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Abstract. In this paper, we study the emergent behaviors of the Cucker-
Smale (C-S) ensemble under the interplay of memory effect and flocking dy-

namics. As a mathematical model incorporating aforementioned interplay, we

introduce the fractional C-S model which can be obtained by replacing the
usual time derivative by the Caputo fractional time derivative. For the pro-

posed fractional C-S model, we provide a sufficient framework which admits the

emergence of anomalous flocking with the algebraic decay and an `2-stability
estimate with respect to initial data. We also provide several numerical exam-

ples and compare them with our theoretical results.

1. Introduction. Collective movements of a multi-agent(particle) system can be
easily observed in our daily life. To name a few, herding of sheep, flocking of birds
and swarming of fish, etc., [4, 5, 19, 24]. These collective phenomena are often
called flocking in broad sense, and it refers to the phenomena where self-propelled
particles or agents adjust their movements to reach a velocity consensus using a
limited environmental information and simple rules. In literature [5, 19, 24], several
mechanical models were proposed for such a flocking modelling. Among others, we
are mainly interested in the particle model proposed by Cucker and Smale [6].

Now, we begin with our discussion with the C-S model. Let (xi, vi) ∈ Rd × Rd
be the position and velocity of the i-th C-S particle, respectively. Then, the phase-
space dynamics of the C-S particles is governed by the following Cauchy problem:

ẋi = vi, t > 0, 1 ≤ i ≤ N,

v̇i =
1

N

N∑
j=1

ψ(‖xi − xj‖)(vj − vi),

(xi(0), vi(0)) = (x0i , v
0
i ),

(1)
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where ‖ · ‖ is the `2-norm in Rd, and ψ : [0,∞) → R is a communication weight
function measuring the strength of coupling, and it is assumed to be bounded,
nonnegative, Lipschitz continuous and monotonically decreasing so that global well-
posedness is guaranteed by the standard Cauchy-Lipschitz theory. In recent years,
there were extensive research on the emergent dynamics of (1) from various points
of view (see a recent survey article [5] for details). Among others, if the mono-
cluster flocking occurs for the C-S model, its decay mode should be exponential due
to the linear velocity coupling in (1)2 as noticed in [6, 13, 14]. This is the point
where we address the following simple questions.

• (Q1): Can we modify the dynamics of (1) so that the resulting
dynamics exhibits a slow anomalous mono-cluster flocking with an
algebraic rate?

• (Q2): Can we incorporate a non-Markovian effect (memory) in (1)?

In previous literature, all research on the C-S model use a Markovian approach by
ignoring memory effect from the beginning. However, as can be seen in our daily life,
one sometimes needs to make a choice(decision) based on one’s own past memory,
at least short-term memory. Thus, it is worthwhile to study such a non-Markovian
effect in the context of flocking dynamics. For this, we introduce a fractional C-S
model by replacing the temporal derivative with the Caputo fractional derivative:

Dα
∗ xi = vi, t > 0, 1 ≤ i ≤ N,

Dα
∗ vi =

1

N

N∑
j=1

ψ(‖xi − xj‖)(vj − vi),

(xi(0), vi(0)) = (x0i , v
0
i ),

(2)

where Dα
∗ denotes the Caputo fractional derivative of order α ∈ (0, 1).

So far, there are very few literature available for the C-S model with fractional
derivatives, e.g., discretization of the fractional C-S model [10, 11] and optimal con-
trol problem for C-S model with Riemann-Liouville derivative and constant commu-
nication weights [17]. Despite of recent active research on the fractional dynamical
systems in science and engineering [7, 9, 15, 23, 25], as far as the authors know,
emergent dynamics of the fractional flocking models has not been addressed in a
full general setting.

In the previous works [10, 11, 17], authors discretized the fractional C-S model
or assumed that communication weights are constant, which yields linear systems.
So they could obtain the desired results from the analysis of the linear systems.
In contrast to the aforementioned linear results, for our proposed nonlinear model,
previous linear theories can not be applied to our case as it is. This is one of the main
difficulties for the fractional Cucker-Smale model with nonconstant communication
weights. To overcome this difficulty, we used the arguments in [21] together with
the matrix analysis to derive our desired flocking estimates.

Moreover, due to Caputo’s fractional derivative, we may expect that the resulting
fractional C-S model might exhibit a slow relaxation toward the flocking state unlike
the exponential flocking in the original C-S model (1). This algebraic relaxation is
what we can additionally obtain by the introduction of fractional calculus in the
flocking dynamics. Similar issues have been discussed in the fractional Kuramoto
model [12], where the synchronization occurs algebraically fast. Now, we present a
definition of mono-cluster flocking for the fractional C-S model as follows.
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Definition 1.1. Let {(xi, vi)} be a C-S ensemble whose dynamics is governed
by (2). Then, it exhibits a mono-cluster flocking if and only if the following two
conditions hold.

sup
0≤t<∞

max
i,j
‖xi(t)− xj(t)‖ <∞, lim

t→∞
max
i,j
‖vi(t)− vj(t)‖ = 0.

Before we discuss our main results, we set the position and velocity configurations
as follows:

X := (x1, · · · , xN ), V := (v1, · · · , vN ).

The main results of this paper are two-fold. First, we present a sufficient frame-
work for the slow relaxation to the fractional C-S model. For a communication
weight whose maximum and minimum are close or for an initial configuration where
particles are initially located nearby with small velocity fluctuations, we derive a
mono-cluster flocking estimates (see Theorem 3.3 for details):

‖V (t)‖ ≤ ‖V 0‖Eα(−λtα), ‖X(t)‖ ≤ ‖X0‖+
‖V 0‖
λ

,

where Eα(·) is the Mittag-Leffler function introduced in Definition 2.2, and λ is a
positive constant to be defined later. Then, it follows from the property (3) of the
Mittag-Leffler function that

‖V (t)‖ ≤ ‖V 0‖Eα(−λtα) ≈ O(1)t−α, as t→∞.

Second, we present an `2-stability estimate with respect to initial data. Under the
same condition as in the first result and min{‖V 0‖, ‖Ṽ 0‖} � 1, we show that there
exists a positive constant G independent of time t such that

sup
t≥0

(
‖X(t)− X̃(t)‖+ ‖V (t)− Ṽ (t)‖

)
≤ G

(
‖X0 − X̃0‖+ ‖V 0 − Ṽ 0‖

)
.

See Theorem 4.1 for details.
The rest of this paper is organized as follows. In Section 2, we study several basic

concepts on the fractional calculus, basic properties of the fractional C-S model and
provide previous results for the Cucker-Smale model. In Section 3, we provide the
results for the emergent behavior of the fractional C-S model. First, we consider all-
to-all case where the communication weights between agents are constant. Second,
we provide our main results under general settings. In Section 4, we consider the
`2-stability of two solutions with respect to initial configurations. In Section 5, we
provide numerical simulations for the fractional C-S model to support our analytic
results. Finally, Section 6 is devoted to a brief summary of our main results and
discussion on possible future works.

2. Preliminaries. In this section, we provide basic results on the fractional cal-
culus for self-containedness, and present basic properties of the fractional Cucker-
Smale model (2).

