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ABSTRACT
This paper investigates the applicability of a hybrid data assimila-
tion approach, namely ensemble-based variational method (EnVar),
to optimise Reynolds Averaged Navier-Stokes (RANS) simulations
in convergent-divergent channel from the perspective of Bayesian
inference. Concretely, the ensemble-based variational method is
applied to infer the inlet velocity and turbulence model corrections
by assimilating Direct Numerical Simulation (DNS) results or limited
experimental data. The approach is first adopted to infer the inlet
velocity profile for the WallTurb Bump and Venturi geometry. The
improvement canbeachievednear the inlet region for thebump, but
for Venturi in light of the view field limited in adverse pressure gradi-
ent region, the observation space is not sensitive to the perturbation
of inlet condition. In a second step, the model corrections in k − ω
SST model are investigated by assimilating the limited sparse exper-
imental data. With the inferred model corrections, the predictions
on both velocity and turbulent kinetic energy (TKE) get improved.
The results indicate that the ensemble-based variational method
is efficient in inferring unknown quantities of both low dimension
(D= 20) and high dimension (D= 2400) with small ensemble size
robustly and non-intrusively. This approach could prove very useful
for Bayesian inference or optimisation in CFD problems.
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1. Introduction

Despite significant development of Computational Fluid Dynamics (CFD) for several
decades, the high-fidelity resolution Direct Numerical Simulation (DNS) and Large Eddy
Simulation (LES) is still computationally intractable for most applications, especially
with high Reynolds numbers. Reynolds-Averaged Navier-Stokes (RANS) simulation will
remain dominant for industrial applications in the near future. However, it has been
noted that RANS model cannot make accurate predictions for the turbulent flows in the
convergent-divergent channel where there existmean curvature and pressure gradient, due
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to the ambiguous boundary condition and the inadequate turbulence model. On the other
hand, experimental investigations have to be faced with the challenges of the sparse mea-
surements in the limited observable field, noise contamination and insufficient resolution
for the small scale flow. To address these issues, data assimilation (DA) approach widely
used in the oceanography and geography gains the spotlights over the past few years in
the turbulence community. Based on Bayes theorem, data assimilation can integrate the
low-fidelity RANS calculation with the high-fidelity resolution from LES/DNS or sparse
experimental measurements to infer the unknown boundary condition or underlying
model information and thus optimise the RANS predictions.

Data assimilation can be sorted by variational data assimilation method, Ensemble
Kalman Filter (EnKF) method, and hybrid methods. All these methods leverage the Max-
imum a Posteriori (MAP) estimation, while in the variational method, MAP is formulated
as the minimisation of the cost function through adjoint optimal least square techniques.
A body of works based on the variational method has demonstrated its inferential per-
formance and robustness to replicate the flow status. Gronskis et al. [1] established a data
assimilation framework based on the variational method incorporating with adjoint opti-
misation method to generate the inflows condition for DNS. Foures et al. [2] applied the
variational method to minimise the discrepancy between the time-averaged velocity fields
of a DNS resolution and an incompressible RANS simulation for the two-dimensional flow
past a circular cylinder at a Reynolds number of Re=150. Symon et al. [3] applied the vari-
ational method to reconstruct the flows with relatively high Reynolds number of 13,500
around an idealised airfoil by assimilating the mean velocity field from time-averaged
Particle Image Velocimetry (PIV) measurements.

Also, the EnKF method where the state statistics are updated with an ensemble of real-
isations, have been intensively applied to quantify and reduce the uncertainty in RANS
simulation. Colburn et al. [4] used EnKF to estimate the near-wall turbulent flow based on
the wall information from DNS resolution. Kato and Obayashi [5] applied EnKF to infer
the optimal parameters in the Spalart-Allmaras turbulence model for zero-pressure gradi-
ent flat plate boundary layer atMach number of 0.2 and Reynolds number of 5 × 106. They
[6] also used the Ensemble Transform Kalman Filter to integrate the CFD and experimen-
tal fluid dynamics (EFD) to replicate the transonic turbulent flows over RAE 2822 airfoil
and ONERA M6 wing through estimating the proper angle of attack, Mach number, and
turbulent viscosity. Heng et al. [7] introduced uncertainty in Reynolds stress directly and
adopted an iterative ensemble Kalman method to reduce the model-form uncertainty in
k − ε model for the flow over periodic hills and the flow in a square duct by assimilating
very sparse observations.

Despite both the variational data assimilation method and EnKF have demonstrated
their applicability for the Bayesian optimisation of CFD problems, the intrusiveness of
variational method makes it difficult to implement, and the high sensitivity to the prior
statistics for EnKF causes the inference results prone to be inferior. Recently, a hybrid
method, namely ensemble-based variational method(EnVar), gains attention to solve the
inverse problem for CFD simulation with both robustness and non-intrusiveness. Mons
et al. [8] first explored the applicability of this kind of data assimilation technique into
unsteady flows with coherent gust and assessed the robustness of variational data assim-
ilation method, Ensemble Kalman Smoother and EnVar method to reconstruct the flows
around a cylinder. They demonstrated that the ensemble-based variational method could
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216 X. ZHANG ET AL.

be robust as the variational method and circumvent the efforts on the adjoint model by
estimating the prior statisticswith ensemble realisations.Meanwhile, the inferential perfor-
mance can be very satisfactory and is not quite sensitive to prior and observation statistics
comparing to Ensemble Kalman Smoother.

