
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/15497

To cite this version :

Paola CINNELLA, Martin SCHMELZER, Wouter Nico EDELING - Bayesian Predictions of
Reynolds-Averaged Navier–Stokes Uncertainties Using Maximum a Posteriori Estimates - AIAA
Journal - Vol. 56, n°5, p.2018-2029 - 2018

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/15497
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/


Bayesian Model-Scenario Averaged predictions of

RANS uncertainties using MAP estimates.

Wouter N. Edeling1

Center for Turbulence Research, Stanford University, Stanford, CA 94305

Martin Schmelzer2 and Richard P. Dwight3

Faculty of Aerospace Engineering, Delft University of Technology,

Kluyverweg 2, 2629 HS Delft, The Netherlands

Paola Cinnella4

Laboratoire DynFluid, Arts et Métiers ParisTech,

151 Boulevard de l’Hopital, 75013 Paris, France

Computational Fluid Dynamics analyses of high Reynolds-number flows mostly rely

on the Reynolds-Averaged Navier-Stokes equations. The associated closure models

are based on multiple simplifying assumptions and involve numerous empirical closure

coefficients, calibrated on a set of simple reference flows. Predicting new flows using a

single closure model with nominal values for the closure coefficients may lead to biased

predictions. Bayesian Model-Scenario Averaging is a statistical technique providing

an optimal way to combine the predictions of several competing models calibrated on

various sets of data (scenarios). The method allows to obtain a stochastic estimate of a

Quantity-of-Interest in an unmeasured prediction scenario by i) propagating posterior

probability distributions of the parameters obtained for multiple calibration scenarios,

and ii) by computing a weighted posterior predictive distribution. While step ii) has a

negligible computational cost, step i) requires a large number of samples of the solver.
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To enable the application of the proposed approach to computationally expensive flow

configurations, we use a modified formulation, where a maximum posterior probability

approximation is used to drastically reduce the computational burden. The predictive

capability of the proposed simplified approach is assessed for 2D separated and 3D

compressible flows.

I. Introduction

Direct numerical computation of turbulent flow fields is computationally intractable for most

applications. Several levels of approximation are possible, according to flow scales that are re-

solved/modelled. In all cases, scale separation introduces unclosed terms that need to be modelled.

The choice of the appropriate modelling level remains essentially a matter of expert judgement.

In particular, it will always depend on cost versus accuracy considerations. On the other hand,

even once a given level has been selected, the simplifying assumptions introduce unclosed terms for

which several possible sub-models may be designed. These may differ both in their mathematical

structure and their closure parameters. The common practice in turbulence modelling is often to

leave the choice of a specific model structure to expert judgement, while treating model constants

as adjustable parameters that are calibrated in such a way as to reproduce simple, well-documented

flows. Both of the preceding aspects, however, represent sources of uncertainty in the prediction of

a new flow.

While more general modelling approaches like Large Eddy Simulation (LES) have made con-

siderable progress in the last decade, turbulence models based on Reynolds Averaged Navier Stokes

(RANS) will remain the work-horse tool for engineering design and optimization in the decade to

come. An extremely large variety of RANS models have been proposed in the past, ranging from

simple algebraic models to sophisticated Reynolds Stress models (see [1] for a review). However,

in order to arrive at any given closure model, numerous assumptions in the mathematical deriva-

tion and subsequent calibration must be made. No universally accepted and valid model has been

identified in CFD literature, meaning that the appropriateness of a given model structure is highly
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uncertain when predicting a new configuration. Additionally, RANS models are developed and cal-

ibrated on simple flows using noisy experimental data, and applied to radically different flows with

the same coefficients. Furthermore, since these calibrations are deterministic (and as experimen-

tal uncertainty is generally ignored), one obtains point estimates for the closure coefficients. This

ultimately leads to predictions which are subject to unknown degrees of uncertainty, especially if

the flow configuration of interest is far removed from the flow scenarios under which the model was

calibrated.

The above-mentioned uncertainties in RANS models can be addressed by means of statistical

tools. All such tools are meant to quantify the uncertainty in RANS closures, and should not

be considered as a replacement for deterministic simulations. In the context of uncertainty quan-

tification (UQ), uncertainties associated with the closure coefficients are referred to as parametric

uncertainties. These can be effectively addressed by replacing standard deterministic calibration

with statistical calibration, see e.g. [2–4]. Specifically, Bayesian calibration allows one to infer pos-

terior probability distributions of the closure parameters given some available set of experimental

data. However, it is important to stress that a posterior distribution might only display a predictive

capability for the flow case for which it was calibrated. In [5], we performed multiple Bayesian

calibrations for the coefficients of the well-known k − ε model [6], using experimental velocity data

from boundary-layers subject to a wide range of different pressure gradients. Even though the flow

topology was the same for all calibration cases (i.e. boundary-layers), the resulting posterior distri-

butions were significantly different. This variability of posterior distributions is a measure for the

lack of predictive capability of a given model due to the simplifying assumptions in its mathematical

structure. The model needs adjusted coefficients for each new case to counterbalance deficiencies

inherent to neglecting part of the flow physics.

The second class of uncertainty, namely model-form uncertainty, arises through the assumptions

that are made in the mathematical form of the closure model. Many different models exist, and their

performance is known to be flow dependent, see e.g. [7, 8]. Previous attempts to tackle model-form

uncertainty include calibrations of a modified eddy viscosity field [9], the introduction of statistical

error terms in the calibration procedure [2, 10] or in the model transport equations [11], and the use
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of a stochastic counterpart of the Reynolds stress tensor [12]. Even UQ techniques for the RANS

equations with no modelling, where the transport terms are represented with direct numerical

simulation data, have been developed [13, 14]. All these methods rely on detailed data from direct

numerical simulations to infer about stochastic fields. Although promising, the above-mentioned

methodologies suffer from the following drawbacks: i) DNS data are available only for relatively

simple, low-Reynolds configurations; ii) inferring the stochastic fields involves costly optimization

algorithms, e.g. to maximize the likelihood of observing the data; iii) extrapolating the stochastic

correction terms to the prediction of unseen configurations is still an open problem, especially for

realistic flow configurations.

Other means for representing model-form uncertainty include the use of a multi-model frame-

work. A relevant example can be found in Poroseva et al. [15], where Dempster-Shafer evidence

theory is used to obtain a measure of the total uncertainty in the mean velocity predictions around

a RAE 2822 airfoil. Dempster’ rule is used to fuse the predictions of two closure models, and using

only sparse experimental data, the authors of [15] predict the velocity with quantified uncertainty

at locations in the same flow where no data is available. Multi-model approaches have also found

application in meteorology [16, 17], hydrology [18] and climate science [19], to name just a few.

