autonomous unit that reacts depending on local information,
i.e. pheromones, and genetically encoded rules.

Thus, the behavior of the individual components cannot be exactly predicted.
Müller-Schloer [18] calls this kind of behavior bottom-up constraint propagation
which stands in contrast to the classical top-down design of technical systems. In
the latter approach, the developer tries to model and implement all possible system
states. This usually starts with a high-level specification, until after a number of
transformations and refinements, executable code is generated.

However, having an exhaustive model of a complex system is often not feasible
and even contradictory to the idea of emergence. In order to solve this contradic-
tion, we suggest defining a corridor of good expected behavior [8] for every or-
ganic production system. Inside this corridor, emergent behavior is approved and

4 Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

Failure

Failure

Expected behaviour

Fig. 1.1 Organic production systems require a corridor of expected behavior. Inside this corridor,
emergent behavior is approved and even desired.

even desired, whereas the system is in an exceptional state when this corridor is left
(cf. Fig. 1.1).

This corridor is defined through constraints by the system developer and allows
controlled emergence. Usually, these constraints can be observed locally by each au-
tonomous component of the system. If one or more constraints are violated, the com-
ponent tries to restore the constraints locally. If this is not possible, it starts to involve
surrounding components until a valid solution is found that satisfies the constraints.
In Organic Computing this kind of architecture is called an Observer/Controller ar-
chitecture [18, 31]. By doing so, organic automation systems are self-organizing and
can be directed to accomplish a defined goal, e.g. to manufacture products. Besides,
behavioral guarantees in terms of functional correctness can be given [21].

1.2.2 Adding Degrees of Freedom

Usually, automation systems are designed and tuned to accomplish pre-defined tasks
for a long period. In single-station automated cells, a production machine is typically
equipped with a material handling system (e.g. a robot for loading and unloading
the machine) and a storage system. Due to this setting, the cell is able to operate
unattended but the system fails if any of the components breaks. An automated pro-
duction line consists of multiple workstations that are automated and linked by a
transport system which transfers parts from one station to the next. Again, if one
components breaks, the whole system fails. According to [40], flexible manufactur-
ing systems still have limited capabilities regarding customized products and failure
compensation. They even state that the need for flexible products and adaptive sys-
tems cannot be supplied with traditional approaches.

In order to become self-organizing, automation systems require additional de-
grees of freedom and redundancy in the available hardware. Without these prereq-
uisites, the system is not able to adapt to new environmental conditions or to com-
pensate failures:

1 Developing Self-Organizing Robotic Cells using Organic Computing Principles 5

• For self-healing, an organic automation system needs redundant hardware com-
ponents. Otherwise, it cannot compensate for the failure of one component and
continue operation in graceful degradation.

• Regarding self-adaptation, an organic production system needs degrees of free-
dom, i.e. flexible tools or transport systems, in order to adapt to changing or new
tasks as well as to a modified system structure.

• Finally, self-optimization is only possible if there are several degrees of freedom
which can be optimized with respect to a given fitness function.

Due to these reasons, we believe that robotic cells are well-suited for self-
organization by using Organic Computing. In robotic-based systems, additional
degrees of freedom can be achieved by adding robots, redundant tools, or tool-
changing systems. Concerning transportation, robots can be connected using ca-
rousels, two-way conveyors, or even mobile platforms. Further details are given in
Sect. 1.3, but here it is worth mentioning that the concrete choice of how redun-
dancy is added can impact the system’s robustness and its mean time to failure, as
the example in Sect. 1.4 shows. Giving one component all redundancy is in general
a bad choice, as a component failure will lead to a complete loss of the available
redundancy. To find good distribution strategies for redundancy, the ADCCA1 tech-
nique [9] can be used, which calculates minimal combinations of failures which lead
to a standstill of the whole production system. Also similar safety analysis tech-
niques like Fault Tree Analysis [37] can be used to identify single-point or n-point
failures and optimize the redundancy distribution accordingly.

1.2.3 Requiring Software Flexibility

By adding degrees of freedom and redundancy to the available devices and to the
shop floor layout, self-organization becomes feasible. However, to completely uti-
lize self-x properties, additional requirements to the architectures of robotic systems
with regard to software flexibility are necessary.

Flexible and reconfigurable automation systems require the introduction of smart
products carrying information about how to be processed by the system. This can
be e.g. realized by using RFID [40]. As a consequence, a product-centric approach
of configuring and commanding industrial robots and their tools is required. Pre-
defined motion sequences have to be replaced by more dynamic motion planning
considering the environment and avoiding obstacles. Due to the dynamic system be-
havior, the use of previously taught motions cannot be sufficient anymore. Instead,
the use of sensor feedback (e.g. vision) or compliant devices should be considered.
With sensor-based or compliant motions [16], an error-tolerant execution of com-
plex robot tasks in uncertain and unknown environments is possible [34].

In contrast to these demanding requirements, industrial robots are still pro-
grammed with special robot programming languages which are derived from early

1 Adaptive Deductive Cause-Consequence Analysis

6 Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

imperative languages and have not evolved much since then. Due to these low-level
programming techniques, developing software for an industrial robot is a complex
and tedious task requiring considerable technical expertise [26]. Hence, industrial
robots are usually equipped and programmed to perform only a set of pre-defined
tasks. This contradiction between low-level programming and high-demanding re-
quirements must be solved in the future to realize self-organizing robotic systems.