2.1. Fractional calculus. In this subsection, we present several definitions and
useful properties from fractional calculus to be used throughout the paper. First,
we provide definition of Caputo fractional derivative used in our framework.
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Definition 2.1. [3, 8, 20] For a positive number α > 0, the Caputo derivative Dα
∗ f

of order α is given by the following relation:

Dα
∗ f(t) :=


1

Γ([α] + 1− α)

∫ t

0

f ([α]+1)(s)

(t− s)α−[α]
ds, if α 6= [α],

f (α)(t), if α = [α],

as long as the R.H.S. are well defined, and Γ = Γ(z) is the Gamma function defined
by the following integral:

Γ(z) =

∫ ∞
0

e−uuz−1du, z ∈ C.

Next, we introduce the Mittag-Leffler function appearing as a solution of frac-
tional differential equations with constant coefficients, and playing the same role of
an exponential function for a linear ODE with constant coefficients. In the sequel,
we list several basic properties of the Mittag-Leffler function and representation of
the solutions to the fractional differential equations. We begin with definition of
the Mittag-Leffler function.

Definition 2.2. [8, 18, 20]

1. For α, β ∈ C, we define the Mittag-Leffler function Eα,β as follows:

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
, Eα(z) := Eα,1(z).

2. A function f defined on (0,+∞) is completely monotone (CM), if it is a
C∞-function and satisfies the following property:

(−1)kf (k)(t) ≥ 0, t ∈ (0,+∞), k = 0, 1, 2, · · · .

In the sequel, we provide some relations satisfied by the Mittag-Leffler function.

Proposition 2.1. [20] Let α, β ∈ C. Then, we have the following relations:

(i) Eα,β(z) = zEα,α+β(z) +
1

Γ(β)
,

(ii)
1

Γ(ν)

∫ t

0

(t− s)ν−1Eα,β(λtα)tβ−1ds = tβ+ν−1Eα,β+ν(λtα), β, ν > 0,

(iii)

∫ t

0

sγ−1Eα,γ(ysα)(t− s)β−1Eα,β(z(t− s)α)ds

=
yEα,β+γ(ytα)− zEα,β+γ(ztα)

y − z
tβ+γ−1, β, γ > 0.

Proposition 2.2. [20] Suppose that constants α, β, and µ satisfy

0 < α < 2, β ∈ R,
πα

2
< µ < min{π, πα}.

Then for an arbitrary integer p ≥ 1, the following assertions hold:

1. For |arg(z)| ≤ µ,

Eα,β(z) =
1

α
exp(z1/α)−

p∑
k=1

z−k

Γ(β − αk)
+O(|z|−1−p), as |z| → ∞.
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2. For µ ≤ |arg(z)| ≤ π,

Eα,β(z) = −
p∑
k=1

z−k

Γ(β − αk)
+O(|z|−1−p), as |z| → ∞.

Remark 2.1. As a direct application of the second statement in Proposition 2.2,
we have

Eα(−Ctα) ∼ t−α

CΓ(1− α)
, as t→∞, (3)

where C is a positive constant. This can be seen easily as follows. Since |arg(−Ctα)|
= π, we can use (2) of Proposition 2.2 to get the desired estimate (3).

The following proposition provides a situation where the Mittag-Leffler function
satisfies the property so called “complete monotonicity (CM)” in Definition 2.2.
Note that any CM function is nonnegative, monotonically decreasing and convex
(see [18]). Throughout this paper, the monotonicity and nonnegativity of a CM
function will be used repeatedly.

Proposition 2.3. [22] Let Eα,β(z) be the Mittag-Leffler function defined in Def-
inition 2.2. Then, Eα,β(−x) is CM for x ∈ (0,∞) if and only if α ∈ (0, 1] and
β ≥ α.

Finally, we consider a general formulation of a solution for the following system
of fractional differential equations: for T > 0,{

Dα
∗ Y (t) = AY (t) +B(t), t ∈ [0, T ),

Y (0) = Y0,
(4)

where Y : [0, T )→ Rn, B : [0, T )→ Rn and A is an n× n real constant matrix.

Proposition 2.4. [2] Let Y be a solution to (4). Suppose that B belongs to a space
C1−α([0, T ]), where C1−α([0, T ]) is given by

C1−α([0, T ]) := {f(t) ∈ C((0, T ]) | ‖f‖C1−α := sup
t∈[0,T ]

‖t1−αf(t)‖ <∞}.

Then, the unique solution to (4) can be represented by

Y (t) := Eα(Atα)Y0 +

∫ t

0

(t− s)α−1Eα,α(A(t− s)α)B(s)ds, (5)

where Eα,β(A) is given by

Eα,β(A) :=

∞∑
k=0

Ak

Γ(αk + β)
, Eα(A) := Eα,1(A). (6)

2.2. The fractional Cucker-Smale model. In this subsection, we present the
first moment estimate for the fractional C-S model.

Proposition 2.5. Let (X,V ) be a solution to (2). Then for any t ≥ 0, we have

N∑
i=1

vi(t) =

N∑
i=1

v0i ,

N∑
i=1

xi(t) =

N∑
i=1

x0i +
tα

Γ(α+ 1)

N∑
i=1

v0i .

Proof. (i) We use the exchange symmetry i↔ j to obtain the first relation:

Dα
∗

(
N∑
i=1

vi

)
=

N∑
i,j=1

ψ(‖xj − xi‖)(vj − vi) =

N∑
i,j=1

ψ(‖xi − xj‖)(vi − vj) = 0.
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We use the representation formula (5) with

Y =

N∑
i=1

vi, A = B = 0,

to get the desired result.
(ii) We sum (2)1 with respect to i to get

Dα
∗

( N∑
i=1

xi

)
=

N∑
i=1

vi.

Again, we apply the representation formula (5) with

Y =

N∑
i=1

xi, A = 0, B =

N∑
i=1

vi,

and use the result of (i) to obtain

N∑
i=1

xi(t) =

N∑
i=1

x0i +
1

Γ(α)

∫ t

0

(t− s)α−1
(

N∑
i=1

vi(s)

)
ds

=

N∑
i=1

x0i +
1

Γ(α)

∫ t

0

(t− s)α−1
(

N∑
i=1

v0i

)
ds

=

N∑
i=1

x0i +
tα

αΓ(α)

N∑
i=1

v0i =

N∑
i=1

x0i +
tα

Γ(α+ 1)

N∑
i=1

v0i .

This yields the desired result.

Before we close this section, we recall the previous result for the mono-cluster
flocking dynamics of (1). For a given configuration (X,V ), we set

‖X‖∞ := max
1≤i≤N

‖xi‖, ‖V ‖∞ := max
1≤i≤N

‖vi‖.

Theorem 2.3. [1, 12, 14] Let (X,V ) be a solution to (1) with the initial data
(X0, V 0) satisfying the following conditions:

N∑
i=1

x0i =

N∑
i=1

v0i = 0, ‖X0‖∞ > 0, ‖V 0‖∞ <
1

2

∫ ∞
‖X0‖∞

ψ(2r)dr.

