
Introduction to Machine Learning

Understanding How and Why

Supplementary notes

André Artelt

Version: July 10, 2019

Preface

These supplementary notes are roughly connected to the lecture ”Introduc-
tion to Machine Learning”.
The aim of these notes is to help students getting a deep understanding of
the topics discussed in the lecture and exercises. However, we do not claim
or guarantee that all topics (from the lecture/exercises) are covered in these
notes (since there are minor changes each year). Therefore, the existence of
these notes is no excuse for not visiting & attending the lecture and exercises.
Furthermore, many topics are covered in far more details than (for just pass-
ing the exam) necessary. However, we think that these - more in depth -
explanations might be interesting & useful to curious students who want to
”dive deeper” into the material.

Machine Learning is applied math. Especially, we need a basic background
knowledge of optimization (in particular convex optimization) as well as of
probability theory & statistical inference. Because the past has shown that
many students do not have the necessary knowledge of mathematics, we de-
cided to put a short but comprehensive overview on (convex) optimization
and probability theory & statistical inference in the appendix of these notes.
(Convex) optimization is described in appendix A and appendix B is about
probability theory and statistical inference.
You can either first work through appendices A and B or you can directly
start reading the notes and go to the appendices whenever you are confronted
with something you do not know or understand.

Although many smart people have read these notes and searched for mis-
takes, we are pretty sure that some mistakes have survived. In case that you
find a mistake or have any other kind of feedback, please do not hesitate to
contact us by writing to intromachlearn@techfak.uni-bielefeld.de. We really
appreciate your feedback and hope that these notes are a useful resource for
understanding and mastering the introduction to machine learning.

Finally, we want to thank all involved people (in particular Benjamin Paaßen)
for proofreading, correcting mistakes as well as useful and inspiring discus-
sions. Writing these notes would not have been possible without them.

André Artelt
Bielefeld, Germany

Spring 2019

mailto:intromachlearn@techfak.uni-bielefeld.de

Contents

0 Notation 3

1 Basic concepts 7
1.1 Regression . 7
1.2 Classification . 8

1.2.1 The classification problem 8
1.2.2 Hypothesis . 8
1.2.3 Risk minimization . 10
1.2.4 Risk minimization and maximum likelihood 13
1.2.5 Bayesian model averaging 14

1.3 Outlook . 15
1.4 Exercises . 16

2 Bayes classifier 17
2.1 The optimum Bayes classifier 18

2.1.1 Outlook . 21
2.2 Naive Bayes classifier . 21

2.2.1 Gaussian naive Bayes classifier 22
2.2.2 Generative vs. discriminative models 24

2.3 Exercises . 26

3 K-nearest neighbors model 27
3.1 K-nearest neighbors classifier 27
3.2 K-nearest neighbors regression model 30
3.3 Parametric vs. non-parametric models 32
3.4 Outlook . 32
3.5 Exercises . 33

4 Linear regression 35
4.1 Modeling . 35

4.1.1 Hidden bias . 36

CONTENTS

4.2 Cost function . 37

4.2.1 Convexity . 38

4.3 Optimization . 38

4.3.1 Closed form solution 39

4.3.2 Iterative solution . 40

4.4 Feature transformation . 42

4.5 Regularization . 45

4.5.1 Closed form solution 45

4.5.2 Iterative solution . 47

4.6 Probabilistic interpretation . 47

4.6.1 Noisy outputs . 47

4.6.2 Maximum likelihood 49

4.6.3 Maximum a posteriori 49

4.7 Robust regression . 50

4.7.1 Huber regression . 51

4.7.2 Least absolute deviations 55

4.8 Sparsity regularization . 57

4.8.1 Details on LASSO . 60

4.9 Elastic net . 66

4.9.1 Optimization . 68

4.10 Bayesian linear regression . 71

4.10.1 Conjugate priors . 73

4.11 Kernel regression . 75

4.11.1 Dual form of ridge regression 76

4.11.2 Kernels . 78

4.12 Outlook . 82

4.13 Exercises . 83

5 Logistic regression 85

5.1 Modeling . 85

5.1.1 Cross entropy and information theory 88

5.1.2 Convexity . 88

5.2 Optimization . 90

5.2.1 2. Order methods . 92

5.3 Separating hyperplane . 93

5.4 Feature transformation, regularization & kernelization 95

5.5 Outlook . 96

5.6 Exercises . 97

CONTENTS

6 Tree based models 99
6.1 Decision trees . 99

6.1.1 Model . 99
6.1.2 Fitting . 100

6.2 Regression trees . 107
6.2.1 Fitting . 107

6.3 Random forest . 111
6.3.1 Feature relevance . 112

6.4 Outlook . 116
6.5 Exercises . 117

7 Evaluation 119
7.1 Metrics . 119

7.1.1 Regression . 119
7.1.2 Classification . 122

7.2 How to estimate scores . 127
7.2.1 Train - Test split . 127
7.2.2 Cross validation . 128
7.2.3 Overfitting & Underfitting 128

7.3 Model selection . 130
7.4 Feature selection . 130

7.4.1 Wrapper methods . 130
7.4.2 Filter methods . 131
7.4.3 Embedded methods . 131

7.5 Exercises . 132

8 Dimensionality reduction 133
8.1 PCA . 133

8.1.1 Derivation - Reconstruction error 134
8.1.2 Derivation - Diagonal covariance matrix 139

8.2 Kernelized PCA . 141
8.3 Outlook . 142
8.4 Exercises . 143

9 Clustering 145
9.1 K-means . 145

9.1.1 K-means++ . 146
9.1.2 Voronoi tessellation . 147

9.2 Agglomerative Clustering . 149
9.3 DBSCAN . 154
9.4 Spectral clustering . 157

CONTENTS

9.5 Gaussian mixture model . 158
9.5.1 Details on the EM-algorithm 160

9.6 Outlook . 170
9.7 Exercises . 171

Appendices 173

A Convex optimization 175
A.1 Convex set . 175
A.2 Convex functions . 176

A.2.1 Local vs. global optimum 179
A.2.2 Convexity preserving operations 180
A.2.3 Examples . 180
A.2.4 Subdifferential . 180

A.3 Convex optimization . 182
A.3.1 Closed form solution 182
A.3.2 Gradient descent . 184
A.3.3 Intuition behind gradient descent 189
A.3.4 Newton’s method . 191
A.3.5 Quasi-Newton methods 193
A.3.6 Choosing the step length 197
A.3.7 Coordinate descent . 199

A.4 Linear programming . 200
A.4.1 Example . 200

A.5 Quadratic programming . 201
A.5.1 Eample . 201

A.6 Lagrangian duality . 202
A.6.1 Optimality conditions 206
A.6.2 Example . 208

A.7 Outlook . 209
A.8 Exercises . 210

B Probability theory & Statistical inference 213
B.1 Basic probability . 213

B.1.1 Conditional probabilities 215
B.1.2 Independence . 215

B.2 Random variable . 216
B.2.1 Algebraic operations 216
B.2.2 Cumulative distribution function 216

B.3 Probability distributions . 217
B.3.1 Discrete distributions 217

1 CONTENTS

B.3.2 Continuous distributions 218
B.4 Expectation . 225

B.4.1 Expected value . 225
B.4.2 Variance . 226
B.4.3 Covariance . 226
B.4.4 Transformation . 227
B.4.5 Conditional expectation 227

B.5 Independence . 228
B.6 Moments . 228

B.6.1 Moment-generating function 229
B.7 Upper bounds . 230

B.7.1 Jensen’s inequality . 230
B.7.2 Chebyshev’s inequality 231
B.7.3 Markov’s inequality . 231
B.7.4 Chernoff bound . 231
B.7.5 Hoeffding’s inequality 231
B.7.6 Cauchy–Schwarz inequality 232
B.7.7 Union bound . 232

B.8 Law of large numbers . 232
B.9 Central limit theorem . 233
B.10 Information theory . 234

B.10.1 Entropy . 234
B.10.2 Kullback-Leibler divergence 234
B.10.3 Mutual information . 235
B.10.4 Cross entropy . 236

B.11 Inference . 236
B.11.1 Estimator . 236

B.12 Bootstrapping . 238
B.13 Constructing estimators . 239

B.13.1 Method of moments 239
B.13.2 Maximum likelihood 240
B.13.3 Bayesian inference - Maximum a posteriori 243

B.14 Outlook . 245
B.15 Exercises . 246

CONTENTS 2

Chapter 0

Notation

1. Vectors are represented by lower case letters with an arrow on top. E.g.
~x.

2. Scalar values are denoted by lower case letters. E.g. a.

3. Matrices are represented by upper case bold letters. E.g. A.

4. Sets are denoted by upper case calligraphic letters. E.g. Y .

5. The set of real numbers is denoted by R.

6. The set of positive real numbers is denoted by R+.

7. The d dimensional real valued vector space is denoted by Rd.

8. Accessing an entry of a vector is denoted by putting the vector into
parenthesis and putting a subindex at it. E.g. (~x)i denotes the i-th
entry of the vector ~x.
On the other hand we denote the i-th vector in a collection of vectors
with a subindex i. E.g. ~xi.

9. By default, all vectors are column vectors.

10. The identity matrix is represented by I.

11. The determinant of a matrix A is denoted by det(A).

12. The set of symmetric positive semidefinite matrices in Rd×d is denoted
by Sd.

13. The expression A � 0 states that the matrix A is symmetric positive
semidefinite, whereby the expression B � 0 states that the matrix B
is symmetric positive definite.

3

CHAPTER 0. NOTATION 4

14. Accessing an entry of a matrix is denoted by putting the matrix into
parentheses and putting a tuple of subindices at it.
E.g. (A)i,j denotes the entry in i-th row and j-th column of the matrix
A.
The i-th matrix in a set of matrices is denoted by the subindex i. E.g.
Ai

15. The indicator function 1c(x) is a function which is 1 if x satisfies the
condition c and 0 otherwise.
E.g. an indicator for positive numbers is denoted as 1>0(x). If no
condition c is specified, we implicitly assume the condition = 1 - e.g.
1(x) is 1 if x = 1 and 0 otherwise. Furthermore, we might also write
the condition into the argument - e.g. 1(x = 1).

16. When summing or multiplying over a set of variables, we often just
write

∑
i or

∏
i without completely specifying the value range of the

index i. The value range of i should be obvious from the specific con-
text.

17. Random variables are denoted as upper case letters. E.g. X.

18. Probabilities are always denoted by a capital P .
E.g. the probability that a random variable takes on a specific value
(denoted as a lower case letter) is denoted as P (X = x) or even simpler
as P (x).

19. The expected value of a random variable X is denoted with E[X]. If
not explicitly specified, the distribution, over which the expectation is
taken, should be clear from the context.

20. The normal distribution is denoted by N .

21. The uniform distribution is denoted by U .

22. The probability mass function over a set of indices is denoted by P({pi})
where pi denotes the probability for the i-th index.

23. Estimates of a quantity are denoted by the ”hat” symbol on top.
E.g. µ̂ denotes the estimate of µ.

24. The gradient of a function is denoted by using the ∇ symbol.
E.g. the gradient of a function f(~x) with respect to ~x is written as
∇~xf(~x).

5

25. The Hessian (second derivative) of a multivariate function f(~x) is de-
noted by ∇2

~xf .

26. The 2-norm of a vector is denoted by ‖·‖ or explicitly by ‖·‖2.

27. The 1-norm of a vector is denoted by | · | or explicitly by | · |1.

28. The Frobenius norm of a matrix is denoted by ‖·‖F .

29. The domain of a function f is denoted by D(f).

30. The image of a function f is denoted by Img(f).

31. The natural logarithm is denoted by log.

CHAPTER 0. NOTATION 6

Chapter 1

Basic concepts

1.1. Regression

Assume that we have a data set D = {(~xi, yi)}, |D| = n where xi ∈ X ,
yi ∈ Y . We are looking for a function f : X 7→ Y which predicts the output
or dependent variable (here Y) for a given input/predictor/regressor/inde-
pendent variable (here X). Such a function is also called regression model.
Therefore the problem of finding such a function, for a given data set, is
called a regression problem.

Note: In contrast to a classification problem 1.2 the set of possible out-
puts (here Y) is infinitely large (usually continuous e.g. Y = R). This is a
subtle but important difference.
Fig. 1.1 illustrates the difference between regression and classification.

7

CHAPTER 1. BASIC CONCEPTS 8

Figure 1.1: Regression vs. Classification

x

f(
x
)

Data points

Regression

Figure 1.2: Regression Figure 1.3: Classification

1.2. Classification

1.2.1. The classification problem

Assume that we have a data set D = {(xi, yi)}, |D| = n where xi ∈ X , yi ∈ Y .
A classification problem is a regression problem where Y is a finite set. If
Y = {0, 1}, we call the problem a binary classification problem. In case of
classification problems, we call the outputs yi labels or classes and we call
the regressor f : X 7→ Y a classifier - often denoted by h instead of f .
In plain English: We would like to have a model which predicts the output
y for a given input x. Therefore we are looking for a function h : X 7→ Y
where we define h as

h(x) =

{
1 if x belongs to class 1

0 if x belongs to class 0
(1.1)

Note: A function like h is also called classifier.

1.2.2. Hypothesis

In the previous section we introduced and defined the classification prob-
lem. Before looking at particular functions realizing a classifier, which we
will start doing in chapter 2, we spend some more time on investigating a
classifier from a very formal and abstract point of view. Hence, we do not
make any assumptions on the form or implementation of the classifier.

9 1.2. CLASSIFICATION

We assume that the items in the training set D are samples from a ran-
dom process and are identically distributed. We introduce two sequences of
random variables: One sequence for the inputs {Xi} where Xi : X 7→ X with
Xi(x) = x and another sequence for the outputs {Yi} where Yi : Y 7→ Y
with Yi(y) = y. Because we want to predict an output based on an input, we
assume that the pairs Xi, Yi are dependent. The task of classification would
not make any sense without a dependency between the input and output.
In plain English: We define for each data point a pair of random variables, Xi

and Yi. Recall that a random variable is a mapping from a domain of possible
atomic events to a set of possible outcomes for the variable. In our case, we
consider the simplest possible random variables, namely identity mappings,
that is: Xi maps from X to X with Xi(x) = x and Yi maps from Y to
Y with Yi(y) = y. Note that we assume that Yi depends on Xi - otherwise,
Xi would carry no information about Yi and predictions would be impossible.

Often we will also assume that the random process is memoryless, which
means that the random variables are independent of each other - meaning
that all Xi are independent of each other and all Yi are independent of each
other. In this case we define two more random variables, belonging to the
same random process, for the input and output. We will use them when
reasoning about data from the same random process. X : X 7→ X with
X(x) = x for the input and Y : Y 7→ Y with Y (y) = y for the output.
If we consider a memoryless random process we can use the two random
variables X and Y only and claim that all (xi, yi) ∈ D are independent
realizations of the two random variables. Working with just two random
variables will make the math a lot easier.
Throughout this book we will always use this independence assumption - but
we will declare it always again, to make sure that we understand/remember
that this is an assumption we introduced.

A hypothesis (also called concept, classifier or model) is defined as

h : X 7→ {0, 1} (1.2)

We can think of it as a classifier telling us whether a given element x ∈ X
belongs to the concept (h(x) = 1) or not.
Furthermore, we define the version space as the set of all hypotheses which
are consistent with our data D. Thus, we are looking for hypotheses h such
that

h(x) = y ∀ (x, y) ∈ D (1.3)

CHAPTER 1. BASIC CONCEPTS 10

We define the version space VD as

VD = {h | h(xi) = yi ∀ (xi, yi) ∈ D} (1.4)

We denote the set of (all) hypotheses as H.

1.2.3. Risk minimization

We define a loss function L : Y × Y 7→ R as a measure of the quality of a
prediction of a given hypothesis h for a given input. That is, we compare
the output of the hypothesis ŷ = h(x) for a given input x ∈ X to the ground
truth y and assign a (usually positive) score to this pair (y, ŷ). A higher
score means a ”higher” error.
Different loss functions assign different values to (y, ŷ) pairs. Two common
loss functions are

1. the 0-1 loss :
L(y, ŷ) = 1(y 6= ŷ) (1.5)

2. the squared loss1:
L(y, ŷ) = (y − ŷ)2 (1.6)

In order to measure the quality of a hypothesis on a data distribution pX,Y ,
we define the risk as

R(h) = E(x,y)∼pX,Y
[L(y, h(x))] (1.7)

By plugging the 0-1 loss 1.5 into the risk 1.7, we obtain 0-1 risk of a hypoth-
esis h as

R(h) = E(x,y)∼pX,Y
[1(h(x) 6= y)]

= P (h(X) 6= Y)
(1.8)

In plain English: The 0-1 risk is the probability of making a mistake - as-
signing a wrong label to a given instance x ∈ X . Hence, the 0-1 risk R(h) is
often considered as a natural way for assessing the quality of a given classifier
h.

For computing the risk 1.7, we need to know the distribution of the data,
which in practice might not be the case. In this case we approximate the risk
by the empirical risk defined as

R̂D(h) =
1

n

∑
i

L(yi, h(xi)) (1.9)

1also called quadratic loss, squared distance or squared error

11 1.2. CLASSIFICATION

where we assume that we have a data set D = {(xi, yi)} of i.i.d. samples
from the data distribution pX,Y .
In case of the 0-1 loss, the empirical risk becomes

R̂D(h) =
1

n

∑
i

1(h(xi) 6= yi) (1.10)

Because of the law of large numbers (see section B.8), we know that the
empirical risk R̂(h) is a consistent estimator of the true risk R(h). Further-
more, Hoeffding’s inequality B.7.5 implies that the difference between the risk
R(h) and the empirical risk R̂D(h) decreases exponentially with the number
of samples in the data set. In particular we have that

P (|R̂D(h)−R(h)| ≥ ε) ≤ 2 exp
(
−2|D|ε2

)
∀ ε > 0 (1.11)

where we made use of the fact that the 0-1 loss is either 0 or 1 - recall that
Hoeffding’s inequality requires bounded random variables.

Next, we take a look at the set H containing all possible hypotheses. How
large is H (how many elements are in H)? Obviously, the size of H depends
on X . Because for each x ∈ X we have exactly two possible outcomes, 1 or
0, it follows that

|H| = 2|X | (1.12)

As one can imagine, |H| can be come very large - often infinitely large. This
is why people often restrict the space of possible hypotheses and only look
at this subset of H. Such a restriction is called inductive bias. Usually, for
practical purposes, people restrict the space of hypotheses (e.g. by only con-
sidering hypotheses of a special form) such that searching in this space for a
suitable hypothesis h becomes feasible2.
First, we assume that we are working with a finite set of hypotheses denoted
by H3. Later, we will introduce some of the basic theory for working with
infinitely large hypotheses spaces - although, from a practical point of view
nothing will change.

Because we want to make as few mistakes as possible, the common paradigm
risk minimization, is to choose h ∈ H such that the corresponding risk R(h)
is minimized.

h = arg min
h∈H

R(h) (1.13)

2Famous quote: ”Learning = searching”
3later on we will see many infinitely large H, but we will always make some kind of

assumption such that we can search in H ”efficiently”

CHAPTER 1. BASIC CONCEPTS 12

Because we often do not know the distribution pX,Y , we usually minimize the
empirical risk instead of the true risk.

h = arg min
h∈H

R̂D(h) (1.14)

By applying the union bound B.7.7 and Hoeffding’s inequality B.7.5, we note
that the difference between 1.13 and 1.14 decreases exponentially with the
number of samples. We can bound the maximum difference between the risk
and empirical risk as

P

(
max
h∈H

|R̂D(h)−R(h)| ≥ ε

)
= P

(⋃
h∈H

∣∣∣R̂D(h)−R(h)
∣∣∣ ≥ ε

)
≤
∑
h∈H

|R̂D(h)−R(h)|

≤ 2|H| exp
(
−2|D|ε2

)
∀ ε > 0

(1.15)

In case of an infinitely large hypothesis set, we can not use our bound 1.15
because |H| =∞. However, we can make some non-trivial statements about
the difference between 1.13 and 1.14 in case of |H| =∞. Because the math
to derive this is much more complicated, we only state the result and discard
all proofs and derivations.
We define the growth function4 growthH : N 7→ N on a hypotheses set H as
the maximum number of distinct labelings of a data set of size n ∈ N that
can be discriminated by hypotheses in H. In case of binary classification5, it
holds that

growthH(n) ≤ 2n (1.16)

In plain English: The growth function counts the maximum number of dif-
ferent labelings for a given number of data points which can be classified
correctly - that is, all training data points would be classified correctly. For
this purpose, we do not fix the location of the data points but allow them
to be positioned such that we obtain a maximum shattering coefficient (out-
put/result of the growth function).
For instance, consider the set of all discriminating lines in 2d

H = {sign(w1x+ w2) | w1, w2 ∈ R} (1.17)

4also called shatter coefficient or shattering number
5the growth function can be defined for more than two labels - it is possible to use it

for regression, too.

13 1.2. CLASSIFICATION

In this case, we can classify all binary labelings correctly for n ≤ 3. Thus,

growthH(n) =

{
n if n ≤ 3

< 2n otherwise
(1.18)

Next, we define the VC-dimension dVC of a hypotheses set H as the maxi-
mum number of data points that can always be shattered. In case of binary
classification, the VC-dimension can be formally defined as

dVC(H) = max
n∈N

n s.t. growthH(n) = 2n (1.19)

Lastly, we have Sauer’s lemma which gives a non-trivial upper bound on the
growth function - if dVC(H) is finite.

growthH(n) ≤
dVC∑
i

(
n

i

)
≤
(
ne

dVC

)dVC

≤ O(ndVC) (1.20)

Now, we are ready to bound the difference between minimizing the risk
and empirical risk over an infinitely large hypotheses set. The Vapnik-
Chervonenkis bound6 states that

P

(
max
h∈H

|R̂D(h)−R(h)| ≥ ε

)
≤ 4 growthH(2|D|) exp

(
−|D|ε

2

8

)
(1.21)

Furthermore, we can bound the true minimizing risk as

R(h) ≤ R̂D(h) +

√
8 log(growthH(2|D|)) + 8 log(4

δ
)

|D|

≤ R̂D(h) +

√√√√8dVC

(
log
(

2|D|
dVC

)
+ 1
)

+ 8 log(4
δ
)

|D|

(1.22)

where we set δ = 4 growthH(2|D|) exp
(
− |D|ε

2

8

)
and applied Sauer’s lemma 1.20.

1.2.4. Risk minimization and maximum likelihood

It can be shown that, under some mild conditions and for some loss functions
- e.g. the 0-1 loss, minimizing the empirical risk is equivalent to maximizing
the likelihood7. In this case we treat the hypothesis h as a parameter of a

6VC - Vapnik-Chervonenkis
7see [18]

CHAPTER 1. BASIC CONCEPTS 14

parametric model - see section B.13.2 for a discussion of maximum likelihood
for estimating parameters of a statistical model.
In this book, as well as in practice, we do not care about these ”mild condi-
tions” and treat minimizing the empirical risk of the 0-1 loss and maximizing
the likelihood as the same thing. Thus

h = arg min
h∈H

R̂D(h) = arg max
h∈H

LD(h) (1.23)

In this context, we define8 the likelihood as

LD(h) =
∏
i

P (yi = h(xi))

= 1(yi = h(xi))

(1.24)

where we used the assumption that the samples from our data set are i.i.d.
(independent, identically distributed).

1.2.5. Bayesian model averaging

If we assume that the ”true” hypothesis h is not fixed but random, we can
use Bayesian inference B.13.3.
From Bayes’ formula we know that the following holds

P (h | D) =
P (D, h)

P (D)

=
P (D | h)P (h)

P (D)

(1.25)

where P (h | D) is called posterior, P (D | h) = LD(h) is modeled to be the
likelihood, P (h) is called prior and P (D) is called evidence.
We define the maximum a posteriori estimator as

h = arg max
h∈H

LD(h)P (h) (1.26)

Furthermore, we define Bayesian model averaging as

P (x | D) =
∑
h∈H

P (x | h)P (h | D)

=
∑
h∈H

P (x | h)LD(h)P (h)
(1.27)

8in subsequent chapters we will see slightly different definitions of likelihood - e.g.
conditional likelihood. Furthermore, we will consider other loss functions than the 0-1 loss
- e.g. cross entropy.

15 1.3. OUTLOOK

where we assume that H is finite.
In plain English: In Bayesian model averaging we compute the probability
that an instance x belongs to a given data set D - meaning that both D and
x belongs to the same concept. For this purpose, we sum over all hypothesis
and compute for each hypothesis whether x belongs to the current hypothesis
or not - this will be either 0 or 1, weighted with the likelihood for observing
the given data set under the current hypothesis.

1.3. Outlook

In this chapter we learned about regression and classification problems. We
introduced hypotheses which can be interpreted as a abstract classifier. In
addition, we introduced risk and loss functions and looked at difference be-
tween the risk and the empirical risk. We observed that minimizing the true
risk becomes approximately the same as minimizing the empirical risk when
adding more and more data points to our data set. In this context, we in-
troduced VC-theory and some of its bounds.
However, there is much more to say about hypotheses, risk and loss functions
as well as computational/statistical learning theory (which includes the VC-
stuff). If you want to know more about these topics, a good starting point
might be [10] and [18].

CHAPTER 1. BASIC CONCEPTS 16

1.4. Exercises

1. Decide for each of the following problems whether it can be seriously
modeled as a classification or a regression problem.

(a) Recognize faces of your friends on a picture.

(b) Predict the lottery numbers of next week.

(c) Identify a user of a website by just looking at the keystroke dy-
namics of this user.

(d) Determine whether a text contains hate speech or not.

(e) Predict the steering angle of a self-driving car based on a video
stream from the driver’s cab.

Chapter 2

Bayes classifier

Recall from section 1.2, that a binary classifier is a function like

h(x) =

{
1 if x belongs to class 1

0 if x belongs to class 0
(2.1)

How can we decide whether a given x belongs to class 0 or 1? We model this
decision with a probability for each class.
Let P (Y = 1 | X = x) be the probability for x belonging to class 1 and
P (Y = 0 | X = x) = 1 − P (Y = 1 | X = x) the probability for x belonging
to class 0.
Note: Because there are two possibilities only, we can express both in terms
of the single probability P (Y = 1 | X = x).
With these definitions, we rewrite/redefine 2.1 as

h(x) =

{
1 if P (Y = 1 | X = x) > t

0 otherwise
(2.2)

where t is the discrimination threshold and specifies the threshold (confidence-
probability) at which we predict class 1. Typically t = 0.5 but other choices
are possible and valid - see discussion about receiver operating characteristic
in section 7.1.2.7.
If we do not know the true distribution, we replace P (Y = 1 | X = x) by
P̂ (Y = 1 | X = x) as an estimate/approximation of the true underlying
conditional distribution.
Note: Equation 2.2 is also called Bayes classifier.

The set of of points, which have a equal probability of belonging to class

17

CHAPTER 2. BAYES CLASSIFIER 18

zero or class one, is called decision boundary.

Decision boundary = {x ∈ X | P (Y = 1 | X = x) = P (Y = 0 | X = x) = t}
(2.3)

where t is the discrimination threshold - often the default is t = 0.5.

2.1. The optimum Bayes classifier

If we have access to the true distribution1 of the data - assuming that we
know P (Y | X), we can use this distribution to obtain the optimum Bayes
classifier. The optimum Bayes classifier is exactly the Bayes classifier 2.2
where we know the conditional distribution P (Y = 1 | X = x).
Similar to 2.2 (we simply replace the estimate of the probability with the
true one) we define the optimum Bayes classifier as the function

h∗(x) =

{
1 if P (Y = 1 | X = x) > 0.5

0 otherwise
(2.4)

Recall from section 1.2.2 the definition of risk. We call the corresponding
risk of the optimum Bayes classifier 2.4 Bayes risk and denote it by

R∗ = R(h∗) = P (h∗(X) 6= Y) (2.5)

Furthermore, recall from section 1.2.2 the concept of risk minimization as a
”natural” way of assessing the ”quality” of a classifier.
As the next theorem states, the Bayes risk is a lower bound on the risk of
any other classifier.

Theorem 1 (Optimality of the optimum Bayes classifier). The optimum
Bayes classifier is the classifier with the lowest risk. There can not be any
other classifier with a lower risk. Thus

R(h) ≥ R(h∗) ∀h

Proof. We begin2 by observing that R(h) ≥ R(h∗) ∀h is equivalent to
R(h) − R(h∗) ≥ 0 ∀h. Hence, we are going prove that the difference of
the risk of any classifier h and the risk of the optimum Bayes classifier is

1in practice we usually do not know the true distribution
2this proof is heavily based on [12]

19 2.1. THE OPTIMUM BAYES CLASSIFIER

always greater or equal to 0, which implies that R(h) ≥ R(h∗) ∀h.
We can rewrite the risk 1.7 as

R(h) = P (h(X) 6= Y)

= E[1(h(X) 6= Y)]

= E[1(h(X) = 0, Y = 1) + 1(h(X) = 1, Y = 0)]

= E[1(h(X) = 0, Y = 1)] + E[1(h(X) = 1, Y = 0)]

(2.6)

Furthermore, because the prediction of the model and the true label are
independent we can write

E[1(h(X) = 0, Y = 0) | X] = P (h(X) = 0 | X)P (Y = 0 | X)

= 1(h(X) = 0)E[y = 0 | X]
(2.7)

where the last equality follows from the fact that the output of the model
h(X) does not depend on the true label Y and is eiter 0 or 1. The idea in
2.7 holds for all possible combinations of h(X) and Y (there are 4 different
possible combinations).
Next, we apply the law of total expectation to 2.6 and get

R(h) = E[1(h(X) = 0, Y = 1)] + E[1(h(X) = 1, Y = 0)]

= E[E[1(h(X) = 0, Y = 1)] | X] + E[E[1(h(X) = 1, Y = 0)] | X]

(2.8)

By making use of 2.7, we can rewrite 2.8 as

R(h) = E[E[1(h(X) = 0, Y = 1)] | X] + E[E[1(h(X) = 1, Y = 0)] | X]

= E[1(h(X) = 0)E[Y = 1 | X] + 1(h(X) = 1)E[Y = 0 | X]]

= E[1(h(X) = 0)P (Y = 1 | X) + 1(h(X) = 1)P (Y = 0 | X)]

(2.9)

Next, we use this result and take a look at the expression R(h) − R(h∗).

CHAPTER 2. BAYES CLASSIFIER 20

Recall that our goal is to show that this difference is always ≥ 0.

R(h)−R(h∗) = E[1(h(X) = 0)P (Y = 1 | X) + 1(h(X) = 1)P (Y = 0 | X)−
1(h∗(X) = 0)P (Y = 1 | X)− 1(h∗(X) = 1)P (Y = 0 | X)]

= E[1(h(X) = 0)P (Y = 1 | X) + 1(h(X) = 1)(1− P (Y = 1 | X))−
1(h∗(X) = 0)P (Y = 1 | X)− 1(h∗(X) = 1)(1− P (Y = 1 | X))]

= E[P (Y = 1 | X)(1(h(X) = 0)− 1(h∗(X) = 0))]+

(1− P (Y = 1 | X)(1(h(x) = 1)− 1(h∗(X) = 1)))

= E[P (Y = 1 | X)(1(h(X) = 0)− 1(h∗(X) = 0))+

(1− P (Y = 1 | X))(1− 1(h(X) = 0)− 1 + 1(h∗(X) = 0))]

= E[P (Y = 1 | X)(1(h(X) = 0)− 1(h∗(X) = 0))+

(1− P (Y = 1 | X))(−1(h(X) = 0) + 1(h∗(X) = 0))]

= E[P (Y = 1 | X)1(h(X) = 0)− P (y = 1 | X)1(h∗(X) = 0)+

− 1(h(X) = 0) + 1(h∗(X) = 0)+

P (Y = 1 | X)(1(h(X) = 0)− P (Y = 1 | X)1(h∗(X) = 0))]

= E[P (Y = 1 | X)1(h(X) = 0) + P (Y = 1 | X)(1(h(X) = 0)

− P (Y = 1 | X)1(h∗(X) = 0)− P (Y = 1 | X)1(h∗(X) = 0))

− 1(h(X) = 0) + 1(h∗(X) = 0)]

= E[(2P (Y = 1 | X)− 1)(1(h(X) = 0)− 1(h∗(X) = 0))]

≥ 0

(2.10)

where the last inequality follows from the fact that the second last equation
is ≥ 0 if P (Y = 1 | X) > 0.5 and ≥ 0 if P (Y = 1 | X) <= 0.5.
In particular, if P (Y = 1 | X) > 0.5, it follows that h∗(X) = 1. Therefore,
1(h∗(X) = 0) = 0. No matter what h(X) outputs, the term 2P (Y = 1 |
X)− 1)(1(h(X) = 0)− 1(h∗(X) = 0)) is always greater or equal to zero.
On the other hand, if P (Y = 1 | X) ≤ 0.5, it follows that h∗(X) = 1.
Hence, 1(h∗(X) = 0) = 1. Because of 2P (Y = 1 | X) − 1 ≤ 0, the term
2P (Y = 1 | X)− 1)(1(h(X) = 0)−1(h∗(X) = 0)) is always greater or equal
to zero.
Because this holds for all X and Y , it follows that the expectation over (X, Y)
is always greater or equal to zero. Which concludes the proof.

Note: We can only use/compute the optimum Bayes classifier if we know the
true underlying distribution of the data. From a practical point of view one
might think that this is useless, since in practice we almost never know the

21 2.2. NAIVE BAYES CLASSIFIER

true distribution - if we would do, we would not need to anything and are
done. However, the optimum Bayes classifier turns out to be useful when
we want to compare different classifiers on a synthetic dataset, where we
know the true distribution. In this case, we can compute the optimum Bayes
error 2.6 and obtain a lower bound on the error. Next, we could investigate
how well the other classifiers - in particular our own - perform.

2.1.1. Outlook

In the previous section we learned that the optimum Bayes classifier is the
”best” classifier (it has the lowest risk). However, we can not use it in prac-
tice because we do not know the true conditional distribution P (Y = 1 | X).
In the next sections/chapters we will look at many ”instances” of Bayes
classifiers which try to approximate the optimum Bayes classifier by approx-
imating/estimating the needed probability P (Y = 1 | X).
We will encounter the concept of likelihood many more times which should
no longer be surprising since we know that maximum likelihood and risk
minimization are strongly related to each other (under some conditions they
are equivalent) and the Bayes classifier minimizes the risk.

2.2. Naive Bayes classifier

So far, we have made no assumption about the input domain X . Now, we
assume that X is some kind of vector space3 (e.g. X = Rd). The naive Bayes
classifier is a multi-class classifier and not restricted to binary classification.
Thus, Y = {0, 1, ..., k} for a k-class classification problem.

The naive Bayes classifier is a maximum a posteriori (also called MAP)
classifier.
Recall that Bayes formula for computing the posterior probability is given
by

P (Y | X) =
P (X | Y)P (Y)

P (X)
(2.11)

If we ignore P (X), we can write the conditional probability P (Y = 1 | X =
~x), which we need for the Bayes classifier, as

P (Y = 1 | X = ~x) ∝ P (X = ~x | Y = 1)P (Y = 1) (2.12)

3we need some structure with multiple entries/dimensions/features

CHAPTER 2. BAYES CLASSIFIER 22

Thus, the naive Bayes classfier can be written as

h(~x) = arg max
c∈Y

P (X = ~x | Y = c)P (Y = c) (2.13)

Furthermore, the naive Bayes classifier assumes that the features/dimen-
sions of the input are independent of each other. Thus, we can rewrite the
conditional probability P (~x | Y = c) as

P (X = ~x | Y = c) =
∏
k

P ((~x)k | Y = c) (2.14)

Because the assumption of independence is naive4, the classifier is called
naive Bayes classifier.
Substituting the independence assumption into 2.13 yields

h(~x) = arg max
c∈Y

∏
k

P ((~x)k | Y = c)P (Y = c) (2.15)

or equivalently

h(~x) = arg max
c∈Y

∑
k

log
(
P ((~x)k | Y = c)

)
+ log

(
P (Y = c)

)
(2.16)

By substituting different distribution for P ((~x)k, | y), we obtain different
instances of the naive Bayes classifier.

2.2.1. Gaussian naive Bayes classifier

The Gaussian naive Bayes classifier assumes that

xck ∼ N (µck, σ
c
k) ∀ k ∈ {1, · · · , d}, c ∈ Y (2.17)

In plain English: All features follow a class dependent normal distribution,
each specified by its own mean µck and variance σ2c

k.
Thus, the classifier 2.13 becomes

h(~x) = arg max
c ∈ Y

∏
k

N
(
(~x)k | µck, σ2c

k

)
P (Y = c) (2.18)

When we have a data set given, we simply estimate the unknown parameters
µck and σ2c

k from this given data set.

4note that independence might not always hold

23 2.2. NAIVE BAYES CLASSIFIER

From statistics (see appendix B) we know that an unbiased & consistent
estimator of µ is given by

µ̂k =
1

n

∑
i

(~xi)k (2.19)

and an unbiased & consistent estimator of the variance σ2 is given by

σ̂2
k =

1

n− 1

∑
i

(
(~xi)k − µ̂k

)2

(2.20)

Finally, we have the following equations for estimating the unknown model
parameter

nc =
∑
i

1(yi = c)

P (y = c) =
nc
n

µck =
1

nc

∑
i

1(yi = c)(~xi)k

σ2c
k =

1

nc − 1

∑
i

1(yi = c)
(

(~xi)k − µ̂k
)2

(2.21)

CHAPTER 2. BAYES CLASSIFIER 24

Figure 2.1: Decision boundary of a Gaussian naive Bayes classifier

2.2.2. Generative vs. discriminative models

The joint probability distribution of two random variables X and Y can be
factored as

p(X, Y) = p(X | Y)p(Y) = p(Y | X)P (X) (2.22)

A model which ”learns” or models p(X, Y) is called a generative model be-
cause it can be used for generating new data by sampling from the joint
distribution p(X, Y). An example of a generative model is the naive Bayes
classifier.
Note that because of 2.22, every generative model can be (in theory) turned
into a discriminiative model - we can obtain p(Y | X) from p(Y,X) but not
vice versa.
On the other hand, a model which models the conditional distribution p(Y |
X) only is called discriminative model, because it can predict a value given
the other value - it learns/models a relationship between the dependent and
independent variable. Examples of discriminative models are the naive Bayes

25 2.2. NAIVE BAYES CLASSIFIER

classifier, linear regression, logistic regression and the knn model.

CHAPTER 2. BAYES CLASSIFIER 26

2.3. Exercises

1. We obtain the Bernoulli naive Bayes classifier, if we assume that ~x ∈
{0, 1}d is binary vector and the probability P ((~x)k, | y) is modeled with
the Bernoulli distribution. Thus

P ((~x)k, | y) = Ber((~x)k, pk)

= p
(~x)k
k (1− pk)1−(~x)k

(2.23)

Write down the classification formula/rule h(~x) = ... of the Bernoulli
naive Bayes classifier and derive formulas for estimating pk using the
maximum likelihood approach.

Chapter 3

K-nearest neighbors model

The k-nearest neighbors model (short: KNN) can be used both for regression
(see section 1.1) and classification (see section 1.2). The rough idea behind
the model is that when it has to compute a prediction it simply selects the k
nearest training data points to the query point and merges their labels/out-
puts.

We assume that we have a data set D = {(xi, yi)} where xi ∈ X and yi ∈ Y .
In the binary classification problem we have Y = {0, 1} and in a regression
problem we might have Y = R (or smth. else which is continuous).

We define the set of the k closest neighbors of a point x as

E(x,D, k) = {(xj, yj) ∈ D | xj belongs to the k closest points around x}
(3.1)

where it is obvious that k > 0 is a good idea (otherwise the set is always
empty) and ”closeness” is measured by an meaningful1 metric - if X = Rd

the Euclidean norm is a popular choice.

3.1. K-nearest neighbors classifier

Based on 3.1, we define the conditional class probability2 as

P (Y = c | X = x,D, k) =
1

k
|{yj | (xj, yj) ∈ E(x,D, k) ∧ yj = c}| (3.2)

1depends on the data & application
2for that we introduce two random variables X and Y for the input and output

27

CHAPTER 3. K-NEAREST NEIGHBORS MODEL 28

By making use of 3.2, we can define the KNN classifier as an instance of the
Bayes classifier 2.2

h(x) =

{
1 if P (Y = 1 | X = x,D, k) > t

0 otherwise
(3.3)

where t is the discrimination threshold (often t = 0.5).

Note: Because we can define the conditional class probability for any la-
bel/class we like, we are not restricted to binary classification only. We can
use the KNN to build a multi-class classifier by defining

h(x) = arg max
c∈Y

P (Y = c | X = x,D, k) (3.4)

Attention: In the beginning of this chapter we said that k is a hyperpa-
rameter which we have to tune/optimize. By considering the knn classifier
we can identify two extreme values of k which might cause problems.
The first extreme case is k = 1. In this case we simply consider the output of
the nearest point. On the training set we would get all points correct, since
they all match each other in the training set.
The second extreme value is k = |D|. In this case we simply predict the class
of the majority.
It is obvious that both cases are not desirable. Thus, we should select a k
which is ”somewhere”3 in between.

3simply try different values

29 3.1. K-NEAREST NEIGHBORS CLASSIFIER

Figure 3.1: K-nearest neighbors classifier for different values of k

CHAPTER 3. K-NEAREST NEIGHBORS MODEL 30

3.2. K-nearest neighbors regression model

As already mentioned, we can use the KNN model for regression too.
The approach is very similar to the one in classification, except that we do
not want to count individual outcomes (classes/labels) but it makes more
sense to average them.
We obtain the knn-regression model by computing the average of the k-
nearest neighbors of a point. Formally

f(x) =
1

k

∑
yj ∈ E(x,D,k)

yj (3.5)

Note: If averaging is not satisfying, we could use some other kind of merging
the k-nearest neighbors. E.g. weighted average (weights which are propor-
tional to the distance), ...

31 3.2. K-NEAREST NEIGHBORS REGRESSION MODEL

Figure 3.2: K-nearest neighbors regression for different values of k

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

KNN regression k=1

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

KNN regression k=2

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

KNN regression k=3

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

KNN regression k=4

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

KNN regression k=5

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

KNN regression k=6

CHAPTER 3. K-NEAREST NEIGHBORS MODEL 32

3.3. Parametric vs. non-parametric models

The knn model is an example of a non-parametric model. The property of
a non-parametric model is that it does not try to compress the information
from a given data set into a fixed size set of parameters, what is done by
parametric models, but instead simply stores all data points.
Examples of parametric models are Gaussian naive Bayes, linear regression
and logistic regression.

3.4. Outlook

KNN belongs to the family of prototype-based models. Other models of this
family are vector quantization models (e.g. LVQ, GLVQ, GMLVQ, RSLVQ,
...).
The idea is always the same: Compute and store some prototypes. If you have
to make a prediction compute the distance or similarity to these prototypes
and merge their labels/outputs into a final output.

33 3.5. EXERCISES

3.5. Exercises

1. Standardize a data set.
A data set is standardized if each feature has zero mean and unit vari-
ance. Thus

1

n

∑
i

(~xi)j = µj = 0

1

n

∑
i

(
(~xi)j − µj

)2

= σ2 = 1 ∀ j
(3.6)

Show that the following transformation transforms a data set into a
standardized data set.

x′j =
xj − µj
σ

(3.7)

CHAPTER 3. K-NEAREST NEIGHBORS MODEL 34

Chapter 4

Linear regression

In section 1.1 we defined the regression problem and a regression function.
When we did so, we did not make any assumptions on the input space X . In
this chapter we assume that X is a real valued vectors space, hence X = Rd.
We generalize linear regression to arbitrary data types at the end of this
chapter in section 4.11.

