
1

DEVELOPMENT OF AN INTELLIGENT SELF-LEARNING
PRODUCT ASSEMBLY SYSTEM USING VISUAL IDENTIFICATION

LUKE ROGERS

Dissertation submitted in fulfilment of the requirements for the degree

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING

in the

Department of Electrical, Electronic and Computer Systems Engineering

of the

Faculty of Engineering and Information Technology

at the

Central University of Technology, Free State

Supervisor:

Prof HJ Vermaak (PhD)

Bloemfontein
2018

© Central University of Technology, Free State

2

Declaration

I, Luke Rogers (identity number student number)

hereby declare that this research project which has been submitted to the Central

University of Technology for the degree MASTER OF ENGINEERING:

ELECTRICAL, is my own independent work, complies with the Code of Academic

Integrity as well as other relevant policies, procedures, rules and regulations of the

Central University of Technology, and has not been submitted before by any

person in fulfilment (or partial fulfilment) of the requirements for the attainment of

any qualification.

Luke Rogers

Student

© Central University of Technology, Free State

3

Acknowledgements

The author would like to acknowledge the following institute and individuals without

whom the completion of this dissertation would not have been possible:

 Professor Herman Vermaak for all his support and guidance over the past

four years.

 Doctor Nicolaas Luwes, the activity leader of RGEMS, for all his support.

 The Research Group in Evolvable Manumation Systems (RGEMS) for

access to their equipment to attempt this project.

 The Central University of Technology, Free State (CUT), for their financial

support and the opportunity to undertake this project.

© Central University of Technology, Free State

4

Abstract

Modern automation systems rely on fixed programming to carry out their production

routines. These systems are effective for production outputs but do not allow any

flexibility within the production routine. Effort is required to change the ongoing

production routine through reprogramming, redesign or complete overhaul of the

system to cater for new production outputs. These efforts require down time and

result in a loss of revenue.

If a completely automated flexible system is introduced into such a production line,

the complete reprogramming process required to cater for new production needs

could be automated without losing production time. Within this study, a real-time

KUKA Robotic Control system is introduced. The KUKA Robotic Controller

maintains its original programming methods with no reprogramming required when

executing a new production assembly. This is achieved through manoeuvring the

KUKA Robotic System in real-time to new destinations based on image-processing

outputs and feedback.

For demonstration purposes and proof of concept, the system learns a design

presented to it by an end user and then reproduces this seen design based on the

image-processing results in terms of location and orientation. Therefore, instead of

reprogramming each new required position, the system takes over real-time control

of the KUKA Robotic System and carries out the required steps autonomously.

The benefit of such a system would be that the KUKA Robotic System would not

require reprogramming to carry out new routines. It is controlled in a real-time

environment to carry out new procedures based on external sensors (in this case,

image-processing outputs). KUKA Robotic Sensor Interface (RSI) software is used

to implement real-time control of the KUKA Robotic System and is explored

extensively throughout this study.

© Central University of Technology, Free State

5

Table of Contents

Declaration --- 2

Acknowledgements -- 3

Abstract --- 4

List of Figures -- 8

List of Tables --- 10

List of Equations -- 11

Acronyms and Abbreviations -- 12

1 Chapter 1: Introduction --- 13

1.1 Problem Statement --- 14

1.2 Objectives --- 14
1.2.1 Aim of the study --- 14
1.2.2 Hypothesis --- 14
1.2.3 System Layout -- 15
1.2.4 Specific Objectives and contributions --- 16
1.2.5 System Overview -- 16

1.3 Layout of the dissertation -- 17

1.4 Conclusion --- 17

2 Chapter 2: Literature Review -- 18

2.1 Manufacturing Systems --- 18
2.1.1 Introduction --- 18
2.1.2 Flexible Manufacturing Systems -- 19
2.1.3 Production Lines --- 20
2.1.4 Robotic Systems --- 21

2.1.4.1 End Effector -- 21
2.1.4.2 Conveyor Systems --- 23
2.1.4.3 Actuators --- 24
2.1.4.4 Sensor Systems --- 25
2.1.4.5 Logic Control Systems -- 26
2.1.4.6 Machine Vision --- 27

2.1.5 Digital Image Processing -- 28
2.1.5.1 Acquiring an Image -- 29
2.1.5.2 Greyscale Images --- 29
2.1.5.3 Subtraction--- 30
2.1.5.4 Template Matching -- 30
2.1.5.5 Erosion -- 31
2.1.5.6 Image Mass -- 32
2.1.5.7 Image Moments -- 33
2.1.5.8 Centre of Gravity --- 33
2.1.5.9 Area -- 34

2.1.6 Software --- 34
2.1.6.1 Microsoft Visual Studio -- 34
2.1.6.2 KUKA WorkVisual -- 34
2.1.6.3 KUKA RSI -- 34

© Central University of Technology, Free State

6

2.1.6.4 Total Integrated Automation Portal -- 34

2.2 Conclusion --- 35

3 Chapter 3: Methodology and Implementation --- 36

3.1 Hardware Systems -- 36
3.1.1 KUKA AGILUS R900 sixx-- 36

3.1.1.1 Tool calibration --- 38
3.1.1.2 Robot bases and calibration -- 40

3.1.2 Siemens PLC --- 42
3.1.3 Conveyor Transport System -- 43

3.2 Vision System -- 44
3.2.1 Basler AG Camera --- 44
3.2.2 Camera Calibration --- 44
3.2.3 Lighting Environment -- 45

3.3 Software System -- 46
3.3.1 KUKA RSI --- 46

3.3.1.1 Sequence of events -- 48
3.3.1.2 Sensor Cycle Rate -- 49
3.3.1.3 RSIVisualShell --- 50
3.3.1.4 Virtual Addressing --- 55
3.3.1.5 XML Packet Transfer -- 56
3.3.1.6 Integration with C# -- 57

3.3.2 PLC Programming --- 59
3.3.2.1 Overview --- 59
3.3.2.2 TCP Control Network-- 60
3.3.2.3 Comparison Network --- 61
3.3.2.4 TCP Queue System Network -- 62

3.3.3 C# Programming --- 64
3.3.3.1 Object Orientated Programming -- 64
3.3.3.2 Overall System Flow -- 65

3.3.3.2.1 Introduction --- 65
3.3.3.2.2 Methods Used -- 65

3.3.4 Image Processing Techniques -- 71
3.3.4.1 Basler Integration -- 71
3.3.4.2 Region of Interest -- 73
3.3.4.3 Calibration --- 73
3.3.4.4 Distance Measurement -- 74
3.3.4.5 Aforge.net -- 76

3.3.4.5.1 Centre of Gravity -- 77
3.3.4.5.2 Raw and Central Moments --- 78
3.3.4.5.3 Edge Point --- 78
3.3.4.5.4 Erosion -- 79
3.3.4.5.5 Template Matching --- 81

3.3.4.6 Accord.net-- 82
3.3.4.6.1 Orientation -- 82

3.3.5 Network System --- 83
3.3.5.1 Overall Network -- 83
3.3.5.2 PROFINET Connection -- 84
3.3.5.3 TCP/IP --- 85

3.4 Conclusion --- 85

© Central University of Technology, Free State

7

4 Chapter 4: Results -- 86

4.1 Open Pallet Design -- 87
4.1.1 Components Used --- 88
4.1.2 Configurations Used -- 88

4.2 System Learning --- 90
4.2.1 Introduction --- 90
4.2.2 Processing --- 91

4.3 System Building -- 95
4.3.1 Step-by-step procedure --- 95

4.4 Speed and Accuracy -- 105
4.4.1 Introduction --- 105
4.4.2 Results from the first pallet configuration --- 106
4.4.3 Results from the second pallet configuration --- 107
4.4.4 Results from the third pallet configuration -- 108
4.4.5 Results from the fourth pallet configuration -- 109
4.4.6 Results from the fifth pallet configuration -- 110
4.4.7 Results from the sixth pallet configuration -- 111

4.5 Results Discussion --- 112

4.6 Conclusion --- 113

5 Chapter 5: Conclusion --- 114

5.1 Summary -- 114

5.2 Research Goals and Objectives -- 114

5.3 Contributions --- 115
5.3.1 Solution to new product introduction -- 115
5.3.2 Smart Pick and Placer -- 115
5.3.3 Implementation option for KUKA RSI --- 115
5.3.4 Engine for C# - RSI Integration with visual capabilities -- 115

5.4 Future Work -- 116
5.4.1 RGB-D Camera -- 116
5.4.2 Improvement on Accuracy and Speed -- 116

5.5 Conclusion --- 116

References-- 118

Scientific Outputs --- 120

Appendix A – PLC Report --- 121

Appendix B – KUKA Code --- 132

Appendix C – C# Code and Videos -- 137

© Central University of Technology, Free State

8

List of Figures

Figure 1-1 Layout of the system used .. 15

Figure 1-2 Proposed Block Diagram ... 16

Figure 2-1 Professional Vacuum Cup End Effectors ... 22

Figure 2-2 CAD Example of the TS1 conveyor by Rexroth ... 23

Figure 2-3 Actuator Examples .. 24

Figure 2-4 Different Sensor Types within Assembly Automation .. 25

Figure 2-5 Siemens and Allen-Bradley PLC controllers respectively .. 26

Figure 2-6 Machine Vision Processing ... 27

Figure 2-7 Analog to Digital Conversion... 28

Figure 2-8 Bit Depths and Grey Levels ... 30

Figure 2-9 A 3x3 structuring element .. 31

Figure 2-10 Effect of 3x3 structuring element on a binary image ... 32

Figure 3-1 Components of an Industrial Robot .. 37

Figure 3-2 XYZ 4-point method example ... 39

Figure 3-3 A CGI example of the calibration process ... 41

Figure 3-4 Calibration using the system... 41

Figure 3-5 Example of the fixed lighting setup attached to the end effector 45

Figure 3-6 Data Exchange via Ethernet .. 47

Figure 3-7 Data Exchange via Ethernet (Sequence) ... 48

Figure 3-8 RSIVisualShell block diagram section A .. 51

Figure 3-9 RSIVisualShell block diagram section B ... 52

Figure 3-10 RSIVisualShell section C .. 53

Figure 3-11 XML file configuration for RSI communication ... 54

Figure 3-12 Virtual Addresses assigned to one physical adapter .. 55

Figure 3-13 XML String creation in C# .. 56

Figure 3-14 XML packet handling... 58

Figure 3-15 Send and Receive Block within the PLC Network ... 60

Figure 3-16 Example of how data is decoded for correction function .. 61

Figure 3-17 TCP queue network system in ladder logic ... 62

Figure 3-18 A Design Object Hierarchy .. 64

Figure 3-19 Communication Processing Flow Diagram ... 66

Figure 3-20 Image processing Flow Diagram ... 67

Figure 3-21 RSI Processing Flow Diagram .. 68

Figure 3-22 Automation Processing Flow Diagram .. 69

Figure 3-23 Overall Flow within Software.. 70

Figure 3-24 Pixel Creation A ... 71

Figure 3-25 Pixel Creation B ... 72

Figure 3-26 Example of the region of interest placed around the pallet within the software. 73

Figure 3-27 Image Distance Measurement Example (Not to scale) .. 74

Figure 3-28 Distance Measurement (Close up) ... 75

Figure 3-29 Distance Measurement (Direct Path) ... 75

Figure 3-30 Example of the system applying multiple processes to an acquired image 77

Figure 3-31 Centre of Pallet to Centre of Gravity preview .. 78

Figure 3-32 Raw data output of object location .. 78

Figure 3-33 Raw Image with noise present.. 79

Figure 3-34 Resultant Image after Erosion processing .. 80

© Central University of Technology, Free State

9

Figure 3-35 Example of two templates created by the system that is compared during operation

 .. 81

Figure 3-36 Network Overview .. 83

Figure 4-1 Open Pallet Design with Rubber Mask ... 87

Figure 4-2 Different style components used for testing purposes .. 88

Figure 4-3 Example of component pallet configuration .. 89

Figure 4-4 Various configurations used one through six ... 90

Figure 4-5 Component Catalogue Conveyor .. 91

Figure 4-6 Image Processing complete on component pallet with centre points shown 92

Figure 4-7 Raw data results from the image processing ... 92

Figure 4-8 Image Processing complete on design pallet with centre points shown 93

Figure 4-9 Results feedback with angle difference shown and component ID 94

Figure 4-10 Component Conveyor - KUKA Robotic scans pallet to learn items 96

Figure 4-11 Data returned after learning the first component pallet. .. 97

Figure 4-12 First component pallet arrives back at the scanning point .. 98

Figure 4-13 System learning a new design to rebuild .. 98

Figure 4-14 Data returned from learning the design pallet with matches found.......................... 99