Then, there exists a positive constant xM > 0 such that

sup
t≥0
‖X(t)‖∞ ≤ xM , ‖V (t)‖∞ ≤ ‖V 0‖∞e−ψ(2xM )t, t ≥ 0.

3. Mono-cluster flocking dynamics. In this section, we address the emergent
behavior of the fractional Cucker-Smale model (2) with two types of communication
weights, namely “time-independent weight” and “metric dependent weight”. For
the former case, we obtain exact decay rate of the velocity fluctuations toward the
flocking velocity, whereas for the latter case, we provide such a decay estimate in a
restricted manner due to the limitations in our analyses.
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3.1. Time-independent weights. Consider a time-independent communication
weight:

ψij(t) := ψ(‖xi − xj‖) = ψij(0), 1 ≤ i, j ≤ N, t ≥ 0.

For the moment, we assume that d = 1. Then, system (2) can be written as a vector
form:

Dα
∗X = V, Dα

∗ V = ΨV, (7)

where the coefficient matrix Ψ = (Ψij) is given by

Ψij :=
1

N

{
ψij if i 6= j,

−
∑
k 6=i ψik if i = j.

(8)

By Proposition 2.4, the exact solution to (7) can be given by

V (t) = Eα(Ψtα)V 0,

where Eα(Ψtα) is the Mittag-Leffler matrix-valued function defined in (6). We set

1 := (1, · · · , 1)T ∈ RN .

From this representation and conservation of total momentum, we can easily find
out that if 1TV 0 = 0, then

1TV (t) = 0 for all t > 0.

Thus, without loss of generality, we will assume that 1TV 0 = 0. In the sequel, we
have the following lemma.

Lemma 3.1. Suppose that the initial data and the communication weight satisfy

1TV 0 = 0, ψm := min
i 6=j

ψij > 0, ψM := max
i 6=j

ψij ,

and let (X,V ) be a solution to (7). Then,

sup
t≥0
‖X(t)‖ <∞, Eα(−ψM tα)‖V 0‖ ≤ ‖V (t)‖ ≤ Eα(−ψmtα)‖V 0‖, t ≥ 0.

Proof. (i) We present upper and lower bound estimates for ‖V (t)‖ separately.
• Case A (upper bound estimate): We first look at the eigenvalues of Ψ in the space
1⊥. Note that Ψ is symmetric, which makes Ψ orthogonally diagonalizable, and 1

is the eigenvector of Ψ corresponding to the eigenvalue 0 and by our assumption
1TV 0 = 0, the velocity vector V (t) belongs to 1⊥ for all t > 0. Then, for any
U = (u1, · · · , uN ) ∈ 1⊥,

〈ΨU,U〉 =

N∑
i=1

N∑
j=1

Ψijuiuj =

N∑
i=1

N∑
j=1

Ψijui(uj − ui) +

N∑
i=1

u2i

N∑
j=1

Ψij

=

N∑
i=1

N∑
j=1

Ψijui(uj − ui) =

N∑
i=1

N∑
j=1

Ψjiuj(ui − uj)



5472 SEUNG-YEAL HA, JINWOOK JUNG AND PETER KUCHLING

= −1

2

N∑
i=1

N∑
j=1

Ψij(ui − uj)2

≤ −ψm
2N

N∑
i=1

∑
j 6=i

(ui − uj)2

= −ψm
2N

N∑
i=1

N∑
j=1

(ui − uj)2 = −ψm〈U,U〉,

where 〈·, ·〉 denotes the standard inner product in RN and we used the zero row-sum

property
∑N
j=1 Ψij = 0 (see (8)) and the symmetry of Ψ. From this, we can deduce

that 0 is a simple eigenvalue of Ψ, and all eigenvalues except 0 are negative. Thus,
the spectrum of Ψ is as follows:

λ1 ≤ · · · ≤ λN−1 ≤ −ψm < λN := 0.

Hence, if we let bk be the unit eigenvector of Ψ corresponding to λk, then we have

bN =
1√
N
1, Ψ = BDBT , B = (b1, · · · , bN ), D = diag(λ1, · · · , λN−1, λN = 0).

From this decomposition, one has

Eα(Ψtα) = BEα(Dtα)BT .

Therefore, we can obtain

‖V (t)‖ = ‖BEα(Dtα)BTV 0‖
= ‖Eα(Dtα)BTV 0‖

=

∥∥∥∥∥∥∥∥∥


Eα(−λ1tα)

. . .

Eα(−λN−1tα)
1




bT1
...

bTN−1
bTN

V 0

∥∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥


Eα(−λ1tα)

. . .

Eα(−λN−1tα)
1




bT1 V
0

...
bTN−1V

0

0


∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥
 Eα(−λ1tα)

. . .

Eα(−λN−1tα)


 bT1 V

0

...
bTN−1V

0


∥∥∥∥∥∥∥

≤ Eα(−ψmtα)‖BTV 0‖ = Eα(−ψmtα)‖V 0‖,

where we used that the matrix B is an orthogonal matrix satisfying the relation:

‖BU‖ = ‖BTU‖ = ‖U‖, ∀U ∈ RN .

This yields the desired result for the upper bound of (i).

• Case B (lower bound estimate): Note that for U = (u1, · · · , uN ) ∈ 1⊥,

〈ΨU,U〉 ≥ −ψM
N

N∑
i=1

∑
j>i

(ui − uj)2 = −ψM
2N

N∑
i=1

N∑
j=1

(ui − uj)2 = −ψM 〈U,U〉.
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This implies

−ψM ≤ λ1 ≤ · · · ≤ λN−1 ≤ −ψm < λN = 0.

Hence, we get

‖V (t)‖ =

∥∥∥∥∥∥∥
 Eα(−λ1tα)

. . .

Eα(−λN−1tα)


 bT1 V

0

...
bTN−1V

0


∥∥∥∥∥∥∥

≥ Eα(−ψM tα)‖BTV 0‖ = Eα(−ψM tα)‖V 0‖.

This gives the desired result for the lower bound of (i).

(ii) It follows from the result (i) that we can obtain

‖X(t)‖ ≤ ‖X0‖+
1

Γ(α)

∫ t

0

(t− s)α−1‖V (s)‖ds

≤ ‖X0‖+
1

Γ(α)

∫ t

0

(t− s)α−1‖V (s)‖ds

≤ ‖X0‖+
‖V 0‖
Γ(α)

∫ t

0

(t− s)α−1Eα(−ψmsα)ds.

Here, it can be deduced from (i) and (ii) of Proposition 2.1 that∫ t

0

(t− s)α−1Eα(−ψmsα)ds = tα
∫ 1

0

(1− u)α−1Eα(−ψmtαuα)du

= Γ(α)tαEα,α+1(−ψmtα) =
Γ(α)

ψm

(
1− Eα(−ψmtα)

)
.

Therefore, we use the above estimate to obtain

‖X(t)‖ ≤ ‖X0‖+
‖V 0‖
Γ(α)

∫ t

0

(t− s)α−1Eα(−ψmsα)ds ≤ ‖X0‖+
‖V 0‖
ψm

(
1− Eα(−ψmtα)

)
.

This implies our desired result.

