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Abstract

More and more renewable sources are integrated into electric power grids worldwide. Their high
generation dynamics, however, require power grid operators to monitor electricity generation and
demand at a fine temporal resolution. Even small mismatches between supply and demand can
impact the power grid’s stability, and thus ultimately lead to blackouts. As a result, smart meter-
ing equipment has been widely deployed to collect real-time information about the current grid
load and forward it to utilities in a timely manner. Numerous research has shown that power con-
sumption data can, however, reveal the nature of used appliances and their mode of operation at
high accuracy. This effectively puts user privacy at risk. In this manuscript, we investigate to
which extent the local preprocessing of power data can mitigate this risk. We thus compare the
efficacy of different preprocessing steps to eliminate characteristic consumption patterns from the
data. Our evaluation shows that a combination of these preprocessing steps can provide a balanced
trade-off that is in the interests of both users (privacy protection) and utilities (accurate and timely
reporting).
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1. Introduction

One of the key elements of future smart power grids is their integration of renewable sources [1].
The volatile nature of renewables, however, introduces previously unseen uncertainties in the elec-
tricity generation. Utility companies hence need to constantly maintain up-to-date knowledge
about generation and load in order to avert the risk of power outages. Smart electricity meters
have been deployed to this end in many countries [2], as they enable to capture both the distributed
generation and the demand of a dwelling. While of immediate benefit to the utilities, the trans-
mission of precise information about the current electric activity in households is often perceived
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as a threat to user privacy. This concern is underpinned by research results that have shown that
information about the current user activities and even the television content can be inferred based
solely on smart meter data (e.g., [3, 4]). So while users may be reluctant to provide high-resolution
data because of the possible privacy implications, utilities require exactly this consumption data at
a fine temporal resolution in order to adapt the power generation of their non-renewable plants to
the dynamically changing demand.

A common way to encounter this problem without forming a trust relationship between cus-
tomer and utility is the removal of typical characteristics from the data before their transmission.
This technique, called privacy-aware data preprocessing, has received significant attention in or-
thogonal domains like participatory sensing [5, 6]. However, the applicability of mechanisms from
these domains is very limited due to the different nature of the data collected by smart meters (e.g.,
the absence of location information). Nonetheless, local preprocessing of sensed data represents
a promising way to protect users from potential breaches to their privacy when their consumption
data is received by untrusted third parties. In this manuscript we hence investigate to which ex-
tent the local preprocessing of power readings can eliminate possibilities to infer appliance types
based on their consumption data. To this end, we apply different mechanisms to obfuscate the
data and subsequently analyze to which degree appliance types can still be identified after this
preprocessing step. The analyzed preprocessing algorithms solely rely on the reporting of slightly
altered power consumption readings and do not leverage additional means (e.g., storage batter-
ies [7] or controllable local renewable generation [8]) to physically alter the power demand. It is
hence still possible to infer that electrical appliances are operating based on the reported consump-
tion readings. However, when successfully applied, data preprocessing will make it impossible to
determine the actual type of an operating appliance or its mode of operation.

Instead of analyzing data that aggregates a complete household’s consumption, we focus on
distributed smart metering in this manuscript. In this scenario, individual metering devices (some-
times referred to as smart plugs) are installed between each appliance’s mains plug and the wall
outlet. The reasons for selecting this application scenario are twofold. Firstly, existing approaches
to infer device activity from smart meter data have shown that the disaggregation of loads per-
forms significantly better when less appliances are connected at the same time [9]. A more effi-
cient privacy protection is thus needed when less appliances are being monitored simultaneously.
Secondly, very few household-wide meter data sets (like REDD [10] or Smart* [11]) are freely
available. Moreover, these existing data sets are generally neither annotated by the actual appli-
ance activity in the underlying building nor accompanied by the implementation of a disaggrega-
tion system. As a result, the effects of local data preprocessing on these data sets cannot be easily
determined. In contrast, the Tracebase data set [12] used in this paper contains more than 1,500
appliance power consumption traces, and in combination with our previously presented appliance
identification system [12] allows for a better generalization of our results.

This manuscript significantly extends our prior publication [13] by analyzing twice as many
preprocessors over larger parameter ranges and assessing the introduced errors in a much more
detailed manner. It is structured as follows. First, we provide an overview of related work from
the domains of data privacy and smart metering in Sec. 2. Subsequently, we describe our designed
software framework and the preprocessing steps in more detail in Sec. 3. Our evaluation settings
are explained in Sec. 4, followed by the presentation and discussion of our evaluation results in
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Sec. 5. Finally, we conclude this paper in Sec. 6.

