
JSS Journal of Statistical Software
June 2012, Volume 49, Issue 11. http://www.jstatsoft.org/

Oscars and Interfaces

Antony Unwin
University of Augsburg

Abstract

Graphical user interfaces (GUIs) are gradually becoming more powerful and more
accepted. They are the standard way of interacting with the web and play an increasing
role in many software applications. Nevertheless, they have not been generally adopted,
and critics point to particular weaknesses and disadvantages. Many of these are due more
to flaws in design and implementation than to the basic concepts of GUIs. More attention
could be paid to what users want to do and how a GUI might be developed to support
these goals. Using a dataset about Oscar nominees and winners, this paper considers
what analyses statisticians might carry out and what kind of GUI would be appropriate
for these tasks. (It also offers some insights into the Oscars dataset.)

Keywords: GUI, iplots, JMP, Mondrian, Oscars.

1. Introduction

Graphical user interfaces (GUIs) have been around for over twenty years. Some are good,
some are bad, and some you just get used to, appreciating their good points and working
around their bad ones. GUIs are liked by users who want a simple, intuitive interface, which
allows them to do most of what they want to do without fuss and complicated commands.
The best GUIs work in a way which relates to how we think. For instance, to move a file
from one folder to another we can pick it up (select it in software terms) and move it. GUIs
are disliked by more demanding users who want greater power and control and are prepared
to master complex command structures to be able to accomplish precisely what they want to
do. In an ideal world we would have the advantages of both. Beginners and casual users are
more likely to want GUIs, while expert and regular users are more likely to prefer command-
line interfaces (CLIs). It is particularly attractive with CLIs that you can repeat procedures
exactly the way you have performed them before. And that, of course, is a key feature of the
scientific method: reproducibility. Where GUIs score is in exploratory analyses, situations
where flexibility and immediacy are more important than tight control and precision.

http://www.jstatsoft.org/

2 Oscars and Interfaces

Amongst statistics software packages, two stand out as having developed impressive GUIs
early on, DataDesk (Velleman 1997) and JMP (SAS Institute Inc. 2012). It is no coincidence
that both started on Macintosh computers. JMP is still being enhanced and improved and
offers a wide range of statistical tools. Its basic design structure has not changed since its
beginnings in the late 1980’s and any discussion of its merits or demerits should bear in mind
that work on it was started at a time when very different computing environments prevailed
to those we are used to to-day. The fact that it still looks modern pays testimony both to the
soundness of the original design and to the lack of progress by other packages. Some packages
have added front ends of menus and dialog boxes to their modules, providing a limited GUI
experience. Within R (R Development Core Team 2012) there is a number of different groups
working on GUIs, as can be read in this issue or on the R GUI webpage (Grosjean 2010).

Through the ever-increasing presence of the web in our everyday lives, we are all becoming
familiar with GUIs for various basic tasks, be it banking, booking flights or buying books.
It seem highly probably that GUIs will get better, and more and more people will come to
expect them, even for complex tasks, such as statistical analyses.

2. What is a GUI?

The acronym GUI is pronounced“gooey”, which means sticky and syrupy. Unfortunately some
GUIs are rather like that, being neither fast enough nor versatile enough to provide the kind of
intuitive and free-flowing experience that a successful GUI can. This is encouraging for critics
of GUIs, who can point to plenty of clumsy implementations. A successful GUI should enable
the user to access the most useful commands quickly and easily and supply sensible defaults
for any options that may be needed. That requires decisions on which commands are “most
useful”, what options are sensible, and how to make the commands available. Rather than
discuss which statistical tools are most important (an interesting and doubtless controversial
topic), this article discusses how to make objects and commands accessible in a GUI for
statistical software. Related principles will apply whatever set of commands one wishes to
emphasize.

An interface is not only about interacting with software by carrying out commands, it is
also about being able to work with the responses the software supplies. It is a curious
feature of some GUIs that they have interactive inputs, mainly using point and click, and
yet have purely static outputs. Both inputs and outputs should be considered in designing
an interactive system. While graphics are a natural form of output to interact with, tables
and summaries of results need to be considered graphically as well and designed accordingly
so that users can interact with them. This involves viewing them as structured collections of
objects, as is discussed further on in Section 5.

Martin Theus has suggested a scale of interactive operations ranging from single clicks to
command lines, shown in Figure 1 (Unwin, Theus, and Hofmann 2006). All these tools may
be regarded as potentially part of a GUI, but they are different in the amount of control and
flexibility they offer. At the right end of the scale they are just a CLI. To the left of the scale
the interface tools are intuitive and fast, with the user in control, able to directly manipulate
the objects, be they cases, variables, plots or models. This is the fully-fledged GUI experience.
To the right of the scale the tools are more limiting and slow, with the software in control, and
objects have to be addressed by name. There is a place for both. Experts would favor tools to

Journal of Statistical Software 3

Complexity / Information

cue
single click

slider
mouse-drag

pop-up
menu

floating
palette

modal
dialog

pull-down
menu

command
line

Speed / Context Preservation

keyboard
shortcut

Figure 1: A scale of alternative methods for interactive commands and controls.

the left for exploratory analyses and tools to the far right for complex modelling. Beginners
would favor tools to the right for taking their first steps with statistical analyses and tools
to the left for working with graphics. It is not too difficult to set up GUIs for beginners, if
the system is in control and only a limited set of analyses are allowed. It is a much more
challenging problem to devise GUIs for exploratory analyses or complex modelling, where the
user is in control and it is impossible to predict in advance what analyses might be carried
out. The further you move to the right on the scale, the easier it is to provide similar, if not
quite identical, interfaces on all three major operating system platforms.