Furthermore, the integration of external devices must be facilitated. Today, tools
are usually connected by a fixed wiring to a robot controller and communicates
over digital and analog I/O ports. But when using tool changing systems, no human
interaction should be required. The software of the robot controller must be able
to independently cope with different tools mounted to the robot. Moreover, it must
be possible to integrate arbitrary sensors for intelligent perception and sophisticated
tools that allow e.g. complex grasping strategies and dexterous manipulation [24].
The introduction of plug-and-play mechanisms as proposed in [11] would cover this
requirement for flexible device integration.

1.3 Architecture

Our approach uses a layered software architecture which addresses the system at
different levels of abstraction. The proposed architecture is depicted in Fig. 1.2.

On top of the hardware layer, two software layers are located for controlling the
robot. The lower one, the Robot Control Layer, is responsible for the real-time crit-
ical, low-level hardware control, whereas the upper layer, the Robot Programming
Layer, is used for defining the control flow and specifying required motions and
tools actions. For traditional production systems, these three layers are sufficient, as
they allow the robot to execute arbitrary, pre-programmed tasks in a reliable, repeat-
able fashion. However, to extend the system towards self-organization, additional
communication and control software is required.

Therefore, our approach adds two more layers on top, which control the robotic
system according to Organic Computing principles. The first layer, the Organic
Control Layer, wraps the components of the robotic cell and turns them into soft-
ware agents coordinating with other agents through communication. Furthermore, it
is responsible for the execution of capabilities which are to be applied to the work-
piece. When this layer detects a locally unrecoverable error, the Organic Planning
Layer takes control and searches for a new configuration to achieve the task. Once a
solution has been found, control is returned to the Organic Control Layer for further
execution. The layers of the architecture are explained below from bottom up.

1 Developing Self-Organizing Robotic Cells using Organic Computing Principles 7

Organic

Planning

Organic Planning Layer

Organic Control

Layer

Robot Programming

Layer

Robot Control Layer

Hardware

Organic

Control

Robot

Programming

Robot

Control

Hardware

Observer

g g y
Distributed Planning

and Reconfiguration

Controller

High-level

Commands

b C l L

Closed-loop

Robot Control

R
Status and Error

Reporting

communication

Fig. 1.2 The proposed architecture for self-organizing robotic cells showing two individual com-
ponents.

1.3.1 Hardware

The foundation of each robotic cell is a set of robots with tools that are interlinked
with a transportation system. In order to become a self-organizing production sys-
tem, additional degrees of freedom are required as stated in Sect. 1.2.2. This means
that a robot cannot only be equipped with one static tool corresponding to its pre-
assigned task. For simple cases, it might e. g. be enough to equip the robot with a set
of equal drills so that it can replace them when they fail during production, but for
exploiting all advantages of self-organizing systems, different tools are needed that
can perform a variety of diverse tasks, and a way to interchange them without human
interaction. This can be achieved by the use of external tools, by an automatic tool
exchange system, or by using advanced tools like anthropomorphic hands which
allow dexterous manipulation.

If different tasks have to be executed, or the different task steps should be as-
signed to different robots, the transportation system also has to become flexible.
Instead of a single conveyor connecting the robots in a given order, this set-up re-
quires a way to change the order a workpiece passes the different robots. Similar to
existing systems, robots can be connected using a carousel or two conveyors, one
moving forward and one moving backwards. Thus, each robot can forward the work-
piece to any other robot by placing it onto the right conveyor. Corresponding to the
idea of hyper flexible manufacturing systems [11], another solution is to replace the
conveyor by a set of mobile platforms navigating between the robots, transporting
partly processed workpieces.

This allows a system to show a dynamic behavior. However, as the hardware
devices are expected to perform different tasks over time, all of them have to be

8 Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

controlled by a computer-based system. Its software must provide real-time guaran-
tees to reliably control the hardware devices.

1.3.2 Robot Control Layer

Low-level hardware control is performed in the Robot Control Layer. It is responsi-
ble for applying open or closed loop control laws on actuators and sensors in order
to make the hardware execute the requested actions. Therefore it has to be imple-
mented in a real-time capable environment, e. g. running on a micro controller for
simple actions or under a real-time operating system (such as VxWorks, QNX or
real-time extensions for Linux). For commercial KUKA robot systems, this layer
– the so-called kernel system – is implemented in VxWorks. It can execute motion
commands and send data to attached tools using fieldbus communication. However,
it is quite limited with respect to sensor integration or compliant motion – fields
where research robot controllers like OROCOS [32] are more advanced. Further-
more the control layer has to monitor the attached hardware for errors, and report
them to the above layer to allow reasonable failure strategies.

As a typical robot action consists of more than the application of one single con-
trol law with given parameters (e. g. one motion to a point), the robot control layer
has to provide an interface allowing to specify multiple control laws or commands
that are to be applied sequentially or in parallel. This interface can be used by the
programming layer. Examples for action task descriptions specified over such an
interface are manipulation primitives [5], constraint-based task specifications [4] or
realtime primitive nets [38].