2. Related Work

The rise of smart meters has led to the availability of energy consumption readings at an un-
precedented time and amplitude resolution. To date, two major applications have emerged that
rely on these data. Firstly, knowledge about past, current, and expected energy consumption is
vital for the smart grid [1], as it allows utilities to take action in order to maintain the grid’s sta-
bility. Secondly, value-added services can be based on energy consumption data and cater for the
creation of smart buildings [14, 15].

While smart building functionalities can be realized when accurate measurements are avail-
able (cf. [16–19]), the same methods can be applied by third parties (e.g., the utility or external
attackers) to infer the current situation in a building. Many institutions like the CEN-CENELEC-
ETSI Smart Grid Coordination Group, the National Institute of Standards and Technology, or the
German Federal Office for Information Security (BSI) have thus defined information security re-
quirements to the smart grid in [20], [21], and [22], respectively. Likewise, many researchers
have proposed the use of cryptographic means to ensure a secure transport of data between end
users and utilities (e.g., [23–25]). Although proposing a separation of personal information and
actual power consumption data, countermeasures to prevent inferring user-specific information
from meter data are not described in these documents. Moreover, the generally proposed use of
pseudonyms has been shown to be ineffective due to the insufficient number of stakeholders on the
electricity market [26].

In order to protect users from such intrusions into their privacy, several solutions have thus
been presented in related work. For example, [27] and [28] show how data collected by multiple
meters can be aggregated data before sending them to the utility. Similarly, [29] relies on a virtual
ring topology, along which meter readings are relayed before being forwarded. While the users
are protected against attacks by legitimate receivers of the data (i.e., utilities) in this case, however,
they need to trust and cooperate with other household owners. Moreover, transmissions can expe-
rience large delays due to the exchanges between clients that precede the final upload to the data
recipient, which may render the approaches inapplicable for the highly dynamic nature of smart
power grids.

In comparison to collaborative processing approaches, the local privacy-preserving preprocess-
ing of smart meter data has received significantly less attention in the past. Instead of artificially
manipulating the collected readings, existing local approaches mainly rely on the use of exter-
nal energy storage components. The use of batteries to smoothen the load curve and eliminate
characteristic features from the data has been presented in [7, 30]. By dynamically adapting the
battery output power to a particular appliance’s power demand, its existence can be completely
hidden. While leading to a potential increase in privacy protection, however, it needs to be re-
marked that the extent of hiding consumption data this way is inherently limited by the battery
capacity. Furthermore, state-of-the-art battery technology suffers from severe limitations, e.g., de-
creasing capacities over time [31]. Using storage components to protect user privacy may thus not
be practical until energy storages become available in large numbers, e.g., as a result of electro-
mobility [32].
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Many local processing approaches from orthogonal domains can be leveraged for smart meter-
ing scenarios. The addition of noise to sensor measurements has been applied in order to obfuscate
user behavior [33], although its effect has not yet been analyzed in the domain of smart electricity
grids. Also operating on a local basis, the privacy-aware data preprocessing solution presented
in [34] recommends the application of filters to eliminate certain characteristics from power data,
but their efficacy has not been analyzed in the domain of smart metering either. Amongst the other
mechanisms introduced in Sec. 3.2, we thus regard these approaches in our evaluation and assess
their applicability to power consumption data.

3. Concept and Software Framework

The primary objective of this work is to evaluate the extent of privacy protection that can be
achieved by preprocessing the data collected by distributed smart meters. In order to analyze the
efficacy of data preprocessing steps, we first quantify the privacy threat resulting from the unpro-
cessed transmission of power consumption data. To this end, we use an evaluation system that
allows for the classification of appliances based on their power consumption data. Subsequently,
results based on preprocessed data are compared to this baseline in order to draw reliable conclu-
sions on the degree of additional protection attained by preprocessing.

To establish the baseline detection accuracy, we rely on our previously designed system that
is able to detect the type of an appliance based on its electric power consumption data, which we
have presented in [12]. The system extracts specific characteristics that uniquely represent each
appliance type based on its power consumption behavior. Subsequently, it leverages a machine
learning component to store these characteristics and allow for a later retrieval of device types
based on the stored features. When the system is supplied with a power consumption trace col-
lected from another device, it extracts the same features from the provided trace, compares them
to the previously established model, and returns the device type with most similar characteristics.
The objective of the manuscript at hand, namely obfuscating device-specific characteristics in the
power consumption data, should thus lead to larger number of false identifications. Hence, we use
the fraction of appliances that can no longer be correctly identified as a measure of the efficacy of
our data preprocessing.