Moreover, we can also observe the emergence of flocking under a more general
network, called a network with a spanning tree, as given in the following corollary:

Corollary 3.1. Suppose that the initial data and the communication weight satisfy

1TV 0 = 0, ∃ j such that ψ∗j := min
1≤i≤N,i6=j

ψij > 0,

and let (X,V ) be a solution to (7). Then,

sup
t≥0
‖X(t)‖ <∞, Eα(−ψM tα)‖V 0‖ ≤ ‖V (t)‖ ≤ Eα

(
−
ψ∗j
N
tα
)
‖V 0‖, t ≥ 0.

Proof. Since we can obtain the upper bound for ‖X(t)‖ and the lower bound of
‖V (t)‖ from the same argument in Lemma 3.1, we only prove the upper bound of



5474 SEUNG-YEAL HA, JINWOOK JUNG AND PETER KUCHLING

‖V (t)‖. Similarly to the proof of Lemma 3.1, for U = (u1, · · · , uN ) ∈ 1⊥, we have

〈ΨU,U〉 = −1

2

N∑
i=1

N∑
k=1

Ψik(ui − uk)2

≤ −1

2

∑
i 6=j

Ψij(ui − uj)2 −
1

2

∑
k 6=j

Ψjk(uj − uk)2

= −
∑
i 6=j

Ψij(ui − uj)2

≤ −
ψ∗j
N

N∑
i=1

(ui − uj)2 ≤ −
ψ∗j
N
〈U,U〉.

Hence, we can find out that the spectrum of Ψ still consists of a simple eigenvalue,
which is 0, and negative eigenvalues as follows:

λ1 ≤ · · · ≤ λN−1 ≤ −
ψ∗j
N

< λN := 0.

Since the rest of the proof can be obtained by following the proof of Lemma 3.1,
here we omit the details and obtain the desired result.

Now, we extend our argument to general d ≥ 1.

Theorem 3.2. Suppose that the initial data and the communication weight satisfy

N∑
i=1

v0i = 0, ψm := min
i 6=j

ψij > 0, ψM := max
i6=j

ψij ,

and let (X,V ) be a solution to (7). Then,

sup
t≥0
‖X(t)‖ <∞, Eα(−ψM tα)‖V 0‖ ≤ ‖V (t)‖ ≤ Eα(−ψmtα)‖V 0‖, t ≥ 0.

Proof. Let vi = (vi1, · · · , vid)T . Then, we can rewrite the system (2) as

Dα
∗ xik = vik, Dα

∗ vik =
1

N

N∑
j=1

ψij(vjk − vik), k = 1, 2, · · · , d.

If we set

Xk := (x1k, x2k, · · · , xNk)T , V k := (v1k, v2k, · · · , vNk)T ,

then it follows from the assumption that
∑N
i=1 v

0
i = 0. Thus, we have

1TV k = 0 for any 1 ≤ k ≤ d.
Now, we use Lemma 3.1 to each V k and Xk to conclude the proof.

As a direct application of Theorem 3.2, we have the following corollary.

Corollary 3.2. Suppose that the following conditions hold:

N∑
i=1

vi = 0, ∃ j such that ψ∗j := min
1≤i≤N,i6=j

ψij > 0,

and let (xi, vi) be a solution to (2). Then,

sup
t≥0
‖X(t)‖ <∞, Eα(−ψM tα)‖V 0‖ ≤ ‖V (t)‖ ≤ Eα

(
−
ψ∗j
N
tα
)
‖V 0‖, t ≥ 0.
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3.2. Metric dependent weights. In this part, we consider a general case, i.e.
the case where Ψ depends on the spatial variable X. As in the previous subsection,
we first let d = 1, and then generalize the one-dimensional result to the multi-
dimensional case. Note that the general representation of our system can be written
as

Dα
∗X(t) = V (t), Dα

∗ V (t) = Ψ(X(t))V (t), (9)

where Ψ(X(t)) is defined as

(Ψ(X(t)))ij :=
1

N


ψ(|xi(t)− xj(t)|) if i 6= j,

−
∑
k 6=i

ψ(|xi(t)− xk(t)|) if i = j.

Based on the proof of Theorem 2.6 in [21], we provide our desired result as below.
For the statement of the flocking result, let ψ = ψ(r) be a metric dependent

communication weight, and for such ψ, we set

ψM := sup
x∈[0,∞)

ψ(x), ψ0
m := min

i6=j
ψ(|x0i − x0j |).

We are now ready to provide our first main result on the emergence of mono-
cluster flocking.

Theorem 3.3. Suppose that the initial data and the communication weight satisfy
the following relations: there exist ε ∈ (0, 1) such that

N∑
i=1

v0i = 0, ψM < 2ψ∗, ψ(X∞) > ψ∗ > 0,

where ψ∗ and XM are given by

ψ∗ :=
1 + ε

2
ψ0
m, X∞ :=

√
2

(
‖X0‖+

‖V 0‖
2ψ∗ − ψM

)
.

Let (X,V ) be a solution to (2) with d = 1. Then for any t ≥ 0, we have

‖V (t)‖ ≤ ‖V 0‖Eα(−λtα), ‖X(t)‖ ≤ ‖X0‖+
‖V 0‖
λ

,

where λ := 2ψ∗ − ψM is a positive constant.

Remark 3.1. Heuristically, the conditions in Theorem 3.3 can be satisfied if the
gap between ψM and ψ0

m and the gap between ψ0
m and ψ(X∞) are small. These

conditions can be fulfilled if one of the following holds:

1. Communication weight function ψ has a low fluctuation.
=⇒ Two gaps would be small even if particles are a bit far away from one
another at first.

2. Initially, particles are close to one another and velocity fluctuations are low.
=⇒ No matter how the communication weight function looks like, the two
gaps can be made small with this small initial configuration.

Before we provide the proof of Theorem 3.3, we set our framework for the proof.
First, by the continuity of solution, there exists a δ > 0 such that

min
i6=j

inf
t∈[0,δ)

ψ(|xi(t)− xj(t)|) > ψ∗, (10)
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where ψ∗ is the positive constant defined in Theorem 3.3. Now, we rewrite our
system (9) as follows:

Dα
∗X(t) = V (t), Dα

∗ V (t) = −ψ∗V (t) + Ψ̄(X(t))V (t),

where the matrix Ψ̄ is given by

(Ψ̄(X(t)))ij :=
1

N


(ψ(|xi(t)− xj(t)|)− ψ∗) if i 6= j,

−
∑
k 6=i

(ψ(|xi(t)− xk(t)|)− ψ∗) if i = j.

By Proposition 2.4, we can use the above relation to obtain the following system
equivalent to (2):

X(t) = X0 +
1

Γ(α)

∫ t

0

(t− s)α−1V (s)ds,

V (t) = Eα(−ψ∗tα)V 0 +

∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Ψ̄(X(s))V (s)ds.

(11)

One objective for the proof of Theorem 3.3 is to show that the following set Sε is
unbounded above:

Sε :=
{
T ∈ (0,∞) | min

i 6=j
inf

t∈[0,T )
ψ(|xi(t)− xj(t)|) > ψ∗

}
.