4.1. Modeling

In linear regression we define the prediction function f(~x) as

f(~x) = ~w>~x− b (4.1)

where ~w ∈ Rd is the weight vector and b is called bias/intercept/offset.
Note: This is called linear regression because the output/prediction is a
weighted linear combination - with weights ~w - of the input features.

Sometimes people do not like the −b in 4.1 and write +b instead of it

f(~x) = ~w>~x+ b (4.2)

Note: The only difference between 4.1 and 4.2 is −b vs. +b. Nevertheless,
from a modeling perspective both are equivalent because both model a hy-
perplane1 - see Fig. 4.1 for a linear regression example.

In order to be consistent with the majority of literature we will stick to
4.1 - but keep in mind that we can always use 4.2 by simply flipping the sign
of the bias b.

1a line or plane is a special case/name for a 1d or 2d hyperplane!

35

CHAPTER 4. LINEAR REGRESSION 36

x

f(
x
)

Data points

Regression

Figure 4.1: Linear regression fitted to a data set

4.1.1. Hidden bias

For the purpose of having a more compact formula, we write 4.1 as a scalar
product only and without an explicit bias. We can do so by integrating the
bias b into the weight vector ~w. Hence, 4.1 becomes

f(~x) = ~w>∗ ~x∗ (4.3)

where ~w∗ =

(
b
~w

)
and ~x∗ =

(
−1
~x

)
.

Note: We also need to add −1 (or +1 for 4.2) to the new input ~x∗ to get a
valid scalar product.
We can easily convince ourself that 4.3 and 4.1 are equivalent by simply
calculating the scalar product:

f(~x) = ~w>∗ ~x∗

= b(−1) + ~w>~x

= ~w>~x− b
(4.4)

37 4.2. COST FUNCTION

Because the bias b is ”hidden” inside the scalar product, 4.3 is called hidden
bias.

From now on we will use the hidden bias notation only. Whenever we talk
about a ~w, we implicitly assume that ~w contains a hidden bias b without
explicitly mentioning it again.

4.2. Cost function

As usual in parameterized models, we need a way to measure how good a
given parameter - in this case ~w - is. We use the Sum of Squared Errors
which is defined as2

SSED(~w) =
1

2

∑
i

(yi − f(~xi))
2

=
1

2

∑
i

(yi − ~w>~xi)
2

(4.5)

or equivalent in matrix-vector notation

SSED(~w) =
1

2
(~y −X~w)>(~y −X~w) (4.6)

where X =

−1 (~x1)1 (~x1)2 · · · (~x1)d
−1 (~x2)1 (~x2)2 · · · (~x2)d
...

...
...

. . .
...

−1 (~xn)1 (~xn)2 · · · (~xn)d

 and ~y = (y1, y2, . . . , yn)>.

Note: X is sometimes called the design-matrix. Note that the first column
contains −1 for the hidden bias.

A lower SSE is better because it implies a smaller (squared) difference be-
tween f(~xi) and yi. That’s why we have to find the ~w which minimizes the
SSE. This can be formalized as the following optimization problem

~w = arg min
~w∈Rd

SSED(~w) (4.7)

Note: Together 4.5 and 4.7 are also called Linear Least Squares.

2sometimes the 1
2 is dropped

CHAPTER 4. LINEAR REGRESSION 38

4.2.1. Convexity

Theorem 2 (Minimizing the SSE is a convex optimization problem). The
linear least squares problem (as stated in 4.7) is a convex optimization prob-
lem.

Proof. It is sufficient to show that the sum of squared errors (see 4.6) is a
convex function.
Because 4.6 is twice differentiable, we can use the second order condition (see
A.5) for showing convexity.
Thus,

∇2
~wSSED = ∇2

~w

1

2
(~y −X~w)>(~y −X~w)

= ∇~w
1

2
(∇~w(~y −X~w)>(~y −X~w))

=
1

2
∇~w

(
2X>X~w − 2X>~y

)
= X>X

� 0

(4.8)

X>X � 0 holds, because:

1. X>X is symmetric:

(X>X)> = X>(X>)>

= X>X
(4.9)

2. X>X is positive semi-definite:

~v>X>X~v = (~v>X>)(X~v)

= (X~v)>(X~v)

≥ 0 ∀~v ∈ Rd

(4.10)

Because ~w ∈ Rd and Rd is known to be a convex set, we can conclude that
4.7 is a convex optimization problem.

4.3. Optimization

Now that we have a parameterized model, a cost function and a corresponding
optimization problem 4.7, we are ready to search for an ”optimal” parameter

39 4.3. OPTIMIZATION

~w.
Luckily, as stated in 2, it’s a convex optimization problem so that we know
methods for solving it. Moreover, we can choose between an closed form and
an iterative solution.

4.3.1. Closed form solution

We can solve 4.7 by computing the gradient ∇~w SSE, setting ∇~w SSE = ~0
and finally solve for ~w.
First, we compute the gradient ∇~w SSE

∇~wSSED(~w) = ∇~w
1

2
(~y −X~w)>(~y −X~w)

=
1

2
∇~w(X~w − ~y)>(X~w − ~y)

=
1

2
∇~w(~w>X>X~w − ~w>X>~y − ~y>X~w + ~y>~y)

=
1

2
∇~w ~w

>X>X~w − 1

2
∇~w ~w

>X>~y − 1

2
∇~w~y

>X~w +
1

2
∇~w~y

>~y

= X>X~w − 1

2
X>~y − 1

2
X>~y

= X>X~w −X>~y

(4.11)

Next, we set ∇~wSSED = ~0 and solve for ~w

∇~wSSED(~w) = ~0

X>X~w −X>~y = ~0

X>X~w = X>~y

X>X~w = X>~y

~w = (X>X)−1X>~y

(4.12)

Finally, we obtain a formula for computing the optimal ~w

~w = (X>X)−1X>~y (4.13)

Note: The expression (X>X)−1X> is called pseudo inverse3 of X.
Furthermore, the closed form solution exists if and only if X>X is invertible.

3also called Moore-Penrose inverse.
In general, the pseudo inverse is a matrix - usually denoted as A† - with some defined
properties. The pseudo inverse always exists and is unique.
In the special case that the matrix X>X is invertible, the pseudo inverse is given by

CHAPTER 4. LINEAR REGRESSION 40

4.3.2. Iterative solution

Another way to solve the convex optimization problem 4.7 is by using the
gradient descent algorithm (see section A.3.2). Again we need ∇~wSSED, but
this time we do not use the matrix-vector notation because this method is
often used in scenarios where you can not or do not want to construct the
matrix X.

∇~wSSED(~w) = ∇~w
1

2

∑
i

(yi − f(~xi))
2

=
1

2

∑
i

∇~w(yi − f(~xi))
2

=
1

2

∑
i

2(yi − f(~xi))∇~w(yi − f(~xi))

=
1

2

∑
i

2(yi − f(~xi))(−∇~w ~w
>~xi)

=
1

2

∑
i

2(yi − f(~xi))(−~xi)

= −
∑
i

(yi − f(~xi))~xi

=
∑
i

f(~xi)~xi − yi~xi

(4.14)

Finally, we use the gradient descent algorithm as described in Algorithm 1
where ∇~wSSED(~w) is computed in 4.14 and η is the learning rate (or step
size).

Algorithm 1 Linear regression - Gradient descent algorithm

1: ~w = ~0 . Initialize ~w
2: repeat
3: ~w = ~w − η∇~wSSED(~w) . Update ~w
4: until convergence

X† = (X>X)−1X>.
In general, the pseudo inverse can be computed by using the singular value decomposition.
A provable fact about the pseudo inverse states that ~w = X†~y is the minimizer
of SSED(~w), no matter whether X>X is invertible or not!
If you want to learn more about the pseudo inverse, a good starting point is the cor-
responding wikipedia page https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_
inverse

https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse

41 4.3. OPTIMIZATION

4.3.2.1 Optimal step size

As discussed in section A.3.2, we want to choose the set size η such that the
resulting SSE is minimized. Hence, we have to solve the following optimiza-
tion problem

η = arg min
η

SSED(~w − η∇~wSSED) (4.15)

Luckily, 4.15 is a convex optimization problem and a closed form solution ex-
ists. We can compute the closed form solution by computing the derivative
of 4.15 with respect to η, set it equal to zero and solve for η.

We start by resolving the brackets

SSED(~w − η∇~wSSED) = (X(~w − η∇~wSSED)− ~y)>(X(~w − η∇~wSSED)− ~y)

= (~w − η∇~wSSED)>X>X(~w − η∇~wSSED)− (~w − η∇~wSSED)X>~y−
~y>X(~w − η∇~wSSED) + ~y>~y

= (~wX>X− η∇~wSSED
>X>X)(~w − η∇~wSSED)− ~w>X>~y+

η∇~wSSED
>X>~y − ~y>X~w + η~y>X∇~wSSED + ~y>~y

= ~w>X>X~w − η∇~wSSED
>X>X~w − η ~w>X>X∇~wSSED+

η2∇~wSSED
>X>X∇~wSSED − ~w>X>~y+

η∇~wSSED
>X>~y − ~y>X~w + η~y>X∇~wSSED + ~y>~y

Next, we compute the derivative of 4.15 with respect to η

∂

∂η
SSED(~w − η∇~wSSED)

=
∂

∂η
(~w>X>X~w − η∇~wSSED

>X>X~w − η ~w>X>X∇~wSSED + η2∇~wSSED
>X>X∇~wSSED−

~w>X>~y + η∇~wSSED
>X>~y − ~y>X~w + η~y>X∇~wSSED + ~y>~y)

=∇~wSSED
>X>X~w − ~w>X>X∇~wSSED + 2η∇~wSSED

>X>X∇~wSSED +∇~wSSED
>X>~y+

~y>X∇~wSSED

=− 2∇~wSSED
>X>X~w + 2η∇~wSSED

>X>X∇~wSSED + 2∇~wSSED
>X>~y

(4.16)

CHAPTER 4. LINEAR REGRESSION 42

Setting the derivative 4.16 equal to zero yields

∂

∂η
SSED(~w − η∇~wSSED) = 0

⇔
− 2∇~wSSED

>X>X~w + 2η∇~wSSED
>X>X∇~wSSED + 2∇~wSSED

>X>~y = 0

⇔

η =
∇~wSSED

>X>X~w −∇~wSSED
>X>~y

∇~wSSED
>X>X∇~wSSED

=
∇~wSSED

>(X>X~w −X>~y)

∇~wSSED
>X>X∇~wSSED

=
∇~wSSED

>∇~wSSED

∇~wSSED
>X>X∇~wSSED

(4.17)

By making use of the optimal step size 4.17, we can rewrite the update step
in the gradient descent algorithm 1 for minimizing the SSE as

~wt+1 = ~wt −
∇~wSSED(~wt)

>∇~wSSED(~wt)

∇~wSSED(~wt)
>X>X∇~wSSED(~wt)

∇~wSSED(~wt) (4.18)

4.4. Feature transformation

Linear regression is easy to use - it is fast and we can fit it easily - but it’s
always a linear function (hyperplane) only. Therefore it does not seem to be
suitable for modeling non-linear relationships, which we can see in Fig. 4.2
(in the upper left plot we can see that, in this example, a line is obviously
not the best choice).
In order to give linear regression the ability to model non-linearities, we in-
troduce smth. called feature transformations.
The idea is that if we can not model the data by a hyperplane (e.g. a straight
line) in its original space maybe we can transform the data nonlinearly - e.g.
projecting it into a higher dimensional space - such that it can be better
described by a hyperplane. We transform each data point ~x by a function
φ : X 7→ X ′, where X is the original data space and X ′ is the new data space
- X and X ′ can be equal but usually they are not. Hence, ~x becomes φ(~x).
We can approximate ”everything” by using the ”right” feature transforma-
tion.

Note: Because we modified the data (all ~x) only, the model itself remains

43 4.4. FEATURE TRANSFORMATION

the same. The procedure of fitting and computing predictions is still the
same except that we have to replace all ~x by φ(~x).

The remaining question is, how a ”typical” φ looks like and how to choose a
suitable one.
After the good news - by using a suitable φ we can use linear regression for
non-linear problems - now comes the bad news. There is no unique or ”the
best” φ in general and no ”general” way of finding it. Usually one tries and
evaluates different φ and finally pick the best one.
A common choice for φ is a polynomial. E.g. if ~x = (x1, x2)> ∈ R2

and we choose the degree of the polynomial to be 2, we can write φ(~x) =
(x1, x2, x1x2, x

2
1, x

2
2, 1)>. Note that the 2 dimensional data point ~x is trans-

formed into a 6 (+ 1 for the bias) dimensional data point!.
An example of linear regression with a polynomial feature transformation
(with different degrees) is shown in Fig. 4.2

For the remainder of this book, we will not consider any feature transfor-
mations, but we keep in mind that we can always introduce/add a feature
transformation by simply replacing all ~x by φ(~x).

CHAPTER 4. LINEAR REGRESSION 44

Figure 4.2: Linear regression with polynomial feature transformation

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

Linear regression polynomial of degree 1

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

Linear regression polynomial of degree 2

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

Linear regression polynomial of degree 3

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

Linear regression polynomial of degree 4

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

Linear regression polynomial of degree 5

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

Linear regression polynomial of degree 42

45 4.5. REGULARIZATION

4.5. Regularization

For the sake of stability and in order to avoid overfitting4, we usually prefer
weights ~w with a ”small” norm/length (equivalent to ”small” entries).
For this reason we add a penalty for large weights to our cost function and
then obtain a new SSE given by

SSED(~w) =
1

2

∑
i

(yi − f(~xi))
2 + λ‖~w‖2

2 (4.19)

where λ > 0 is called regularization strength. With λ we can control how
important we think small weights - small weights result in a flatter5 curve -
are in contrast to a small SSE (small error vs. small weights). See Fig. 4.3
for an illustration of different regularization strengths.
As we did before, we can rewrite the new cost function 4.19 in matrix-vector
notation as

SSED(~w) =
1

2
(~y −X~w)>(~y −X~w) + λ~w> ~w. (4.20)

Note: This type of regularization is also called L2, `2 or Tikhonov 6 regular-
ization. The resulting linear regression is also called ridge regression.

To find such a ~w we have solve the optimization problem 4.7 again, but
this time with our new SSE (because we want to include the regularization).

4.5.0.1 Convexity

Theorem 3 (Minimizing the L2 regularized SSE is a convex optimization
problem). Minimizing the regularized SSE (as stated in 4.19) is a convex
optimization problem.

Proof. See exercise 8.

4.5.1. Closed form solution

Again we have to compute the gradient ∇~wSSED(~w), set ∇~wSSED(~w) = ~0
and finally solve for ~w.

4overfitting means that we make few errors on training data and many errors on new
data - see section 7.2.3

5flatter = lower curvature
6to be precise: This is just a special of case the general Tikhonov regularization - see

https://en.wikipedia.org/wiki/Tikhonov_regularization

https://en.wikipedia.org/wiki/Tikhonov_regularization

CHAPTER 4. LINEAR REGRESSION 46

Figure 4.3: Linear regression with L2 regularization

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve
Ridge regression with =1λ

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve
Ridge regression with =100λ

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve
Ridge regression with =1000λ

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve
Ridge regression with =10000λ

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve
Ridge regression with =1000000λ

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve
Ridge regression with =10000000λ

47 4.6. PROBABILISTIC INTERPRETATION

The derivation is similar to the previous case without regularization and is
left as an exercise (see exercise 9).
The final formula for the optimal ~w is given by

~w = (X>X + λI)−1X>~y (4.21)

where I is the identity matrix with suitable dimension. Because of λ > 0,
the matrix in 4.21 is always invertible - see exercise 2.

4.5.2. Iterative solution

Like in the previous section we need to compute ∇~wSSED(~w). Again we do
not use the matrix-vector notation and leave the detailed derivation as an
exercise.
The final result is

∇~wSSED(~w) = −
∑
i

(yi − f(~xi))~xi + λ~w (4.22)

Because of convexity (see theorem 3) we can use the gradient descent algo-
rithm (see section A.3.2) for computing the solution iteratively - analogous
to the previous case without regularization.

4.6. Probabilistic interpretation

4.6.1. Noisy outputs

So far we have modeled the relation between input and output by a deter-
ministic function and minimized the resulting error. Next, we will take a
probabilistic perspective on the same problem and assume that the targets
have been generated by a linear model with the addition of Gaussian noise:

y = f(x) + ε = ~w>~x+ ε (4.23)

where ε ∼ N (µ = 0, σ2).
In plain English: The additive noise ε is distributed according to a normal
distribution with mean 0 and variance σ2.

Because of the random noise, we switch to a stochastic model and define
pairs of random variables - one pair for each data point. The random vari-
able for the input X : X 7→ X with X(x) = x and a random variable for the
output Y : Y 7→ Y with Y (y) = y. We assume that that the data points in

CHAPTER 4. LINEAR REGRESSION 48

D are i.i.d. samples7 from a random process described by 4.23.

By using 4.23, we can specify a probability distribution for the continuous
output y given an input ~x

p(Y = y | X = ~x, ~w) = N (y | ~w>~x, σ2) (4.24)

See Fig. 4.4 for an illustration.

Figure 4.4: Noisy output

Together with 4.24 and under the assumption that the data points are inde-
pendent we can define the (conditional) likelihood LD(~w) (see section B.13.2)
as

LD(~w) =
∏
i

p(yi | ~xi, ~w)

=
∏
i

N (yi | ~w>~xi, σ2)
(4.25)

In order to make the likelihood numerically stable and to simplify the formula

7we assume that the pairs are independent of each other, not xi and yi!

49 4.6. PROBABILISTIC INTERPRETATION

we use the log-likelihood (LLD(~w))

LLD(~w) = log

(∏
i

p(yi | ~xi, ~w)

)
=
∑
i

log
(
N (yi | ~w>~xi, σ2)

)
=
∑
i

log

(
1√

2πσ2

)
exp

(
−(yi − ~w>~xi)

2

2σ2

)
=
∑
i

−1

2
log(2πσ2)− 1

2σ2
(yi − ~w>~xi)

2

= −n
2

log(2πσ2)− 1

2σ2

∑
i

(yi − ~w>~xi)
2

= −n
2

log(2πσ2)− 1

σ2
SSED(~w)

(4.26)

where the number of training data points is denoted by |D| = n.

4.6.2. Maximum likelihood

Next, we use the maximum likelihood approach (see section B.13.2) to esti-
mate the parameter ~w using the data set D.

~w = arg max
~w∈Rd

LLD(~w) (4.27)

By looking at 4.26, we can see that the log-likelihood is equivalent (up to some
constants) to the SSE. Therefore maximizing the log-likelihood is equivalent
to minimizing the SSE - which we did in the previous sections. Hence

~w = arg max
~w∈Rd

LLD(~w) = arg min
~w∈Rd

SSED(~w) (4.28)

4.6.3. Maximum a posteriori

If we want to add an assumption on ~w to our probabilistic model, we can do
so by switching to Bayesian inference and defining a prior/distribution of ~w.
We then use maximum a posteriori (see section B.13.3) to estimate ~w.
As explained in section 4.5 about regularization, we would like to prefer small
weights and therefore ”arbitrarily” define

p(~w) =
∏
j

N
(
(~w)j | 0, τ−1

)
(4.29)

CHAPTER 4. LINEAR REGRESSION 50

Then, the posterior distribution of ~w is given by8

p(~w | D) ∝ LD(~w)p(~w) (4.30)

Again to make life easier, we take the logarithm of the posterior 4.30.

log (p(~w | D)) ∼ log
(

LD(~w)p(~w)
)

= log
(

LD(~w)
)

+ log
(
p(~w)

)
= −N

2
log(2πσ2)− 1

σ2
SSED(~w) + log

(∏
j

N
(
(~w)j | 0, τ−1

))
= −N

2
log(2πσ2)− 1

σ2
SSED(~w) +

∑
j

log
(
N
(
(~w)j | 0, τ−1

))
= −N

2
log(2πσ2)− 1

σ2
SSED(~w) +

∑
j

(
−1

2
log(2πτ−1)− 1

2τ−1

(
(~w)j − 0

)2
)

= −N
2

log(2πσ2)− 1

σ2
SSED(~w)− d

2
log(2πτ−1)− 1

2τ−1

∑
j

(~w)2
j

= −N
2

log(2πσ2)− 1

σ2
SSED(~w)− d

2
log(2πτ−1)− τ

2
~w> ~w

= −N
2

log(2πσ2)− 1

σ2
SSED(~w)− d

2
log(2πτ−1)− τ

2
‖~w‖2

2

= −N
2

log(2πσ2)− d

2
log(2πτ−1)− 1

σ2

(
SSED(~w) + σ2τ‖~w‖2

2

)
(4.31)

By looking at 4.31, we notice that the posterior is equivalent (again up to
some constants) to the SSE with L2/Tikhonov regularization. Therefore, we
conclude that MAP with Gaussian prior is equivalent to minimizing the SSE
+ L2 regularization where the regularization strength λ is now σ2τ . Hence

~w = arg max
~w∈Rd

log p(~w | D) = arg min
~w∈Rd

SSED(~w) + λ‖~w‖2
2 (4.32)

4.7. Robust regression

In reality the data itself can contain errors, in the sense that some data points
might be wrong - e.g. due to measurement errors. Such ”wrong” data points
are called outliers.

8Note that we dropped the normalizing constant

51 4.7. ROBUST REGRESSION

In Fig. 4.6 we can see a data set which seems to follow a linear relation except
some points - 3 points are far away from the other points (e.g. its neighbors).
If we fit linear regression to this data set, we observe that the model does
not capture/model the linear relation as a human being would easily do. The
model is ”pulled down” or heavily influenced by the outliers.
In plain English: Standard linear regression is sensitive to outliers.

To solve this issue one would either remove all outliers from the data set
or use a method which is more robust to outliers9.

4.7.1. Huber regression

Huber regression is an example of a regression model which is robust to
outliers. Huber regression is a linear model (viz. f(~x) = ~w>~x) and minimizes
the following cost function∑

i

LH (f(~xi)− yi, δ) where δ > 0 (4.33)

where LH is defined as

LH(r, δ) =

{
r2

2
if |r| ≤ δ

δ|r| − δ2

2
otherwise

(4.34)

The cost function is a mixture between L1 and L2 norm. It uses L2 for
”small” residuals and L1, which is more robust to outliers because of the
missing square, for ”large” residuals. By varying δ we can control what the
model interprets as a ”small” and what as a ”large” residual. See Fig. 4.5
for an illustration and comparision with other loss functions.
The cost function 4.34 can be optimized by a gradient based iterative algo-

rithm (see section. 4.7.1.1).

In Fig. 4.6 we can see an example of Huber regression fitted to a data set
containing outliers.
Warning: The example shown in Fig. 4.6 is a toy example for educational
purposes. In reality it might not be that easy to identify outliers!
If we say that some points are outliers, we introduce an assumption/bias
about the data - e.g. ”We assume that the data can be described by a lin-
ear relation, consequently all data points for which this is not true must be
outliers”. We need to understand that this is our assumption and it might

9Often one would do both: remove the ”obvious outliers” and use a ”robust” model.

CHAPTER 4. LINEAR REGRESSION 52

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Residual

0

10

20

30

40

50

Lo
ss

δ−δ

Huber loss

Squared loss

Absolute loss

Figure 4.5: Different loss functions

be correct/valid or not. Whenever we do this, we should think very carefully
about this.
If we ”have” (detected) too many outliers in our data set, it might be either
the case that the data has a very bad quality or that our assumption is wrong.
Think twice and carefully before declaring points as outliers!

4.7.1.1 Details on Huber regression

Huber regression can be stated as the following optimization problem

min
~w∈Rd

∑
i

LH(ri, δ)

where ri = ~w>~xi − yi and δ > 0

(4.35)

Theorem 4 (Convexity of Huber regression). Huber regression as stated
in 4.35 is a convex optimization problem.

53 4.7. ROBUST REGRESSION

0 2 4 6 8
x

−150

−100

−50

0

50

f(
x
)

Data

Linear regression

Huber regression

Figure 4.6: Huber vs. Linear regression on a data set with outliers

Proof. Because of ~w ∈ Rd and the fact that Rd is a convex set, we only have
to show that

∑
i LH(ri, δ) is a convex function in ~w.

Because the sum of convex functions is a convex function, it is sufficient to
show that LH(ri, δ) is a convex function in ~w.
Because ri = yi − ~w>~xi is a convex function in ~w, we can conclude that
LH(ri, δ) is a convex function if LH(ri, δ) is a non-decreasing convex function
in |ri| (see 3). Obviously, LH(ri, δ) is non-decreasing (see Fig. 4.6 and defi-
nition 4.34), therefore we only have to prove convexity of LH(ri, δ) in |ri|.
Because LH(ri, δ) is piece-wise defined function, we first have to check con-
vexity of each piece separately and then check the derivative at the transition.

1. f(x) = 1
2
x2 is a convex function because the second-order criterion is

satisfied (∂
∂x2
f(x) = 1 ≥ 0).

2. g(x) = δ(|x| − 1
2
δ) = |x|δ − 1

2
δ2 is a convex function because |x| is a

convex function and δ > 0.

CHAPTER 4. LINEAR REGRESSION 54

3. The derivatives of f and g are ∂
∂x
f(x) = x and ∂

∂x
g(x) = sign(x)δ.

Because the transition happens at |x| = δ, we have to check the points
x1 = δ and x2 = −δ.

(a) x1: ∂f
∂x

(x1) = δ and ∂g
∂x

(x1) = δ.

(b) x2: ∂f
∂x

(x2) = −δ and ∂g
∂x

(x2) = −δ.

We conclude that 4.35 is a convex optimization problem.

4.7.1.1.1 Optimization
From theorem 4, we know that huber regression is a convex optimization
problem. Therefore we can use one of the iterative solvers from section A.3.

First, we note that

∇~wri = ∇~w

(
~w>~xi − yi

)
= ~xi

(4.36)

and

∇~w|ri| = sign(ri)∇~wri

= sign(ri)~xi
(4.37)

where we assume that ri 6= 0.
Next, by making use of 4.36 and 4.37, we can derive the gradient of 4.35

∇~w

∑
i

LH(ri, δ) =
∑
i

∇~wLH(ri, δ)

=
∑
i

{
∇~w

r2i
2

if |ri| ≤ δ

∇~w

(
δ|ri| − δ2

2

)
if |ri| > δ

=
∑
i

{
ri∇~wri if |ri| ≤ δ

δ∇~w|ri| if |ri| > δ

=
∑
i

{
ri~xi if |ri| ≤ δ

δ sign(ri)~xi if |ri| > δ

(4.38)

Finally, we can use the gradient 4.38 to solve 4.35 by using a ”naive” gra-
dient descent algorithm A.3.2 or a more ”sophisticated” method like L-
BFGS A.3.5.210.

10this is what scikit-learn is doing!

55 4.7. ROBUST REGRESSION

4.7.2. Least absolute deviations

Another linear regression model, which is more robust to outliers, is Linear
absolute deviations (LAD)11.
Until now, we always - except in huber regession - optimized (minimized)
the squared error. As we learned previously, the squared error is sensitive to
outliers because of the square - large errors get even larger in the sense that
they dominate all the other errors. One thing to do against this, is to use
the absolute error instead of the squared error, because the absolute value
does not grow so quickly in comparison to the squared value. This is exactly
what linear absolute deviations is doing.
In plain English: Instead of the squared error we use the absolute error
because it is more robust to outliers.
The new cost function is called sum of absolute deviations and is given by∑

i

|yi − f(~xi)| (4.39)

Thus, our new optimization problem is given by

~w = arg min
~w∈Rd

∑
i

|yi − f(~xi)|

= arg min
~w∈Rd

∑
i

|yi − ~w>~xi|

= arg min
~w∈Rd

∑
i

|ri|

(4.40)

where ri = yi − ~w>~xi is the i-th residual.
Note: Because the residual can be negative - if our estimate is smaller than
the true output - we take the absolute value of it to make sure that the sum-
mands are always positive - in the squared error we did not care about this
because the square of smth. is always positive.

Another way to motivate 4.40 is to assume that the model f(~x) = ~w>~x
is correct in the mean only and is usually disturbed by some noise. This
noise is distributed according to a Laplace distribution12. Note that this is
very similar to the case where we assumed Gaussian noise!

11also called least absolute errors (LAE), least absolute value (LAV), least absolute resid-
ual (LAR) or sum of absolute deviations

12see https://en.wikipedia.org/wiki/Laplace_distribution

https://en.wikipedia.org/wiki/Laplace_distribution

CHAPTER 4. LINEAR REGRESSION 56

Hence, we can write

p(y | ~x, ~w) = Lap(y | ~w>~x, b)

=
1

2b
exp

(
−1

b
|y − ~w>~x|

)
∝ exp

(
−1

b
|y − ~w>~x|

) (4.41)

where b is the scaling parameter (related to the variance) of the noise.
Looking at the log-likelihood, and assuming that the samples are independent
of each other, reveals

LLD(~w) = log

(∏
i

p(yi | ~xi, ~w)

)
=
∑
i

log
(
p(yi | ~xi, ~w)

)
∼
∑
i

log

(
exp

(
−1

b
|yi − ~w>~xi|

))
=
∑
i

−1

b
|yi − ~w>~xi|

(4.42)

We observe that maximizing the log-likelihood 4.42 is equivalent (up to a con-
stant) to minimizing the sum of absolute deviations 4.39.

The next step is to solve the optimization problem 4.40. Unfortunately,
a direct solution is not possible, but we can transform the problem into a lin-
ear program 13 which we then can solve by using linear programming (LP)14.
The transformation of 4.40 into a linear optimization problem requires some
work - e.g. one problem is the | · | in the target function:
First, we write 4.40 in a slightly different way

min
~w,ri

∑
i

|ri|

s.t. ~w>~xi + ri = yi ∀i
(4.43)

In plain English: Find a ~w which minimizes the sum of absolute residuals
ri such that for all samples in our training set the prediction/output of our

13as discussed in section A.4, linear programs belong to the class of convex optimization
problems and can be solved efficiently

14also called linear optimization

57 4.8. SPARSITY REGULARIZATION

model is correct (~w>~xi = yi) up to the error ri - we add the error/residual
ri to our prediction ~w>~xi in order to remove the error and get the correct
output yi.

Next, we split up the residual ri into the part r+
i for a positive error, the

prediction is smaller than the true value - underestimation, and r−i for a
negative error, the prediction is larger that the true value - overestimation.
Because we would like to have r+

i ≥ 0 and r−i ≥ 0 (both errors are now posi-
tive!), ri is written as ri = r+

i − r−i , whereby the − in front of r−i is necessary
because r−i itself is positive. By substituting ri in 4.43 we get

min
~w,r+i ,r

−
i

∑
i

|r+
i − r−i |

s.t.

r+
i ≥ 0 r−i ≥ 0

~w>~xi + r+
i − r−i = yi ∀i

(4.44)

Because either r+
i or r−i is 0 - either our prediction is larger or smaller than

the true value, but not both at the same time, we can simplify |r+
i − r−i | .

Because r+
i ≥ 0 and r−i ≥ 0 and r+

i = 0 ∨ r−i = 0, it holds that

|r+
i − r−i | = |r+

i |+ |r−i |
= r+

i + r−i
(4.45)

By substituting 4.45 in 4.44, we obtain the following linear optimization
problem

min
~w,r+i ,r

−
i

∑
i

r+
i + r−i

s.t.

r+
i ≥ 0 r−i ≥ 0

~w>~xi + r+
i − r−i = yi ∀i

(4.46)

Finally, we can solve 4.46 (delivers us ~w) by using our favorite linear pro-
gramming algorithm (e.g. simplex algorithm, ...). Further details on how to
do this, can be found in special literature on linear programming.

4.8. Sparsity regularization

In one of the previous sections we learned about regularization and intro-
duced the L2 regularization. In L2 regularization we favor small weights

CHAPTER 4. LINEAR REGRESSION 58

(close to zero), but what if we want some of the feature weights being exactly
zero? Such a weight vector is called sparse and uses a subset of the features
only - all features with non zero weights.
Usually L2 regularization delivers weights close to zero but not exactly zero.In
this section we introduce a sparsity regularization called L1 or `1 and the
corresponding regression LASSO15 for enforcing sparse weight vectors.

Like we did in L2 regularization, we add a penalty for large weights to our
cost function and then obtain a new SSE given by

SSED(~w) =
1

2

∑
i

(yi − f(~xi))
2 + λ

∑
j

|(~w)j|

=
1

2

∑
i

(yi − f(~xi))
2 + λ‖~w‖1

(4.47)

where λ is called regularization strength and ||~w||1 =
∑

j |(~w)j| is the 1-norm.
By varying λ we can control how important we think small weights are in
contrast to a small SSE.
Note: The only difference between L2 and L1 regularization is

∑
j(~w)2

j vs.∑
j |(~w)j|. We are no longer summing over the squared values but instead

over the absolute values of ~w.

When we looked at linear regression from a probabilistic point of view, we
observed that ridge regression is equivalent to linear regression with gaussian
noise and a gaussian prior for ~w.
For LASSO it is the same, but instead of using a gaussian prior we have to
use a laplacian prior (see exercise 6). Therefore

pλ(~w) =
∏
j

Lap
(
(~w)j | 0, λ

)
=
∏
j

1

2λ
exp

(
−|(~w)j − 0|

λ

)
=
∏
j

1

2λ
exp

(
−|(~w)j|

λ

) (4.48)

In ridge regression it was ”very easy” to find a closed form solution - com-
pute the gradient of the cost function, set it equal to zero and solve for ~w.
Unfortunately, this is no longer possible if we use the L1 instead of the L2
regularization. In general there does not exist a closed form solution and the
only remaining option is to use an iterative algorithm (see section 4.8.1).

15details can be found in section 4.8.1

59 4.8. SPARSITY REGULARIZATION

In Fig. 4.7 we can see a plot visualizing how the entries of the weight vec-
tor ~w are changing if the regularization strength is increased. The value for
each feature (entry in the weight vector) is plotted on the y-axis and each
feature is encoded by a different color. The x-axis displays the regularization
strength.
As we can see, while increasing the regularization strength, many weights
become zero very quickly whereas a few resists longer. We can interpret the
”speed of becoming zero” as a some kind of measurement for the importance
of the feature. This is because we ask the model to find a good regression
while using a subset - the size depends on the regularization strength - of
features only. Hence the model tries to find some features which describe the
data well so that it can drop the other features.
We note that LASSO can be used for feature selection.

0 10 20 30 40 50
L1 regularization strength

0

10

20

30

W
e
ig

h
t

o
f

fe
a
tu

re

LASSO solution path

Feature 0

Feature 1

Feature 2

Feature 3

Feature 4

Figure 4.7: LASSO: Feature weights vs. regularization strength

CHAPTER 4. LINEAR REGRESSION 60

4.8.1. Details on LASSO

LASSO [15]16 (Least Absolute Shrinkage and Selection Operator) is a mod-
el/procedure for delivering a sparse regression weight vector (minimizing the
sum of squared errors). LASSO was originally stated as follows

min
~w∈Rd

1

2
‖~y −X~w‖2

2

s.t. ‖~w‖1 ≤ t
(4.49)

Often an equivalent reformulation of 4.49 is used, where the constraint is
included in the cost function by introducing a Lagrangian multiplier λ. It
can be shown that for each value of t in 4.49, we can find a value λ such
that 4.49 is equivalent to

min
~w∈Rd

1

2
‖~y −X~w‖2

2 + λ‖~w‖1 (4.50)

4.50 is the most common form of LASSO and an example of a penalized re-
gression model.

Theorem 5 (Convexity of LASSO). LASSO as stated in 4.50 is a convex
optimization problem.

Proof. Because ~w ∈ Rd and Rd is known to be a convex set, we only have to
show that

1

2
‖~y −X~w‖2

2 + λ‖~w‖1 (4.51)

is a convex function.

From theorem 2, we know that 1
2
‖~y −X~w‖2

2 is a convex function. Further-
more, we know from section A.3 that λ‖~w‖1 is a convex function and the
sum of two convex function is again a convex function.
Therefore we can conclude that 4.50 is a convex optimization problem.

If the design matrix X is orthogonal, there exists a closed form solution
to 4.50 (see section 4.8.1.1). In the general case, coordinat descent is a simple
algorithm for solving 4.50 (see section 4.8.1.2).

16a good starting point for learning about LASSO is https://statweb.stanford.edu/

~tibs/lasso.html

https://statweb.stanford.edu/~tibs/lasso.html
https://statweb.stanford.edu/~tibs/lasso.html

61 4.8. SPARSITY REGULARIZATION

4.8.1.1 Special case - Orthogonal design matrix

Next, we derive the closed form solution for the special case of an orthogonal
design matrix.
If the matrix X is orthogonal, we know that

X>X = I (4.52)

By making use of 4.52, we can simplify the expression in 4.50

1

2
‖~y −X~w‖2

2 + λ‖~w‖1 =
1

2
(~y −X~w)>(~y −X~w) + λ‖~w‖1

=
1

2
~y>~y − 1

2
~y>X~w − 1

2
~w>X>~y +

1

2
~w>X>X~w + λ‖~w‖1

=
1

2
~y>~y − ~y>X~w +

1

2
~w> ~w + λ‖~w‖1

(4.53)

Substituting 4.53 into 4.50 yields

min
~w∈Rd

1

2
‖~y −X~w‖2

2 + λ‖~w‖1

⇔

min
~w∈Rd

1

2
~y>~y − ~y>X~w +

1

2
~w> ~w + λ‖~w‖1

⇔

min
~w∈Rd

− ~y>X~w +
1

2
~w> ~w + λ‖~w‖1

⇔

min
~w∈Rd

− ~α~w +
1

2
~w> ~w + λ‖~w‖1

(4.54)

where ~α = ~y>X. Note that ~α is a row vector whereas ~w is a column vector.
Rewrite all terms in 4.54 as a sum over the dimensions

min
~w∈Rd

−
∑
j

(~α)j(~w)j +
1

2

∑
j

(~w)2
j + λ

∑
j

|(~w)j|

⇔

min
~w∈Rd

−
∑
j

(~α)j(~w)j +
1

2
(~w)2

j + λ|(~w)j|

(4.55)

Because 4.54 is minimizing a convex function, we compute the gradient of the
cost function in 4.54 by differentiating 4.55 with respect to each dimension

CHAPTER 4. LINEAR REGRESSION 62

j, and set it equal to zero.

∂

∂(~w)j

(
−
∑
j

(~α)j(~w)j +
1

2
(~w)2

j + λ|(~w)j|

)
= 0

⇔

− (~α)j + (~w)j + λ
∂

∂(~w)j
(|(~w)j|) = 0

(4.56)

Note that f(x) = |x| is not differentiable at 0. Therefore we have to take a
look at the subdifferential (see section A.2.4) of f(x) = |x|

∂|x|
∂x

=

1 if x > 0

−1 if x < 0

[−1, 1] if x = 0

(4.57)

Notice that the subderivative at x = 0 can be any value in [−1, 1]. We can
”arbitrarily” choose one value from this interval.
Next, we have to distinguish between two cases:

1. (~α)j > 0: In order to minimize 4.54, it must be that (~w)j ≥ 0. There-

fore we can set
∂|(~w)j |
∂(~w)j

= 1.

Substituting this into 4.56 yields

− (~α)j + (~w)j + λ = 0

⇔
(~w)j = (~α)j − λ

(4.58)

But because we argued that (~w)j ≥ 0, we have to clamp the value of
(~w)j to zero when it becomes negative

(~w)j = max(0, (~α)j − λ) (4.59)

2. (~α)j ≤ 0: In order to minimize 4.54, it must be that (~w)j ≤ 0. There-

fore we can set
∂|(~w)j |
∂(~w)j

= −1

Substituting this into 4.56 yields

− (~α)j + (~w)j − λ = 0

⇔
(~w)j = (~α)j + λ

(4.60)

But because we argued that (~w)j ≤ 0, we have to clamp the value of
(~w)j to zero when it becomes positive

(~w)j = min(0, (~α)j + λ) (4.61)

63 4.8. SPARSITY REGULARIZATION

We observe that both cases can be written as

(~w)j = sign(αj)(|αj| − λ)+ (4.62)

where17

(|αj| − λ)+ = max(0, |αj| − λ) (4.63)

Finally, we have arrived at the closed form solution 4.62 of LASSO 4.50 - if
the design matrix X is orthogonal.
By looking at the closed form solution 4.62, it becomes obvious that LASSO
tends to set more entries/features in ~w to zero, when we increase the regu-
larization strength λ.

4.8.1.2 General case

As already mentioned, in the general case there does not exist a closed form
solution of 4.50. In this section, we derive the update rule for a coordinate
descent algorithm (see section A.3.7).

First, we have to verify that our problem (4.50) is suited for the coordi-
nate descent algorithm.
From section A.3.7 we know that the coordinate descent algorithm is suited
for the following optimization problem

min
~θ∈Rd

f(~θ) +
∑
j

hj((~θ)j) (4.64)

where f and hj are convex functions. In addition, f is required to be differ-
entiable everywhere (viz. f is a smooth function).
We can recognize LASSO 4.50 as an instance 4.64 by setting

~θ := ~w

f(~θ) :=
1

2
‖~y −X~θ‖2

2

hj((~θ)j) := λ|(~θ)j|

(4.65)

We conclude that the prerequisites for applying the coordinate descent algo-
rithm are met.

17also called soft threshold(ing) function

CHAPTER 4. LINEAR REGRESSION 64

We can rewrite 4.50 as a sum over all data points and their dimensions

1

2

∑
i

(
yi −

∑
j

(~xi)j(~w)j

)2

+ λ
∑
j

|(~w)j| (4.66)

Next, we compute the derivative of the SSE in 4.66 with respect to th k-th
component of ~w

∂

∂(~w)k

1

2

∑
i

(
yi −

∑
j

(~xi)j(~w)j

)2

=
∂

∂(~w)k

(
1

2

∑
i

y2
i − 2yi

∑
j

(~xi)j(~w)j +
(∑

j

(~xi)j(~w)j

)2
)

= −
∑
i

∂

∂(~w)k
yi
∑
j

(~xi)j(~w)j+

∑
j

(~xi)j(~w)j
∂

∂(~w)k

∑
j

(~xi)j(~w)j

= −
∑
i

yi(~xi)k + (~xi)k
∑
j

(~xi)j(~w)j

= −
∑
i

(~xi)k

(
yi −

∑
j

(~xi)j(~w)j

)

= −
∑
i

(~xi)k

(
yi −

∑
j 6=k

(~xi)j(~w)j

)
+
∑
i

(~xi)k(~xi)k(~w)k

= −rk +
∑
i

(~xi)
2
k(~w)k

(4.67)

where rk =
∑

i(~xi)k

(
yi −

∑
j 6=k(~xi)j(~w)j

)
.