3.1. Overall System Architecture
Our overall system is composed of distributed metering units that connect between wall out-

lets and electric appliances, as well as a server on which the data analysis is performed. This
architecture is visualized in Fig. 1. Continuous lines indicate mains connections, whereas dashed
lines reflect the wireless data transfer between the meters and the server. We employ Plugwise
Circle [35] devices to collect the consumption data due to their commercial availability and their
approval for electric safety. All metering units return real power consumption data once per sec-
ond to the server, which records the power consumption traces in its database for their subsequent
processing.

The fundament for the contributions of this paper and the main difference to our original ap-
pliance classification system is the addition of a preprocessing step (highlighted in the figure).
This step is applied to all power consumption data time series prior to any further processing. By
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Figure 1: Overall data collection and processing system architecture

preprocessing data locally on the user’s premises, potentially compromising characteristics can be
removed before the the data is released to third parties. In this manuscript, we investigate mul-
tiple alternatives for the data preprocessing step, which we describe in Sec. 3.2 in more detail.
Subsequently, the existing appliance identification system is being used to extract representative
features from the data stream and facilitate the classification of incoming data streams. We sum-
marize the operation of the appliance classification system, describe the used feature types, and
provide details about the machine learning algorithm in Sec. 3.3.

3.2. Data Preprocessing
In the remainder of this paper, we analyze to which degree data preprocessing can help in

protecting user privacy. In order to be applicable to the scenario at hand, potential processing
algorithm candidates need to fulfill the following two criteria:

1. The algorithms must be sufficiently lightweight to be run on embedded systems like dis-
tributed power meters or smart metering infrastructure.

2. The output data of an algorithm needs to retain the general shape of the power consump-
tion curve, i.e., have small deviations from the original data. Similarly, the introduction of
excessive time delays between power measurements and their reporting can be expected to
hamper grid operations and should thus be avoided.

We have thus selected a set of six data preprocessing filters, which we explain in more detail in
the following subsections. To quantify the impact on the privacy protection when temporal depen-
dencies are being considered, we analyze three stateful and three stateless algorithms. The stateful
filters take previously observed data into account for the computation of a new output value and
are thus also referred to as time-based approaches throughout this manuscript. In contrast, the
stateless filters modify the signal amplitude independently of any previously observed data, and
are called amplitude-based filters from here on. In order to highlight the effect of the analyzed
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Figure 2: Unprocessed power trace excerpt of a dishwasher
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(a) Temporal down-sampling with a window size of w =

150 s
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(b) Addition of Gaussian noise with an amplitude of a =

100 W
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(c) Temporal averaging with a window size of w = 150 s
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(d) Quantization with a factor q = 80 W
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(e) Averaged down-sampling with a window size of w =

150 s
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(f) Clustered quantization with n = 22 output clusters

Figure 3: Comparison of the resulting traces when the six preprocessing filters are applied to a dishwasher’s power
consumption trace

processing algorithms on real-world data, we visualize their impacts on an excerpt from a dish-
washer’s operation cycle. The unaltered consumption trace is depicted in Fig. 2 for reference.

3.2.1. Temporal Down-Sampling
Temporal down-sampling is a mechanism to intentionally reduce the temporal fidelity of power

consumption readings. To this end, it periodically takes a sample of the data and reports the same
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Figure 4: Histogram of the entire used input data (the y-axis shows the square root of the actual value for improved
visual clarity)

power consumption value for a time duration w. Should new samples be received during w, these
values are discarded and the previous value is repeated instead. While down-sampling thus main-
tains the temporal frequency at which measurements are made available (e.g., one sample per
second in case of the Plugwise devices introduced above), in the worst case a potential change of
the actual power consumption will only be reported after a complete window w has passed. Fur-
thermore, as sensor readings are intentionally discarded, the error introduced by the application of
temporal down-sampling is only limited by maximum power measurement capability of the un-
derlying sensing device, but unbounded in theory. Fig. 3a shows the output of the down-sampling
step when a down-sampling interval of w=150 seconds is being used.

3.2.2. Temporal Averaging
Instead of omitting input data samples from their forwarding to the processing system, tem-

poral averaging takes all collected readings into consideration and can thus be expected to lead
to smaller deviations between actual and reported data. We have used a window-based averaging
function that reports the arithmetic mean of the previous w sensor readings. The output of our
averaging preprocessor for w=150 seconds is shown in Fig. 3c, clearly showing the smoothened
consumption pattern. Averaging introduces a time lag, and may thus only be applicable in scenar-
ios where this delay can be tolerated by the recipient of the data.