Comparisons of alternative interfaces can give the impression that you must use either one
or the other. Actually, it is often advantageous to offer several ways of carrying out the same
operation. You can open a file by double-clicking it, using a keyboard shortcut, choosing a
menu option or writing a command-line. As long as the interfaces are smoothly integrated
and don’t interfere with one another, this enables users to apply whatever approach is best in
a particular situation. Knowing that alternatives are available takes away the stress of having
to know how to do something exactly.

This paper discusses GUIs for R for exploratory analyses and refers to some of the ideas
behind the iplots package for interactive graphics (Urbanek and Wichtrey 2011) and how it
is planned to extend the package to incorporate exploratory modelling. iplots is very much
work in progress, and until the tools are available it is difficult to say how well they will work
and how they will be used. New tools lead to new possibilities and are often used in ways
their designers did not expect. The paper is illustrated by looking at a dataset concerning
Oscar winners and nominees and a matched control population.

3. The Oscars: Do you live longer if you are a winner?

Some ten years ago Redelmeier and Singh (2001) studied the mortality of actors and actresses
who had been nominated for the Oscars. For each star, they selected a control from the
corresponding film and compared the survival distributions of the following three groups:
winners, nominees who did not win, and the controls. Although controls were selected in
a paired way, only group comparisons were made. The paper claimed that winners live
longer and this conclusion prompted a spirited discussion in the medical research literature
with the general view being that the methodology was not sufficiently sound to justify the
conclusion. A major criticism was that the authors did not take full enough account of the
‘immortal time’ bias. The dataset is available as a supplement to this paper and was originally

4 Oscars and Interfaces

taken from http://www.annals.org/content/145/5/361/suppl/DC1. There is information
on 1670 actors and actresses, including 768 nominees and 239 winners (some people won or
were nominated more than once).

4. Analyzing the data on the Oscars

Donald Norman has suggested that system design should be activity-centred rather than
human-centred (Norman 2005). He has proposed a hierarchical approach from activities to
tasks to actions to operations. In terms of the Oscars dataset, the main activity is analyzing
the data to compare survival time distributions and individual tasks would include getting to
know the data, reviewing the data quality, and building models. Individual actions might be

1. Drawing a graphic, e.g., plotting a barchart of the variable gender.

2. Transforming variables, e.g., calculating the time between first nomination and first win.

3. Modelling, e.g., adding another explanatory variable to a model.

And actions are composed of operations, which are the actual interactions with the system.
These operations will either be carried out through a CLI or a GUI.

4.1. Drawing a graphic

Plotting a barchart in R would require the operations of writing an appropriate command line
and setting the relevant options. (It might also be necessary to open a new graphics window.)
You would have to know the name of the variable. Is it ‘gender’, ‘Gender’, ‘GENDER’ or
sex’? In fact, it is the ill-chosen ‘Male=1’, which appears in R as ‘Male.1’. A GUI showing
a list of the variables in the dataset would be preferable here, as would having the dataset
in a more readily understandable form with category names instead of numbers and sensible
variable names. Of course, there are GUIs and GUIs. A common approach is to choose the
action (‘plot barchart’) and then get a dialog window offering the list of variables and some
further options. The user may additionally have to click ‘OK’. It seems more natural to have
the variable list always available (these are the basic objects you work with), select the ones
you want and then choose the appropriate plot command. Within R the resulting simple
barchart (Figure 2) was drawn with

R> barchart(table(Oscars$Male.1))

It already raises an interesting question: Why are there not the same number of men and
women? Using a CLI like R you would draw up a table to discover that there were 893
men and 777 women. (Using a GUI you could query the bars in the graphic directly or,
as was possible in the software MANET (Hofmann 2000), query the variable name in the
variable list for summary information.) You would think there would be the same number of
male and female winners and nominees each year. For this kind of exploratory work a GUI
is probably best. Drawing barcharts of numbers of nominations per person by gender and
querying the bars with zero nominations reveals that there were 505 male controls and only
397 female controls, making up almost the entire difference. Presumably it was more difficult
to find female controls and the same actresses were used as controls for different nominees,

http://www.annals.org/content/145/5/361/suppl/DC1

Journal of Statistical Software 5

Freq

0

1

0 200 400 600 800

Figure 2: A barchart of numbers of males (above) and females (below) in the Oscars dataset.

but would that not stretch assumptions of independence? Since the Oscars for supporting
actors and actresses only started in 1936 there should have been 138 male and female wins in
all up till 2000 (73 for the main award and 65 for a supporting role). Both the main male and
female awards were jointly awarded on one occasion (males in 1932, females in 1968) so each
sex should have 139 wins. It turns out that there are 141 female wins (shared amongst 119
winners) and 140 male wins (shared amongst 120 winners). The reason must be that in the
first year of the awards, actors could win for their performance in more than one film. Janet
Gaynor’s award mentioned three films and Emil Jannings’ two. Although each only won one
Oscar overall, the dataset reports them as having won three and two Oscars respectively.
Reporting the counts in specified subsets, as we have just done, is the sort of thing database
software is good at and so is R’s CLI. Tracking down the reasons for differences in counts is
an exploratory activity and in this case used a combination of the Oscars dataset, a separate
dataset downloaded from the web listing the names and films of all nominees and the website
IMDb. There are two steps to carry out, firstly tracking down any discrepancies and secondly
discovering whether they are errors or have some plausible explanation. GUIs are much better
than CLIs for this.