Note that the set Sε is nonempty by (10). To prove that Sε is unbounded above,
we argue by a contradiction. So, we assume that Tε := supSε < ∞ and construct
a sequence {V (j)} as follows:

V (0) = 0 and

V (j+1) = Eα(−ψ∗tα)U +

∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Ψ̄(X(s))V (j)(s)ds, j ≥ 0,

where U = V 0. Here, we use the estimates in Lemma 3.1 to deduce that Ψ̄(X(t))
is positive semidefinite and the largest eigenvalue of Ψ̄(X(t)) can be bounded by
ψM − ψ∗ for t ∈ [0, Tε], i.e.

‖Ψ̄(X(t))‖ ≤ ψM − ψ∗, t ∈ [0, Tε].

For the estimates of {V (j)}, we provide a lemma.

Lemma 3.4. On [0, Tε], the following estimates hold for every j ∈ N ∪ {0}:

‖V (j+1) − V (j)‖ ≤ (ψM − ψ∗)j‖U‖
∞∑
k=0

(
k + j

k

)
(−ψ∗)ktα(k+j)

Γ(α(k + j) + 1)

=

(
ψM − ψ∗
−ψ∗

)j
‖U‖

∞∑
k=j

(
k

j

)
(−ψ∗)ktαk

Γ(αk + 1)
.

(12)

Proof. We use induction on j to verify (12).
• (Initial step j = 0): One easily gets

‖V (1) − V (0)‖ ≤ ‖Eα(−ψ∗tα)U‖ = ‖U‖
∞∑
k=0

(−ψ∗)ktαk

Γ(αk + 1)
.

• (Inductive step j > 0): Note that

k∑
n=0

(n+ j)!

n!j!
=

k∑
n=0

(
n+ j

n

)
=

(
j + 1 + k

k

)
.
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We use the definition of V (j), upper bound of ‖Ψ̄‖ and convexity of `2-norm ‖ · ‖ to
obtain

‖V (j+2) − V (j+1)‖

≤ (ψM − ψ∗)j+1‖U‖
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)

∞∑
n=0

(−ψ∗)nsα(n+j)

Γ(α(n+ j) + 1)

(
n+ j

n

)
ds

= (ψM − ψ∗)j+1‖U‖
∑
n,m≥0

(−ψ∗)m+n

Γ(αm+ α)Γ(α(n+ j) + 1)

(
n+ j

n

)

×
∫ t

0

(t− s)α(m+1)−1sα(n+j)ds

= (ψM − ψ∗)j+1‖U‖
∑
n,m≥0

(−ψ∗)m+ntα(m+n+j+1)

Γ(αm+ α)Γ(α(n+ j) + 1)

(
n+ j

n

)

× Γ(α(m+ 1))Γ(α(n+ j) + 1)

Γ(α(m+ n+ j + 1) + 1)

= (ψM − ψ∗)j+1‖U‖
∑
n,m≥0

(−ψ∗)m+ntα(m+n+j+1)

Γ(α(m+ n+ j + 1) + 1)

(
n+ j

n

)

= (ψM − ψ∗)j+1‖U‖
∞∑
n=0

∞∑
k=n

(−ψ∗)ktα(k+j+1)

Γ(α(k + j + 1) + 1)

(
n+ j

n

)

= (ψM − ψ∗)j+1‖U‖
∞∑
k=0

k∑
n=0

(−ψ∗)ktα(k+j+1)

Γ(α(k + j + 1) + 1)

(
n+ j

n

)

= (ψM − ψ∗)j+1‖U‖
∞∑
k=0

(−ψ∗)ktα(k+j+1)

Γ(α(k + j + 1) + 1)

k∑
n=0

(
n+ j

n

)

= (ψM − ψ∗)j+1‖U‖
∞∑
k=0

(−ψ∗)ktα(k+j+1)

Γ(α(k + j + 1) + 1)

(
k + j + 1

k

)
.

This completes the induction procedure.

With this setup, we now provide a proof of our main theorem.

Proof of Theorem 3.3. We use Lemma 3.4 to get

‖V (j+1) − V (j)‖ ≤
(
ψM − ψ∗
−ψ∗

)j
‖U‖

∞∑
k=j

(
k

j

)
(−ψ∗)ktαk

Γ(αk + 1)

≤
(
ψM − ψ∗

ψ∗

)j
‖U‖Eα(2ψ∗t

α),

(13)

where we used

∞∑
k=j

(
k

j

)
(−ψ∗)ktαk

Γ(αk + 1)
≤
∞∑
k=j

(2ψ∗)
ktαk

Γ(αk + 1)
≤ Eα(2ψ∗t

α).

On the other hand, it follows from the assumptions on ψ and definition of ψ∗ that
the ratio in the geometric sequence in (13) is strictly less than 1:

0 <
ψM − ψ∗

ψ∗
<

2ψ∗ − ψ∗
ψ∗

= 1.
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Since Eα(2ψ∗t
α) is continuous on [0, Tε], we get

sup
0≤t≤Tε

‖(V (j+1) − V (j))(t)‖ ≤ Cρj , ρ :=
ψM − ψ∗

ψ∗
,

where C is a positive constant.
This implies that {V (j)} is a Cauchy sequence in the space of continuous functions

on [0, Tε]. Hence V (j) converges to a continuous function V ∗, and V ∗ satisfies the
second relation in (11). Thus, the uniqueness of solutions to fractional differential
equations implies that V ∗ is indeed a solution V to (9). Moreover,

‖V ‖ = lim
j→∞

‖V (j)‖ ≤
∞∑
j=1

‖V (j+1) − V (j)‖+ ‖V (1)‖ =

∞∑
j=0

‖V (j+1) − V (j)‖

≤ ‖U‖
∞∑
j=0

∞∑
k=j

(
ψM − ψ∗
−ψ∗

)j (
k

j

)
(−ψ∗)ktαk

Γ(αk + 1)

= ‖U‖
∞∑
k=0

(−ψ∗)ktαk

Γ(αk + 1)

k∑
j=0

(
ψM − ψ∗
−ψ∗

)j (
k

j

)

= ‖U‖
∞∑
k=0

(−ψ∗)ktαk

Γ(αk + 1)

(
ψM − ψ∗
−ψ∗

+ 1

)k
= ‖U‖

∞∑
k=0

(−ψ∗)ktαk

Γ(αk + 1)

(
ψM − 2ψ∗
−ψ∗

)k
= ‖U‖

∞∑
k=0

tαk

Γ(αk + 1)
(ψM − 2ψ∗)

k
= ‖U‖Eα((ψM − 2ψ∗)t

α).

Since ψM − 2ψ∗ = ψM − (1 + ε)ψ0
m < 0, the velocity alignment emerges at least in

an algebraic rate. Here, we set λ := −(ψM − 2ψ∗) > 0, and we can also obtain the
boundedness of spatial variables as follows:

‖X(t)‖ ≤ ‖X0‖+
1

Γ(α)

∫ t

0

(t− s)α−1‖V (s)‖ds

≤ ‖X0‖+
‖U‖
Γ(α)

∫ t

0

(t− s)α−1Eα(−λsα)ds

= ‖X0‖+ ‖U‖tαEα,α+1(−λtα) = ‖X0‖+
‖U‖
λ

[
1− Eα(−λtα)

]
.