3.2.3. Temporal Averaging and Down-Sampling
This preprocessing alternative is the combination of an averaging of the input data and the

down-sampling of the resulting value as described in the previous two paragraphs. Again, the
mean value of the previously collected sensor readings is continuously calculated over a sliding
time window of w seconds. The resulting value is, however, down-sampled and only reported
once at the beginning of every window and then repeated until w has passed. The output of this
approach for w=150 seconds is shown in Fig. 3e, from which the characteristic steps on the steep
edges of the power consumption curve become apparent. Like the previously described averaging
step, a time lag is introduced when using this approach.

3.2.4. Noise Addition
Adding noise to the signal is a stateless way of modifying power consumption readings. Char-

acteristic fluctuations of an appliance’s power consumption that only have small amplitudes can
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be covered in the added noise, thus potentially leading to a higher privacy protection. In this pre-
processor, we have used a noise source that returns uniformly distributed values with an amplitude
between −a and +a, which are added to incoming sensor data. The result of adding noise with
a=100 W to the dishwasher’s consumption trace is shown in Fig. 3b. As no negative power con-
sumption values should result from the addition of noise, this preprocessor has been configured
to return the absolute value of the computation result. In order to eliminate dependencies on the
random number generator’s seed, we have run each of the evaluation experiment multiple times
with different seeds and only show the resulting mean values.

3.2.5. Linear Value Quantization
Value quantization is realized by rounding the actual power consumption values to a multiple

of a pre-defined quantization factor q. Because the quantization step is stateless and requires
no historical data, no delay is introduced by the introduction of this preprocessing step. The
application of quantization to the dishwasher’s consumption data is shown in Fig. 3d for q=80 W.
It can be seen that quantization eliminates the slight slope on top of the power-intensive heating
periods while the general shape is maintained. The decision to utilize a quantization step has
been supported by the fact that many electricity meters implicitly quantize values by outputting
a number of pulses for each consumed unit of energy (e.g., 1,000 pulses per kWh of consumed
energy).

3.2.6. Adaptive Cluster-based Quantization
In contrast to defining clusters of equally sized value ranges, this preprocessing step adapts to

the actual characteristics of the input data. To this end, we have computed the histogram of all
input data (cf. Sec. 4), which is visualized in Fig. 4. In order to intentionally create ambiguities
between similar power consumption readings to help protecting user privacy, we have applied the
Mean Shift algorithm [36] to separate the histogram into clusters. For all input data the falls within
the boundaries of any of the resulting clusters, the median value of the corresponding cluster’s
elements is reported. The algorithm can be parameterized to either return more clusters and thus
less errors between unprocessed and processed value, or to use less clusters and introduce larger
errors. We show the dishwasher’s consumption trace when clustering the histogram into n=22
individual sections in Fig. 3f.

3.3. Classification and Features
The evaluation of the achievable privacy protection is based on our appliance classification

framework presented in [12], which follows the overall process flow shown in Fig. 5. Let us
briefly revisit its operation. At first, power consumption traces of 24 hours duration are collected
from electric appliances. From a subset of the traces, characteristic features are extracted, anno-
tated by the type of the underlying appliance, and stored in the form of feature vectors. Each of
the resulting annotated feature vectors is subsequently forwarded to the machine learning compo-
nent, where a classification model is constructed based on the annotated data. This phase during
which the model is constructed is termed the training phase (cf. the upper part of Fig. 5). Sub-
sequently, the remaining traces are inserted into the system, their feature vectors are computed
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without class annotations, and the classifier’s output is compared to the actual device class (recog-
nition phase). We have used a 25-fold cross-validation approach to evaluate the accuracy of the
established model, i.e., 96% of the input traces were used to train a model, against which the re-
maining 4% of the traces were subsequently evaluated. This process is repeated for all 25 possible
permutations of training and recognition data and the average accuracy values across all combina-
tions are reported. A supplementary analysis of the impact of the actual random seed that is used
to split the input data into training and testing sets has indicated that only minimal deviations can
be observed as a result of choosing different seeds. Hence, all results reported in the rest of this
manuscript are based on a single run of the 25-fold cross validation.

Similar to [17] and [37], our system utilizes more than 500 different features from different
domains in order to describe the characteristic properties of the power consumption traces. We
regard features from both the temporal and frequency domain in order to incorporate both the
sudden changes encountered on appliance activation as well as periodicities throughout the day
into our classification model. More details on the employed four classes of features are provided
in the following subsections.