Figure 4-15 First design learnt by the system .. 100

Figure 4-16 Visual Comparison of a design component to the learnt components 100

Figure 4-17 Example of the system finding a component and preparing for collection 101

Figure 4-18 KUKA Status, returned by the KUKA RSI System ... 102

Figure 4-19 Example of the first component being picked up and placed on the design conveyor

 .. 102

Figure 4-20 Console feedback of the process completing successfully 102

Figure 4-21 Pick and Place of first configuration A .. 103

Figure 4-22 Pick and Place of first configuration B .. 104

© Central University of Technology, Free State

10

List of Tables

Table 1 - Internet Protocol Device List ... 85

Table 2 - Raw Data Results of the first pallet configuration .. 106

Table 3 - Timing Results for configuration one .. 106

Table 4 - Raw Data Results of the second pallet configuration ... 107

Table 5 - Timing Results for configuration two .. 107

Table 6 - Raw Data Results of the third pallet configuration ... 108

Table 7 - Timing result for configuration three .. 108

Table 8 - Raw Data Results of the fourth pallet configuration .. 109

Table 9 - Timing results for configuration four .. 109

Table 10 - Raw Results for the fifth configuration ... 110

Table 11 - Timing results for configuration five ... 110

Table 12 - Raw Results for the sixth configuration .. 111

Table 13 - Timing results for configuration six ... 111

Table 14 - Overall average accuracy results based on all builds .. 112

Table 15 - Overall average time results based on all builds .. 112

© Central University of Technology, Free State

11

List of Equations

Equation 1 (Calculation of image moments) .. 33

Equation 2 (Sum of all x pixels) .. 33

Equation 3 (Sum of all y pixels) .. 33

Equation 4 (Centeroid calculation using first moments and zeroth moment) 33

© Central University of Technology, Free State

12

Acronyms and Abbreviations

CPU Central Processing Unit

EOAT End of arm Tool

FPS Frames per Second

I/O Input/output

IP Internet Protocol

IPOC Interpolation Cycle

PC Personal Computer

PLC Programmable Logic Controller

ROI Region of Interest

RSI Robotic Sensor Interface

TCP Tool Centre Point

TCP Transmission Control Protocol

UDP User Datagram Protocol

© Central University of Technology, Free State

13

1 Chapter 1: Introduction

The manufacturing industry is a challenging yet changing market. Flexibility within

this industry is highly sought after in any modern production system. This versatile

industry is driven by customer quality needs and the ability to respond to changes

swiftly and at the lowest cost [1].

Flexible manufacturing systems (FMS) must be able to convert quickly to the

production of new models, rapidly adjust capacity and produce an increased variety

of products in unpredictable quantities. An FMS can be dedicated or flexible and

change as needed. Flexibility can be perceived as a system’s capacity to change

and assume various positions or states in response to changing requirements, with

little or zero penalty in time, effort, cost and performance.

Introducing a flexible, automated adapting system that can adjust its programming

routine automatically while satisfying the above-mentioned requirements is a

challenge. Flawless system operation also requires uninterrupted accuracy, speed

and safety. This research investigates what type of robotic system can be

implemented that can adapt automatically in real-time, with zero down time.

A viable visual aid system will also be investigated that could possibly assist the

flexible system to achieve its end goals. The visual system would be required to

scan the design pallet to detect separate components which make up the design,

and calculate optimal movement paths for the KUKA Robotic System to collect and

place the detected components. For proof of concept and simplicity purposes,

component pallets were made up of the same small shapes placed at 90º angles,

while design pallets were made up of multiple shapes placed at random angles.

© Central University of Technology, Free State

14

1.1 Problem Statement

Introducing new products on an existing automated assembly line leads to manual

reconfiguration of the entire production line to accommodate the new product’s

needs. This can be a lengthy process, possibly requiring down time of the entire

system. Automating this process using visual aid with zero manual human

intervention is key to eliminating system down time. Successful integration of visual

aid within an assembly line can be limited, but also beneficial when implemented

on a KUKA Robot System.

1.2 Objectives

1.2.1 Aim of the study

The aim is to use a visually aided system that can learn new product designs in

real-time, allowing the KUKA Robot System to adjust accordingly without the need

for manual reconfiguration. This involves implementing real-time control of the

KUKA using the RSI subsystem, which uses data from the visually aided system.

This can increase production of newly introduced products, while also having

alternative implementation options.

1.2.2 Hypothesis

The designed system should be able to build a new product design completely

autonomously without any user intervention or manual KUKA reprogramming.

Once a new product is introduced into the existing assembly line, the system

should automatically adapt and build the new product, while ensuring all

preconditions are met (i.e. the required components for the design must be

available within the component catalogue on the component conveyor). The design

will consist of multiple components uniquely placed to test the capability of the

system.

© Central University of Technology, Free State

15

1.2.3 System Layout

In Figure 1-1 below, we can see the initial floor layout concept. There were two

independent conveyor systems designed, namely a “Design Assembly Area”

where new designs were studied by the visually aided system and rebuilt, and a

“Component Catalogue Area” that maintained a repository of components for

rebuilding the seen design within the “Design Assembly Area”.

Figure 1-1 Layout of the system used

Each conveyor area was equipped with inductive sensors and stop gates. This

allowed for flow control of the pallets within the system while also relaying pallet

position data back to the Main Control Interface.

© Central University of Technology, Free State

16

1.2.4 Specific Objectives and contributions

Specific objectives and contributions of the study are to:

 Design an intelligent, self-learning product assembly system.

 Design a visually aided system that can assist the process of moving

products automatically between the product pallet and design pallet in real-

time.

 Achieve these results using real-time control of a KUKA Robot using the RSI

sub-system while investigating its capabilities.

 Support multiple designs in real-time.

 Achieving a reprogramming-free environment on new product entry.

 Smart Pick and Placer

1.2.5 System Overview

The system comprises multiple separate systems (that can work independently)

required to work as one unit to achieve the goals set within this study. Figure 1-2

depicts the proposed block diagram of the system. As seen in the figure, all

systems communicated over Ethernet standard. A more detailed diagram is

presented later within this document.

Figure 1-2 Proposed Block Diagram

As mentioned before, each sub-system can operate independently, but requires

instructions from the main software controller.

© Central University of Technology, Free State

17

1.3 Layout of the dissertation

 Chapter 1: Introduction to the Thesis — This chapter covers the general

overview of the project, outlining goals and objectives.

 Chapter 2: Literature Review — This chapter looks at previous work done

within this field, while also covering general theory of some processes.

 Chapter 3: Methodology and Implementation — This chapter explains in

detail how the project was implemented to achieve results.

 Chapter 4: Results and Discussion — This chapter documents all the results

achieved on the system and the step-by-step procedure of obtaining the

results.

 Chapter 5: Conclusion — This chapter is a summary of project successes

and potential future implementation.

1.4 Conclusion

The proposed system which was conceptually designed, was physically

implemented with all the available hardware and software. A series of tests

followed and the analysed results are seen in a later chapter. This chapter clarified

the study objectives and an overall proposed system to complete the objective.

© Central University of Technology, Free State

18

2 Chapter 2: Literature Review

This chapter contains a study of current techniques used within the industry to

automate processes and related challenges. Certain techniques used within this

study will also be outlined and their implementation benefits discussed. Software

choices and uses will be explained in detail.

2.1 Manufacturing Systems

2.1.1 Introduction

Industrial automation in manufacturing is the use of “intelligent” machines required

to complete a given task at the quickest possible rate. These machines are

programmed to follow a fixed set of commands to complete their task. Every so

often, adapting machines are created that can adapt to changes in requirements

of the project at hand with minimal effort. These machines are extremely flexible,

but may struggle to adapt correctly.

Various types of manufacturing systems exist, such as [2]:

 Dedicated Manufacturing System (DMS),

 Reconfigurable Manufacturing System (RMS) and

 Flexible Manufacturing Systems (FMS).

These systems each contain their own unique features, such as:

 Capacity,

 Functionality and

 Cost.

Each manufacturing system has certain advantages and disadvantages within

these above-mentioned areas [3]. As the study presented is focusing mainly on an

FMS, only this specific manufacturing system will be covered.

© Central University of Technology, Free State

19

2.1.2 Flexible Manufacturing Systems

When it comes to Flexible Manufacturing Systems (FMS), companies are reluctant

to make immediate changes to their current conventional systems. This could be

due to a lack of knowledge about how to implement such systems [4].

Before we can detail the flexible manufacturing process, it is important to

understand the definition of “flexibility” within an FMS context. Flexibility can be

stated as a “range of motion” in its own context.

Multiple definitions exist for flexibility within the context of an FMS. A simple

definition could be “The sensitivity of a manufacturing system to changes. The

more flexible a system, the less sensitive to changes occurring to its environment

it is” [5].

A second example of this definition, put forward by Ranky [6], is that an FMS deals

with high-level distributed data processing and automated material flow using

computer-controlled machines, assembly cells, industrial robots, inspection

machines and so on, together with computer-integrated material handling and

storage systems. Although the definitions presented are somewhat open to

interpretation, research is constantly undertaken to improve the versatility of an

FMS.

Characteristics of an FMS have also been broadly defined. What exactly is required

within an FMS to categorize it as an FMS? There is no set number of characteristics

required for a system to be classified as an FMS, but some general characteristics

should be present according to different researchers and authors. These

characteristics are as follows [4][7]:

 Flexible production in terms of volume and mix on the same assembly line.

 General-purpose CNC machines present in system.

 An automated material-handling system.

 An overall method of control that co-ordinates all subparts of the system.

The characteristics mentioned above are guidelines that are required for a system

to be classified as an FMS. These characteristics are not limited to the

aforementioned, many variations of the systems exist dependant on application

and implementation.

© Central University of Technology, Free State

20

The main reason an FMS can be classified as flexible is due to its capacity to

process a variety of part styles simultaneously, while the production output can be

changed in response to demand patterns.

2.1.3 Production Lines

Automated production lines, used within workspaces that have multiple unique

assembly areas, are systems that compromise many stations that each

independently contribute to the product in production. These sub-systems, inter-

connected through mechanical transport systems, move products between

workspaces in pre-defined sequences for correct product assembly.

Mechanical transport systems usually consist of conveyors that move materials

from point to point within the system. They are usually preferred over more flexible

transport systems such as Automated Guided Vehicles (AGVs), as parts do not

have to wait to be picked up by an AGV and can be delivered instantly to the next

station. Each station contains either automated processes such as drilling or

milling, but could also contain manual labour operations such as inspections or

manual placement of components dependant on the type of product being built [8].

There are benefits to using automated production lines within factories, such as:

 Less human intervention and effort required in production.

 Fewer production errors, better quality control.

 Better safety control.

 Lower production cost.

 Increased production output.

Automated production lines are many unique systems working together to

complete an automated task.

© Central University of Technology, Free State

21

2.1.4 Robotic Systems

Robotic systems, used for a variety of purposes within an automated assembly line

are machines capable of carrying out complex tasks automatically. These tasks

include packaging, pick and place, welding, soldering, drilling, milling, etc. They

replace the human factor within the manufacturing process, while increasing

efficient productivity and general overall output.

Generally, these computer-controlled machines each follow set programming

routines dependant on their task. This ensures that each station contributes its

specific piece to the overall product.

Several types of robotic systems exist for different task requirements. These

requirements may include accuracy, the ability to carry out small complex tasks or

to move a heavy payload. These factors along with cost determine what robotic

system is selected.

2.1.4.1 End Effector

An end effector also known as End of Arm Tooling (EOAT) is the device placed at

the end of a robotic arm. These devices, designed specifically for the robot

application, allows the robot to interact with its environment and complete an

assigned task. End effectors are usually designed in a manner that is not restrictive

to the robot in terms of weight or size, using lightweight material [9]. Common

interaction devices can be categorized into different groups, such as:

 Gripping devices — claws, jaws or any device that can physically grip the

object.

 Injection devices — needles, pins or any device that penetrates the object.

 Suction devices — vacuum cups, magnets that use the object’s surface to

grip the object.

 Adhesion devices — devices that place a substance on the object.

There are many other devices that could be attached to the robotic wrist such as

drills, welders, tool changers, brushes, sensors, screw drivers, spray guns, etc. It

is all dependant on the application of the robotic system. Custom-built end effectors

© Central University of Technology, Free State

22

are commonly used within newer industrial applications where traditional end

effectors are insufficient.