We will focus on Bayesian Model-Scenario Averaging [20] (BMSA), which provides a coherent

framework to address both parametric and model-form uncertainties, providing a robust predic-

tive method (see for instance [21] for an application to groundwater modelling uncertainties). Like

Bayesian Model Averaging (BMA), BMSA combines the predictions from multiple models, thereby

providing a measure for (closure) model uncertainty [22]. In addition, BMSA can combine the pos-

terior distributions from different calibration scenarios, which allows one to compute error estimates

due to scenario variability. Unless this variability is negligible, one should not assume that obtained

parameter estimates are extrapolative to other flow scenarios. In other words: combining multiple

non-overlapping posteriors adds uncertainty for the assumption that a posterior distribution can be

applied outside the flow scenario under which it was calibrated.

In this article, we rely solely on RANS models for prediction. Hence we cannot assume that the

true model which generated the data is contained in our selected model set, although in principle
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higher fidelity models could be included in the Bayesian average, at increased computational cost. It

should therefore be noted that subject-matter expertise, applied to the selection of competing models

(and scenarios), is still important for maintaining predictive accuracy. As noted by Draper[20],

although multi-model approaches still introduce a bias in the prediction, due to the selection of a

finite set of model structures, they play a useful role in reducing the bias with respect to predictions

based on a single model structure.

In previous work [23], BMSA was used to construct a stochastic model for predicting boundary

layer flows subject to an arbitrary pressure gradient, based on multiple RANS models calibrated

using selected experimental boundary-layer data. Specifically, we applied BMSA using 5 closure

models and 14 boundary-layer calibration scenarios (corresponding to various external pressure

gradients) to predict unobserved boundary-layer flows subject to an arbitrary pressure gradient.

Each individual calibration was performed using the Bayesian method developed by the authors of

[2, 24]. Other notable means of stochastic parameter estimation can be found in [25, 26]. Both

the calibration and the prediction phases relied on a fast boundary-layer code. When addressing

more complex, computationally intensive, flow configurations, a clear downside of BMSA is the

associated computational burden. The first cost is associated to the calibration phase, in which the

Markov-Chain Monte Carlo method [27] is used to draw samples from the posterior distribution.

Furthermore, the predictive phase of the BMSA procedure dictates the need to propagate I × K

(I being the number of competing models and K the number of calibration scenarios) posterior

distributions through a RANS code applied to the flow scenario of interest, which is prohibitively

expensive for most practical flow configurations. A common option is to replace the expensive RANS

code with a much cheaper surrogate model, such as for instance a polynomial approximation created

with stochastic collocation or polynomial chaos methods [28]. Still, creating the surrogate model

will require samples from the full RANS code, and surrogate modeling techniques are subject to the

so-called curse of dimensionality. The number of required code samples therefore rises exponentially

with the number of unknown parameters.

Our goal for this paper is to assess the predictive capability of the BMSA method for com-

putationally expensive flow cases, while using the most drastic cost reduction technique possible
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to speed up the prediction step. We assume that calibration cost is less critical, since it is done

only once in a preliminary phase. Specifically, in this work we use the posterior distributions of

[23], and propagate them through new flow configurations described by a full RANS solver instead

of a boundary layer code. Note that posterior distributions resulting from additional calibration

scenarios can be added as soon as they become available.

To drastically reduce the computational cost associated with the propagation step, we approx-

imate each posterior as a Dirac delta distribution centered at the Maximum A Posteriori (MAP)

estimate. Now, instead of having to propagate I ×K posteriors, we are left with I ×K determin-

istic evaluations. In order to evaluate the predictive capability of the proposed modified BMSA

approach, we selected a number of flow problems which include physics that the boundary-layer

trained BMSA model was not subjected to during the calibration phase.

This paper is organized as follows. First, we will give a very brief overview of the competing

closure models considered in this paper. In Section III, we describe our reduced BMSA method

using MAP estimates. Preliminary validations of the MAP-base BMSA approach are carried out in

Section IV using the boundary layer flow cases of [23]. Section V shows the results obtained for the

different prediction flow cases. Finally, we give our conclusion in Section VI.

II. RANS turbulence models

In the present work, we restrict our attention to three transport equation models largely em-

ployed in engineering applications. These are selected from the family of so-called linear eddy-

viscosity models, which adopt a linear representation of the Reynolds stress tensor, based on the

well-known Boussinesq assumption. We use the k − ε, k − ω and Spalart-Allmaras (SA) models.

As these are very well-known models, we do not give full details for the sake of conciseness.

Rather, we refer to [1] for a complete description of their mathematical structure. Also, all values

for the closure coefficients (both nominal and perturbed), can be found in Appendix A.

III. Bayesian predictive Methodology

We describe a statistical methodology based on Bayesian Model Scenario Averaging (BMSA),

for making predictions of a chosen Quantity of Interest (QoI). BMSA provides a coherent framework
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for combining predictions from multiple competing conceptual models and calibration data to attain

a more realistic and reliable description of the predictive uncertainty.

A. BMSA formulation

Consider a particular flow of interest, including boundary-conditions, material parameters, and

all other physical properties needed to define it unambiguously. This we term a scenario, denoted

S. Assume that there is reference data z available for S, which may be measurements of any flow

quantity or data from higher fidelity simulations (e.g. DNS). Let mCFD(S;M,θ) be a governing

model, here represented by a CFD code, which takes as arguments the scenario S, a turbulence

model M and its closure-coefficients θ. Note that the size of θ and the meaning of its components

will depend onM . Let the model return the full state of the fluid in all variables. Then we can define

an operator Hz(·) that maps the state to the observed quantities z (this can be, e.g., a procedure

for extracting the aerodynamic coefficients from the full solution for the flow around a body or a

velocity profile at a given station). The model output is then given by Hz ◦mCFD(S;M,θ) and can

be related to the observed data by means of a statistical model. One of such models, used in [5, 23]

is represented by:

z = η Hz ◦mCFD(S;M,θ) + ε, (1)

where ε, η are random-variables (RVs) representing measurement noise and model error respectively.

The latter accounts for the fact that, even with the best possible parameters, the model does not

predict the true value for z, due to errors intrinsic to modelling assumptions. The multiplicative

model-error term of (1) was first introduced by [29]. Additive models are also available, see e.g. [26].