3.3.1. Temporal Appliance Behavior
This class of features encompasses information about the typical operation hours of a device

as well as the days of the week that it is being operated. Furthermore, information about the
number of activity cycles per day and their minimum, average, and maximum lengths are recorded.
Separate features model whether the duration of active phases varies throughout the day and what
typical ranges of these variations are.

3.3.2. Energy and Power Consumption Levels
The energy and power consumption characteristics are also extracted for different periods

throughout the day. Both minimal and maximal values are considered, as well as averaged con-
sumption values throughout activity periods. Besides calculating typical activity operation power
levels, the variance and possible ascending or descending trends of their length and consumption
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throughout the day are captured. The distribution of the observed power readings between their
minimal and maximal value is considered as well. Finally, appliances that only draw a constant
vampire power (e.g., Internet routers) are identified.

3.3.3. Shape of the Power Consumption
Taking both time and power consumption into account at the same time, this third class of

features regards the actual shape of the daily power consumption curve. This includes both the
steepness of initial inrush currents observed upon device activation as well as the characteristic
oscillations in steady-state operation. We apply different thresholds (e.g., 50, 200, and 2,000
watts) and count the number of times each of these thresholds is crossed as well as how long the
appliance operates in each segment. We also specifically consider the shape of the highest peak
per activity period in terms of its slopes and overshoots.

3.3.4. Statistic Features
In addition to regarding the power consumption during short segments, e.g., initial peaks or

sudden changes in the consumption, we also consider the statistics of the complete diurnal trace
by calculating its spectrum. The most dominant frequency coefficients are then used as features in
the appliance classification. We also compare different activity intervals to each other by means
of calculating their cross-correlations in order to determine the characteristics of periodically oc-
curring operational cycles. Finally, we calculate a histogram over the power consumption ranges
throughout a day and analyze the distribution of the appliance’s power consumption across each
compartment.

3.4. Achievable Classification Accuracy
Our previous results have shown that classification accuracy values in excess of 90% can be

achieved when all of the presented features are being used for the appliance classification [12]. In
other words, a very large fraction of the input data (composed of more than a thousand appliance
traces) could be correctly classified solely based on their power consumption data throughout a
24-hour period. In our evaluations we have demonstrated that maximum and average power con-
sumption values are the most important features for the classification of appliances. Based on this
observation, we have specifically chosen to preprocess the power consumption data in ways that
alter the consumption characteristics and analyze their impact on the classification accuracy. While
our previous work has thus effectively promoted anti-privacy by identifying the types of electric
appliances, we address the opposite target in this manuscript, namely how data preprocessing can
render our appliance identification system ineffective.

4. Evaluation Setup

Our evaluation is based on the software system presented in Sec. 3. We have installed the
server components on a dedicated machine that runs the database, the preprocessing modules, and
the appliance identification engine. For the construction of the classification model, we have used
the Weka data mining toolkit [38]. Based on the comparison of different classifiers in our previous
work, we have chosen to use the Random Forest classifier for the machine learning step, as it has
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Table 1: Power consumption traces used in the evaluation
Device type # appliances # traces
Alarm clock 1 5

Bean-to-cup coffee maker 1 43
Bread cutter 1 12
Coffee maker 5 77
Cooking stove 1 16

Desktop computer 9 126
Dishwasher 3 65

Ethernet switch 3 11
Freezer 1 9

HDTV media center 1 5
HiFi stereo amplifier 3 88

Internet router 1 20
Iron 1 3

Lamp 6 77
Laptop computer 6 50
Microwave oven 5 51
Monitor (CRT) 2 14
Monitor (TFT) 14 178

Playstation 3 console 2 12
Powered USB hub 1 10

Printer 1 6
Projector 1 8

Refrigerator 8 189
Solar-thermal system 1 8

Subwoofer 2 28
Television set 10 138

Toaster 4 21
Tumble dryer 2 9

USB hard disk drive 4 29
Vacuum cleaner 1 1
Video projector 1 19

Washing machine 7 50
Water fountain 1 56

Water kettle 8 115
Xmas lights 1 6

Total 119 1,555

resulted in the highest classification accuracy for the task at hand [12] and has a fast execution
time.

The data for the classification has been taken from our Tracebase project [12]. The Tracebase
already features more than 1,200 diurnal power consumption traces of more than 30 household
appliance types. Furthermore, we have collected more than 300 additional traces in order to base
our evaluation on an even larger corpus of data. On average, the power consumption traces have
been collected at a high granularity of one sample per second and with an amplitude resolution
of one watt. In total, we have used 1,555 power consumption traces collected from 35 different
appliance types in our evaluation, as listed in Table 1.