Computing the derivative of the l1-penalty λ|w| yields

∂

∂w
λ|w| = λ

1 if w > 0

−1 if w < 0

[−1, 1] if w = 0

=

λ if w > 0

−λ if w < 0

[−λ, λ] if w = 0

=

{
sign(w)λ if w 6= 0

[−λ, λ] if w = 0

(4.68)

65 4.8. SPARSITY REGULARIZATION

Combining 4.67 and 4.68 yields

∂

∂(~w)k

1

2

∑
i

(
yi −

∑
j

(~xi)j(~w)j

)2

+ λ
∑
j

|(~w)j|

= −rk +

∑
i

(~xi)
2
k(~w)k +

{
sign((~w)k)λ if (~w)k 6= 0

[−λ, λ] if (~w)k = 0

=

{
−rk +

∑
i(~xi)

2
k(~w)k + sign((~w)k)λ if (~w)k 6= 0

[−rk − λ,−rk + λ] if (~w)k = 0

(4.69)

Setting the derivative to zero

0 =

{
−rk +

∑
i(~xi)

2
k(~w)k + sign((~w)k)λ if (~w)k 6= 0

[−rk − λ,−rk + λ] if (~w)k = 0
(4.70)

By looking at the second case in 4.70, we find that

0 ∈ [−rk − λ,−rk + λ]

⇔
− λ ≤ rk ≤ λ

(4.71)

Solving the first case in 4.70 for (~w)k yields

− rk +
∑
i

(~xi)
2
k(~w)k + sign((~w)k)λ = 0

⇔

− rk +
∑
i

(~xi)
2
k(~w)k + sign(rk)λ = 0

⇔

(~w)k =
rk − sign(rk)λ∑

i(~xi)
2
k

(4.72)

Because of 4.70, we know that sign ((~w)k) must be equal to sign(rk).

Combining 4.72 and 4.71 delivers the final formula for updating (~w)k

(~w)k =

{
0 if − λ ≤ rk ≤ λ
rk−sign(rk)λ∑

i(~xi)
2
k

otherwise
(4.73)

We observe that we can write both cases as

(~w)k =
sign(rk)(|rk| − λ)+∑

i(~xi)
2
k

(4.74)

CHAPTER 4. LINEAR REGRESSION 66

where (...)+ denotes the familiar soft thresholding function.

The final coordinate descent algorithm for solving 4.50 is described in Al-
gorithm 2. Note that we have to recompute the value of rk for each k. This
is because the value of ~w is updated in each update step.

Algorithm 2 LASSO - Coordinate descent algorithm

1: ~w = ~0 . Initialize ~w
2: repeat
3: for all (~w)k do . Iterate over all dimensions of ~w

4: rk =
∑

i(~xi)k

(
yi −

∑
j 6=k(~xi)j(~w)j

)
5: (~w)k = sign(rk)(|rk|−λ)+∑

i(~xi)
2
k

. Update ~w

6: end for
7: until convergence

4.9. Elastic net

By using L2 regularization we get small weights and by using L1 regulariza-
tion (LASSO) we can perform feature selection. The problem with LASSO
is that if we have multiple correlated features in the data set, it will only
pick one of them but not all. However, we would like to pick all correlated
features once we decided to select one of them - this is called grouping effect.
Selecting correlated features is beneficial because the usage of correlated fea-
tures makes the model more robust. Furthermore, it improves the inter-
pretability of the model because it gives more insight into the underlying
domain/problem and the relevant features.

This problem is not new and people thought about this and came up with a
”solution” called Elastic net [19]18.
Elastic net is a linear regression model (hence f(~x) = ~w>~x) and the idea
behind it is to use a combination of L1 and L2 regularization19. By this, the
model delivers small weights and performs a feature selection according to
the grouping effect - therefore it picks all correlated features instead of just
picking one of them - see Fig. 4.8.

18more details can be found in the original paper by Zou & Hastie which is not too
difficult to read

19together, L1 and L2 regularization is also called elastic net penalty

67 4.9. ELASTIC NET

In Fig. 4.8 we applied Elastic net and LASSO to an artifical data set. Fea-
tures 0 to 2 are the orginal ones, feature 3 and 4 are created from feature 2
by adding gaussian noise to it. As we can see, ElasticNet tends to select all
correlated features (2, 3 and 4), whereas LASSO does not.

Figure 4.8: Grouping effect: Elastic net vs. LASSO

0 10 20 30 40 50
L1 regularization strength

0

5

10

15

20

25

30

W
e
ig

h
t

o
f

fe
a
tu

re

ElsaticNet solution path

Feature 0

Feature 1

Feature 2

Feature 3

Feature 4

0 10 20 30 40 50
L1 regularization strength

0

5

10

15

20

25

30

W
e
ig

h
t

o
f

fe
a
tu

re

LASSO solution path

Feature 0

Feature 1

Feature 2

Feature 3

Feature 4

The optimization problem of elastic net is given by

~w = arg min
~w∈Rd

SSED(~w) + λ1‖~w‖1 + λ2‖~w‖2
2

= arg min
~w∈Rd

NLLD(~w) + λ1‖~w‖1 + λ2‖~w‖2
2

(4.75)

where the first equation is the notation used in the original paper and the
second one is the notation used on the lecture slides (both are equivalent to
each other). The parameters λ1 and λ2 enable us control the regularization
strength and influence of L1 and L2 regularization.
Note: By using ”extreme” values for λ1 and/or λ2 we can recover ”ordi-
nary” linear regression (λ1 = λ2 = 0), ridge regression (λ1 = 0) and LASSO
(λ2 = 0). Thus all of them are special cases of elastic net.

Sometimes people use an alternative (equivalent) formulation20 of the cost
function, instead of

SSED(~w) + λ1‖~w‖1 + λ2‖~w‖2
2 (4.76)

they use
SSED(~w) + αγ‖~w‖1 + α(1− γ)‖~w‖2

2 (4.77)

20e.g. scikit-learn [11] does so

CHAPTER 4. LINEAR REGRESSION 68

where α = λ1 + λ2 and γ = λ1
λ1+λ2

. The equivalence can be easily proven by
substituting α and γ in 4.77 and after some simplifications one obtains 4.76.

Again, the optimization problem can not be solved analytically21 that is why
iterative algorithms are used again (see section 4.9.1).

4.9.1. Optimization

Theorem 6 (Convexity of Elastic net). ElasticNet as stated in 4.75 is a
convex optimization problem.

Proof. Because ~w ∈ Rd and Rd is known to be a convex set, we only have to
show that

SSED(~w) + λ1‖~w‖1 + λ2‖~w‖2
2 (4.78)

is a convex function.

From theorem 3, we know that SSED(~w) + λ2‖~w‖2
2 is a convex function.

Furthermore, we know from section A.3 that λ1‖~w‖1 is a convex function
and the sum of two convex function is again a convex function.
Therefore we can conclude that 4.75 is a convex optimization problem.

Next, we argue that 4.75 in general can be solved by using the coordinate
descent algorithm and derive the associated update rule. Because the deriva-
tion of the update rule is very similar to the derivation we did in LASSO (see
section 4.8.1.2), we will keep things superficially. If you miss some steps, go
to section 4.8.1.2 - it’s more or less exactly the same.

First, we have to verify that our problem (4.75) is suited for the coordi-
nate descent algorithm.
From section A.3.7 we know that the coordinate descent algorithm is suited
for the following optimization problem

min
~θ∈Rd

f(~θ) +
∑
j

hj((~θ)j) (4.79)

where f and hj are convex functions. In addition, f have to be differentiable
everywhere (viz. f is a smooth function).

21this is true for the general case but there are some special cases where a closed form
solution exists

69 4.9. ELASTIC NET

We can transform 4.79 into ElasticNet 4.75 by setting

~θ := ~w

f(~θ) :=
1

2
‖~y −X~θ‖2

2 + λ2‖~w‖2
2

hj((~θ)j) := λ1|(~θ)j|

(4.80)

We conclude that the prerequisites for applying the coordinate descent algo-
rithm are met.

We can rewrite 4.75 as a sum over all data points and their dimensions

1

2

∑
i

(
yi −

∑
j

(~xi)j(~w)j

)2

+ λ1

∑
j

|(~w)j|+ λ2

∑
j

(~w)2
j (4.81)

Next, we compute the derivative of the SSE + L2-regularization in 4.81 with
respect to th k-th component of ~w

∂

∂(~w)k

(
1

2

∑
i

(
yi −

∑
j

(~xi)j(~w)j

)2

+ λ2

∑
j

(~w)2
j

)
= −rk+

∑
i

(~xi)
2
k(~w)k+λ2(~w)k

(4.82)

where rk =
∑

i(~xi)k

(
yi −

∑
j 6=k(~xi)j(~w)j

)
.

Computing the derivative of the l1-penalty λ1|w| yields

∂

∂w
λ1|w| =

{
sign(w)λ1 if w 6= 0

[−λ1, λ1] if w = 0
(4.83)

Combining 4.82 and 4.83 yields

∂

∂(~w)k

1

2

∑
i

(
yi −

∑
j

(~xi)j(~w)j

)2

+ λ1

∑
j

|(~w)j|+ λ2

∑
j

(~w)2
j

= −rk +

∑
i

(~xi)
2
k(~w)k + λ2(~w)k +

{
sign((~w)k)λ1 if (~w)k 6= 0

[−λ1, λ1] if (~w)k = 0

=

{
−rk +

∑
i(~xi)

2
k(~w)k + λ2(~w)k + sign((~w)k)λ1 if (~w)k 6= 0

[−rk − λ1,−rk + λ1] if (~w)k = 0

(4.84)

Setting the derivative 4.84 to zero

0 =

{
−rk +

∑
i(~xi)

2
k(~w)k + λ2(~w)k + sign((~w)k)λ1 if (~w)k 6= 0

[−rk − λ1,−rk + λ1] if (~w)k = 0
(4.85)

CHAPTER 4. LINEAR REGRESSION 70

By looking at the second case in 4.85, we find that

0 ∈ [−rk − λ1,−rk + λ1]

⇔
− λ1 ≤ rk ≤ λ1

(4.86)

Solving the first case in 4.85 for (~w)k yields

− rk +
∑
i

(~xi)
2
k(~w)k + λ2(~w)k + sign((~w)k)λ1 = 0

⇔

− rk +
∑
i

(~xi)
2
k(~w)k + λ2(~w)k + sign(rk)λ1 = 0

⇔

(~w)k =
rk − sign(rk)λ1∑

i(~xi)
2
k + λ2

(4.87)

Because of 4.85, we know that sign ((~w)k) must be equal to sign(rk).

Combining 4.87 and 4.86 delivers the final formula for updating (~w)k

(~w)k =

{
0 if − λ1 ≤ rk ≤ λ1
rk−sign(rk)λ1∑

i(~xi)
2
k+λ2

otherwise
(4.88)

We obeserve that both cases can be written as

(~w)k =
sign(rk)(|rk| − λ1)+∑

i(~xi)
2
k + λ2

(4.89)

where (...)+ denotes the familiar soft thresholding function.

The final coordinate descent algorithm for solving 4.75 is described in Al-
gorithm 3. Note that we have to recompute the value of rk for each k . This
is because the value of ~w is updated in each update step.

71 4.10. BAYESIAN LINEAR REGRESSION

Algorithm 3 ElasticNet - Coordinate descent algorithm

1: ~w = ~0 . Initialize ~w
2: repeat
3: for all (~w)k do . Iterate over all dimensions of ~w

4: rk =
∑

i(~xi)k

(
yi −

∑
j 6=k(~xi)j(~w)j

)
5: (~w)k = sign(rk)(|rk|−λ1)+∑

i(~xi)
2
k+λ2

. Update ~w

6: end for
7: until convergence

4.10. Bayesian linear regression

So far we have always used one ~w only. We found it by either maximum
likelihood or maximum a posteriori. But what about using all possible ~w?
At first glance this might sound crazy but the general idea is to make pre-
dictions by using a ”weighted combination of all possible weight vectors ~w”.
This is useful because the prediction of the most probable model does not
necessarily has to be the most probable prediction in general. Therefore,
weighted averaging predictions from all possible models is beneficial. This is
what Bayesian linear regression is all about.
In Bayesian linear regression we are no longer fitting a model - in the sense
of computing a specific weight vector ~w - but instead computing a predictive
distribution. This means that the output of a prediction is a distribution22

and no longer a single value! If we have to deliver a prediction, we usually
choose the most likely value under the predictive distribution.
The predictive distribution itself, in its simplest version, is given by

P (y | ~x, D) =

∫
p(y | ~x, ~w)p(~w | D)d~w (4.90)

The easiest version of 4.90 is the one where all distributions are Gaussians
and we integrate over the weight ~w only23.
We can use the models from the previous sections

p(y | ~x, ~w) = N (y | ~w>~x, σ2)

p(~w | D) = p(D | ~w)p(~w) =
∏
i

N (yi | ~w>~xi, σ2)
∏
j

N ((~w)j | 0, λ2)

(4.91)

22inference
23we could include additional parameters like the noise in the integration

CHAPTER 4. LINEAR REGRESSION 72

Because the product of Gaussian distributions is again a Gaussian distribu-
tion and the convolution (integral) of two Gaussian distributions is again
gaussian, the final result p(y | ~x, D) is a Gaussian distribution given by

p(y | ~x, D) = N (y | µ~x =
1

σ2
~x>Σ

∑
i

~xiyi, σ
2
~x = σ2 + ~x>Σ~x) (4.92)

where Σ−1 = λI + 1
σ2

∑
i

~xi~x
>
i .

An example of Bayesian linear regression is visualized in Fig. 4.9. The red
curve visualizes the mean (most likely prediction) and the light red shaded
region visualizes samples from the predictive distribution. The blue points
are noisy samples from the ground truth (green curve). A more complex

Figure 4.9: Example of Bayesian linear regression

example - including different non-Gaussian distributions as well as an inte-
gration over σ - can be found on the lecture slides.

Note: Sometimes, the predictive distribution can not be computed because
the integral is intractable - this might happen if we use ”not so friendly dis-
tributions” like the Gaussian distribution, consequently we have to use some
kind of approximation24.

24Approximate Inference

73 4.10. BAYESIAN LINEAR REGRESSION

4.10.1. Conjugate priors

A prior distribution is called a conjugate prior to some likelihood function
if the posterior has the same distribution as the prior (with other parameter
values of course). Recall that the posterior distribution is computed by

p(~θ | D) =
p(D | ~θ)p(~θ)∫
p(D | ~θ)p(~θ)d~θ

(4.93)

where ~θ contains the parameters of the likelihood and the term p(D | ~θ)
denotes the likelihood and the prior distribution over the parameters ~θ is
denoted by p(θ).
Conjugate priors are useful because the posterior is a closed form probabil-
ity distribution. Otherwise we would have to approximate the normalizing
constant (denominator of 4.93) which might be computational expensive.

A list of conjugate priors can be found in the wikipedia article on conju-
gate priors25.

4.10.1.1 Example

The Beta distribution is a conjugate prior for the Bernoulli distribution. To
see why, we simply have to compute 4.93 with the Bernoulli likelihood and the
Beta distribution as a prior and verify that the result is a Beta distribution.
We assume that D = {xi} where xi ∈ {0, 1}.
First, we compute the numerator of 4.93

p(D | θ)p(θ) = Ber(D | θ) Beta(θ | α, β)

= θ
∑

i 1(xi=1)(1− θ)
∑

i 1(xi=0) Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

=
Γ(α + β)

Γ(α)Γ(β)
θα−1+

∑
i 1(xi=1)(1− θ)β−1+

∑
i 1(xi=0)

(4.94)

where we wrote the parameter p of the Bernoulli distribution as θ and as-
sumed that the data points are i.i.d - that is why the Bernoulli likelihood is
a product of Bernoulli distributions.

25see https://en.wikipedia.org/wiki/Conjugate_prior

https://en.wikipedia.org/wiki/Conjugate_prior

CHAPTER 4. LINEAR REGRESSION 74

Before proceeding, we notice that∫
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1dθ = 1

⇔
Γ(α + β)

Γ(α)Γ(β)

∫
θα−1(1− θ)β−1dθ = 1

⇔∫
θα−1(1− θ)β−1dθ =

Γ(α)Γ(β)

Γ(α + β)

(4.95)

Next, we compute the denominator of 4.93 by making use of 4.95∫
p(D | θ)p(θ)dθ =

∫
Γ(α + β)

Γ(α)Γ(β)
θα−1+

∑
i 1(xi=1)(1− θ)β−1+

∑
i 1(xi=0)dθ

=
Γ(α + β)

Γ(α)Γ(β)

∫
θα−1+

∑
i 1(xi=1)(1− θ)β−1+

∑
i 1(xi=0)dθ

=
Γ(α + β)

Γ(α)Γ(β)

Γ(α +
∑

i 1(xi = 1))Γ(β +
∑

i 1(xi = 0))

Γ(α +
∑

i 1(xi = 1) + β +
∑

i 1(xi = 0))

=
Γ(α + β)

Γ(α)Γ(β)

Γ(α +
∑

i 1(xi = 1))Γ(β +
∑

i 1(xi = 0))

Γ(α + β + |D|)
(4.96)

Finally, we can plug 4.94 and 4.96 into 4.93 and obtain a Beta distribution

p(θ | D) =
p(D | θ)p(θ)∫
p(D | θ)p(θ)dθ

=

Γ(α+β)
Γ(α)Γ(β)

θα−1+
∑

i 1(xi=1)(1− θ)β−1+
∑

i 1(xi=0)

Γ(α+β)
Γ(α)Γ(β)

Γ(α+
∑

i 1(xi=1))Γ(β+
∑

i 1(xi=0))

Γ(α+β+|D|)

=
Γ(α + β)

Γ(α)Γ(β)
θα−1+

∑
i 1(xi=1)(1− θ)β−1+

∑
i 1(xi=0) Γ(α)Γ(β)

Γ(α + β)

Γ(α + β + |D|)
Γ(α +

∑
i 1(xi = 1))Γ(β +

∑
i 1(xi = 0))

=
Γ(α + β + |D|)

Γ(α +
∑

i 1(xi = 1))Γ(β +
∑

i 1(xi = 0))
θα−1+

∑
i 1(xi=1)(1− θ)β−1+

∑
i 1(xi=0)

= Beta(θ | α +
∑
i

1(xi = 1), β +
∑
i

1(xi = 0))

(4.97)

75 4.11. KERNEL REGRESSION

4.11. Kernel regression

In the section about feature transformation we learned that we can use linear
regression for non-linear settings by transforming the data through a function
φ. Therefore we replace all ~x by φ(~x) and the design matrix X becomes Φ(X)

Φ(X) =

−1 φ(~x1)>

−1 φ(~x2)>

...
...

−1 φ(~xN)>

 =

−1 φ(~x1)1 φ(~x1)2 · · · φ(~x1)d
−1 φ(~x2)1 φ(~x2)2 · · · φ(~x2)d
...

...
...

. . .
...

−1 φ(~xn)1 φ(~xn)2 · · · φ(~xn)d

 (4.98)

The closed form solution of ridge regression 4.19 with a feature transforma-
tion φ is given by

~w = (Φ(X)>Φ(X) + λI)−1Φ(X)>~y (4.99)

By using a consequence of the matrix inversion lemma26

(UCV + A)−1UC = A−1U(VA−1U + C−1)−1 (4.100)

where we set

A = λI C = I
U = Φ(X)> V = Φ(X)

we can rewrite the term (Φ(X)>Φ(X) + λI)−1Φ(X)> as

(Φ(X)>Φ(X) + λI)−1Φ(X)> =
1

λ
IΦ(X)>

(
Φ(X)(

1

λ
I)Φ(X)> + I

)−1

= Φ(X)>
(1

λ
I
)(1

λ
Φ(X)Φ(X)> + I

)−1

= Φ(X)>
((1

λ
Φ(X)Φ(X))> + I

)(
λI
))−1

= Φ(X)>(Φ(X)Φ(X)> + λI)−1

(4.101)

By making use of 4.101, we can rewrite 4.99 as

~w = Φ(X)>(Φ(X)Φ(X)> + λI)−1~y (4.102)

26also called Woodbury matrix identity - see https://en.wikipedia.org/wiki/

Woodbury_matrix_identity

https://en.wikipedia.org/wiki/Woodbury_matrix_identity
https://en.wikipedia.org/wiki/Woodbury_matrix_identity

CHAPTER 4. LINEAR REGRESSION 76

and furthermore as

~w = Φ(X)>~α

=
∑
i

(~α)iφ(~xi)
(4.103)

where ~α = (Φ(X)Φ(X)> + λI)−1~y.
If we plug 4.103 into the prediction formula f(~x) = ~w>φ(~x), we find that

f(x) = ~w>φ(~x)

= ~α>Φ(X)φ(~x)

=
∑
i

(~α)iφ(~xi)
>φ(~x)

(4.104)

If we now look at 4.104, we notice that ~w has disappeared and all occurrences
of φ(~x) have the form of φ(~x)>φ(~x′).
The formulation where ~x only occurs in the expression φ(~x)>φ(~x′) is called
dual form and the original one is called primal form.

4.11.1. Dual form of ridge regression

The way we took to get the dual form of the solution 4.21 is not the only
one. Another way is to convert the primal form of ridge regression 4.19 into
its dual form and then solve the resulting dual problem. As we will see, the
final result is the same, just the way of obtaining it is different.

The primal problem of ridge regression 4.21 can be stated as

min
~r∈Rn,
~w∈Rd

~r>~r

s.t.

~y = Φ(X)~w + ~r

~w> ~w ≤ C

(4.105)

However, is not that convenient to work with 4.105 directly. Instead of
modelling the regularization of ~w as an inequality constraint, we add it to the
objective and introduce a Lagrangian multiplier λ. We can do this, because
for every C there exists a λ such that 4.105 and 4.106 are equivalent27.

min
~r∈Rn,
~w∈Rd

~r>~r + λ~w> ~w

s.t. ~y = Φ(X)~w + ~r

(4.106)

27we used a similar argument when working on LASSO

77 4.11. KERNEL REGRESSION

We obtain the Lagrangian function L of 4.106 by introducing the Lagrange
multiplier ~µ

min
~r∈Rn,
~w∈Rd,
~µ∈Rn

L(~r, ~w, ~µ) = ~r>~r + λ~w> ~w + ~µ>(~y −Φ(X)~w − ~r) (4.107)

The optimality conditions of 4.107 reveal

∇~wL = ~0

⇔ −Φ(X)>~µ+ 2λ~w = ~0

⇔ ~w =
1

2λ
Φ(X)>~µ

(4.108)

∇~rL = ~0

⇔ 2~r − ~µ = ~0

⇔ ~r =
1

2
~µ

(4.109)

∇µL = ~0

⇔ ~y −Φ(X)~w − ~r = 0

⇔ ~r = ~y −Φ(X)~w

(4.110)

We can minimize 4.107 with respect to ~r and ~w by substituting 4.108 and 4.109

min
~r∈Rn,
~w∈Rd

L(~r, ~w, ~µ) =
1

4
~µ>~µ+

1

4~λ
~µ>XΦ(X)>~µ+ ~µ>~y − 1

2λ
~µ>Φ(X)Φ(X)>~µ− 1

2
~µ>~µ

= −1

4
~µ>~µ− 1

4λ
~µ>Φ(X)Φ(X)>~µ+ ~µ>~y

(4.111)

In order to simply 4.111, we introduce a new variable ~α

~α =
1

2λ
~µ

⇔ ~µ = 2λ~α
(4.112)

By making use of 4.111 and 4.112 we can write down the Lagrange dual LD
of 4.107

LD(α) = min
~r∈Rn,
~w∈Rd

L(~r, ~w, ~µ)

= −λ2~α>~α− λ~α>Φ(X)Φ(X)>~α + 2λ~α>~y

(4.113)

CHAPTER 4. LINEAR REGRESSION 78

Because strong duality holds for 4.106 (because of Slater’s condition - see A.83),
we know that optimizing the primal 4.106 is equivalent to maximizing the
dual 4.113. Thus

min
~r∈Rn,
~w∈Rd

~r>~r + λ~w> ~w s.t. ~y = Φ(X)~w + ~r

⇔ max
~α∈RN

LD(~α)
(4.114)

The optimality conditions of the dual 4.113 yields

∇~αLD = ~0

⇔ −λ2~α− 2λΦ(X)Φ(X)>~α + 2λ~y = ~0

⇔ 2λ~y − 2λ(Φ(X)Φ(X)> + λI)~α = ~0

⇔ ~α = (Φ(X)Φ(X)> + λI)−1~y

(4.115)

By making use of 4.108,4.112 and 4.115, we can find the final formula for
computing ~w.

~w =
1

2λ
Φ(X)>~µ

= Φ(X)>~α

= Φ(X)>(Φ(X)Φ(X)> + λI)−1~y

(4.116)

Note that the formula for computing ~w 4.116 is exactly the same as 4.102
from the previous section.

4.11.2. Kernels

A mapping k : X × X 7→ R is called kernel if there exists a mapping (also
called feature map) φ : X 7→ H, where H is an Hilbert space28, such that

k(x, x′) = φ(x)>φ(x′)

= 〈φ(x), φ(x′)〉
(4.117)

where 〈·, ·〉 is just a different way of writing the scalar product.
Applying this definition to our design matrix Φ(X) produces the Kernel/-
Gram matrix

K = Φ(X)Φ(X)> (4.118)

where Ki,j = φ(~xi)
>φ(~xj) = k(~xi, ~xj).

In plain English: A kernel measures the ”similarity” between two given items.

28see https://en.wikipedia.org/wiki/Hilbert_space

https://en.wikipedia.org/wiki/Hilbert_space

79 4.11. KERNEL REGRESSION

It does so by computing the scalar product of them in a transformed feature
space. Recall that the scalar product is related to the angle and distance
between two vectors.

By using the definition of a kernel, we can replace all φ(~x)>φ(~x′) by k(~x, ~x′)
and Φ(X)Φ(X)> by K. If we do so we get the following equations

~w = Φ(X)>(K + λI)−1~y (4.119)

~α = (K + λI)−1~y (4.120)

f(~x) =
∑
i

(~α)ik(~xi, ~x) (4.121)

This replacement is called kernel trick. The process of converting the primal
form into the dual form and applying th kernel trick is called kernelization.
The final result (4.119,4.120,4.121) is called kernel ridge regression and is
equivalent to ridge regression with feature transformation.
Note: We can do the same on linear regression with feature transformation,
the corresponding result is called kernel linear regression.

At this point we might wonder why we are doing all these stuff, because we
started with smth. (ridge regression & feature transformation) and arrived
at smth. equivalent (kernel ridge regression). From a modeling perspective
there is no difference, we expressed exactly the same thing in just two dif-
ferent ways. The benefits of kernelized regression will become clear when we
talk a little bit more about kernels and their benefits.

Some common kernels on vectors are

1. The linear kernel
k(~x, ~x′) = ~x>~x′ (4.122)

2. The polynomial kernel (with degree d)

k(~x, ~x′) = (~x>~x′ + 1)d (4.123)

3. The rbf kernel29

k(~x, ~x′) = exp

(
−||~x− ~x

′||2

γ

)
(4.124)

29very similar to the gaussian kernel

CHAPTER 4. LINEAR REGRESSION 80

4. The exp-sine-squared kernel30

k(~x, ~x′) = exp

(
−2 sin(πλ||~x− ~x′||)

l

)2

(4.125)

By definition there exists a φ for all kernels.

4.11.2.1 Example

E.g. the φ of the polynomial kernel is the same φ which we used in the
polynomial feature transformation.
To make this clear, we look at the polynomial kernel with degree 2 and
X = R2. We can rewrite the degree 2 polynomial kernel 4.123 as

k(~x, ~y) = (~x>~y + 1)2

= (~x>~y)2 + 2~x>~y + 12

= (x1y1 + x2y2)2 + 2(x1y1 + x2y2) + 1

= x2
1y

2
1 + 2x1y1x2y2 + x2

2y
2
2 + 2x1y1 + 2x2y2 + 1

= x2
1y

2
1 + 2x1x2y1y2 + x2

2y
2
2 + 2x1y1 + 2x2y2 + 1

= x2
1y

2
1 +
√

2x1x2

√
2y1y2 + x2

2y
2
2 +
√

2x1

√
2y1 +

√
2x2

√
2y2 +

√
1
√

1

= (x2
1,
√

2x1x2, x
2
2,
√

2x1,
√

2x2,
√

1)(y2
1,
√

2y1y2, y
2
2,
√

2y1,
√

2y2,
√

1)>

= φ(~x)>φ(~y) where φ(~a) = (a2
1,
√

2a1a2, a
2
2,
√

2a1,
√

2a2, 1)>

(4.126)

We can recognize the φ from the polynomial feature transformation.

4.11.2.2 Discussion

Kernels like the rbf kernel are ”interesting” because if we try to compute/find
the φ like we did with the polynomial kernel, we will find that the correspond-
ing φ of the rbf-kernel is infinitely large - it maps into a infinitely dimensional
feature space.

By using a kernel we implicitly use a feature transformation without explicitly
computing it. This is great because we do not have to deal with problems
like that the φ might be high dimensional and/or be complicated to compute
or it might be even impossible to compute if it is infinitely large like in the
rbf kernel.

30useful for periodic functions

81 4.11. KERNEL REGRESSION

So far we always assumed that the data is represented as a vector because all
methods we discussed so far are working on vectors only. By using kernels
this is no longer necessary. Because in kernelized methods the data points
are only occurring in the form of k(x, x′), we can use data from an arbitrary
domain as long as we are able to compute a kernel in this domain. Indeed
there exist kernels for graph data, text data, time series, etc. A kernel for
non-vectorial data is called structure kernel.

Unfortunately, the kernel approach has some disadvantages, too. The main
problem with the kernel approach is that it scales very badly to large data
sets. Constructing and inverting the kernel matrix might be computational
expensive and if we want to make a prediction for a query point we have to
compute the kernel of the query point and each data point in the training
set - which we need to store somewhere.
To deal with this problem we can use an approximation method like the
Nyström approximation method. A detailed discussion of these methods is
not the topic of this book and is usually a topic of an advanced lecture of
machine learning. However, if you are interested in these things you can find
a lot of information/material about it on the internet.

4.11.2.3 More details on kernels

A Mercer kernel (Mercer’s Theorem31) is a real valued function k that satis-
fies the following condition∫∫

g(x)k(x, y)g(y)dxdy ≥ 0 ∀ g ∈
{
g : R 7→ R where

∫ ∞
−∞
|g(x)|2dx <∞

}
(4.127)

Note: A Mercer kernel implies a feature mapping into a Hilbert space.

Because we are working with data points only, we can not use the continu-
ous version 4.127 and instead have to switch to the discrete version of 4.127
which is given as

K � 0

where (K)i,j = k(xi, yj)
(4.128)

In plain English: A function k is a valid (Mercer) kernel if and only if the
kernel matrix is symmetric positive-definite.

31see https://en.wikipedia.org/wiki/Mercer%27s_theorem

https://en.wikipedia.org/wiki/Mercer%27s_theorem

CHAPTER 4. LINEAR REGRESSION 82

Recall that

K � 0

⇔

~g>K~g =
∑
i,j

(~g)i(K)i,j(~g)j ≥ 0 ∀~g ∈ RN
(4.129)

4.12. Outlook

In this section we learned about linear regression. Linear regression com-
putes the prediction as a weighted linear combination of the input features.
We learned about L1/LASSO and L2 regularization, as well as elastic net and
robust regression. We observed that L1/LASSO performs feature selection
and that robust regression is more robust to outliers in the training data.
Next, we turned linear regression into non-linear regression by explicitly ap-
plying feature transformations or implicitly using kernels.
In addition, we noticed that linear regression can interpreted as maximum
likelihhood under the assumption that the training data have been perturbed
by i.i.d. gaussian noise. In this setting, L1/L2 regularization can be inter-
preted as maximum a posteriori with a laplacian/gaussian prior centered at
zero.

Because linear regression is a complex and large topic, we only covered the
basics of it. If you want to learn more, we recommend to take a look at [7], [4]
and [5]. Furthermore, in chapter 5, we talk about logistic regression which
can be interpreted as linear regression for binary classification.

83 4.13. EXERCISES

4.13. Exercises

1. Prove that, if the design matrix X is orthogonal, the linear least squares
estimator 4.13 can be written as ~w = X>~y.

2. Prove that the matrix A = X>X + λI for λ > 0,X ∈ Rn×m is always
invertible.

3. High dimensional regression:
Prove that the matrix X>X is not invertible if X ∈ Rn×d where d > n.

4. Assume that the responses yi and data points ~xi are centered. Hence

ȳ =
1

n

∑
i

yi = 0 and x̄ =
1

n

∑
i

~xi = ~0 (4.130)

Prove that the minimizing bias/intercept b of the SSE 4.7 is equal to
0.

5. Univariate linear regression:
Univariate linear regression denotes one dimensional linear regression,
where X = R and Y = R. Thus, we have one predictor variable X and
one response variable Y .
By using the two random variables X and Y for the inputs and outputs,
we can write the linear least squares problem 4.7 as

min
b,w∈R

E[(Y − b− wX)2] (4.131)

where we modeled the bias/intercept b explicitly. Because we are in
1d, the weight vector is a scaler and denoted by w.

Prove that the solution of 4.131 is given by

b = E[Y]

w =
Cov(X, Y)

Var(X)

(4.132)

if E[X] = 0 holds.

6. LASSO from a probabilistic point of view:
Prove that LASSO is equivalent to using a laplacian prior. Thus

arg min
~w∈Rd

SSED(~w) +
1

λ
‖~w‖1 = arg max

~w∈Rd

LD(~w)p(~w) (4.133)

where LD(~w) =
∏

iN (yi | ~w>~xi, σ2) and p(~w) =
∏

j Lap ((~w)j | 0, λ).

CHAPTER 4. LINEAR REGRESSION 84

7. Weighted linear regression:
So far we always assumed that all data points are equally likely and
important. But sometimes it might be beneficial to focus on some
points more than on others. Hence, we are looking for a mechanism to
penalize the errors of points differently. We can do so by introducing a
weight di ≥ 0 for each point telling us how “important” a specific point
is - how much effort should we spend on this sample to get it right?
By applying this idea to the SSE, we get the so called Weighted Squared
Error defined as

WSSE =
∑
i

di(yi − ŷi)2 (4.134)

where ŷi = ~w>~xi.

(a) Compute the gradient of WSSE with respect to ~w.

(b) Rewrite the gradient of WSSE in matrix-vector notation.

(c) Find a closed form solution for minimizing the WSSE (use the
formula from 7b).

(d) Add L2 regularization to WSSE, i.e. WSSE′ = WSSE +λ‖~w‖2.
Redo tasks 7a, 7b and 7c for WSSE′.

8. Prove theorem 3. Do not use the second order condition.

9. Prove that the L2 regularized linear least squares estimator is given by
4.21.

10. LASSO on standardized data:
Show that the update formula for the k-th entry given by 4.74 can be
simplified to

(~w)k = sign(rk)(|rk| − λ)+ (4.135)

if the data set have been standardized (viz. each feature has zero mean
and unit variance).

11. Let k1 and k2 be valid kernels (see section 4.11.2.3). Prove that the
following functions are also valid kernels

(a) k3 = k1 + k2

(b) k3 = α k1 where α > 0

(c) k3 = k1 · k2

Chapter 5

Logistic regression

Logistic regression is a model for classification (see section 1.2). It is linear
regression applied to a binary response variable - in linear regression the
response variable was R which is continuous.
However, in this chapter we discuss a derivation of logistic regression which
is motivated by building a classifier that approximates the optimum Bayes
classifier (see chapter 2). A more general derivation of logistic regression
which is more directly related to linear regression is mentioned in the outlook
of this chapter.

5.1. Modeling

We model logistic regression as a particular instance of the Bayes classifier
(see chapter 2). Recall from the definition of the Bayes classifier 2.2, that we
need to define/approximate P (Y = 1 | ~x). If we would know the true condi-
tional distribution we would use it and obtain the optimum Bayes classifier
as discussed in section 2.1.

In logistic regression we model the conditional probability P (Y = 1 | ~x)
with the Bernoulli distribution.
Thus, we assume that for all data points (~x, y), ~x ∈ X , y ∈ Y and P (Y =
1 | ~x) = Ber(Y = 1 | p) holds or at least that is is an appropriate assump-
tion1. Furthermore, we assume that all data points are independent from
each other2. This means that no data point affects any other data point. Be-

1Note: This is a crucial assumption. If this assumption is wrong it might break the
model!

2Note: This is another crucial assumption! There exists cases where the independence
assumption does not hold - e.g. time series where one point in time is affected by the

85

CHAPTER 5. LOGISTIC REGRESSION 86

cause of this independence assumption we do not have to work on the joint
probability of all points but we can directly work on the individual probabil-
ities of each data point. This will make the math a lot easier.
In plain English: We assume that all data points are independent identically
distributed (i.i.d) according to the Bernoulli distribution..

Furthermore, we assume that the parameter p of the Bernoulli distribution
is not fixed but rather depends on ~x. Hence, p can be different for different
~x. We write P (y = 1 | ~x) = Ber(y = 1 | p~x).
In logistic regression we estimate p~x by using linear regression

p~x = sgd(~w>~x) (5.1)

where sgd is the sigmoid function 5.2, which is a special case of the logistic
function, and ~w ∈ Rd is the weight vector in the linear regression.

sgd(u) =
1

1 + exp(−u)
(5.2)

Note: We apply the sigmoid function to make sure that the result of ~w>~x is
a valid probability.
This is the reason why the model is called logistic regression. We use linear
regression and a logistic function, namely the sigmoid function, to estimate
p~x.
Since p~x is the probability for y = 1 given ~x, we can write

P (Y = 1 | ~x, ~w) = p~x = sgd(~w>~x) (5.3)

With the previous definitions & assumptions we can estimate the classifica-
tion rule of the Bayes classifier 2.2 as

h(~x) =

{
1 if P (Y = 1 | ~x, ~w) = sgd(~w>~x) > t

0 otherwise
(5.4)

The next issue is to find ~w. We use the maximum likelihood approach (see
section B.13.2) to estimate ~w.
Remember that the likelihood enables us to measure how good a given model
parameter θ is. In the case of logistic regression the model parameter is ~w

previous one.

87 5.1. MODELING

(θ becomes ~w). Therefore, we can write down the (conditional) likelihood
(see B.117) for logistic regression as

LD(~w) =
∏
i

P (yi | ~xi, ~w)

=
∏
i

Ber(Y = yi | p~xi)

=
∏
i

pyi~xi (1− p~xi)
1−yi

(5.5)

where we assume that ~xi is always known - remember that our goal is to build
a model which takes ~x as an input and maps it to an output y - so that we
can treat ~xi as a parameter and we are left with the conditional distribution
P (yi | ~xi, ~w) only.
Note that the term pyi~xi(1− p~xi)

1−yi is exactly p~xi if yi = 1 and exactly 1− p~xi
if yi = 0.
Next, we plug 5.5 into the definition of the negative-log-likelihood B.120.

NLLD(~w) = − log
(

LD(~w)
)

= − log

(∏
i

pyi~xi(1− p~xi)
1−yi

)
= −

∑
i

log
(
pyi~xi(1− p~xi)

1−yi
)

= −
∑
i

yi log (p~xi) + (1− yi) log (1− p~xi)

= −
∑
i

yi log
(
sgd(~w>~xi)

)
+ (1− yi) log

(
1− sgd(~w>~xi)

)
(5.6)

In B.124, we defined the finding of the parameter θ as an optimization prob-
lem. If we plug 5.6 into B.124, we obtain the maximum likelihood estimator
(see section B.13.2) for estimating ~w.

~w = arg min
~w∈Rd

(
NLLD(~w)

)
= arg min

~w∈Rd

(
−
∑
i

yi log
(
sgd(~w>~xi)

)
+ (1− yi) log

(
1− sgd(~w>~xi)

))
(5.7)

Note: 5.6 is also called cross entropy - see section 5.1.1 for details on cross
entropy and its relation to information theory.

CHAPTER 5. LOGISTIC REGRESSION 88

5.1.1. Cross entropy and information theory

From section B.10 we know that the cross entropy of two discrete probability
distributions PY and PŶ is given by

H(PY , PŶ) = −
∑
i

PY (xi) log
(
PŶ (xi)

)
= H(PY) + DKL(PY ‖PŶ) (5.8)

We observe that 5.8 is equivalent to the negative log-likelihood 5.6 if we set

PY (xi) = yi

PŶ (xi) = sgd(~w>~xi)

xi ∈ Rd, yi ∈ {0, 1} ∀ i
(5.9)

Because the labels yi of the data are fixed, the entropy of the label distribution
H(PY) is a constant and can be ignored when minimizing the cross entropy.
Thus

arg min
~w∈Rd

NLLD(~w)⇔ arg min
~w∈Rd

H(PY , PŶ)⇔ arg min
~w∈Rd

DKL(PY , PŶ) (5.10)

where PŶ depends on ~w.

Therefore, we can interpret minimizing the negative log-likelihood as mini-
mizing the Kullback-Leibler divergence3 of the true labels and the predictions
of logistic regression.
In plain English: We assume that there exists a probability distribution
which assigns either 1 or 0 to each possible data point ~x ∈ Rd. We do not
know this distribution but we observed some samples D = {(~xi, yi)} from
it. We use these samples D to construct an approximation PY of the true
distribution. We then try to build a model/distribution PŶ which approxi-
mates/reproduces the distribution PY by assigning a probability sgd(~w>~xi)
to each observed data point ~xi ∈ Rd. Our goal is to make PŶ as similar as
possible to PY , where we measure the ”distance”/”similarity” between the
two distributions with the Kullback-Leibler divergence.

5.1.2. Convexity

Theorem 7 (The loss function in logistic regression is a convex function).
Minimizing the loss function in logistic regression (as stated in 5.7) is a
convex optimization problem.

3recall that the Kullback-Leibler divergence is a measure for the distance/dissimilarity
of two probability distributions, although it is not a proper metric!

89 5.1. MODELING

Proof. From section A.2.2 we know that the sum of convex functions is again
convex. Therefore, it is sufficient to show convexity of the two functions

− yi log
(
sgd(~w>~xi)

)
and

− (1− yi) log
(
1− sgd(~w>~xi)

) (5.11)

Because of
yi, (1− yi) ∈ {0, 1} ∀ i (5.12)

we only have to show convexity of

− log
(
sgd(~w>~xi)

)
and

− log
(
1− sgd(~w>~xi)

) (5.13)

Next, we simplify the two terms:

− log
(
1− sgd(~w>~xi)

)
= − log

(
1− 1

1 + exp(−~w>~xi)

)
= − log

(
exp(−~w>~xi)

1 + exp(−~w>~xi)

)
= − log

(
exp(−~w>~xi)

)
+ log

(
1 + exp(−~w>~xi)

)
= ~w>~xi + log

(
1 + exp(−~w>~xi)

)
(5.14)

− log
(
sgd(~w>~xi)

)
= − log

(
1

1 + exp(~w>~xi)

)
= − log(1) + log

(
1 + exp(−~w>~xi)

)
= log

(
1 + exp(−~w>~xi)

) (5.15)

From A.2.3, we know that

− log(x) ∀x > 0 (5.16)

is a non decreasing convex function and

−~w>~x ∀ ~w, ~x ∈ Rd (5.17)

is a convex function in ~w.
Because the sum of convex functions is again convex, it is sufficient to show
that

− log
(
1 + exp(−~w>~xi)

)
(5.18)

CHAPTER 5. LOGISTIC REGRESSION 90

is a convex function in ~w.
Because of 5.16 and the chain rule for non decreasing convex functions, we
only have to prove that

1 + exp(−~w>~xi) (5.19)

is a convex function in ~w, since it always holds that 1 + exp(−~w>~xi) > 0.
Because the sum of convex functions is a convex function and because of A.2.3,
we know that 5.19 is indeed a convex function.

We conclude that − log
(
sgd(~w>~xi)

)
and − log

(
1− sgd(~w>~xi)

)
are convex

functions.

Because ~w ∈ Rd and Rd is known to be a convex set, we conclude that 5.7 is
a convex optimization problem.

5.2. Optimization

The next step in computing ~w is to solve the optimization problem 5.7.
In the previous section we proved that 5.7 is a convex optimization problem,
which allows us to use our toolkit for tackling convex optimization problems
(see section A.3).