Figure 2-1 shows vacuum cup end effectors which use pressurized air to create a

vacuum that can pick up objects. Many different selections are available and

depend on purpose, such as the size of the object to be picked up.

Figure 2-1 Professional Vacuum Cup End Effectors

These vacuum-based end effectors are easy to use and set up, with minimal

hardware requirements or electrical interfacing required to pick up an object.

© Central University of Technology, Free State

23

2.1.4.2 Conveyor Systems

Conveyor systems are automatic transportation systems that can move bulk

materials from one point to another. They are used in automated industrial systems

within different applications, depending on application requirements.

These systems come in unique shapes and sizes to fulfil different requirements

such as heavy material transportation or small component transportation. They are

vital to the automation processes, where manufacturing processes are

implemented without any human intervention. Overall, this increases the

production output of the system due to increased speed and efficiency.

Add-on modules for conveyor systems add to the modularity and flexibility of these

systems, as pallets can be manipulated throughout the system based on certain

requirements. An example is an automated rework system, where a pallet is

scanned using a visual aid and directed to a certain conveyor system based on the

outcome of the inspection. This is done using add-on modules such as deflectors

or push diverters that direct routing within the system.

Selection of these systems is entirely dependent on application. Many different

systems exist, with the main systems implementing mechanical belt-driven

conveyors, vibrating conveyors, pneumatic conveyors and flexible conveyor

systems.

Figure 2-2 CAD Example of the TS1 conveyor by Rexroth

TS1 conveyor systems by Rexroth provide solutions for smaller payloads. These

conveyors use anti-static pallet-based transfer systems to move small payloads

around an assembly system. They are mobile and easily manoeuvred to apply new

configurations in a short time frame.

© Central University of Technology, Free State

24

2.1.4.3 Actuators

Actuators are mechanical devices that act as moving or controlling mechanisms on

a production line. Different types of actuators include hydraulic, pneumatic, electric

and mechanical.

Pneumatic actuators can control a system’s flow by either opening or a closing a

valve (for example) that would in turn do some physical work on a production line.

They require a trigger mechanism and are frequently connected to a

Programmable Logic Controller (PLC) for input signals. They are electronically

triggered (for example to open a valve), but generally convert compressed air into

a linear or rotary motion.

Figure 2-3 below shows two types of pneumatic actuators. The left is a linear

motion piston that extends when triggered, while the right shows a Rexroth

pneumatic stop gate used to control pallet flow within an assembly system.

Figure 2-3 Actuator Examples

In summary, actuators are vital within an industrial environment and widely used.

© Central University of Technology, Free State

25

2.1.4.4 Sensor Systems

Sensors are vital within the automated assembly process. They provide important

feedback on the real-time status of the system in monitoring applications while also

providing feedback on the current assembly process (for example when a pallet

passes a certain point) to the main controlling device. A variety of sensors is

available within the automated production process, depending on the application.

Many factors are considered when selecting sensors to carry out application

requirements such as accuracy, range, resolution, cost and repeatability.

Repeatability is essential to ensure that readings returned by the sensor under the

same conditions are consistent with minimal fluctuations.

Some of the main sensors within industrial assembly automation include proximity

and displacement sensors (inductive, capacitance, photoelectric, etc.), while

photoelectric can be used for a range of other applications such as detecting

colours. Level sensors, vision sensors and pressure sensors are specific to

assembly automation, but there are many more.

The data returned by the sensors enables the controller to make appropriate

decisions in terms of the status of the system as well as the production line.

Figure 2-4 depicts the different types of sensors used within the assembly

automation process.

Figure 2-4 Different Sensor Types within Assembly Automation

© Central University of Technology, Free State

26

2.1.4.5 Logic Control Systems

Automation within industrial environments is accomplished using different methods

based on requirements. One of the main controllers used within these

environments is the Programmable Logic Controller (PLC), which controls all

logistics involved in the automated solution. This includes (but is not limited to) all

I/O devices such as sensors, conveyors, stop gates, LEDs, transverses, data

sharing devices, etc. Complete flow control is determined by these devices and

their relative inputs/outputs, assuming complete automated control over the

system.

The logic control system is the “brain” of the system and requires precise

programming to ensure error-free operation. It must also be designed with flexibility

for use in an FMS. This includes creating flexible software that can adapt to

changes as needed. In factories, it is not always possible to create fully functional

software before the actual system is commissioned, due to specific customer

needs. Thus, on-site adjustments are done during commissioning of the system.

Figure 2-5 shows two PLCs, each from leading brands in the automation industry,

namely Siemens and Allen-Brandley.

Figure 2-5 Siemens and Allen-Bradley PLC controllers respectively

© Central University of Technology, Free State

27

2.1.4.6 Machine Vision

Machine vision technology is an important tool for capturing useful information

about a scene from a two-dimensional viewpoint. It provides automatic inspection

of objects in applications such as robot guidance, process control and quality

control. The end goal of machine vision would be to create a real-world model

purely from images. Machine vision is achieved through image sensors that

capture images, which are subsequently transferred to a processing unit for

analysis [10].

Figure 2-6 below shows where machine vision fits into the world of image

processing [11].

Figure 2-6 Machine Vision Processing

Computer vision and machine vision are usually used within the same context, but

generally, computer vision refers to a more theoretical and algorithmic-based

approach within image processing, while machine vision refers to the practical

aspect, including image acquisition.

© Central University of Technology, Free State

28

2.1.5 Digital Image Processing

Digital Image Processing is computerised manipulation of a digital image using

certain techniques that alter and/or extract information from an image presented to

accomplish certain tasks. These techniques add value to the image by looking for

patterns and/or singling out certain interests within the image that can provide

accurate information to the end user. The resulting data can be used to manipulate

objects in the real world using physical devices, depending on the application area

of these techniques.

Advantages of using computers to process images include [12]:

1. Flexibility and adaptability: Digital computers do not require any physical

hardware modifications when solving different tasks, simplifying

reprogramming.

2. Data Storage and Transmission: Digital data can be transferred easily

between two points while being stored efficiently as new image-

compression algorithms are developed.

Digital image processing starts with a digital image composed of elements called

pixels, which are the smallest sample of an image. These pixels represent the

brightness at one point and require two important operations, namely sampling and

quantisation when being converted into a digital format from an analogue image

source.

Figure 2-7 illustrates this process in block diagram format [12].

Figure 2-7 Analog to Digital Conversion

© Central University of Technology, Free State

29

2.1.5.1 Acquiring an Image

Acquiring an image is the first step within the digital image processing environment.

This process involves a camera sensor that captures the viewed scene and returns

it as an image to a processing unit in digital format. Information is extracted from

the digital image by the processing unit and converted into data values that can be

understood by a computer system, resulting in decision-making based on these

returned values. Images are usually captured as a single frame at a certain

resolution, based on the requirements of the application. These images are

sometimes also stored for later use if comparisons, for example, are required within

the application.

2.1.5.2 Greyscale Images

Greyscale images are digital images where the value of every pixel correlates to

the pixel’s intensity information. In other words, each pixel’s value is based on a

shade of grey where the weakest intensity would correlate to the colour black while

the strongest intensity would signify the colour white. The intensity of the pixel

directly corresponds to the intensity of light captured by the camera sensor (within

a greyscale-capturing sensor).

Greyscale images have certain depths that relate to the number representation for

pixel intensity. For example, in an 8-bit grayscale image, each pixel would contain

a number between 0–255 which correlates to that pixel’s level of intensity. The

depth can be increased for a more accurate representation of the shade but would

require greater processing power and storage space to compute the data in the

case of a 16- or 32-bit grayscale image, as the number representation is more

substantial.

Figure 2-8 is a figured representation of the depths and their shading

characteristics as the depth level is increased [13].

© Central University of Technology, Free State

30

Figure 2-8 Bit Depths and Grey Levels

As seen in the figure above, as the depth increases, the amount of shades

available increases proportionally. Dependant on application and resolution

required, the correct bit-depth is selected.

2.1.5.3 Subtraction

Subtraction within image processing is the process whereby two separate images

categorized into source and overlay image of the same size and pixel format are

subtracted from each other to produce a new image. A simple procedure of

completing this process is where each pixel is equal to the difference between the

source and corresponding pixels, which results in a new image that is analysed.

2.1.5.4 Template Matching

Template matching is the process whereby a suitable template is moved over an

image to determine at what positions in the image a precise match occurs. This

operation reveals object matches and similar types of objects within the template

and image being processed [14].

One of the simplest algorithms within template matching is the exhaustive template

matching algorithm. This algorithm performs a complete scan of the source image

and compares every pixel with the corresponding pixel of the template image.

Although there have been more efficient algorithms presented (such as normalized

© Central University of Technology, Free State

31

cross correlation template matching [15]), this process required minimal

computation power with sufficient results required in this study.

2.1.5.5 Erosion

Erosion processing is a morphology image processing technique typically applied

to binary images. The general concept is to erode boundaries of certain regions,

resulting in the forefront of pixels taking preference.

Binary images consist of either one of two possible values: either a 0, which

denotes background pixels, or a 1, which denotes foreground pixels. The erosion

operator requires two inputs for the process to complete.

The image to be eroded usually uses a set of coordinate points (known as the

structuring element) which determines the effect of the erosion on the image. In

Figure 2-9, a clear example of the structuring element is presented.

Figure 2-9 A 3x3 structuring element

A 3x3 matrix (for example) is used and applied to the image as the structuring

element. This structured matrix would be superimposed over the input range at the

centre of the input pixel (foreground pixel) coordinates. At this point, if every pixel

in the structuring element corresponds with the image underneath, the input pixel

© Central University of Technology, Free State

32

is left as is (this applies to neighbours of the input pixel in terms of the structuring

element size).

If any of the corresponding pixels are background pixels, the input pixels are also

converted to background pixels[16]. Figure 2-10 depicts the effect of a 3x3 square

structuring element on a binary image.

Figure 2-10 Effect of 3x3 structuring element on a binary image

As seen in the figure above, after the erosion technique is applied on the binary

image, there is cleaner depiction of the binary image with the filter cleaning up

surrounding pixels. This is particularly useful when an image contains excessive

amounts of noise or static that must be removed.

2.1.5.6 Image Mass

When referring to centre of mass or centre of gravity on an everyday object, these

two properties are different if the gravitational field is not uniform across the object.

In image processing terms, centre of mass and centre of gravity in a binary image

fall on the same location and is the same point. Centre of gravity is covered more

thoroughly in section 2.2.5.8.

© Central University of Technology, Free State

33

2.1.5.7 Image Moments

Within the field of image processing or computer vision, an image moment is a raw

weighted average of the pixel intensities. These moments are used in a variety of

applications and used to calculate items such as:

 Centre of Gravity

 Object Orientation

 Area of an Image, etc.

Images have two dimensions, so the formula requires two independent variables.

A discrete way is used to describe each pixel in terms of moments. Equation 1

proves this concept on a mathematical level.

2.1.5.8 Centre of Gravity

The centre of gravity of an image is the average location of the weight of the image.

Based on image moments, this function returns an X and Y coordinate that would

equate the centroid of the image. The returned coordinate points are generally

used as some sort of reference point within the application.

The centroid calculation is done by calculating the first moment of the image. All

white pixels are added up using firstly the X coordinate and then the Y coordinate

respectively (as seen in Equation 2 and 3 below). The sum of all these pixels is

then divided by the overall pixel amount found within the zeroth moment. This

results in the following Equations:

As seen in Equation 4, the resultant X and Y coordinate of the centroid is returned.

Equation 1

Equation 2

Equation 3

Equation 4

© Central University of Technology, Free State

34

2.1.5.9 Area

When processing a binary image, the area is given by the number of pixels

belonging to the object. Therefore, the matrix or pixel list is used to calculate the

area of the object (or region of interest) simply by counting the number of pixels

within the object [17].

2.1.6 Software

2.1.6.1 Microsoft Visual Studio

Microsoft Visual Studio is Microsoft’s primary programming software used for

software development in languages such C, C++ and C#. Free to use at express

version levels, this software was used to create the operational server while also

implementing the image processing required within this study.

2.1.6.2 KUKA WorkVisual

KUKA WorkVisual is KUKA’s main programming environment when creating

automated tasks for the KUKA Robotic System. All programming and configuration

of the robotic system is done within this platform.

2.1.6.3 KUKA RSI

KUKA RobotSensorInterface(RSI) is the primary software environment used to set

up a remote input into the KUKA Robotic System. Its primary purpose is to

configure the remote inputs and outputs that will be used by the system, in a block

diagram programming environment.