We assume throughout that the CFD calculations have run on sufficiently fine grids, such that errors

due to grid resolution are significantly less than the uncertainty due to modelling assumptions. We

also assume that the calculations have well converged to the steady state solution. The experimental

noise term ε is modelled using a zero-mean Gaussian distribution.

The observations available for a given S can be used to infer the model parameters θ using a
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Bayesian calibration approach, i.e. by applying Bayes’ rule:

p (θ|z,M, S) =
p (z|θ,M, S) p(θ |M,S)

p(z |M,S)
, (2)

where p (θ|z,M, S) is the joint posterior probability distribution of the closure coefficients under

the given turbulence model and the calibration data z observed for scenario S. Furthermore,

p(θ | M,S) is the joint prior probability distribution for the model coefficients, which summarizes

available knowledge about θ before observing any data. The likelihood function p (z|θ,M, S),

which stems from the statistical model (1), describes the probability of observing the data for

scenario S, given a model and a realization of the closure coefficients. Evaluating p (z|θ,M, S) for a

given realization of θ involves running mCFD and is, as such, a costly operation. Finally p(z|M,S)

is the evidence of the data, which normalizes the posterior distribution. Since p(z|M,S) does not

depend upon θ, it does not have to be computed while calibrating θ.

Given the complexity of the likelihood function, the posterior p(θ|z,M, S) cannot be obtained

analytically and is instead evaluated numerically. We employ the Markov-Chain Monte-Carlo

method [27] to draw samples from (2). To reach convergence of the Markov-chain, we observed

that O
(
104
)
code samples were required [5]. Ordinarily this would constitute an excessive strain on

available computational resources in a CFD context. In previous work [23] our experimental data

consisted of boundary-layer quantities, and mCFD reduced to a fast boundary-layer code. As such,

no real computational bottleneck exists during the calibration phase.

The calibration outcome is a discrete approximation of the joint posterior probability distribu-

tion of the parameters, which is then available for the prediction of new (unobserved) scenarios. Let

∆ be a quantity of interest (QoI) to be predicted for a new scenario S̃, for which we do not have

data. The QoI may be a scalar, vector, or functional quantity derived from the flow-state. Since

mCFD is a model for ∆, we write

∆ ' H∆ ◦mCFD(S̃;M,θ), (3)

where, analogous toHz, H∆ is an observation operator extracting ∆ from the full flow-state,M is the

closure model adopted for the prediction, S̃ is the prediction scenario. Equation (3) is a prediction
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based on a single choice for M and the associated parameters, i.e. a deterministic prediction. A

stochastic prediction accounting for parameter uncertainty is obtained by propagating the posterior

distributions for θ through (3). This however does not account for the fact that different distributions

may be obtained by calibrating the model against different scenarios, nor for the fact that multiple

alternative closure models M may be used.

To estimate the effect of these uncertainties, we build the full BMSA predictive distribution of ∆

for a set of alternative conceptual modelsM = (M1,M2, ...,Mi, ...,MI), under different calibration

scenarios S = (S1, S2, ..., Sk, ..., SK) for which we have data Z = (z1, z2, ...,zk, ...,zK)[20, 22]:

p(∆ | S̃,Z,M,S) =

K∑
k=1

I∑
i=1

p(∆ | S̃,zk,Mi, Sk) p(Mi | zk, Sk) p(Sk) (4)

Equation (4) is an average of the I×K posterior predictive distributions (ppds) p(∆ | S̃,zk,Mi, Sk).

These are weighted by the posterior model probabilities p(Mi | zk, Sk) and by scenario probabilities

p(Sk). The ppds are obtained by marginalizing ∆ over the posterior distributions of the parameters:

p(∆ | S̃,zk,Mi, Sk) =

∫
p(∆ | S̃,Mi, Sk,θ) p(θ | zk,Mi, Sk) dθ (5)

In simpler terms, this amounts to propagating the I ×K posterior distributions p(θ | zk,Mi, Sk)

through the new scenario S̃ by a suitable uncertainty quantification method.

The posterior model probabilities, on the other hand, reflect how well model Mi fits the data

over the support of the prior. They can be determined from a separate application of Bayes’ rule,

i.e.

p (Mi | zk, Sk) =
p(zk |Mi, Sk)p(Mi | Sk)∑I
j=1 p(zk |Mj , Sk)p(Mj | Sk)

, (6)

where p(Mi | Sk) are the prior model probabilities (generally modelled as equi-probable). Note that

p(zk |Mi, Sk) is the evidence for model Mi and scenario Sk, previously introduced in (2). Thus, in

case of a model ensemble, the denominator of (2) is not ignored and is computed via

p(zk |Mi, Sk) =

∫
p(zk |Mi, Sk,θ)p(θ |Mi, Sk)dθ. (7)

The first two moments of p(∆ | S̃,Z,M,S) can be derived directly from (4) and read [20, 23]:

E[∆ | S̃,Z,M,S] =

I∑
i=1

K∑
k=1

E[∆ | S̃,zk,Mi, Sk] p(Mi | zk, Sk) p(Sk) (8)
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V[∆ | S̃,Z,M,S] =

I∑
i=1

K∑
k=1

V[∆ | S̃,zk,Mi, Sk] p(Mi | zk, Sk) p(Sk)

+

I∑
i=1

K∑
k=1

(E[∆ | S̃,zk,Mi, Sk]− E[∆ | S̃,zk,M, Sk])2 p(Mi | zk, Sk) p(Sk)

+

K∑
k=1

(E[∆ | S̃,zk,M, Sk]− E[∆ | S̃,Z,M,S])2 p(Sk), (9)

where E[∆ | S̃,zk,M, Sk] :=
∑I
i=1 E[∆ | S̃,zk,Mi, Sk]p(Mi | zk, Sk) is the BMA prediction within

scenario Sk. Equation (9) shows that the posterior predictive distribution variance for ∆ consists

of three terms: the first term is called the within model, within scenario variance, and accounts for

predictive uncertainties due to the residual parameter variability after calibration of a model Mi

under a scenario Sk. The second one is called the between model, within scenario variance. It is

large if the models, using the posterior parameter distributions originating from the same calibration

scenario, provide different predictions for the new configuration. It can therefore be considered as

a measure for model error. The last term is the between scenario variance, which accounts for

the fact that different calibration scenarios lead to different estimates of the parameters. Thus,

when applying the BMSA model to a prediction scenario S̃ for which it was not calibrated, this

uncertainty should be taken into account.