However, the analytical way of finding the minimum of NLLD(~w) by com-
puting the first derivative ∇~wNLLD(~w) setting it to 0 and solve for ~w (e.g.
∇~wNLLD(~w) = 0⇔ ~w = . . .) is not possible in logistic regression.
In plain English: There is no closed form solution in logistic regression!
Instead we have to use an iterative algorithm to solve 5.7. We use the gra-
dient descent algorithm4(see section A.3.2), which iteratively computes the
optimum of a function by using the gradient of the function. Therefore, we
need to compute the gradient of 5.6 with respect to ~w.

∇~wNLLD(~w) = ∇~w

(
−
∑
i

yi log
(
sgd(~w>~xi)

)
+ (1− yi) log

(
1− sgd(~w>~xi)

))
= −

∑
i

yi∇~w log
(
sgd(~w>~xi)

)
+ (1− yi)∇~w log

(
1− sgd(~w>~xi)

)
= −

∑
i

yi
1

sgd(~w>~xi)
∇~w sgd(~w>~xi) + (1− yi)

1

1− sgd(~w>~xi)

4Note that this is not the only algorithm we could use.
There exist other and more sophisticated algorithms for solving this kind of problem - see
section 5.2.1

91 5.2. OPTIMIZATION

∇~w

(
1− sgd(~w>~xi)

)
= −

∑
i

yi
1

sgd(~w>~xi)
sgd(~w>~xi)

(
1− sgd(~w>~xi)

)
∇~w ~w

>~xi+

(1− yi)
1

1− sgd(~w>~xi)

(
− sgd(~w>~xi)

) (
1− sgd(~w>~xi)

)
∇~w ~w

>~xi

= −
∑
i

yi
sgd(~w>~xi)

(
1− sgd(~w>~xi)

)
~xi

sgd(~w>~xi)
+ (1− yi)(

− sgd(~w>~xi)
) (

1− sgd(~w>~xi)
)
~xi

1− sgd(~w>~xi)

= −
∑
i

yi
(
1− sgd(~w>~xi)

)
~xi + (1− yi)

(
− sgd(~w>~xi)

)
~xi

= −
∑
i

yi~xi − yi sgd(~w>~xi)~xi − sgd(~w>~xi)~xi + yi sgd(~w>~xi)~xi

= −
∑
i

yi~xi − sgd(~w>~xi)~xi

=
∑
i

−yi~xi + sgd(~w>~xi)~xi

=
∑
i

sgd(~w>~xi)~xi − yi~xi

=
∑
i

(
sgd(~w>~xi)− yi

)
~xi (5.20)

where we made use of ∇u sgd(u) = sgd(u) (1− sgd(u)).
We can rewrite 5.20 in matrix-vector notation as

∇~wNLLD(~w) =
∑
i

(
sgd(~w>~xi)− yi

)
~xi

= X>(~σ − ~y)

= X>~σ −X>~y

(5.21)

where (~σ)i = sgd(~w>~xi), X =

(~x1)1 (~x1)2 · · · (~x1)d
(~x2)1 (~x2)2 · · · (~x2)d

...
...

. . .
...

(~xn)1 (~xn)2 · · · (~xn)d

5 and ~y = (y1, y2, . . . , yn)>.

Note that the expression X>~y is a constant, which can/should be precom-
puted because it does not depend on ~w.

5note that we could add a column of 1s for the hidden bias

CHAPTER 5. LOGISTIC REGRESSION 92

The gradient descent algorithm for iteratively computing ~w is described in
Algorithm 4. As discussed in section A.3.2, the algorithm needs the gradient,

Algorithm 4 Logistic regression - Gradient descent algorithm

1: ~w = ~0 . Initialize ~w
2: repeat
3: ~w = ~w − η∇~wNLLD(~w) . Update ~w
4: until convergence

the learning rate η and a convergence criterion.

5.2.1. 2. Order methods

First, we compute the second derivative (the hessian) of 5.6

(
∇2

~wNLLD
)
k,j

=
∂2NLLD

∂(~w)k ∂(~w)j

=
∂

∂(~w)j

∑
i

sgd(~w>~xi)(~xi)k − yi(~xi)k

=
∑
i

∂ sgd(~w>~xi)

∂ ~w>~xi

∂ ~w>~xi
∂(~w)j

(~xi)k

=
∑
i

sgd(~w>~xi)(1− sgd(~w>~xi))(~xi)j(~xi)k

(5.22)

Furthermore, we can rewrite 5.22 in matrix-vector notation as

∇2
~wNLLD = X>ΣX (5.23)

where Σ = diag
(

sgd(~w>~xi)(1− sgd(~w>~xi))
)

.

We can then use Newton’s method A.3.4 to iteratively compute the best ~w.
Newton’s method for logistic regression is described in Algorithm 5, where
again η is the step size.

Note: Usually, Newton’s method is not used in practice because constructing
and inverting the hessian might be computational expensive or impossible
(e.g. the hessian might not be invertible). Instead of Newton’s method,
Quasi-Newton methods like L-BFGS A.3.5.2 or more recent algorithms like
SAGA are used.

93 5.3. SEPARATING HYPERPLANE

Algorithm 5 Logistic regression - Newton’s method

1: ~w = ~0 . Initialize ~w
2: repeat
3: ~w = ~w − η(X>ΣX)−1∇~wNLLD(~w) . Update ~w
4: until convergence

5.3. Separating hyperplane

Because logistic regression is a linear classifier, the points are separated by a
hyperplane. For instance in Fig. 5.1 logistic regression is applied to a simple
2D data set. As we can see, we get a linear decision boundary - the data
points are separated by a line6. In Fig. 5.1 the probabilities are visualized,
too. Recall that the formula for classification 5.4 is given by

Figure 5.1: Fitted logistic regression model

6a line is the 2D case of a hyperplane

CHAPTER 5. LOGISTIC REGRESSION 94

h(~x) =

{
1 if P (Y = 1 | ~x, ~w) = sgd(~w>~x) > t

0 otherwise
(5.24)

−6 −4 −2 0 2 4 6
x

0.0

0.5

1.0

sg
d

(x
)

Sigmoid function

Figure 5.2: Sigmoid function

If we set the discrimination thresh-
old t = 0.5 we classify every ~x for
which ~w>~x > 0 as class 1 and oth-
erwise (~w>~x ≤ 0) as class 0. This is
the case because the sigmoid func-
tion (see Fig. 5.2) intersects the y
axis at 0.5.
If we set t = 0.5 and do not care
about probabilities/confidences but
about the classification result (0 or
1) only, we can rewrite the classifi-
cation rule 5.4 as

h(~x) =

{
1 if ~w>~x > 0

0 otherwise
(5.25)

In 5.25 the decision boundary is
given by the hyperplane orthogonal
to ~w. See Fig. 5.3 for a short outline on the mathematics of a hyperplane.

95
5.4. FEATURE TRANSFORMATION, REGULARIZATION &

KERNELIZATION

Figure 5.3: Classification with a hyperplane

5.4. Feature transformation, regularization &

kernelization

Because logistic regression is an instance of a general linear regression model,
all the extensions to linear regression like feature transformation, regular-
ization (L1 and L2), kernelization and even the Bayesian version of linear
regression can be carried over to logistic regression.

As discussed in section 4.4, feature transformation can be used on all models
by simply replacing all x by φ(x) where φ is some feature transformation.
We can think of it that we simply apply the feature transformation to the
input before feeding it to any model.

Like in linear regression, we can add a regularization term (see sections 4.5
and 4.8) to the cost function of logistic regression 5.7.
In the case of L2 regularization, the cost function 5.7 becomes

~w = arg min
~w∈Rd

NLLD(~w) + λ‖~w‖2
2 (5.26)

CHAPTER 5. LOGISTIC REGRESSION 96

where λ > 0 is the regularization strength.
Analogous for the L1 regularization (results in a sparse weight vector ~w)

~w = arg min
~w∈Rd

NLLD(~w) + λ
∑
j

|(~w)j| (5.27)

From the representer theorem7 we know that the weight vector ~w8 can be
written as a linear combinations of the inputs ~xi. Thus, ~w =

∑
i αi~xi for

some specific αi.
By making use of this linear combination and applying a feature transfor-
mation φ to the ~xi, we can obtain a kernelized version of logistic regression
which is called kernelized logistic regression (see exercise 4).

The Bayesian version of logistic regression is called Bayesian logistic regres-
sion, but in contrast to Bayesian linear regression it is always intractable
to solve exactly - recall that Bayesian linear regression was tractable if we
used the ”right” distributions. See [2] for more information about Bayesian
logistic regression including some useful approximation methods.

5.5. Outlook

Students with a background in statistics might already have heard about
logistic regression as an instance of the GLM (Generalized Linear Model). In
logistic regression we use the Bernoulli distribution because it is a natural
choice for modeling binary variables. However, if we have variables with
different constraints (e.g. positive numbers, integers, ...) we have to choose
a different distribution. For instance if our response variable is count data,
we might model it by using the poisson distribution which gives rise to the
poisson regression (see exercise 6). The derivation is exactly the same as
in logistic regression and should be accessible to you if you understood the
material of this chapter.

7e.g. see http://cs229.stanford.edu/extra-notes/representer-function.pdf
8in linear regression as well as in logistic regression and many other models which have

a special kind of loss function

http://cs229.stanford.edu/extra-notes/representer-function.pdf

97 5.6. EXERCISES

5.6. Exercises

1. Compute the gradient of logistic regression with L2 regularization.

∇~w

(
NLLD(~w) + λ‖~w‖2

2

)
= ... (5.28)

where λ > 0 is the regularization strength.

2. Let ~w and b be a fitted logistic regression model for the 2 dimensional
space (R2). From section 5.3 we know that logistic regression results
in a linear separation - meaning that the data points are separated by
a hyper plane. Rewrite the decision boundary for the given model as a
function f(x) = · · · where x ∈ R, such that the decision boundary/line
(2d version of hyperplane) is plotted by plotting f(x).
Hint: For all points ~x ∈ R2 on the decision boundary, it holds that
~w>~x+ b = 0.

3. Prove that the following cost function of logistic regression is equivalent
to the one defined in 5.7.∑

i

log
(
1 + exp(−yi ~w>~xi)

)
(5.29)

where yi ∈ Y = {−1, 1}.
Note: The label 0 is replaced by −1.

Hint: sgd(u) = 1
1+exp(−u)

= exp(u)
1+exp(u)

4. Derive a kernelized version of logistic regression.
Hint: Rewrite the weight vector ~w as a linear combination of the train-
ing points and apply a feature transformation to all ~x

5. Prove that the likelihood function in logistic regression

LD(~w) =
∏
i

sgd(~w>~xi)
yi(1− sgd(~w>~xi))

1−yi (5.30)

is not a convex function in ~w.

6. Poisson regression
The Poisson distribution9 is given by

P (y | λ) =
λy exp(−λ)

y!
(5.31)

9see https://en.wikipedia.org/wiki/Poisson_distribution

https://en.wikipedia.org/wiki/Poisson_distribution

CHAPTER 5. LOGISTIC REGRESSION 98

where y ∈ N and λ ∈ R+.
The Poisson distribution is characterized by the positive scalar λ and
is useful for modeling situations where the result/outcome are natural
numbers.

Poisson regression uses the Poisson distribution for modeling a re-
gression on the natural numbers N - Recall that we used the Normal
distribution for modeling a regression on the real numbers R, and the
Bernoulli distribution for modeling a regression on the numbers {0, 1}.
In plain English: We use the poisson regression for computing a regres-
sion f : X 7→ Y where X = Rd, Y = N.

Similar to logistic regression, we estimate the parameter λ by linear
regression. Because λ can not be negative, we use the exp function as
a link function. Thus

λ = exp(~w>~x) (5.32)

Write down the log-likelihood of poisson regression and compute its
gradient with respect to ~w.

Chapter 6

Tree based models

6.1. Decision trees

6.1.1. Model

A decision tree (also called classification tree) is a classifier which partitions
the data space into a set of non-overlapping rectangles {Rj} and a class
cj ∈ Y is assigned to each rectangle Rj. When we have to make a prediction
for a new input x, we compute the rectangle Rj in which the input x is located
and output the corresponding class cj. See Fig. 6.1.1 for an illustration.

Figure 6.1: Decision tree splits the data space into non-overlapping rectangles
and assigns a prediction to each rectangle

R0 R1

R2

R3

R4 R5

Figure 6.2: Data space is split into
non-overlapping rectangles

Figure 6.3: A prediction is assigned
to each rectangle

99

CHAPTER 6. TREE BASED MODELS 100

We can write down the classification rule of the decision tree classifier as

h(x) =
∑
j

cj1(x ∈ Rj) (6.1)

where j denotes the j-th rectangle Rj.

We can interpret a decision tree as a binary tree if we interpret the con-
struction/definition of the rectangles as a binary tree: Starting from the root
node, we recursively splitting the data space into non-overlapping rectangles
by splitting a variable. The term ”splitting a variable” means that we set a
threshold and put all data points that are below this threshold into the left
subtree and everything that is greater or equal to the threshold into the right
subtree. Every path from the root node to a leaf specifies a rectangle Rj.
See Fig. 6.4 for an illustration.

6.1.2. Fitting

Unfortunately, fitting/contructing an optimal decision tree is hard - the num-
ber of possible trees is exponential and we do not know any efficient strategy
for searching in the set of possible trees. Therefore, we use a heuristic for
constructing a decision tree.

There exist many different heuristics/algorithms for constructing decision
trees. However, most (or even all) algorithms use a greedy strategy for grow-
ing the tree. That is, we start at the root (no partition at all) and repeatedly
constructing child nodes by splitting a variables until some kind of stopping
criterion is fulfilled. A common stopping criterion is the depth of the tree.
To determine the variable to split on next, we compute for each variable the
split and select the variable (including the corresponding split) which min-
imizes an impurity measurement like entropy or gini impurity - in practice
it usually does not matter which impurity measurement is used, although
people sometimes prefer gini impurity over entropy because it is simpler to
compute (there is no log in gini impurity).

The entropy B.95 of a discrete probability distribution Y is defined as

H(Y) = −
∑
j

pj log(pj) (6.2)

where pj denotes the frequency of the j-th item and approximates P (Y = j).

101 6.1. DECISION TREES

The gini impurity of a discrete probability distribution is defined as

Gini(Y) = 1−
∑
j

pj (6.3)

where pj denotes the frequency of the j-th item and approximates P (Y = j).

Gini impurity and entropy a plotted in Fig. 6.7. Note that they both look
very similar and have the same maximum and minimum.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

V
a
lu
e

Gini

Entropy

Figure 6.7: Gini impurity vs. Entropy

CHAPTER 6. TREE BASED MODELS 102

The pseudocode for greedily fitting a decision tree is described in Algo-
rithm 6.

Algorithm 6 Greedily building a decision tree

Input: Data points D = {(xi, yi)} and a stopping criterion (e.g. maximum
depth)
Output: Decision tree with root node rootNode

1: rootNode = {left : None, right : None} . Initialize root node
2: splitNode(rootNode,D) . Build the tree.
3:

4: function splitNode(node,Dnode)
5: if stoppingCriterion(node,Dnode) then
6: node.prediction = majorityVote(Dnode) . Assign a prediction to

the leaf.
7: else
8: findMinImpuritySplit(Dnode) . Find feature to split on.
9: node.left, node.right,Dleft,Dright = split(node,D) . Split on this

feature.
10: splitNode(node.left,Dleft) . Recursively split the children.
11: splitNode(node.right,Dright)
12: end if
13: end function

There are many extensions to this procedure of greedily growing the tree.
A very common extension is pruning. In pruning we first greedily grow the
tree and afterwards remove some branches to reduce the comlexity of the
final tree - useful for generalization. There are many different strategies for
selecting ”not so important” branches which we then remove.

It turns out that decision trees are very sensitive to its depth. If the tree
is to deep, we overfit the training data while we underfit it if it is not deep
enough - see Fig. 6.9 and 6.1.2 for examples.

103 6.1. DECISION TREES

Figure 6.4: Decision tree applied to a data set

Figure 6.5: Decision boundary of the decision tree

X[0] <= 0.075
samples = 100

value = [50, 50]
class = Class 0

X[0] <= -0.48
samples = 48

value = [45, 3]
class = Class 0

True

X[1] <= 1.192
samples = 52

value = [5, 47]
class = Class 1

False

samples = 33
value = [33, 0]
class = Class 0

X[1] <= -0.019
samples = 15

value = [12, 3]
class = Class 0

samples = 3
value = [0, 3]
class = Class 1

samples = 12
value = [12, 0]
class = Class 0

samples = 40
value = [0, 40]
class = Class 1

X[0] <= 0.723
samples = 12
value = [5, 7]
class = Class 1

samples = 4
value = [4, 0]
class = Class 0

samples = 8
value = [1, 7]
class = Class 1

Figure 6.6: Decision tree as a binary tree

CHAPTER 6. TREE BASED MODELS 104

X[0] <= 0.075
gini = 0.5

samples = 100
value = [50, 50]
class = Class 0

X[0] <= -0.48
gini = 0.117
samples = 48

value = [45, 3]
class = Class 0

True

X[1] <= 1.192
gini = 0.174
samples = 52

value = [5, 47]
class = Class 1

False

gini = 0.0
samples = 33

value = [33, 0]
class = Class 0

X[1] <= -0.019
gini = 0.32

samples = 15
value = [12, 3]
class = Class 0

gini = 0.0
samples = 3

value = [0, 3]
class = Class 1

gini = 0.0
samples = 12

value = [12, 0]
class = Class 0

gini = 0.0
samples = 40

value = [0, 40]
class = Class 1

X[0] <= 0.723
gini = 0.486
samples = 12
value = [5, 7]
class = Class 1

gini = 0.0
samples = 4

value = [4, 0]
class = Class 0

gini = 0.219
samples = 8

value = [1, 7]
class = Class 1

Figure 6.8: Decision tree - binary tree with gini

105 6.1. DECISION TREES

Figure 6.9: Decision tree - underfitting ⇒ overfitting

CHAPTER 6. TREE BASED MODELS 106

Figure 6.10: Underfitting: max depth = 1

X[0] <= -0.015
gini = 0.5

samples = 200
value = [98, 102]

class = Class 1

gini = 0.296
samples = 105

value = [86, 19]
class = Class 0

True

gini = 0.221
samples = 95

value = [12, 83]
class = Class 1

False

Figure 6.11: max depth = 4

X[0] <= -0.015
gini = 0.5

samples = 200
value = [98, 102]

class = Class 1

X[1] <= -1.927
gini = 0.296

samples = 105
value = [86, 19]
class = Class 0

True

X[1] <= 0.52
gini = 0.221
samples = 95

value = [12, 83]
class = Class 1

False

X[1] <= -2.082
gini = 0.18

samples = 10
value = [1, 9]
class = Class 1

X[1] <= 0.456
gini = 0.188
samples = 95

value = [85, 10]
class = Class 0

gini = 0.0
samples = 7

value = [0, 7]
class = Class 1

X[1] <= -2.01
gini = 0.444
samples = 3

value = [1, 2]
class = Class 1

gini = 0.0
samples = 1

value = [1, 0]
class = Class 0

gini = 0.0
samples = 2

value = [0, 2]
class = Class 1

X[0] <= -1.003
gini = 0.029
samples = 68

value = [67, 1]
class = Class 0

X[1] <= 0.673
gini = 0.444
samples = 27

value = [18, 9]
class = Class 0

gini = 0.1
samples = 19

value = [18, 1]
class = Class 0

gini = 0.0
samples = 49

value = [49, 0]
class = Class 0

gini = 0.18
samples = 10
value = [1, 9]
class = Class 1

gini = 0.0
samples = 17

value = [17, 0]
class = Class 0

X[1] <= 0.091
gini = 0.348
samples = 49

value = [11, 38]
class = Class 1

X[1] <= 0.975
gini = 0.043
samples = 46

value = [1, 45]
class = Class 1

X[1] <= -0.515
gini = 0.236
samples = 44

value = [6, 38]
class = Class 1

gini = 0.0
samples = 5

value = [5, 0]
class = Class 0

gini = 0.069
samples = 28

value = [1, 27]
class = Class 1

gini = 0.43
samples = 16

value = [5, 11]
class = Class 1

gini = 0.0
samples = 40

value = [0, 40]
class = Class 1

X[0] <= 0.945
gini = 0.278
samples = 6

value = [1, 5]
class = Class 1

gini = 0.0
samples = 1

value = [1, 0]
class = Class 0

gini = 0.0
samples = 5

value = [0, 5]
class = Class 1

Figure 6.12: Overfitting: max depth = 8

X[0] <= -0.015
gini = 0.5

samples = 200
value = [98, 102]

class = Class 1

X[1] <= -1.927
gini = 0.296

samples = 105
value = [86, 19]
class = Class 0

True

X[1] <= 0.52
gini = 0.221
samples = 95

value = [12, 83]
class = Class 1

False

X[1] <= -2.082
gini = 0.18

samples = 10
value = [1, 9]
class = Class 1

X[1] <= 0.456
gini = 0.188
samples = 95

value = [85, 10]
class = Class 0

gini = 0.0
samples = 7

value = [0, 7]
class = Class 1

X[1] <= -2.01
gini = 0.444
samples = 3

value = [1, 2]
class = Class 1

gini = 0.0
samples = 1

value = [1, 0]
class = Class 0

gini = 0.0
samples = 2

value = [0, 2]
class = Class 1

X[0] <= -1.003
gini = 0.029
samples = 68

value = [67, 1]
class = Class 0

X[1] <= 0.673
gini = 0.444
samples = 27

value = [18, 9]
class = Class 0

X[0] <= -1.018
gini = 0.1

samples = 19
value = [18, 1]
class = Class 0

gini = 0.0
samples = 49

value = [49, 0]
class = Class 0

gini = 0.0
samples = 18

value = [18, 0]
class = Class 0

gini = 0.0
samples = 1

value = [0, 1]
class = Class 1

X[1] <= 0.601
gini = 0.18

samples = 10
value = [1, 9]
class = Class 1

gini = 0.0
samples = 17

value = [17, 0]
class = Class 0

gini = 0.0
samples = 7

value = [0, 7]
class = Class 1

X[0] <= -0.434
gini = 0.444
samples = 3

value = [1, 2]
class = Class 1

gini = 0.0
samples = 1

value = [1, 0]
class = Class 0

gini = 0.0
samples = 2

value = [0, 2]
class = Class 1

X[1] <= 0.091
gini = 0.348
samples = 49

value = [11, 38]
class = Class 1

X[1] <= 0.975
gini = 0.043
samples = 46

value = [1, 45]
class = Class 1

X[1] <= -0.515
gini = 0.236
samples = 44

value = [6, 38]
class = Class 1

gini = 0.0
samples = 5

value = [5, 0]
class = Class 0

X[0] <= 1.32
gini = 0.069
samples = 28

value = [1, 27]
class = Class 1

X[0] <= 0.84
gini = 0.43

samples = 16
value = [5, 11]
class = Class 1

gini = 0.0
samples = 27

value = [0, 27]
class = Class 1

gini = 0.0
samples = 1

value = [1, 0]
class = Class 0

gini = 0.0
samples = 5

value = [5, 0]
class = Class 0

gini = 0.0
samples = 11

value = [0, 11]
class = Class 1

gini = 0.0
samples = 40

value = [0, 40]
class = Class 1

X[1] <= 0.982
gini = 0.278
samples = 6

value = [1, 5]
class = Class 1

gini = 0.0
samples = 1

value = [1, 0]
class = Class 0

gini = 0.0
samples = 5

value = [0, 5]
class = Class 1

107 6.2. REGRESSION TREES

6.2. Regression trees

A regression tree is the analogon of the decision tree for regression.
Like in the decision tree, the data space is partitioned into non-overlapping
rectangles which can be visualized/interpreted as a binary tree - like in the
decision tree, each node splits a variable. Similar to the decision tree, we
assign a constant output/prediction to each rectangle/leaf which results in a
step function for regression.
See Fig. 6.13 for an illustration of a regression tree.

6.2.1. Fitting

Fitting a regression tree is more or less the same as fitting a decision tree.
The only difference is the used impurity measuremnt and the way a predic-
tion is assigned to each leaf/rectangle.
Entropy and gini impurity are used in decision trees, whereas the mean
squared error is often used as an ”impurity measurement” in regression trees.
In regression trees we can compute the prediction of a leaf by avergaing the
output of all training samples assiged to this leaf.

An example of a regression tree, with the mean squared error as in impurity
measurement, is shown in Fig. 6.15.

X[0] <= 3.325
mse = 0.494

samples = 100
value = 0.164

X[0] <= 2.625
mse = 0.143
samples = 67
value = 0.592

True

X[0] <= 3.925
mse = 0.078
samples = 33
value = -0.706

False

X[0] <= 0.475
mse = 0.103
samples = 53
value = 0.712

X[0] <= 2.975
mse = 0.032
samples = 14
value = 0.139

mse = 0.044
samples = 10
value = 0.21

mse = 0.045
samples = 43
value = 0.829

mse = 0.03
samples = 7
value = 0.26

mse = 0.004
samples = 7

value = 0.018

X[0] <= 3.675
mse = 0.026
samples = 12
value = -0.395

X[0] <= 4.625
mse = 0.021
samples = 21
value = -0.883

mse = 0.016
samples = 7

value = -0.305

mse = 0.012
samples = 5

value = -0.521

mse = 0.022
samples = 14
value = -0.851

mse = 0.011
samples = 7

value = -0.948

Figure 6.15: Regression tree - binary tree with MSE

CHAPTER 6. TREE BASED MODELS 108

Figure 6.13: Regression tree applied to a data set

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

Noisy samples

True curve

Regression tree

Figure 6.14: Regression tree as a binary tree

X[0] <= 3.325
samples = 100
value = 0.164

X[0] <= 2.625
samples = 67
value = 0.592

True

X[0] <= 3.925
samples = 33
value = -0.706

False

X[0] <= 0.475
samples = 53
value = 0.712

X[0] <= 2.975
samples = 14
value = 0.139

samples = 10
value = 0.21

samples = 43
value = 0.829

samples = 7
value = 0.26

samples = 7
value = 0.018

X[0] <= 3.675
samples = 12
value = -0.395

X[0] <= 4.625
samples = 21

value = -0.883

samples = 7
value = -0.305

samples = 5
value = -0.521

samples = 14
value = -0.851

samples = 7
value = -0.948

Similar to decision trees, a regression tree is very sensitive to its depth. If
the tree is to deep, we obtain overfitting while we obtain underfitting if it is
not deep enough - see Fig. 6.16 and 6.2.1 for examples.

109 6.2. REGRESSION TREES

Figure 6.16: Regression tree - underfitting ⇒ overfitting

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

max_depth=1

Noisy samples

True curve

Regression tree

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

max_depth=2

Noisy samples

True curve

Regression tree

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

max_depth=3

Noisy samples

True curve

Regression tree

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

max_depth=4

Noisy samples

True curve

Regression tree

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

max_depth=6

Noisy samples

True curve

Regression tree

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

max_depth=8

Noisy samples

True curve

Regression tree

CHAPTER 6. TREE BASED MODELS 110

Figure 6.17: Underfitting: max depth = 1

X[0] <= 3.075
mse = 0.573

samples = 100
value = 0.168

mse = 0.133
samples = 62
value = 0.684

True

mse = 0.146
samples = 38
value = -0.674

False

Figure 6.18: max depth = 4
X[0] <= 3.075
mse = 0.573

samples = 100
value = 0.168

X[0] <= 0.575
mse = 0.133
samples = 62
value = 0.684

True

X[0] <= 4.125
mse = 0.146
samples = 38
value = -0.674

False

X[0] <= 0.275
mse = 0.067
samples = 12
value = 0.226

X[0] <= 2.425
mse = 0.086
samples = 50
value = 0.794

X[0] <= 0.075
mse = 0.019
samples = 6

value = 0.011

X[0] <= 0.325
mse = 0.022
samples = 6

value = 0.442

mse = 0.002
samples = 2

value = -0.096

mse = 0.019
samples = 4

value = 0.064

mse = 0.0
samples = 1

value = 0.561

mse = 0.023
samples = 5

value = 0.418

X[0] <= 0.925
mse = 0.025
samples = 37
value = 0.935

X[0] <= 2.725
mse = 0.042
samples = 13
value = 0.392

mse = 0.006
samples = 7

value = 0.792

mse = 0.023
samples = 30
value = 0.969

mse = 0.025
samples = 6

value = 0.532

mse = 0.026
samples = 7

value = 0.272

X[0] <= 3.525
mse = 0.058
samples = 21
value = -0.389

X[0] <= 4.725
mse = 0.029
samples = 17
value = -1.027

X[0] <= 3.275
mse = 0.018
samples = 9

value = -0.153

X[0] <= 3.775
mse = 0.015
samples = 12
value = -0.566

mse = 0.001
samples = 4

value = -0.025

mse = 0.009
samples = 5

value = -0.256

mse = 0.006
samples = 5

value = -0.473

mse = 0.011
samples = 7

value = -0.632

X[0] <= 4.675
mse = 0.024
samples = 12
value = -0.991

X[0] <= 4.775
mse = 0.029
samples = 5

value = -1.114

mse = 0.016
samples = 11
value = -1.02

mse = 0.0
samples = 1

value = -0.663

mse = 0.0
samples = 1
value = -1.34

mse = 0.02
samples = 4

value = -1.058

Figure 6.19: Overfitting: max depth = 8
X[0] <= 3.075
mse = 0.573

samples = 100
value = 0.168

X[0] <= 0.575
mse = 0.133
samples = 62
value = 0.684

True X[0] <= 4.125
mse = 0.146
samples = 38
value = -0.674

False

X[0] <= 0.275
mse = 0.067
samples = 12
value = 0.226

X[0] <= 2.425
mse = 0.086
samples = 50
value = 0.794

X[0] <= 0.075
mse = 0.019
samples = 6

value = 0.011

X[0] <= 0.325
mse = 0.022
samples = 6

value = 0.442

X[0] <= 0.025
mse = 0.002
samples = 2

value = -0.096

X[0] <= 0.125
mse = 0.019
samples = 4

value = 0.064

mse = 0.0
samples = 1

value = -0.047

mse = 0.0
samples = 1

value = -0.145

mse = 0.0
samples = 1
value = 0.28

X[0] <= 0.225
mse = 0.005
samples = 3

value = -0.008

X[0] <= 0.175
mse = 0.003
samples = 2

value = -0.049

mse = -0.0
samples = 1

value = 0.075

mse = 0.0
samples = 1

value = 0.001

mse = 0.0
samples = 1
value = -0.1

mse = 0.0
samples = 1

value = 0.561

X[0] <= 0.425
mse = 0.023
samples = 5

value = 0.418

X[0] <= 0.375
mse = 0.011
samples = 2

value = 0.322

X[0] <= 0.475
mse = 0.021
samples = 3

value = 0.482

mse = 0.0
samples = 1

value = 0.425

mse = -0.0
samples = 1

value = 0.218

mse = 0.0
samples = 1

value = 0.687

X[0] <= 0.525
mse = 0.0

samples = 2
value = 0.379

mse = 0.0
samples = 1
value = 0.38

mse = -0.0
samples = 1

value = 0.378

X[0] <= 0.925
mse = 0.025
samples = 37
value = 0.935

X[0] <= 2.725
mse = 0.042
samples = 13
value = 0.392

X[0] <= 0.625
mse = 0.006
samples = 7

value = 0.792

X[0] <= 1.825
mse = 0.023
samples = 30
value = 0.969

mse = 0.0
samples = 1

value = 0.665

X[0] <= 0.725
mse = 0.004
samples = 6

value = 0.813

X[0] <= 0.675
mse = 0.003
samples = 2

value = 0.894

X[0] <= 0.775
mse = 0.0

samples = 4
value = 0.772

mse = 0.0
samples = 1

value = 0.841

mse = 0.0
samples = 1

value = 0.948

mse = 0.0
samples = 1
value = 0.75

X[0] <= 0.875
mse = 0.0

samples = 3
value = 0.779

mse = 0.0
samples = 2

value = 0.775

mse = 0.0
samples = 1

value = 0.788

X[0] <= 1.325
mse = 0.013
samples = 18
value = 1.031

X[0] <= 2.325
mse = 0.024
samples = 12
value = 0.876

X[0] <= 1.125
mse = 0.008
samples = 8

value = 0.959

X[0] <= 1.525
mse = 0.009
samples = 10
value = 1.089

X[0] <= 1.075
mse = 0.006
samples = 4

value = 1.015

X[0] <= 1.175
mse = 0.004
samples = 4

value = 0.903

mse = 0.002
samples = 3

value = 0.976

mse = 0.0
samples = 1

value = 1.132

mse = 0.0
samples = 1
value = 0.83

mse = 0.003
samples = 3

value = 0.927

X[0] <= 1.475
mse = 0.005
samples = 4

value = 1.135

X[0] <= 1.575
mse = 0.01
samples = 6

value = 1.059

mse = 0.003
samples = 3

value = 1.103

mse = -0.0
samples = 1

value = 1.229

mse = 0.0
samples = 1

value = 0.868

mse = 0.003
samples = 5

value = 1.097

X[0] <= 2.225
mse = 0.022
samples = 10
value = 0.91

X[0] <= 2.375
mse = 0.0

samples = 2
value = 0.703

X[0] <= 2.175
mse = 0.013
samples = 8
value = 0.86

X[0] <= 2.275
mse = 0.005
samples = 2

value = 1.109

mse = 0.002
samples = 7

value = 0.901

mse = -0.0
samples = 1

value = 0.578

mse = 0.0
samples = 1

value = 1.042

mse = 0.0
samples = 1

value = 1.177

mse = 0.0
samples = 1

value = 0.694

mse = 0.0
samples = 1

value = 0.712

X[0] <= 2.525
mse = 0.025
samples = 6

value = 0.532

X[0] <= 2.875
mse = 0.026
samples = 7

value = 0.272

X[0] <= 2.475
mse = 0.012
samples = 2

value = 0.414

X[0] <= 2.625
mse = 0.02
samples = 4

value = 0.591

mse = 0.0
samples = 1

value = 0.525

mse = -0.0
samples = 1

value = 0.302

X[0] <= 2.575
mse = 0.007
samples = 2

value = 0.708

X[0] <= 2.675
mse = 0.006
samples = 2

value = 0.474

mse = 0.0
samples = 1

value = 0.791

mse = 0.0
samples = 1

value = 0.625

mse = 0.0
samples = 1

value = 0.394

mse = 0.0
samples = 1

value = 0.555

X[0] <= 2.825
mse = 0.046
samples = 3

value = 0.342

X[0] <= 2.975
mse = 0.005
samples = 4
value = 0.22

X[0] <= 2.775
mse = 0.0

samples = 2
value = 0.19

mse = 0.0
samples = 1

value = 0.646

mse = 0.0
samples = 1

value = 0.183

mse = 0.0
samples = 1

value = 0.197

X[0] <= 2.925
mse = 0.0

samples = 2
value = 0.172

X[0] <= 3.025
mse = 0.004
samples = 2

value = 0.269

mse = 0.0
samples = 1

value = 0.184

mse = 0.0
samples = 1

value = 0.159

mse = 0.0
samples = 1

value = 0.333

mse = -0.0
samples = 1

value = 0.204

X[0] <= 3.525
mse = 0.058
samples = 21
value = -0.389

X[0] <= 4.725
mse = 0.029
samples = 17
value = -1.027

X[0] <= 3.275
mse = 0.018
samples = 9

value = -0.153

X[0] <= 3.775
mse = 0.015
samples = 12
value = -0.566

X[0] <= 3.225
mse = 0.001
samples = 4

value = -0.025

X[0] <= 3.325
mse = 0.009
samples = 5

value = -0.256

X[0] <= 3.175
mse = 0.0

samples = 3
value = -0.037

mse = -0.0
samples = 1
value = 0.01

X[0] <= 3.125
mse = 0.0

samples = 2
value = -0.022

mse = 0.0
samples = 1

value = -0.066

mse = 0.0
samples = 1

value = -0.025

mse = 0.0
samples = 1

value = -0.018

mse = 0.0
samples = 1

value = -0.391

X[0] <= 3.425
mse = 0.005
samples = 4

value = -0.222

X[0] <= 3.375
mse = 0.0

samples = 2
value = -0.159

X[0] <= 3.475
mse = 0.002
samples = 2

value = -0.286

mse = 0.0
samples = 1

value = -0.153

mse = 0.0
samples = 1

value = -0.164

mse = 0.0
samples = 1

value = -0.241

mse = -0.0
samples = 1
value = -0.33

X[0] <= 3.725
mse = 0.006
samples = 5

value = -0.473

X[0] <= 3.875
mse = 0.011
samples = 7

value = -0.632

X[0] <= 3.675
mse = 0.001
samples = 4
value = -0.51

mse = 0.0
samples = 1

value = -0.325

X[0] <= 3.625
mse = 0.0

samples = 3
value = -0.492

mse = -0.0
samples = 1

value = -0.565

X[0] <= 3.575
mse = 0.0

samples = 2
value = -0.488

mse = -0.0
samples = 1
value = -0.5

mse = 0.0
samples = 1
value = -0.49

mse = -0.0
samples = 1

value = -0.486

X[0] <= 3.825
mse = 0.003
samples = 2
value = -0.74

X[0] <= 4.025
mse = 0.007
samples = 5

value = -0.589

mse = 0.0
samples = 1

value = -0.796

mse = 0.0
samples = 1

value = -0.684

X[0] <= 3.925
mse = 0.004
samples = 3

value = -0.531

X[0] <= 4.075
mse = 0.0

samples = 2
value = -0.676

mse = 0.0
samples = 1

value = -0.591

X[0] <= 3.975
mse = 0.003
samples = 2

value = -0.501

mse = 0.0
samples = 1

value = -0.447

mse = 0.0
samples = 1

value = -0.554

mse = 0.0
samples = 1

value = -0.682

mse = 0.0
samples = 1
value = -0.67

X[0] <= 4.675
mse = 0.024
samples = 12
value = -0.991

X[0] <= 4.775
mse = 0.029
samples = 5

value = -1.114

X[0] <= 4.475
mse = 0.016
samples = 11
value = -1.02

mse = 0.0
samples = 1

value = -0.663

X[0] <= 4.375
mse = 0.009
samples = 7

value = -0.971

X[0] <= 4.525
mse = 0.016
samples = 4

value = -1.106

X[0] <= 4.275
mse = 0.007
samples = 5

value = -1.005

X[0] <= 4.425
mse = 0.003
samples = 2

value = -0.888

X[0] <= 4.225
mse = 0.007
samples = 3

value = -0.963

X[0] <= 4.325
mse = 0.001
samples = 2

value = -1.068

mse = 0.002
samples = 2

value = -1.015

mse = -0.0
samples = 1

value = -0.859

mse = 0.0
samples = 1

value = -1.098

mse = 0.0
samples = 1

value = -1.037

mse = 0.0
samples = 1

value = -0.833

mse = 0.0
samples = 1

value = -0.943

mse = 0.0
samples = 1

value = -1.313

X[0] <= 4.625
mse = 0.003
samples = 3

value = -1.037

X[0] <= 4.575
mse = 0.0

samples = 2
value = -1.076

mse = 0.0
samples = 1
value = -0.96

mse = 0.0
samples = 1

value = -1.073

mse = 0.0
samples = 1

value = -1.079

mse = 0.0
samples = 1
value = -1.34

X[0] <= 4.825
mse = 0.02
samples = 4

value = -1.058

mse = 0.0
samples = 1

value = -0.915

X[0] <= 4.925
mse = 0.018
samples = 3

value = -1.105

X[0] <= 4.875
mse = 0.004
samples = 2

value = -1.192

mse = -0.0
samples = 1

value = -0.931

mse = 0.0
samples = 1

value = -1.257

mse = -0.0
samples = 1

value = -1.127

111 6.3. RANDOM FOREST

6.3. Random forest

The major problem with decision/regression trees is their variance. A deci-
sion tree can fit any decision boundary arbitrarily well but it is very sensitive
to changes in the data. A small change in the data can lead to a completely
different tree. By increasing the complexity of a tree (e.g. by increasing its
maximum depth), we increase the variance too. However, we need complex
(e.g. deep) trees in order to model complicated relationships. Therefore, we
are looking for a way to use complex/deep trees while reducing the variance
- this is what a random forest can do.

A random forest is an ensemble of decision trees - if have a regression prob-
lem, we simply replace the decision trees by regression trees.

Fitting a random forest is equivalent to fitting a sequence of decision trees.
But instead of always using the same data set, we use for each tree a differ-
ent bootstrapped data set (see section B.12). Furthermore, we only consider
a random subset of features when computing the next split in a tree. By
bootstrapping the data and considering a random subset of the features at
each split only, we reduce the variance of the final model.
The idea of fitting a sequence of models on bootstrapped data sets is also
called bootstrap aggregation (short bagging). The idea of selecting a random
subset of features is also called feature bagging or random subspace method.

The prediction of the random forest model is obtained by combining the
output of the trees in the forest.
If we use a random forest for classification, one way to combine the predic-
tions of the decision trees is to do a majority voting - select the class which
have been predicted the most.

f(x) = arg max
c∈Y

∑
j

1(fj(x) = c) (6.4)

where fj denotes the j-th decision tree.
An alternative to majority voting is to output a probability for each class,
where we could compute the probabilities based on the probabilities of the
decision trees or as the ratio of number of trees that predicted a specific class
to total number of trees in the forest.

p(Y = c | x) =

∑
j 1(fj(x) = c)

b
(6.5)

where b denotes the number of trees in the forest.
If we use a random forest for regression, we could simply average the predic-

CHAPTER 6. TREE BASED MODELS 112

tion of the regression trees.

f(x) =
1

b

∑
j

fj(x) (6.6)

where fj denotes the j-th regression tree.

A comparison of a random forest classifier and a single decision tree on a
toy data set is shown in Fig. 6.21. The single decision tree and the random
forest have the same maximum depth of 8. However, we can observe that
the decision boundary of the random forest (consists of 200 decision trees)
appears to be much more robust and plausible than the decision boundary
of the single decision tree.
Likewise, a comparison of a random forest regression and a regression tree
on a toy data set is shown in Fig. 6.23. The single regression tree and the
random forest have the same maximum depth of 6. However, similar to the
random forest classifier, we can observe that the regression curve of the ran-
dom forest (consists of 100 regression trees) appears to be much more robust
and plausible than the regression curve of the single regression tree.

6.3.1. Feature relevance

Random forest can be used for determining the relevance of features. In the
next two subsections we will take a look at two different methods for deter-
mining relevant features. However, note that different methods define the
term ”relevant features” differently. Therefore, it can happen that different
methods declare different features to be relevant.

6.3.1.1 Permutation importance

Permutation importance - also called Mean Decrease in Accuracy (MDA) -
measure the importance of a particular feature by computing the difference
in prediction between an original out-of-bag data set and the same out-of-bag
data set where this feature is permuted among all other data points in this set.

In order to determine the importance of the j-th feature, we determine the
importance of that feature in each tree. To do so, we collect all out-of-bag
samples for a particular tree1 and use this tree to compute a prediction and
the corresponding error (e.g. accuracy) of these out-of-bag samples. Then,

1the set of samples from the original training set that are not contained in the boot-
strapped data set for this particular tree

113 6.3. RANDOM FOREST

we randomly permute the j-th feature among the out-of-bag samples and
compute the predictions and error again. By permuting the feature values,
we destroy the correlation of the feature to the output and all other features
- you can think of it like putting ”nonesense” into this feature. Finally, we
compute the relevance of the j-th feature as the difference of the original
error and the error on the set where the feature is permuted. We average
this difference over alle trees and normalize it by dividing with the standard
deviation.

The pseudocode of this procedure is described in algorithm 7.