4.2. Transforming variables

Another data quality issue was discussed in the appendix to one of the follow-up articles on the
Oscar dataset. (Sylvestre, Huszti, and Hanley 2006) spotted that there was an actress whose
first nomination was recorded as being long after her first win and that there was an actor
who had died the year before he was nominated. The first error can be seen in a scatterplot
or by looking at a derived variable (the time between first winning and first nomination), as
with

R> Oscars$WN <- Oscars$FirstWin_Year - Oscars$FirstNom_Year

R> summary(Oscars$WN)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

-8.000 0.000 0.000 3.816 4.000 44.000 1431.000

and it is easy enough to find out who the actress was, and where the error lay from the

6 Oscars and Interfaces

web, by using the other information for the case (Shirley Jones had one win in 1960 and was
born in 1934. The year of first nomination should have been 1960, the year of her win, not
1952). Finding the necessary information is simpler with an interactive GUI query than with
a listing of the data in R, though there is not a lot of difference. The second “error” was not
an error. The actor, Massimo Troisi, who starred in the Italian film “Il Postino” was indeed
nominated posthumously (as were, on different occasions, various other actors and actresses,
whom the article does not mention). A scatterplot does not work here for identifying the
case, as the difference of only one year is hard to spot in the graphic. The reason that the
other posthumous cases were not identified is that the dataset only contains the year of first
nomination and not years of later nominations. It was checking on Troisi on the web that led
to the information. Good interactive GUIs encourage exploratory analyses and an exploratory
philosophy. Would users of CLIs go searching on the web?

Sylvestre et al. (2006) excluded both cases from their analyses. Of course, two cases amongst
so many should make little difference. The important step is to check the quality of the data
to ensure that there is not a much larger numbers of errors. Calculating functions of the
variables in a dataset is probably much easier with a CLI (at least for statisticians!), though
sometimes variable names in R can be long, unwieldy and not easily distinguishable. (This is
why forward completion, which is available in some CLIs is not always as helpful as it might
be.) A possible advantage of GUIs here lies in being able to drag and drop variables into
formulae, while the disadvantage lies in setting up the formula in the first place. A combined
approach where you set up the formulae in a CLI and drop the variable names in might be
best.

4.3. Modelling

During modelling you often want to add additional explanatory variables to see how much they
improve the model. With a CLI you may have an add(model, term) command or you can
copy the command for the previous model and type in an extra term. An intuitive approach
for a GUI would be to have the model available as an object to which the variable could be
added. This would work nicely for the addition of a simple linear term and DataDesk offered
it as long ago as the 1980’s. It would not be so straightforward for adding something more
complicated, such as an interaction. Other GUI software packages provide dialog boxes giving
the detailed control necessary, while offering so many options that it is hard to keep track of
all the possibilities. Within R, an analyst knows that all parts of the model are accessible to
him and that there will be commands which will enable him to carry out whatever modelling
action he has in mind, he just has to track down the object and choose the command (which
may be available in several similar, though not identical, ways). For a regular user this is
not an issue, for a casual user it can be frustrating. This example illustrates a weakness of
interfaces, whether CLIs or GUIs, which has nothing to do with the interfaces themselves:
The underlying actions which the interface operations allow the user to carry out have to
be well structured. No amount of interface design, however good, can provide an effective
interface to a jumble of actions. Returning to Norman’s proposed hierarchy mentioned at
the beginning of the section, actions need to be grouped sensibly into tasks for carrying out
particular activities.

For the survival analysis of the Oscar dataset both Kaplan-Meier and Cox proportional haz-
ards models have been used. Code such as the following (after transformations to derive

Journal of Statistical Software 7

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival time

Su
rv

iva
l r

at
e

Control
Nominee
Winner

Figure 3: Survival rates for Oscar winners, for nominees who never won, and for the controls.

the required variables) would carry out the analyses (results not shown here) and produce a
Kaplan-Meier plot (Figure 3) using the survival package (Therneau 2012):

R> c2 <- coxph(Surv(Oscars$stime, 1 - Oscars$Alive) ~ Oscars$Group)

R> summary(c2)

R> c2s <- survfit(Surv(Oscars$stime, 1 - Oscars$Alive) ~ Oscars$Group)

R> plot(c2s, col = 1:3, xlab= "Survival time", ylab = "Survival rate")

R> legend("left", legend = c("Control", "Nominee", "Winner"),

+ lty = 1, col = 1:3)

There are several ways a GUI might usefully interact with this plot. You could query individ-
ual values, add information on group sizes or draw some kind of interval, zoom in, even redraw
the plot to emphasize differences. Model results would offer opportunities for interaction too.
You could change the model form or add or delete a term. Perhaps you could limit the model
to a subset of the data. You could examine the residuals in various ways or display confidence
intervals for the parameters. JMP offers many options on its survival plots via pop-up menus.
Its model outputs offer a range of different possibilities, which you can display or not, as you
think fit, by toggling button controls. There are also various options on the pop-up menus.