In order to put the achieved device classification results into perspective, we compare them to
the baseline, in which no preprocessing steps are applied (i.e., the parameters are chosen as q=1
watt, w=1 second, no added noise). Subsequently, we conduct a comprehensive analysis of the
classification accuracy when varying the parameter values across a large range of values. More
precisely, we have chosen the following boundaries for the parameter ranges:

• For the window size w, 45 discrete values in the range from 1 to 850 seconds have been
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analyzed. The same window size has been used for both averaging and down-sampling as
well as the preprocessor that combines both filters.

• Both the quantization factors q and the noise power amplitude a have been varied from 1 to
180 watts in 30 discrete steps.

• In the cluster-based quantization approach, the Mean Shift algorithm’s threshold parameter
has been varied in order to obtain a different number of clusters. In our evaluation, we have
used four different settings of the parameter (25, 50, 100, and 200 watts). As a result, the
algorithm returned 67, 22, 10, and 6 clusters, respectively, based on the histogram of all
input data as shown in Fig. 4.

5. Evaluation

In this section, we conduct a comprehensive evaluation of the parameter space in order to
quantify the improvements to user privacy protection offered by data preprocessing. In a first
experiment, we determine the bounds for the classification success rates in order to put all further
results into perspective. Subsequently, we analyze the impact of the preprocessing steps on the
appliance classification accuracy that serves as our privacy preservation metric. In a supplementary
simulation study, we furthermore quantify the error that is added to the data by the preprocessing
algorithms and weigh it against the requirements of utility companies. We conclude this section
with a summary of the observed results.

5.1. Baseline Classification Performance
In order to put the evaluation results into perspective, we have first evaluated the baseline

detection accuracy for all 1,555 input data traces. In this case, the application identification com-
ponent has returned an achievable accuracy value of 90.5%, i.e., nine out of ten devices could be
correctly identified solely based on a 24-hour long sample of their power consumption. Likewise,
the worst classification result is equal to randomly guessing an appliance’s type, and can thus be
calculated as 1/#appliances. For the given input set of 35 appliance types, the minimum accuracy thus
equals 2.9%.

5.2. Classification Accuracy
First, we analyze to which extent the preprocessing filters exert an impact on the classification

accuracy. To this end, we have computed the accuracy values for all possible combinations of
the three time-based preprocessors (down-sampling, averaging, and the combination of both) with
the three amplitude processors (linear quantization, noise addition, and quantization based on the
histogram of all input data). Please note at this point that (as shown in Fig. 1) all input traces are
preprocessed before they are being supplied to the appliance classification component in order to
cater for a fair evaluation.

The classification accuracy values when quantization and noise addition are combined with the
temporal preprocessors are shown in Fig. 6. As expected, when the quantization factor (or noise
amplitude) is set to 1 W and a window size of 1 s is chosen, the reference accuracy of 90.4% is
reached in all plots. The impact of time-based preprocessors can be seen on the left 2D plane where
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(a) Temporal down-sampling vs. quantization

0
50

100
150

0

200

400

600

800

0

20

40

60

80

100

W
ind

ow
 si

ze
 (s

ec
on

ds
)

Noise amplitude (watts)

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

pe
rc

en
t)

(b) Temporal down-sampling vs. noise addition
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(c) Averaging vs. quantization
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(d) Averaging vs. noise addition
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(e) Averaging/down-sampling vs. quantization
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(f) Averaging/down-sampling vs. noise addition

Figure 6: Resulting classification accuracies when the analyzed preprocessing filters have been applied to all traces in
the input set
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(a) Temporal down-sampling vs. cluster-based quantization
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(b) Averaging vs. cluster-based quantization
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(c) Averaging/down-sampling vs. cluster-based quantization

Figure 7: Resulting classification accuracies when the cluster-based quantization step has been applied to all traces in
the input set

q=1 W. Likewise, the impact of preprocessors that change the amplitude of the signal becomes
apparent on the back plane, i.e., w=1 s. This analysis of each time-based preprocessor’s individual
impact already makes clear that down-sampling leads to a much lower classification accuracy (and
thus a higher privacy protection) than averaging or their combination. In fact, even the largest
analyzed temporal window size still leads to a correct classification rate of 85.9% for averaging,
and 83.5% for the combination of averaging and down-sampling. In contrast, down-sampling
already reaches this classification accuracy at a window size of only 20 s, and leads to a rate of
only 47.1% correct classifications when the largest window size is chosen.