Realtime primitive nets describe actions executed by one or multiple cooperat-
ing robots. These actions are composed of calculation primitives (blocks) and data
flows between them, which are evaluated in a real-time loop and form the corre-
sponding control loop for the hardware devices. All actions that have to be executed
with exactly given timing constrains or depend on each other’s progress can thus
be combined into one realtime primitive net that will be executed atomically. This
allows to specify complex or composed tasks with realtime requirements as a single
transaction and execute them in the control layer, removing the need for real-time
capability in the higher layers.

A limited example for a realtime primitive net is given in Figure 1.3. It shows a
motion of a robot along a given trajectory, followed by a control action enabling the
gas flow of a welding torch. The dotted boxes represent the high-level constructs
used in the programming layer to define the task, whereas the solid boxes show
realtime primitives and their dataflow links. In this example, position values from
the trajectory generator are sent to the robot block as set points (a typical example of
open loop control), and the digital output representing the welding torch is enabled
immediately once the trajectory has finished. Of course, a real world welding task
consists of more actions to be included in the realtime primitive net, e. g. ignition of
the welding torch, going along the welding seam and disabling the torch once the

1 Developing Self-Organizing Robotic Cells using Organic Computing Principles 9

trajectory generator

robot

Action: ignitionMovement Device: robot

binary value

digital output

Action: gasOn Device: weldingTorchEvent: motionEnded

progress

active position

active io control

activeon

active

triggercheck

trigger

Fig. 1.3 An example realtime primitive net describing the motion of a robot followed by the exe-
cution of a tool action.

destination has been reached. Further details about the realtime primitives interface
can be found in [38].

Commercial robot controllers usually omit a clear separation between control
and programming layer and execute complete robot programs on the control layer.
However, by separating these layers and thereby encapsulating the realtime require-
ments on the control layer, a standard programming language can be used for the
programming layer. This allows making the programming layer extensible and sim-
plifies the integration of robot programs into the surrounding software system.

1.3.3 Robot Programming Layer

The Robot Programming Layer offers an interface which accepts high-level com-
mands to be executed by the robot. It is responsible for transforming them into
control laws or task descriptions that can be executed with real-time guarantees in
the robot control layer. Furthermore, it transfers them to the robot control layer and
monitors execution progress, errors and sensor events. For KUKA robots, this layer
can be seen in the robot programming language KRL which allows writing robot
programs including extended control flow (e.g. conditional statements and loops),
motions and tool commands. Similar features are available in the languages RAPID
for ABB and Karel for FANUC robots.

However, the self-organizing robot cell – opposed to traditional production cells
– does not have a fixed processing or material flow order, thus it is not possible to
write one program for each robot that can be executed repeatedly to perform the
unchanging robot task. Each robot needs a set of robot programs (one for each robot
capability) that can be started and controlled from a higher architecture layer.

As the dynamic nature of a flexible production system makes it hard to guarantee
exact positioning of the workpieces during transportation, these systems also have
to cope with greater uncertainty about object locations. Thus the integration of sen-
sor feedback for object localization becomes more important here, as well as the

10 Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

possibility to program tolerant or compliant manipulators or tools. Also dynamic
motion planning with obstacle avoidance for both robots and mobile platforms must
be possible using this layer.

When trying to control a flexible production cell through a set of individual robot
programs (one for each robot capability), these programs as well have to be flexible
and highly configurable as described in Sect. 1.2.3. However, passing detailed envi-
ronment information to traditional robot programs is often quite complex, involving
fieldbus communication, thus limiting the range of possibilities [13]. These prob-
lems can be solved by using a robot control architecture that allows programming
robots in standard, high-level programming languages, such as the one described in
[1].

ignitionMovement :
Motion

gasOn : GasOn

startGasTrigger :
Trigger

ignitionMovementCmd
 : Command

weldingTorch :
WeldingTorch

motionEnded : Event

robot : Robot

startGasCmd :
Command

 : targets: action

: action : targets

 : triggeredBy

: starts

Fig. 1.4 The robot task from Fig. 1.3 represented as an object structure with actions, devices and
events.

It provides a high level, object-oriented API for programming robots which can
be directly used from the higher layers or encapsulated into a service that can be e.g.
accessed via standard service-oriented methods.

Figure 1.4 shows an example of a robot task created using the object-oriented
API. It contains two robot commands, one targeted at a robot and containing a mo-
tion, and the second enabling the gas flow of a welding torch. These commands are
connected using a trigger that starts the second command once the motion of the
first command has ended. This (and many more, when dealing with a real welding
scenario) has to be executed with real-time guarantees to ensure that the welding
seam is created with repeatable quality, so it is converted into a realtime primitive
net (like the one shown in Fig. 1.3) and executed using the robot contorl layer.

As an overview, the two robot software layers are shown in figure 1.5. The upper
part (programming environment and Robotics API) of the robot software architec-
ture represents the programming layer, and the lower part (realtime primitives inter-
face and robot control core) is an example for a robot control layer. Using this archi-
tecture, all layers above can communicate with the robot system using the standard
means of object-oriented software development. This simplifies the development of
the two organic layers located on top of the robotic layers in the proposed software
architecture.

