
Dynamic Characterization of Permeabilities and Flows in Microchannels

M. Castro,1 M. E. Bravo-Gutiérrez,2 A. Hernández-Machado,3 and E. Corvera Poiré2,*
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We make an analytical study of the nonsteady flow of Newtonian fluids in microchannels. We consider

the slip boundary condition at the solid walls with Navier hypothesis and calculate the dynamic

permeability, which gives the system’s response to dynamic pressure gradients. We find a scaling relation

in the absence of slip that is broken in its presence. We discuss how this might be useful to experimentally

determine—by means of microparticle image velocimetry technology—whether slip exists or not in a

system, the value of the slip length, and the validity of Navier hypothesis in dynamic situations.
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Introduction.—The ability to manipulate viscous fluids
in channels at micrometer scales has motivated a huge
interest in different fields ranging from physics to engi-
neering and biology [1–10]. The cooperation between
science and technology requires a deeper understanding
of the underlying physics in order to achieve the desired
control and extend it to small volumes [2,5,6]. One of the
most controversial issues in the field of microfluidics con-
cerns the fluid flow in the proximities of a solid wall
[3,4,7,9,11].

Whether the fluid slips at a solid wall or not has been
questioned since the times of Navier. Experiments with
Newtonian fluids [12] at macroscales have traditionally
been in good agreement with the no-slip assumption,
which states that the tangential velocity of the fluid at the
solid wall vanishes. However, at microscopic scales recent
experiments seem to indicate that the no-slip condition no
longer holds in all cases [3,7,9]. The concept of an apparent
slip has then arisen in microfluidics. Explanations of the
origin of this apparent slip have included the formation of a
gaseous film lying between the fluid and the solid, surface
wettability, and surface roughness [14–18]. Despite being
far from being understood [3,18–20], the apparent slip is
theoretically consistent with a slip velocity at the solid
walls.

The simplest assumption for the slip velocity (the tan-
gential fluid velocity at the solid wall) is given by Navier
hypothesis,

u slip � � _�; (1)

where _� is the local shear rate and � the so-called slip
length, which according to experiments ranges from tens of
nanometers to microns [7,18]. This equation is the bound-
ary condition at the solid walls of the evolution equation
for a Newtonian fluid, namely, the Navier-Stokes equation.
Equation (1) was originally proposed by Navier with con-

stant �. However, recent experimental observations [8,15],
as well as molecular dynamics simulations [14], suggest
that for certain systems (for example with hydrophobic
interactions between fluid and solid) � may be a function
of the shear rate _�.
Until now, all of the experiments to determine the slip

length have worked in stationary conditions, where an
excess flow of the order of nanoliters has to be measured.
Moreover, the effect that the apparent slip has on the fluid
response to time dependent pressure gradients has not been
explored in literature. Such situations arise in countless
amounts of biological systems, where flow occurs with
characteristic frequencies.
In this Letter we analyze the dynamic behavior of a

Newtonian fluid that obeys Navier hypothesis with slip
length �, independent of the shear rate, at the walls of a
microchannel. We make an analytical characterization of
the dynamic permeability [21], which contains the infor-
mation of the fluid response to a dynamic pressure gra-
dient. We find a scaling relation in the absence of slip that
is broken in its presence. We propose how this can be
useful to experimentally determine—by means of dynamic
measurements—whether slip exists or not in a system, and
the value of the slip length. Furthermore, such measure-
ments provide a way to test the validity of Navier hypothe-
sis in dynamic situations.
Theory.—We consider the flow of a Newtonian fluid in a

rectangular microchannel since this is the geometry that
experiments normally use in microfluidics. The walls of
the microchannel are two flat plates parallel to each other,
separated by a distance 2l that is much smaller than the
plates’ length. We consider channels whose characteristic
length l is of the order of tens of microns. As a conse-
quence, the Reynolds number is low enough to neglect the
inertial (nonlinear) term. We solve the linearized Navier-
Stokes equation subject to Navier boundary condition. We
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choose the x axis as the flow direction and the z axis
perpendicular to the microchannel.