The current study investigates the applicability of the ensemble-based variational
method to optimise the RANS simulation from the perspective of inferring improved inlet
boundary condition and underlying model corrections by incorporating with DNS reso-
lution or sparse experimental observation. The test cases from low dimension (D=20) to
high dimension (D=2400) of input parameters all demonstrated the merits of the pro-
posed approach. It is worth noting that the limited observation from the PIV experimental
measurements is also integrated with RANS simulation to recover the flow status.

The rest of this paper is structured as follows. The ensemble-based variational scheme is
presented in Section 2. The CFD code and the practical implementation of the data assim-
ilation framework are described in Section 3. The applications of this framework to infer
inlet velocity andmodel corrections are presented in Sections 4 and 5 respectively. Section 6
is dedicated to the conclusion and perspectives.

2. Data assimilation framework

2.1. Ensemble-based variational scheme

The ensemble-based variational method is a hybrid data assimilation approach that
combines the variational data assimilation method with EnKF. Compared to the vari-
ational method, the formulation of EnVar uses a Monte Carlo ensemble to estimate
the prior statistics thus circumventing the efforts on the adjoint operator. This method
equates MAP to the optimal control problem where the optimal control vector is
searched based on gradient-decent optimisation to update prior information. Mean-
while, the prior distributions are re-estimated at each DA iteration thus counteracting
the influence from the improper prior, while in EnKF scheme the Kalman gain matrix
to update the prior distribution, is directly constructed from the approximated prior
statistics.

The state vector is the input parameters, representing the quantities to be inferred. For
simplification, the vector is assumed to be Gaussian distributed. The mean of this normal
distribution corresponds to the initial guessed or prior state vector, and the vector can be
expressed as

α = α(e) + E′β , (1)

where β is the control vector with dimension ofNen.Nen is the ensemble size. E′ = (α(1) −
α(e),α(2) − α(e), . . . ,α(Nen) − α(e))

Regarding the observation, it is the reference data (e.g. friction/pressure coefficient,
velocity fields, and so on) from high-fidelity simulation or experiment that have a sub-
stantial influence on the inferred quantities. Random measurement noise in observation
is assumed to be Gaussian distributed with zero mean, uncorrelated, and are characterised
by the relative standard deviation σo. The observation y can be prescribed as

y = h(α+) + ε, (2)
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where h is the observation operator that maps the state space to observation space,
α+ is reference trajectory projecting to the observation and ε is the possible random
measurement error.

Based on the Bayes theorem, to maximise the posterior is equivalent to minimise the
cost function J

p(α | y) ∝ p(α)p(y | α) ∝ e−J → J = 1
2‖α − α(e)‖2B−1 + 1

2‖d − y‖2C−1 , (3)

where d is theRANS realisations in observation space based on state vectorα, y is the obser-
vation from DNS solutions or the experimental measurements, ‖ ∗ ‖2B−1 = ∗TB−1∗;‖ ∗
‖2C−1 = ∗TC−1∗. As in (3), the cost function J is composed of two parts: the difference
between the prior and its realisations, and the difference between RANS prediction in
observed quantities and the observation, weighed by the background covariance B and
observation error covariance C, respectively. d can be realised by the linearisations as in
the following formula:

d = h(α(e)) + H′β ,

H′ = (h(α(1)) − h(α(e)), h(α(2)) − h(α(e)), . . . , h(α(Nen) − α(e))). (4)

Using B � (1/(Nen − 1))E′E′T and substituting α with (1), the cost function in (3) can
be rewritten as a quadratic equation on control vector β :

J = 1
2 (Nen − 1)ββT + 1

2‖h(α(e)) + H′β − y‖2C−1 . (5)

The gradient and hessian of J can be derived straightforwardly as

∂J
∂β

= (Nen − 1)β + H′TC−1(h(α(e)) + H′β − y), (6)

∂J2

∂2β
= (Nen − 1)I + H′TC−1H′. (7)

In order to minimise the cost function (5), one iteration of Newton CG method is per-
formed with (6) and (7). The obtained β is used to update the state vector α according
to (1). This iterative process is continued until the converge criterion is reached.

The procedure of the ensemble-based variational method is shown in Figure 1 and the
details can be summarised as follows:

Step 1. Give a first guessed or prior state vector α(e), and prescribe the prior and
observation statistics respectively;
Step 2. Realise Nen samples around the mean vector α(e);
Step 3. Propagate each sample of state vector to observation space through solving
RANS equation;
Step 4. Analyze the control vector β by minimising cost function with (6) and (7);
Step 5. Update the mean of state vector with the analyzed control vector β based
on (1);
Step 6. Return to Step 2 and resample around the updated ensemble mean until the
fitting criterion or maximum iteration is reached.
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218 X. ZHANG ET AL.