With regard to the impact of the amplitude-based preprocessors (i.e., the curve’s behavior on
the 2D plane in the back of the diagrams), it becomes clear that both quantization and the addition
of noise lead to similar results up to window sizes of 30 W. When linear quantization is being used,
however, the classification accuracy experiences a measurable drop above this quantization factor,
eventually leading to a classification accuracy of 56.0% for q=180 W. In contrast, 71.5% of all
traces are still being correctly classified after the addition of noise with an amplitude of a=180 W.
The nature of the Mean Shift clustering algorithms disallows for the specification of the number
of clusters, but instead relies on defining the allowed bandwidth, i.e., the allowed distance of a
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new data point to an existing cluster. Hence, Fig. 7 shows the resulting classification accuracies
when the previously introduced threshold parameters are being used. Again ignoring the impact of
the time-based preprocessors (i.e., at a value of w=1 s on the x-axis), the plots confirm the 90.4%
baseline accuracy when no clustering is applied, which reduces to 71.8% when only 6 clusters
are being used. When combined with time-based preprocessors, temporal down-sampling again
achieves the largest reductions in classification accuracy. Based on quantization into 6 clusters, its
accuracy values reaches 29.9%, as compared to 57.4% for temporal averaging and 52.0% for both
combined.

Taking the combined results into consideration, first of all it becomes clear that the combina-
tion of adding noise and averaging (cf. Figs. 6d and 6f) leads to very limited privacy protection.
This behavior is, however, expected as the underlying concepts of these two preprocessors are dia-
metrically opposed. Furthermore, it can be observed that the relatively highest losses of prediction
accuracy are encountered when only small parameter values are being chosen. Across all eval-
uations, more than half of the maximum reduction of classification accuracy is already achieved
when the window is 120 s or larger. In all cases, the application of temporal down-sampling leads
to the highest reductions in classification accuracy, whereas the differences between averaging and
the combination of down-sampling and averaging are minor. Overall, the highest privacy protec-
tion levels are achieved when combining quantization and down-sampling. Setting w=850 s and
q=180 W leads to an overall classification accuracy of only 36.9% (see Fig. 6a), and when replac-
ing the linear quantization by the histogram-based clustering with few clusters instead, even larger
reductions can be achieved.

5.3. Errors Introduced by Data Preprocessing
By applying any of the presented preprocessing steps, the input signal is altered from its orig-

inal form. We hence analyze this introduced error next. To this end, we determine the root-
mean-square (RMS) error between the original and the preprocessed power consumption traces,
as proposed in [27]. The maximum power consumptions observed by the considered appliances
are 2,866 W (dishwasher), 1,488 W (coffee maker), 1,461 W (refrigerator), and 284 W (television
set), respectively. As all preprocessing steps that involve temporal down-sampling suffer from un-
bounded errors, the largest errors are reported for the dishwasher appliance in this case (Figs. 8a
and 8e). The error of the averaging step shown in Fig. 8c follows a similar shape, but is slightly
lower due to the prior smoothing of the data and the resulting elimination of spikes in an appli-
ance’s power demand. In contrast to the time-based preprocessing, the remaining three subgraphs
show the effect when only the amplitude of the signal is changed. The expected linear relationship
between the added uniformly distributed noise and the RMS error is confirmed in Fig. 8b. Al-
though the quantization error is bounded by |q/2| (i.e., 100 W for a quantization factor q=200 W),
the linear quantization mechanism only results in RMS errors of less than 60 W across the four
devices (see Fig. 8d). Finally, Fig. 8f shows the errors when different numbers of clusters are ex-
tracted from the histogram of all input data. Larger errors are introduced when 20 or less clusters
are being used, whilst a larger number of clusters leads to a more approximate representation of the
data and thus to smaller errors. As a general observation, it becomes apparent that amplitude-based
preprocessors introduce smaller errors than their time-based counterparts.

Preprint of: A. Reinhardt, F. Englert, and D. Christin. “Averting the Privacy Risks of Smart Metering by Local Data
Preprocessing.” In: Pervasive and Mobile Computing (PMC) 16 (2015), pp. 171–183.