1 Developing Self-Organizing Robotic Cells using Organic Computing Principles 11

Robotics API

Realtime Primitive Interface

Robot Control Core

P
ro

g
ra

m
m

in
g

 E
n

v
ir

o
n

m
e

n
t

(e
.g

.
W

in
d

o
w

s
w

it
h

 J
a

v
a

 1
.6

)

R
e

a
l-

ti
m

e
 R

o
b

o
t

C
o

n
tr

o
l

(e
.g

.
Li

n
u

x
/R

T
A

I
w

it
h

 O
ro

co
s)

Dynamic Construction of Realtime Primitive Nets

Robotics Base Class Libraries Robotics Extension Class Libraries

Basic

Primitives

Extension

Primitives

RT Primitive Specification

RT Primitive Implementationve Imple RT Primitive Implementation

RT Primitive Specification

ve Imple

Fig. 1.5 Overview of the robot software layers.

1.3.4 Organic Control Layer

The presented architecture for the top two layers is similar to observer/controller
architectures often used in the field of Organic Computing to realize the self-x fea-
tures of a system [19, 28]. The main task of these layers is to maintain the be-
havioral corridor of the system (see Sect. 1.2.1). The corridor is specified by OCL
Constraints [25, 31], which are annotated to the particular models during the design
process and describing “good” system configurations leading to functionally correct
behavior. By not explicitly forcing the system into a fixed set of configurations an
additional degree of freedom is gained, in which the system can pick the config-
uration it assesses as good. Further the constraints ensure that only configurations
are chosen that lead to a functional correct system. These constraints define a kind
of invariant over the system state and distinguish good from erroneous states. They
specify how correct configurations of the robots must look like. The system then
tries to preserve these constraints as long as possible. In case of a violation infor-
mation is forwarded to the planning layer which tries to restore them, by calculating
a new reconfiguration for the system. This approach is called the restore invariant
approach and described in detail in [8].

The Organic Control Layer therefore consists of two main components. An ob-
server component which constantly evaluates the constraints, based on the status
information of the system it receives from the lower layers. Here interfaces which
allow to receive feedback from the Robot Programming Layer (e.g. example error-
messages or sensor data) are needed. Whenever the observer detects a violation, it
activates the planning layer and forwards all gathered information. The main chal-
lenge here is to formulate the constraints in such a way and granularity that the

12 Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

robot is able to locally decide whether a constraint is violated or not. As constraints
usually are only violated if a system failure occurs, the observer must be able to
reason about the impact of a system failure on the constraints. Here a failure anal-
ysis [37, 9] can detect the possible failures of the system, which can impact the
validity of a constraint. For example, considering the constraint that a robot must
have the tool needed to perform the roles assigned to it. A tool failure will than lead
to a constraint violation in case the robot has a role assigned where it needs this tool.

The second component in this layer is the Controller. It performs the capabilities
assigned by the planning layer and commands robot actions required to apply the
capabilities and exchange resources. It makes use of the interface provided by the
Robot Programming Layer and controls the robot to ensure that the right capability
is applied. It further reacts to new configurations sent by the Organic Planning Layer,
for instance to change the performed actions of the robot.

1.3.5 Organic Planning Layer

On top of the control layer is the Organic Planning Layer. It is triggered by the ob-
server of the control layer and responsible for calculating new configurations if an
error occurs. It analyzes the current situation and, as most of the failures cannot be
compensated by one robot alone, it has to communicate with the planning layers
of other robots to gather information about available robots and their capabilities.
Then, the planning component tries to find a common solution to reach the objec-
tives. After a consensus is found, the planning layer forwards the new configuration
for its responsible robot to the Organic Control Layer, which then commands the
robot accordingly.

The advantage of moving all the self-organization into this high-level layer is
to be able use the full bandwidth of planning approaches, like bio-inspired or ge-
netic algorithms as well as simple planners. Therefore this layer provides a plug-in
interface to allow the use of several methods and algorithms for coordination and
planning, implemented as centralized or decentralized variants. System architects
can choose what is best suited for their kind of system and problem to solve. An-
other reason is that on this layer real time must not be considered, as all real time
critical commands are dealt with on a lower layer.

The planning task is basically a constraint satisfaction problem on the systems
configurations [36, 22]. Depending on the application and the parameters, this can
be rather complex, especially as the robots do not have global knowledge. Here the
challenge is to find proper communication protocols and algorithms which can deal
with specific requirements of the application. One may think of a simple gathering
of the global knowledge at one robot and then calculating a new configuration on
this robot. The solution is then spread to the other robots. While this may applicable
for smaller manufacturing cells it is not for larger systems. Further one does not
want to always stop the complete cell, instead a local reconfiguration is preferred,
where only a few robots are participating in the reconfiguration process.

1 Developing Self-Organizing Robotic Cells using Organic Computing Principles 13

Usually not just any solution for the problem is wanted, but an optimal solution
for the actual situation. Here the planner’s task is extended to find a best or nearly
optimal configuration for the system according to the given optimization criteria,
load balancing criteria or minimum number of reconfigured robots, for example.