Figure 1. Schematic illustration of EnVar method.

2.2. Fitting criterion

The goal of the data assimilation approach is to best fit the numerical prediction with DNS
or experiments. Hence in order to evaluate the optimal performance, it is first necessary to
calculate the ratio of cost function value before and after the data assimilation process in
order to assess the extent to which the cost function is reduced. The ratio of cost function
J can be defined as:

rJ = Jend
J0

. (8)

Moreover, the cost function is constituted of two parts as illustrated in the formula (5) and
thus reduction of the cost function may not directly reflect the decrease of the discrep-
ancy between the numerical prediction and the observation in the quantities of interest.
Therefore, the formula (9) is introduced to measure this distance:

Job = 1
2‖y − h(α(e))‖2, (9)

where ‖ ∗ ‖ is Euclidean norm. In this work, the data assimilation process is terminated
as Job < 10−3. The ratio of the assimilated and initial Job is also introduced to evaluate the
efficiency of the optimisation process

rJob = Jobend
Job0

. (10)

tenailleau
Zone de texte 



JOURNAL OF TURBULENCE 219

3. Numerical setup

3.1. CFD solver

A 2D steady incompressible solver is used to perform the numerical simulations on two-
equation RANS turbulence model. The governing equations can be expressed as:

div(Fc − Fv) = S, (11)

with

Fc =
⎛
⎝ ρu ρv

ρu2 + p ρuv
ρuv ρv2 + p

⎞
⎠ and Fv =

⎛
⎝ 0 0
2μSxx + τxx 2μSxy + τxy
2μSxy + τxy 2μSyy + τyy

⎞
⎠ ,

where ρ is density; u and v is stream-wise andwall-normalmean velocity; Fc and Fv denote
the convective and viscous flux densities; μ, S and τ represent molecule viscosity, mean
strain rate, and Reynolds stress respectively; S is the source term.

The Reynolds stress term τ is modelled byMenter’s k − ω SSTmodel [9]. And the code
uses the HLPA (Hybrid Linear / Parabolic Approximation) non-oscillatory second-order
scheme for the convective term. The SIMPLE (Semi-implicit Method for Pressure-Linked
Equations) algorithm is applied to solve the coupled mass and momentum conservation
equations, on two-dimensional structured curvilinear-orthogonal meshes.

The non-slip condition is used on the wall. The first grid for all cases in this paper is well
placed in the viscous layer and the wall function is not incorporated therefore to eliminate
the effects of assumptive wall boundary condition.

3.2. Data assimilation implementation

Firstly, an initial guess of the input parameter is given as prior, and then Nen samples are
constructed around the first guess based onGaussian process. To ensure the smoothness of
the obtained samples, a non-diagonal covariance matrix to describe the prior distribution
is prescribed as:


i,j = σ(xi)σ (xj)b2 exp

(
−‖xi − xj‖2

l2c

)
, (12)

where the variance σ(x) is constructed based on the discrepancy between the prediction
from initial RANS simulation and the observation in order to inform where large or small
perturbations are expected; b refers to the characteristic values, for inlet velocity recon-
struction it is based on inlet bulk velocity while for model correction inference, it is taken
as 1; lc is constant correction length based on the height of the channel at inlet; xi refers to
the position of the ith control volume. With mean vector α(e) and covariance matrix 
i,j,
the Nen samples around the first guess could be realised.

The observation error is assumed to be the uncorrelatedGaussian distributionwith zero
mean. For simplification, the covariancematrixC is constructed as a diagonalmatrix based
on the observation error which is defined as εεT . The resolution in the observation space is
mapped from the state vector forwardly with CFD solver. The posterior is obtained by solv-
ing the Bayesian optimisation problem based on the ensemble-based variational scheme.
For the optimisation method, Newton-CG is used to minimise the cost function.
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4. Inlet velocity inference

The proper inlet velocity has critical implications for the performance of numerical pre-
diction, and many forward methods have been proposed to generate the inflow condition
for DNS and LES, such as the recycling-basedmethod and synthetic turbulence generators
[10], whereas high computational efforts are required in these methods. In this section,
the ensemble-based variational method is explored to infer the inlet velocity profile based
on the limited quantities from DNS resolution or experimental measurements. Two test
cases are used to evaluate the performance of the data assimilation scheme on the recon-
struction of the inlet velocity profile. The first one is turbulent flow in the WallTurb Bump
where DNS dataset is available, and the other one is non-cavitating flow in Venturi where
the experimental X-raymeasurements can be considered as the reference data. A summary
of data assimilation experiments for inlet velocity inference is given in Table 1.

4.1. WallTurb Bump

4.1.1. Flow configuration
The turbulent flow inWallTurb Bump [11] is one canonical flow and widely used to verify
the performance of numerical methods [12–14]. The Reynolds number for this flow is
12,600. The computational domain is −5.22 < x < 7.34; 0 < y < 2. In order to simulate
this flow, the structured curvilinear-orthogonal mesh is generated with 125 cells in stream-
wise direction and 60 cells in the normal-to-wall direction. The y+ of first mesh adjacent
to the wall is around 1. The mesh of the WallTurb Bump is shown in Figure 2.