B. Implementation of BMSA for CFD problems

In this paper, we focus on the prediction step, and refer the reader to [5, 23] for details about

the calibration step. All flow predictions presented in the following are based on the posterior

parameter distributions previously computed for a class of flat plate boundary layer flows subject

to various external pressure gradients [23]. These constitute a database of posterior probability

distributions, which is available for propagation through new flow configurations. The interested

reader may download the samples of the posterior θ distributions used in the following applications

from [30]. Since these parameter estimates where determined for wall-bounded flow configurations,

we expect these may be used to predict other (more complex) wall bounded flows. The validity of

this working assumption will be assessed in subsequent sections.

The calibration step also provides information about the posterior model probabilities (6).

Indeed, for each model and calibration scenario, it is possible to compute the evidence by Monte-
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Carlo integration of (7). For instance, for the cheap flat plate boundary layer scenarios, the evidence

is computed by drawing a large number of samples, θn, n = 1, · · · , N , from the prior p(θ |Mi, Sk),

and by approximating (7) as

p(zk |Mi, Sk) ≈ 1

N

N∑
n=1

p(zk |Mi, Sk,θn). (10)

The posterior model weights can now be calculated through the simple algebraic relation (6), the

results of which we tabulated in Appendix A. It should be noted that computing the evidence using

samples from the prior is not always feasible. Convergence of the MC estimate (10) will become slow

if the region where the likelihood has high probability is significantly different from the region of

high prior probability content [31]. In this case more advanced sampling techniques will be required,

see e.g. [29, 32].

The prediction step involves:

1. Propagating posterior parameter distributions for each competing model through the predic-

tion scenario S̃;

2. Assigning a suitable probability mass function to the scenarios Sk;

3. Applying the BMSA relations (4), and/or (8),(9) to obtain the predictive posterior distribution

and/or its moments for the QoI ∆.

Steps 2. and 3. only involve a negligible or small computational load. The computational

bottleneck is represented by step 1., which requires running the CFD model on scenario S̃ for all

models in M, and for a large number of samples in each posterior distribution p(θ | zk,Mi, Sk),

leading to I × K stochastic estimates of ∆. Since each CFD simulation is likely to be expensive

itself, propagation by means of Monte Carlo sampling is unacceptably costly. The computational

cost can be greatly alleviated by using surrogate models (see e.g. [33]), yet a significant number

of CFD runs (O(100) or higher) is still required even when using advanced surrogate modelling

techniques. For this reason, in Section IIID we introduce an approximation that drastically reduces

the computational cost associated to the prediction step. In the next section we complete the

description of the BMSA by discussing the choice of the scenario probability mass function (step 2).

11



C. Weighting the scenarios

Whereas the posterior model probabilities p (Mi | Sk, zk) are informed from the calibration

data zk, the scenario probabilities p (Sk) are of a predictive nature, and incorporate uncertainty

for the fact that the MAP estimates are applied to a predictive scenario S̃ for which they were

not calibrated. Ideally experimental data from S̃ would be available, which we could use to inform

p (Sk). However, since in many engineering applications of CFD this will not be the case, we assume

we only have data coming from the K calibration scenarios Sk. Instead of informing on data, we

specify p(Sk) based on model agreement per Sk. Specifically, following to [23], we set:

p(Sk) :=
ξ−pk∑K
j=1 ξ

−p
j

, ξk =

I∑
i=1

‖E[∆ | S̃,zk,Mi, Sk]− E[∆ | S̃,zk,M, Sk]‖2 ∀Sk ∈ S. (11)

Here, ξk measures model agreement by means of an L2-normed variation around the BMA expec-

tation E[∆ | S̃,zk,M, Sk]. If all turbulence models show a high level of agreement regarding the

value of ∆ when using the posteriors calibrated on Sk, such a scenario is given a high probability

and vice versa. The rationale is that if a given Sk is similar to the predictive S̃ at hand, the models

are expected to give similar predictions given that the parameter distributions were calibrated on

the same data zk. Additionally, p ∈ N0 is an integer which controls the degree to which variation is

penalized. For p = 0 we obtain a uniform distribution and for higher values of p we effectively damp

the results coming from those scenarios with a low level of model agreement ξk. In section IV we

carry out numerical experiments to demonstrate that ξk indeed represents a good model for the true

discrepancy between the BMSA prediction and the data and we discuss the role of the exponent p.

Finally, note that (11) requires a minimum of two models, the use of one model will always yield a

uniform distribution. With just a single model, one might still use the variability over Sk to inform

the p(Sk), or simply rely on expert opinion.

A valid criticism of (11) is that the ’best’ Sk will not be favoured if all models inM for a given

’wrong’ Sk produce predictions which are incorrect in a very similar manner. Due to the fact that

we do not allow ourselves any reference data for the predictive flow scenario, we cannot fully exclude

the possibility of such a situation. However, we can suggest means to decrease its risk through: i)

selecting a larger set of diverse models of different fidelity, which are unlikely to agree with each

other, ii) selecting a relevant set of calibration scenarios, since in previous research [23] we found
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that (11) does favour Sk similar to S̃ if the flow topology is comparable, and iii) limit the value of p,

which gives the user control over how much p(Sk) is allowed to deviate from a uniform distribution.

D. Speeding up BMSA predictions: MAP approximation of the posterior parameter distri-

butions

A way to drive the estimate of the individual predictive distributions p(∆ | S̃, zk,Mi, Sk) to an

acceptable computational cost consists in approximating the marginal posterior probability distri-

butions p(θ | zk,Mi, Sk) with Dirac-δ functions at their maximum a posteriori (MAP) values:

θMAP
i,k := argmax

θ
p(θ | zk, Sk,Mi) (12)

so that

p(θ | zk, Sk,Mi) ' δ
(
θ − θMAP

i,k

)
. (13)

The consequence of this approximation is to neglect the effect of “within-model, within-scenario”

variance. The ppd variance still includes the effect of multiple models and scenarios. Note that

if perfectly plentiful data were available in the training scenarios (and the models were able to fit

the data exactly for some values of the closure coefficients), then the p(θ | Sk,Mi, zk) would tend

toward Dirac δ-functions. So one way to think of this approximation is as neglecting the effect

of imperfect training. The MAP estimates (see Appendix A), were estimated from kernel-density

estimates constructed with McMC samples of previous research [30], see also Figure 1. While this

might only be an approximation to each individual MAP value, it is the spread of different MAP

values that is important in our approach, see the discussion in Section IVA.