On the other hand, it follows from the assumption on Tε that there exists a pair
i 6= j such that

ψ(|xi(Tε)− xj(Tε)|) = ψ∗.

However, we have

ψ(|xi(Tε)− xj(Tε)|) ≥ ψ(
√

2‖X(Tε)‖) ≥ ψ
(√

2

(
‖X0‖+

‖U‖
λ

))
= ψ

(√
2

(
‖X0‖+

‖U‖
2ψ∗ − ψM

))
> ψ∗.

This gives a contradiction, and hence, Sε is not bounded above. Thus, we can
repeat all the process on [0, T ] for any T > 0 to yield the desired result.

Remark 3.2. 1. If there exists a positive lower bound ψm := infx∈[0,∞) ψ(x) >
0 on ψ, one may deduce from Theorem 3.3 that flocking emerges for any initial
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configuration if ψM and ψm satisfy

ψM < 2ψm.

The reason for this is as follows. Note that the above condition implies the existence
of ε ∈ (0, 1) such that

ψM < (1 + ε)ψm < 2ψm,

and for this ε, the other condition in Theorem 3.3 is automatically satisfied.
2. The result of Theorem 3.3 yields that

‖V (t)‖ . ‖V 0‖t−α, as t→∞.

As a corollary of Theorem 3.3, we can also obtain a lower bound for the decay
estimate of velocity fluctuation under more restricted conditions.

Corollary 3.3. Suppose that the initial data and the communication weight satisfy

the following relations: there exist ε ∈
(

1
2 , 1
)

such that

N∑
i=1

v0i = 0, ψM <
3

2
ψ∗, ψ

(√
2

(
‖X0‖+

‖V 0‖
2ψ∗ − ψM

))
> ψ∗ > 0,

and let (X,V ) be a solution to (2) with d = 1. Then, we have

t−α . ‖V (t)‖, as t→∞.

Proof. Again, we construct a sequence {V (j)} as follows:

V (0) = 0 and

V (j+1) = Eα(−ψ∗tα)V (0) +

∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Ψ̄(X(s))V (j)(s)ds,

for j ≥ 0. Then, it follows from the same argument in the proof of Theorem 3.3
that

min
i 6=j

inf
t≥0

ψ(|xj(t)− xi(t)|) > ψ∗.

This implies

‖Ψ̄(X(t))‖ ≤ ψM − ψ∗, ∀ t ≥ 0.

Hence, we can follow the proof of Theorem 3.3 that for any T > 0, V (j) converges
to V on [0, T ], which is a solution to (9), and the inequality on Lemma 3.4 holds
on [0, T ]. Thus, one has

‖V ‖ = lim
j→∞

‖V (j)‖ ≥ ‖V (1)‖ −
∞∑
j=1

‖V (j+1) − V (j)‖

= 2‖U‖Eα(−ψ∗tα)− ‖U‖
∞∑
j=0

∞∑
k=j

(
ψM − ψ∗
−ψ∗

)j (
k

j

)
(−ψ∗)ktαk

Γ(αk + 1)

= ‖U‖
(

2Eα(−ψ∗tα)− Eα(−λtα)
)

=: g(t),

where λ := 2ψ∗ − ψM .
On the other hand, it follows from Proposition 2.2-(2) that

Eα(−Ctα) ∼ t−α

CΓ(1− α)
, as t→∞.
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Thus, we obtain

g(t) ∼ ‖U‖
Γ(1− α)

(
2ψ∗

−1 − λ−1
)
t−α.

Here, one has

ψM <
3

2
ψ∗.

This implies 2ψ∗
−1 − λ−1 > 0 and we obtain our desired result.

Remark 3.3. 1. As we did in Theorem 3.2, we can extend the results from Theorem
3.3 to the cases when d ≥ 2.
2. It follows from Theorem 3.3 and Corollary 3.3 that ‖V (t)‖ decays like t−α as
t→∞.

4. Uniform `2-stability estimates. In this section, we study uniform `2-stability
estimates for the solutions to system (2). Note that when the communication
weights between particles are constant, it is easy to deduce the `2-stability of solu-
tions, since system (2) becomes a linear system in this case. Thus, we only cover
the case with general communication weights. Here, we provide the detailed proof
for the case when d = 1. Then, it is not difficult to deduce the results for the
multi-dimensional case (d ≥ 2). Now, we state our second result on the `2-stability.

Theorem 4.1. Suppose that the initial data (X0, V 0) and (X̃0, Ṽ 0) satisfy the
conditions in Theorem 3.3. Moreover, assume that there exists a constant η > 0
satisfying

2ψLip min{‖V 0‖, ‖Ṽ 0‖} < η(1− η)λ2,

where ψLip is a Lipschitz constant of ψ and λ is given in Theorem 3.3, and let

(X,V ) and (X̃, Ṽ ) be two solutions to (2) with d = 1 corresponding to the initial

data (X0, V 0) and (X̃0, Ṽ 0), respectively. Then, there exists a positive constant G
only depending on the initial configuration and ψ such that

sup
0≤t<∞

(
‖(X − X̃)(t)‖+ ‖(V − Ṽ )(t)‖

)
≤ G

(
‖X0 − X̃0‖+ ‖V 0 − Ṽ 0‖

)
.

Proof. Without loss of generality, we may assume that ‖V 0‖ ≤ ‖Ṽ 0‖, and set

X := X − X̃ and V := V − Ṽ .
Then, it follows from (11) that

X (t) = X 0 +
1

Γ(α)

∫ t

0

(t− s)α−1V(s)ds,

V(t) = Eα(−ψ∗tα)V0 +

∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Φ(s)V (s)ds

+

∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Ψ̄(X̃(s))V(s)ds,

(14)

where Φ(s) := Ψ̄(X(s))− Ψ̄(X̃(s)).
Note that Φ(s)1 = 0 holds. First, we calculate ‖Φ(s)‖ for a later use. Note that

the following estimate holds:

|(Φ(s))ij | ≤
ψLip

N
×


‖Xj −Xi‖ if i 6= j,∑

k 6=i

‖Xk −Xi‖ if i = j.
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We use the above relation to obtain that for U = (u1, · · · , uN ) ∈ 1⊥,

〈Φ(s)U,U〉 = −
N∑
i=1

∑
j>i

Φij(ui − uj)2 ≤
2ψLip‖X‖

N

N∑
i=1

∑
j>i

(ui − uj)2

=
ψLip‖X‖

N

N∑
i=1

N∑
j=1

(ui − uj)2 = 2ψLip‖X‖〈U,U〉.