For the setup of data assimilation, the input parameters are the lower half of inlet velocity
with the dimension of 30, and the ensemble sizeNen is set to be consistent with the dimen-
sion of input space. The variance field σ is based on the discrepancy field of the prior inlet
velocity and the DNS velocity with a multiplication of 10−3. The value of multiplication
need some trials and errors since large variance will increase the spatial extent of subspace
where the optimal solution is searched, and thus result in the instability of the optimisation
process, while too small variance will make the process robust but quite slow.

In order to infer the inlet velocity profile for this case, the friction coefficient Cf is
regarded as the observation in consideration of the strong correlation between the velocity

Table 1. Data assimilation results for inlet velocity inference.

Geometry α Prior dim(α) y Nen rJ rJob

Bump parabolic 30 Cf 30 0.0025 0.20
inlet velocity flat 0.002 0.157

Venturi parabolic 20 u 20 2.7 × 10−4 2 × 10−5

Figure 2. Mesh of WallTurb Bump.
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and the friction coefficient. The skin friction coefficient is defined by:

Cf = τw

0.5ρU2
ref

where τw is the wall shear stress τw = μ(du/dy)|y=0 andUref is reference velocity, which is
taken as the dimensionless inlet bulk velocity 1. Since presumably the friction coefficient is
not sensitive to the inlet condition in the region with the bump where the flow encounters
the strong pressure gradient, the observation is confined near the inlet region and exclude
the part adjacent to the inlet. Thus, the observation includes the friction coefficient on
the bottom wall from x=−4.2 to −1.9, and the standard deviation of observation error is
taken as 5 × 10−4.

The Newton-CG method is applied to minimise the cost function. As in this case the
ensemble size is quite small, theHessian of the cost function can be explicitly expressed, and
theNewton-CG ismore robust compared to the quasi-Newtonmethodwith approximated
Hessian matrix such as BFGS. The comparison of Newton CG and implicit BFGS method
to infer inlet velocity for the bump is presented in Appendix 1.

4.1.2. Physical constraints
Due to the non-uniqueness of the optimal solution, data assimilation process may result in
the inferred inlet velocity losing physical meaning, for instance too high velocity adjacent
to the wall and non-symmetric inlet velocity profile for this case, which may also bring
about the divergence problem for CFD solver. Therefore, three constraints are given based
on physical knowledge. Firstly, the dimensionless velocity at the first grid to the bottom
wall is fixed at 2 × 10−3 via interpolation from DNS resolution to avoid the steep velocity
gradient near the boundary and have a reasonable y+ at the inlet. Secondly, the recon-
structed inlet velocity profile may lead to the variation of flux and accordingly change the
flow condition. Therefore, the flux at the inlet is corrected after each data assimilation iter-
ation, by multiplying the ratio of the updated flux and reference flux to ensure the flux
constant. Besides, in this case, the inflow into the channel should be developed turbulent
flow and presumably symmetric. On the other hand, only the friction coefficient on the
bottom wall is considered as the observation; hence the inlet velocity near the top wall is
not able to be recovered due to lack of information. Thus only the bottom half profile is
taken as the input parameter, while another half is constructed by symmetric projection.

4.1.3. Results
Twodifferent first guess is imposed as the prior inlet velocity: the parabolic and the flat pro-
file. The assimilated results of inlet velocity and observed friction coefficient are presented
in Figure 3 with the comparison to the prior and DNS. The inferred inlet velocity profiles
are both quite close to the DNS data as shown in Figure 3(a,c). Accordingly, the predic-
tions in terms of friction coefficient presented in Figure 3(b,d) also have a good agreement
with DNS data in the observed region. Generally, both cases can obtain a good inference
on inlet velocity and improve the prediction on Cf by assimilating the friction coefficient
from DNS.

Figure 4 shows the evolution of cost function to the iteration number. For both cases,
the cost function is reduced significantly while with the prior of parabolic profile the
minimisation is more efficient and converged in the first five iterations. In concrete, the
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222 X. ZHANG ET AL.

Figure 3. Data assimilation results about the inferred inlet velocity and the prediction in Cf : (a,b) for the
prior of parabolic velocity; (c,d) for the prior of flat velocity.

Figure 4. Data assimilation results of cost function J and Job: (a,b) for the prior of parabolic inlet velocity;
(c,d) for the prior of flat inlet velocity.

cost function J reduces from 32,386 to 80 in the case with parabolic prior, and the ratio
rJ ≈ 0.0025, while for the prior with flat inlet profile, the cost function J reduces from
57,607 to 114 and rJ ≈ 0.002. The norm of discrepancy between numerical prediction
and reference with first guessed parabolic inlet velocity is reduced from 0.0155 to 0.0031
and rJob ≈ 0.20 while the discrepancy for the case with the flat inlet velocity profile can be
reduced from 0.0191 to 0.0030 and rJob ≈ 0.157.