1.4 An adaptive production cell example

In this section we want to illustrate the presented approach on a vision of a fu-
ture adaptive production cell. It shows the benefits of applying organic principles
to traditional robot systems. Traditional engineering would handle and design such
a production cell in a rather static way, consisting of individual machines that pro-
cess workpieces with their tools and linked to each other in a strict sequential order
using conveyors or similar mechanisms. The layout of the cell is therefore prede-
fined, very inflexible, and rigid. Additionally, and maybe more important, such a
system is extremely prone to system errors as the failure of one component will stop
the whole system. However, the adaptive production cell is self-organizing which
means that it is adaptive according to user-defined tasks (work plans) and compen-
sates for component failures. Furthermore, it tries to optimize the throughput by
finding a configuration which is best suited for the actual work plan.

1.4.1 System description

The adaptive production cell consists of KUKA Light-weight Robots (LWR), which
are capable of using different tools. The traditional conveyor belt has been replaced
by flexible and autonomous transportation units, which can carry workpieces. Some
interesting concepts and ideas for flexible transportation units or conveyor belts are
described by Bussmann in [29]. The goal of the example cell is to process work-
pieces in a user-defined sequence of tool applications (task).

Sect. 1.2 expounds that redundancy and software flexibility are needed to en-
hance traditional systems with self-organization. To achieve the maximum benefit
from redundancy, it is important how the redundancy is distributed within the sys-
tem. For example, it would be possible that a robot has the same tool three times
and is the only one with this tool. Then, the robot is capable of reacting two times
on tool breaks, but the breakdown of the whole robot stays a single-point of failure.
Therefore a more failure tolerant distribution is to give one tool of each type to each
robot, here a system breakdown needs at least a three-point of failure.

According to these results, the case study is arranged as follows (Fig. 1.6). We
have three LWRs for processing, four carts for transportation and two storages,
which provide unprocessed workpieces and store finished ones. Each LWR is able
to perform all three capabilities: drill a hole into a workpiece, insert a screw into
the drilled hole and tighten the inserted screw. The user-defined standard work plan

14 Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

is to process all workpieces with all three tools. The given order is first to drill the
hole, then insert the screw and at last to tighten it. In principle, an easy but not very
high-performance solution is to let each robot perform all capabilities and change
tools after each step. As switching tools is very time consuming compared to the
time for applying the capability, the standard configuration is to let every robot per-
form a different task. The distribution of processing steps among different robots
requires flexible routing of carts so that the correct order is maintained. One such
configuration is sketched in Fig. 1.6.

Fig. 1.6 Adaptive production cell

1.4.2 Design of self-organizing resource-flow systems

So far only the hardware of the adaptive production cell is described. But at least
as interesting is the software for this example. For the two organic layers a software
engineering guideline exists, which guides the engineer through several steps for
developing self-organizing resource-flow systems [30]. The presented robotic cell
is one simple instance of the class of resource-flow-systems. Other instances are
all kinds of production automation, where you have a product running through a
manufacturing process. One core concept of the guideline is the Organic Design
Pattern (ODP, see Fig. 1.7), which determines the architecture and behavior of the
system. It identifies the different components and artifacts of this domain and their
relations.

The central components in the system are the agents, representing the robots
and carts. They are processing the resources according to a given task. In case of the

1 Developing Self-Organizing Robotic Cells using Organic Computing Principles 15

Fig. 1.7 Components of a Resource-Flow System

production cell every agent has several capabilities, divided into producing, process-
ing, and consuming capabilities (produce, process, and consume). Consequently, the
task is a sequence of capabilities beginning with a producing capability and ending
with a consuming capability. Furthermore, the agent knows a couple of agents he
can interact with and hand over resources (in case of the production cell, the work-
pieces). This is encapsulated in the inputs and outputs relation. The role concept is
introduced to define correct resource-flows through the system. This means an agent
has roles allocated telling him from which agent he receives the resource (precon-
dition/port), which capabilities to apply, and then to which agent to hand over the
resource (postcondition/port). Thus, the roles establish the connections between the
agents and the combination of all roles forms the resource-flow. A system configu-
ration is then a specific set of roles allocated to the agents (in this case robots and
carts). For more details on the SE process and modeling of self-organizing resource-
flow systems see [30]. In this case study, self-organization is done by role allocation.
In case of a failure the system calculates a new valid set of roles, which is sufficient
to fulfill the task again.

1.4.3 Specifying self-x through behavioral corridors

To receive correct behavior the allocation of roles to the agents is curbed as already
mentioned in 1.3.4 by the specification of behavioral corridors. This is realized with
OCL constraints, which are annotated to the ODP (Fig. 1.7). This means the config-
uration of the system which is planned by the Organic Planning Layer is restricted
to configurations within the specified corridor. This is sufficient for a correct behav-
ior, as the execution semantics of roles is predefined. In other words it is specified
how roles are executed. Therefore the challenge is to restrict the roles which are
assigned to the robots or carts in such a way that the resulting behavior leads to the
desired system goal – in our example the correct production of the workpiece and
the completion of the defined task.

16 Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

One example for a consistency constraint for the robots or carts is the Capability-
Consistency. In OCL this constraint is evaluated in the context of an agent as it is
annotated to the agent concept, therefore self refers to a robot respectively cart.

(self.availableCapabilities -> includesAll(
self.allocatedRoles.capabilitiesToApply))

The Capability-Consistency ensures that the robots and carts only accept and
perform roles they are able to. In this case, only roles that need capabilities which
are available.