58



0 100 200 300 400 500 600 700 800
0

100

200

300

400

Down sampling window (seconds)

R
M

S 
er

ro
r (

w
at

ts
)

 

 
Dishwasher
Coffee maker
Refrigerator
Television set

(a) RMS power errors for different down-sampling win-
dow sizes

0 50 100 150 200
0

50

100

150

Noise amplitude (watts)

R
M

S 
er

ro
r (

w
at

ts
)

 

 Dishwasher
Coffee maker
Refrigerator
Television set

(b) RMS power errors for different noise amplitudes

0 100 200 300 400 500 600 700 800
0

100

200

300

Averaging window (seconds)

R
M

S 
er

ro
r (

w
at

ts
)

 

 
Dishwasher
Coffee maker
Refrigerator
Television set

(c) RMS power errors for different averaging window sizes
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(d) RMS power errors for different quantization factors
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Figure 8: RMS power errors when the analyzed preprocessing filters have been applied to traces of different appliance
types

In a final analysis, we consider the differences between an appliance’s actual daily energy de-
mand and the reported energy consumption after preprocessing has been applied. The results are
visualized in Fig. 9, in which a light gray line also indicates a ratio of 100%, i.e., an exact match
between actual and reported daily energy consumption. For reference, the total daily energy de-
mands of the considered traces were 1.20 kWh (dishwasher), 0.22 kWh (coffee maker), 0.38 kWh
(refrigerator), and 0.66 kWh (television set). The diagrams show that preprocessing leads to the
reporting of a lower energy consumption in some cases (e.g., when applying the quantization step
with q>150W to the refrigerator’s consumption, as shown in Fig. 9d), but also to situations where
a higher energy demand is reported (cf. the noise addition shown in Fig. 9b). Besides the huge
introduced errors of up to 1,200% when random noise is added to the signals, it can however be
observed that the discrepancies mostly stay within a band of 50% to 200% of the original energy
demand. Even when down-sampling with large window sizes is being applied (cf. Fig. 9a), the
reported energy consumptions only experience moderate deviations of at most a factor of 3.4 from
the ground truth.
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(a) Ratio between reported and actual energy consumption
for different down-sampling window sizes
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(b) Ratio between reported and actual energy consumption
for different noise amplitudes
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(c) Ratio between reported and actual energy consumption
for different averaging window sizes
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(d) Ratio between reported and actual energy consumption
for different quantization factors
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(e) Ratio between reported and actual energy consumption
for different averaged down-sampling window sizes
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for different numbers of quantization clusters

Figure 9: Ratios between reported and actual energy consumption when the analyzed preprocessing filters have been
applied to traces of different appliance types

5.4. Evaluation Summary
From the simulations, it has become clear that all presented approaches are suitable to achieve

a reduction of the classification accuracy, i.e., an increase in privacy protection. The efficacy
of the algorithms, however, strongly varies. When analyzed individually, both averaging and
the combination of averaging and down-sampling have only provided a minimal improvement
in privacy protection, but lead to considerable errors being added to the signal. Similarly, the
addition of noise has only reduced the classification accuracy by less than 20 percentage points,
but introduced measurable errors. In contrast, a reduction by more than 40 percentage points was
achieved when temporal down-sampling with large window sizes has been applied. In combination
with either version of the quantization filter (linear or clustered), the best privacy protection results
were achieved.

The large RMS error of temporal down-sampling and the corresponding deviations in the re-
ported energy demand, however, may render its usage inapplicable for some scenarios. Despite
the fact that quantization errors are likely to even out across a large field of participants (e.g., in
smart grids) due to the law of large numbers, its application might be less favorable when the
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data is, e.g., used for billing purposes; this is especially true when an energy demand below the
actual value is being reported. In conclusion, we however still believe that our comprehensive
analysis of a range of preprocessors represents a key element to make informed decisions for
privacy-preserving preprocessing that can be adapted to any power metering scenario.

6. Conclusions

The protection of user privacy is a key element of today’s society. With the rise of smart me-
tering, a novel sensing modality has emerged that can be leveraged to draw fine-grained portraits
of the activities in a household. We have thus analyzed how the application of preprocessing al-
gorithms to distributed smart metering data can be used to mitigate these privacy risks. To this
end, we have studied the impact of six preprocessing filters and their combinations on more than
1,500 power consumption traces. When any of the proposed preprocessing steps has been applied
to the data, the classification accuracy has experienced a degradation, i.e., the privacy protection
has increased, however to a variable degree.

Although the highest privacy protection results have only been achieved when significant errors
were introduced, the filters can be tuned to provide the desired trade-off between privacy and
reporting error. In fact, even small parameter settings can lead to good protection. For example,
applying linear quantization with q=45 W and temporal down-sampling with w=90 s already leads
to a situation in which only half as many appliances can be identified and the introduced error is
below 100 W on average. In summary, our proposed approach has proven that users can increase
their privacy protection at the cost of intentionally inaccurate data reporting.
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