The output from the R analyses carried out has not been shown here, because it does not
include all the results you might potentially be interested in. For these purposes the output

8 Oscars and Interfaces

from the command str(c2) would be more relevant, listing all the components of the results
object, but that would then be far too long.

Textbooks may occasionally leave you with the impression that to fit a model to data you
only have to do just that. You may check residual plots and tinker a little with your model,
but the model you fit is the end result. In practice modelling is much more complicated, and
there may be many different models that might be taken into consideration. A major task
in any modelling process is therefore to compare the results of all the models that have been
fitted. Surprisingly, this is not a task that software automatically supports. Analysts have
to pull together results of different models themselves, perhaps to compare the models on
several criteria, perhaps to compare the patterns of residuals, perhaps to compare coefficient
estimates. A CLI like R’s is effective here, as related components in different models have the
same name. However, a GUI would be advantageous for listing the models and dragging them
into a comparison display. Can any user ever remember what the difference was between the
models they called m1 and m2?

5. Structuring the interface

Early statistical software produced results one at a time and it was not easy to use the
results of one procedure as input to the next. As software has progressed, this situation has
changed very much for the better and it is possible in R to not only access results, but also
the intermediate steps of a procedure. Basically everything is an object and the main kinds
of object that we want to interact with may be classified as follows:

Cases The properties of a case are its attributes (the case values on the variables). Cases
may be queried, selected, grouped or filtered to form subsets of interest.

Variables The properties of a variable are summed up in various statistics, though they also
include scaling and other meta-information. Variables may be summarized, plotted,
transformed, included in models or otherwise analysed.

Plots Plots have many components, some which are more statistical in nature (e.g., the
bars of a histogram, the aspect ratio, the axes) and some more presentational (e.g, the
background color, the size of tickmarks). Plots may be amended and varied. They are
by definition linked to variables and cases, and they may be further linked to other plots
or to models via cases and variables. Selecting and highlighting cases in one plot can
lead to those cases being highlighted in all other plots. Reordering the categories of
a variable in a barchart can lead to the same reordering of those categories where the
variable is part of mosaicplots. Changing a model should be reflected in changes in the
residual plots of the model. (These examples refer to interactive systems with dynamic
updating.)

Models Models have many components, those which define the form of the model, those that
are produced as part of the model-fitting process (e.g., a design matrix), and those that
comprise the model results. The number and variety of components that are associated
even with a simple linear model can be seen by applying the command str(). Model
residuals may be analysed, predictions may be made with the models, models may
be compared with one another. (Algorithmic procedures such as cluster analyses are
included in this class.)

Journal of Statistical Software 9

Few classifications are unequivocal. Some models are closely associated with plots (for exam-
ple, a smoother in a scatterplot) or with variables (for instance, a density estimate). Scales
are especially interesting. Are they associated with a variable (so that we might have the
same scale for each plot a variable appears in) or are they associated with a plot axis (we may
wish to use the same scaling for all variables in a parallel coordinate plot or for both variables
in a scatterplot or for a group of plots of a similar type)? We might reasonably argue that
they are a kind of model, something inbetween variables and models.

Interacting with cases and plots is well-known and has been the basis of interactive graphics
software with GUIs, as exemplified by commercial packages like DataDesk and JMP and re-
search packages like GGobi (Cook and Swayne 2007) and the Augsburg Impressionist packages
(Theus, Hofmann, Gribov, and others 2010). Interacting with graphical displays is a natural
operation, the objects you want to work with are visible in front of you. Cases are represented
individually as points or aggregated in bars or rectangles, so that they can queried, selected
or reformatted. Plots can be grown, rescaled or zoomed. If variables are presented in their
own window as named icons (as in DataDesk) or in a list of names (as in Mondrian), then
they can be readily accessed. (It is one of the minor irritations in using R that you often have
to remind yourself of the exact names of the variables, as there is no such aide mémoire list
to hand.) There is one caveat, though. If there are a lot of variables, then all interfaces will
have difficulties keeping track of them.

For models the situation is different, as there are many different kinds of models and many
different possible follow-up analyses. R’s output tends to be rather terse, so the objects you
might want to work on are not visible. JMP supplies more detailed outputs, and many
possible options are available through a variety of pop-up menus. In R’s CLI you have to
know which command you need to use to attain your goal, whereas in JMP’s GUI you have
to know in which menu you can find the kind of command you need. The sheer range of
possible alternatives gives any kind of interface problems (though you might ask yourself
if all these alternatives are really worth having). Working with the results of algorithmic
procedures brings different kinds of challenges. The results of hierarchical clusterings and
tree methods can be displayed graphically, so that they could be worked with interactively.
Simon Urbanek’s KLIMT (Urbanek 2006) demonstrates how it can be done with trees. Not
all procedures lend themselves to such an approach, though that is probably the best way
forward, to represent results visually so that the objects you might want to work with are
directly available.