Another interesting consistency constraint is the I/O-Consistency for a robot or
cart (referred as self):

(self.inputs -> includesAll(
self.allocatedRoles.precondition.port))

and (self.outputs -> includesAll(
self.allocatedRoles.postcondition.port))

The agents know a couple of neighboring agents. They are documented in their
“input” and “output” relation. These indicate with whom robots and carts can ex-
change workpieces. The pre- and postconditions of the particular roles determine
from which robot/cart the workpiece comes from and to which the workpiece should
be given. The I/O-Consistency indicates that the robots/carts recognize the break-
down of their required partners in the actual resource-flow. The required partners
are the ports in the pre- and postconditions of the roles and must be part of the input
respectively output relation of the agents. During runtime the robots/carts ping these
neighbors to ensure that they are still available for receiving workpieces.

The carts are constrained in the way that they only take transport assignments
between robots that are reachable for them. All these constraints can be monitored
during runtime by the agents themselves as they can be evaluated locally. In gen-
eral, also quantitative constraints for a configuration can be of interest, such as the
assigned capabilities will not exceed a defined load or that the throughput has a cer-
tain threshold. These constraints usually are not monitored as they are violated if a
failure occurs, which implies a previous violation of another monitored constraint.

More details about specification of behavioral corridors by constraints can be
found in [8]

1.4.4 System behavior at runtime

The system starts with an initially calculated role allocation as depicted in Fig. 1.6.
The needed tool applications are spread to the robots and the carts are assigned
different routes to move the workpieces around. If a failure occurs, e.g. the drill
tool of the drilling robot breaks, the robot monitors this violation of its Capability-

1 Developing Self-Organizing Robotic Cells using Organic Computing Principles 17

Consistency constraint and starts a reconfiguration. It collects information about the
neighboring robots and carts, calculates a new distribution of tool assignments and
re-routes the carts in a way that production can continue. A traditional system would
stop and a human interaction would be needed here. The reconfigured situation is
depicted in Fig. 1.8.

Fig. 1.8 Adaptive production cell after reconfiguration

In this case study, the robots and carts have only local rules and interaction pos-
sibilities. The resulting system is a self-organizing production cell which is capable
of reacting to changes in the environment and new work plans. The configurations
which are calculated by the robots or carts in case of a local constraint violation (e.g.
capability or input, output loss) fulfills the constraints specified for the system. This
means that the occurring emergence is restricted to positive emergence as claimed
in Sect. 1.2.1.

1.4.5 Realizing self-reconfiguration

There are several possibilities to implement self-reconfiguration. Currently, recon-
figuration is done using a constraint solver, here Kodkod [35], to receive valid con-
figuration for each robot and cart. Therefore the actual system state and the OCL
constraints are converted into a formal model representing a constraint satisfaction
problem (CSP). The model can directly be derived from the design pattern and the
annotated constraints (see Sect. 1.4.2). This solver then tries to find a solution ful-
filling all constraints, which is then spread to the agents. More details about the

18 Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

transformation and the use of constraint solvers for this class of systems can be
found in [21, 22].

The advantage of integrating common techniques in contrast to stochastic algo-
rithms is, that it is easier to give behavioral guarantees and ensure correct reconfig-
uration.

But also heuristic and stochastic algorithms, like genetic algorithms [7], can be
used to realize the self-reconfiguration. For large problems they are often faster and
allow to integrate self-optimization by defining adequate fitness functions, which
also takes the quality (e.g. load balancing or throughput) of a solution into account.

For the production cell example a distributed coordination mechanism was de-
veloped, which realizes reconfiguration by applying a wave-like self-organization
strategy [33]. The agent which recognizes a failure starts a self-reconfiguration by
asking its neighbors if they can help solving the problem. If not, the search is prop-
agated forward to the next but one neighbors and so forth. If a solution is found the
agents switch to their new configuration and continue processing. In the best case
two agents just switch their roles and only the adjacent carts are re-routed. Here
reconfiguration is only needed for local subset of the system, which is advantageous
in larger scale systems.

1.4.6 Proof of concept

The organic layers are implemented with a multi-agent framework called Jadex [27],
which also provides the communication infrastructure. On each robot and cart one
Organic Control Layer agent is running and coordinating them via the interfaces
provided by the Robot Programming Layer. Whenever a failure occurs or a recon-
figuration request of another agent is received it spawns an Organic Planning Layer
agent which then is handling the reconfiguration for this agent. There are different
implementations (see 1.4.5) which are integrated into these planning layer agent and
can be used for reconfiguration. The reconfiguration is based only on local knowl-
edge and after successful reconfiguration the Organic Planning Layer terminates
itself. Thus, there is no global knowledge base generated during runtime.

For the production cell scenario we implemented a prototypical implementation
using Microsoft Robotic Studio. It provides a physical simulation environment for
robotic applications and allows for prototypical testing of the developed concepts.
A first version is described in [14].

1.5 Conclusion

In the field of Organic Computing, we were looking at the domain of production
automation, in particular the field of adaptive production cells. Further in robotics
research, we looked at facilitating the software development for industrial robots

1 Developing Self-Organizing Robotic Cells using Organic Computing Principles 19

and improving software quality. In this chapter we presented how both worlds can
fit together and how Organic Computing principles can be used to realize a flexible
automation system. To be more concise, how the architecture of a self-organizing
robotic cell can look like and how it can be implemented.