The contour plots of the velocity U field with first guessed parabolic velocity are pre-
sented in Figure 5. The visible improvements can be observed near the inlet and the
favourable pressure gradient region. However, in the adverse pressure gradient region,
the prediction is not improved with optimal inlet velocity, which is not surprising since
it is a consensus that RANS model cannot give good predictions with confidence when it
encountered strong adverse pressure gradient. A large-scale separation after the summit
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Figure 5. Velocity U field with the first guess of parabolic velocity for prior(a), posterior(b) and DNS(c).

of the bump can be seen in RANS calculation, whereas in the DNS solution the reattach-
ment occurs in the downstream near the starting point of separation and thus there is no
noticeable separation. In other words, the prediction of velocity U in the adverse pressure
gradient region is insensitive to the inlet velocity, and the poor prediction may be due to
the RANS model inadequacy. This section is mainly to explore the applicability of data
assimilation to optimise inlet velocity, so the uncertainty in the model is not concerned.

4.2. Venturi

The second case is for Venturi channel, which is extensively used in the investigations of
turbulent cavitating flows [15, 16]. The field information near the throat is quite challeng-
ing to be captured by current RANS model due to abrupt curvature change. In this work,
the data assimilation approach is applied to infer the proper inlet velocity in non-cavitating
flow by assimilating one velocity profile from experimental data.

4.2.1. Flow condition
The experiments were conducted by Khlifa et al. [17]. Through applying ultrafast X-Ray
imaging into the turbulent flows, the velocity was measured within a Venturi-type test
section with 18◦ convergence angle and 8◦ divergence angle. The cross-section in the entry
of the Venturi is a rectangle of 17mm × 4mm, and the height of the throat is 15.34mm. In
the experiment, the flux rate is 55.5 L/min, representing the entry bulk velocity at 13.6m/s.
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224 X. ZHANG ET AL.

Figure 6. Mesh of the Venturi-type section.

Reynolds number is 2.3 × 105. The time-averaged velocityu is obtained by averaging all the
instantaneous stream-wise velocity processed from the high speed photography images.
For the numerical setup, the structuredmesh is generated with 200 grid in the stream-wise
direction and 70 grids in the normal to the wall direction. The y+ of the first grid near the
wall is ranged from 1 to 3. The mesh of the venturi-type section is shown in Figure 6.

However, since the measured area is in the adverse pressure gradient region where the
velocity field is not sensitive to the inlet condition, the data assimilation experiment within
Venturi turned out to be a failure. The results are presented in Appendix 2. In view of
this, we simplified the Venturi geometry as a divergent channel with the resolution domain
starting from the throat of the Venturi section. Thus the measured field is quite close to the
inlet, and the flow status can be very sensitive to the inlet condition. The structured mesh
is generated with 131 cells in the x-wise direction and 70 cells in the y-wise direction.

4.2.2. Data assimilation setup
In the Venturi-type section, the measured window is placed near the bottom wall and
quite small compared to the height of the channel. Therefore, only the inlet velocity pro-
file adjacent to the bottom wall is considered as the input parameters, and the velocity in
the other area is fixed at constant 1.1 to keep the flux consistent. The dimension of the
input parameters is 20. The velocity at the first grid is also fixed at 2 × 10−3 to have a
reasonable y+.

As for the observation, the velocity field can be captured by the PIV experimental mea-
surements while other turbulent quantities of interest on the wall such as skin friction
coefficient are not straightforward to measure. Hence, we regarded the velocity profile at
x = 0.0008m as the observation which is quite close to the inlet boundary, thereby ensur-
ing that the velocity at this specific position can be affected flexibly by inlet condition.
The ensemble size, in this case, is set as 20. The variance σ(x) is constructed based on
the discrepancy of the RANS simulation and experimental velocity profile at the observed
position and the added multiplication is 10−5. The standard deviation of observation is
σo = 10−6, which represents high confidence in the experimental data since the observed
position and the inlet is almost linearly correlated, and thus the inverse problem is well
posed for this case.

4.2.3. Results
Figure 7 shows the assimilated and prior results for inlet velocity and the observed veloc-
ity profiles. Figure 7(a) presents the evolution of inferred inlet velocity profile every 5
iterations, while Figure 7(b) presents the improved prediction on the velocity profile at
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Figure 7. Data assimilation results of velocity at inlet(a) and velocity at x = 0.0008m(b).

Figure 8. Data assimilation results of cost function J(a) and Job(b).

x = 0.0008m. It can be seen that EnVar method can reconstruct the inlet velocity to fit
quite well with the reference velocity profile at the specific position near the inlet.

Figure 8 shows that the evolution of cost function with respect to the iterations. The cost
function J is reduced significantly from5.2 × 1011 to 1.4 × 108 after 20 iterationswith ratio
rJ of 2.7 × 10−4 and rJob of 2 × 10−5.

Figure 9 presents the contour plots of velocity u of prior, posterior and experiment.
Noticeable improvements can be seen in the observed position x = 0.0008m comparing to
the prior. However, in the other areas, the flow status is entirely different, since substantially
the flows in Venturi cannot be represented with the divergent channel.