This yields

‖Φ(s)‖ ≤ 2ψLip‖X‖.
Hence, we use (14) to obtain

‖X (t)‖ ≤ ‖X 0‖+
1

Γ(α)

∫ t

0

(t− s)α−1‖V(s)‖ds,

‖V(t)‖ ≤ Eα(−ψ∗tα)‖V0‖

+ 2ψLip

∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)‖X (s)‖‖V (s)‖ds

+ (ψM − ψ∗)
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α) ‖V(s)‖ ds

≤ Eα(−ψ∗tα)‖V0‖

+ 2ψLip‖X 0‖‖V 0‖
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Eα(−λsα)ds

+
2ψLip‖V 0‖

Γ(α)

∫ t

0

[
(t− s)α−1Eα,α(−ψ∗(t− s)α)

×
(∫ s

0

(s− τ)α−1‖V(τ)‖dτ
)
Eα(−λsα)

]
ds

+ (ψM − ψ∗)
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α) ‖V(s)‖ ds.

Next, we construct a sequence {V (j)} of continuous functions iteratively:

V (0) = 0,

V (j+1)(t) = Eα(−ψ∗tα)(1 + η)‖V0‖

+ 2ψLip‖X 0‖‖V 0‖
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Eα(−λsα)ds

+
2ψLip‖V 0‖

Γ(α)

∫ t

0

[
(t− s)α−1Eα,α(−ψ∗(t− s)α)

×
(∫ s

0

(s− τ)α−1V (j)(τ)dτ

)
Eα(−λsα)

]
ds

+ (ψM − ψ∗)
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)V (j)(s)ds.

(15)

We may find that if the limit V := limj→∞ V (j) exists, then V 0 = (1 + η)‖V0‖,
and we can use a contradiction argument to yield

‖V(t)‖ < V (t), ∀ t ≥ 0.
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Thus, it suffices to show that the limit exists, and it satisfies the desired inequality.
Next, we claim:

|(V (j+1) − V (j))(t)| ≤ CρjEα(−(1− η)λtα), j ∈ N, (16)

where C > 0 is a positive constant, and ρ is defined as

ρ :=
ψM − ψ∗ +

2ψLip‖V 0‖
(1−η)λ

ψM − ψ∗ + ηλ
< 1.

Verification of (15): Similar to Lemma 3.4, we use induction on j to verify the
relation (16).
• (Initial step): It follows from (15) that

|V (1) − V (0)|
≤ (1 + η)Eα(−λtα)‖V0‖

+ 2ψLip‖X 0‖‖V 0‖
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Eα(−λsα)ds

= (1 + η)Eα(−λtα)‖V0‖

+ 2ψLip‖X 0‖‖V 0‖−ψ∗Eα,α+1(−ψ∗tα) + λEα,α+1(−λtα)

−ψ∗ + λ
tα

= (1 + η)Eα(−λtα)‖V0‖+
2ψLip‖X 0‖‖V 0‖

ψM − ψ∗
(Eα(−λtα)− Eα(−ψ∗tα))

≤
(

1 + η +
2ψLip‖X 0‖‖V 0‖

ψM − ψ∗

)(
‖X 0‖+ ‖V0‖

)
Eα(−(1− η)λtα)

=: C∗Eα(−(1− η)λtα),

where we used λ < ψ∗ and Proposition 2.1.

• (Induction step): Suppose that (16) holds for j = n:

|(V (j+1) − V (j))(t)| ≤ CρjEα(−(1− η)λtα), j ≤ n.
Then, we use the above induction hypothesis to otain

|V (n+2) − V (n+1)|

≤ 2ψLip‖V 0‖
Γ(α)

∫ t

0

[
(t− s)α−1Eα,α(−ψ∗(t− s)α)

×
(∫ s

0

(s− τ)α−1|(V (n+1) − V (n))(τ)|dτ
)
Eα(−λsα)

]
ds

+ (ψM − ψ∗)
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)|(V (n+1) − V (n))(s)|ds

≤ 2C∗ρnψLip‖V 0‖
(1− η)λ

∫ t

0

[
(t− s)α−1Eα,α(−ψ∗(t− s)α)

× (1− Eα(−(1− η)λsα))Eα(−λsα)

]
ds

+ C∗ρn(ψM − ψ∗)
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Eα(−(1− η)λsα)ds

≤ C∗ρn
(
ψM − ψ∗ +

2ψLip‖V 0‖
(1− η)λ

)
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×
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Eα(−(1− η)λsα)ds

= C∗ρn+1
(
Eα(−(1− η)λtα)− Eα(−ψ∗tα)

)
≤ C∗ρn+1Eα(−(1− η)λtα).

This verifies the claim for j = n+ 1, and completes the induction procedure. Now,
we use the same methodology in Theorem 3.3 to see that the sequence {V (j)}
converges to the solution V on any finite interval [0, T ], and one has the following
estimate:

|V (t)| = lim
j→∞

|V (j)| ≤
∞∑
j=0

|V (j+1) − V (j)| ≤ C∗
1− ρ

Eα(−(1− η)λtα). (17)

This implies the algebraic decay of ‖V‖. Consequently, it yields the uniform bound-
edness of X as follows:

‖X (t)‖ ≤ ‖X 0‖+
1

Γ(α)

∫ t

0

(t− s)α−1‖V(s)‖ds

≤ ‖X 0‖+
C∗

(1− ρ)Γ(α)

∫ t

0

(t− s)α−1Eα(−(1− η)λsα)ds

= ‖X 0‖+
C∗

(1− ρ)(1− η)λ
[1− Eα(−(1− η)λtα)] .

(18)

Fianlly, we combine (17) with (18) to obtain

‖X (t)‖+‖V(t)‖ ≤
[
1+

1

(1− ρ)(1− η)λ

(
1 + η +

2ψLip‖X 0‖‖V 0‖
ψM − ψ∗

)]
(‖X 0‖+‖V0‖).

Now, we set

G := 1 +
1

(1− ρ)(1− η)λ

(
1 + η +

2ψLip‖X 0‖‖V 0‖
ψM − ψ∗

)
to get the desired estimate.

Remark 4.1. For a multi-dimensional case d ≥ 2, we again set V k and Ṽ k as in
Theorem 3.2 and Vk := V k − Ṽ k, and obtain

‖Vk(t)‖ ≤ Eα(−ψ∗tα)‖Vk0‖

+ 2ψLip‖X 0‖‖V k0‖
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)Eα(−λsα)ds

+
2ψLip‖V k0‖

Γ(α)

∫ t

0

[
(t− s)α−1Eα,α(−ψ∗(t− s)α)

×
(∫ s

0

(s− τ)α−1‖V(τ)‖dτ
)
Eα(−λsα)

]
ds

+ (ψM − ψ∗)
∫ t

0

(t− s)α−1Eα,α(−ψ∗(t− s)α)
∥∥Vk(s)

∥∥ ds.
Here, we use the convexity of `2-norm to get the same inequality for ‖V(t)‖. Then,
we can follow the same argument in the proof of Theorem 4.1 to get the results for
the multi-dimensional case.
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5. Numercial simulations. In this section, we provide several numerical simu-
lations to system (2). Note that one thing that distinguishes the fractional C-S
model from the standard C-S model is the convergence mode toward velocity align-
ment. While the flocking emerges at the exponential rate in the standard case, it
does at the algebraic rate in the fractional case. Thus, from numerical simulations,
we would like to observe results not only about the velocity alignments, but also
about the rate of velocity alignment. For numerical simulations, we used the scheme
depicted in Appendix C in [8]. For readers interested in the scheme, we refer to
Appendix A.