Algorithm 7 Permutation importance/Mean decrease in accuracy (MDA)

1: for all features j do . Compute relevance of each features
2: for all trees Ti do . Average over all trees in the forest
3: Doob = oob(D, Ti) . Out-of-bag data set for the current tree
4: scorei = error(Doob, Ti) . Compute out-of-bag error
5: Dπoob = permuteFeature(Doob, j) . Permute feature j
6: scoreπi = error(Dπoob, Ti) . Compute out-of-bag error with

permuted feature
7: scoreij = |scorei − scoreπi | . Compute difference in errors
8: end for

9: relevancej =
1
b

∑
i scoreij√∑

i(scoreij−scorej)2
. Compute the relevance of the j-th

feature
10: end for

6.3.1.2 Mean decrease in impurity

The mean decrease in impurity (MDI) method2 measure the relevance/im-
portance of the j-th feature by summing the decrease in impurity of each
node that splits on the j-th feature weighted by the proportion of samples
that are split3. This value is averaged over all trees in the random forest.

2as implemented in scikit-learn [11]
3measured on the training data set - approximates the probability of reaching this

particular node/split

CHAPTER 6. TREE BASED MODELS 114

Figure 6.20: Random forest classification vs. Decision tree

Figure 6.21: Decision tree

Figure 6.22: Random forest classification

115 6.3. RANDOM FOREST

Figure 6.23: Random forest regression vs. Regression tree

Figure 6.24: Regression tree

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

max_depth=6

Noisy samples

True curve

Regression tree

Figure 6.25: Random forest regression

−1 0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0

n_estimators=100, max_depth=6

Noisy samples

True curve

Random forest regression

CHAPTER 6. TREE BASED MODELS 116

6.4. Outlook

In this chapter we learned about tree based models. In particular, we learned
about decision/regression trees and random forest as an esemble of deci-
sion/regression trees.
A decision/regression tree partitions the space into non-overlapping rectan-
gles and assigns a prediction to each rectangle. We noticed that fitting/-
constructing a decision/regression tree is hard and that is why some kind of
heuristic is used - usually, we greedily grow a tree by recursively splitting on
features and after that is done, applying some kind of pruning to reduce the
complexity of the tree.
Because a single decision/regression tree is very sensitive to the training data
- which can cause overfitting, we introduced an ensemble of trees (called ran-
dom forest) that combines many trees to get a more robust model that is less
sensitive to noisy training samples.

There are many more tree models like GBRT (Gradient Boosting Regres-
sion Trees) and AdaBoost. If you want to know more, a good starting point
might be [16].

117 6.5. EXERCISES

6.5. Exercises

CHAPTER 6. TREE BASED MODELS 118

Chapter 7

Evaluation

7.1. Metrics

When building and fitting models, one major task is to compute the quality
of a model (e.g. determine how good a given model is). Usually we assess
the quality of a model by computing smth. called a metric. An evaluation
metric1 computes (often) a score which gives us a hint on how ”good” a
model is. ”Good” is smth. we need and actually will define. However,
there is no universal best measurement/metric because each metric focus on
slightly different aspects. Depending on the particular application we are
working on, we have to select a suitable metric.
In this chapter we look at a couple of metrics. Both for regression and
classification.

7.1.1. Regression

So far, we always used the sum of squared errors or the the sum of absolute
deviations for measuring and optimizing our regression models.
However, there exist many different ”measurement scores” for judging the
quality of a given regression model for a given data set. In the following we
give a short but not complete overview of the ”most important” ones.

1not to be confused with a distance metric

119

CHAPTER 7. EVALUATION 120

7.1.1.1 SSE/RSS/SSR

The Sum of Squared Errors (SSE), Residual Sum of Squares (RSS) and Sum
of Squared Residuals (SSR) are all the same and defined as∑

i

(yi − f(~xi))
2 (7.1)

where the expression yi − f(~xi) is called residual.

7.1.1.2 MSE

The Mean Squared Error (MSE) is just the SSE with an additional regular-
ization 1

n

MSE =
1

n

∑
i

(yi − f(~xi))
2 (7.2)

7.1.1.3 RMSE

The Root Mean Squared Error (RMSE) is just the square root of the MSE

RMSE =
√

MSE (7.3)

7.1.1.4 RMSLE

The Root Mean Squared Logarithmic Error (RMSLE) is a metric which allows
us to penalize over or under estimates.

RMSLE =

√∑
i

(log(yi)− log(f(~xi)))2 (7.4)

In 7.4 we penalize under estimates because log(yi) − log(f(~xi)) = log(yi
f(~xi)

)

becomes larger if f(~xi) is less than yi.
We can penalize over estimates by simply exchanging yi and f(~xi) in 7.4.

Attention: This formula only makes sense if f(~xi) and yi are always posi-
tive2.

2The logarithm of a negative number is a complex number which makes things difficult...

121 7.1. METRICS

7.1.1.5 R2 score

The R2 score tells us how much better than a simple mean predictor (thus
f(x) = y) a given regression model is.
In plain English: The R2 score tells us how much (in percentage) the error
reduces if we use the given regression model instead of a mean predictor.

The general formula for the R2 score (sometimes also called coefficient of
determination) is given by

R2 = 1−
∑

i(f(~xi)− yi)2∑
i(yi − y)2

(7.5)

where y is the mean of the given targets (i.e. y = 1
n

∑
i

yi).

If the regression function is calculated by minimizing the SSE, we can use an
equivalent formula (equivalent to 7.5) for the R2 score (in this special case
also called explained variance) which is given by

R2 =

∑
i(f(~xi)− y)2∑
i(yi − y)2

(7.6)

Note: The value of 7.6 is always in [0, 1] and can not be negative! But in the
general case the R2 can be negative which means that the regression function
performs worse than the mean predictor.

In Fig. 7.1 we can see an example of a positive and negative R2 score. As
we can see the mean predictor f(~x) = y would be a much better choice than
the blue regression curve which has a negative R2 score.

CHAPTER 7. EVALUATION 122

0 1 2 3 4 5
x

−1

0

1

2

3

4

5

6

7

f(
x
)

Data

Mean predictor
MSE minimizer (=0.78)R2

Stupid model (=-4.11)R2

Figure 7.1: Illustration of different R2 scores

7.1.2. Classification

Next, we look at some metrics - ignoring the likelihood and risk which we
already discussed in previous sections - for assessing the quality of a classifier.

Before we can discuss a couple of classification metrics, we first have to
define some terms.

1. P: Number of ”positive” labels

Formally: P =
∣∣∣{i | (xi, yi) ∈ D, yi = 1}

∣∣∣
2. N: Number of ”negative” labels

Formally: N =
∣∣∣{i | (xi, yi) ∈ D, yi = 0}

∣∣∣
3. TP: Number of true positives

Formally: TP =
∣∣∣{i | (xi, yi) ∈ D, h(xi) = yi = 1}

∣∣∣

123 7.1. METRICS

4. FP: Number of false positives

Formally: FP =
∣∣∣{i | (xi, yi) ∈ D, h(xi) = 1 6= yi}

∣∣∣
5. TN: Number of true negatives

Formally: TN =
∣∣∣{i | (xi, yi) ∈ D, h(xi) = yi = 0}

∣∣∣
6. FN: Number of false negatives

Formally: FN =
∣∣∣{i | (xi, yi) ∈ D, h(xi) = 0 6= yi}

∣∣∣
Note: In statistics FP and FN are also called type 1 error and type 2 error.

7.1.2.1 Confusion matrix

The confusion matrix (also called contingency table) is defined as

Table 7.1: Confusion matrix

Truth

P
re

d

1 0

1 TP FP

0 FN TN

7.1.2.2 Accuracy

A natural measurement for assessing the quality of a classifier is the accuracy
which is defined as

TP + TN

P + N
(7.7)

The accuracy computes the ratio of correct predictions to the total number
of predictions. At a first glance this might seem to be a good choice, how-
ever, there is one major problem with this metric - imbalanced data. The
term imbalanced data usually referes to the setting (data set) where one la-
bel occurs much more often than the other one. For instance consider a data
set where 90 data points are labeled as 1 and 10 data points are labeled as
0. Furthermore, assume that we use a very stupid classifier which always
predict 1 (thus h(x) = 1). When computing the accuracy of this classifier,
by using 7.7, we get a score of 0.9 which does not look that bad. Hence, a
high accuracy for imbalanced data sets does not necessarily indicate a model

CHAPTER 7. EVALUATION 124

that captures much of the inherent structure of the data.
Therefore, the accuracy is not always a reliable measurement of the perfor-
mance of a classifier.

7.1.2.3 Precision & Recall

The precision is defined as

Precision =
TP

TP + FP
(7.8)

and measures how ”precise” our classifier is (which explains its name). The
precision tells us how many of the items our classifier labeled with a 1 have
indeed the label 1.
Hint: The denominator is the sum of the first row in the confusion matrix.

The recall (also called true positive rate, hitrate or sensitivity) is defined
as

Recall =
TP

TP + FN
(7.9)

and measures how many of the ”relevant” items we got. The term relevant
refers to data points having the label 1.
Hint: The denominator is the sum of the first column in the confusion matrix.

We can imagine that it is sometimes better to have a high precision (e.g.
spam classification) and sometimes a having a high recall is important (e.g.
testing for diseases). Of course the best is to have a high precision and recall,
which leads us the the next metric.

7.1.2.4 F1 score

The F1 score is defined as

F1 = 2 · Precision ·Recall

Precision + Recall
= 2 ·

TP
TP + FP

· TP
TP + FN

TP
TP + FP

+ TP
TP + FN

(7.10)

and combines precision and recall by computing the harmonic mean of them.
This metrics might be a good choice if you want to optimize both, precision
and recall.

125 7.1. METRICS

7.1.2.5 False positive rate

The false positive rate is defined as

FPR =
FP

N
=

FP

FP + TN
(7.11)

and measures how many of the negative points where incorrectly labeled as
positives. The best value is 0 (no negative point have been classified as
positive one) and the worst value is 1 (all negative points have been classified
as positives).
Hint: The denominator is the sum of the second column in the confusion
matrix.

7.1.2.6 True negative rate

The true negative rate (also called specificity) is defined as

TNR =
TN

N
=

TN

TN + FP
(7.12)

and measures how many of the negative points where correctly labeled as
negative. The best value is 1 (all negative points where recognized as negative
points) and the worst value is 0 (all negative points where mislabeled as
positives).
Hint: The denominator is the sum of the second column in the confusion
matrix.

7.1.2.7 Receiver operating characteristic

From the previous sections we know the false positive rate and the true pos-
itive rate (also called recall). It might happen, that while optimizing one of
them the other becomes worse. Hence, it would be nice if we had a way of
combing them into a single measurement (like we did in the F1 score).
The receiver operating characteristic (short roc) measure how well a classifier
is maximizing the true positive rate and minimizing the false positive rate.
It does so by varying the discrimination threshold and computing for each
threshold the true positive rate and false positive rate.
We start with the two most extreme cases:
First, consider t = 0 which means we always predict class 1, if the probability
for class 1 is greater than 0. As a consequence we find that TPR = 1 and
FPR = 1. This point (pair of TPR and FPR) would occur in the upper right
corner of the roc-curve-plot.

CHAPTER 7. EVALUATION 126

The second case is t = 1 which implies that we always predict class 0 (again,
no matter what the input is, because no probability can be greater than 1).
It follows that TPR = 0 and FPR = 0. This point would be located in the
lower left corner of the roc-curve-plot.
By computing and plotting the points for the remaining thresholds we obtain
the roc-curve. The roc-curve is a monotonically increasing function which
starts in 0 (first extreme case) and goes to 1 (second extreme case).
See Fig.7.2 for an illustration of two roc curves (each curve belongs to a differ-
ent classifier). The higher/quicker the ”slope” of the curve is the better the

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

Model 1 - ROC curve (auc = 0.87)

Model 2 - ROC curve (auc = 0.79)

Random classifier - ROC curve (auc = 0.5)

Figure 7.2: Illustration of different roc curves

model performs. The perfect classifier ”jumps” to 1 immediately in the be-
ginning, since it always predicts the right class until the threshold becomes 1.

By looking at roc-curvs of multiple classifiers we, as a human being, can
easily tell which classifier ”is better”. Recall that the perfect classifier jumps
to TPR = 1 right in the beginning and stays there, no matter what thresh-
old we choose. However, looking at a plot can be problematic if we want

127 7.2. HOW TO ESTIMATE SCORES

to do some automatic evaluation. An alternative to ”looking at plots” is
to compute the area under the curve (AUC) of the roc-curve. As the name
suggests, the area under the curve is simply the area under the roc curve.
The perfect classifier has an AUC of 1, the random classifier an AUC of 0.5.
Thus, a higher AUC is better - 0.5 is the ”random” classifier which is often
considered as stupid baseline which we have to outperform.

7.2. How to estimate scores

Now that we know a lot of different metrics for evaluating a given model,
the remaining question is on what data should we compute it. It is obvious
that using the same data set, which we already used for training the model,
might not be the best idea3. Indeed, we will not get an unbiased estimate of
the score by using the same data set. Instead, we should use a new/different
data set called test set.

7.2.1. Train - Test split

Before we start training/fitting a model we randomly split the given data set
into two parts. A training set and a test set. See Fig. 7.3 for an illustraition.
As the name suggests, we use the training set to fit our model (i.e. learning/-
computing/estimating all parameters) and the test set is used for computing
the evaluation metric afterwards.

Note: Sometimes the data set is split into three parts: training, test and
validation set, where the validation set might be used for parameter tuning.

3because of overfitting 7.2.3

CHAPTER 7. EVALUATION 128

Data

Train Test

Figure 7.3: Illustration of a train-test split

This procedure is perfectly valid but when we only have a ”small” data set
available we run into problems. If our data set is small, our test set will be
even smaller. A small test set is problematic because it might no longer be
”representative”, thus our computed scores are still unbiased but more or less
useless because the test set is to small - we either might be lucky and having
all ”easy” points in our test set or the other way around or a mixture of both.
We can not increase the size of the test set because this would decrease the
size of the training set - training on a smaller training set is more difficult and
might even be impossible if the training set is no longer ”representative”. If
gathering more data is not possible we could/should switch to smth. called
cross validation.

7.2.2. Cross validation

Cross validation is a procedure/strategy for splitting the data into train and
test sets. In contrast to the train-test split strategy from sec. 7.2.1 it splits
the data into multiple train-test splits.
The procedure of cross validation is illustrated in Fig. 7.4.

7.2.3. Overfitting & Underfitting

The scenario, where our model has a very good score (e.g. low error) on
training set, but a very bad score (e.g. high error) on the test set, is called
overfitting. Usually overfitting indicates that our model is too complex. Viz.,
it has too many degrees of freedom and is able to capture the noise in the
training set. To avoid overfitting, we should switch to a less complex model
and/or add more training data (if possible).

129 7.2. HOW TO ESTIMATE SCORES

Data

Train

Train Test

Train

Train

Train

Train

Test

Test

Test

4x
 tr

ai
n-

te
st

 s
pl

its
Sp

lit
 in

to
 4

 p
ar

ts

Figure 7.4: Illustration of 4-fold cross validation

The other scenario, where our models has a very bad score on the training and
test set, is called underfitting. In this case our model is either not complex
enough (e.g. too few degrees of freedom) to capture the patterns in the data
set or our training set is not large enough. Therefore we should use a model
with more degrees of freedom.

CHAPTER 7. EVALUATION 130

7.3. Model selection

Occams razor 4 is an informal principle which states that we should prefer
the simple theory/hypothesis over a complicated theory if they both explain
something of our interest equally well.

In machine learning, the term ”simple model” usually referes to models with
low complexity - e.g. low number of parameters or degrees of freedom. That
is, if we have two models with an equal test score, we should select the model
with the lowest complexity.
For instance, consider that we have a polynomial regression model with de-
gree 3 and another polynomial regression model with degree 42. If both
models have roughly the same test score, we should select the polynomial
regression model with degree 3 because it is simpler in the sense that it has
less parameters.

7.4. Feature selection

The number of possible subsets of features grows exponential in the number
of features - if we have d features, there are 2d possible feature selections
(there are exactly two possibilities per feature: either the feature is selected
or not). Because testing all 2d possibilities is infeasible, we use some kind of
heuristic for finding a good subset of features. The problem of finding the
best subset of features is also called best feature subset selection problem.
We distinguish between three different types of feature selection methods:

1. Wrapper methods select features based on a model. For instance, re-
moving or adding a feature and checking whether the model perfor-
mance increases.

2. Filter methods select features without using a model. That is, features
are selected before putting them into any model.

3. Embedded methods are models with a build-in mechanism for feature
selection (e.g. lasso).

7.4.1. Wrapper methods

We can use random forests for feature selection (see section 6.3.1). In partic-
ular permutation importance 6.3.1.1 and mean decrease in impurity 6.3.1.2.

4see https://en.wikipedia.org/wiki/Occam’s_razor

https://en.wikipedia.org/wiki/Occam's_razor

131 7.4. FEATURE SELECTION

7.4.2. Filter methods

The f-score measures how well two sets of real numbers are separated. In the
context of classification, we can interpret this as the discriminative power of
a particular feature. The f-score of the j-th feature is defined as

Fj =

(
(~x)j

+
− (~x)j

)2

+
(

(~x)j
−
− (~x)j

)2

1
n+−1

∑
i

(
(~xi)

+
j − (~x)j

+
)2

+ 1
n−−1

∑
i

(
(~xi)

−
j − (~x)j

−)2 (7.13)

where (~x)j
+

denotes the mean of the j-th feature of all samples from the

first class and (~x)j
−

denotes the mean of the j-th feature of all samples from
the second class, n+ and n− denote the number of samples in the first and
second class and (~x)j denotes the mean of the j-th feature over all samples
(from both classes).
A large f-score means that the two sets are more apart from each other and
thus can be be better separated.
In case of regression, we can use Pearson’s correlation coefficient5 (sample
estimate of the correlation B.53) to compute the linear correlation of a par-
ticular feature and the output.

Another way for testing the correlation or dependency of a feature with the
output is to use mutal information B.10.3. In contrast to f-score or Pearson’s
correlation coefficient , mutal information is not limited to linear correlations.
However, mutal information can be difficult to estimate if we have have a
small data set of high dimensional data points.

7.4.3. Embedded methods

Lasso 4.8.1 is a regularization technique that leads to sparse weight vectors.
The term sparse means that ”many” entries in the weight vector are equal
to zero. All features having a zero entry in the weight vector a not used for
computing a prediction. Thus, lasso selects a subset of features - lasso can be
viewed as a convex relaxation of the best feature subset selection problem.
We can control the number of selcted features by varying the regularization
strength. If we want to include the grouping effect, we should combine lasso
with L2-regularization which yields the elasticnet-penalty 4.9.1.

5see https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

CHAPTER 7. EVALUATION 132

7.5. Exercises

Chapter 8

Dimensionality reduction

Dimensionality reduction is all about computing a low dimensional represen-
tation of a data set while maintaining as much ”information/structure” as
possible.
Dimensionality reduction might be applied to reduce the dimension of a data
set to make computation more efficient, stable or feasible - e.g. we usually
can not plot data with more than 3 dimensions.

8.1. PCA

Principle component analysis (PCA) computes a p dimensional represen-
tation of a given data set such that the transformed features are linearly
uncorrelated and the squared reconstruction error is minimized.

We assume that the centered data1 are ordered row wise in a matrix X ∈
Rn×d, we then define the PCA problem for computing a p dimensional ap-
proximation of the data X as

min
rank((XP)P>)=p,

P>P=I

‖X− (XP)P>‖2
F (8.1)

where we need to find the unknown projection matrix P.
Note: The PCA problem as stated in 8.1 is a non-convex optimization prob-
lem.

The PCA can be derived in two different ways, yielding the same result.
In the next two sections, we take a closer look at each derivation.

1all columns have zero mean

133

CHAPTER 8. DIMENSIONALITY REDUCTION 134

−4 −3 −2 −1 0 1 2 3
x

−2

−1

0

1

2

y

Data

1. Principal axis

2. Principal axis

Figure 8.1: Principal components of a 2d data set

8.1.1. Derivation - Reconstruction error

We assume that the data is given as a matrix X ∈ Rn×d. Furthermore we
assume that the data has zero mean (viz. 1

n

∑
i ~xi = ~0).

−3 −2 −1 0 1 2
x

−1.0

−0.5

0.0

0.5

1.0

y

Original data

Reconstructed data

Principal axis

Error

Figure 8.2: PCA - Reconstruction error

135 8.1. PCA

First, we consider the special case with one axis only - projecting the data
onto a line. We want to select an axis (normalized weight vector) such that
the reconstruction error is as small as possible (see Fig. 8.2 for an illustration).
Hence, we are trying to solve the following optimization problem

min
~w1 ∈Rd

1

n

∑
i

‖~xi − (~w>1 ~xi)~w1‖2
2

s.t. ~w>1 ~w1 = 1

(8.2)

In plain English: Find a line (weight vector ~w1), such that projecting a point
~xi onto the line and back again ((~w>1 ~xi)~w1) is as close as possible to the orig-
inal point.

Next, we take a look at the reconstruction error ‖~xi − (~w>1 ~xi)~w1‖2
2 and sim-

plify it

‖~xi − (~w>1 ~xi)~w1‖2
2 = (~xi − (~w>1 ~xi)~w1)>(~xi − (~w>1 ~xi)~w1)

= ~xi
>~xi − ~x>i (~w>1 ~xi)~w1 − ~w>1 (~x>i ~w1)~xi + ~w>1 (~xi

> ~w1)(~w>1 ~xi)~w1

= ~xi
>~xi − 2

(
~x>i (~w>1 ~xi)~w1

)
+ (~xi

> ~w1)(~w>1 ~xi)

= ~xi
>~xi − 2(~w>1 ~xi)

2 + (~w>1 ~xi)
2

= ~xi
>~xi − (~w>1 ~xi)

2

(8.3)

By making use of 8.3 we can rewrite 8.2 as

min
~w1 ∈Rd

1

n

∑
i

||~xi − (~w>1 ~xi)~w1||22 s.t. ~w>1 ~w1 = 1

⇔ min
~w1 ∈Rd

1

n

∑
i

~xi
>~xi − (~w>1 ~xi)

2 s.t. ~w>1 ~w1 = 1

⇔ max
~w1 ∈Rd

1

n

∑
i

(~w>1 ~xi)
2 s.t. ~w>1 ~w1 = 1

(8.4)

From probability theory (see chapter B) we know that the following is true

E[X2] = E[X]2 + Var[X] (8.5)

If X has zero mean, 8.5 can be rewritten as

E[X2] = Var[X] (8.6)

CHAPTER 8. DIMENSIONALITY REDUCTION 136

The same (8.5, 8.6) is true for the empirical version 2 of 8.5 and 8.6.

Because we assumed that the data has zero mean, it holds that

1

n

∑
i

~w>1 ~xi = ~w>1
1

n

∑
i

~xi

= 0

(8.7)

Because of 8.7, we can make use of 8.6 and observe that 8.4 is equivalent
to maximizing the variance of the projection. Thus, with a slight abuse of
notation, we can rewrite 8.2 as

max
~w1 ∈Rd

Var[~w>1 ~xi] s.t. ~w>1 ~w1 = 1 (8.8)

Next, we rewrite the function from 8.4 in matrix vector notation

1

n

∑
i

(~w>1 ~xi)
2 =

1

n
(X~w1)>(X~w1)

=
1

n
~w>1 X>X~w1

= ~w>1 (
1

n
X>X)~w1

= ~w>1 SX ~w1

(8.9)

where SX = 1
n
X>X is the empirical covariance matrix of X. Note that the

matrix SX ∈ Rd×d is symmetric.
Finally, we arrive at the final optimization problem

max
~w1∈Rd

~w>1 SX ~w1 s.t. ~w>1 ~w1 = 1 (8.10)

We solve 8.10 by introducing a Lagrange multiplier λ for the constraint
~w>1 ~w1 = 1.

max
~w1 ∈Rd,λ∈R

L(~w1, λ) = ~w>1 SX ~w1 − λ(~w>1 ~w1 − 1) (8.11)

From the optimality conditions we find that

∂L
∂λ

= 0

⇔ −~w>1 ~w1 + 1 = 0

⇔ ~w>1 ~w1 = 1

(8.12)

2the expectation is replaced by an average - see law of large numbers B.8

137 8.1. PCA

and

∇~w1L = ~0

⇔ 2SX ~w1 − 2λ~w1 = ~0

⇔ SX ~w1 = λ~w1

(8.13)

We observe that 8.13 is the eigen-vector/value equation for the matrix SX.
Therefore we have to choose an eigenvector of SX with unit length (because of
8.12). Luckily, linear algebra tells us that all eigenvectors of a real-symmetric
matrix (like SX) are orthonormal. But which one should we pick?
We want to pick the eigenvector ~w1 which maximizes ~w>1 SX ~w1. By making
use of 8.13 we find that

~w>1 SX ~w1 = ~w>1 (λ~w1)

= λ~w>1 ~w1

= λ

(8.14)

Therefore we should select the eigenvector ~w1 with the largest eigenvalue
λ. Furthermore we notice that the variance, remember that our goal was
to maximize the variance - keep as much ”information” as possible, of the
projection is equal to the eigenvalue of the used eigenvector. Thus

Var[~w>1 ~xi] = λ (8.15)

Now that we know how to compute the first principal axis, we want to com-
pute the second axis too.
As with the first axis, we want to find a projection, such that the recon-
struction error is minimized. In addition, we also want this second axis to
be orthogonal to the first axis. If we do the same derivation like we did in
first case, we obtain the following optimization problem

max
~w2 ∈Rd

~w>2 SX ~w2 s.t. ~w>2 ~w2 = 1 , ~w>2 ~w1 = 0 (8.16)

Note the similarity with 8.10. Next, we introduce Lagrange multipliers λ1

and λ2 for the constraints and obtain

max
~w2 ∈Rd,
λ1,λ2 ∈R

L(~w2, λ1, λ2) = ~w>2 SX ~w2 − λ1(~w>2 ~w2 − 1)− λ2 ~w
>
2 ~w1 (8.17)

The optimiality conditions yield

∂L
∂λ1

= 0

⇔ ~w>2 ~w2 = 1

(8.18)

CHAPTER 8. DIMENSIONALITY REDUCTION 138

∂L
∂λ2

= 0

⇔ ~w>2 ~w1 = 0

(8.19)

and

∇~w2L = ~0

⇔ 2SX ~w2 − 2λ1 ~w2 − λ2 ~w1 = ~0

⇔ SX ~w2 = λ1 ~w2 +
λ2

2
~w1

(8.20)

Note that 8.20 looks like an eigenvector/value equation with the additional
term λ2

2
~w1. Next, we prove that it must be the case that λ2 = 0.

Claim: The λ2 in 8.20 must be equal to 0.
Proof: We multiply 8.20 by ~w>1 and simplify the resulting expression

~w>1 SX ~w2 − λ1 ~w
>
1 ~w2 −

λ2

2
~w>1 ~w1 = 0

(SX ~w1)> ~w2 −
λ2

2
= 0

λ1 ~w
>
1 ~w2 −

λ2

2
= 0

−λ2

2
= 0

(8.21)

The only value of λ2, for which 8.21 is true, is λ2 = 0.
Therefore 8.20 becomes

SX ~w2 = λ1 ~w2 (8.22)

Hence, we have to select the eigenvector ~w2 with the snd-largest eigenvalue -
we can not take the one with the largest eigenvalue, because this is already
~w1 and clearly ~w1 is not orthogonal to itself.

Finally, we can generalize the previous cases to compute the k-th princi-
pal axis. The optimization problem for the k-th axis can be stated as follows

max
~wk ∈Rd,

λ1,...,λk ∈R

L(~wk, λ1, ..., λk) = ~w>k SX ~wk − λ1(~w>k ~wk − 1)−
k−1∑
i=2

λi ~w
>
k ~wi (8.23)

The optimality conditions yield

∂L
∂λ1

= 0

⇔ ~w>k ~wk = 1

(8.24)

139 8.1. PCA

∂L
∂λi

= 0

⇔ ~w>k ~wi = 0

(8.25)

and

∇~wk
L = ~0

⇔ 2SX ~wk − 2λ1 ~wk −
k−1∑
i=2

λi ~wi = ~0

⇔ SX ~wk = λ1 ~wk +
k−1∑
i=2

λi
2
~wi

(8.26)

By using the same argument which we used for the snd-axis, we can show
that λ2 = ... = λk = 0 - we multiply 8.26 by ~w>1 and observe that λ2 = 0, we
multiply 8.26 by ~w2 and observe that λ3 = 0,
We conclude that the k-th principal component is the eigenvector of SX with
the k-th largest eigenvalue.

When computing a dimensionality reduction, we do not use all d eigenvec-
tors but only p < d with the largest eigenvalues. Because we know that the
variance is equal to the eigenvalue, we can compute the amount/fraction of
captured variance as follows ∑p

i λi∑d
i λi

(8.27)

where we made use of the linearity of the variance when the variables (axis)
are uncorrelated, which is true in our case, because of the orthogonality con-
straints.

We can construct the projection matrix P in 8.1 by horizontally concate-
nating the principal axis ~wj. Thus

P = (~w1, · · · , ~wp) (8.28)

8.1.2. Derivation - Diagonal covariance matrix

Our goal is to find a projection matrix P such that the (empirical) covariance
matrix of the transformed data is a diagonal matrix - we want the features
of the transformed data to be uncorrelated. We require that all basis vectors

CHAPTER 8. DIMENSIONALITY REDUCTION 140

(columns of P) are orthonormal.
The transformed data X′ is denoted by

X′ = XP (8.29)

The (empirical) covariance matrix of the transformed data SX′ is denoted by

SX′ =
1

n
X′
>
X′ (8.30)

where sometimes 1
n

is replaced by 1
n−1

, for the purpose of getting an unbiased
estimator of the covariance.
Recall that our goal is to have a diagonal covariance matrix for the trans-
formed data

SX′ = diag(αi) (8.31)

Because the projection matrix P is required to be orthonormal, we know that

P>P = PP> = I and ‖~pi‖2 = 1 ∀ i (8.32)

Working on 8.30 yields

SX′ =
1

n
X′
>
X′

=
1

n
(XP)>XP

=
1

n
P>X>XP

=
1

n
P>X̃P

(8.33)

where X̃ = X>X. Note that X̃ is a real symmetric matrix.

From linear algebra3 we know that a real symmetric matrix can be diag-
onalized by

X̃ = P diag(λi)P
> (8.34)

where the columns of P are the eigenvectors of X̃ and λi are the correspond-
ing eigenvalues. Note that the eigenvectors of a real symmetric matrix are
orthonormal - they are orthogonal to each other and have unit length. There-
fore our definition/choice of P satisfies 8.32.

3see https://en.wikipedia.org/wiki/Diagonalizable_matrix

https://en.wikipedia.org/wiki/Diagonalizable_matrix

141 8.2. KERNELIZED PCA

Next, we verify that the covariance matrix of the transformed data is a di-
agonal matrix.

SX′ =
1

N
P>X̃P

=
1

N
P>P diag(λi)P

>P

=
1

N
diag(λi)

(8.35)

We conclude that the projection matrix with the basis vectors equal to the
eigenvectors of the (empirical) covariance matrix, results in a diagonal co-
variance matrix of the transformed data.
Because the diagonal entries of the covariance matrix are describing the vari-
ance captured by the corresponding basis vector, and are equal to the scaled
(by 1

n
) eigenvalues, we simply have to select the p eigenvectors of the p largest

eigenvalues if we have to reduce the dimension from d to p.

8.2. Kernelized PCA

PCA can do linear dimensionality reduction only. In order to be able to
do non-linear dimensionality reductions, we extend PCA with kernels and
obtain kernelized PCA (also called kernel PCA - KPCA) [13].
The derivation of kernelized PCA is analog to PCA except that we replace
all xi by φ(xi), where φ denotes the feature mapping of the kernel k, and
all dot products φ(xi)

>φ(xj) by k(xi, xj). After rearranging some terms4, we
obtain the following eigenvector/value problem

K~αk = λkn ~αk (8.36)

where K denotes the Gram matrix of the training data (we assume that we
have n data points) and ~αk ∈ Rn is the coefficient vector of the k-th principal
component.
We can compute the projection of a data point x on k-th principal component
as ∑

i

(~αk)i k(x, xi) (8.37)

We can use kernelized PCA on any domain we like, as long as we can define a
meaningful kernel in this domain. Furthermore, the dimensionality reduction
always yields real-valued vectors, no matter what the original data domain
is.

4see [13]

CHAPTER 8. DIMENSIONALITY REDUCTION 142

8.3. Outlook

In this chapter we learned about dimensionality reduction, in particular
about PCA (Principle Component Analysis).
PCA finds orthogonal axes with maximum variance along them. Although
PCA is a non-convex problem, we were able to show that it is equivalent to
computing the eigenvectors and values of a matrix. Next, we briefly discussed
kernelized PCA which allows PCA to find non-linear relations by using ker-
nels.

Besides PCA, there exist many other dimensionality reduction techniques
like autoencoders, NMF5, t-SNE6, ICA7 and UMAP8.

5Non-negative Matrix Factorization
6t-distributed stochastic neighbor embedding
7Independent Component Analysis
8Uniform Manifold Approximation and Projection

143 8.4. EXERCISES

8.4. Exercises

1. Covariance measures the linear relationship only.
We assume that we have two random variables X and Y = X2 where
X ∼ U(δ,−δ). Compute the covariance Cov(X, Y) between X and Y .

CHAPTER 8. DIMENSIONALITY REDUCTION 144

Chapter 9

Clustering

Clustering is all about finding groups (also called clusters) of ”similar” items.
The requirement for a ”good” partition into clusters is often described by the
Good Clustering Principle[6]: ”Every pair of points from the same cluster
should be closer to each other than any pair of points from different clus-
ters”.
Issues in clustering include the measurement of proximity and the shape and
number of clusters to compute.

In this chapter we talk about three different models/algorithms for com-
puting clusters - including different types of clusters.

9.1. K-means

The k-means clustering problem is given by

min
{ci},{~ck}

∑
k

∑
i:ci=k

‖~xi − ~ck‖2
2 (9.1)

The assignment of a data point ~xi to a cluster is stored in ci. The center of
the k-th cluster is denoted by ~ck. The number of clusters is a hyperparameter
and denoted by k.
Note: Because of 9.1, all clusters will be shaped like a Voronoi cell1.

The k-means algorithm (also called Lloyd algorithm) computes a approxi-
mately solution of 9.1 and is described in Algorithm 8.

Note: The k-means problem 9.1 is known to NP-hard (if k > 1).

1https://en.wikipedia.org/wiki/Voronoi_diagram

145

https://en.wikipedia.org/wiki/Voronoi_diagram

CHAPTER 9. CLUSTERING 146

The algorithm 8 computes a local optimum only. We might want to run the
algorithm multiple times and select the best result.

Algorithm 8 K-means clustering algorithm

Input: Data points D = {~xi}, Number of clusters k
Output: Cluster centers {~ck} and cluster assignments {ci}

1: Init ~ck (e.g. random, samples from D, ...)
2: while Assignments ci are changing do
3: ci = arg min

k∈{1,...,k}
‖~xi − ~ck‖2

2 ∀ i ∈ {1, ..., |D|} . Assign points to

clusters
4: nk =

∑
i 1(ci = k) ∀ k ∈ {1, ..., k} . Count points per cluster

5: ~ck = 1
nk

∑
i 1(ci = k)~xi ∀ k ∈ {1, ..., k} . Recompute cluster centers

6: end while

In plain English: In the beginning, we initialize2 the centers ~ck of the k clus-
ters. We could place them randomly in space or randomly select samples
from our data set X and use them as initial cluster centers.
Next, we repeatedly assign each data point xi to its nearest cluster by up-
dating ci. Then we recompute the cluster centers by computing the mean
of all points belonging to a cluster (we compute the center of gravity). We
repeat this procedure until the cluster assignments ci (ci stores the cluster id
to which the data point xi is assigned) do not change anymore.

Fig. 9.1 illustrates the resulting clustering of k-means for two different data
sets. For each data set we asked k-means to find 3 clusters.

9.1.1. K-means++

Instead of initializing the centers randomly (e.g. by selecting random samples
from the data set), the k-means++ algorithm [1] proposes3 a ”smarter” way
of selecting the initial cluster centers before running the k-means algorithm.
The algorithm for computing the initial cluster centers is described in Algo-
rithm 9.
In plain English: First, we select one data point from the data set D uni-
formly at random and set it as the first cluster center ~c1. Then, we compute
the distance di of each point ~xi ∈ D to this center ~c1 and select the next
cluster center by randomly selecting a point from the data set, where the

2e.g. k-means++ see section 9.1.1
3k-means++ is often used as the default method for initializing the cluster centers -

e.g. scikit-learn [11] does so

147 9.1. K-MEANS

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0

−10

−5

0

5

K-means with n_clusters=3

Cluster 1

Cluster 2

Cluster 3

−2 −1 0 1 2 3 4

−6

−4

−2

0

2

4

K-means with n_clusters=3

Cluster 1

Cluster 2

Cluster 3

Figure 9.1: k-means fitted to two different data sets

Algorithm 9 K-means++ algorithm

Input: Data points D = {~xi}, Number of clusters k
Output: Initial cluster centers {~ck}

1: ~c1 = ~xj where j ∼ U(1, |D|) . Select first cluster center
2: di = ‖~xi − ~c1‖2

2 ∀ i ∈ {1, ..., |D|} . Compute distances
3: pi = di∑

i di
∀ i ∈ {1, ..., |D|} . Compute probabilities

4: for t := 2 to k do
5: ~ct = ~xj where j ∼ P({pi}) . Select next cluster center
6: di = min

s∈{1,...,t}
‖~xi − ~cs‖2

2 ∀ i ∈ {1, ..., |D|} . Update distances

7: pi = di∑
i di

∀ i ∈ {1, ..., |D|} . Update probabilities

8: end for

probability pi for ~xi is pi = di∑
i di

- thus, distant points are more likely to

be selected. We then recompute the distance di for each point ~xi to be the
distance to the nearest cluster center. Then, we select the next cluster center
by randomly selecting a data point from the data set according to the new
probabilities pi. We repeat this procedure until all cluster centers have been
chosen.

9.1.2. Voronoi tessellation

Because the k-means algorithm assigns each data point to the nearest center,
the data space is partitioned into convex polygons if we use the euclidean
distance. Each of this convex polygons defines one cluster.

CHAPTER 9. CLUSTERING 148

Given a set of center points C = {~ck} with ~ck ∈ Rd, the assignment of
all points in the space Rd to the nearest center point is called Voronoi tessel-
lation. The Voronoi tessellation partitions the space Rd into |C| regions (also
called Voronoi cells) where each region Rj is defined as

Rj =

{
~x ∈ Rd | j = arg min

k∈{1,...,|C|}
d(~x,~ck)

}
(9.2)

where the function d computes the distance between two points. If d is the
euclidean distance, the Rj are convex regions and the boundaries can be
interpreted as convex polygons.
See Fig. 9.2 for an illustration of a Voronoi tessellation of a k-means clus-
tering. As we can see, each cluster is a convex polygon and the entire data
space is partitioned into convex polygons.

Note: The clusters computed by the k-means algorithm are always convex
polygons (if we use the euclidean distance). If we assume that our clusters
are not necessarily convex, we should not use the k-means algorithm!

149 9.2. AGGLOMERATIVE CLUSTERING

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster centers

Figure 9.2: Voronoi tessellation of a k-means clustering (data set with 6
clusters)

9.2. Agglomerative Clustering

Agglomerative clustering is an instance of hierarchical clustering. The idea
behind hierarchical clustering is to organize the data as a binary tree (also
called dendogram) where each level of the tree corresponds to a particular
clustering and the data points itself are stored in the leafs of the tree. There-
fore we do not need to specify the number of clusters in advance like we did
in the k-means algorithm from the previous section.
Hierarchical clustering is usually divided into two different groups. Agglom-
erative clustering where the tree is build from bottom to top (bottom-up)
and divisive clustering where the tree is computed from top to down. In this
section we only talk about agglomerative clustering.

The agglomerative clustering algorithm does not work directly on the data
points D = {xi} but instead on a dissimilarity matrix D

D ∈ Rn×n
+

di,j = dj,i = d(xi, xj)
(9.3)

CHAPTER 9. CLUSTERING 150

where d(xi, xj) measures the dissimilarity or ”distance” between two data
points xi and xj. Because we do not work on xi and xj directly, we do not
make any assumptions on their domain. We could use any domain as long as
we are able to compute/define a ”meaningful” dissimilarity/distance measure
on it. Note that this is very similar to the idea of kernels.
Next, we define a couple of different ways for measuring the distance between
two clusters Cj and Ck (a cluster is a set of points):

1. Single linkage defined as

dSL(Cj, Ck) = min
j ∈Cj ,
k∈Ck

dj,k (9.4)

2. Complete linkage defined as

dCL(Cj, Ck) = max
j ∈Cj ,
k∈Ck

dj,k (9.5)

3. Average linkage defined as

dAL(Cj, Ck) =
1

nCj nCk

∑
j ∈Cj

∑
k∈Ck

dj,k (9.6)

where nCj = |Cj| and nCk = |Ck|.

4. Ward’s linkage defined as

dWL(Cj, Ck) =
∑

x∈Cj∪Ck

‖x− µCj∪Ck‖2
2 −

∑
x∈Cj

‖x− µCj‖2
2 −

∑
x∈Ck

‖x− µCk‖2
2

(9.7)
where µC = 1

nC

∑
x∈C x denotes the center of cluster C. The size (num-

ber of elements) of a cluster C is denoted by nC = |C|.

Attention: Ward’s method can only be used if we can average data
points! Thus, we need more information/capabilities than just the dis-
similarity matrix.

Finally, the agglomerative clustering algorithm is described in Algorithm 10.

In plain English: We start by putting each data point xi ∈ D in its own
cluster Ci. We then repeatedly merge two clusters into a new cluster until all
data points are in one cluster. We merge the two clusters which are closest
to each other, where we determine proximity by using one of the previously

151 9.2. AGGLOMERATIVE CLUSTERING

Algorithm 10 Agglomerative clustering algorithm

Input: Dissimilarity matrix D, d measures the distance between two clusters
Output: Hierarchical clustering (e.g. dendogram)

1: Put each data point into its own cluster Ci. Set of all clusters C = {Ci}
2: while |C| > 1 do
3: Cj, Ck = min

Cj ∈C,
Ck ∈C

d(Cj, Ck) . Find two closest clusters

4: C = C \ {Cj, Ck} ∪ {Cj ∪ Ck} . Merge the two clusters
5: end while

defined metrics (single-, complete- or average linkage). Each merging step
is memorized, such that we can reconstruct the hierarchy afterwards when
computing the dendogram.
Because we have to recompute the distances between the clusters in each
iteration, a naive implementation has cubic complexity. However, there are
clever tricks for efficiently recomputing cluster distances by making use of
previously computed distances - e.g. Lance-Williams formula4 for Ward’s
linkage.

In Fig. 9.5 and Fig. 9.4, we can observe that different linkage criterions
might result in different clusterings.

Note: The dendogram contains more information than a just a hierarchical
ordering. The difference in heights (y axis) of two nodes/clusters indicates
the dissimilarity of these two clusters. Therefore, the height can/should be
considered when selecting the number of clusters.