Substituting (13) into (5) leads to an approximation of the posterior predictive distribution

p(∆ | S̃,Z,M,S) ' p̂(∆ | S̃,Z,M,S) by

p̂(∆ | S̃,Z,M,S) =

I∑
i=1

K∑
k=1

δ
(

∆−∆CFD

(
S̃;Mi,θ

MAP
i,k

))
p(Mi | Sk, zk) p(Sk) (14)

where we define ∆CFD(S̃) := H∆ ◦mCFD(S̃) and we used the fact that propagating a δ distribution

requires running mCFD only at θ = θMAP
i,k , returning a δ distribution centered at ∆CFD(S̃) for the

output. The approximate ppd is then reduced to a weighted-sum of I × K δ-functions, one at

each prediction of ∆CFD(S̃) for each model, and each scenario’s MAP-estimate of θ. The cost of
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evaluating the ppd is then I ×K runs of ∆CFD(S̃). Finally, the mean and variance of (14), are easy

to evaluate using the properties of δ-functions, and contain terms from our database (p(Mi | Sk, zk)

and θMAP
i,k ), a user-choice (p(Sk)) and the RANS output for ∆ via mCFD:

E[∆ | S̃,Z,M,S] =

I∑
i=1

K∑
k=1

∆CFD

(
S̃;Mi,θ

MAP
i,k

)
p(Mi | Sk, zk) p(Sk) (15)

V[∆ | S̃,Z,M,S] =

K∑
k=1

I∑
i=1

[
∆CFD

(
S̃;Mi,θ

MAP
i,k

)
− E[∆ | S̃, zk]

]2
p(Mi | Sk, zk) p(Sk)

+

K∑
k=1

(
E[∆ | S̃, zk] − E[∆ | S̃, z]

)2

p(Sk). (16)

Note that compared to (9), the ppd variance for ∆ now contains only two terms: the between model,

within scenario variance, and the between scenario variance. The effect of the MAP approximation

on the ppd variance is investigated in Section IV.

IV. Preliminary validation

In this section we use our numerical boundary-layer flow database [23] along with experimental

data from [34] for the preliminary validation of two key ingredients of the present BMSA formulation,

namely, the MAP approximation and the scenario weighting. The boundary-layer flows considered

in the present calculations and the corresponding nomenclature are described in Appendix A.

A. Influence of the MAP approximation

The MAP approximation ignores the effect of imperfect training within each calibration scenario

(i.e. it ignores the variance of each individual posterior), As an example, consider the results of Figure

1, where all 14 posterior distributions of the coefficient Cε2 (of the k−ε model, see Appendix A) and

the corresponding MAP estimates are plotted. The variance of these marginals is not considered

small, due to the fact that even at the best model parameters, there is still model inadequacy

which will prevent the posteriors from approaching delta distributions [24, 26, 29]. Moreover, not

all parameters will be equally sensitive to the reference data. We previously observed [5, 23] that

parameters with low Sobol indices will yield posteriors that do not deviate much from our (uniform)

prior. As such, the MAP approximation might seem to neglect a large amount of uncertainty.
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Fig. 1 All marginal posterior distributions of Cε2 (obtained from kernel-density estimates using

the McMC samples of [23]), and the corresponding MAP estimates.

However, since we consider 14 different calibration scenarios, and since the modes of the posteriors

significantly disagree on the most likely value of θ, the MAP approximations still span a large section

of the θ domain, see again Figure 1 for an example. Hence, the MAP approximation is of the least

influence when this span is sufficient to yield an envelope on the QoI that is similar in size to the full

posterior ppd variance, obtained by propagating all posterior θ distributions. It should be noted

however that this will only hold for lower-order statistical moments, all information contained in

the tails of the posteriors will be lost in the MAP approximation.

We can evaluate the effect of the MAP approximation on the boundary-layer flows of the

calibration phase, by computing the posterior standard-deviation of the full BMSA method, and

the current proposed approach of Section IIID. Figure 2 shows the predictive results for an unseen

boundary layer, where ∆ is a u+ profile, defined as u+ := 〈U〉 /uτ . Here, 〈U〉 is the mean steamwise

velocity and uτ is the friction velocity. Precisely, we used posteriors from the remaining 13 boundary

layer scenarios in Table 6 (Appendix A) to predict case 1400. Note that the total variability in ∆

is fairly similar in both cases. Due to the lack of a within-model, within-scenario component in the

MAP approach, a larger part of the standard-deviation in ∆ is lumped into the between-scenario

component. We repeated this procedure for a number of unseen boundary layers, and obtained
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Fig. 2 The breakdown of the posterior standard-deviation of ∆ = u+, plotted versus y+ for both

the full BMSA method (computed with (9)) and the simplified MAP approach (computed

with (16)). Both figures represent the the same predictive flow case, and were generated with

uniform p(Sk).

similar results. Thus, for those cases considered where we could compute the full BMSA ppd

standard-deviation, we did not observe a significant underestimation of the posterior predictive

standard-deviation when the MAP approach was used.
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B. Influence of the scenario weighting

Equation (11) raises the question: is ξk a good measure for the true model error contained in

each Sk? Let us first define the true model error as:

ξ̃k :=

I∑
i=1

∥∥∥Hz ◦mCFD

(
S̃;Mi,θ

MAP
i,k

)
− zk

∥∥∥
2
,

where in our case the zk are experimental u+ profiles. We can then evaluate its proximity to our

error-model ξk by performing a leave-one-out validation analysis on the K calibration scenarios.

Note that a given MAP estimate θMAP
i,k has not been calibrated on the data of the other K − 1

calibration scenarios Sj , j ∈ {1, · · · ,K} \ {k}. The scenarios are roughly ordered from ’easy’ zero-

pressure gradient scenarios at k = 1, to the most difficult, highly adverse scenarios near k = K, see

Appendix A for a more complete description. By using each θMAP
i,k to compute u+ in these remaining

K−1 scenarios we can evaluate both ξk and ξ̃k due to the availability of data. The results are shown

in Figure 3, where the dotted line corresponds to perfect agreement ξk = ξ̃k. Each subplot shows

the results of a single MAP estimate, applied to all other scenarios. Note that in general the results

lie close to the ξk = ξ̃k line. However, MAP estimates calibrated under ’easy’ zero or favorable

pressure gradient scenarios can yield discrepancies between ξk and ξ̃k. More specifically, we observe

such discrepancies when using a MAP estimate calibrated under an easy scenario to predict a QoI

under a difficult scenario, see e.g. the results of applying θMAP
i,1 to predict the u+ profile of S14.

On the other hand, MAP estimates that were calibrated under the most difficult strongly-adverse

scenarios perform well across all Sk, see the results for θMAP
i,13 and θMAP

i,14 .