5. Model correction

As illustrated in Section 4.2, in Venturi-type section the measured field is mainly in the
adverse pressure gradient region, where the velocity is insensitive to the inlet condition,
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226 X. ZHANG ET AL.

Figure 9. Velocity u field for prior(a), posterior(b) and experiment(c).

Table 2. Summary of DA experiments for model correction inference.

α dim(α) y Nen rJ rJob

βc in k equation 1200 0.43 0.17
βc inω equation 1200 TKE and u 50 0.25 0.13
βc in k andω equation 2400 0.087 0.13

and the RANS method is incapable of making accurate prediction due to the convex cur-
vature. Therefore, in this section, the RANSmodel-formuncertainty is considered through
the field inversion approach [18]. The conventional k and ω transport equation in k − ω

SST model is inadequate especially in the presence of adverse pressure gradient. Thus, the
underlying source term is introduced in the k − ω SST model by three different means
depending on where the correction terms are inserted (TKE equation or ω equation). The
sensitivity of these corrections concerning the observation is analyzed, and accordingly, the
correction fields are inferred through solving the inverse problem with EnVar approach.
The summary of DA experiments for model correction inference is presented in Table 2.

5.1. Correction in k equation

5.1.1. Data assimilation setup
In the TKE transport equation of the k − ω SST model, the sum of turbulent-transport
term and pressure diffusion term is represented throughBoussinesq assumption in analogy
to molecular transport process [19] which probably result in poor prediction for complex
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flows. The correction variable βc is introduced in front of the production term in TKE
transport equation to account for the model uncertainty, which is equivalent to introduce
a source term (1 − βc) × P in the TKE transport equation. Thus with data assimilation,
the flow status can be recovered through finding out the optimal correction field to have a
good agreement with reference data.

∂k
∂t

+ ∂(ujk)
∂xj

= βcP − β∗ωk + ∂

∂xj

[
(ν + σkνt)

∂k
∂xj

]
(13)

Since the measurement region is only near the throat, in order to reduce the dimen-
sion of input space and guarantee that the inferred correction and observation are locally
correlated, the range of input parameters are confined in the area with extension to the
observed region instead of the whole computational domain. The correction variables are
well imposed on themesh grids. The dimension of input parameters is 1200 with 40 points
along the x-wise direction and 30 points along the y-wise direction.

As for the observation, four profiles on the velocity u and TKE are concerned. For each
profile, there are 24 measurement points. Given that the numerical solution is imposed on
the mesh points while the experimental data is on a uniform Cartesian grid, to compare
the numerical resolution with the measurements, each experimental data is interpolated
on the numerical mesh points. Besides, since the initial discrepancy of velocity and TKE
causes the weight of the two observed quantities on the cost function to be different, TKE
is normalised by multiplying the ratio of the initial discrepancy between prediction and
reference data in velocity to that in TKE, thereby keeping them in the consistent range.

For the data assimilation setup, as it is not practical to draw all the samples for high
dimension case, we drew 50 samples with truncated Singular Value Decomposition(SVD)
which can capture more than 99 percent of the variance. The standard deviation of obser-
vation σo is 10−1. It is noted that the large observation error represents the experimental
instinct uncertainty frombothmeasurements and post-processing [17].Moreover, because
the model error is not considered in this work, it can be regarded as the whole process
error including the data error as well as the model error. Also, the strong non-linearity
for this case will increase the ill-posedness of the optimisation problem, hence for the
ensemble-basedmethods, the inflation on the observation error covariance matrix is com-
monly adopted to regularise the problem. The large observation error here can be taken
as the implicitly inflated one. The variance field as shown in Figure 10 is constructed
through interpolation based on the discrepancy between RANS results and very sparse
experimental data in TKE where the added correction term has a direct impact. And the
multiplication of the variance is taken as 1 × 10−3. The first guessed input parameter is set
as 1 in the domain of interest.

5.1.2. Results
Figure 11 shows the reduction of cost function values with respect to iterations. It can
be seen that the data assimilation process is well converged and the cost function is
reduced significantly in the first 20 iterations from 5.1 × 105 to around 2.2 × 105 with the
descending ratio of 0.43, while Job is decreased with a ratio of around 0.17 at the end of
optimisation.

Figure 12 is the comparison of TKE and stream-wise velocity u among the prior, pos-
terior and experimental data along profiles. The profiles of prior TKE are quite distant
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Figure 10. Variance σ(x) of βc in TKE transport equation.

Figure 11. Data assimilation results of cost function J(a) and Job (b).

from the reference profiles. The RANS model cannot capture the high TKE near the wall
and throat region. After the data assimilation process, a noticeable improvement can be
seen comparing to prior, and the prediction in TKE has a good agreement with experi-
mental data especially at the first two positions as shown in Figure 12(b). However, from
Figure 12(a) the prediction on velocity u is not quite improved. The correction embedded
in the TKE transport equation may not have substantial effects on the observed velocity,
that is to say, the perturbations on the corrections can impact significantly on the prediction
of TKE obviously, but have no sufficient influences on velocity u.