4see https://en.wikipedia.org/wiki/Ward%27s_method

https://en.wikipedia.org/wiki/Ward%27s_method

CHAPTER 9. CLUSTERING 152

0

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Figure 9.3: Data set for agglomerative clustering (Fig. 9.4, 9.6, 9.7)

2
6

1
1

2
5

2
4

1
4

4
0

1
7

2
2

2
7

3
6

4
6

1
5

4
5

4
2

2
8

3
9

3
4

4
8

1
8 1

3
8

4
4 7

2
0

3
0

1
9

3
7 3

3
1 6

2
1

4
7

1
2

3
5

2
3 9

1
0

4
9

3
2 4

4
3

1
3

4
1 0 2 8 5

3
3

1
6

2
9

Figure 9.4: Single linkage

153 9.2. AGGLOMERATIVE CLUSTERING

Figure 9.5: Agglomerative clustering (euclidean distance) of data set Fig. 9.3

2
3

1
3

4
1 9

1
0

4
9

3
2 4

4
3 2

1
6

2
9 5

3
3 0 8 6

2
1

4
7

1
9

3
7 3

3
1

1
4

1
2

3
5

4
0

1
7

2
2

1
1

2
5

4
4 7

2
0

3
0

2
7

1
8 1

3
8

2
8

3
4

4
8

2
6

3
6

3
9

4
2

2
4

4
6

1
5

4
5

Figure 9.6: Complete linkage

2
3 2 5

3
3 8

1
6

2
9 9

1
0

4
9

3
2 4

4
3 0

1
3

4
1

1
1

2
5

4
0

1
7

2
2

1
4

3
7

1
9 3

3
1 6

2
1

4
7

1
2

3
5

2
4

2
6

4
4 7

2
0

3
0

2
7

3
6

3
9

4
2

4
6

1
5

4
5

2
8

3
4

4
8

1
8 1

3
8

Figure 9.7: Average linkage

CHAPTER 9. CLUSTERING 154

9.3. DBSCAN

Density based spatial clustering of applications with noise (DBSCAN) be-
longs to the family of density based clustering methods.
Before we can discuss the algorithm, we need a couple of definitions:

1. The epsilon neighborhood of a point x is defined as

E(x,D, ε) = {xj ∈ D | d(xj, x) ≤ ε} (9.8)

where d is a function for measuring the ”distance” between two points5.

2. The set of core points is defined as

C(D) = {xi ∈ D | |E(xi,D, ε)| ≥M} (9.9)

where M is some fixed integer.

3. The undirected core graph is defined as

Gcore = (Vcore,Ecore) (9.10)

where Vcore = C(D) and the edge matrix6

(Ecore)i,j =

{
1 if xi ∈ E(xj, C, ε)
0 otherwise

(9.11)

The DBSCAN algorithm is described in Algorithm 11.

Algorithm 11 DBSCAN algorithm

Input: Data set D = {xi}, Parameter ε and M
Output: Clustering

1: Compute for each point xi ∈ D the epsilon neighborhood E(xi,D, ε).
2: Compute the set of core points C(D).
3: Compute the the undirected core graph Gcore.
4: Each connected component Gi of Gcore becomes a cluster ci.
5: Assign each remaining data point xj ∈ D \ C(D) to the nearest cluster
ci, determined by the nearest core point xi ∈ C(D), if d(xj, xi) ≤ ε.

6: All unassigned points are declared to be noise.

5Note: We are not limited to vectorial data, as long as we can define a meaningful
distance measurement on the domain - this is very similar to the kernel approach!

6this is not a practical implementation!

155 9.3. DBSCAN

In plain English: First, we compute for each point the set of points which
are ε-near. Next, we select all points which have at least M other points in
their ε-neighborhood and call them core points.
We then construct an undirected graph from these core points, where the
vertices are the core points and two points xi, xj ∈ C(D) are connected by an
edge if the point xi is in the ε-neighborhood of the point xj. Each connected
component Gi of this graph defines/creates a cluster ci.
Finally, we assign all remaining points (non core points) xj ∈ D\C(D) to the
nearest cluster if the distance to this nearest cluster is smaller or equal to ε.
The nearest cluster is determined by the core point with minimum distance
to xj. Points with a distance larger than ε are not assigned to any clusters
and are declared to be noise.

Fig. 9.8 illustrates the DBSCAN clustering for two different data sets. Note
that the algorithm automatically determines the number of clusters.

CHAPTER 9. CLUSTERING 156

−2 −1 0 1 2 3 4

−6

−4

−2

0

2

4

DBSCAN with = 0.1, M=5ε

Noise

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0

−10

−5

0

5

DBSCAN with = 0.1, = 5ε M

Noise

−2 −1 0 1 2 3 4

−6

−4

−2

0

2

4

DBSCAN with = 0.8, M=5ε

Noise

Cluster 1

Cluster 2

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0

−10

−5

0

5

DBSCAN with = 0.8, = 5ε M

Noise

Cluster 1

Cluster 2

Cluster 3

−2 −1 0 1 2 3 4

−6

−4

−2

0

2

4

DBSCAN with = 2.0, M=5ε

Cluster 1

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0

−10

−5

0

5

DBSCAN with = 2.0, = 5ε M

Cluster 1

Cluster 2

Cluster 3

Figure 9.8: DBSCAN with different ε fitted to two different data sets

157 9.4. SPECTRAL CLUSTERING

9.4. Spectral clustering

Spectral clustering (e.g. see [17] for an excellent tutorial) is a clustering
method that works on a similarity matrix instead of the data directly.
Spectral clustering first constructs a graph from the similarity matrix and
then uses the eigenvectors of the graph Laplacian matrix to perform a di-
mensionality reduction of the data. Then, we apply some other clustering
algorithm (e.g. k-means 9.1) to this new data set.

The spectral clustering algorithm is described in Algorithm 12.

Algorithm 12 Spectral clustering algorithm

Input: Similarity matrix A, Number of clusters k, Number of eigenvectors
s
Output: Clustering

1: D = diag(di) where di =
∑

j(A)i,j . Compute the degree matrix
2: L = D−A . Compute the graph Laplacian matrix
3: Compute all eigenvectors ~vk and eigenvalues λk of L

4: X =

 | |
~v1 · · · ~vs
| |

 . Choose the s largest eigenvectors

5: {ci} = k-means(X, k) . Interpret the rows of X as data points and
cluster them by using the k-means algorithm

6: Return the cluster assignments {ci} as a clustering of the original data

See Fig.9.9 for an illustration of spectral clustering applied to a toy exam-
ple. The similarity matrix is computed by using the ε-neighborhood with
ε = 0.008 - two points are connected if the euclidean distance between them
is less or equal to ε.
Note that the example in Fig. 9.9 is a toy example only and is constructed
to visualize the spectral clustering method. In reality we might need more
than two eigenvectors and choosing the right hyper parameter might not be
that easy!

CHAPTER 9. CLUSTERING 158

Original data Transformed data (first two eigenvectors)

Spectral clustering with n_clusters=2

Cluster 1

Cluster 2

K-means with n_clusters=2

Cluster 1

Cluster 2

Figure 9.9: Spectral clustering applied to a toy example.
The original data is plotted in the upper left plot. The transformed data
(by using the first two eigenvectors of the graph laplacian) is plotted in the
upper right plot.
The transformed data is clustered with the k-means algorithm (k=2) and the
result is plotted in the lower right plot. Transferring the cluster labels to the
original data yields to the clustering of the original data, which is plotted in
the lower left plot.

9.5. Gaussian mixture model

The Gaussian mixture model is a model for density estimation. That is we
want to learn/estimate the underlying density function of a given data set
D = {~xi} where ~xi ∈ Rd.

159 9.5. GAUSSIAN MIXTURE MODEL

We assume that the density is a mixture of Gaussian distributions7. We
assume that the mixture is linear, hence it is a weighted sum of Gaussian
densities.
We define the probability density of a data point ~xi as

p(~xi | {~µk}, {Σk}, {πk}) =
∑
k

πkN (~xi | ~µk,Σk) (9.12)

where πk are the mixture coefficients and act as a prior of the individual
Gaussians.
Therefore, we find that the likelihood (see section B.13.2) for a given data
set D is

p(D | {~µk}, {Σk}, {πk}) =
∏
i

p(~xi | {~µk}, {Σk}, {πk})

=
∏
i

∑
k

πkN (~xi | ~µk,Σk)
(9.13)

where we assume that all data points ~xi ∈ D are i.i.d.

The final optimization problem for estimating the parameters of the Gaus-
sian mixture model is to maximize the log-likelihood and is stated in 9.14.

arg max
{~µk},{Σk},{πk}

∑
i

log

(∑
k

πkN (~xi | ~µk,Σk)

)
s.t.

0 ≤ πk ≤ 1 and
∑
k

πk = 1

(9.14)

Unfortunately, 9.14 in general is a difficult optimization problem - in par-
ticular it is non-convex. There is no algorithm for solving it exactly. We
compute a (local) optimum of 9.14 by using the Expectation-Maximization
algorithm. The algorithm is described in Algorithm 13.
A detailed discussion of the general Expectation-Maximization algorithm is
the topic of section 9.5.1.
In plain English: First, we compute for each Gaussian and each data point
the probability pk|i of the i-th data point under the k-th Gaussian. We can
interpret pk|i as the probability that data point ~xi belongs (is assigned) to
the k-th Gaussian. Then, we recompute the parameters ~µk, Σk and πk to

7we can approximate any density arbitrarily well by using enough Gaussian distribu-
tions

CHAPTER 9. CLUSTERING 160

Algorithm 13 Gaussian mixture model: EM algorithm

Input: Data points D = {~xi}, Number of Gaussians k
Output: Centers {~µk}, covariance matrices {Σk} and probabilities {πk}

1: Initialize parameters ~µk,Σk, πk
2: repeat
3: pk|i = πkN (~xi|~µk,Σk)∑

k πkN (~xi|~µk,Σk)
. Responsibility of cluster k for the i-th data

point
4: nk =

∑
i pk|i . Estimate parameters

5: ~µk = 1
nk

∑
i pk|i ~xi

6: Σk = 1
nk

∑
i pk|i(~xi − ~µk)(~xi − ~µk)>

7: πk = nk

|D|
8: until convergence

maximize the likelihood of the data points ~xi under the assignments pk|i -
note that this is very similar to the k-means procedure, but instead of a hard
assignment we use the soft assignment pk|i.
We repeat this procedure until convergence. A convergence criterion might
be the maximum number of iterations, the amount of change in the param-
eters or the log-likelihood value.

Because we typically use more than one Gaussian, we can model much more
complicated densities and are no longer restricted to elliptic shapes. See
Fig. 9.10 for an example of a Gaussian mixture model fitted to a data set.

9.5.1. Details on the EM-algorithm

In this section we introduce the expectation-maximization algorithm (short
EM-algorithm) from a very theoretical point of view. In subsection 9.5.1.1,
we derive the EM-algorithm for a gaussian mixture model.

We assume that we have two random variables X and Z. However, we only
observed instances of X wheras we never observe instances of Z. Because
of this, we call Z a latent random variable. Furthermore, we assume that X
depends on Z. That is, the probability distribution of X depends on Z. If
we assume that Z is discrete, we can write the parameterized (conditional)
likelihood of X as

pX(x | ~θ) =
∑
z

pX,Z(x, z | ~θ) (9.15)

161 9.5. GAUSSIAN MIXTURE MODEL

Gaussian mixture model with n_components=4

Data

Figure 9.10: Gaussian mixture model fitted to a data set

where ~θ denotes the parameters of the distribution.
We claim, that we can write the (conditional) log-likelihood as

log
(
pX(x | ~θ)

)
= Ψ(qZ , ~θ) + DKL(qZ ‖ pZ|X) (9.16)

where we define

Ψ(qz, ~θ) =
∑
z

qZ(z) log

(
pX,Z(x, z | ~θ)

qZ(z)

)
(9.17)

We can prove 9.16 by applying a bunch of simple algebraic manipulations.

log
(
pX(x | ~θ)

)
= Ψ(qz, ~θ) + DKL(qZ ‖ pZ|X)

=
∑
z

qZ(z) log

(
pX,Z(x, z | ~θ)

qZ(z)

)
−
∑
z

qZ(z) log

(
pZ|X(z | x, ~θ)

qZ(z)

)
=
∑
z

qZ(z)
(

log
(
pX,Z(x, z | ~θ)

)
− log

(
qZ(z)

))
−

CHAPTER 9. CLUSTERING 162

∑
z

qZ(z)
(

log
(
pZ|X(z | x, ~θ)

)
− log

(
qZ(z)

))
=
∑
z

qZ(z) log
(
pX,Z(x, z | ~θ)

)
−
∑
z

qZ(z) log
(
qZ(z)

)
−∑

z

qZ(z) log
(
pZ|X(z | x, ~θ)

)
+
∑
z

qZ(z) log
(
qZ(z)

)
=
∑
z

qZ(z)
(

log
(
pX,Z(x, z | ~θ)

)
− log

(
pZ|X(z | x, ~θ)

))
=
∑
z

qZ(z) log

(
pX,Z(x, z | ~θ)
pZ|X(z | x, ~θ)

)

=
∑
z

qZ(z) log

(
pZ|X(z | x, ~θ)pX(x | ~θ)

pZ|X(z | x, ~θ)

)
=
∑
z

qZ(z) log
(
pX(x | ~θ)

)
= log

(
pX(x | ~θ)

)∑
z

qZ(z)

= log
(
pX(x | ~θ)

)

Because DKL(qZ ‖ pZ|X) ≥ 0 it holds that

∑
z

qZ(z) log

(
pX,Z(x, z | ~θ)

qZ(z)

)
≤ log

(
pX(x | ~θ)

)
(9.18)

Equality holds, if and only if DKL(qZ ‖ pZ|X) = 0. This can be achieved by
setting

qZ(z) = pZ|X(z | x, ~θt) (9.19)

163 9.5. GAUSSIAN MIXTURE MODEL

where we fixed the parameter ~θ = ~θt with our current estimate ~θt.
It follows that

log
(
pX(x | ~θ)

)
= Ψ

(
pZ|X(z | x, ~θt), ~θ

)
=
∑
z

pZ|X(z | x, ~θt) log

(
pX,Z(x, z | ~θ)
pZ|X(z | x, ~θ)

)
=
∑
z

pZ|X(z | x, ~θt) log
(
pX,Z(x, z | ~θ)

)
−∑

z

pZ|X(z | x, ~θt) log
(
pZ|X(z | x, ~θt)

)
= Q~θt(~θ) + H

(
pZ|X(z | x, ~θt)

)
(9.20)

where we defined Q(~θ, ~θt) =
∑

z pZ|X(z | x, ~θt) log
(
pX,Z(x, z | ~θ)

)
and the

constant (does not depend of ~θ) entropy of pZ|X(z | x, ~θt).

H
(
pZ|X(z | x, ~θt)

)
= −

∑
z

pZ|X(z | x, ~θt) log
(
pZ|X(z | x, ~θt)

)
(9.21)

Note that we can interpret Q~θt(~θ) as the conditional expectation of the log-

likelihood log
(
pX,Z(x, z | ~θ)

)
over Z | X, ~θt.

Q~θt(~θ) = EZ|X,~θt
[

log
(
pX,Z(x, z | ~θ)

)]
(9.22)

Now, that we found the optimal distribution qZ , the next step is to compute
new optimal parameters ~θt+1. Because we used the current estimate ~θt for
constructing the optimal qZ , we have to maximize 9.20 over ~θ.

~θt+1 = arg max
~θ∈Θ

Q~θt(~θ) + H
(
pZ|X(z | x, ~θt)

)
= arg max

~θ∈Θ

Q~θt(~θ)
(9.23)

Because the Kullback-Leibler divergence DKL(qZ ‖ pZ|X) is always greater or
equal to zero, we know that

Ψ(qz, ~θt+1) ≤ log
(
pX(x | ~θt+1)

)
(9.24)

If the Kullback-Leibler divergence is zero - equivalent that the estimate of
the latent variables do not change, we found an optimum and return ~θt+1 as

CHAPTER 9. CLUSTERING 164

the final estimate. It can be shown that the likelihood never decreases.

The EM-algorithm is simply repeating the procedure of computing qZ based
on the current estimate ~θt and then computing a new estimate ~θt+1 of ~θ by

maximizingQ~θt(~θ). In this way we maximize the log-likelihood log
(
pX(x | ~θ)

)
.

The final EM-algorithm is described in Algorithm 14.
Note: The EM-algorithm computes a local optimum only.

Algorithm 14 Expectation-Maximization algorithm

Input: Parameterized joint and marginal distributions p(X,Z | ~θ), p(Z |
X, ~θ) and p(X | ~θ) of observed variables X and latent variables Z

Output: Estimated parameters ~θ and latent variables zi

1: Initialize parameters ~θ
2: repeat
3: Compute qZ(z) = p(Z | X, ~θ) . E-Step

4: ~θ = arg max
~θ∈Θ

∑
z qZ(z) log

(
p(X,Z | ~θ)

)
. M-Step

5: until convergence

9.5.1.1 EM-algorithm for Gaussian mixture model

In this section we derive the expectation-maximization algorithm for a gaus-
sian mixture model.

We assume, that we have a data set of real-valued vectors D = {~xi} where
~xi ∈ Rd. Furthermore, we assume that each ~xi is associated with an unob-
served/unknown latent vector ~zi ∈ {0, 1}k where we assume that exactly one
entry in ~zi is equal to one and all other entries are equal to zero - thus, ~zi
can be interpreted as a ”one hot encoding”.
In a gaussian mixture model, we have a set of k gaussian distributions and we
assume that each data point is generated/sampled from one of these distri-
butions. The specific/responsible distribution of a data point is determined
by the entry with a one in the data points latent vector.

Because the latent vectors are unobserved, we treat them as random vari-
ables - to be more precise, we treat them as discrete random vectors.
We define the probability that the k-th entry of a latent vector ~z is equal to

165 9.5. GAUSSIAN MIXTURE MODEL

one as
p
(

(~z)k = 1
)

= πk (9.25)

Because we assumed that exactly one entry in ~z is equal to one and all other
entries are equal to zero, we can write the probability of a latent vector ~z as

p(~z) =
∏
k

π
(~z)k
k (9.26)

From the properties of a probability distribution B.23, we know that∑
k

p
(

(~z)k = 1
)

=
∑
k

πk = 1 (9.27)

The probability density of a data point ~x under the k-th gaussian distribution
is given as

p~θ(~x | (~z)k = 1) = N (~x | ~µk,Σk) (9.28)

where we somehow encoded all parameters like {πk}, {µk} and {Σ−1
k } in ~θ.

Because we assumed that a data point is generated by exactly one distri-
bution, we can write the conditional probability density of a point ~x as

p~θ(~x | ~z) =
∏
k

N (~x | ~µk,Σk)
(~z)k (9.29)

The marginal probability density of a data point ~x can be written as

p~θ(~x) =
∑
k

p~θ(~x | (~z)k = 1)p
(

(~z)k = 1
)

=
∑
k

πkN (~x | µk,Σk)
(9.30)

By applying the log to the conditional probability density of a data point ~x,
we obtain

log
(
pθ(~x | (~z)k = 1)

)
= −1

2
log
(

(2π)d det(Σk)
)
− 1

2
(~x− ~µk)Σ−1

k (~x− ~µk)
(9.31)

Because of Baye’s theorem, we know that we can write the conditional proba-
bility that the k-th entry of the latent vector ~z is equal to one after observing
the associated data point ~x as

p~θ

(
(~z)k = 1 | ~x

)
=
p~θ(~x | (~z)k = 1)p

(
(~z)k = 1

)
p~θ(~x)

(9.32)

CHAPTER 9. CLUSTERING 166

where the numerator is equal to the joint distribution of the data point ~x
and the k-th entry of the latent vector ~z being equal to one. Thus

p~θ(~x, (~z)k = 1) = p~θ(~x | (~z)k = 1)p
(

(~z)k = 1
)

(9.33)

So far, we considered one data point only. Next, we define and derive all
necessary equations for the set of data points D.
We assume that the prior probability of a specific distribution in the mixture
model is independent of the data point.

p
(

(~zi)k = 1
)

= πk ∀ i (9.34)

Next, we assume that all data points ~xi ∈ D are i.i.d. Therefore, the likeli-
hood of the data points and their associated latent vectors can be written as

LD(~θ) =
∏
i

p~θ(~xi, ~zi)

=
∏
i

p~θ(~xi | ~zi)p(~zi)

=
∏
i

∏
k

(
p~θ(~xi | (~zi)k = 1)p

(
(~zi)k = 1

))(~zi)k

=
∏
i

∏
k

(
πkN (~xi | µk,Σk)

)(~zi)k

(9.35)

By applying the log to 9.35, we obtain the log-likelihood

LLD(~θ) = log
(

LD(~θ)
)

= log

(∏
i

∏
k

(
πkN (~xi | µk,Σk)

)(~zi)k

)

=
∑
i

log

(∏
k

(
πkN (~xi | µk,Σk)

)(~zi)k

) (9.36)

By applying 9.32 to the i-th data point ~xi, we obtain

pk|i = p
(

(~zi)k = 1 | ~xi
)

=
p~θ(~xi | (~z)k = 1)p

(
(~z)k = 1

)
∑

j p~θ(~xi | (~z)j = 1)p
(

(~z)j = 1
)

=
πkN (~xi | µk,Σk)∑
j πjN (~xi | µj,Σj)

(9.37)

167 9.5. GAUSSIAN MIXTURE MODEL

Note that this is exactly the formula we used in the E-step of algorithm 13
where we estimate the responsibility of the k-th gaussian for the i-th data
point.

By plugging the log-likelihood 9.36 into the definition of the Q function 9.22,
we obtain

Q~θt(~θ) = EZ|X,~θt
[
LLD(~θ)

]
= EZ|X,~θt

[∑
i

log

(∏
k

(
πkN (~xi | µk,Σk)

)(~zi)k

)]
=
∑
i

EZ|X,~θt
[

log

(∏
k

(
πkN (~xi | µk,Σk)

)(~zi)k

)]
=
∑
i

∑
k

pk|i log
(
πkN (~xi | µk,Σk)

)
=
∑
i

∑
k

pk|i log(πk) + pk|i log
(
N (~xi | µk,Σk)

)
=
∑
i

∑
k

pk|i log(πk)− pk|i
1

2
log
(

(2π)d det(Σk)
)
− pk|i

1

2
(~x− ~µk)Σ−1

k (~x− ~µk)

(9.38)

The M-step of alogrithm 13 can be obtained by maximizing the Q func-
tion 9.38 over all parameters - all parameters {πk}, {µk} and {Σ−1

k } are

somehow encoded in ~θ.

~θt+1 = arg max
~θ∈Θ

Q~θt(~θ) (9.39)

Because the Q function 9.38 is concave in all its parameters, the first order
optimality condition is necessary and sufficient.

First, we maximize over πk. Because of the constraint 9.27, we have to
use the method of lagrangian multipliers. We construct the Lagrangian

L(πk, λ) =
∑
i

∑
k

pi,k log(πk)− λ

(∑
j

πj − 1

)
(9.40)

where λ is the lagrangian multiplier for the constraint 9.27.
The derivative of the Lagrangian 9.40 with respect to πk is given by

∂L
∂πk

=
∑
i

pk|i
πk
− λ (9.41)

CHAPTER 9. CLUSTERING 168

Setting the derivative 9.41 equal to zero yields

∂L
∂πk

=
∑
i

pi,k
πk
− λ = 0

⇔
∑
i

pk|i
πk

= λ

⇔
∑
i

pk|i = λπk

⇔
∑
i

∑
k

pk|i = λ
∑
k

πk

⇔
∑
i

1 = λ

⇔ n = λ

(9.42)

Replacing the lagrangian multiplier λ in the derivative 9.41 yields

∑
i

pi,kπk − n = 0

⇔ πk =

∑
i pk|i
n

(9.43)

Note that this is exactly the formula for updating πk in the M-step of algo-
rithm 13.

Next, we we maximize over µk. Computing the gradient of the Q func-
tion 9.38 with respect to µk yields

∇~µkQ~θt(~θ) = ∇~µk

(∑
i

−pk|i
1

2
log
(

(2π)d det(Σ)
)
− pk|i

1

2
(~xi − ~µk)Σ−1

k (~xi − ~µk)

)
= ∇~µk

∑
i

−pk|i
1

2
(~xi − ~µk)Σ−1

k (~xi − ~µk)

=
∑
i

pk|iΣ
−1
k (~xi − ~µk)

(9.44)

169 9.5. GAUSSIAN MIXTURE MODEL

Setting the gradient 9.44 equal to zero yields

∇~µkQ~θt(~θ) =
∑
i

pk|iΣ
−1
k (~xi − ~µk) = ~0

⇔
∑
i

pk|iΣ
−1
k ~xi −

∑
i

pk|iΣ
−1
k ~µk = ~0

⇔ Σ−1
k

∑
i

pk|i~xi = Σ−1
k

∑
i

pk|i~µk

⇔ ~µk =

∑
i pk|i ~xi∑
i pk|i

(9.45)

Note that this exactly the formula for updating µk in the M-step of algo-
rithm 13.

Finally, we maximize over Σ−1
k . Computing the derivative of the Q func-

tion 9.38 with respect to Σ−1
k yields

∇Σ−1
k
Q~θt(~θ) = ∇Σ−1

k

(∑
i

−pk|i
1

2
log
(

(2π)d det(Σk)
)
− pk|i

1

2
(~xi − ~µk)Σ−1

k (~xi − ~µk)

)

= ∇Σ−1
k

(∑
i

−pk|i
1

2
log
((2π)d

det(Σ−1
k)

)
− pk|i

1

2
(~xi − ~µk)Σ−1

k (~xi − ~µk)

)

= ∇Σ−1
k

(∑
i

pk|i
1

2
log
(

det(Σ−1
k)
)
− pk|i

d

2
log(2π)−

pk|i
1

2
(~xi − ~µk)Σ−1

k (~xi − ~µk)

)
=
∑
i

pk|i
1

2
∇Σ−1

k
log
(

det(Σ−1
k)
)
− pk|i

1

2
∇Σ−1

k
(~xi − ~µk)Σ−1

k (~xi − ~µk)

=
1

2
Σk

∑
i

pk|i −
1

2

∑
i

pk|i(~xi − ~µk)(~xi − ~µk)>

(9.46)

where we made use of the facts

∇Σ−1 log
(
det(Σ−1)

)
= Σ (9.47)

det(A)−1 = det(A−1) (9.48)

∇X~a
>X~b = ~a~b> (9.49)

CHAPTER 9. CLUSTERING 170

Setting the derivative 9.46 equal to zero yields

∇Σ−1
k
Q~θt(~θ) =

1

2
Σk

∑
i

pk|i −
1

2

∑
i

pk|i(~xi − ~µk)(~xi − ~µk)> = 0

⇔ Σk

∑
i

pk|i =
∑
i

pk|i(~xi − ~µk)(~xi − ~µk)>

⇔ Σk =

∑
i pk|i(~xi − ~µk)(~xi − ~µk)>∑

i pk|i

(9.50)

Note that this exactly the formula for updating Σk in the M-step of algo-
rithm 13.

9.6. Outlook

In this chapter we learned about clustering. Clustering aims to find groups
of ”similar” items in a set of items, whereas different defintions of the term
”similar” lead to different clusterings.
We discussed various methods for computing a clustering of a given data set.
We talked about vector quantization methods like k-means, agglomerative
clustering as an instance of hierarchical clustering and special methods like
spectral clustering. Finally, we discussed DBSCAN and Gaussian mixture
models as examples of density based clusterings. In the setting of Gaussian
mixture models, we also discussed the EM-algorithm as a general technique
for optinizing latent variable models.

171 9.7. EXERCISES

9.7. Exercises

1. Prove that the center of gravity, given by

~ck =
1

n

∑
i

~xi (9.51)

is the optimal solution to the k-means clustering problem 9.1 if k = 1.

CHAPTER 9. CLUSTERING 172

Appendices

173

Appendix A

Convex optimization

In this chapter we take a look at a special class of optimization problems and
how to solve them.
We do not discuss non-convex optimization problems because we will not
encounter any of those in these notes. However, note that non-convex opti-
mization problems may occur in different settings (e.g. in Deep Learning you
are almost always confronted with non-convex optimization problems). Al-
though non-convex problems are usually much harder than convex problems,
practitioners often apply tools from convex optimization (e.g. an iterative
solver like gradient descent A.3.2) to get an approximate solution (often this
works surprisingly well).

A.1. Convex set

A convex set is a subset of an affine space1 that is closed under convex
combination. The subset from the euclidean space C ⊆ Rd is called a convex
region, if it is closed under convex combination.
Closedness under convex combination can be expressed as follows

α~x+ (1− α)~y ∈ C ∀ ~x, ~y ∈ C α ∈ [0, 1] (A.1)

Obviously, C = Rd is a convex set/region.

In plain English: A set is called a convex set, if and only if the straight
line connecting any pair of points lies inside the set.
See Fig. A.1 for an example of a convex and a non-convex set.

1Note that the Euclidean space Rd is an affine space.

175

APPENDIX A. CONVEX OPTIMIZATION 176

Figure A.1: Convex vs. non-convex set

Figure A.2: Convex set Figure A.3: Non-convex set

A.2. Convex functions

A function f : Rd 7→ R is said to be a convex function if and only if

f(α~x+ (1− α)~y) ≤ αf(~x) + (1− α)f(~y) ∀ ~x, ~y ∈ Rd α ∈ [0, 1] (A.2)

where we assume that the domain of f is Rd. More general one would write
~x, ~y ∈ D(f) to make sure that the values are always in the domain of f .

In plain English: A function is convex, if and only if the line, connecting
any pair of points on the function graph, is always ”above” or greater than
the function values in between those two points. See Fig. A.4 for an example
of a convex and a non-convex function.
A convex function f is called strictly convex, if the less or equal in A.2 is
strictly less ∀~x 6= ~y. Hence

f(α~x+(1−α)~y) < αf(~x)+(1−α)f(~y) ∀ ~x, ~y ∈ Rd, ~x 6= ~y α ∈ [0, 1] (A.3)

A function f is called concave if −f is convex (see Fig. A.5 for an example).
Simultaneously, a function f is called strictly concave if −f is strictly convex.

To prove that a function is convex we have different options:

177 A.2. CONVEX FUNCTIONS

Figure A.4: Convex vs. non-convex function

−6 −4 −2 0 2 4 6
x

0

5

10

15

20

25

30

35

f(
x
)

Convex function

0.2 0.4 0.6 0.8 1.0
x

−4

−3

−2

−1

0

1

2

3

f(
x
)

Non-convex function

−6 −4 −2 0 2 4 6
x

−30

−20

−10

0

10

20

30

f(
x
)

Concave function ()f x

Convex function − ()f x

Figure A.5: A concave function

1. Prove that A.2 holds.
This can be difficult. If the function is differentiable, we might want to
try one of the next options first.

2. Show that the first order condition holds.
The condition is given by

f(~y) ≥ ∇~xf(~x)>(~y − ~x) ∀ ~x, ~y ∈ D(f) (A.4)

where we assume the the function f is at least once differentiable.

In plain English: Show that the function curve is always above the
tangent at any point (see Fig. A.6).

APPENDIX A. CONVEX OPTIMIZATION 178

−6 −4 −2 0 2 4 6
x

−10

0

10

20

30

f(
x
)

Convex function

Tangent

Figure A.6: Convex function: First order condition

3. Show that the second order condition holds.
The condition is given by

∇2
~xf(~x) � 0 ∀ ~x ∈ D(f) (A.5)

where we assume that the function f is at least twice differentiable.

In plain English: Show that the second derivative is always non-negative.
In the multivariate case, the second derivative - the Hessian - is required
to be positive semidefinite.

Note that each of the three conditions alone is necessary and sufficient.

An alternative to the previous options is to decompose a given function into
known convex functions and combine them by using convexity preserving
operations (see section A.2.2).

The nice thing about convex functions is that a local optimum is a global
optimum, too. This means that, once we found a local optimum, we can
be sure that this one is the global optimum. Hence, when optimizing (min-
imizing) a convex function we do not need to worry about (sub optimal)
local minima and can use any method which results in a local optimum.
Furthermore, for strictly convex functions the optimum is unique.

179 A.2. CONVEX FUNCTIONS

A.2.1. Local vs. global optimum

We call a point ~x0 a local optimum/stationary point of a (differentiable)
function f , if the gradient of f at ~x0 is equal to zero.

∇~xf(~x0) = ~0 (A.6)

In order to distinguish between maxima and minima, we have to check the
Hessian (second derivative) at ~x0, too.
As we can see from the right figure in Fig. A.4, if the Hessian of a local
optimum ~x0 is positiv definite, we know that ~x0 is a local minimum.
Similar, if the Hessian of a local optimum ~x0 is negativ definite, we know that
~x0 is a local maximum.
If the Hessian at ~x0 is indefinite, then ~x0 is neither a minimum nor a maxi-
mum but a saddle point.

We call a point ~x0 a global minimum of a function f , if there is not other
point ~x 6= ~x0 whose function value is less than the function value of ~x0.
Similar, we call a point ~x0 a global maximum of a function f , if there is not
other point ~x 6= ~x0 whose function value is greater than the function value of
~x0.
Obviously, the gradient of the function f , for each local and global optimium
~x0, must be equal to zero. However, as we can see in the right figure of
Fig. A.4, a zero gradient itself is not sufficient for global optimality. There
might be other points with a zero gradient whose function value are either
smaller or greater. Furthermore, the limit of the border might go to plus or
minus infinity.
Because of this, in general it is very difficult to find a global optimum of a
function. Lucklily, finding global optima is simple if we are working with
convex/concave functions.
Because of the second order condition A.52 of convex functions, we know
that a local minimum of a convex function is guaranteed to be global mini-
mum too. Therefore, the first order condition of optimality A.6 is a necessary
and sufficient optimiality criterion for all convex/concave functions.

Note: Instead of the gradient, we can use its generalization the subgradi-
ent (see section A.2.4).

2because a convex/concave function does not have any saddle points, it is sufficient to
have semidefiniteness instead of definiteness

APPENDIX A. CONVEX OPTIMIZATION 180

A.2.2. Convexity preserving operations

Let f , k and g be convex functions over the domain Rd (other domains are
possible, for simplicity we stick to Rd) and λ ∈ R+. Furthermore, we assume
that k is non-decreasing.
Then, the following functions are convex3

1. z(~x) = f(~x) + g(~x)

2. z(~x) = λf(~x)

3. z(~x) = k(f(~x))

A.2.3. Examples

Some examples4 of convex functions:

1. f(x) = x2a for a ∈ N

2. f(~x) = ~a>~x+ b for ~x,~a ∈ Rd and b ∈ R

3. f(x) = exp(ax) for a, x ∈ R

4. f(x) = − ln(x) for x > 0

5. f(x) = −x ln(x) for x > 0

6. f(x) = |x|a for a ≥ 1

7. f(x) = xa for x > 0 and a ≥ 1 ∨ a ≤ 0

8. f(~x) = ~x>A~x+ ~c>~x for A � 0 and ~x,~c ∈ Rd

A.2.4. Subdifferential

The subdifferential5 (also called subderivative or subgradient) is a generaliza-
tion of the derivative of a convex function.
We define the subdifferential at ~x0 of a convex function f as the set6

∂f(~x0) = {~s | f(~x) ≥ f(~x0) + ~s>(~x0 − ~x) ∀ ~x ∈ Rd} (A.7)

3proofs are omitted because they can be found in every textbook on convex analysis.
4a good exercise is to prove convexity of these functions
5see https://en.wikipedia.org/wiki/Subderivative
6Sometimes ∂f(~x0) is rewritten as ∂

∂~xf(~x0), to stress that we take the derivative with
respect to x.

https://en.wikipedia.org/wiki/Subderivative

181 A.2. CONVEX FUNCTIONS

where we call each ~s ∈ ∂f(~x0) subgradient of f at ~x0.

We say that a convex function f is differentiable at ~x0, if |∂f(~x0)| = 1.
In this case the only element in ∂f(~x0) is the ”standard” gradient ∇~xf(~x0).
If |∂f(~x0)| > 1, we say that the convex function f is only subdifferentiable at
~x0.

Note: Every convex function is at least subdifferentiable for all ~x0.

A.2.4.1 Example

We consider the absolute value function, which we know from A.2.3 is a
convex function.

f(x) = |x| (A.8)

The subdifferential of A.8 is given by

∂f(x) =

{1} if x > 0

{−1} if x < 0

[−1, 1] if x = 0

(A.9)

The subdifferential A.9 is visualized in Fig. A.7

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

f x x() = | |

∂ (= 0)f x

Figure A.7: Subgradients of f(x) = |x| at x = 0

APPENDIX A. CONVEX OPTIMIZATION 182

A.3. Convex optimization

Let f be a convex function (not necessarily differentiable), then the following
is called an convex optimization problem

min
~x∈X

f(~x)

where X ⊆ Rd is a convex set of feasible solutions
(A.10)

We call A.10 an unconstrained convex optimization problem if X = Rd.

In the next sections we will discuss how to solve problems like A.10.

A.3.1. Closed form solution

If we consider X = Rd, we know that for any optimal point x∗ ∈ Rd the gradi-
ent of f at x∗ must be equal to zero (this also called the necessary condition).
Because f is a convex function, this necessary condition is a sufficient condi-
tion, too - recall that the sufficient condition says that the second derivative
of f at x∗ must be positive, which is one of the criterions/definitions for a
function being a convex function (see the second order condition A.5).
Therefore, the set of minimizers is given by

{x∗ ∈ Rd | ∇xf(x∗) = 0} (A.11)

If we consider the subdifferential as a generalization of the gradient for non-
differentiable convex functions, the set of minimizers is given by

{x∗ ∈ Rd | 0 ∈ ∂f(x∗)} (A.12)

Sometimes we can solve ∇xf(x∗) = 0 (or 0 ∈ ∂f(x∗)) for x∗ analytically
(like in the next example A.3.1.1) and sometimes we can not. If we can not
obtain a closed form solution for x∗, we have to use an iterative algorithm
for computing x∗ (e.g. the gradient descent algorithm - see section A.3.2).

For an arbitrary convex set X ⊆ Rd, we have the following optimality con-
ditions

{x∗ ∈ X | ∇xf(x∗)(y − x∗) ≥ 0 ∀ y ∈ X} (A.13)

for a differentiable convex function f , and{
x∗ ∈ Rd | 0 ∈ ∂

(
f(x∗) + 1(x∗ ∈ X)

)}
(A.14)

183 A.3. CONVEX OPTIMIZATION

for a subdifferentiable convex function f , where the subdifferential of 1(x∗ ∈
X) is the normal cone of X at x∗ (see [3] for details).
Alternatively, we can write A.14 as{

x∗ ∈ X | 0 ∈ ∂
(
f(x∗)

)}
(A.15)

A.3.1.1 Example

Suppose that we want to solve the following optimization problem

x = arg max
x ∈ [0,1]

x6(1− x)4 (A.16)

First, we note that A.16 is a non-convex optimization problem. The domain
[0, 1] is a convex set, but the function x6(1 − x)4 is not convex over the set
[0, 1].
However, we can transform A.16 such that it becomes a convex optimization
problem while maintaining the location of the optimum. We can do so by
applying the logarithm to the function and multiplying the result by −1.
Hence, A.16 can be rewritten as

x = arg min
x ∈ [0,1]

− log
(
x6(1− x)4

)
(A.17)

Because the log of 0 is undefined, we can no longer have x = 0 or x = 1.
That is, we have reduced the set of possible solutions from [0, 1] to (0, 1).
However, by looking at the left figure in Fig. A.3.1.1 we argue that neither
x = 0 nor x = 1 leads to maximum. In practice, we often know/assume that
the boundary/extreme values of the domain are no solution.
Note that A.17 is a convex optimization problem and is equivalent to A.16
(see exercise 7). The difference between A.16 and A.17 is illustrated in
Fig. A.3.1.1.
Note: This ”trick” of transforming a non-convex function into a convex func-
tion, by applying the logarithm to the function and then multiplying by −1,
is sometimes called the log-trick and we will often make use of it in these
notes.

Because A.17 is equivalent to A.16 and because it is a convex optimiza-
tion problem, we solve A.17 instead of A.16.
First, we compute the derivative with respect to x.

∂

∂x

(
− log

(
x6(1− x)4

))
=

∂

∂x

(
− 6 log(x)− 4 log(1− x)

)
= −6

x
+

4

1− x

(A.18)

APPENDIX A. CONVEX OPTIMIZATION 184

0.0 0.2 0.4 0.6 0.8 1.0

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012 x x6 4(1−)

Figure A.8: Original function

0.0 0.2 0.4 0.6 0.8 1.0

10

15

20

25

−log((1−))x x6 4

Figure A.9: Transformed function

Next, we set the derivative equal to zero and solve for x.

−6

x
+

4

1− x
= 0

6

x
=

4

1− x
x

6
=

1− x
4

4

6
x = 1− x

10

6
x = 1

x =
6

10
= 0.6

(A.19)

Recall that we required x ∈ [0, 1]. Because 0.6 ∈ [0, 1] we found the optimum
in our set of feasible solutions. Note that this might not always work. In
this case we are lucky because the global optimum of f lies inside our set of
feasible solutions X . In general, this might not be case and we would have to
use different techniques for restricting x to the set X - e.g. we could describe
the constraint x ∈ X by a set of functions and then use Lagrange multipliers
(see section. A.6).

A.3.2. Gradient descent

A very simple and famous iterative algorithm for solving an unconstrained
convex optimization problem (that is minimizing a convex function) is the
gradient descent algorithm.

185 A.3. CONVEX OPTIMIZATION

The algorithm is described in Algorithm 15

Algorithm 15 Gradient descent

1: ~x = ~0 . Initialize ~x
2: repeat
3: ~x = ~x− η∇~xf(~x) . Update ~x
4: until convergence

where η is called step size - in machine learning also called learning rate. It
can be shown (e.g. see [3]), that by choosing the ”correct” value for η the
gradient descent algorithm 15 converges to the optimal solution.
Finding the optimal value of η is another optimization problem (also called
line search)

η = arg min
η

f(~x− η∇~xf(~x)) (A.20)

Sometimes A.20 can be solved analytically, but sometimes it is not solvable
efficiently. In such cases, we can perform iterative optimization techniques
to find the best η, i.e. trying a few values and taking the best one.
When trying different values for η is too inefficient - evaluation of the objec-
tive function might be very time consuming like in deep learning -, we simply
select a fixed value for η, typically η < 1. Sometimes additional heuristics,
like decreasing η over time, are used to get closer to the optimum. Although
that might look very ”imprecise”, these heuristics often work surprisingly
well in practice.
In plain English: If you can do a line search (either solve A.20 exactly or find
a ”good approximation”), do it. If you can not, select a η < 17 and adjust it
over time (e.g. if your objective function stops decreasing).
Techniques for finding the optimal step size are extensively discussed in sec-
tion A.3.6.

The second ingredient of the gradient descent algorithm 15 is the conver-
gence criterion. The convergence criterion is used to determine whether we
should stop the algorithm or not. We know that ∇~xf(~x) = 0 holds if we
found the ~x which minimizes f(~x). Thus a suitable stopping criterion might
be ‖∇~xf(~x)‖ < ε (note that = 0 might never be achieved due to numerical
issues like fixed size representation of numbers).
An additional stopping criterion is to stop when a maximum number of it-
erations is reached.

7make sure that your objective is scaled/preprocessed properly

APPENDIX A. CONVEX OPTIMIZATION 186

Note: In this description of the gradient descent algorithm, we assumed
that f is differentiable. We can easily extend the gradient descent algorithm
to subdifferentiable functions by replacing all occurrences of the gradient
∇~xf(~x) by any element ~d ∈ ∂f(~x). In this case the gradient descent algo-
rithm is also called subgradient algorithm.

Remark: There are more sophisticated solvers8 like Newton methods or
quasi-newton methods. These solvers are more ”complicated” but also more
robust in the sense that they converge faster no matter what the objective
function looks like, which is not true for the gradient descent algorithm.
Some of these ”more sophisticated methods” are discussed in section A.3.4.
In general, you can find more information about these and other methods as
well as mathematical analyses in special literature on optimization like [3],[9].