2.1.6.4 Total Integrated Automation Portal

The Total Integrated Automation (TIA) Portal provided by Siemens is their resident

software to provide an end user with a complete range of digitalized automation

services. This software, used to program all Siemens PLC’s and HMI’s in the user’s

preferred language, contains a range of features — from digital automation

planning to integrated engineering.

© Central University of Technology, Free State

35

2.2 Conclusion

This chapter covered a literature review to gain relevant knowledge of flexible

manufacturing systems as well as hardware involved in making these systems

operate. It also covered image processing techniques that could be used within

these environments to allow visual aids to assist flexible manufacturing systems.

© Central University of Technology, Free State

36

3 Chapter 3: Methodology and Implementation

This chapter contains a detailed overview of the techniques and design strategies

implemented within the formation of this system. Various subsystems were

deployed to complete the overall objective, including KUKA KR AGILUS sixx,

KUKA RSI, KUKA WorkVisual, Siemens S7-1200 PLC System, a Basler AG

Camera, and a C# Programming Environment using visual libraries such as

Aforge.net and Accord.net.

These systems were all configured individually to ensure each sub-system was

working satisfactorily, followed by combining and configuring all sub-systems to

work as a single unit, which allowed the project objective to be carried out and

analysed.

3.1 Hardware Systems

As many different hardware platforms was used throughout this system, it is

necessary to detail each process individually as well as state each systems

contribution to the overall design.

3.1.1 KUKA AGILUS R900 sixx

The KUKA AGILUS R900 sixx is an industrial robot intended for handling tools and

fixtures, or for processing or transferring of components or products. The robot

compromises an assortment of components. Many underlying components are not

always present to the eye but are crucial to the operation of the manipulator.

Figure 3-1 below is a representation of the components and their uses [18].

© Central University of Technology, Free State

37

Figure 3-1 Components of an Industrial Robot

From the above figure, we can label each component as:

1. Manipulator

2. smartPAD teach pendant

3. Connecting cable, smartPAD

4. Robot controller

5. Connecting cable, data cable

6. Connecting cable, motor cable

The KUKA AGILUS R900 sixx was selected due to its wide industrial use and ease

of integration with external systems. KUKA RSI was fully supported by this robot,

which was essential to establish real-time control [18].

© Central University of Technology, Free State

38

3.1.1.1 Tool calibration

Tool calibration is necessary to implement a coordinate system for the end effector.

The end effector is mounted on the mounting flange at the head of the KUKA Robot

and allows interaction with any objects as needed. The tool coordinate system has

its origin at a user-defined point. This is called the TCP (Tool Centre Point). The

TCP is generally situated at the working point of the tool.

Within this study, the tool or end effector was a suction gripper, which uses

compressed air and a vacuum configuration to pick up items. This tool was selected

due to its relative ease of use and ability to pick up lightweight payloads using a

suction system.

Advantages of tool calibration include [19]:

 The tool can be moved in a straight line in the tool direction.

 The tool can be rotated about the TCP without changing position of the TCP.

 In program mode: The programmed velocity is maintained at the TCP along

the path.

Multiple tool calibration methods are available, namely:

 XYZ 4-point method

 XYZ reference method

 ABC World method

 ABC 2-point method

 Manual Numeric Input

Although the base coordinate system was used throughout the program’s main

functionality, it was still required to calibrate the tool for testing purposes. The XYZ

4-point method was used for calibration due to undemanding requirements for the

process, which can be seen in Figure 3-2 below [19].

© Central University of Technology, Free State

39

Figure 3-2 XYZ 4-point method example

An object with a sharp point was placed on top of the pallet situated on top of the

conveyor. Using the end effector head as reference, the head was then

manoeuvred around the point as seen in the steps above to calibrate the tool head

to the system. This coordinate system enabled a new offset to be defined using the

TCP for testing purposes, relating to the movement of the end effector attached to

the KUKA Robot.

© Central University of Technology, Free State

40

3.1.1.2 Robot bases and calibration

Configuring robot bases is essential to the robot’s accuracy. Factors that can affect

the robot in different working spaces include:

 Alignment of working surfaces.

 Angle of robot base.

 Movement of overall system during operation after fixing positions.

Two separate robot bases were configured for the robot for accuracy

considerations on either side of the robot working space. For example, the

alignment of floor surface was different to the alignment of the surface on the other

end, causing the robot to “dip” into the Z axis when moving the robot on either the

X or Y axis. The solution was to configure separate bases for either side of the

working space, resulting in correct calibration for each side. The program would

then automatically switch between these two separate bases when working on

each side respectively.

Robot bases can be calibrated using two different methods namely:

 3-point method

 Indirect method

The 3-point method was used for calibration of both bases as this was the most

reliable option. The robot first moves to the origin of the base as well as two further

points. These three points define the new base. An example of the process can be

seen below in Figure 3-3, while Figure 3-4 shows the real-world implementation of

this process [19].

© Central University of Technology, Free State

41

Figure 3-3 A CGI example of the calibration process

Figure 3-4 Calibration using the system

© Central University of Technology, Free State

42

3.1.2 Siemens PLC

The Siemens S7-1200 PLC is a modern-day industrial controller primarily used

within the automation environment. Focused on overall control of an automated

system, the Siemens PLC is a cost-effective automated solution.

The PLC is used as an I/O device within this system, controlling conveyors and

stop gates while also receiving sensor inputs. The device acted as a

communication tool between the KUKA and C# environment, transferring shared

variables between the respective systems. The PLC was configured with a raw

Transmission Control Protocol/Internet Protocol (TCP/IP) connection

configuration, which allowed direct communication via the TCP/IP to the .NET

environment. All devices was configured using the standard TCP/IP configuration

while transferring data strings that would be parsed into a certain function within

the PLC program.

The PLC also contained feedback functionality to alert the program to changes (on

top of the shared variables) happening on the system, such as pallets arriving at

stop gates that would then trigger the next set of events within the main application.

Based on the role that the PLC took in this study, it could be perceived as a partial

gateway device to other devices in the system.

© Central University of Technology, Free State

43

3.1.3 Conveyor Transport System

An automated conveyor movement system transported components around a

closed loop conveyor, with a parallel conveyor to feed new designs and learn them.

The Rexroth conveyor system was selected due to its lightweight payload

capabilities and mobility. The system can easily be rearranged into different

settings, adding to the flexibility of the system and allowing new configurations to

be tested without labour intensive activities.

These conveyors also included stop gates and detection sensors which controlled

pallet flow on the system. The detection sensors stopped the pallets containing the

components for a picture to be taken and/or for a component to be collected. A

secondary stop gate was placed where a queue of components was ready to be

scanned and/or collected. This ensured that no secondary pallet made its way into

the image processing vicinity while an ongoing operation was present.

The design conveyor also consisted of two stop gates with their respective

detection sensors. The first stop gate was the design queuing area while the

second was the design build area. If a pallet arrived at the first sensor while no

pallet was present at the second sensor, it would automatically be fed through to

the first gate. As mentioned above, this ensured no second pallet entered the

current pallet’s vision processing area.

© Central University of Technology, Free State

44

3.2 Vision System

3.2.1 Basler AG Camera

The Basler AG Camera is an industrial camera that specializes in many application

areas requiring cameras such as production, medical, traffic, transportation and

retail. The camera acquired for the vision system in this project was specific to the

production industry for robotics where detailed inspection is required.

The Basler scA1390-17gm is an Area Scan Camera with the Sony ICX267 CCD

sensor that can deliver 17 frames per second at a 1.4 MP resolution. The camera

is a GigE, connected via an Ethernet connection.

A 12 mm lens was attached to this camera, which required constant changes to

focus and zoom which was very dependent on the KUKA’s current location above

the pallet. To overcome this, two fixed points were established for the camera

positioning (the camera was attached to the KUKA).

3.2.2 Camera Calibration

Camera calibration was done using Basler Pylon, which is used to capture live

feeds of the camera. The lens was adjusted using focus as well as light input. Auto

adjust was deactivated from the beginning to use manual calibration instead (light

was insufficient on both sides of the conveyor, so a constant source was used for

both sides). Manual exposure was set on the camera with auto exposure

deactivated because of both artificial light (such as ceiling lights) and natural light

entering the project area.

Fixed lighting conditions (from the LEDs attached to the system) and fixed

positioning of the camera at the system’s two image-capturing reference points

enabled manual exposure and focus setting. This process was done through the

Basler Pylon software while a component was placed on the pallet and optimal

exposure and focus was determined and set.

If the lighting environment changed, manual recalibration was required to avoid

under or over exposure on the capturing device resulting in extremely inaccurate

results when doing image processing on the pallets.

© Central University of Technology, Free State

45

3.2.3 Lighting Environment

A fixed lighting environment (using the LEDs attached to the system) was used due

to changing lighting conditions — natural lighting and artificial lighting such as the

50 Hz light flicker found in AC light sources (such as ceiling lights) — within the test

area.

A fixed DC-supplied lighting environment was implemented using standard DC

halogen lighting. These lights were controlled using the PLC which triggered the

lighting when a picture scan was conducted. Once the system successfully initiated

the lighting environment, it would proceed to acquire the image requested by the

system. On successful return of the image, the lighting was deactivated and system

operation would continue.

This fixed lighting environment allowed consistent picture results, removing the

need for constant manual camera adjustment in terms of exposure. Figure 3-5

below shows how the lights were attached to the KUKA end effector with the

camera situated between the two.

Figure 3-5 Example of the fixed lighting setup attached to the end effector

© Central University of Technology, Free State

46

3.3 Software System

A number of unique software packages and programming languages was used

throughout the system to complete the overall objective.

3.3.1 KUKA RSI

KUKA RSI better known as KUKA Robotic Sensor Interface is a real-time

communication platform used to communicate directly to the KUKA Robotic

System from a remote input through a specific communication channel. The data

read by the KUKA Robotic System from the remote data source allows real-time

adjustment of the KUKA Robotic Systems position, depending on the data received

from this remote module. This process allows a remote system full control of the

KUKA Robotic Systems position, which enables a whole new range of applications

when using the KUKA Robotic System.

Robot Sensor Interface is an add-on technology with the following functions:

 Data exchange between robot controller and sensor system.

 Data exchange via Ethernet or the I/O system of the robot controller.

 Cyclical signal processing and evaluation at the sensor cycle rate.

 Influence on the robot motion or program execution by processing sensor

signals.

 Configuration of the signal flow (RSI Context) with the graphical editor RSI

visual.

 Library with RSI objects for configuration of the signal flow (RSI context).

 Online visualization of the RSI signals (RSI monitor) [20].

Data exchange via Ethernet was the selected communication preference.

In Figure 3-6, the fundamental principles regarding Ethernet exchange are

depicted [20].

© Central University of Technology, Free State

47

Figure 3-6 Data Exchange via Ethernet

RSI allows for continual influence over the robot motion by means of sensor data.

An object relates to a certain property or variable that will be updated through the

RSI system. A certain object will be configured as either an inbound object or an

outbound object. This principle is clearly visible under section 3.4.1.3, which

illustrates the RSI setup utilizing a visual aid with its inbound and outbound objects.

Different modes of correction can be configured, namely:

1. Motion-suppressed sensor correction

a. Axis-angle correction, absolute or relative

b. Cartesian correction, absolute or relative

2. Sensor-guided motion

a. Axis-angle correction, absolute or relative

b. Cartesian correction, absolute or relative

© Central University of Technology, Free State

48

3.3.1.1 Sequence of events

The RSI system follows a strict sequence of events that must take place correctly

to establish and maintain a successful and consistent connection. This ensures the

system and end user’s safety during real-time control.

When the RSI system is activated within the KRL, a channel is prepared for sending

data to the sensor system via User Datagram Protocol/Internet Protocol (UDP/IP).

The robot controller initiates the data exchange with a data packet and transfers

data packets to the sensor system at the sensor cycle rate. The sensor system

should be constantly listening for a data connection from the robot controller to

avoid possible errors on the KRL program. When a packet is received at the sensor

system end, the system must respond to the robot controller with its own unique

packet. A general overview is seen below in Figure 3-7 [20].

Figure 3-7 Data Exchange via Ethernet (Sequence)

© Central University of Technology, Free State

49

A data packet received by the sensor system must be answered within the sensor

cycle rate of the robot controller, meaning a packet must be returned to the robot

controller within the same sensor cycle in which it was sent. If any data exchange

requirements are not met during the transfer period, the communication channel is

closed and will have to be reinitialized.