Martin Theus’s Mondrian (Theus and Urbanek 2007) has some limited links to R via Rserve
(Urbanek 2003) and can add interactive density estimates to histograms and interactive
smoothers to scatterplots by having R carry out the calculations. However, it is not able
to take full advantage of R’s power and has quite a different kind of interface. In particular,
Mondrian was designed as a closed system to provide powerful intuitive tools at the expense
of not offering any easy way for users to extend them. Closed systems can be consistent and
the interface can be fine-tuned, whereas open systems allow users great freedom not to be
consistent (insert your own list of inconsistencies of R packages here) and there is little point
in trying to fine-tune an interface that can be changed at will by the users. The initial version
of iplots was an attempt to provide the same interactive graphics as Mondrian, but linked
closely to R, and to provide the opportunity for others to develop their own interactive plots.
One major hurdle was the need for the interface to work in the same way on all three common
operating systems, Windows, Unix and Mac. Each of them has their own way of doing things

10 Oscars and Interfaces

and this hampers the implementation of GUIs working exactly the same way on each plat-
form, so the interface ended up being predominantly menu-driven without an attractive GUI
and the package was actually rather detached from R. This experience emphasized the need
for another approach, to tie iplots more closely to R, to extend it to incorporate modelling as
well as graphics, and to develop a real GUI for interacting with these capabilities.

For interactive graphics, the structure a GUI should have is obvious. Variables need to be
selectable as objects so that you can plot them, and statistical components of graphics have
to be selectable so that you can work with them, changing formats or scales, and linking cases
across plots. For statistical analyses something similar applies, only here the components of
the results of analyses have to be selectable. R provides almost everything as an object which
can be accessed via a CLI. For a GUI these objects have to be made available and accessible
visibly.

6. GUI principles

6.1. Everything is an object

Perhaps this idea could be better expressed by saying that everything you want to work with
has to be an object. That is actually true for all interfaces, not just for GUIs. With a CLI
you identify an object by its name or by its location. With a GUI you identify an object by
one of its representations (possibly including a name or location). Ensuring that everything
is an object, not just plots, but statistical components of plots, not just models, but all the
inputs, options and outputs associated with the models, guarantees that you can carry out
all the analyses you might want to. There are two caveats that must be noted: The dataset
may not contain the data you need for your planned analysis or the dataset may not be in
the right form for it. In the first case you have to go looking for more or better data and in
the second you have to rearrange your dataset.

6.2. The noun-verb paradigm

A GUI has to show you what you can do in a given situation or to make it apparent in
some way what you can do. Objects can be visible and you can think about what you might
want to do with them. Alternatively, commands may be listed and then you can think about
which command you want to apply to which object. There was some discussion in the 1980’s
about which approach was better. The Macintosh operating system worked primarily with
the noun-verb paradigm, so you selected a file, say, and then decided if you wanted to open,
copy or print it. Other systems worked with the verb-noun paradigm, so you decided to, say,
open something and then chose the file you wanted to open. For exploratory analyses, and
probably for other forms of analysis as well, the noun-verb paradigm is better (Raskin 2000).
The example of plotting a barchart was discussed in Section 4.1. If there are many alternative
objects (e.g., if you have a hundred data files), then you need to search to find the one you
want to work on first. For searching amongst a large number of alternatives the verb-noun
paradigm is used.

Journal of Statistical Software 11

6.3. The importance of design

The reputation of GUIs is tarnished by users’ experiences with poorly designed ones. There
are several common faults that can be found: overburdened menus, fussy dialog boxes, un-
intelligible icons, and crowded screens. These flaws are due to bad design, not because they
are parts of GUIs. Simply adding all sorts of possible commands to menus (sometimes in
distinctly idiosyncratic orders and arrangements) does not make for a good interface. Re-
quiring users to fill out dialog boxes that resemble bureaucratic forms more than supports
for statistical analysis would make anyone yearn for a simple command line. Representing
commands by small individual symbols that are difficult to decipher can be more irritating
than helpful. Putting all the commands on screen at the same time is not constructive. In
principle they are available, but they clutter the screen, take away screen real estate, and
distract from the task at hand. Needless to say – but worth emphasizing – you can find
software with straightforward and powerful menu systems, disarmingly simple dialog boxes,
immediately recognisable icons, and elegantly laid out screens. It’s just that you won’t find
these features in all software GUIs. Returning to the scale of interactive methods in Figure 1,
the more direct and immediate you can make a command, the more it is to the left of the
scale, the more that operation offers the advantages associated with an effective GUI. Unwin
and Hofmann (1999) discussed principles of good design for statistical software over ten years
ago and that discussion is as valid now as then. Consistency, immediacy, feedback, providing
undo capabilities, making low demands on users’ memories are all important.

6.4. Experts rather than beginners

Perhaps software developers are thinking too much about beginners and casual users. If
you don’t know what to do, then having the possibilities laid out in front of you can be of
considerable help. The trouble is that you still have to decide between those many options.
There are similarities with stereo sound systems. Some systems have controls taking up all
available space, even though many of these controls will never, or hardly ever, be used. The
most expensive systems appear to have no controls, everything is hidden, although you know
the controls are available, an example of so-called affordance (Norman 1988). The best design
makes it clear what is available, even if it is not directly visible. For some tasks there may
be no way of implying how they can be carried out without displaying the command; for
many tasks there are more subtle, though equally effective, ways of doing it. Sometimes these
rely on analogies (moving a slider will change the value), sometimes on conventions (double-
clicking a file on a Mac will have the file opened by the appropriate application). Experts and
regular users prefer systems they can use without excessive guidance, however well-intended.