Beside the discussion of iterative solvers, one should mention that some-
times an analytical solution exists (see section A.3.1). If using/computing
the analytical solution is possible (e.g. we have enough time and resources
to compute it, it is numerically stable, ...), there is no excuse for not doing
so.

A.3.2.1 Example

We want to solve the following convex optimization problem by using the
gradient descent algorithm 15.

min
~w∈R2

1

2
‖X~w − ~y‖2

2 where X ∈ R100×2, ~y ∈ R100 (A.21)

The gradient of A.21 with respect to ~w is given by

∇~w = X>X~w −X~y (A.22)

We start at ~w = (5, 2)> with the step size η = 0.01 and compute 15 itera-
tions of the gradient descent algorithm. After 5 iterations we set η = 0.03
and after 10 iterations we set η = 0.04.
In Fig. A.10 we can see how the gradient descent algorithm behaves.
In the first plot, we can see how the value of the objective function is chang-
ing over time. As we can see, the value decreases over time which means
that we get closer to the optimum (minimum of the objective). We observe
that the value descreases very rapidly in the beginning whereas the changes

8The gradient descent algorithm is the simplest thing you can do, but it is not always
the best thing you could do!

187 A.3. CONVEX OPTIMIZATION

become smaller later in time. An explanation of this behaviour can be found
in the second plot (see below for a discussion).
The second plot shows the contours of the objective function as well as the
intermediate estimates of ~w. We can see that the the estimates of ~w get
closer and closer to the optimum. In the beginning we make ”huge” steps,
whereas the steps become smaller near the optimum. This is because the
gradient becomes smaller (closer to zero) when we are close to the optimum
- this is why we should use an adaptive step size η.

Remark: This is a toy example only. In practice we should use a line
search for computing the optimal step size η as well as a preprocessing/re-
formulation of A.21. Or we could use a completly different (better suited)
algorithm for solving A.21.

APPENDIX A. CONVEX OPTIMIZATION 188

Figure A.10: Gradient descent - Example

189 A.3. CONVEX OPTIMIZATION

A.3.3. Intuition behind gradient descent

We assume that we want to minimize a given function f : Rd 7→ R.

~x = arg min
~x∈Rd

f(~x) (A.23)

Furthermore, we assume that we do not know how to solve A.23 because the
shape of f might be too complicated or some other reasons prevent us from
working with f directly.
Instead of minimizing f , we could try to minimize a function which is similar
to f but having a much nicer/easier shape.
From Taylor’s theorem we know that we can approximate our function f
around a given point ~xt arbitrarily well (if f is infinitely often differentiable).
The simplest approximation of a function around a point is the first order
Taylor approximation.
The first order Taylor approximation of our function f around ~xt is given by

f(~x) ≈ f(~xt) +∇~xf(~xt)
>(~x− ~xt) (A.24)

Next, we fix a ~xt ∈ Rd and replace f(~x) in A.23 by the first order Taylor
approximation around ~xt. By adding the additional term 1

2η
‖~x− ~xt‖2

2, we
obtain the following optimization problem

~xt+1 = arg min
~x∈Rd

f(~xt) +∇~xf(~xt)
>(~x− ~xt) +

1

2η
‖~x− ~xt‖2

2 (A.25)

In plain English: Find a ~x ∈ Rd which minimizes the first order Taylor ap-
proximation of f around ~xt, subject to the constraint that the distance be-
tween ~xt and ~x is not ”too large” (modeled by the additive term 1

2η
‖~x− ~xt‖2

2).
The trade-off between minimization of f and minimization of the distance
between ~xt and ~x is adjusted by the parameter η.
Note that we need this distance constraint, because otherwise we would min-
imize a line/plane only. The minimum of a line/plane lies somewhere in
infinity, which is not what we want. Furthermore, we could motivate the
distance constraint by observing that the first order Taylor approximation
around a point ~xt becomes more and more imprecise the farther we are away
from ~xt. Therefore we should not go too far away from ~xt.

We notice that A.25 is a convex optimization problem and compute its closed
form solution by computing the gradient of the objective, setting it equal to
zero and finally solve for ~x.

APPENDIX A. CONVEX OPTIMIZATION 190

First, we compute the gradient.

∇~x
(
f(~xt) +∇~xf(~xt)

>(~x− ~xt) +
1

2η
‖~x− ~xt‖2

2

)
= ∇~xf(~xt) +∇~x

(
∇~xf(~xt)

>~x
)
−∇~x

(
∇~xf(~xt)

>~xt
)

+∇~x
1

2η
(~x− ~xt)>(~x− ~xt)

= ∇~xf(~xt) +
1

η
(~x− ~xt)

(A.26)

Next, setting the gradient A.26 equal to zero yields

∇~xf(~xt) +
1

η
(~x− ~xt) = ~0

⇔
~x = ~xt − η∇~xf(~xt)

(A.27)

Thus, the solution to A.25 is given by

~xt+1 = ~xt − η∇~xf(~xt) (A.28)

By comparing A.28 and the gradient descent algorithm 15, we observe that A.28
is equivalent to one update step in Algorithm 15. This observation enables
us to understand the idea/principle behind the gradient descent algorithm.

In plain English: The gradient descent algorithm starts at some ”arbitrary”
point, computes the first order Taylor approximation around this point and
solves A.25. The solution of A.25 becomes the new starting point for the
next iteration, where we again compute the first order Taylor approximation
around the new point (solution of the previous iteration) and solve A.25. This
procedure is repeated until we converged to the minimum or some other con-
vergence criterion is fulfilled.
The step size η acts as a regularization of the solution, in the sense that it
penalizes large deviations from the previous point. This is beneficial, because
the first order Taylor approximation around a particular point is only a good
approximation near this point.

The idea of solving a local approximation of a function and restricting the
solution to this local area, is exactly the idea behind trust region methods9.

9see [9] for more information

191 A.3. CONVEX OPTIMIZATION

A.3.4. Newton’s method

The second order Taylor approximation of f around ~xt is given by

f(~x) ≈ f(~xt) +∇~xf(~xt)
>(~x− ~xt) +

1

2
(~x− ~xt)>∇2

~xf(~xt)(~x− ~xt) (A.29)

Analogous to the previous section, we can replace f(~x) in A.23 by its sec-
ond order Taylor approximation A.29 and obtain the following optimization
problem

~xt+1 = arg min
~x∈Rd

f(~xt)+∇~xf(~xt)
>(~x−~xt)+

1

2
(~x−~xt)>∇2

~xf(~xt)(~x−~xt)+
1

2λ
‖~x− ~xt‖2

2

(A.30)
where we added the ”distance regularization” 1

2λ
‖~x− ~xt‖2

2 like we did in the
previous section.

First, we compute the gradient of A.30

∇~x
(
f(~xt) +∇~xf(~xt)

>(~x− ~xt) +
1

2
(~x− ~xt)>∇2

~xf(~xt)(~x− ~xt) +
1

2λ
‖~x− ~xt‖2

2

)
= ∇~x

(
f(~xt) +∇~xf(~xt)

>~x−∇~xf(~xt)
>~xt +

1

2
~x>∇2

~xf(~xt)~x−
1

2
~x>∇2

~xf(~xt)−

1

2
~xt∇2

~xf(~xt)~x+ ~x>t ∇2
~xf(~xt)~xt +

1

2λ
(~x− ~xt)>(~x− ~xt)

)
= ∇~xf(~xt) + ∇2

~xf(~xt)~x−∇2
~xf(~xt)~xt +

1

λ
(~x− ~xt)

= ∇~xf(~xt) + ∇2
~xf(~xt)(~x− ~xt) +

1

λ
(~x− ~xt)

= ∇~xf(~xt) + (∇2
~xf(~xt) +

1

λ
I)(~x− ~xt)

(A.31)

Next, setting the gradient A.31 equal to zero yields

∇~xf(~xt) + (∇2
~xf(~xt) +

1

λ
I)(~x− ~xt) = ~0

⇔

~x = ~xt − (∇2
~xf(~xt) +

1

λ
I)−1∇~xf(~xt)

(A.32)

Thus, the solution to A.30 is given by

~xt+1 = ~xt − (∇2
~xf(~xt) +

1

λ
I)−1∇~xf(~xt) (A.33)

APPENDIX A. CONVEX OPTIMIZATION 192

We can derive a very similar result if we ignore the additional term 1
2λ
‖~x− ~xt‖2

2.
By doing so, we obtain the new optimization problem

~xt+1 = arg min
~x∈Rd

f(~xt)+∇~xf(~xt)
>(~x−~xt)+

1

2
(~x−~xt)>∇2

~xf(~xt)(~x−~xt) (A.34)

Computing the gradient of A.34, and setting it to zero yields

∇~xf(~xt) + (∇2
~xf(~xt))(~x− ~xt) = ~0

⇔
~x = ~xt −∇2

~xf(~xt)
−1∇~xf(~xt)

(A.35)

Thus, the solution to A.34 is given by

~xt+1 = ~xt −∇2
~xf(~xt)

−1∇~xf(~xt) (A.36)

A.36 is the ”usual”/”common” update step in Newton’s method.
The pseudocode of Newtons’s method is given in algorithm 16

Algorithm 16 Newton’s method

1: ~x = ~0 . Initialize ~x
2: repeat
3: ~x = ~x− η∇2

~xf(~xt)
−1∇~xf(~x) . Update ~x

4: until convergence

In plain English: Newtons’s method starts at some ”arbitrary” point, com-
pute the second order Taylor approximation around this point and solves A.30.
The solution of A.30 becomes the new starting point for the next iteration,
where we again compute the second order Taylor approximation around the
new point (solution of the previous iteration) and solve A.30. This procedure
is repeated until we converged to the minimum or some other convergence
criterion is fulfilled.

However, there is at least one problem with Newton’s method. The Hessian
∇2

x̃f in A.36 might not always be invertible. If it happens, that the Hessian
is not invertible, we can not compute the update step in algorithm 16.
If the Hessian is not invertible, we could switch from A.36 to A.33. It can
be shown, that if 1

λ
is large enough [9], the matrix (∇2

~xf(~xt) + 1
λ
I) is always

invertible10. In a very naive algorithm, we could choose a ”very large” 1
λ

and

10if f is a convex function, every λ > 0 is sufficient to make the matrix (∇2
~xf(~xt) + 1

λ I)
invertible

193 A.3. CONVEX OPTIMIZATION

hope that it is large enough to make the matrix invertible.
An alternative to A.33 would be to switch to methods where the Hessian is
approximated by an invertible matrix. Quasi-Newton methods, as discussed
in the next section, are such kind of methods.

A.3.5. Quasi-Newton methods

Newton’s method converges much faster than gradient descent. However, it
suffers form two major disadvantages. First, the Hessian ∇2

~xf might not
be invertible, second the Hessian is a square matrix where the dimensions is
equal to the number of parameters of the problem (equal to the dimensions
of ~x) - thus, the Hessian grows quadratically with the number of parameters.
Instead of working with the Hessian, Quasi-Newton methods compute an ap-
proximation of the Hessian or its inverse based on gradients.

Assume that we have a function f(~x) and evaluated the gradient ∇~xf at
two different points ~xt−1 and ~xt.
We compute the second order Taylor approximation of f around ~xt as

fapprox(~x) = f(~xt) +∇~xf(~xt)(~x− ~xt) +
1

2
(~x− ~xt)>Ht(~x− ~xt) (A.37)

where Ht is an approximation of the Hessian ∇2
~xf(~xt) at ~xt.

The gradient of fapprox A.37 with respect to ~x is given by

∇~xfapprox(~x) = ∇~xf(~xt) + Ht(~x− ~xt) (A.38)

We require that the gradients of the approximation fapprox are the same as
the true gradients at ~xt−1 and ~xt. Thus

∇~xfapprox(~xt−1) = ∇~xf(~xt−1)

∇~xfapprox(~xt) = ∇~xf(~xt)
(A.39)

Note that ∇~xfapprox(~xt) = ∇~xf(~xt) holds by construction of fapprox. Plugging
∇~xfapprox(~xt−1) = ∇~xf(~xt−1) into A.38 yields

∇~xfapprox(~xt−1) = ∇~xf(~xt) + Ht(~xt−1 − ~xt) = ∇~xf(~xt−1) (A.40)

Rearranging A.40 yields

∇~xf(~xt) + Ht(~xt−1 − ~xt) = ∇~xf(~xt−1)

⇔ Ht(~xt−1 − ~xt) = ∇~xf(~xt−1)−∇~xf(~xt)

⇔ Ht(~xt − ~xt−1) = ∇~xf(~xt)−∇~xf(~xt−1)

(A.41)

APPENDIX A. CONVEX OPTIMIZATION 194

We obtain the secant condition, which is given by

Ht~st = ~yt (A.42)

where ~st = (~xt − ~xt−1) and ~yt = ∇~xf(~xt)−∇~xf(~xt−1).
The secant condition makes sure that the approximation Ht ”behaves like a
real Hessian”.

Besides the secant condition, we want the approximation Ht to be close
to the previous approximation of the Hessian Ht−1. Furthermore, we want
the approximation of the Hessian to be symmetric.
Finally, we obtain the following optimization problem for computing an ap-
proximation of the Hessian

Ht = arg min
H

‖H−Ht−1‖

s.t.

H> = H and H(~xt − ~xt−1) = ∇~xf(~xt)−∇~xf(~xt−1)

(A.43)

where different matrix norms ‖·‖ results in different methods. In the next
section we discuss the BFGS method.

A.3.5.1 BFGS

The Broyden-Fletcher-Goldfarb-Shanno (short: BFGS) method is a popular
quasi-newton method.
The BFGS method computes the approximation Ht+1 by adding a rank two
matrix to the previous approximation Ht

Ht = Ht−1 + α~u~u> + β~v~v> (A.44)

Note that if Ht−1 is symmetric, so is Ht.
Applying the secant condition A.42 to A.44 yields

Ht~st = ~yt(
Ht−1 + α~u~u> + β~v~v>

)
~st = ~yt

α~u~u>~st + β~v~v>~st = ~yt −Ht−1~st

(A.45)

If we ”arbitrarily” set

~u = ~yt

~v = Ht−1~st
(A.46)

195 A.3. CONVEX OPTIMIZATION

we obtain

α~yt~y
>
t ~st + βHt−1~st (Ht−1~st)

> ~st = ~yt −Ht−1~st

α~yt~y
>
t ~st + βHt−1~st~s

>
t H>t−1~st = ~yt −Ht−1~st

(A.47)

When solving A.47 for α and β, we find that

α =
1

~y>t ~st

β = − 1

~s>t Ht−1~st

(A.48)

By plugging everything back into A.44, we obtain the BFGS update of the
approximation of the Hessian

Ht = Ht−1 +
~yt~y
>
t

~y>t ~st
− Ht−1~st~s

>
t Ht−1

~s>t Ht−1~s

where

~st = ~xt+1 − ~xt ~yt = ∇~xf(~xt+1)−∇~xf(~xt)

H0 = I

(A.49)

where in practice the initialization H0 = I is sometimes replaced by a
”smarter initialization”.

A.3.5.1.1 Updating the inverse
In A.49 we compute an approximation of the Hessian. However, we need
its inverse H−1

t for computing a step in Newtons’s method. We could invert
Ht manually but this might be computational expensive. A better approach
would be to update and maintain the inverse H−1

t instead of Ht. We can do
so by using the Woodbury matrix identity11 which is given by

(A + UDV)−1 = A−1 −A−1U(D−1 + VA−1U)−1VA−1 (A.50)

We can recover A.49 by setting

A = Ht

U =
(
Ht−1~st ~yt

)
V =

(
~s>t Ht−1

~y>t

)
D =

(
− 1
~stHt−1~st

0

0 1
~y>t ~st

) (A.51)

11see https://en.m.wikipedia.org/wiki/Woodbury_matrix_identity

https://en.m.wikipedia.org/wiki/Woodbury_matrix_identity

APPENDIX A. CONVEX OPTIMIZATION 196

The inverse of D is given by

D−1 =

(
−~s>t Ht−1~st 0

0 ~y>t ~st

)
(A.52)

Plugging A.51 and A.52 into A.50 yields

H−1
t =

(
Ht−1 +

(
Ht−1~st ~yt

)(− 1
~stHt−1~st

0

0 1
~y>t ~st

)(
~s>t Ht−1

~y>t

))−1

= H−1
t−1 −H−1

t−1

(
Ht−1~st ~yt

)((
−~s>t Ht−1~st 0

0 ~y>t ~st

)
+

(
~s>t Ht−1

~y>t

)
H−1
t−1

(
Ht−1~st ~yt

))−1(
~s>t Ht−1

~y>t

)
H−1
t−1

= H−1
t−1 −H−1

t−1

(
Ht−1~st ~yt

)((−~s>t Ht−1~st 0
0 ~y>t ~st

)
+

(
~s>t Ht−1

~y>t

)(
~st H−1

t−1~yt
))−1

(
~s>t Ht−1

~y>t

)
H−1
t−1

= H−1
t−1 −H−1

t−1

(
Ht−1~st ~yt

)((−~s>t Ht−1~st 0
0 ~y>t ~st

)
+

(
~s>t Ht−1~st ~s>t ~yt
~y>t ~st ~y>t H−1

t−1~yt

))−1

(
~s>t Ht−1

~y>t

)
H−1
t−1

= H−1
t−1 −H−1

t−1

(
Ht−1~st ~yt

)(0 ~s>t ~yt
~y>t ~st ~y>t ~st + ~y>t Ht−1~yt

)−1(
~s>t Ht−1

~y>t

)
H−1
t−1

= H−1
t−1 −H−1

t−1

(
Ht−1~st ~yt

)(−~y>t ~st+~y
>
t H−1

t−1~yt

(~s>t ~yt)
2

1
~s>t ~yt

1
~s>t ~yt

0

)(
~s>t Ht−1

~y>t

)
H−1
t−1

= H−1
t−1 −

(
~st H−1

t−1~yt
)(−~y>t ~st+~y

>
t H−1

t−1~yt

(~s>t ~yt)
2

1
~s>t ~yt

1
~s>t ~yt

0

)(
~s>t

~y>t H−1
t−1

)

= H−1
t−1 −

(
~st H−1

t−1~yt
)−~y>t ~st~s

>
t +~y>t H−1

t−1~yt~s
>
t

(~s>t ~yt)
2 +

~y>t H−1
t−1

~s>t ~yt
~s>t
~s>t ~yt

= H−1

t−1 +
~st~s
>
t

~s>t ~yt
+
~st~y
>
t H−1

t−1~y~s
>
t

(~s>t ~yt)
2
−
~st~y
>
t H−1

t−1

~s>t ~yt
−

H−1
t−1~yt~s

>
t

~s>t ~yt

= H−1
t−1 −

~st~y
>
t H−1

t−1 + H−1
t−1~yt~s

>
t

~y>t ~st
+
~st~s
>
t

~y>t ~st

(
I +

~y>t H−1
t−1~yt

~y>t ~st

)
=
(
I− ~st~y

>
t

~y>t ~st

)
H−1
t−1

(
I− ~yt~s

>
t

~y>t ~st

)
+
~st~s
>
t

~y>t ~st
(A.53)

197 A.3. CONVEX OPTIMIZATION

Finally, we obtain the bfgs update for updating the inverse approximation of
the Hessian.

H−1
t =

(
I− ~st~y

>
t

~y>t ~st

)
H−1
t−1

(
I− ~yt~s

>
t

~y>t ~st

)
+
~st~s
>
t

~y>t ~st

=
(
I− ρt~st~y>t

)
H−1
t−1

(
I− ρt~yt~s>t

)
+ ρt~st~s

>
t

= V>t H−1
t−1Vt + ρt~st~s

>
t

where

~st = ~xt − ~xt−1 ~yt = ∇~xf(~xt)−∇~xf(~xt−1) ρt =
1

~y>t ~st

Vt = I− ρt~yt~s>t H−1
0 = I

(A.54)

A.3.5.2 L-BFGS

The Limited-memory BFGS (L-BFGS) algorithm computes the direction
~d = H−1

t ∇~xf(~xt) without explicitly computing H−1
t . It does so by using only

the last m values of ~si, ~yi and ρi for constructing the approximation of the
inverted Hessian H−1

t (see A.54). Because of this, we can derive an iterative

algorithm (the L-BFGS algorithm) for computing ~d.
This algorithm is very memory efficient because we do not have to compute
and store the inverted Hessian. We only need to store the last m values of ~si,
~yi and ρi. The quantity ~d = H−1

t ∇~xf(~xt) is obtained by computing a bunch
of scalar products and vector additions.

The L-BFGS algorithm is described in Algorithm 1712.

A.3.6. Choosing the step length

We assume that we already found a step direction ~d for updating our current
estimate ~x for minimizing the function f . Finding the optimal step length η
can be formulated as the following optimization problem

η = arg min
η

f(~x+ η~d)) (A.55)

The step direction ~d differs from algorithm to algorithm. In the gradient de-
scent algorithm ~d = −∇~xf(~x), in Newton’s method ~d = −∇2

~xf(~x)−1∇~xf(~x)

12taken & modified from [9]

APPENDIX A. CONVEX OPTIMIZATION 198

Algorithm 17 L-BFGS algorithm

1: ~q = ∇~xf(~xt)
2: for i = t− 1, ..., t−m do
3: αi = ρi~s

>
i ~q

4: ~q = ~q − αi~yi
5: end for
6: ~d = H−1

0 ~q
7: for i = t−m, ..., t− 1 do
8: ~d = ~d+ ~si(αi − ρi~y>i ~d)

9: end for . Now: ~d = H−1
t ∇~xf(~xt)

where ∇2
~xf(~x)−1 is just an approximation in Quasi-Newton methods.

In the ideal case we can solve A.55 analytically. If we can not do so, we
use a inexact line search. In an inexact line search, we simply try many
possible values of η and select the best one. It is called inexact because we
might not find the best step size η. However, a ”good” value of η is often
sufficient to make reasonable progress.

A set of constraints on the step length η for guaranteeing sufficient progress
is given by the Wolfe conditions13

f(~x+ η~d) ≤ f(~x) + c1η~d
>∇~xf(~x) (A.56)

−~d>∇~xf(~x+ η~d) ≤ −c2
~d>∇~xf(~x) (A.57)

where c1 and c2 are chosen such that 0 < c1 < c2 < 1. c1 and c2 are hyper-
parameters which define acceptable step length.
Note that A.56 is also called Armijo condition and A.57 is also called curva-
ture condition.

The backtracking line search algorithm is an algorithm for computing an
acceptable step length (acceptable according to the Wolfe conditions) by
starting with a step length (e.g. η = 1.0) and then repeatedly reducing the
step length until Armijo’s condition A.56 is satisfied. Because of this pro-
cedure of reducing the step length, we are guaranteed to satisfy A.57 too,
although we do not use it as an termination criterion in the algorithm.
The backtracking line search algorithm is described in algorithm 1814

13see https://en.wikipedia.org/wiki/Wolfe_conditions
14see [9]

https://en.wikipedia.org/wiki/Wolfe_conditions

199 A.3. CONVEX OPTIMIZATION

Algorithm 18 Backtracking line search

1: η = η0 . Inital step size (usually η0 = 1.0)
2: c ∈ (0, 1) . c1 in A.56
3: ρ ∈ (0, 1) . Shrinkage factor
4: repeat
5: η = ρη . Reduce step size η
6: until f(~x+ η~d) ≤ f(~x) + cη~d>∇~xf(~x)

A.3.7. Coordinate descent

We consider a convex optimization problem of the following form

min
~θ∈Rd

f(~θ) +
∑
j

hj((~θ)j) (A.58)

where f and hj are convex functions. Furthermore, we assume that f is
differentiable everywhere (viz. f is a smooth function).
Then, the coordinate descent algorithm is guaranteed to solve A.58.

The coordinate descent algorithm starts with an initial ”guess” of ~θ and
then repeatedly iterates over all dimensions of ~θ and updates each coordi-
nate/dimension of ~θ separately by computing

(~θ)t+1
i = arg min

θi ∈R
f(..., (~θ)t+1

i−1, θi, (
~θ)ti+1, ...) (A.59)

Note that we always make use of the currently best known values of ~θ. We
do not wait until an iteration is over, but instead we update the values of ~θ
immediately.
The final algorithm is described in Algorithm 19

Algorithm 19 Coordinate descent algorithm

1: ~θ = Initialize ~θ
2: repeat
3: for all (~θ)i do . Iterate over all dimensions of ~θ

4: (~θ)i = arg min
θi∈R

f(..., θi, ...) . Update ~θ

5: end for
6: until convergence

APPENDIX A. CONVEX OPTIMIZATION 200

A.4. Linear programming

A linear program (LP) is an instance of a constrained convex optimization
problem and defined as

min
~x∈Rd

~c>~x

s.t.

A~x = ~b

G~x ≥ ~0

(A.60)

where the vector ~c ∈ Rd specifies the optimization objective, the matrix
A ∈ Rm×d and the vector ~b ∈ R specify the m equality constraints and the
matrix G ∈ Rk×d specifies the k inequality constraints15.
In plain English: A linear program looks for a solution ~x, such that the lin-
ear combination ~c>~x is minimized and (if present) all equality and inequality
constraints are fulfilled. Note that all constrains must be specified as a linear
combination of ~x.

There exist a bunch of algorithms (e.g. simplex algorithm or interior point
method) for solving a linear program. However, a detailed discussion of those
algorithms is behind he scope of this text. We refer the interested reader to
specific material on linear programming.
For us it is sufficient to keep in mind that there are algorithms for solving
linear programs efficiently.

A.4.1. Example

Suppose that we want to solve the following maximization problem

max
x1,x2 ∈R

x1 + 2x2

s.t. x1 ≥ 0 x2 ≥ 0

x1 + x2 = 42

(A.61)

15note that we could convert all equality constraints into inequality contraints - we would
need 2 inequality constraints for each equality constraint

201 A.5. QUADRATIC PROGRAMMING

We can transform A.61 into a linear program by setting

A =
(
1 1

)
G =

(
1 0
0 1

)
~c = (−1,−2)>

~b = (42)>

~x = (x1, x2)>

(A.62)

A.5. Quadratic programming

A quadratic program (QP) is an instance of a constrained convex optimization
problem and defined as

min
~x∈Rd

1

2
~x>Q~x+ ~c>~x

s.t.

A~x ≤ ~b

(A.63)

where Q ∈ Rd×d is a symmetric matrix. If Q is a symmetric postive semidef-
inite matrix, A.63 is called a convex quadratic program because Q is the
Hessian of 1

2
~x>Q~x+ ~c>~x.

Like in linear programming, there exist a bunch of algorithms for solving
a quadratic program efficiently.

A.5.1. Eample

Suppose that we want to solve the following minimization problem

min
x1,x2 ∈R

2x2
1 + 2x1x2 + x1

s.t. x1 ≥ 0 x2 ≥ 0

x1 + x2 = 1

(A.64)

APPENDIX A. CONVEX OPTIMIZATION 202

We can transform A.64 into a quadratic program by setting

Q =

(
4 2
2 0

)

A =

−1 0
0 −1
−1 −1
1 1

~c = (1, 0)>

~b = (0, 0,−1, 1)>

~x = (x1, x2)>

(A.65)

where we wrote the equality constraint x1 + x2 = 1 as two inequality con-
straints x1 + x2 ≤ 1 and x1 + x2 ≥ 1.

A.6. Lagrangian duality

We consider the following optimization problem

min
~x∈Rd

f(~x)

s.t.

gi(~x) ≤ 0 ∀ i ∈ {1, ...,m}
hj(~x) = 0 ∀ j ∈ {1, ..., k}

(A.66)

where f : Rd 7→ R, gi : Rd 7→ R and hj : Rd 7→ R are arbitrary function - not
necessarily convex.
Furthermore, we define ~x∗ to be the minimizer of A.66 and p∗ = f(~x∗).

Next, we integrate the constraints into the objective and obtain the equiva-
lent optimization problem.

min
~x∈Rd

f(~x) +
∑
i

I−(gi(~x)) +
∑
j

I0(hj(~x)) (A.67)

where

I−(u) =

{
0 if u ≤ 0

∞ otherwise
(A.68)

I0(u) =

{
0 if u = 0

∞ otherwise
(A.69)

203 A.6. LAGRANGIAN DUALITY

The optimization problem A.66 or A.67 (they are equivalent to each other)
are called primal problem.

Because I−(gi(~x)) and I0(hj(~x)) are not that nice to work with - they are not
steady and either zero or infinity, we approximate them by ”more friendly”
lower bounds.
We introduce the following lower bounds

I−(gi(~x)) ≥ (~λ1)igi(~x) where (~λ1)i ∈ R+ (A.70)

I0(hj(~x)) ≥ (~λ2)jhj(~x) where (~λ2)j ∈ R (A.71)

See Fig. A.11 for an illustration.

Figure A.11: Lagrange multiplier

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0

∞ I g x−(())i

λg xi()

λg xi()

Figure A.12: Inequality constraint

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0

∞

I h x0(())i

λh xi()

λh xi()

Figure A.13: Equality constraint

By using the lower bounds A.70 and A.71, we define the Lagrangian function
L of A.66 as

L(~x,~λ1, ~λ2) = f(x) +
∑
i

(~λ1)igi(~x) +
∑
j

(~λ2)jhj(~x) (A.72)

where ~λ1 and ~λ2 are called Lagrange multipliers or dual variables.

Because we replaced I−(gi(~x)) and I0(hj(~x)) by lower bounds, we know that

APPENDIX A. CONVEX OPTIMIZATION 204

f(~x) +
∑
i

I−(gi(~x)) +
∑
j

I0(hj(~x)) ≥ f(x) +
∑
i

(~λ1)igi(~x) +
∑
j

(~λ2)jhj(~x)

= L(~x,~λ1, ~λ2)

(A.73)

We can recover A.67 by maximizing A.72 over ~λ1 and ~λ2. If a constraint
i is satisfied, we set the corresponding (~λ)i to 0 and (~λ)i → ∞ otherwise.
Therefore, with a slight abuse of notation16, we can write

f(~x) +
∑
i

I−(gi(~x)) +
∑
j

I0(hj(~x)) = max
~λ1 ∈Rm

+ ,

~λ2 ∈Rk

L(~x,~λ1, ~λ2) (A.74)

Because of A.74, we can rewrite A.67 as

min
~x∈Rd

f(~x) +
∑
i

I−(gi(~x)) +
∑
j

I0(hj(~x)) = min
~x∈Rd

max
~λ1 ∈Rm

+ ,

~λ2 ∈Rk

L(~x,~λ1, ~λ2) (A.75)

We define the Lagrange dual function LD(~λ1, ~λ2) of A.72 as

LD(~λ1, ~λ2) = min
~x∈Rd

L(~x,~λ1, ~λ2) (A.76)

By construction we have that

f(~x) +
∑
i

I−(gi(~x)) +
∑
j

I0(hj(~x)) ≥ L(~x,~λ1, ~λ2)

≥ min
~x∈Rd

L(~x,~λ1, ~λ2)

= LD(~λ1, ~λ2)

(A.77)

Because of A.77, we know that the dual is always a lower bound of the
optimal value p∗ from A.66.

LD(~λ1, ~λ2) ≤ p∗ (A.78)

Note: The Lagrange dual function A.78 is always a concave function (no
matter what the functions f ,gi or hi from the primal A.66 are).

16Actually, our notation is not quite right. We should write sup instead of max and
inf instead of min. However, in order to not confuse mathematical less skilled students,
we stick to max and min. We express our apologies to all mathematicians reading these
notes.

205 A.6. LAGRANGIAN DUALITY

Next, we define the dual problem as

max
~λ1 ∈Rm

+ ,

~λ2 ∈Rk

LD(~λ1, ~λ2) (A.79)

Let ~λ1∗ and ~λ2∗ be the maximizers of A.79 and d∗ = LD(~λ1∗ , ~λ2∗).
Because of A.78 we always have

d∗ ≤ p∗ (A.80)

The value p∗ − d∗ is called duality gap.

Because of A.80, we always have weak duality (d∗ ≤ p∗). Thus

min
~x∈Rd

f(~x) +
∑
i

I−(gi(~x)) +
∑
j

I0(hj(~x)) ≥ max
~λ1 ∈Rm

+ ,

~λ2 ∈Rk

LD(~λ1, ~λ2) (A.81)

We say that strong duality holds, if p∗ − d∗ = 0. Thus17

min
~x∈Rd

f(~x) +
∑
i

I−(gi(~x)) +
∑
j

I0(hj(~x)) = max
~λ1 ∈Rm

+ ,

~λ2 ∈Rk

LD(~λ1, ~λ2)

= max
~λ1 ∈Rm

+ ,

~λ2 ∈Rk

min
~x∈Rd

L(~x,~λ1, ~λ2)

= min
~x∈Rd

max
~λ1 ∈Rm

+ ,

~λ2 ∈Rk

L(~x,~λ1, ~λ2)

(A.82)

In case of strong duality, solving the dual problem A.79 is equivalent to solv-
ing the primal problem A.66.

Because of weak duality, maximizing the dual LD gives us a (non-trivial)
lower bound of the primal solution. In the ideal case, we have strong duality
and instead of solving the primal problem we can maximize the dual and ob-
tain the optimal solution to the primal. Unfortunately, strong duality does
not always hold.

There exist several constraint qualifications18 (also called regularity condi-
tions) defining conditions for strong duality. A very famous (and for us

17Note: Because of strong duality we can swap the min-max in A.75
18Note that these conditions are sufficient but not necessary

APPENDIX A. CONVEX OPTIMIZATION 206

useful) constraint qualification is Slater’s condition.
We consider the following optimization problem

min
~x∈Rd

f(~x)

s.t.

gi(~x) ≤ 0 ∀ i ∈ {1, ...,m}
A~x = ~b

(A.83)

where f : Rd 7→ R and gi : Rd 7→ R are convex functions19. Slater’s condition
requires that there exists a feasible point ~xi such that gi(~xi) < 0 ∀ i. If
Slater’s condition is fulfilled, strong duality is guaranteed.

A.6.1. Optimality conditions

If strong duality holds, we can define a couple of necessary conditions for
optimality. That is, any pair of optimal dual and primal points (~x∗, ~λ1∗ , ~λ2∗)
must satisfy these conditions.

The gradient20 of the Lagrange function with respect to the parameter

∇~xL(~x∗, ~λ1∗ , ~λ2∗) = ∇~xf(~x∗) +
∑
i

(~λ1∗)i∇~xgi(~x∗) +
∑
j

(~λ2∗)j∇~xhj(~x∗)

(A.84)
must be equal to zero. Therefore

∇~xL(~x∗, ~λ1∗ , ~λ2∗) = ~0

⇔

∇~xf(~x∗) +
∑
i

(~λ1∗)i∇~xgi(~x∗) +
∑
j

(~λ2∗)j∇~xhj(~x∗) = ~0

⇔

∇~xf(~x∗) = −
∑
i

(~λ1∗)i∇~xgi(~x∗)−
∑
j

(~λ2∗)j∇~xhj(~x∗)

(A.85)

When talking about optimality, we implicitly assume feasibility. Thus, all
constraints must be satisfied.
Note that we can recover the original constraints by computing the derivative

19Note that the equality constraints hj are replaced by an affine function
20we assume that the functions are differentiable

207 A.6. LAGRANGIAN DUALITY

of the Lagrange function with respect to the Lagrange multipliers.

∇~λ2L(~x∗, ~λ1∗ , ~λ2∗) = 0

⇔∑
j

hj(~x∗) = 0
(A.86)

If strong duality holds, we know that∑
i

(~λ1∗)i gi(~x∗) = 0 (A.87)

Because (~λ1∗)i ≥ 0 ∀ i, we can conclude that

(~λ1∗)i gi(~x∗) = 0 ∀ i ∈ {1, ...,m}
⇔

(~λ1∗)i > 0 =⇒ gi(~x∗) = 0

⇔
gi(~x∗) < 0 =⇒ (~λ1∗)i = 0

(A.88)

A.88 is also called complementary slackness.

By making use of the previously discussed conditions, we can define the
KKT-conditions (Karush-Kuhn-Tucker conditions) as

1. ∇~xL(~x∗, ~λ1∗ , ~λ2∗) = ~0

2. hj(~x∗) = 0 ∀ j ∈ {1, ..., k}

3. gi(~x∗) ≤ 0 ∀ i ∈ {1, ...,m}

4. (~λ1∗)i > 0 ∀ i ∈ {1, ...,m}

5. (~λ1∗)i gi(~x∗) = 0 ∀ i ∈ {1, ...,m}

The KKT-conditions A.6.1 are necessary conditions for optimality of any
pair of optimal primal and dual points (~x∗, ~λ1∗ , ~λ2∗).
If the primal is a convex optimization problem, the KTT-conditions A.6.1 are
sufficient conditions, too.

APPENDIX A. CONVEX OPTIMIZATION 208

A.6.2. Example

Suppose that we want to solve the following minimization problem

min
x1,x2 ∈R

x2
1 + x2

2

s.t. 2x1 + 2x2 ≥ 4
(A.89)

The Lagrange function of A.89 is given by

L(x1, x2, λ) = x2
1 + x2

2 + λ (4− 2x1 − 2x2) (A.90)

The optimality conditions yield

∂L
∂x1

= 0

⇔ 2x1 − 2λ = 0

⇔ λ = x1

(A.91)

and

∂L
∂x2

= 0

⇔ 2x2 − 2λ = 0

⇔ λ = x2

(A.92)

Now, we know that x1 = x2. Substituting this into the original problem
yields

min
x1 ∈R

2x2
1

s.t. 4x1 ≥ 4
(A.93)

From the constraint we find that x1 ≥ 1. Because the objective 2x2
1 is a non-

decreasing function, we can conclude that the solution to our minimization
problem is given by x1 = x2 = 1.

Note: In this toy example we were able to derive a closed form solution
by looking at the optimality conditions, substituting them back into the
original problem and ”observed” the solution by making a simple argument
about the constraint and objective. We did not even use duality.
Many problems are much more complicated and can not be solved that easily.
It might be the case that neither the primal nor the dual has a closed form
solution. Fruthermore, we might not always have strong duality.

209 A.7. OUTLOOK

A.7. Outlook

In this section we looked at convex functions and convex optimization prob-
lems. There is much more to say about convex optimization than we covered
in the last sections - we omitted many/all proofs and derivations. However,
the presented material will be sufficient for understanding and solving all
optimization problems which we will encounter in the the rest of these notes.
If you want to know more about convex optimization, a good starting point
is the excellent textbook [3] about convex optimization and the coresspond-
ing (online) lecture ”Convex optimization” I and II by Prof. Boyd (Stanford
university).
Another great resource is [9] and the online lecture ”Convex optimization”
by Prof. Ryan Tibshirani21.

21see http://www.stat.cmu.edu/~ryantibs/

https://see.stanford.edu/Course/EE364A
https://see.stanford.edu/Course/EE364B
http://www.stat.cmu.edu/~ryantibs/

APPENDIX A. CONVEX OPTIMIZATION 210

A.8. Exercises

1. Prove that the following functions are convex.

(a) f(x) = 2x4 − 42 with x ∈ R
(b) f(x) = ‖x‖p with x ∈ R, p ∈ N

(c) f(~x) = A~x+~b with ~x,~b ∈ Rd, A ∈ Rd×d

(d) f(x) = c with c ∈ R

2. Show that, if f : R 7→ R and g : R 7→ R are convex functions so is
h(x) = f(x) + g(x).

3. Show that the following sets are convex.

(a) R+

(b) [0, 1]

(c) {A | A> = A, A ∈ Rd×d}

4. Prove that the following sets are not convex.

(a) {A | rank(A) = k, A ∈ Rd×d}

5. Prove that the following functions are concave.

(a) f(x) = −(x)2 with x ∈ R

(b) f(~x) = A~x+~b with ~x,~b ∈ Rd, A ∈ Rd×d

6. Show that the following functions are not convex.

(a) f(x) = x3 + 1 with x ∈ R
(b) f(x) = 1

1+exp(−2x)
with x ∈ R

7. The log-trick.

(a) Prove that f(x) = x6(1− x)4 is not a convex function ∀x ∈ [0, 1].

(b) Prove that f(x) = − log (x6(1− x)4) is a convex function ∀x ∈
[0, 1].

(c) Prove that

arg min
x∈ [0,1]

− log
(
x6(1− x)4

)
= arg max

x ∈ [0,1]

x6(1− x)4 (A.94)

211 A.8. EXERCISES

8. Solve the following optimization problem and prove that your solution
is globally optimal.

arg min
~x∈R2

∑
i

‖~di − ~x‖2
2 (A.95)

where the set {~di}, ~di ∈ R2, is given.

9. Argue why or why not, coordinate descent is suited for solving the
following optimization problems

(a) min
~x∈Rd

|~x>~x− 42|.

(b) min
~x∈Rd

max(0, ~x>~a) +
∑

j |(~x)j − 42| where ~a ∈ Rd.

(c) min
~x∈Rd

||A~x− ~y||+ ‖~x‖2
2 where A ∈ Rn×d, ~y ∈ Rn.

APPENDIX A. CONVEX OPTIMIZATION 212

Appendix B

Probability theory & Statistical
inference

This chapter gives a brief review of the most important concepts in proba-
bility theory and statistical inference.

B.1. Basic probability

A random experiment is a ”process” which can be repeated infinitely often
under the same conditions and its result/outcome can not be predicted for
sure.
We denote the set of possible outcomes of a random experiment as Ω (also
called sample space).

An event A is a subset of the sample space Ω

A ⊆ Ω (B.1)

The complement of an event A is defined as

Ā = Ω \ A (B.2)

A probability1 P is a mapping from events to real numbers

P : A ⊆ Ω 7→ R (B.3)

1according to [18]

213

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 214

where the mapping P satisfies

0 ≤ P (A) ≤ 1 ∀A ⊆ Ω (B.4)

P (Ω) = 1

P (∅) = 0
(B.5)

and

P

(⋃
i

Bi
)

=
∑
i

P (Bi)

where

Bi ∩ Bj = ∅ ∀ i, j

(B.6)

We interpret P (ω), ω ∈ Ω, as the probability that the outcome of the random
experiment is ω. Furthermore, we interpret P (A), A ⊆ Ω, as the probability
that the outcome of the random experiment is contained in the set A.

If Ω is finite and each ω ∈ Ω is equally likely, we define the probability
of an event A as

P (A) =
|A|
|Ω|

(B.7)

Note that a random experiment like B.7 is also called Laplacian experiment.

The probability of the complement of an event can be expressed as

P (Ā) = 1− P (A) (B.8)

We formalize the statements ”probability of events A and B” as

P (A and B) = P (A,B) = P (A ∩ B) (B.9)

and ”probability of events A or B” as

P (A or B) = P (A ∪ B) (B.10)

The probability of the union of events A and B is given by

P (A ∪ B) = P (A) + P (B)− P (A ∩ B) (B.11)

215 B.1. BASIC PROBABILITY

B.1.1. Conditional probabilities

The conditional probability of an event A given an event B is defined as

P (A | B) =
P (A ∩ B)

P (B)
(B.12)

We interpret P (A | B) as the probability of the event A where we only
consider possibilities where event B occurs.
By rearranging the terms in B.12, we obtain the chain rule for factorizing
the joint probability

P (A,B) = P (A ∩ B)

= P (A | B)P (B)

= P (B | A)P (A)

(B.13)

Substituting B.13 back into B.12 yields a formula known as Bayes’ rule

P (A | B) =
P (A ∩ B)

P (B)

=
P (B | A)P (A)

P (B)

(B.14)

The denominator of B.14 could be computed by using the law of total prob-
ability which is given by

P (A) =
∑
i

P (A | Bi)P (Bi)

where⋃
i

Bi = Ω

Bi ∩ Bj = ∅ ∀ i, j

(B.15)

B.1.2. Independence

We say that two events A and B are called independent if and only if

P (A ∩ B) = P (A)P (B) (B.16)

Plugging B.16 into B.12 yields

P (A | B) = P (A) (B.17)

Thus, knowing that the outcome is contained in event B, does not tell us
anything about the probability of the event A.