The parameter p of (11) is user specified. To estimate its value we use a similar leave-one-out

analysis and the experimental data from the calibration scenarios. In this case we fix a scenario Sk,

and use the remaining θMAP
i,j , j ∈ {1, · · · ,K} \ {k} to predict the QoI for a given value of p. Let

us define a relative error in the BMSA prediction as

εrelk :=
‖E [∆|z]− zk‖2

‖zk‖
× 100%. (17)

For all Sk we can now examine the behavior of (17) as a function of p. The results are depicted in

Figure 4. For most Sk the relative error is either minimized or reaches a plateau for p ∈ {1, 2, 3}.

Based on these results we will set p = 2 in predictive cases where no experimental data is available.
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Fig. 3 The results of the cross validation study. In each of the k subplots (k = 1, · · · , 14), the

MAP estimates are fixed to those obtained from calibration scenario Sk. The MAP estimates

are then used to compute both the true error ξ̃k and the modelled error ξk (11) when applied

to prediction scenarios Sj , j ∈ {1, · · · ,K} \ {k}. The true errors ξ̃k were computed using the

experimental u+ data from [34].

V. Assessment of BMSA for selected flow cases

In this section, the MAP-based BMSA predictive methodology is assessed against selected flow

cases, namely separated incompressible flow, and 3D transonic flow past a wing. The considered

applications are rather different from our calibration scenarios, although they still involve boundary

layers subject to variable pressure gradients, and exhibit features beyond the limits of applicability

of linear RANS models, due to the strong non-equilibrium effects. As such, they represent severe

tests for the proposed approach.
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Fig. 4 The relative error in the BMSA prediction of u+ for all K scenarios Sk.

A. Flow over periodic hills at ReH = 5600

The flow over a series of periodically arranged hills deals both with flow separation on the curved

surface of the hills and reattachment between the hills. The test case is known to be especially

challenging for linear eddy-viscosity models, which are not able to predict the mean effect of the

unsteady fluctuation of the separation and reattachment points correctly [35].

The periodicity of the hill-geometry is mimicked with periodic boundary conditions at the inlet

and outlet and no-slip conditions at the walls. A volume forcing is applied to each cell, which

maintains a bulk velocity of Ub = 1.0 between the hill’s crest and the upper surface. The functional

form of the lower surface is defined according to the ERCOFTAC test case description[? ]. The

considered Reynolds-number ReH = 5600 based on the hill height H and bulk velocity between

the hill’s crest and the upper surface is maintained by a volume forcing. The CFD simulations are

performed using OpenFOAM’s simpleFoam-solver [36]. We use validation data of the mean-flow

field from Breuer et al. for comparison [37]. Three turbulence models were used, Spalart-Allmaras,

19



Launder-Sharma k − ε and Wilcox (2006) k − ω, with y+ ≤ 1.0. A mesh convergence study was

conducted for each model using baseline coefficients resulting in meshes with sizes of 100 × 110

(Spalart-Allmaras and Launder-Sharma k− ε) and of 150× 140 (Wilcox (2006) k−ω) cells in x× y

direction respectively.

The baseline simulations for the three models show the expected behavior as reported in the

literature (for a larger Re-number [35]): while both Spalart-Allmaras and the Wilcox (2006) k − ω

over-predict the size of the recirculation zone, characterised by a zero velocity component close to

the wall, the Launder-Sharma k − ε under-predicts this flow feature. For S14 the simulation using

Wilcox (2006) k−ω didn’t converge so that this scenario was excluded from the set, leading to only

13 scenarios being used for the BMSA predictions.

The BMSA expectation E[∆|S̃, z] of the stream-wise velocity, as shown in Figure 5, over-predicts

the recirculation zone and gives similar velocity profiles for x = 3.0 and 4.0 close to the lower

surface. Especially, for x = 0.0 the expectation doesn’t capture the local maximum of the velocity

close to y/H = 1.0, i.e. at the hills crest. Throughout the different locations the expectation shows

differences compared to the DNS for the upper part of the velocity profile, which might be due to

a compensation-effect caused by the fixed mass-flow.

The 99% confidence interval captures the DNS data for x ≥ 3, but not the region close to the

upper wall for x ≥ 5 and the local velocity maxima in the area of the free-shear layer in the leeward

region of x = 0 to 2.0. Interestingly for x ≤ 3.0 when the range of the confidence interval shrinks

locally in y/H-direction also the DNS is still inside. However, this pattern is not the same for every

y/H-position, e.g. at x = 2.0 the expectation and the DNS match for 0.5 ≤ y/H ≤ 1, but the

confidence interval is large. Interestingly, in the reattachment region between the two hills, where

the case is similar to a flat plate, the confidence interval is able to capture the DNS data consistently.

In general, the application of BMSA to this test case demonstrates the aforementioned fact

that the used linear eddy-viscosity models suffer from restrictions, which inhibit the reproduction

of effects due to e.g. streamline curvature as well as Reynolds-stress anisotropy. These are essential

characteristics of this challenging test case [35]. Adding second-order closures toM might remedy

this deficiency, at increased computational cost. However, the BMSA confidence interval captures
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Fig. 5 BMSA for the periodic hill flow.

most of the modelling error showing robustness of the method even for this challenging test case.

B. Transonic flow over the ONERA M6 swept wing

The second application of our boundary-layer trained BMSA is the transonic flow over the

ONERA M6 wing. This is a swept wing based on the ONERA D airfoil with no twist. The M6

wing is known to produce complex physics at transonic Mach numbers. See for instance the pressure

distribution depicted in Figure 6. Due to the configuration of local supersonic regions [38], a λ-shock

is formed where the double shock merges into a single one between y/b = 0.8 and y/b = 0.9.

A well-known CFD validation case (see e.g. [38, 40, 41]) involves the ONERA M6 wing at Mach

0.835, a Reynolds number (based on the free-stream conditions and the mean aerodynamic chord)

of 11.72 × 106, and with an angle of attack of 3.06 degrees and 0.0 degrees side slip. The pressure

and temperature at the farfield are given by p∞ = 315980 [Pa] and T∞ = 255.5 [K]. The CFD

calculations were performed using Ansys Fluent, using the pressure-based solver. More details on
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Fig. 6 A typical Cp distribution on the suction side of the ONERA M6 wing. The black lines

correspond to the y/b = [0.2, 0.44, 0.65, 0.80, 0.90, 0.95, 0.99] stations where Cp data is available

from [39].

the numerical setup can be found in [42] and [43]. For these conditions experimental pressure data is

available from Schmitt and Charpin [39] at several y/b stations. The error in the reported pressure

data is ∆Cp = ±0.02.