6.5. Styles of working

A crucial difference between CLIs and GUIs lies in the style of working. CLIs encourage a
linear approach, following one goal at a time. GUIs use multiple windows and encourage a
(semi-)multitasking approach. It is easy in a good GUI to select several variables and produce
many plots at once, while this is not a simple task in most CLIs. Plots in a fully-fledged GUI
can be linked and analysed simultaneously, with direct querying and adaptable selecting.
Plots in a CLI can be examined and then, if it seems useful, redrawn. Modelling is different
again. Sometimes you may have a model and want to check some minor adjustments or choose
the next step from a few clear-cut alternatives. A GUI which allows you to interactively flip

12 Oscars and Interfaces

between alternatives exploring the possibilities is more direct and efficient than building a
series of models, which would be the CLI way of doing things. On the other hand, if you want
to keep a careful record of everything you have done and make some detailed comparisons
between fairly similar models, both interfaces are fine, though if you know in advance which
models you want to fit, then that could possibly be efficiently packed into a macro in a CLI
and could easily be rerun with another dataset of the same type. To a great extent, which
approach one prefers is a matter of personal taste and a matter of tasks to be carried out.
Some activities are better served by one (exploratory analyses should be flexible and open-
ended, using lots of graphics) and some by the other (standard analyses should be carried out
in a reproducible step-by-step manner).

7. Advantages and disadvantages of GUIs and CLIs

As well as discussing the pros and cons of different approaches in general terms, it is helpful
to look at additional specific examples:

� Histogram binwidths
There are several theoretical works on choosing ‘optimal’ binwidths for histograms and
you can specify which you want to use in a CLI command. With an interactive GUI
you could vary the binwidth interactively. Neither is necessarily the best approach
here, as often the meaning of the variable determines the appropriate binwidth. For
histograms of the year of birth, the number of fourstar films made or the year of first
being nominated in the Oscars dataset, it is evident that any binwidth chosen has to be
a multiple of 1. A pop-up menu is a good interface option to control this. Should you
for some reason want a histogram with unequal binwidths, something that textbooks
usually discuss in theory and hardly anyone uses in practice, then a CLI would be the
right approach.

� Advanced selections
Forming a subset of all female nominees with more than three nominations and at least
one win who were born before 1960 is the sort of query databases are designed for and
if you can write SQL queries this may seem rather simple. However, the command
gives you little feedback on which of the conditions is most restrictive and what would
happen if you changed one, say requiring more than four nominations or considering the
corresponding male group. As part of checking data quality it turned out to be useful to
find out how many were in groups like this and, if there were only a few, who they were.
Selection sequences, which Martin Theus implemented in Mondrian, are a very neat
way of carrying out the query step by step on graphical displays of the variables and
being able to change any of the steps at any time interactively to assess their effect. In
Figure 4 females were selected in the top left barchart, then four or more nominations in
the top right barchart, then one or more wins in the middle barchart and finally all born
before 1960 in the histogram. The last three selections were all made as intersection
selections. This is a prime example of a direct interactive GUI tool. You could switch
to males by moving the selection rectangle in the gender barchart, you could consider
only five nominations or more by shrinking the rectangle in the nominations barchart,
or you could change the age range by adjusting the rectangle in the histogram. When
making these changes, the other selection criteria remain fixed. Selection sequences are

Journal of Statistical Software 13

Figure 4: The selection of all female nominees with more than three nominations and at least
one win who were born before 1960 using a selection sequence in Mondrian. The lighter
rectangles are the selection areas and may be grown or shrunk using the eight ‘handles’, the
black dots. The whole area may be moved by the mouse and the mode of selection changed
through options in a pop-up menu. Selection sequences give great flexibility for adjusting
search criteria to explore the data.

a sophisticated tool of considerable power, though they are best for one-off exploratory
analyses, while for repeated applications a CLI would be preferred.

� Reordering bars in a barchart
Barcharts are often drawn with the categories in alphabetic order or using some other
rule that has nothing to do with the data. It can be helpful to order by count, by
proportion selected or by number selected. Sometimes reordering by hand to placing
the bars for two categories beside one another is valuable. Doing this sort of operation
with a CLI is hard work, slow and counter-intuitive. With a pop-up menu in a GUI
or with the capability to pick up bars and move them (both available in Mondrian), it

14 Oscars and Interfaces

becomes straightforward and easy to understand. One of the most useful applications
of this is at first sight surprising. If you want to identify a number of cases by name
in a large dataset, select them, draw a barchart of the name variable and sort it by
number selected. This would be useful in the Oscars dataset, for instance for finding
out who the thirty female actresses were, who were selected in the selection sequence, if
only we had the actors’ names. (Unfortunately they were not included in the dataset.)
For printing out a list of the names in a report a CLI would be needed.

� Querying cases or parts of plots, selecting cases, zooming in in plots are further actions
where GUIs have the advantage. Zooming is an instructive example. For zooming in
on “the points close to zero”, a GUI is better. For zooming in precisely on the square of
side 2 around zero, a CLI is essential.

Of course, all these examples are associated with exploratory analyses. More formal actions,
like transforming variables or model-building, which both amount to writing down equations,
are better served by CLIs for constructing or building, but by GUIs for examining the results.