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 216

B.2. Random variable

A random variable is a function that maps outcomes of an random experiment
to real numbers

X : Ω 7→ R ⊆ R (B.18)

We can think of it as some kind of ”measure/summary” of the result/out-
come of a random experiment.

We distinguish between discrete and continuous random variables. We call
a random variable X discrete, if the image of X is discrete, and we call the
variable continuous if the image is continuous.

A multivariate random variable (also called random vector) is very simi-
lar to a random variable but instead of mapping outcomes to real numbers,
events are mapped to real-valued vectors

X : Ω 7→ R ⊆ Rd (B.19)

A very simple, but in machine learning often used, random variable is the
identity function.

X : Ω 7→ Ω

X(x) = x ∀x ∈ Ω
(B.20)

B.2.1. Algebraic operations

Let X and Y be two random variables with the same domain and c ∈ R a
scalar. We define the following algebraic operations for constructing a new
random variable Z:

1. Z = X + Y with Z(z) = X(z) + Y (z).

2. Z = X · Y with Z(z) = X(z) · Y (z).

3. Z = c ·X with Z(z) = c · Y (z).

B.2.2. Cumulative distribution function

The cumulative distribution function FX(x), where FX : R 7→ [0, 1], of some
random variable X computes the probability that the random variable takes
on a value less or equal than x.

FX(x) = P (X ≤ x) = P ({ω | X(ω) ≤ x}) (B.21)

217 B.3. PROBABILITY DISTRIBUTIONS

B.3. Probability distributions

Like we did with events, we want to assign a probability or likelihood2 to the
values of a random variable. Thus, we want to know the probability/likeli-
hood that a random variable takes on a particular value. We can do so by
defining a probability distribution for a random variable.

In the next two sections we introduce common probability distributions for
discrete and continuous random variables - we have to distinguish between
probability distributions for discrete random variables and probability dis-
tributions for continuous random variables.

B.3.1. Discrete distributions

The probability distribution of a discrete random variable is fully specified
by a probability mass function (short pmf). A probability mass functions fX
maps the image of a random variable X to the probability that the random
variable takes on a specific value.

fX : Img(X) 7→ [0, 1]

fX(x) = P (X = x) = P
(
{ω | X(ω) = x}

) (B.22)

Furthermore, we require that the sum over the probabilities of all possible
values is equal to one ∑

x∈ Img(X)

fX(x) = 1 (B.23)

The cumulative distribution function is given by

FX(x) = P (X ≤ x) =
∑
i:xi≤x

fX(xi) (B.24)

Because of fX(x) = P (X = x), we can work with probability mass func-
tions like we did with events.

2we will define the term likelihood when talking about continuous probability distribu-
tions in section B.3.2

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 218

B.3.1.1 Bernoulli distribution

The probability mass function of the Bernoulli distribution is defined as

Ber(x | p) = px(1− p)1−x (B.25)

where p ∈ [0, 1] and x ∈ {0, 1}.

Note: The Bernoulli distribution is suited for binary random variables -
random variables that can take on two different values only.

B.3.1.2 Binomial distribution

The probability mass function of the Binomial distribution is defined as

Bin(x | n, p) =

(
n

x

)
px(1− p)n−p (B.26)

where
(
n
x

)
= n!

x!(n−x)!
.

Note: The Binomial distribution describes the probability of x successes
in a sequence of n independent Bernoulli experiments where p is always the
same probability parameter in each Bernoulli experiment.

B.3.1.3 Poisson distribution

The probability mass function of the Poisson distribution is defined as

f(x | λ) =
λx exp(−x)

x!
(B.27)

where x ∈ N and λ > 0.

Note: The Poisson distribution is suited for random variables whose image
is the natural numbers.

B.3.2. Continuous distributions

The probability distribution of a continuous random variable is fully specified
by a probability density function (short pdf). A probability density function
pX maps the image of a random variable X to the likelihood3.

pX : Img(X) 7→ R+ (B.28)

3Note that, from a mathematical point of view, likelihood and probability are not
always the same - although they are often used interchangeably!

219 B.3. PROBABILITY DISTRIBUTIONS

The probability that the random variable takes on a value from the interval
[a, b] is defined as

P (a ≤ X = x ≤ b) =

∫ b

a

pX(x)dx (B.29)

Note that the probability that the random variable takes on a specific value
is zero!

P (X = x) = 0 (B.30)

Similar to the discrete distributions, we require that the probability density
function sums up to one ∫

pX(x)dx = 1 (B.31)

The cumulative distribution function is given by

FX(x) = P (X ≤ x) =

∫ x

−∞
pX(x)dx (B.32)

The conditional probability density function of two continuous random vari-
ables X and Y is given by

pX|Y=y(x) =
pX,Y (x, y)

pY (y)
(B.33)

where pX,Y : Img(X) × Img(Y) 7→ R+ denotes the joint probability density
of X and Y . Note that this is the density version of Bayes’ rule B.14.
By factoring the joint density pX,Y , we can rewrite B.33 as

pX|Y=y(x) =
pY,X=x(y)pX(x)

pY (y)
(B.34)

B.3.2.1 Normal distribution

The Normal distribution (also called Gaussian distribution) comes in an uni-
variate and a multivariate version. The univariate case is for one dimensional
continuous random variables and the multivariate version is for continuous
random vectors.

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 220

B.3.2.1.1 Univariate The probability density function of the univariate
Normal distribution is defined as

N (x | µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(B.35)

where x, µ ∈ R and σ2 > 0.
See Fig. B.1 for a plot of univariate Normal distributions with different values
of σ2.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(
∣

,
)

x
μ
σ

2

μ σ= 0, = 0.52

μ σ= 0, = 0.32

μ σ= 0, = 0.92

Figure B.1: Different Normal distributions

B.3.2.1.2 Multivariate The probability density function of the multi-
variate Normal distribution is defined as

N (~x | ~µ,Σ) =
1√

(2π)d det(Σ)
exp

(
−1

2
(~x− ~µ)>Σ−1(~x− ~µ)

)
(B.36)

221 B.3. PROBABILITY DISTRIBUTIONS

where ~x, ~µ ∈ Rd and Σ ∈ Rd×d.
See Fig. B.3.2.1.2 for a plot of a 2d Normal distribution with ~µ = (0, 0)> and

Σ =

(
1.0 0.3
0.3 0.5

)
.

Figure B.2: Multivariate Normal distribution

Figure B.3: Level curve of the density
of a 2d Normal distribution

Figure B.4: Density of a 2d Normal
distribution

B.3.2.2 Laplace distribution

The probability density function of the Laplace distribution is defined as

Lap(x | µ, b) =
1

2b
exp

(
−|x− µ|

b

)
(B.37)

where x, µ ∈ R and b > 0.
See Fig. B.5 for a plot of Laplace distributions with different values of b.

B.3.2.3 Beta distribution

The probability density function of the Beta distribution is defined as

Beta(x | α, β) =
Γ(α)Γ(β)

Γ(α + β)
xα−1(1− x)β−1 (B.38)

where x ∈ [0, 1] and α, β > 0.
The gamma function4 is defined as

Γ(a) =

{
(a− 1)! if a ∈ N∫∞

0
xa−1 exp(−x)dx otherwise

(B.39)

4a generalization/interpolation of the factorial function

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 222

−3 −2 −1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

La
p

(
∣

,
)

x
μ
b

μ b= 0, = 0.5

μ b= 0, = 0.8

μ b= 0, = 0.2

Figure B.5: Different Laplace distributions

Note: The Beta distribution is suited for random variables whose image is
the interval [0, 1].

B.3.2.4 Exponential distribution

The probability density function of the Exponential distribution is defined as

p(x | λ) = λ exp(−λx) (B.40)

where x ∈ R+ and λ > 0.

223 B.3. PROBABILITY DISTRIBUTIONS

0.0 0.2 0.4 0.6 0.8 1.0
x

0

1

2

3

4

5

B
e
ta

(
∣

,
)

x
α
β

α β= 1, = 3

α β= 2, = 2

α β= 5, = 1

α β= 0.05, = 0.5

α β= 2, = 5

Figure B.6: Different Beta distributions

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 224

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0.0

0.2

0.4

0.6

0.8

f(
∣

)
x

λ

λ=0.5

λ=0.2

λ=0.9

Figure B.7: Different Exponential distributions

225 B.4. EXPECTATION

B.4. Expectation

B.4.1. Expected value

The expected value of a discrete random variable is defined as

E[X] =
∑

xi ∈ Img(X)

xipi (B.41)

where pi = P (X = xi) and P is the corresponding probability mass function
of X.
Similar, we define the expected value of a continuous random variable as

E[X] =

∫ ∞
−∞

xpX(x)dx (B.42)

where pX(x) is the corresponding probability density function of X.

We can interpret the expected value E[X]5 as the ”mean/average” of a prob-
ability distribution.
Other common notations for E[X] are µ or µX .

It follows that:

1. The expectation of a constant c ∈ R is the constant itself.

E[c] = c (B.43)

2. The expectation of the indicator function that an element x is in an
event A, is the probability of event A.

E
[
1(x ∈ A)

]
= P (A) (B.44)

3. Because the expectation is linear, we can write the expectation of the
sum of two random variables X and Y as

E[X + Y] = E[X] + E[Y] (B.45)

4. For any α, β ∈ R we have that

E[αX + β] = αE[X] + β (B.46)

5for the rest of this chapter, we assume that the expected value of a random variable
exists and is finite - otherwise we do not work with it!

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 226

B.4.2. Variance

We define the variance of a random variable X as the expected difference of
the random variable from its expected value.

Var[X] = E[X − E[X]]

= E[X2]− E[X]2
(B.47)

We can interpret the variance as the ”spread” of of a probability distribution.
Sometimes the variance of a random variable X is denoted by σ2

X .

The standard deviation σX of a random variable X is defined as the square
root of the variance

σX =
√

Var[X] (B.48)

The variance of a random variable is invariant to translation. Thus, for any
α ∈ R

Var[X + α] = Var[X] (B.49)

Scaling a random variables by a factor of α ∈ R results in

Var[αX] = α2 Var[X] (B.50)

B.4.3. Covariance

The covariance of two random variables X and Y is defined as

Cov[X, Y] = E[(X − E[X])(Y − E[Y])]

= E[XY]− E[X]E[Y]
(B.51)

and measure the linear relationship between the two random variables.
The covariance of a random variables with itself is equal to the variance of
the random variable

Cov[X,X] = Var[X] (B.52)

The correlation of two random variables X and Y is defined as the normalized
covariance

Corr[X, Y] =
Cov[X, Y]

σXσY
(B.53)

The variance of the sum of two random variables X and Y decomposes into

Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X, Y] (B.54)

227 B.4. EXPECTATION

B.4.4. Transformation

Let g : R 7→ R be any function and X be a discrete random variable. The
expected value of the the transformed random variable g(X) is given by

E[g(X)] =
∑
i

g(xi)P (xi) (B.55)

If X is a continuous random variable

E[g(X)] =

∫
g(x)pX(x)dx (B.56)

B.4.5. Conditional expectation

We can condition a random variable X on an event B by restricting the values
that X can take on to be in the set B. Therefore, the conditional expected
value of X conditioned on the event B is given by

E[X | B] =
∑
x∈B

x fX|B(x) (B.57)

where X is a discrete random variable. If X is a continuous random variable,
we have

E[X | B] =

∫
x∈B

x pX|B(x)dx (B.58)

where pX|B denotes the probability density function of X conditioned on B.

Similar to the law of total probability for events, we have a similar rule
for random variables conditioned on events

E[X] =
∑
i

E[X | Bi]P (Bi)

where⋃
i

Bi = Ω

Bi ∩ Bj = ∅ ∀ i, j

(B.59)

For two random variables X and Y the law of total expectation6 is given
by

E[X] = E[E[X | Y]] (B.60)

6also called tower rule or law of iterated expectation

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 228

B.5. Independence

Similar to events, we can define independence of random variables.
Two discrete random variables X and Y are called independent if and only
if

P (X = x, Y = y) = P (X = x)P (Y = y) (B.61)

Equivalently
P (X = x | Y = y) = P (X = x) (B.62)

Two continuous random variables X and Y are called independent if and
only if

pX,Y (x, y) = pX(x)pY (y) (B.63)

Equivalently
pX|Y (x, y) = pX(x) (B.64)

It follows, that we can write the cumulative distribution function of two
independent random variables X and Y as

FX,Y (x, y) = P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) = FX(x)FY (y)
(B.65)

where X and Y are independent random variables.

Furthermore, if two random variables X and Y are independent, it holds
that

Cov[X, Y] = 0 (B.66)

Note that the reverse is not true - if the covariance of two random variables
is zero, they are not necessarily independent.

We say that a set of random variables {X1, ..., Xn} are i.i.d. if the ran-
dom variables are independent, identically distributed - they are pair-wise
independent and have the same probability distribution.

B.6. Moments

In probability theory, moments measure the ”shape” of a probability distri-
bution. A probability distribution is completely defined by its moments (see
section B.6.1).

229 B.6. MOMENTS

The k-th moment of a random variable X, which is associated with a prob-
ability distribution, is defined as

mk = E[Xk] (B.67)

The k-th central moment of a random variable X is defined as

E[(X − E[X])k] (B.68)

The k-th standardized moment of a random variable X is defined as

E[(X − E[X])k]√
E[(X − E[X])2]

k
(B.69)

Moments are used to compute some characteristics of a probability distribu-
tion.
The first moment is equal to the mean of the distribution.

µX = E[X] = E[X1] (B.70)

The second central moment is equal to the variance of the distribution.

Var[X] = E[(X − E[X])2] (B.71)

The third standardized moment is used as a measure of skewness7 of a prob-
ability distribution. The skewness measures the asymmetry of a probability
distribution.

SkewnessX =
E[(X − E[X])3]

E[(X − E[X])2]
3
2

(B.72)

The fourth standardized moment is used a measure of kurtosis8 of a prob-
ability distribution. The kurtosis measures the ”shape of the tails” of a
probability distribution.

KurtosisX =
E[(X − E[X])4]

E[(X − E[X])2]2
(B.73)

B.6.1. Moment-generating function

For a non-negative random variable X, we define the moment-generating
function (short: mgf) as

MX(t) = E[exp(tX)] t ∈ R (B.74)

7see https://en.wikipedia.org/wiki/Skewness
8see https://en.wikipedia.org/wiki/Kurtosis

https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 230

Note: The moment-generating function does not not always exist9.

The k-th derivative of the moment-generating function MX evaluated at zero
gives us the k-th moment of the distribution of X.

dkMX

dtk
(0) = E[Xk] (B.75)

Note: Knowing the moment-generating function of a random variable is
equivalent to knowing its probability distribution.

B.6.1.1 Example

The moment-generating function of a random variable X following normal
distribution with mean µ and variance σ2 is given by

MX(t) = exp(tµ+
σ2t2

2
) (B.76)

We can derive the k-th moments by computing the k-th derivative of B.76
and evaluate it at t = 0. We obtain the first two moments of the normal
distribution.

m1 = E[X1] =
d1MX

dt1
(0) = µ

m2 = E[X2] =
d2MX

dt2
(0) = µ2 + σ2

(B.77)

A comprehensive list of probability densities and their corresponding moment-
generating functions can be found on wikipedia10.

B.7. Upper bounds

B.7.1. Jensen’s inequality

For any convex function g : R 7→ R and random variable X, Jensen’s in-
equality states that

g(E[X]) ≤ E[g(X)] (B.78)

9The expectation E[exp(tX)] might not exist for all non-negative random variables.
10https://en.wikipedia.org/wiki/Moment-generating_function

https://en.wikipedia.org/wiki/Moment-generating_function

231 B.7. UPPER BOUNDS

B.7.2. Chebyshev’s inequality

For any random variable X with expected value E[X] = µ and variance
Var[X] = σ2, Chebyshev’s inequality states that

P (|X − µ| ≥ tσ) ≤ 1

t2
∀ t > 0 (B.79)

In plain English: The probability that the absolute difference between a
random variable and its mean is greater than t standard deviations can be
bounded above by 1

t2
.

B.7.3. Markov’s inequality

For any non-negative random variable X, Markov’s inequality states that

P (X > t) ≤ E[X]

t
∀ t > 0 (B.80)

B.7.4. Chernoff bound

For any non-negative random variable X, the Chernoff bound states that

P (X > t) ≤ MX(t)

exp(ta)
(B.81)

where MX(t) = E[exp(tX)] is the moment-generating function of X.

B.7.5. Hoeffding’s inequality

For any sequence of n i.i.d.11 and bounded random variables Xi ∈ [a, b] with
expected value E[Xi] = µ, Hoeffding’s inequality states that

P (|X̄n − µ| ≥ ε) ≤ 2 exp

(
− 2nε2

(b− a)2

)
∀ ε > 0

where

X̄n =
1

n

∑
i

Xi

(B.82)

In plain English: The probability that the mean of n i.i.d. bounded random
variables deviates more than epsilon from the distribution’s mean, can be
bounded above by an exponential function in −n - goes exponentially to
zero. Note that this bound is much sharper than the bound from Markov’s
inequality.

11there exists a slightly more general version of Hoeffding’s inequality that only needs
independence but not the assumption of identical distribution

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 232

B.7.6. Cauchy–Schwarz inequality

For any pair of random variables X and Y , the Cauchy-Schwarz inequality
states that

|E[XY]| ≤
√

E[X2]E[Y 2] (B.83)

it follows that
Cov[X, Y]2 ≤ Var[X] Var[Y] (B.84)

B.7.7. Union bound

For any set of events Ai, the Union bound12 states that

P

(⋃
i

Ai

)
≤
∑
i

P (Ai) (B.85)

In plain English: The probability that at least one event in a set of events
occurs is always less or equal than the sum of the probabilities of each indi-
vidual event.

B.8. Law of large numbers

Given a set of i.i.d. random variables Xi with mean E[Xi], then the empirical
mean is equal to the true mean

lim
n→∞

1

n

n∑
i=1

Xi = E[X] (B.86)

Sometimes the law of large numbers B.86 is stated as

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − E[X]

∣∣∣∣∣ < ε

)
= 1 ∀ ε > 0 (B.87)

or equivalent

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − E[X]

∣∣∣∣∣ > ε

)
= 0 ∀ ε > 0 (B.88)

The type of convergence in B.87 and B.88 is called convergence in probability.

12also called Boole’s inequality

233 B.9. CENTRAL LIMIT THEOREM

Eq.B.87 is called the weak law of large numbers. There exists a stronger
version called the strong law of large numbers stated as

P

(
lim
n→∞

1

n

∑
i

Xi = E[X]

)
= 1 (B.89)

where the convergence in B.89 is called almost surely convergence.

Note: The law of large number is the reason why in practice people often
replace the expectation by the average (empirical mean).

B.9. Central limit theorem

Given a set of i.i.d. random variables Xi with mean E[Xi] = µ and variance
Var[Xi] = σ2, we define a new random variable Zn as

Zn =
Sn − nµ√

nσ

where

Sn =
1

n

∑
i

Xi

(B.90)

The central limit theorem states that in the limit (n → ∞ - if we average
infinitely many random variables) Zn and Sn follow a normal distribution

lim
n→∞

Zn ∼ N (0, 1)

lim
n→∞

Sn ∼ N (µ,
σ2

n
)

(B.91)

The type of convergence in B.91 is called convergence in distribution.
Some times B.91 is rewritten in terms of the cumulative distribution. Two
random variables are equal (in the sense that they have the same probability
distribution) if their cumulative distributions are equal

lim
n→∞

F̂Zn(x) = FN(0,1)(x) ∀x (B.92)

where FZn is the empirical cumulative distribution function of Zn.
The empirical distribution function of a set of i.i.d. observations (random
variables) Xi is defined as

F̂n(x) =
1

n

∑
i

1(Xi ≤ x) ∀x (B.93)

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 234

Note: The central limit theorem is the reason why we can use the Normal dis-
tribution to approximate the binomial distribution (if n is sufficiently large)
and the Poisson distribution (if λ is sufficiently large).

B.10. Information theory

Information theory is about quantifying information in communication chan-
nels.
In the following subsections, we introduce important concepts from informa-
tion theory which are often used/needed in machine learning.

B.10.1. Entropy

We define the entropy H(X) of a discrete random variables X as

H(X) = −E[log (P (X))]

= −
∑
i

P (xi) log (P (xi))

=
∑
i

P (xi) log

(
1

P (xi)

) (B.94)

where P (X) denotes the probability mass function of X.
Similar to B.94, we define the entropy H(X) of a continuous random variable
X as

H(X) = −E[log (pX(X))] (B.95)

where pX denotes the probability density function of X.

B.10.2. Kullback-Leibler divergence

The Kullback-Leibler divergence (short KL-divergence) DKL(pX ‖ pY) of two
continuous random variables X and Y is defined as

DKL(pX ‖ pY) =

∫
pX(x) log

(
pX(x)

pY (x)

)
dx (B.96)

where pX and pY denotes the corresponding probability density functions.
For two discrete random variables X and Y , the Kullback-Leibler divergence

235 B.10. INFORMATION THEORY

is defined as

DKL(PX ‖PY) =
∑
i

PX(xi) log

(
PX(xi)

PY (xi)

)
= −

∑
i

PX(xi) log

(
PY (xi)

PX(xi)

)
= −

∑
i

PX(xi) log (PY (xi)) +
∑
i

PX(xi) log (PX(xi))

(B.97)

Note that we require equal images for both random variables.

The Kullback-Leibler divergence is sometimes used a measure for the simi-
larity of two probability distributions. However, it is not a distance metric
because it is not symmetric. We know that

DKL(PX ‖PY) ≥ 0 ∀PX , PY
DKL(PX ‖PY) = 0 ⇔ PX = PY

DKL(PX ‖PY) 6= DKL(PY ‖PX)

(B.98)

B.10.3. Mutual information

The mutual information of two discrete13 random variables X and Y is de-
fined as

I(X, Y) =
∑
yi

∑
xi

PX,Y (xi, yi) log

(
PX,Y (xi, yi)

PX(xi)PY (yi)

)
(B.99)

The mutual information of two random variables is always non-negative
and measures the dependency/correlation between the two random variables.
The higher the mutual information is, the more dependent we expect them
to be. The mutual information of two independent random variables is zero -
thus knowing something about one of the variables does not tell us anything
about the other variable.

Note that B.99 is equal to the KL-divergence of the joint probability PX,Y
and the product PXPY of the individual probabilities.

I(X, Y) = DKL(PX,Y ‖PXPY) (B.100)

13the analogue for continuous random variables can be obtained by replacing the sums
by integrals

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 236

B.10.4. Cross entropy

We define the cross entropy of two random variables X and Y as

H(pX , pY) = H(pX) + DKL(pX ‖ pY) (B.101)

where pX and pY are either the probability density functions or the proba-
bility mass function of X and Y - X and Y are either both continuous or
both discrete.

If we assume thatX and Y are discrete random variables, we can rewrite/sim-
plify B.101 by making use of B.95 and B.97

H(PX ‖PY) = H(PX) + DKL(PX ‖PY)

= −
∑
i

PX(xi) log (PX(xi))−
∑
i

PX(xi) log (PY (xi)) +∑
i

PX(xi) log (PX(xi))

= −
∑
i

PX(xi) log (PY (xi))

(B.102)

B.11. Inference

Statistical inference is all about using data to infer properties/parameters
of a statistical model. We assume that the data have been generated by a
statistical model (e.g. a probability distribution which is defined by a set of
parameters) and we want to use the data to infer some details (e.g. shape or
parameters) of the underlying model.

B.11.1. Estimator

A point estimator (also called statistic) θ̂n of a parameter θ is a random
variable that depends/is computed on n random variables X1, ..., Xn.

θ̂n = e(X1, ..., Xn)

where

e : Img(X)n 7→ Rd

(B.103)

In plain English: A point estimator estimates a single value based on a set
of samples.

237 B.11. INFERENCE

We call an estimator θ̂n consistent if and only if it converges in probabil-
ity to the true parameter θ

lim
n→∞

P (|θ̂n − θ| < ε) = 1 ∀ ε > 0 (B.104)

We call an estimator θ̂n unbiased if and only if the difference of the true
parameter θ and the expectation of the estimator is zero

E[θ̂n]− θ = 0 (B.105)

The term E[θ̂n]− θ is also called bias.

The mean squared error (short mse) of an estimator θ̂n is defined as

MSE(θ̂n, θ) = E[(θ̂n − θ)2] (B.106)

The mean squared error of an estimator can be decomposed as

E[(θ̂n − θ)2] =
(
E[θ̂n]− θ

)2

+ E
[(
θ̂n − E[θ̂n]

)2
]

= bias(θ̂n, θ)
2 + Var[θ̂n]

(B.107)

Note: The decomposition B.107 is also called bias-variance decomposition.

The sample mean µ̂n B.108 is an unbiased and consistent estimator of the
mean E[X] = µ.

µ̂n =
1

n

∑
i

Xi (B.108)

where {Xi} is a set of i.i.d. random variables.

The sample variance σ̂2
n B.109 is an unbiased and consistent estimator of

the variance Var[X] = σ2.

σ̂2
n =

1

n− 1

∑
i

(Xi − µ̂n)2 (B.109)

where {Xi} is a set of i.i.d. random variables and µ̂n denotes the sample
mean.
Sometimes B.109 is stated as

σ̂2
n =

1

n

∑
i

(Xi − µ)2 (B.110)

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 238

where we assume that we know the true mean µ = E[X].
Note that the besides sample mean vs. mean, the only difference between B.109
and B.110 is the 1

n−1
vs. 1

n
. The 1

n−1
in B.109 is necessary to be an unbiased

estimator. B.110 do not need the −1 in the denominator because instead of
using an estimate of the mean it uses the true mean. Both estimators are
unbiased and consistent.

The sample covariance Ĉovn B.111 of two random variables X and Y is
an unbiased and consistent estimator of the covariance.

Ĉovn =
1

n

∑
i

(Xi − µx)(Yi − µy) (B.111)

where we assume that we know the true means µX = E[X] and µY = E[Y].

The empirical cumulative distribution function B.112 of a random variable
X is a consistent estimator of the cumulative distribution function.

F̂n(x) =
1

n

∑
i

1(Xi ≤ x) (B.112)

where {Xi} is a set of i.i.d. random variables.

B.12. Bootstrapping

Assume that we are given data set D = {xi} with |D| = n and an estimator
θ̂n that computes an estimate of some quantity based on n samples.
Bootstrapping is a method for estimating the sample distribution of an es-
timator, where sample distribution denotes the distribution of an estimator.
We do so by sampling from the distribution of an estimator and using these
samples to estimate the quantity of interest (e.g. the mean or variance of the
distribution).

We can compute a sample from the distribution of an estimator by first
computing a bootstrapped dataset from the original dataset.
A bootstrapped data set DB of an original data set D is obtained by ran-
domly sampling n points from D with replacement.
Next, we obtain a sample from the distribution of θ̂n by computing θ̂n(DB)
- that is computing the estimator based on the bootstrapped data set.

239 B.13. CONSTRUCTING ESTIMATORS

B.13. Constructing estimators

There exist many different methods/strategies/approaches for constructing
estimators.
In the next subsections we will discuss the method of moments B.13.1, max-
imum likelihood B.13.2 and maximimum a posteriori B.13.3. The latter two
are very popular and frequently used in machine learning.

B.13.1. Method of moments

We are given n i.i.d. samples {x1, ..., xn} of a random variable X whose

probability density function is parameterized by ~θ = (θ1, ..., θk)
>. We want

to estimate ~θ based on the n samples.

We estimate the k-th moment of X as

m̂k =
1

n

∑
i

xki (B.113)

The method of moments constructs a system of k equations with k unknowns
by setting each of the k moment estimates equal to its theoretical moment
mk(~θ) = E[Xk]14.

m̂1 = m(~θ)1

... =
...

m̂k = mk(~θ)

(B.114)

We can construct an estimate of ~θ by solving B.114 for ~θ.

B.13.1.1 Example

If we have n i.i.d samples {x1, ..., xn} of a normal distribution with mean µ

and variance σ2 (thus ~θ = (µ, σ2)>), we can construct estimators of µ and σ
by using the method of moments.
First, we setup the system of equations.

m̂1 = m(~θ)1 = µ

m̂2 = m(~θ)2 = µ2 + σ2
(B.115)

14the probability density function of X depends on ~θ, so does the moment

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 240

Next, we solve B.115 for µ and σ to obtain the estimators.

µ̂ = m̂1 =
1

n

∑
i

xi

σ̂2 = m̂2 − µ̂2 =
1

n

∑
i

(xi − µ̂)2
(B.116)

B.13.2. Maximum likelihood

The concept of maximum likelihood is a general principle for estimating pa-
rameters of a statistical model and occurs many times in machine learning.

Assume that we have a data set D = {xi} with |D| = n and xi ∈ X .
Next, we assume that we have a statistical model (e.g. a probability density
function) parameterized by a set θ, describing” our data D. ”Describing”
means that, given the parameter of the model, we can compute the ”plausi-
bility” of our data under the model.
In plain English: How likely is it to observe our data D given a model pa-
rameter θ?

We define the likelihood LD
15 as

LD(θ) = pθ(x1, ..., xn) (B.117)

where pθ denotes the statistical model with parameter θ.
If the data points are i.i.d., we can rewrite B.117 as

LD(θ) =
∏
i

pθ(xi) (B.118)

Furthermore, we define the log-likelihood LLD to be

LLD(θ) = log
(

LD(θ)
)

(B.119)

Finally, we define the negative-log-likelihood NLLD) as

NLLD(θ) = − log
(

LDθ)
)

(B.120)

15Note: Sometimes people denote the likelihood as P (D | θ). However, we think that this
notation is confusing because it tempt people to interpret the likelihood as ”the probability
of the data given the model parameter”, which is a wrong interpretation/statement!
See remark at the end of this section.

241 B.13. CONSTRUCTING ESTIMATORS

Sometimes we have a set of input-output pairs D = {(xi, yi)} instead of a
set of single values D = {xi}. In this case we might not be interested (or do
not know) in the joint probability of Xi and Yi but rather in the conditional
probability Yi | Xi - we assume that xi and yi are realizations/observations
of the corresponding random variables Xi and Yi. For instance in predictive
modeling, we often only model the conditional distribution p(Y | X).
We define the conditional likelihood for a set of i.i.d. pairs of random variables
as

LD(θ) =
∏
i

pθ(yi | xi) (B.121)

Like we did with the likelihood B.117, we can define the log-likelihood and
negative-log-likelihood using the conditional likelihood.
For the rest of this section, we will use the likelihood B.117 only, but we
could do exactly the same things with the conditional likelihood B.121.

Next, our goal is to find a θ which maximizes the likelihood B.117.
In plain English: Find the parameter θ which makes our data most probable.
To be more formal, our goal is to solve the following optimization problem -
also known as maximum likelihood estimate (MLE):

θ∗ = arg max
θ∈Θ

LD(θ) (B.122)

Which is equivalent to

θ∗ = arg max
θ∈Θ

LLD(θ) (B.123)

and
θ∗ = arg min

θ∈Θ
NLLD(θ) (B.124)

Note: B.122 and B.123 are equivalent optimization problems because the log
is a monotonically increasing function. B.123 and B.124 are equivalent prob-
lems because maximizing a function is equivalent to minimizing the negative
of the function - thus arg max

x
f(x) = arg min

x
− f(x).

Attention: The likelihood B.117 is a function of θ - the data D is fixed.
From a frequentists point of view, θ is not a random variable. Furthermore,
the likelihood in general is neither a probability nor a probability distribu-
tion. People often call it the ”probability of the data given the parameter”
- this is wrong! However, we will encounter a related interpretation in the
section on Bayesian inference B.13.3.

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 242

B.13.2.1 Example

Assume that we have a data set

D = {xi} = {0, 0, 0, 0, 1, 1, 1, 1, 1, 1} (B.125)

where xi ∈ X = {0, 1}.
We assume that the data xi in D comes from a stochastic model and are
i.i.d.. Thus, we introduce a random variable X : X 7→ X with X(x) = x. We
assume that this random variable follows a Bernoulli distribution xi ∼ Ber(p)
with unknown parameter p.

We want to know the value of p which explains the given data set D the
best. Thus, which p makes the observation of D most likely? We estimate p
by using the maximum likelihood approach from the previous section.

p = arg max
p∈ [0,1]

LD(p) (B.126)

Note: This equation looks very similar to B.122. The only difference is, that
we substituted the model parameter θ by p and maximize over all possible
values of p which is the interval [0, 1] - since p is a probability.
By using the i.i.d. assumption and the Bernoulli distribution we can rewrite
LD(p) in B.126 as

LD(p) =
∏
i

Ber(xi | p)

=
∏
i

pxi(1− p)1−xi
(B.127)

Next, we plug in the specific values from the data set B.125 and obtain

LD(p) =
∏
i

pxi(1− p)1−xi

= p0(1− p)1−0p0(1− p)1−0p0(1− p)1−0p0(1− p)1−0

p1(1− p)1−1p1(1− p)1−1p1(1− p)1−1p1(1− p)1−1

= p6(1− p)4

(B.128)

Finally, we obtain the final optimization problem for estimating p

p = arg max
p∈ [0,1]

p6(1− p)4 (B.129)

243 B.13. CONSTRUCTING ESTIMATORS

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

p
p

6
4

(1
−

)

Likelihood

Figure B.8: Parameter vs. Likelihood

As we can see in Fig. B.8, the solution of B.129 is p = 0.6. Note that this is
the example we worked on in the section on closed-form solutions (see sec-
tion A.3.1.1).

In plain English: The maximum likelihood estimator of the unknown param-
eter p of the data set B.125 - under the modeling assumption - is p = 0.6.

B.13.3. Bayesian inference - Maximum a posteriori

So far, we always assumed that the true parameter θ is unknown but fixed. In
Bayesian inference we assume that the parameter θ itself is random. That
is, θ is a random variable. We denote the probability distribution of θ as
p(θ). The choice of prior p(θ) reflects our believes/assumptions on θ - the
prior expresses which values of θ we think/want are more likely than others.
Next, we assume that the data set D = {X1, ..., Xn} with |D| = n is a set
of i.i.d. random variables Xi ∼ p(x | θ) - note that the parameter θ of the
probability distribution of Xi is a random variable.
We write the conditional distribution of the parameter θ given the data D
as

p(θ | D) =
p(D | θ)p(θ)∫
p(D | θ)p(θ)dθ

(B.130)

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 244

If we fix the data set - we observed an outcome xi of each random variable
Xi, we can rewrite p(D | θ) as

p(D | θ) = p(x1,, xn | θ)

=
∏
i

p(xi | θ)

= LD(θ)

(B.131)

Note that p(D | θ) in B.131 is formally equivalent to the likelihood B.118.
However, from a conceptual point of view, the likelihood in B.131 is not the
same as in B.118. In the frequentist approach B.118 we assumed that θ is
fixed, whether in the Bayesian approach B.131 we assume that θ is random.
This is the subtle but crucial difference - do not mix Bayesian and frequentist
views16!
Because θ itself is random, we can construct a probability distribution over
it. This probability distribution is called posterior and is defined in B.130.
By making use of B.131, we can rewrite this expression as

p(θ | D) =
LD(θ)p(θ)∫
LD(θ)p(θ)dθ

(B.132)

The normalizing constant
∫

LD(θ)p(θ)dθ in the denominator of B.132 is nec-
essary to turn the product of likelihood and prior into a valid probability
distribution. If we ignore the normalizing constant in the denominator, we
find that

p(θ | D) ∝ LD(θ)p(θ) (B.133)

Now, we are ready for constructing estimators of θ using Bayesian inference.

The maximum a posteriori estimator (short MAPE) is defined as

arg max
θ∈Θ

p(θ | D) (B.134)

Because the normalizing constant is a constant, we can rewrite B.134 as

arg max
θ∈Θ

LD(θ)p(θ) (B.135)

16If people call/interpret the likelihood ”the probability of the data given the parame-
ter”, they 1. forgot the normalizing constant, 2. forgot the difference between density and
probability, 3. might mixed up frequentist and Bayesian interpretations and/or they did
not understand the difference between the two interpretations.
If you are ever debating with such people, feel free to refer them to these notes.

245 B.14. OUTLOOK

Because the normalizing constant is not needed and because it is often dif-
ficult or even impossible to compute, people often mean B.135 when talking
about maximum a posteriori.

Another common estimator of θ is the posterior mean estimator which is
defined as the expected value of the conditional distribution.

θ = Ep(θ|D)[θ] =

∫
θp(θ | D)dθ (B.136)

The posterior mean estimator B.136 is optimal under the MSE risk B.106.

B.14. Outlook

In this chapter we took a look at the central concepts of basic probability
theory and statistical inference, whereas we omitted many/all proofs and
derivations.
We started with events and probabilities and went on to random variables.
We introduced the most common probability distributions for random vari-
ables like the normal distribution. We talked about expectations, moments
and the most important upper bounds like Jensen’s and Hoeffding’s inequal-
ity. Next, we introduced essential concepts (like entropy and Kullback-Leibler
divergence) from information theory that are relevant in machine learning.
Finally, we turned to statistical inference and discussed basic properties of
estimators as well as some common methods for constructing estimators - in
particular maximum likelihood and Bayesian inference.

If you want to learn more on probability theory and statistical inference,
a good starting point is the excellent textbook ”All of Statistics: A Concise
Course in Statistical Inference (Springer Texts in Statistics)” [18] by Larry
Wasserman (Professor at CMU).

APPENDIX B. PROBABILITY THEORY & STATISTICAL
INFERENCE 246

B.15. Exercises

Bibliography

[1] David Arthur and Sergei Vassilvitskii. k-means++: the advan-
tages of careful seeding. In Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New
Orleans, Louisiana, USA, January 7-9, 2007, pages 1027–1035, 2007.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[3] Stephen (Stanford University California) Boyd and Lieven (University
of California Los Angeles) Vandenberghe. Convex Optimization. Came-
bridge University Press, 2004.

[4] Brian Caffo. Regression Models for Data Science in R. Leanpub, 2015.

[5] Brian Caffo. Advanced Linear Models for Data Science. Leanpub, 2017.

[6] P. Compeau and P. Pevzner. Bioinformatics Algorithms: An Active
Learning Approach. Number Bd. 2 in Bioinformatics Algorithms: An
Active Learning Approach. Active Learning Publishers, 2015.

[7] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical
Learning with Sparsity: The Lasso and Generalizations. Chapman &
Hall/CRC, 2015.

[8] Kevin P. Murphy. Machine Learning A Probabilistic Perspective. MIT
Press, 2012.

[9] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer, New York, NY, USA, second edition, 2006.

[10] Shai Shalev-Shwartz (Hebrew University of Jerusalem) and Ontario)
Shai Ben-David (University of Waterloo. Understanding Machine
Learning From Theory to Algorithms. Camebridge University Press,
2014.

247

BIBLIOGRAPHY 248

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[12] https://ocw.mit.edu. License: Creative Commons BY-NC-SA.
Philippe Rigollet. 18.657 Mathematics of Machine Learning. Fall 2015.
Massachusetts Institute of Technology: MIT OpenCourseWare.

[13] Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller.
Nonlinear component analysis as a kernel eigenvalue problem. Neural
Computation, 10(5):1299–1319, 1998.

[14] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern
Analysis. Cambridge University Press, New York, NY, USA, 2004.

[15] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58:267–288, 1994.

[16] Jerome Friedman Trevor Hastie, Robert Tibshirani. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer
Series in Statistics, 2009.

[17] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17(4):395–416, 2007.

[18] Larry Wasserman. All of statistics : a concise course in statistical
inference. Springer, New York, 2010.

[19] Hui Zou and Trevor Hastie. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society, Series B, 67:301–320,
2005.

https://ocw.mit.edu

	Notation
	Basic concepts
	Regression
	Classification
	The classification problem
	Hypothesis
	Risk minimization
	Risk minimization and maximum likelihood
	Bayesian model averaging

	Outlook
	Exercises

	Bayes classifier
	The optimum Bayes classifier
	Outlook

	Naive Bayes classifier
	Gaussian naive Bayes classifier
	Generative vs. discriminative models

	Exercises

	K-nearest neighbors model
	K-nearest neighbors classifier
	K-nearest neighbors regression model
	Parametric vs. non-parametric models
	Outlook
	Exercises

	Linear regression
	Modeling
	Hidden bias

	Cost function
	Convexity

	Optimization
	Closed form solution
	Iterative solution

	Feature transformation
	Regularization
	Closed form solution
	Iterative solution

	Probabilistic interpretation
	Noisy outputs
	Maximum likelihood
	Maximum a posteriori

	Robust regression
	Huber regression
	Least absolute deviations

	Sparsity regularization
	Details on LASSO

	Elastic net
	Optimization

	Bayesian linear regression
	Conjugate priors

	Kernel regression
	Dual form of ridge regression
	Kernels

	Outlook
	Exercises

	Logistic regression
	Modeling
	Cross entropy and information theory
	Convexity

	Optimization
	2. Order methods

	Separating hyperplane
	Feature transformation, regularization & kernelization
	Outlook
	Exercises

	Tree based models
	Decision trees
	Model
	Fitting

	Regression trees
	Fitting

	Random forest
	Feature relevance

	Outlook
	Exercises

	Evaluation
	Metrics
	Regression
	Classification

	How to estimate scores
	Train - Test split
	Cross validation
	Overfitting & Underfitting

	Model selection
	Feature selection
	Wrapper methods
	Filter methods
	Embedded methods

	Exercises

	Dimensionality reduction
	PCA
	Derivation - Reconstruction error
	Derivation - Diagonal covariance matrix

	Kernelized PCA
	Outlook
	Exercises

	Clustering
	K-means
	K-means++
	Voronoi tessellation

	Agglomerative Clustering
	DBSCAN
	Spectral clustering
	Gaussian mixture model
	Details on the EM-algorithm

	Outlook
	Exercises

	Appendices
	Convex optimization
	Convex set
	Convex functions
	Local vs. global optimum
	Convexity preserving operations
	Examples
	Subdifferential

	Convex optimization
	Closed form solution
	Gradient descent
	Intuition behind gradient descent
	Newton's method
	Quasi-Newton methods
	Choosing the step length
	Coordinate descent

	Linear programming
	Example

	Quadratic programming
	Eample

	Lagrangian duality
	Optimality conditions
	Example

	Outlook
	Exercises

	Probability theory & Statistical inference
	Basic probability
	Conditional probabilities
	Independence

	Random variable
	Algebraic operations
	Cumulative distribution function

	Probability distributions
	Discrete distributions
	Continuous distributions

	Expectation
	Expected value
	Variance
	Covariance
	Transformation
	Conditional expectation

	Independence
	Moments
	Moment-generating function

	Upper bounds
	Jensen's inequality
	Chebyshev's inequality
	Markov's inequality
	Chernoff bound
	Hoeffding's inequality
	Cauchy–Schwarz inequality
	Union bound

	Law of large numbers
	Central limit theorem
	Information theory
	Entropy
	Kullback-Leibler divergence
	Mutual information
	Cross entropy

	Inference
	Estimator

	Bootstrapping
	Constructing estimators
	Method of moments
	Maximum likelihood
	Bayesian inference - Maximum a posteriori

	Outlook
	Exercises