The contour plots of posterior TKE and velocity u with correction in the k transport
equation are shown in Figure 22(c,d). The apparent improvement can be found in TKE,
and the region near the wall with high TKE can be recovered. However, for the velocity,
no apparent improvements can be seen, and the relatively low value in the region near the
wall cannot be captured even though with the correction in the k equation.

5.2. Correction term inω

5.2.1. Data assimilation setup
The specific dissipation ω transport equation in k − ω SST turbulence model is heavily
modelled with an ad-hoc form. The underlying source term in this equation is also prob-
ably responsible for the poor predictive performance on the velocity and TKE. In this
subsection the correctionβc is introduced inω transport equation as the following formula:

∂ω

∂t
+ ∂(ujω)

∂xj
= βc

γ

μt
P − βω2 + ∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ Ssst (14)
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Figure 12. Comparison in velocity u (a) and TKE (b) along profiles among prior, posterior and
experiment.

The range of input parameters and observations are the same in section 5.1 as well as the
ensemble size. The standard deviation of observation is also taken as 10−1. The variance
σ(x) is taken based on the discrepancy between RANS and experimental data on velocity
u since the correction in ω transport equation can have strong correlations with velocity
based on our prior study. The multiplication on variance σ(x) is 1 × 10−3. The variance
field is shown in Figure 14. The first guessed input parameter is set as 1 in the inferred
domain as well.

tenailleau
Zone de texte 



230 X. ZHANG ET AL.

Figure 13. Inferred βc profiles.

Figure 14. variance σ(x) of βc inω transport equation.

Figure 15. data assimilation results in cost function J(a) and Job (b).

5.2.2. Results
Figure 15 shows that the convergence curve of the cost function with correction in the ω

equation. It can be seen that the ratio of cost function J can reduce to 0.13 and for Job it
can decline to 0.25. And after approximately 30 iterations, no visible improvement can be
reached.
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Figure 16 presents the evolution of RANS prediction in observation space. With the
correction in the ω transport equation, the stream-wise velocity u can be significantly
improved even though TKE becomes inferior. With the velocity approaching the experi-
mental data, the gradient of velocity near the wall is gradually reduced which results in the
production term in the TKE transport equation related to the velocity gradient decrease
accordingly. That is why it can be observed that the improvements in velocity u and TKE
are mutually impeded: Once the prediction on velocity u is improved, the velocity gradient

Figure 16. Comparison in velocity u (a) and TKE (b) along profiles among prior, posterior and
experiment.
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Figure 17. Inferred βc profiles.

Figure 18. Data assimilation results of cost function J(a) and Job (b).

near the wall will become reduced, which results in the reduction of TKE and the fur-
ther departure from the experimental measurements. The contour plots of the posterior
with correction in the ω equation are presented in Figure 22(e,f). The velocity field is well
reconstructed comparing to the experiments, especially in the upstream.

5.3. Correction in k andω equation

5.3.1. Data assimilation setup
Because of the corrections in the TKE and special dissipation transport equation having
dominant effects on the prediction of TKE and velocity u respectively, in this subsection
the correction terms are introduced simultaneously in TKE and ω transport equation.
The input space has 2400 dimensions including correction variables in both TKE and
dissipation transport equation. Other parameters are uniformwith the former subsections.

5.3.2. Results
Figure 18 shows that the results of the cost function with corrections in both k and ω

equations. It can be seen that the value of cost function reduces significantly within 45
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Figure 19. Comparison in velocity u (a) and k (b) along profiles among prior, posterior and experiment.

iterations with ratio rJ of 0.087 and rJob of 0.13. Compared with the previous cases, the
efficiency of EnVar method decrease as the dimension of input parameters is increased.
Figure 19 presents the evolution of the velocity u and TKE profiles by comparison with
prior and experimental data. The predictions in both u and TKE is improved; however, the
improvements of the predictions in the two observation are mutually restrained, which
leads to that the further optimisation of the velocity would deteriorate the prediction
on TKE.

From the contour plots in Figure 22(g,h), the apparent improvement on the prediction
of velocity u and TKE can be seen comparing to prior. However, there is still a significant
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Figure 20. Inferred βc profiles in k equation.

Figure 21. Inferred βc profiles inω equation.

departure from the experiments. The reason why the optimised results cannot get further
close to the reference data may be due to two aspects: first the experimental data has its
instinct uncertainty including the measurement noise, insufficiency resolution and so on;
secondly, it has been noted that the primary source of uncertainties in the RANS model is
from Reynolds stress. The correction in the scalar k and ω equation is still under the frame
of linear eddy-viscosity assumption; hence it can only concern the magnitude of Reynolds
stress tensor but cannot take the orientation of Reynolds stress into considerations. In other
words, the impact of these corrections on the observations may be not sufficient to repre-
sent the structural uncertainty in the RANSmodel. To this end, this work can be extended
to the framework in [7] to infer the uncertainties directly in theReynolds stress term.More-
over, the measured TKE may be difficult to be replicated by the modelled TKE since the
modelled TKE cannot be equivalent to the ‘true’ TKE in a real flow.
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Figure 22. Contour plots of velocity u (first column) and TKE (second column): (a,b) prior; (c,d) poste-
rior with correction in k transport equation; (e,f ) posterior with correction inω transport equation; (g,h)
posterior with correction in both k andω transport equation; (i,j) experiment.