After the initialization, there is constant packet transfer between the robot controller

and the sensor system, even if there is no current correction. The channel remains

open until either an error occurs, or a closing packet is conveyed to terminate the

connection.

Every data packet transfer is encoded with information as set up in RSIVisualShell

interface. RSIVisualShell will be discussed in section 3.4.1.4 in detail regarding its

uses and requirements for RSI set up on the KUKA Robotic System.

3.3.1.2 Sensor Cycle Rate

The sensor cycle rate is the rate at which the signal processing is calculated, i.e.

the specified cycle time in which all work should be completed to and from the

sensor system. The RSI system supports two sensor processing rates, namely

Input Processing Output (IPO) mode which sets the processing rate to 12ms. A

faster processing rate is available using IPO_FAST mode which fixes the

processing rate to 4ms. All data must be processed within this cycle rate for it to

be a valid operation.

An IPOC cycle is the overall cycle keyword used within the RSI context to generate

a time stamp for both systems (robot controller and end sensor system) to know

which cycle is currently being processed. The IPOC time stamp value is checked

during every cycle. The data packet is only valid if the time stamp corresponds to

the time stamp previously sent. This ensures that the correct operation is carried

out by the RSI with regards to the packet received.

© Central University of Technology, Free State

50

3.3.1.3 RSIVisualShell

RSIVisualShell is the programming environment used to configure an RSI

connection to an external device such as a sensor or other external input.

Programming is done in an offline environment where I/O variables, correction

settings and feedback variables are defined. This setup creates various files which

must be transferred to the KUKA Robot via the WorkVisual environment as the files

are directly embedded into the KUKA file system.

The settings defined within these files must match the setup that will flow in and

out of the Ethernet connection to allow error-free operation. Manual manipulation

is also required for certain RSI files, which are not part of the automatic processing.

Within RSIVisualShell, different blocks are added from a toolbox. These blocks all

have different purposes and create different outcomes.

Firstly, an Ethernet connection must be set up using an Ethernet block. This will

enable the Ethernet channel while also allowing inputs to be set up. These inputs

will be fed into the system (from an external source) while the outputs will be fed

from the Ethernet out to separate blocks to make changes to the KUKA system.

POSCORR can be set up to allow correction on the system using the currently

selected coordinate system (BASE).

AXISCORR is more specific and is used to correct a specific axis on the robot such

as A6.

Limitations are also set up within this environment to only allow a certain amount

of movement at a given time. This is done for safety reasons and prevents over-

correction issues.

© Central University of Technology, Free State

51

Figure 3-8 below shows the section that returns data from the robot to C# as well

as the Ethernet block to set up Ethernet connectivity to and from the KUKA Robotic

System. Basically, it returns the status of internal variables as configured within the

KRL program such as current location, motor current, etc.

Figure 3-8 RSIVisualShell block diagram section A

As seen above, blocks are created and linked together using virtual wires which

mimics the flow of data within the system. Outputs can also be mapped to local

© Central University of Technology, Free State

52

variables on the KUKA Robot System in their respective format, enabling data

sharing as well as data correction across these devices.

Figure 3-9 shows the Ethernet connected directly to the POSCORR block which

allows for position correction of the KUKA Robotic System (real-time control). This

allows for correction on the XYZ coordinate systems.

Figure 3-9 RSIVisualShell block diagram section B

A stop block is required to break RSI operation within the KRL program. This is

important because if the connection from the server side is interrupted before this

block executes, the KRL program (running in the KUKA Robot) will return an error

and will have to be re-initialized. This can be seen in Figure 3-10.

As mentioned previously, the AXISCORR is for specific axis correction (which was

required within this study). Figure 3-10 depicts this within the RSIVisualShell setup.

© Central University of Technology, Free State

53

Figure 3-10 RSIVisualShell section C

Manual editing is required for embedded files on the KUKA Robotic system, such

as the RSI_EthernetConfig XML file which houses settings such as IP address and

PORT number. These settings must correspond to the host settings set up on the

PC for the connection to be established.

Figure 3-11 below displays the setup of the XML configuration done on the KUKA

Robotic System. This file setup corresponds to the setup within RSIVisualShell

which notifies the RSI system which data to expect when sending and receiving

data over Ethernet to the sensor system. These elements are basically how the

data is “split” and sorted when receiving or sending.

© Central University of Technology, Free State

54

Figure 3-11 XML file configuration for RSI communication

The above setup contains non-vital information passed between the RSI system

and the sensor system such as motor current, etc. which is only used for display

purposes, with the vital information being R.Korr {variable} which is used to

implement correction on the KUKA Robotic System [21].

© Central University of Technology, Free State

55

3.3.1.4 Virtual Addressing

Virtual Network Address can be defined as having more than one internet protocol

address assigned to the same physical adapter interface. The virtual internet

protocol does not actually correspond to a physical interface. This creates two

separate networks that can communicate independently from one another over the

same physical space.

Virtual Network Addressing is used to establish an RSI Ethernet Connection

between the KUKA and remote system. The KUKA Line Interface Port x66 on the

KUKA is used as the RSI Interface in addition to the WorkVisual Interface. For both

applications to function correctly, virtual addressing must be implemented on both

the KUKA and the remote sensor endpoint; in this case, the PC implementing the

vision processing techniques.

As seen in Figure 3-12 below, the physical adapter consists of multiple Internet

Protocol addresses, these being virtual addresses.

Figure 3-12 Virtual Addresses assigned to one physical adapter

© Central University of Technology, Free State

56

3.3.1.5 XML Packet Transfer

The Extensible Mark-up Language is a standard for creating machine and human

readable documents in the form of a specified structure tree. Packet transfer over

Ethernet is bi-directional, enabling a user to set up return parameters, such as robot

position coordinates or any other returnable parameter. This creates a closed

feedback loop where stability of the system is maintained in real-time due to the

feedback from the robot controller. These parameters are additionally used to

ensure the robot is on the desired path.

Figure 3-13 below shows how data is moved into an XML string, which is then

added to the overall XML string packet and sent to the RSI system on the KUKA

Robotic System.

Figure 3-13 XML String creation in C#

In the above snippet, we can see each axis being defined within the XML format

(X, Y, Z, A, B, C) while also linking them to a new object, which is their correction

amount per IPOC cycle. During every IPOC cycle, a string like the one depicted

above will be transferred to the robot controller. Depending on the correction

required, the objects referencing each axis will contain a float value, which is the

distance the KUKA is required to move that axis within that specific IPOC cycle.

The KUKA Robot can only move a certain distance within one IPOC cycle. These

values should be kept low to ensure smooth motion of the KUKA Robot when

correction is taking place. If the value is greater than a certain threshold, a jerking

motion could result.

© Central University of Technology, Free State

57

3.3.1.6 Integration with C#

Integration with the .NET framework environment was vital for establishing

successful communication. The created application would need to respond to the

KUKA within a given IPOC cycle while encoding the data for movement

requirements as well as decoding the feedback data.

The server was created over the UDP protocol which has no validation whether a

packet reaches its intended destination. This can be advantageous if speed is a

major factor in the project. In this case, speed is a major factor as the program

would need to reply within the IPOC cycle to maintain the connection. It can also

be disadvantageous, because if packets are lost en route, there is no way of

recovering them or even validating that they were ever received.

Due to the environment and the limited number of switches between the endpoint

and the KUKA Robotic System, this problem never occurred. In a more complex

network setup where network hardware is under constant strain, this could become

a problem. Migrating to the TCP protocol to ensure packet arrival and upgrading

network infrastructure would be a feasible solution.

A virtual addressing scheme was created to allow a clean channel for data transfer.

This channel is only used by the RSI transfer system while any other system data

goes through a different virtual addressing scheme.

On every string received by the KUKA Robot (in the XML scheme), the system first

decodes the string to generate an answer. The IPOC string information is first

extracted and saved for generating the answer required by the system. Next, the

system extracts the feedback data sent to the system regarding the status of each

axis (A1-A6). Each axis data is shown in terms of actual position, target position

and motor current. This is useful when ensuring that the KUKA Robot’s actual

position and target position corresponds.

Next, an answer is generated with an updated IPOC inserted into the XML packet

and the RSI movement values added if any movement is required during the cycle.

The RSI connection can be open, transferring packets with zero correction

adjustment, meaning the system will maintain its current position. Other data such

as variables can also be transferred with this scheme if it was set up within

© Central University of Technology, Free State

58

RSIVisualShell beforehand. The generated XML packet must match the

RSIVisualShell configuration exactly or communication will fail.

Figure 3-14 below shows the process of how the XML strings are handled and

generated. Once a newly generated packet is sent, the system then returns to a

“waiting” step where it waits to receive a packet from the KUKA Robotic System.

This process is then repeated until the real-time correction is completed.

Figure 3-14 XML packet handling

© Central University of Technology, Free State

59

3.3.2 PLC Programming

3.3.2.1 Overview

A PLC controller was integrated into the system to control the conveyors and

pallets, to relay sensor data and enable data sharing between the KUKA Robot

and the .NET environment. PLCs have multiple programming languages, such as:

 Ladder Diagram (LAD)

 Function Block Diagram (FBD)

 Structured Control Language (SCL)

Ladder Diagram (LAD) was selected as the suitable language to program the PLC

due to prior expertise in this language.

The programming was divided into six categories to maintain structure throughout

the main block function. These categories were:

 TCP Control Network

 Comparison Network

 Sensor and Air Feedback Network

 KUKA Position Control Network

 TCP Queue System Network

 RSI & Light Control Network

Raw byte data was passed between the two systems with lookup tables on either

side used to decode the function required by the main system. The system also

feeds data back to the main program to confirm command execution. This ensures

proper sync between the actual events and the events recorded on the system.

© Central University of Technology, Free State

60

3.3.2.2 TCP Control Network

A TCP/IP network was set up on the PLC to allow TCP/IP data to be transferred

between the PLC and any other TCP/IP capable device. This was cost and time

efficient as there was no need to implement a middle man such as an OLE for the

Process Control (OPC) server to connect the PLC to environments such as the

.NET framework. A simpler system was created instead to enable faster and more

reliable data exchange between the two devices.

The Ladder Diagram includes TCP\IP function blocks which can implement packet

transfer on the Ethernet connector. Figure 3-15 depicts the SEND and RECEIVE

blocks used for communication on the PLC.

Figure 3-15 Send and Receive Block within the PLC Network

As seen above, separate SEND and RECEIVE blocks are configured

independently. These blocks control all direct communication to the .NET platform,

which housed the main software for the system.

© Central University of Technology, Free State

61

3.3.2.3 Comparison Network

The comparison network would decode data received through a lookup table. This

comparison network acted as the controlling network for most of the devices within

the project such as the conveyors, stop gates, KUKA positioning, etc. Once a

command was decoded, it would activate the appropriate sub-network to carry out

the function required. The system would then provide feedback to the main server,

indicating that the process was completed successfully.

Figure 3-16 below is an example of how the data flow progressed. Once the data

received was compared to the fixed value, it would activate the subsequent process

while also activating the feedback command to confirm it was received and

processed.

Figure 3-16 Example of how data is decoded for correction function

© Central University of Technology, Free State

62

3.3.2.4 TCP Queue System Network

A TCP queue system was set up on the PLC to ensure no data loss due to

simultaneous feedback being relayed to the main program. This occurred when

two (or more) pallets arrived at a detection sensor on the conveyor within 50ms of

one another. The result was that the data being prepared to be relayed back was

overwritten and lost, leading to a discrepancy between actual events on the

conveyor system and the events recorded on the main program. This caused errors

during flow operations as the system was waiting for a pallet to arrive which had in

fact already arrived, although the data had been lost.

The solution to this problem was to set up a TCP queue system where data to be

relayed back to the main program would first be added to a queue stack. The

waiting data would be added to an array and triggered as soon as the channel

became available. If an operation is currently relaying data back, the system would

increase a tracking variable indicating that more data is to be relayed once the

current operation is complete. The tracking variable would be compared to the

current cycle number and if the two variables differed, the system would fetch the

new data and re-execute the relaying function. This process ensured all data would

successfully reach the main program, allowing identical events to be showcased

as they occurred on the conveyor system.

The steps taken to create this system are depicted below in Figure 3-17.