8. One last look at the Oscars

The Oscars dataset is not unusual is being both surprisingly comprehensive and yet disap-
pointingly incomplete. Information on the pairings could be valuable, as would other infor-
mation which would enable more sophisticated survival models. In the spirit of this paper,
it would be attractive to have a summary of the various models of the data in an interactive
table, permitting us to compare and contrast the results in various ways. This naturally pre-
supposes that we are all in agreement about the data. In some further exploratory analysis,
two new plots were drawn side by side (Figure 5) using the following code:

R> boxplot(X.FourStar_Films ~ X.Noms, data = Oscars)

R> plot(Oscars$X.Noms, Oscars$X.FourStar_Films, pch = 16)

Any films receiving four (or five stars) in the All Movie Guide (allmovie.com) were considered
to be of higher quality than the rest and so the number of fourstar films an actor was in
was regarded as a better measure than their total number of films. In the display of parallel
boxplots on the left, we can see as we might expect that actors with more nominations have
been in more ‘good’ films. The outlier on 8 nominations stands out as someone who was
nominated very often given how rarely they were in a ‘good’ film. In the parallel dotplots on
the right, the actor with 4 nominations, yet no ‘good’ films, catches the eye. There is nothing
more that can be done with these static plots. Using Mondrian (or iplots) it is possible to
select these cases and either link them to other displays for further case information or query
them. It turns out that both were actresses who each won one Oscar. Despite her 8 Oscar
nominations Geraldine Page did indeed appear in only 4 fourstar films, but the data on Joanne
Woodward’s fourstar films is just wrong. The All Movie Guide suggests a figure of 10 rather
than 0, so perhaps it was a data entry slip. Both this error and the ones discussed earlier
were easy to track down with a GUI and interactive graphics. Fortunately, it appears that
these are not major errors, but these examples do show how useful graphics and GUIs can be
in checking data quality. Powerful model-building tools are invaluable – as long as the data
are sound.

Journal of Statistical Software 15

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

0 1 2 3 4 5 6 7 8 9 10 11 12

0
10

20
30

40

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●●
●
●
●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

● ●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
● ●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●
●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●
●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●● ●

●●

●●

●
●

●
●

●●●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●
●

●●
●

●
●●

●

●

●●●

●●●
●

● ●

●

●●

●

●
●

●●

●

●

0 2 4 6 8 10 12

0
10

20
30

40

Oscars$X.Noms
O

sc
ar

s$
X

.F
ou

rS
ta

r_
F

ilm
s

Figure 5: Numbers of fourstar films by numbers of nominations.

The value of GUIs for exploratory analyses has been a common theme throughout the article.
Two interesting features of the Oscars dataset found in this way are that more winners changed
their names than nominees than controls and that of the 42 winners who were younger than
30 when they first won, X were women. Now do you think X is big or small? And how
big or small? (Hint: The number appears in the title of a classic Hitchcock film.) More
seriously, this difference in prize-winning age distributions coupled with the large difference
by sex in the numbers of controls, observed in the discussion of Figure 2, suggests that it
might be better to analyse the data separately for the sexes. Sex is included as a factor
in Redelmeier and Singh’s original paper and they say it does not affect their conclusion
regarding the effect of winning on survival. Repeating their analysis confirms their conclusion
for their model, but analyzing the data in two models, one for men and one for women, leads
to a different conclusion: The effect is no longer significant for men and less significant than
before for women. It may be ingenuous to believe that including sex as a factor in a model
can incorporate all the differences between the sexes that affect the results.

9. Combining interfaces for R

An essential feature of any interface is consistency, what you could call the power of con-
ventions, and this is where R and similar cooperative projects have their problems. It is
impossible to ensure that each R package follows the same interface standards. There are
some general rules in writing for R (for instance, in the way commands are formed and how
help files are structured) and some commonly agreed principles (as in the way models are
specified), but that still leaves much room for variation. A fast and flexible interface is only
possible if the user can have confidence that what works in one situation will work in another.
Imagine driving a car and not knowing as you went round a corner into another street whether
people drove there on the left or on the right or, indeed, down the middle. It would slow
you down (hopefully!) and give you much to think and worry about that had little to do
with your task in hand. This is one of the reasons GUIs in R are destined to be limited in

16 Oscars and Interfaces

the range of commands they can offer. Another reason is the restricted number of genuinely
interactive operations that can be considered. Recent developments with tablet computers
have extended the possibilities, but we still have only a small number available.

The lack of a sufficient number of direct operations can be circumvented to some extent by
working more with command combinations. Instead of looking for a single complex command
which does everything at once, it may be more appropriate to combine several simple com-
mands. This can be both more transparent and easier to remember. You have to balance the
time and effort needed to carry out several elementary commands against the time it may
take to work out how to achieve the same goal in one step.

The kind of interface you have available will influence the kind of analyses you are likely to
carry out. If you see some outliers in a scatterplot, it is an obvious next step with a GUI to
query them or select them. With a CLI, you would have to think hard about how to identify
the points and you might decide to pass on that analysis. Similarly, if there is a cluster of
points that arouses your attention you might zoom in with a GUI to take a closer look, while
redrawing the graphic with a CLI (maybe more than once till you get the right zoom level)
would involve more work and be a less attractive option. For transforming or combining
variables a CLI is the intuitive approach for those used to writing mathematical formulae and
so a CLI is better for statisticians. If there are several explanatory variables in a dataset,
then an analyst with a GUI might investigate the effects of individual variables graphically
first, both to get a feel for the data and to see what main effects there might be. Multivariate
analyses could be trickier with a GUI, whereas with a CLI it would be easy to fit a full
model straight off and see which variables seem to play an important role. The advantage of
reproducibility of a CLI is mitigated by the lack of feedback, which makes it more error-prone.
With GUIs you can generally see what you are doing and amend as you go. Although new
ideas and substantial improvements can be expected in GUIs, CLIs will improve as well. It
is often surprising how small amendments can improve the users’ experience. An integration
of both approaches would be the ideal.