We consider that the system is subjected to a nonsta-
tionary pressure gradient rp, which is a function of time.
In frequency domain, the Navier-Stokes equation can be
written as [22]

d2v̂

dz2
þ i!�

�
v̂ ¼ 1

�

dp̂

dx
: (2)

On the other hand, Navier hypothesis [Eq. (1)] in frequency
domain with constant � can be written as

û slip ¼ ��
dv̂

dz

�
�
�
�
�
�
�
��l

: (3)

We solve Eq. (2) subject to the boundary condition given
by Eq. (3). We then average over the cross-sectional area of
the microchannel and write a generalized Darcy’s law in
frequency domain as

hv̂ð!Þi � �Kð!; l; �Þ
�

dp̂

dx
; (4)

where Kð!; l; �Þ is the dynamic permeability. Our result
for the dynamic permeability of a fluid in a microchannel
with slip is

Kð!; l; �Þ ¼ �A�2

�

1� tanðAlÞ
Al½1� A� tanðAlÞ�

�

; (5)

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i!�=�
p

. We have written explicitly the de-
pendence of K on !, �, and l to facilitate the analysis.
Equation (5) contains the information about the nonsta-
tionary response of the fluid in the microchannel. It is a
measure of the resistance to flow; for instance, it has been
shown [23] that for a pressure gradient consisting only on
one mode rpðtÞ ¼ rp0 cos!0t, the velocity in time do-
main averaged over the cross-sectional area is given by

hvðtÞi ¼ �rp0

�
½ReK̂ð!0Þ cosð!0tÞ

þ ImK̂ð!0Þsenð!0tÞ�: (6)

Note that both the real and the imaginary parts of the

dynamic permeability contribute to the flow. Note also
that the experimental determination of the velocity profiles
in time domain provides a way of determining the real and
imaginary parts of the permeability by decomposing the
average velocity in two parts, one in phase and one out of
phase (by a factor of ��=2) with the applied pressure
gradient [24].
Analysis.—We find that in the absence of slip, the dy-

namic permeabilities for two different plate separations
obey a scaling relation that is broken when slip is present.
This result might be useful to experimentally determine the
absence or presence of slip in a system. Moreover, if slip
does exist, this might provide a way to experimentally
determine the slip length �. We do this by means of the
following argument: first of all, we note that in the absence
of slip (� ¼ 0), Kð!; l; 0Þ=l2 depends only on the product
Al as can be seen from Eq. (5). For a given fluid, this
implies that Kð!; l; 0Þ=l2 depends only on the product!l2.
Hereby we can write the following scaling relation for the
dynamic permeabilities of two different experiments, one
with plate separation 2l and frequency ! and another one
with plate separation 2�l and frequency !=�2:

�2Kð!; l; 0Þ
Kð!=�2; �l; 0Þ ¼ 1; (7)

which holds for any arbitrary positive constant �.
This scaling relation breaks down when � � 0 due to the

nontrivial effect of adding a new length scale to the prob-
lem. In other words, there is a new nondimensional number
(�=l) known as the Knudsen number [1] that in the pres-

ence of slip causes the ratio �2Kð!;l;�Þ
Kð!=�2;�l;�Þ to be no longer one.

This is shown in Fig. 1 where the real and imaginary parts

of the ratio �2Kð!;l;�Þ
Kð!=�2;�l;�Þ as a function of !l2 deviate system-

atically from the constant values 1 and 0, respectively.
Now it is possible to estimate the slip length � by

knowing the value for the ratio �2Kð!;l;�Þ
Kð!=�2;�l;�Þ . This means

we can solve explicitly � as a function of such a ratio and
plot curves that might be experimentally used to determine
the value of � from the chosen !l2 and, for example, the

real part of the ratio �2Kð!;l;�Þ
Kð!=�2;�l;�Þ . This is shown in Fig. 2.

1.00

1.05

1.10

1.15

1.20

 0 x 100  1 x 10-6  2 x 10-6  3 x 10-6  4 x 10-6

R
e 

[1
6 

K
(ω

,l,
λ)

 / 
K

(ω
/1

6,
4l

,λ
)]

ω l2

0.00

0.02

0.04

0.06

0.08

 0 x 100  1 x 10-6  2 x 10-6  3 x 10-6  4 x 10-6

Im
 [

16
 K

(ω
,l,

λ)
 / 

K
(ω

/1
6,

4l
,λ

)]

ω l2

FIG. 1 (color online). Real and imaginary parts of the ratio �2Kð!; l; �Þ=Kð!=�2; �l; �Þ vs !l2 (in radm2=s) with � ¼ 4, � ¼
1:003� 10�3 kg=ðmsÞ, � ¼ 9:982� 102 kg=m3, and l ¼ 10 �m in the absence of slip (continuous line) and for a slip length � ¼
1 �m (dotted line).
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If Navier hypothesis holds in dynamic situations (as it is
assumed in the present work), any pair of experiments
should give exactly the same value of �. If the value of �
obtained from Fig. 2 for a second pair of experiments [with

new values of the real part of the ratio �2Kð!;l;�Þ
Kð!=�2;�l;�Þ and !l2]

were not the same, it would imply that the hypothesis of
constant � does not hold in dynamic situations. In other
words, we are proposing a way of testing if Navier hy-
pothesis in dynamic situations is valid for a particular
system.