Before beginning the BMSA procedure, we performed a qualitative comparison of the Cp dis-

tributions using the MAP estimates of the 1400 case on 4 unstructured meshes of increasing size,

namely {396, 753, 901, 1180} × 103 elements. The results at z/b = 0.80 and z/b = 0.95 are shown

in Figure 7. Note that the coarsest mesh smears the double shock at y/b = 0.80, and both mesh 1

and 2 smear the shock at y/b = 0.95. Between the two finest meshes we observed little variation,

and selected therefore mesh 3 to perform the sampling with MAP estimates.

Our model set for this case consists of the k − ε and SA model. We computed the mean Cp

prediction (15) and the standard deviation based on (16) for the entire suction side of the M6
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Fig. 7 The Cp distributions of the 4 meshes at two spanwise locations. All computations were

done using the MAP estimates of calibration case 1400.

wing. The mean is is very similar to the results of Figure 6. More interesting is the uncertainty

in the prediction, depicted in Figure 8(b). From this standard deviation is becomes clear that the

uncertainty of the RANS prediction is localized in the region of the λ-shock, especially where the

two shocks merge.

The corresponding p(Sk) distribution is shown in Figure 8(a). Note that the distribution favours

the results of MAP estimates from a zero (1400) and a favorable (2700) calibration scenario, as well

as two adverse cases (3300 and 1200). This might be explained by the fact that the transonic

flow experiences a wide range of pressure gradients, at different locations of the wing. Perhaps

the weights p(Sk) should ideally reflect the inhomogeneous nature of the uncertainty, rather than

computing a scalar p(Sk) for each k, and assuming it is applicable throughout the entire flow field.

To investigate, we compute the BMSA prediction along different y/b stations of the wing. For

each station, taking the local Cp distribution as QoI, we recompute p(Sk). This allows us to build

up a picture of how p(Sk) varies from the wing root to the tip. A selection of results, at y/b

stations where we have experimental validation data, are displayed in Figures 8(c)-8(f). First notice

that the amount of uncertainty at y/b = 0.44 is very low, a result that could already be inferred

from Figure 8(b). The p(Sk) distribution at this station displays a preference for mostly those

results computed using zero or favourable pressure-gradient MAP estimates. Note however, that

the final Cp distribution is insensitive to P(Sk) in cases of very low uncertainty, seeing that all Sk
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Fig. 8 The results for the ONERA M6 wing.
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yield very similar predictions. Other computed p(Sk) distributions are comparable, up until the

neighborhood of y/b = 0.95, where the results are quite different. Here, a relatively large amount

of uncertainty is present, accompanied by a different p(Sk) distribution. There is a preference for

the pressure computed with MAP estimates coming from a strongly-adverse calibration scenario

(namely scenario 1200). These results suggest that incorporating a spatial dependence in P(Sk)

does indeed reflect the local flow physics better. Specifying p(Sk) locally through (11) assumes that

there is no spatial correlation.

VI. Conclusion

A Bayesian Model-Scenario Averaging methodology was applied to estimate turbulence mod-

elling uncertainties in RANS computations. Specifically, the goal of this paper was to assess the

predictive capability of a BMSA model, trained on experimental velocity profiles for a set of flat

plate boundary layers, when predicting other, more computationally expensive flow problems. We

considered two severe validation cases, namely the separated flow over periodic hills, and a shocked

transonic flow over a 3D wing. These contain physics that were not present during the training phase,

such as compressibility effects and separation. The full BMSA approach requires the propagation

of a set of posterior distributions, which proves to be computationally intractable for industrial-

relevant test cases. We therefore proposed to approximate the posterior distributions with Dirac δ

functions centered at the Maximum A Posteriori (MAP) estimates of the posterior distributions.

This is the most drastic cost reduction possible, with just one code evaluation per closure model -

calibration scenario pair.

The main advantage of an approach such as BMSA, is that one can make predictions with

quantified uncertainty. Such information is not available with the baseline models, and provides

insight into where, and to what extend, the closure models fail to be trustworthy. The confidence

region generated by BMSA thus provides meaningful bounds on the QoI. In our selected cases we

observed an overlap between the confidence intervals and the reference data, especially when the

local flow physics resembled the attached boundary-layers of the calibration phase. Where there was

no overlap the discrepancy between the propagated model-scenario pairs was small, which might be
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remedied by including additional closure models in the set, e.g. nonlinear eddy viscosity models.
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APPENDIX A: TABLES OF MAP ESTIMATES, POSTERIOR MODEL

PROBABILITIES, AND CALIBRATION CASES

Here we report the MAP estimates of the closure coefficients for the three turbulence models

of Section 2 (tables 1-3, as well as the corresponding posterior model probabilities (Tables 4,5). We

also give a description of the calibration cases.

In the case of the k − ε mode we use (A1)-(A2) to fix the value of σε and Cε1, where we set

P/ε = 2.09 for the latter, see [5] for a discussion. We use other well-known algebraic relations for

the k − ω and SA models in (A3) and (A4) respectively [1].

σε =
κ2

C
1/2
µ (Cε2 − Cε1)

. (A1)

(P
ε

)
=
Cε2 − 1

Cε1 − 1
. (A2)

α =
β

β∗
− κ2

2
√
β∗
. (A3)

29

 https://www.grc.nasa.gov/www/wind/valid/m6wing/m6wing.html
 https://www.grc.nasa.gov/www/wind/valid/m6wing/m6wing.html
https://confluence.cornell.edu/display/SIMULATION/FLUENT+-+3D+Transonic+Flow+Over+a+Wing
https://confluence.cornell.edu/display/SIMULATION/FLUENT+-+3D+Transonic+Flow+Over+a+Wing
http://qnet-ercoftac.cfms.org.uk


Cw1 =
Cb1
κ2

+
1 + Cb2

σ
. (A4)

Table 1 MAP estimates of the k−ε model for the different calibration scenarios. The nominal

values are depicted on the first row.