Figure 3-17 TCP queue network system in ladder logic

© Central University of Technology, Free State

63

The system may seem complicated as seen in Figure 3-17, but it is surprisingly

simple logic. When data must be sent, it increases the “AmountToSend” after

moving the data into the next available position on the data array. At this point, the

comparison between IX (the value that keeps track of the data in the array) and the

amount to send differ, meaning data has been moved into the array and is waiting

to be sent. This value (IX) keeps track of the send queue using a counter that

increases the value by one every time the system sends new data. The system will

then start the send process and wait 20ms, after which it will set subsequent

variables to enable a further delay of 50ms. After the initial 20ms delay, the IX

counter is increased and if the value equates to 99, it resets back to 0 and the data

[that has already been sent] is overwritten from position 0.

The array will store the previous 99 commands sent back to the main program to

streamline troubleshooting. AmountToSend is also increased as the program has

cycled the send function an additional time, meaning data was sent back to the

main program. The process then repeats itself with the initial IX value being

compared again to the AmountToSend variable.

© Central University of Technology, Free State

64

3.3.3 C# Programming

3.3.3.1 Object Orientated Programming

Object Orientated Programming (OOP) is a concept that organises data around

objects rather than “actions”. This concept was used programmatically to store all

data regarding each “product” and “design” and how they were inherited from one

another. The concept makes use of procedures (known as methods) that allows

data to be easily modified and linked based on the “product” or “design” at hand.

Once a product is identified, an object is created containing all the relevant data.

When a new design is studied, the specific product’s object data is collected, and

a new object is created based on the previously collected data.

In Figure 3-18, we can see how the Design Object hierarchy is linked to each other.

Figure 3-18 A Design Object Hierarchy

The figure above depicts the hierarchy structure of how the data is composed into

an object. This process is repeated for each subsequent design learnt and saved

for later use.

© Central University of Technology, Free State

65

3.3.3.2 Overall System Flow

3.3.3.2.1 Introduction

Overall System flow was vital for successful operation of the system. This section

covers how the system controls the flow of each sub-application to successfully

learn a design, followed by rebuilding it using available product components.

3.3.3.2.2 Methods Used

The system design was programmatically split up into five different sections:

 Communication Processing

 Image Processing

 RSI Processing

 Automation Processing

 Overall Processing

Each section contained all methods required to complete the functions specified in

the section heading. For example, communication processing would contain all

functions and methods required for successful communication to be established

with all devices within the project.

Each section directly communicated with each other through global variables within

the status section to ensure that no function was carried out without its prerequisite

functions being met. This ensured that, for example, the system would not attempt

to acquire an image before the KUKA Robotic System had physically moved to its

intended destination.

© Central University of Technology, Free State

66

In Figure 3-19, we can see how the communication flow was established while

updating status variables concurrently.

Figure 3-19 Communication Processing Flow Diagram

If at any point the communication between any devices fails, the system comes to

a complete emergency stop while the system attempts to re-establish

communication with the device.

© Central University of Technology, Free State

67

In Figure 3-20, the image-processing flow diagram is depicted, which returns a

processed image from the Basler Camera system on board the end effector.

Figure 3-20 Image processing Flow Diagram

© Central University of Technology, Free State

68

Figure 3-21 shows the process that the system follows when the server requests

to take over real-time control of the Robotic System.

Figure 3-21 RSI Processing Flow Diagram

If any of the systems do not reply within the sensor cycle rate, the connection is

automatically closed, and the Robotic System comes to a complete halt.

© Central University of Technology, Free State

69

Figure 3-22 shows the process followed when the system is required to automate

a build.

Figure 3-22 Automation Processing Flow Diagram

It should be noted that the above diagram only depicts major processes. Minor

processes do exist, such as pallet management using stop gates, sensors, etc.

© Central University of Technology, Free State

70

Figure 3-23 shows how the software is integrated and cooperates to achieve the

final project goal.

Overall Processing Control would submit requests to execute functions while the

Status Variables acted as the middle-man for sharing data between each section.

Figure 3-23 Overall Flow within Software

© Central University of Technology, Free State

71

3.3.4 Image Processing Techniques

Various image processing applications and techniques were used throughout the

project. This included various open source libraries available for free online as well

as software in high-end image processing cameras such as the Basler AG

Industrial Camera.

3.3.4.1 Basler Integration

The Basler AG camera is integrated into the C# environment using the Basler Pylon

plugin provided by Basler AG. This acquires pixel-based data which is stored in a

byte array. It must be manually generated into a static image using a pixel algorithm

loop. This is done by taking each pixel and setting the RGB value for each position

given by the inputted width and height of the image. Figure 3-24 and 3-25 below

shows how the image is stitched together.

Figure 3-24 Pixel Creation A

The pixel algorithm first places the byte data [RGB] in the specified horizontal

manner (as above) and then downwards, layer by layer. For every 1392

interactions of the horizontal placement, the process undergoes one vertical

downward shift. The process then repeats itself as seen below.

© Central University of Technology, Free State

72

Figure 3-25 Pixel Creation B

Vertical columns are filled until the entire loop has completed the image creation.

This process is only used to acquire the image correctly from the Basler camera

system, after which it undergoes multiple processes to ensure the picture is

processed correctly.

© Central University of Technology, Free State

73

3.3.4.2 Region of Interest

The Region of Interest (ROI) is a selected region within a dataset that is identified

for a particular purpose. This area is usually where processing is done, or a specific

item is identified. The entire region outside of this specified ROI is completely

ignored and unprocessed. Figure 3-26 below shows the ROI used on the image.

The red line indicates the ROI which fits directly around the pallet.

Figure 3-26 Example of the region of interest placed around the pallet within the
software.

3.3.4.3 Calibration

The ROI is calibrated carefully in conjunction with the KUKA Robot System

alignment above the pallet. Accurate measurements using the visual processing

requires a 1000x1000 pixel block that fits perfectly around the pallet. This perfect

fit requires the KUKA Robot’s end effector to be set at a specific height. Imperfect

fits would create errors in distance calculations.

Calibration was done for both the Product pallet and the Design pallet. The pallets

would stop at the same spot every time due to the stop gate placement, making

calibration a one-time process for a single pallet on each side. All future pallets

arriving at these points should maintain the calibration properties.

© Central University of Technology, Free State

74

3.3.4.4 Distance Measurement

Distance measurement techniques were applied on the acquired image to

determine placement of the components. All distances were measured to the

centre point of the pallet, which had a default coordinate of 0 and 0 on each axis

respectively. The pixel-based measurements enabled calculation of the distance

to each centre point of gravity using average pixel distance in an image. The region

of interest block was fixed at 1000x1000 pixels and a coordinate system was

created that could easily be related to real-world distances.

The acquired image was fixed at 1392 x 1040. The pallets measured 16 cmx16 cm

and a block sized 1000x1000 pixels could fit perfectly around the edge of the pallet,

meaning that each pixel equates to 0.16 mm. These data values and the number

of pixels between the centre point of the pallet and the components’ centre point of

gravity, enabled calculation of the exact distance of the component from the centre

of origin.

The height of the camera is crucial to ensure accurate results. The KUKA Robot’s

position above the pallet requires precise calibration. Figure 3-27 is a

representation of pixels correlating to distance when doing distance measurement

on an image.

Figure 3-27 Image Distance Measurement Example (Not to scale)

© Central University of Technology, Free State

75

Figure 3-28 Distance Measurement (Close up)

As seen in Figure 3-28 above, the red line depicts the path that the KUKA Robotic

System would move to align itself above the centre of gravity of the object. The

number of pixels would be counted between these points, which correlates to the

distance to be moved in the physical world.

The red line depicted above shows the required movement, purely to calculate the

number of pixels. In reality, the KUKA Robotic System would move in a more direct

path as seen in Figure 3-29 below. This is due to the X and Y movements

happening simultaneously.

Figure 3-29 Distance Measurement (Direct Path)

© Central University of Technology, Free State

76

3.3.4.5 Aforge.net

Aforge.net is a C# framework designed for developers and researchers in the fields

of Computer Vision and Artificial Intelligence. This includes sub-categories such as

image processing, neural networks, genetic algorithms, machine learning and

robotics. The platform comes with many features in each category to ease the task

of developing new innovative systems.

The system was implemented within this project taking up the role of image

processing on all the acquired images. Using this diverse tool, many features could

be extracted and processed from a single 2D-image. Features in the system

included (but were not limited to) centre of gravity calculations, edge detection,

template matching, blob detection, erosion filling and subtraction and addition

algorithms. General image processing functions are also available in the platform

such as invert functions, greyscale functions and thresholding.

The system used blob detection to isolate different items on the pallet that were

within the defined threshold, such as size and region of interest.

Aforge.net is free to use and available online, making it a convenient tool for image

processing in a budget-critical application.

© Central University of Technology, Free State

77

3.3.4.5.1 Centre of Gravity

Centre of gravity was a key factor when picking up objects. The centre of gravity

can be defined as “a point from which the weight of a body or system may be

considered to act.” This valuable data was used as the best possible pick-up

location on each object, enabling the KUKA Robotic System to maintain stability

when moving components.

The vacuum system for acquiring components required even weight distribution of

the components to avoid detachment mid-transit. The centre of gravity was

acquired using the method seen within section 2.2.5.8.

Distance measurement was calculated to determine the best possible path to this

point from the centre point of the pallet (one of the default reference points of the

KUKA). Figure 3-30 shows this process taking place.

Figure 3-30 Example of the system applying multiple processes to an acquired image

The green line layered over the image indicates the path that the KUKA Robotic

System would need to follow to manoeuvre itself above the object to be picked up

(or placed). In reality, the X and Y movements are carried out simultaneously,

therefore a more direct path the centre of gravity is followed.

© Central University of Technology, Free State

78

The circle representation as seen in Figure 3-31 below was a replica of the sucker

size and positioning over the component when collecting the object.

Figure 3-31 Centre of Pallet to Centre of Gravity preview

As seen in Figure 3-32 below, the system returns the measurements from the

centre of the pallet to the pickup location on the object which was the centre of

gravity of the component. As the starting point for real-time control was the centre

of the pallet, the exact distance to be fed into the real-time controller was

established using the component’s centre of gravity.

Figure 3-32 Raw data output of object location

3.3.4.5.2 Raw and Central Moments

Moments were used to return vital information about the object(s) in question

during image processing on the pallet. This information included the centre point

of the object as well as the orientation data.

3.3.4.5.3 Edge Point

Edge point detection was used to outline the perimeter of the component and

clearly visualize the component detected. It also clearly distinguished the

component from other unique components within the processed image. As the

component pallets were using a white base, while the components were black, their

edge point perimeter was easily detected by the camera system, assuming the

system was adequately lit and correctly calibrated.

© Central University of Technology, Free State

79

3.3.4.5.4 Erosion

Erosion filling techniques were implemented on all image processing to eliminate

noise on the acquired image. Several factors caused erosion, such as external

light, reflections and calibration issues. These issues appeared as white static on

an image as seen in Figure 3-33 below.

Figure 3-33 Raw Image with noise present

As seen above, the screws are visibly affecting the output of the image due to the

reflection of the metallic tip. Multiple erosion filter iterations patched the holes

successfully as seen in Figure 3-34. Multiple solutions are available to contain this

problem within image processing, but erosion was sufficient in this case.

© Central University of Technology, Free State

80

Figure 3-34 Resultant Image after Erosion processing

Almost 99% of the noise was eroded and only the object in question is detected.

All subsequent noise was patched, improving the accuracy of the detection system.

This ensured no false positives were detected within the image. To ensure the

component itself was not eroded, a minimum threshold was set up in terms of

component size. In this case, the metallic tips were much smaller than the

components used on the system.

© Central University of Technology, Free State

81

3.3.4.5.5 Template Matching

Template matching was required to compare orientation angles from blobs

captured on the design pallet. For the correct template to be matched to the blob,

the design blob is first compared to the values within the database such as area,

corner features, etc. and when these values correspond to the current blob at hand,

the correct template is referenced for calculating the orientation data. This ensured

the component could be rotated correctly, as all the components on the component

conveyor were placed at a default orientation of 90 degrees.

On the design pallet end, the components were randomly placed, requiring

orientation data calculation. The rotation of the actual KUKA Robotic from one

conveyor to the next also had to be considered. The two conveyors were parallel

to one another so work done on one end would be 180 degrees out of phase

compared to work done on the opposite end. When the camera was also attached

to the rotating KUKA Robot, this kept the components “in-sync” with the current

job. Figure 3-35 shows two template examples created by the system.

Figure 3-35 Example of two templates created by the system that is compared during
operation

© Central University of Technology, Free State

82

3.3.4.6 Accord.net

Accord.net is an open source .NET library written in C# with audio and image

processing capabilities. The complete framework contains tools for building

production-grade computer vision, computer audition, signal processing and

statistics applications including commercial application uses. Accord.net contained

vital libraries for orientation calculations needed within the program that did not

feature within the Aforge.net library, hence the use of this additional framework.