In order to experimentally determine the scaling relation
like the one shown in Fig. 1 a microparticle image veloc-
imetry (�PIV) could be used [7,25–27]. For our theoretical
calculations we have worked with microchannels of 20 and
80 �m high and slip lengths of 1 �m for water since these
are dimensions comparable to the ones used in [7]. We
have made a rough estimation of possible uncertainty bars
for our scaling relation. Our estimation is based on the
experimental precision for velocity of the �PIV apparatus

reported in [25] and on the experimental precision for
pressure for pressure-driven flows in microchannels [28].
We have obtained a relative uncertainty of 6.4% for the real
part of the scaling relation of Fig. 1 for working pressures
of about 1 MPa. Since the theoretical difference for the real
part of this ratio with and without slip goes from 21% at
low frequencies to 8% at high frequencies, a particular
experiment could choose, in principle, to work with fre-
quencies, in the range between a few hertz and kilohertz, in
which the effect would be discernible.
�PIV techniques have been used in stationary flows and

in oscillatory flows of few tens of Hz [27,29]. Here we
present an argument that indicates that �PIV techniques
can be used at frequencies up to the order of kilohertz.
Typical measurements of uncertainty in velocity are gov-
erned by uncertainty in displacement. Modern particle
tracking can find particle centers to within 10% of the
effective particle diameter [26]. If we wanted a maximum
uncertainty in displacement of 2%, we would require dis-
placements of around 5 �m. This implies that for frequen-
cies of the order of 1 kHz, we would require velocities of
the order of 5 mm=s. Modern particle tracking can readily
accomplish few mm=s [30].
In Fig. 3 we plot the real and imaginary parts of the

dynamic permeability [Eq. (5)] as a function of frequency
for water in a microchannel. Consistent with results for the
steady state known in literature, we obtain that when ! !
0 the stationary permeability of a rectangular microchannel

with Navier hypothesis is Kð0; l; �Þ ¼ l2

3 þ �l. This means

that slip enhances the flow magnitude of the steady state
making smaller the resistance to flow. As Fig. 3 shows, the
effect of slip on the permeability depends on frequency.
Note that there is a crossing frequency (on the range of
sound, �c ¼ !c=2�� 5500 Hz) of the curves of the real
part of the permeability (with and without slip). However,
there is no particular signature at this frequency for the
imaginary part of the dynamic permeability which, con-
trary to its zero value in the steady state, has a finite value
for an arbitrary frequency. In order to know the flow as a
function of time for a particular frequency, both contribu-
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FIG. 3 (color online). Real and imaginary parts of the dynamic permeability (in m2) versus angular frequency (in rad=s) with � ¼
1:003� 10�3 kg=ðmsÞ, � ¼ 9:982� 102 kg=m3, and l ¼ 10 �m in the absence of slip (continuous line) and for a slip length � ¼
1 �m (dotted line).
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FIG. 2 (color online). Slip length in units of l versus the real
part of the ratio �2Kð!; l; �Þ=Kð!=�2; �l; �Þ with � ¼ 4, � ¼
1:003� 10�3 kg=ðmsÞ, � ¼ 9:982� 102 kg=m3, and l ¼
10 �m at different values of angular frequency.
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tions should be taken into account as can be seen from
Eq. (6). We have computed the flow for a cosine pressure
gradient for frequencies before, during, and after the cross-
ing and have found no qualitative difference. In all cases,
the magnitude of the flow with slip has been found to be
larger than the one with no slip.

Figure 4 shows the slip velocity as a function of time for
an oscillatory pressure gradient consisting of a cosine wave
with ! ¼ 65 000 rad=s. In order to compute it, we have
worked with the local version of the velocity in time
domain evaluated at the wall. We have plotted it in the
absence of slip and for a slip length of 1 �m. We can
observe that in the case of having a finite slip length, the
slip velocity at the wall oscillates in timewhile for no slip it
is always zero.

In conclusion, we have analyzed the dynamical response
of Newtonian fluids that obey Navier hypothesis in micro-
channels subject to nonstationary pressure gradients. In
particular, we have analytically computed the dynamic
permeability, which contains the information of the fluid
response to a dynamic pressure gradient. We have found
that in the absence of slip, the dynamic permeabilities of
two microchannels obey a scaling relation that is broken
when slip is present. This result might be useful to experi-
mentally determine the absence or presence of slip in a
system. In addition, if slip exists, this might provide a way
to experimentally estimate the slip length �, and test the
validity of Navier hypothesis in dynamic situations. Our
results could be experimentally tested using frequencies of
sound and �PIV technology since we have worked in the
range of parameters relevant in microfluidics [7].
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FIG. 4 (color online). Typical behavior of the slip velocity (in
m=s) as a function of time (in s) for an oscillatory pressure
gradient consisting of a cosine wave. Continuous line is for no
slip and dotted line corresponds to a slip length � ¼ 1 �m.
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