Scenario Cε2 Cµ σk κ

nominal 1.92 0.09 1.0 0.41

S1 2.0429 0.0646 1.4032 0.428

S2 2.0556 0.0726 1.1737 0.4551

S3 1.911 0.0655 0.7082 0.451

S4 2.0634 0.0715 1.4205 0.4621

S5 1.9334 0.0618 1.0796 0.3604

S6 2.0456 0.0654 1.4156 0.3865

S7 1.9454 0.0604 1.0314 0.4365

S8 1.9919 0.0841 1.2869 0.4596

S9 1.8205 0.0699 0.9999 0.36

S10 1.8407 0.06 1.4067 0.3559

S11 1.9373 0.0599 1.1435 0.3282

S12 1.8258 0.0625 1.2562 0.3259

S13 1.6687 0.0642 0.8093 0.2964

S14 1.604 0.0578 0.7327 0.2902
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Table 2 MAP estimates of the Wilcox 2006 k−ω model for the different calibration scenarios.

The nominal values are depicted on the first row.

Scenario α β0 β∗ σ σ∗

nominal 0.52 0.0708 0.09 0.5 0.6

S1 0.4557 0.0668 0.0768 0.4953 0.4107

S2 0.4369 0.0728 0.0848 0.5186 0.5177

S3 0.4383 0.0687 0.0828 0.5017 0.4107

S4 0.4703 0.0737 0.0909 0.4945 0.5231

S5 0.5906 0.0665 0.0858 0.5089 0.4094

S6 0.6045 0.0743 0.0895 0.5057 0.5825

S7 0.4786 0.0644 0.0784 0.4985 0.4067

S8 0.4306 0.0738 0.0744 0.6887 0.4074

S9 0.4946 0.0629 0.0744 0.6927 0.406

S10 0.4682 0.0647 0.0844 0.5234 0.4087

S11 0.592 0.069 0.0979 0.4961 0.4167

S12 0.6129 0.0696 0.0904 0.5073 0.4268

S13 0.592 0.0649 0.0887 0.5106 0.4147

S14 0.6087 0.0644 0.1043 0.4985 0.5853
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Table 3 MAP estimates of the SA model for the different calibration scenarios. The nominal

values are depicted on the first row.

Scenario Cb1 Cb2 Cv1 σ Cw2 Cw3

nominal 0.1355 0.622 7.1 0.67 0.3 2.0

S1 0.1354 0.5377 7.1833 0.8009 0.3664 2.0619

S2 0.1185 0.6152 6.881 0.602 0.349 1.8144

S3 0.1264 0.6302 7.1017 0.5711 0.2702 2.4675

S4 0.144 0.5629 7.1384 0.7964 0.3731 2.4636

S5 0.1299 0.7561 7.6842 0.746 0.3682 1.7774

S6 0.1305 0.5678 6.6114 0.658 0.2931 1.8615

S7 0.1606 0.6559 9.0895 0.8144 0.3153 2.3111

S8 0.1048 0.519 7.7523 0.6889 0.2468 2.047

S9 0.1353 0.5042 8.5117 0.5256 0.3033 2.054

S10 0.1693 0.6837 9.0427 0.7917 0.2384 2.0496

S11 0.1286 0.5441 6.8871 0.7676 0.3671 1.5532

S12 0.1214 0.7211 7.022 0.5924 0.257 1.641

S13 0.1062 0.6327 7.9545 0.6648 0.2601 1.5889

S14 0.0983 0.5603 6.5696 0.5643 0.2938 2.1707
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Table 4 The posterior model probabilities p(Mi|zk) whenM consists of the k−ε and SA model.

We utilized a uniform prior p(Mi).

Scenario k − ε SA

S1 6.54763e-02 9.34524e-01

S2 1.31256e-01 8.68744e-01

S3 9.98800e-01 1.19985e-03

S4 2.09486e-01 7.90514e-01

S5 9.95836e-01 4.16372e-03

S6 2.36294e-01 7.63706e-01

S7 1.00000e+00 4.51629e-07

S8 1.00000e+00 4.34707e-11

S9 1.00000e+00 0.00000e+00

S10 1.00000e+00 0.00000e+00

S11 9.99867e-01 1.32751e-04

S12 9.98324e-01 1.67614e-03

S13 0.00000e+00 1.00000e+00

S14 0.00000e+00 1.00000e+00
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Table 5 The posterior model probabilities p(Mi|zk) whenM consists of the k− ε, k−ω and SA

models. We utilized a uniform prior p(Mi)

.

Scenario k − ε k − ω SA

S1 1.04824e-02 6.76163e-03 9.82756e-01

S2 5.15244e-02 8.73518e-02 8.61124e-01

S3 4.11104e-01 5.88478e-01 4.18024e-04

S4 7.15142e-02 4.21388e-02 8.86347e-01

S5 9.73137e-01 2.57038e-02 1.15898e-03

S6 1.04312e-01 1.26575e-03 8.94423e-01

S7 1.00000e+00 1.94074e-10 2.35604e-08

S8 9.99999e-01 9.14473e-07 1.98968e-11

S9 9.98710e-01 1.29035e-03 2.34332e-21

S10 1.00000e+00 0.00000e+00 4.95032e-13

S11 3.78159e-01 6.21680e-01 1.61533e-04

S12 9.42438e-01 5.36331e-02 3.92870e-03

S13 0.00000e+00 3.69311e-01 6.30689e-01

S14 0.00000e+00 9.74174e-01 2.58255e-02
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Table 6 Flow descriptions of training database. Identification numbers are taken from the

source [34]. The ’Type’ column describes the pressure gradient, which ranges from favourable

to strongly adverse.

Scenario Identification Type Description

S1 1400 Zero Equilibrium boundary layer at constant pressure

S2 1300 Fav Near-equilibrium boundary layer in moderate negative pressure gradi-

ent

S3 2700 Fav Equilibrium boundary layer in mild negative pressure gradient

S4 6300 Fav Near-equilibrium boundary layer growing beneath potential flow on

model spillway

S5 1100 Mild adv Boundary layer in diverging channel

S6 2100 Div Boundary layer on large airfoil-like body; pressure gradient mildly neg-

ative

S7 2500 Mild adv Equilibrium boundary layer in mild positive pressure gradient

S8 2400 Div Initial equilibrium boundary layer in moderate positive pressure gradi-

ent; pressure gradient abruptly decreases to zero, and flow relaxes to

new equilibrium

S9 3300 Mod adv Boundary layer, initially at constant pressure, developing into equilib-

rium flow in moderate positive pressure gradient

S10 0141 Str adv Boundary-layer with strong adverse pressure gradient, source [44]

S11 1200 Str adv Boundary layer in diverging channel with eventual separation

S12 4400 Str adv Boundary layer in strong positive pressure gradient

S13 2133 Str adv Boundary layer on large airfoil-like body; pressure gradient strongly

positive

S14 2134 Str adv Boundary layer on large airfoil-like body; pressure gradient strongly

positive, close to separation
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