The framework contains imaging functions such as raw and central moments

required to impose an orientation on an image (or blob in this case).

3.3.4.6.1 Orientation

Calculating the orientation of a blob was vital for correct placement of the object.

Once a blob was extracted from an image, it would need orientation data to

accompany it for the component to be rotated correctly at the design pallet section.

Orientation calculations were performed on an extracted blob from the design pallet

section during the first learning cycle of a new build. This new orientation value

joined the data regarding the blob. Note that a blob’s orientation is defined within

180-degree cycles. This means that theoretically, if a component was rotated 180

degrees, it would have the same orientation as previously seen.

The solution to this problem was to create an image subtraction function that would

take the default template (which is at 0 degrees), offset it by the difference between

the blob extracted and the template in question and then perform a subtraction of

the two images. If the result of the subtraction was not 0 or the image was not 99%

similar (due to noise present at the time of image capturing), it would be obvious

that the two objects were 180 degrees out of phase. The simple solution was to

either add or subtract an additional 180 degrees dependant on the original angle.

This would then allow the component to be rotated correctly as seen in the initial

design.

© Central University of Technology, Free State

83

3.3.5 Network System

3.3.5.1 Overall Network

The network system played an important communication role within the project. All

systems were connected via Ethernet standard, while implementing the TCP/IP

protocol. An industrial Siemens Ethernet switch was used for data switching with

all sub-components connecting to this connectivity device.

A general network overview can be seen in Figure 3-36 below, which depicts the

network connectivity between all the devices used.

Figure 3-36 Network Overview

© Central University of Technology, Free State

84

3.3.5.2 PROFINET Connection

A PROFINET connection is an industrial Ethernet connection protocol established

between two industrial devices. Many services are distributed over a single

Ethernet connection including:

 Real-time communication

 Distributed Field Devices

 Drivers & Motion Control

 Distributed Intelligence

 Network Installation

 IT Standards and Security

 Safety

 Automation Processing

PROFINET allows for seamless integration of industrial devices to establish

successful communication and setup. PROFINET was set up between the KUKA

Robotic and the PLC for the two devices to share processing data with each other.

Shared variables were set up across the two devices, each with its own read/write

properties to pass on feedback data and control flow of the system.

© Central University of Technology, Free State

85

3.3.5.3 TCP/IP

A static TCP/IP system was implemented to bypass the need for a DHCP server.

This allows consistent access to the same equipment via the same unique IP

address, eliminating the problem of changing IP addresses due to DHCP leasing.

Table 1 - Internet Protocol Device List

Device IP Address

Basler AG Camera 192.168.4.7

Siemens S7-1200 PLC 192.168.4.8

KUKA X66 Ethernet Port 192.168.4.10

KUKA X66 Ethernet Port (Virtual) 192.168.2.10

PC Adapter 192.168.4.11

PC Adapter (Virtual) 192.168.2.11

An IP address has two components, the network address and the host address. A

subnet mask separates the IP address into the network and host address.

Subnet masks were all set at 255.255.255.0 to ensure the last segment in the IP

address was addressed as a host while the first three segments were addressed

as the network. This is vital to ensure no cross-communication occurs between the

virtual networks.

Firewalls on all the systems were turned off to ensure no port blocking was present

during communication. As this was a private network separate from the internet,

no repercussions could be suffered from doing so.

3.4 Conclusion

This chapter contained a detailed overview of the techniques and design strategies

implemented within the formation of this system. The various subsystems that were

deployed to complete the overall objective was also covered, showing each

process individually in detail.

© Central University of Technology, Free State

86

4 Chapter 4: Results

This chapter discusses a series of tests that were undertaken on the system to test

its capabilities. The system was challenged through various experiments that

would require it to build a “Design” in the quickest, most efficient manner possible.

The speed and accuracy were recorded under different circumstances such as

unique designs, similar components within the designs, etc.

Comparisons were conducted between the manual procedure of configuring the

KUKA Robotic System and the Automated Process that this study presents when

introducing a new design on an existing assembly system. Factors such as ease

of setup, time consumption and reliability were all considered while allowing leeway

for the introduced system to thrive.

Although the speed of picking and placing components is greatly reduced due to

the real-time control of the KUKA Robotic System, movements between fixed

points are still capable of running at 100% speed as these are fixed points within

the KRL program on the KUKA Robotic System.

All results are tabulated within this section in terms of speed (time) and accuracy

with a discussion following these results.

© Central University of Technology, Free State

87

4.1 Open Pallet Design

Contrary to conventional methods, an open pallet design was used to

accommodate any style or “object” on the system. This created a versatile system

that could work with any object of any size (within the dimensions of the pallet)

placed on the pallet. A fixed (moulded) designed pallet that can fit specific objects

is beneficial in many scenarios, but this setup limits the flexibility of the system and

therefore an open pallet design was best.

A rubber mask was applied to the top of the pallet to ensure no movement of

components during normal conveyor transit (general movement, sliding at stop

motion on stop gates). Initially, components would slightly rotate (as all

components are defaulted to 90 degrees on the component conveyor) which

resulted in a slight offset when components were placed on the design pallet. The

rubber mask layer corrected this issue, creating resistance to movement of the

components.

Figure 4-1 below shows an example of the open pallet design with a rubber mask

layer applied to the surface.

Figure 4-1 Open Pallet Design with Rubber Mask

© Central University of Technology, Free State

88

4.1.1 Components Used

For simplicity and proof-of-concept purposes, the designed components resembled

random shapes distinguishable from one another using different surface areas and

corner properties. These shapes, designed in CORELDrawX7, were laser cut out

of 3 mm wood and referred to as components for the purpose of this study. The

component pallets held multiple similar components, while the design pallet

contained multiple uniquely designed components.

The components were spray painted with a matt black finish to ensure easy

detection on the pallet when the camera captures an image.

Note that the components used were not of fundamental importance within this

study. They were merely used as a gateway to prove the real-time concept using

KUKA RSI and Image Processing. Figure 4-2 depicts the components used.

Figure 4-2 Different style components used for testing purposes

4.1.2 Configurations Used

Similar component types were grouped together as a unit on the component pallet

conveyor. This ensured that the system learned all the components available to

the system in the most efficient manner possible. All components were initially

placed at the same angle on the component pallet, from which a template would

also be generated by the system and used later when detecting offset of

components on the design pallet conveyor. Figure 4-3 depicts how the components

were configured on the component pallets. This example only shows one of the

© Central University of Technology, Free State

89

five components’ pallets. The remaining components are configured in a similar

fashion.

Figure 4-3 Example of component pallet configuration

As seen in Figure 4-3 above, the components are all rotated to the same angle.

This is required as the template is created from a single component within the

overall image. If certain components were offset by a different angle, the resulting

angle on the design pallet when placing the component would be incorrect.

Various configurations of different components were used on the design pallets,

ensuring complete randomness was maintained throughout for the system to

determine new paths on every iteration of a build required. This allowed speed

measurement recording and analysis of system accuracy in different build

environments. Figure 4-4 depicts the different configurations used during testing

on the design pallet.

© Central University of Technology, Free State

90

Figure 4-4 Various configurations used one through six

As seen in the figure above, these configurations had no fixed pattern and were

set in random configurations for testing purposes. The system had no pre-

programmed positions regarding collection or placement of these randomly placed

components, therefore requiring the real-time image processing and movement to

access these components on the pallets.

4.2 System Learning

4.2.1 Introduction

The system has no knowledge of any components or designs within its repository,

therefore some sort of learning is initially required. The system is required to learn

all the available components that can be used to build a new design on the

component conveyor before starting to build.

The system analyses each component pallet individually and proceeds to save all

data regarding the design within the system database. Once a pallet has been

scanned and saved, the stop gates trigger sending the pallet forward, allowing the

next pallet to enter the scanning area. This process continues until the first

component pallet returns to its initial position. This is confirmed by re-scanning the

first pallet to confirm that the component type exists within the database.

© Central University of Technology, Free State

91

Figure 4-5 shows an example of where the pallet scan takes place and the

movement of the pallets along the component catalogue conveyor.

Figure 4-5 Component Catalogue Conveyor

Once all components are mastered on the catalogue conveyor, the system is fully

prepared to redesign any design observed on the design conveyor, as long as the

design pallet only contains components available within the component catalogue

area.

4.2.2 Processing

Once a picture is acquired by the system, the picture is analysed and the resulting

data stored within a database object. Only data within the region of interest is

analysed and saved. Calculated data includes centre of gravity, number of corners,

position relative to the centre of the pallet and area of the object. Each seen

component is saved individually, from which an overall component pallet object is

then created and identified. Due to lighting, results may differ in terms of area of

the objects. When a component pallet is scanned, an average area of all the

components is calculated as all component types are the same. This allows more

© Central University of Technology, Free State

92

accurate detection of similar components on the design pallet end when rebuilding

a design. The process is repeated for each new component pallet seen. Before

adding any pallet to the database object, the system will first compare the incoming

data with current data in the database, ensuring no data is duplicated.

The area of the object and corner objects detected are used at certain thresholding

levels to detect similar components. This implementation method was used for

simplicity purposes and relates to the underlying study as any implementation

option could be utilized.

Figure 4-6 and Figure 4-7 depict the results received visually and the raw data

when a picture is acquired.

Figure 4-6 Image Processing complete on component pallet with centre points shown

Figure 4-7 Raw data results from the image processing

© Central University of Technology, Free State

93

As seen in Figure 4-7, the overall average area and corners are returned and

saved. Each component’s individual distance from the centre point is also returned

and used to manoeuvre the KUKA Robotic System in real-time. The KUKA Robotic

System then carefully moves to pick up a specified component when required

within the design. This process outlined above concludes the processes for

creating a component pallet in the system.

A similar process is carried out when learning a new design pallet. Instead of the

system learning a unique component individually, a design pallet contains multiple

unique components on one pallet that must be compared to the available learnt

components outlined in the previous section. For the system to be able to rebuild

the seen design, all components on the design pallet must be learnt beforehand

on the component conveyor and be available for use.

Once these pre-requisites are met, the system will process the design pallet,

creating a data object revolving around this newly learnt design pallet. Each

component is compared using area, corners and template matching to the

component pallets and when matched, are added to the new design pallet object.

If a match is not found for a component within the design, an error is returned, and

the process is terminated.

Figures 4-8 and 4-9 show the results after image processing takes place at the

design pallet conveyor. Figure 4-8 shows the first configuration for demonstration

purposes.

Figure 4-8 Image Processing complete on design pallet with centre points shown

© Central University of Technology, Free State

94

Figure 4-9 Results feedback with angle difference shown and component ID

As seen above in Figure 4-9, the system outputs the angle difference compared to

the template, which is captured when processing the component conveyor

components. A template match error occurs and the system compensates by

adding -180 degrees to ensure correct placement on the design conveyor. This is

found by rotating the component to the nominal 90-degree template image format

and subtracting it from the template. If the result is not a 99% match, a template

match error occurs, and 180 or -180 degrees is added to the current angle, as the

component is out of phase by 180 degrees. Whether the angle added is positive or

negative is based on the initial angle result calculated by the system (offset from

90 degrees).

Once the process is complete, the system saves the data within an overall object

and a design ID is assigned. The system now has all the data required to rebuild

the seen design.

The data required to build a seen design includes (for each component on the

design pallet):

 Component ID (matching component seen on component conveyor)

 Centre of gravity

 Number of corners

 Distance on X and Y axes to centre point of pallet.

This data is captured within an overall design object, referencing the seen object’s

ID generated by the system when learning the components for the first time.

© Central University of Technology, Free State

95

4.3 System Building

The system is ready to rebuild a seen design once:

 All components have been learnt on the component conveyor.

 The required build has been seen (and learnt) on the design conveyor and

the data has been saved on the system.

 An empty pallet is presented to the system on the design conveyor.

The system has the option to either rebuild the previous seen design or build a

specific design decided by the end operator (providing that there is more than one

seen design).

This process involves searching for the required component on the component

conveyor. Once found, the system moves the KUKA Robot to the pickup location

where real-time control is activated and the system takes full control of the KUKA

Robot’s movement. The system manoeuvres the end effector to the component’s

centre of gravity to safely pick it up. Once above the component (motion complete

on the X and Y axes), the system will then move on the Z-axis, 63mm in a

downwards motion until the end effector is flush with the required component. The

sucker system then activates, picking up the component and attaching it to the

KUKA end effector.