5.1. Communication weights with positive lower bounds. In this subsection,
we provide the results of numerical simulations when the communication weight
function ψ has a positive lower bound, i.e. ψm = infx ψ(x) > 0. Here, we performed
simulations under the following setup, which satisfies our framework:

d = 2, ψ(x) := 2+
1

1 + x2
, α ∈ {0.4, 0.6, 0.8}, h = 0.01, N = 5, T = 100,

where h denotes the step size. We also performed simulations for the case that does
not satisfy our framework, although ψ has a positive lower bound:

d = 2, ψ(x) := 1+
2

1 + x2
, α ∈ {0.4, 0.6, 0.8}, h = 0.01, N = 5, T = 100.

Below, we present our initial configuration used in the simulations. The circle
indicates the initial position of each particle, and the arrow indicates the initial
velocity:
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(a) The case where the flocking is guaranteed by

Theorem 3.3
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(b) The case where the flocking is not guaran-

teed by Theorem 3.3

Figure 1. Initial configurations for ψm > 0.

We present our results from the simulations in Figure 2-3. Here, we provide two
figures for each case. The first one is a graph for ‖V − vc‖ over time, where vc is
the mean velocity. This figure would show the asymptotic alignment of velocities of
each particle. For the velocity alignment, we also consider the case α = 1 for com-
parison, which is actually the standard Cucker-Smale model. The second one is for
d∗(log(‖V−vc‖)

d∗(log(t)) over time, where d∗y
d∗x denotes the following numerical differentiation:(

d∗y

d∗x

)
i

:=
y(xi+1)− y(xi)

xi+1 − xi
.
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Since our analytic result suggests ‖V − vc‖ ∼ t−α, we expect that

d(log(‖V − vc‖)
d(log(t))

∼ −α.

Thus, the graph of this quantity would show that the rate of velocity alignment is
algebraic.
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(a) In this case, one has ψM = 1.5ψm. So the

emergence of flocking is guaranteed by Theorem
3.3
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(b) Here, since ψM = 3ψm, the flocking is not

guaranteed by Theorem 3.3. However, we can
still observe the emergence of flocking.

Figure 2. Slow velocity alignment for ψm > 0.
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(a) As expected, velocity alignment emerges
asymptotically at the rate of t−α.
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(b) Although it was not guaranteed by the the-
ory, the rate of flocking becomes approximately

t−α.

Figure 3. Relaxation rate toward velocity alignment for ψm > 0.

Here, we can observe that when ψM does not exceed the twice of ψm, the flocking
emerges in an algebraic order (see Figure 2-(a) and 3-(a)). However, even for the
case when ψM exceeds the twice of ψm, the flocking is still observed (see Figure
2-(b) and 3-(b)).

5.2. Nonnegative communication weights. In this subsection, we present sev-
eral results of numerical simulations, when the communication weight function ψ is
just nonnegative. Here, we performed simulations under the following setup :

d = 2, ψ(x) :=
1

1 + x2
, α ∈ {0.4, 0.6, 0.8}, h = 10−2, N = 5, T = 100.
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For the initial data, we take the following two types:
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(b) Mono-cluster flocking is not guaranteed by

the theory, but flocking will emerge.

Figure 4. Initial configurations for each case, when ψ is just nonnegative.

For the case (a), first we check whether the given data really satisfy our framework
or not. One may obtain

ψ0
m = min

i,j
ψ(|x0i − x0j |) ≈ 0.9999,

which implies

ψ

(√
2

(
‖X0‖+

‖V 0‖
(1 + 0.8)ψ0

m − ψM

))
≈ 0.9994 >

1 + 0.8

2
ψ0
m ≈ 0.8999.

Thus, we can find out that ε = 0.8 satisfies our framework and hence our Theorem
3.3 guarantees that the flocking should emerge in this case.

Now, we present our results for the simulations in Figure 5-6. Similar to the case
where there is a positive lower bound, we present two figures for each case. In Figure
5-(a) and Figure 6-(a), we can observe that the flocking emerges asymptotically at
the rate of t−α as expected. However, it can be also observed in Figure 5-(b) and
Figure 6-(b) that the flocking emerges even though the flocking is not guaranteed.

However, if we choose an initial configuration where particles are far away from
one another with relatively high velocity fluctuations, then it is possible to observe
the case when flocking does not emerge. Results from numerical simulations for this
situation is described in Figure 7.

6. Conclusion. In this paper, we have introduced the fractional Cucker-Smale
model for the modeling of slow anomalous flocking, i.e., the velocity fluctuations
around the asymptotic flocking velocity decays algebraically fast. For the proposed
model, we provided a sufficient framework for the mono-cluster flocking and uniform
`2-stability estimate with respect to initial data. There are several interesting issues
left for a future work. For example, the emergence of bi-cluster flocking, and mean-
field limit of the fractional Cucker-Smale model as the number of particles tends to
infinity. Furthermore, our numerical simulations show that, while the conditions in
Theorems 3.3 are sufficient for flocking to emerge, they are not necessary. These
issues will be treated in a future work.
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(a) With the choice of ε = 0.8, flocking was guar-

anteed by the theory and indeed emerges.
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teed by Theorem 3.3.

Figure 5. Slow velocity alignment when ψ is just nonnegative.
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Figure 6. Relaxation rate toward velocity alignment when ψ is
just nonnegative.

Appendix A. Brief outline of the numerical scheme. In this appendix, we
briefly explain the scheme that we used in Section 5 and for other schemes, we refer
to [16]. Consider the following type of system of fractional differential equations:

Dα
∗ y = f(t, y), y(j)(0) = y

(j)
0 , j = 0, 1, · · · , [α].

For simplicity, we consider the uniform grid {tj = jh | j = 0, 1, · · · , n} with step
size h on the time interval [0, T ]. Assume that we already have the values yj that
approximate y(tj) for j = 0, 1, · · · , k. Then in the scheme we will use, we would
calculate the approximating value yk+1 from the following formula:

yk+1 =

[α]∑
j=0

tjk+1

j!
y
(j)
0 +

1

Γ(α)

ak+1,k+1f(tk+1, y
P
k+1) +

k∑
j=0

aj,k+1f(tj , yj)

 ,
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(a) Initial configuration for non-flocking.
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(b) Flocking does not occur even for the stan-

dard Cucker-Smale model (i.e. the case α = 1).

Figure 7. Non-flocking result when ψ is just nonnegative.

where aj,k+1 is given by

aj,k+1 :=



hα

α(α+1)
(kα+1 − (k − α)(k + 1)α if j = 0,

hα

α(α+1)

(
(k − j + 2)α+1 + (k − j)α+1 − 2(k − j + 1)α+1

)
if 1 ≤ j ≤ k,

hα

α(α+1)
if j = k + 1,

and the corrector, yPk+1, is given by

yPk+1 :=

[α]∑
j=0

tjk+1

j!
y
(j)
0 +

1

Γ(α)

k∑
j=0

bj,k+1f(tj , yj), bj,k+1 :=
hα

α
((k + 1− j)α − (k − j)α) .
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