The lower layers were prototypically substituted by a simulation and coupled to
the implementation of the organic layers within a multi-agent system, as described
in Sect. 1.4.6. Nevertheless, these systems can benefit from the application of Or-
ganic Computing principles, especially in terms of failure tolerance and flexibility.
One major advantage of the proposed architecture and its implementation is that it
is formally grounded and, therefore, allows to give behavioral guarantees with re-
spect to the assigned configurations, which always leads to correct processing of the
resources. The definition of a behavioral corridor and the assurance of remaining
inside this corridor allows flexibility and gives firm guarantees about the system,
which is very important for the acceptance in industrial applications. However, the
drawback of moving self-organization into high-level layers is that no real-time crit-
ical behavior can be considered. Hence, only non real-time critical reconfigurations
are possible.

Different production scenarios and factory settings need diverse reconfiguration
mechanisms, e.g. completely decentralized coalition formation or wave propaga-
tions. We are currently working on different plug-ins for the Organic Planning
Layer to enhance it by several reconfiguration algorithm implementations. In or-
der to meet the flexibility requirements as proposed in Sect. 1.2, robotic software
architecture (see [12]) which corresponds to both the Robotic Programming Layer
and the Robotic Control Layer is currently extended.

Acknowledgements This work has been partly sponsored by the priority program Organic Com-
puting (SPP OC 1183) of the German research foundation (DFG).

References

1. Angerer, A., Hoffmann, A., Schierl, A., Vistein, M., Reif, W.: The Robotics API: An object-
oriented framework for modeling industrial robotics applications. In: Proceedings of the 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), Taipeh,
Taiwan. IEEE Computer Society Press (2010)

2. Black, J.T., Musunur, L.P.: Robotic manufacturing cells. In: S. Nof (ed.) Handbook of Indus-
trial Robotics, chap. 35, pp. 697–716. John Wiley & Sons, Hoboken, NJ, USA (1999)

3. Branke, J., Mnif, M., Müller-Schloer, C., Prothmann, H., Richter, U., Rochner, F., Schmeck,
H.: Organic Computing – Addressing complexity by controlled self-organization. In: Proceed-
ings of the 2nd International Symposium on Leveraging Applications of Formal Methods, Ver-
ification and Validation (ISoLA 2006), Paphos, Cyprus, pp. 185–191. IEEE Computer Society
Press (2006)

4. De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W., Smits, R., Aertbeliën, E., Claes, K.,
Bruyninckx, H.: Constraint-based task specification and estimation for sensor-based robot
systems in the presence of geometric uncertainty. Int. J. Rob. Res. 26(5), 433–455 (2007).
DOI http://dx.doi.org/10.1177/027836490707809107

20 Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach, and Wolfgang Reif

5. Finkemeyer, B., Kröger, T., Wahl, F.M.: Executing assembly tasks specified by manipulation
primitive nets. Advanced Robotics 19(5), 591–611 (2005)

6. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Systems Journal
42(1), 5–18 (2003)

7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1 edn.
Addison-Wesley Professional (1989)

8. Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification and construction
paradigm for organic computing systems. In: Proceedings of the Second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO 2008), Venice, Italy, pp.
233–242. IEEE Computer Society Press (2008)

9. Güdemann, M., Ortmeier, F., Reif, W.: Safety and dependability analysis of self-adaptive sys-
tems. In: Proceedings of ISoLA 2006. IEEE CS Press (2006)

10. Hägele, M., Nilsson, K., Pires, J.N.: Industrial robotics. In: B. Siciliano, O. Khatib (eds.)
Springer Handbook of Robotics, chap. 42, pp. 963–986. Springer-Verlag, Berlin, Heidelberg,
Germany (2008)

11. Hägele, M., Skordas, T., Sagert, S., Bischoff, R., Brogårdh, T., Dresselhaus, M.: Industrial
robot automation. White paper, European Robotics Network (2005)

12. Hoffmann, A., Angerer, A., Ortmeier, F., Vistein, M., Reif, W.: Hiding real-time: A new
approach for the software development of industrial robots. In: Proceedings of the 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), St.
Louis, MO, USA, pp. 2108–2113. IEEE Computer Society Press (2009)

13. Hoffmann, A., Angerer, A., Schierl, A., Vistein, M., Reif, W.: Towards object-oriented soft-
ware development for industrial robots. In: Proceedings of the 7th International Conference
on Informatics in Control, Automation and Robotics (ICINCO 2010), Funchal, Portugal. IN-
STICC Press (2010)

14. Hoffmann, A., Nafz, F., Ortmeier, F., Schierl, A., Reif, W.: Prototyping plant control software
with microsoft robotics studio. In: Proceedings of the Third International Workshop on “Soft-
ware Development and Integration in Robotics” (SDIR-III). IEEE International Conference
on Robotics and Automation (2008)

15. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)
16. Mason, M.: Compliance and force control for computer-controlled manipulators. IEEE Trans-

actions on Systems, Man, and Cybernetics 11(6), 418–432 (1981)
17. Mehrabi, M., Ulsoy, A., Koren, Y., Heytler, P.: Trends and perspectives in flexible and recon-

figurable manufacturing systems. Journal of Intelligent Manufacturing 13(2), 135–146 (2002)
18. Müller-Schloer, C.: Organic computing: on the feasibility of controlled emergence. In: Pro-

ceedings of the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis, Stockholm, Sweden, pp. 2–5. ACM (2004)