Figures 13, 17, 20, and 21 are the inferred model correction profiles at the corre-
sponding position for each case. Generally, the production term in TKE and dissipation
transport equation are both increased by the introduced corrections. With the produc-
tion term in k equation increasing, the resolution on the TKE increase as well. Thus, the
prediction on k in the near wall region can be improved significantly comparing to the
initially underestimated value. However for the region away from the wall, the production
term itself becomes trivial, and thus TKE will reduce the sensitivity to the multiplicative
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correction of the production term; hence the assimilated results are almost similar to
prior, especially for the case with corrections in both k and ω transport equation. Also,
the resolution on ω gets increased with the optimal correction in the ω equation, which
leads to that the modelled Reynolds stress tend to decrease, while the velocity near the
wall is reduced accordingly and get close to the experimental measurements. Neverthe-
less, in the area far from the wall, the inferred correction is also increased but has few
effects on velocity since the region is in the outer layer where the Reynolds stress is not
dominant.

6. Conclusion

The ensemble-based variational method is presented to optimise RANS simulation by
inferring improved inlet velocity and underlying model corrections in k − ω SST model.
This approach combines the variational data assimilation method and ensemble Kalman
method by transforming the MAP as the optimal control problem and meanwhile using
the ensemble technique to estimate prior statistics so that it can sustain the advantages of
both robustness and intrusiveness.

Firstly, two representative flows in the convergent-divergent channel, the turbulent
flow in the WallTurb Bump where DNS resolution is available and non-cavitating flow
in Venturi-type section with the X-rays experimental observation, were tested with the
proposed data assimilation approach to infer the ambiguous inlet velocity profile. With
improved inlet velocity, the field of velocity u can be reconstructed in good agreement
with reference data mainly near the inlet region, while the velocity u in the APG region
is not quite sensitive to the inlet condition. Further, the underlying model corrections in
k − ω SST model were inferred for the non-cavitating flow in Venturi. The sensitivity of
the correction term in the k and the ω equation is analyzed respectively. The predictions
in velocity u and TKE both can be improved with corrections in the k and ω equation
but still have large discrepancies comparing to the experiments which may be due to the
insufficiency of the correction in the frame of Boussinesq hypothesis. The robustness of
ensemble-based variational method for the inverse problem in complex turbulent flows is
demonstrated.

In light of the limitation of the RANS model-form uncertainty under the frame of lin-
ear eddy viscosity assumption, current work is being conducted to explore the applicability
of this data assimilation scheme to quantify and reduce uncertainties in Reynolds stress
directly. Also, the EnVar method used in this work is the standard incremental ensem-
ble version, where the background error covariance B is estimated with low-rank linear
approximation and independent between consecutive data assimilation iterations. The
ensemble updatewith consideration of the associated error covariance updatewill be inves-
tigated in future work [20]. Besides, the method utilises the limited ensemble realisations
to estimate the sensitivity matrix H′ which may result in that the optimisation process
is prone to diverge especially for the high dimension problem. Hence, the regularisation
technique will be explored to be introduced in this data assimilation scheme to address
this issue. Moreover, the machine learning technique will be explored to extract the model
knowledge based on the inferred source term field which can be expected to be used for
industrial applications [21].
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Appendices

Appendix 1. Comparison between BFGS and Newton-CG

The performance of the minimisation method BFGS and Newton-CG is compared in the case
of inlet velocity inference for Bump geometry. Figure A1 presents the evolution of cost func-
tion J to the iteration with different prior inlet velocity (parabolic or flat velocity profile). Even
though both methods can result in a similar reduction in cost function after 16 iterations for the
case with parabolic inlet velocity, Newton CG is faster and more robust compared to BFGS. And
for the case with flat one, the BFGS method cannot reach similar results as Newton-CG within
30 iterations.

Figure A2 presents the inference of the inlet velocity and the predictions in Cf accordingly.
Comparing to the results with Newton CG in Figure A3, it is apparent that the eventually inferred
velocity with Newton CG has a better agreement with DNS especially in the case with the flat
velocity.

Figure A1. evolution of cost function between BFGS and Newton-CG. left: with parabolic inlet velocity;
right: with flat inlet velocity.

Figure A2. Results in inference of inlet velocity and prediction in Cf :(a,b) for prior parabolic velocity;
(c,d) for prior flat velocity.

Appendix 2. Test case of inlet velocity inference in Venturi

We conducted a test case to infer inlet velocity in Venturi-type section. The input parameters are
the inlet velocity at the first 30 grids adjacent to the bottom wall. The prior is given as the parabolic
curve. The results are shown in Figure A3.
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It can be seen that the cost function cannot be further reduced after three iterations and the
inferred velocity get almost stagnant, which concludes that the velocity at the region near the throat
of Venturi is not sensitive to the inlet velocity especially to the velocity near the wall.

Figure A3. data assimilation Results to infer the inlet velocity in Venturi.
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