The ideas presented in this paper are part of the discussion taking place about the future
development of iplots. Simon Urbanek has rewritten the engine of the package to make it much
faster and more powerful (Urbanek 2009). An interface similar to that of the original iplots
package would enable the use of interactive graphics. An additional programming interface
would allow expert users to extend the package with their own graphics. How models from
R can be incorporated is the key question. If R model objects and their components can be
given a more integrated structure, allowing easier navigation while still taking full account
of the models’ analytic complexity, then a GUI could be designed to give access to them.
Without this underlying structure GUIs are condemned to limited ranges of possibilities –
however successfully and attractively they work within their particular range.

Acknowledgments

Thanks to Alex Gribov, Heike Hofmann, Simon Urbanek, and Martin Theus for their software
and for valuable discussions. Thanks also to Redelmeier and Singh for collecting the Oscars
dataset and for making it available to others for analysis. And thanks to the referees for their
constructive suggestions.

Journal of Statistical Software 17

References

Cook D, Swayne D (2007). Interactive and Dynamic Graphics for Data Analysis. Springer-
Verlag.

Grosjean P (2010). “R GUI Projects.” URL http://www.R-project.org/GUI.

Hofmann H (2000). “MANET.” URL http://stats.math.uni-augsburg.de/MANET/.

Norman DA (1988). The Design of Everyday Things. MIT Press.

Norman DA (2005). “Human-Centered Design Considered Harmful.” Interactions, 12(4),
14–19.

Raskin J (2000). The Humane Interface: New Directions for Designing Interactive Systems.
Addison-Wesley.

R Development Core Team (2012). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Redelmeier DA, Singh SM (2001). “Survival in Academy Award Winning Actors and Ac-
tresses.” Annals of Internal Medicine, 134, 955–962.

SAS Institute Inc (2012). “JMP 10: Statistical Discovery Software.” URL http://www.jmp.

com/.

Sylvestre MP, Huszti E, Hanley JA (2006). “Do Oscar Winners Live Longer than Less Suc-
cessful Peers? A Reanalysis of the Evidence.” Annals of Internal Medicine, 145, 361–363.

Therneau T (2012). survival: A Package for Survival Analysis in S. R package version 2.36-
12, URL http://CRAN.R-project.org/package=survival.

Theus M, Hofmann H, Gribov A, others (2010). “Augsburg Impressionists.” URL http:

//rosuda.org/software/.

Theus M, Urbanek S (2007). Interactive Graphics for Data Analysis. CRC Press, London.

Unwin AR, Hofmann H (1999). “GUI and Command-Line — Conflict or Synergy?” In
K Berk, M Pourahmadi (eds.), Computing Science and Statistics, Proceedings of the 31st
Symposium on the Interface, volume 31, pp. 246–253. Interface Foundation, Chicago.

Unwin AR, Theus M, Hofmann H (2006). Graphics of Large Datasets. Springer-Verlag, New
York.

Urbanek S (2003). “Rserve – A Fast Way to Provide R Functionality to Applications.” In
K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd International Workshop on
Distributed Statistical Computing (DSC 2003). Vienna, Austria. ISSN 1609-395X. URL
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/.

Urbanek S (2006). Exploratory Model Analysis. Books on Demand.

http://www.R-project.org/GUI
http://stats.math.uni-augsburg.de/MANET/
http://www.R-project.org/
http://www.R-project.org/
http://www.jmp.com/
http://www.jmp.com/
http://CRAN.R-project.org/package=survival
http://rosuda.org/software/
http://rosuda.org/software/
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/

18 Oscars and Interfaces

Urbanek S (2009). “iPlots eXtreme.” In useR! 2009 – The R User Conference. Rennes. URL
http://www.R-project.org/conferences/useR-2009/slides/Urbanek.pdf.

Urbanek S, Wichtrey T (2011). iplots: Interactive Graphics for R. R package version 1.1-4,
URL http://CRAN.R-project.org/package=iplots.

Velleman PF (1997). “DataDesk Version 6.0 – Statistics Guide.”

Affiliation:

Antony Unwin
Department of Computeroriented Statistics and Data Analysis
University of Augsburg
86135 Augsburg, Germany
E-mail: unwin@math.uni-augsburg.de
URL: http://rosdua.org/~unwin/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 49, Issue 11 Submitted: 2010-12-08
June 2012 Accepted: 2011-07-15

http://www.R-project.org/conferences/useR-2009/slides/Urbanek.pdf
http://CRAN.R-project.org/package=iplots
mailto:unwin@math.uni-augsburg.de
http://rosdua.org/~unwin/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	What is a GUI?
	The Oscars: Do you live longer if you are a winner?
	Analyzing the data on the Oscars
	Drawing a graphic
	Transforming variables
	Modelling

	Structuring the interface
	GUI principles
	Everything is an object
	The noun-verb paradigm
	The importance of design
	Experts rather than beginners
	Styles of working

	Advantages and disadvantages of GUIs and CLIs
	One last look at the Oscars
	Combining interfaces for R