19. Müller-Schloer, C., Sick, B.: Controlled emergence and self-organization. In: Würtz [39], pp.
81–104

20. Müller-Schloer, C., von der Malsburg, C., Würtz, R.P.: Organic computing. Informatik Spek-
trum 27(4), 332–336 (2004)

21. Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.P., Reif, W.: A generic software framework
for role-based organic computing systems. In: Proc. Intl. Workshop on Software Engineering
for Adaptive and Self-Managing Systems, pp. 96–105 (2009)

22. Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.P., Reif, W.: A universal self-organization
mechanism for role-based organic computing systems. In: ATC ’09: Proceedings of the 6th
International Conference on Autonomic and Trusted Computing, pp. 17–31. Springer-Verlag,
Berlin, Heidelberg (2009). DOI http://dx.doi.org/10.1007/978-3-642-02704-8-3

23. Nafz, F., Seebach, H., Steghöfer, J.P., Bäumler, S., Reif, W.: A Formal Framework for Com-
positional Verification of Organic Computing Systems. In: Proceedings of the seventh Inter-
national Conference on Autonomic and Trusted Computing (ATC-10) (2010)

24. Okamura, A., Smaby, N., Cutkosky, M.: An overview of dexterous manipulation. In: Proceed-
ings of the 2000 IEEE International Conference on Robotics and Automation (ICRA 2000),
San Francisco, CA, USA, pp. 255–262. IEEE Computer Society Press (2000)

1 Developing Self-Organizing Robotic Cells using Organic Computing Principles 21

25. OMG: Object Constraint Language, OMG Available Specification (2006)
26. Pires, J.N.: New challenges for industrial robotic cell programming. Industrial Robot 36(1)

(2009)
27. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine. In: M.D.J.D. R.

Bordini, A.E.F. Seghrouchni (eds.) Multi-Agent Programming, pp. 149–174. Springer Sci-
ence+Business Media Inc., USA (2005). Book chapter

28. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic ob-
server/controller architecture for organic computing. In: GI Jahrestagung (1), pp. 112–119
(2006)

29. Schild, K., Bussmann, S.: Self-organization in manufacturing operations. Commun. ACM
50(12), 74–79 (2007). DOI http://doi.acm.org/10.1145/1323688.1323698

30. Seebach, H., Nafz, F., Steghöfer, J.P., Reif, W.: A software engineering guideline for self-
organizing resource-flow systems. In: Proceedings of the Fourth IEEE International Confer-
ence on Self-Adaptive and Self-Organizing Systems (SASO 2010), Budapest, Hungary. IEEE
Computer Society Press (2010)

31. Seebach, H., Ortmeier, F., Reif, W.: Design and construction of organic computing systems.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), Singapore,
pp. 4215–4221. IEEE Computer Society Press (2007)

32. Smits, R., De Laet, T., Claes, K., Bruyninckx, H., De Schutter, J.: iTASC: A tool for multi-
sensor integration in robot manipulation. In: Proceedings of the IEEE International Confer-
ence on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008), Seoul, Korea,
pp. 426–433. IEEE Computer Society Press (2008)

33. Sudeikat, J., Steghöfer, J.P., Seebach, H., Renz, W., Preisler, T., Salchow, P., Reif, W.: Design
and simulation of a wave-like self-organization strategy for resource-flow systems. In: 4th
International Workshop on Multi-Agent Systems and Simulation (MAS&S) (2010). Accepted

34. Thomas, U., Finkemeyer, B., Kröger, T., Wahl, F.M.: Error-tolerant execution of complex
robot tasks based on skill primitives. In: Proceedings of the 2003 IEEE International Con-
ference on Robotics and Automation (ICRA 2003), Taipei, Taiwan, pp. 3069–3075. IEEE
Computer Society Press (2003)

35. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: O. Grumberg, M. Huth (eds.)
Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Com-
puter Science, vol. 4424, chap. 49, pp. 632–647. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2007). DOI 10.1007/978-3-540-71209-1 49. URL http://dx.doi.org/10.1007/978-3-540-
71209-1 49

36. Tsang, E.: Foundations of constraint satisfaction (1993)
37. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. U.S. Nuclear

Regulatory Commission, Washington, DC (1981)
38. Vistein, M., Angerer, A., Hoffmann, A., Schierl, A., Reif, W.: Interfacing industrial robots us-

ing realtime primitives. In: Proceedings of the 2010 International Conference on Automation
and Logistics (ICAL 2010), Hong Kong, China. IEEE Computer Society Press (2010)

39. Würtz, R.P. (ed.): Organic Computing (Understanding Complex Systems). Springer-Verlag,
Berlin, Heidelberg, Germany (2008)

40. Zaeh, M., Ostgathe, M.: A multi-agent-supported, product-based production control. In: Pro-
ceedings of the 7th IEEE International Conference on Control and Automation, Christchurch,
New Zealand, pp. 2376–2383. IEEE Computer Society Press (2009)