Real-time control deactivates at this point and pre-programmed settings move the

KUKA Robot over the empty pallet on the design conveyor. Once the KUKA Robot

is confirmed in position above the empty pallet, real-time control is reactivated. The

system uses data captured during the design pallet learning phase to place the

component in the same manner as it was learnt. This involves navigating the KUKA

Robot to the centre point of the previously seen component and then rotating it to

match the component design offset.

4.3.1 Step-by-step procedure

In the example to follow, the system has no knowledge of any component of design.

The following step-by-step procedure will be demonstrated using the first test

configuration.

© Central University of Technology, Free State

96

The system will start by learning all the components available on the component

conveyor individually, while saving all associated data within the pallet’s object.

The system moves each conveyor after each pallet completes the learning

process.

Figure 4-10 depicts the KUKA Robotic System learning a component pallet. The

pallet is bright due to the active lighting system.

Figure 4-10 Component Conveyor - KUKA Robotic scans pallet to learn items

Figure 4-11 shows the data returned via console for every component pallet learnt.

All data regarding the components learnt can be seen here.

© Central University of Technology, Free State

97

Figure 4-11 Data returned after learning the first component pallet.

As seen in Figure 4-11, each component pallet is learned individually, and all the

respective data is presented through the console. The total area of the object, the

corners (using Graham Scan, contour calculation) and the total number of objects

on the pallet with their respective positions and the distance from the centre of the

pallet can be seen. A template is then saved of this component and an ID is

assigned. This process continues until all pallets on the conveyor have been

scanned.

© Central University of Technology, Free State

98

Figure 4-12 shows the initial component learning process being completed.

Figure 4-12 First component pallet arrives back at the scanning point

The system shows that the initial pallet that was scanned has returned, therefore

all the pallets have been scanned.

Now that all the components have been learnt, the system is ready to learn its first

design. As stated previously, the brightness is due to the active lighting system

during image capturing.

Figure 4-13 System learning a new design to rebuild

© Central University of Technology, Free State

99

Figure 4-14 Data returned from learning the design pallet with matches found

Each component match can be seen within the console feedback, with the

respective ID match including the angle difference to the template.

© Central University of Technology, Free State

100

Figure 4-15 First design learnt by the system

Now that the presented design has been learnt successfully, the system is

presented with an empty pallet and begins to build the previously seen design. The

KUKA Robot will return to the component conveyor to search for the component(s)

required to build the design (as the system has confirmed that they exist on the

component conveyor).

Figure 4-16 below shows a component compared to the template within the

system. As seen in the subtraction, the match is nearly 99% when the subtraction

takes place. In the design block, the top component on the design pallet is being

compared.

Figure 4-16 Visual Comparison of a design component to the learnt components

© Central University of Technology, Free State

101

Figure 4-17 depicts the system finding the component on the component conveyor

and activating real-time control to pick up the specified component.

Figure 4-17 Example of the system finding a component and preparing for collection

Now that KUKA RSI is activated, the system has full real-time control over the

KUKA Robotic System. The KUKA Status section, as seen in Figure 4-18 below,

shows the actual position of the KUKA Robotic System as well as the target

location. This is in reference to the Base Coordinate system.

© Central University of Technology, Free State

102

Figure 4-18 KUKA Status, returned by the KUKA RSI System

Figure 4-19 shows the component collected in real-time from the component

conveyor (left) and placed on the empty design pallet (right). The component is

placed with reference to the design that is seen in Figure 4-15.

Figure 4-19 Example of the first component being picked up and placed on the design
conveyor

Figure 4-20 below shows the feedback from console that the component has been

successfully placed, along with all the references to the component in the system.

Figure 4-20 Console feedback of the process completing successfully

© Central University of Technology, Free State

103

The same process repeats for each design component. The design pallet is

populated with each pick and place iteration. Figures 4-21 and 4-22 show this

process step-by-step.

Figure 4-21 Pick and Place of first configuration A

© Central University of Technology, Free State

104

Figure 4-22 Pick and Place of first configuration B

The accuracy and speed of the system is determined by how well the system is

calibrated. This is due to initial offsets from where the KUKA Robotic systems pre-

programmed locations are and the camera’s ability to accurately detect the

distances from the centre point of the pallet to the objects placed on the pallet. The

KUKA Robot’s speed was limited to 50% because of its unstable supporting

structure by not being bolted to the floor (limited support was available in test

environment). As speed increases, vibrations around the system also increases,

which would affect the stability of the system. If the system was bolted to the floor,

the speed could be significantly increased.

© Central University of Technology, Free State

105

4.4 Speed and Accuracy

4.4.1 Introduction

This section covers the speed and accuracy of the system with all results tabulated.

All results were recorded completely automatically. The system’s feedback

regarding positions and time were used. Initially, the system returns all the

components on the design pallet with their relative positions. Once the system

rebuilt the required design, an additional scan was done, with the system returning

the new positions (after build) of the newly placed components. These results help

determine the difference between before and after and overall accuracy as shown

below.

Time was also recorded using the internal timing of the system for accurate results.

All components have a “number” and an “ID”. The number represents the physical

component number (irrespective of design) that the system is working on, while the

ID refers to the internal design ID allocated to the design by the system.

In all cases, there would be at least two of the same component design, therefore

the same ID number might appear twice. The system assigns IDs as they are

learnt, meaning no ID equates to a certain “design of component”. It solely depends

on the order in which they were learnt. Components that have angles of 0° present

in the tables below means the component was a circle, therefore no angle is

considered. Placing this component in any direction does not affect the outcome.

© Central University of Technology, Free State

© Central University of Technology, Free State

© Central University of Technology, Free State

© Central University of Technology, Free State

© Central University of Technology, Free State

110

4.4.6 Results from the fifth pallet configuration
Table 10 - Raw Results for the fifth configuration

Fifth Pallet Configuration

Component Before After Difference

Number ID X(mm) Y(mm) Angle(◦) X(mm) Y(mm) Angle(◦) X(mm) Y(mm) Angle(◦)

1 0 -35.9079101 -14.0068994 72.24586 -32.965415 -16.22049 72.5592 2.9424951 2.213591 0.31334

2 0 -26.17765625 24.05897461 -62.10514 -25.078926 22.488701 -60.9802 1.0987303 1.570274 1.12494

3 1 29.11233398 -30.8868212 57.67874 29.564746 -32.49792 56.70877 0.452412 1.611099 0.96997

4 2 11.09193359 48.52538086 -81.56414 12.756025 51.216806 -81.4995 1.6640914 2.691425 0.06464

5 3 26.89583984 7.157392578 41.44555 26.558798 8.5044531 40.07979 0.3370418 1.347061 1.36576

6 4 -22.5604785 -55.539396 0 -18.33593 -56.89244 0 4.2245485 1.353044 0

Overall Average 1.7865532 1.797749 0.639775

Time is calculated for Pick & Place from the moment the KUKA Robotic System re-scans the component conveyor pallet (with a

positive match) to the point where RSI is deactivated after placing the component (the point where the real-time control ends).

Table 11 - Timing results for configuration five

Number ID Objective Time

 Learn Design 2.75s

1 0 *Pick and Place 1 57.23s

2 0 *Pick and Place 2 56.63s

3 1 *Pick and Place 3 56.17s

4 2 *Pick and Place 4 59.54s

5 3 *Pick and Place 5 54.53s

6 4 *Pick and Place 6 55.66s

*Recalculation of the component pallet is done before pickup for safety in case objects shift (time includes this).

© Central University of Technology, Free State

© Central University of Technology, Free State

112

4.5 Results Discussion

The tables seen above give a clear representation of the system’s capability in

terms of accuracy and speed. Table 14 and 15 below are a summary of the results

above to indicate overall accuracy and time.

Table 14 - Overall average accuracy results based on all builds

Build X (mm) Y(mm) Angle(°)

1 1.7810555 1.391437 0.36042

2 2.6764228 1.134341 1.159303

3 1.3676975 1.421224 0.799562

4 1.5639524 1.54429 0.774123

5 1.7865532 1.797749 0.639775

6 1.289422 0.904378 0.965501

Overall Average 1.7441839 1.365569 0.783114

Table 15 - Overall average time results based on all builds

Build Time Taken(s)

1 342.54

2 340.94

3 342

4 334.6

5 342.51

6 341.01

Overall Average 340.6

The system achieved an average of within 1.74mm of the X-axis and within

1.37mm on the Y-axis. The angle of placement of the components achieved a more

desirable average of within 0.78°. The system was calibrated to the best possible

level, but theoretically, if an even more accurate calibration is achieved, the system

could certainly improve on these averages. Many factors could affect calibration,

such as movement of the system, camera accuracy (focus, lens), etc.

The system’s speed was also excellent, taking an average of 5.67 minutes to learn

a design and rebuild it into the correct configuration. This is beneficial in

environments where constant unique pick and placing tasks are required, saving

reprogramming time. The system can immediately rebuild the seen design quickly,

without needing any changes to the software. This time included the learning of the

new design as well as picking and placing six components from the component

conveyor over to the design conveyor based on the required configuration.

© Central University of Technology, Free State

113

The KUKA Robotic system was limited to 50% of its maximum capable speed to

maintain stability. At speeds greater than 50% in the project environment,

vibrations from the quick movement of the KUKA Robotic System would influence

calibration settings as the system was not fixed/bolted into the ground (not possible

in test environment). Theoretically, the average build time achieved could be

reduced if the system is implemented in a more stable environment. This would

only increase the speed of movements between the component and design

conveyor and not the speed of the real-time control (picking and placing

components) as this was already set at the maximum stable speed.

As discussed in Chapter 3, RSI can only move the KUKA Robot a maximum

distance within one IPOC cycle, otherwise the KUKA Robot responds with a jerking

motion trying to move over a greater distance within a smaller time frame. The most

optimal distance was determined using trial and error (to maintain stability at the

highest possible moving distance). The optimal distance per IPOC-cycle was

0.05mm within every 4ms. This resulted in smooth movement when using real-

time control on the system.

Overall, the system performed optimally and completed all given tasks without any

issues. The system’s accuracy and speed were impressive with “everyday”

calibration in a changing environment. If the system could be calibrated to

perfection, the results could be even more impressive.

4.6 Conclusion

This chapter discussed a series of tests that were undertaken on the system to test

its capabilities. The system was challenged through various experiments that

would require it to build a “Design” in the quickest, most efficient manner possible.

The speed and accuracy were recorded under different circumstances with all

these results being tabulated for an easier overview of the results obtained.

© Central University of Technology, Free State

114

5 Chapter 5: Conclusion

This chapter summarizes the project and revisits the research goals and objectives

of the study. This chapter also covers contributions made and implementation

options using this system. Future work will also be discussed.

5.1 Summary

Chapter 1 introduced the project and gave background to the study’s intentions,

including the problem statement, the hypothesis and the specific objectives of the

project. The proposed layout and system overview was also covered in this

chapter.

Chapter 2 presented a literature study conducted to gain knowledge on flexible

manufacturing systems while also reviewing concepts required to carry out the

study, including required image processing techniques and hardware.

Chapter 3 covered methods and implementation options available and used within

the study to achieve the goal. It covered more detail regarding concepts used and

their implementation to create the proposed system.

Chapter 4 shows how the system was tested and how the objectives laid out in the

beginning were achieved. Results presented in this chapter indicated how the

system performed and the system’s accuracy and speed were captured and

analysed.

5.2 Research Goals and Objectives

The main aim and goal of the study was to use a visually aided system that can

learn new product designs in real-time, allowing the KUKA Robotic System to

adjust accordingly without needing manual reconfiguration. Real-time control of the

KUKA with the RSI subsystem using data from the visually aided system can

increase production output of newly introduced products, while also having

alternative implementation options.

© Central University of Technology, Free State

115

5.3 Contributions

The project delivered the following contributions:

5.3.1 Solution to new product introduction

As previously discussed, when new products are introduced on existing assembly

lines, a reconfiguration is sometimes necessary to handle the new product’s needs.

The proposed system could adapt in real-time with image processing and real-time

control of the KUKA Robotic System without requiring any manual reconfiguration

via human intervention.

5.3.2 Smart Pick and Placer

A smart pick and placer could be implemented on a factory floor where changing

items on an existing assembly system need to be relocated from one pallet to

another (or to a different assembly line), i.e. there are no “fixed” locations of the

incoming product. This could save costs when changing the uses of an existing

line as no reconfiguration would be necessary in terms of pallet design or

programming. (An open pallet design is used within this study, no fixed positions).

5.3.3 Implementation option for KUKA RSI

KUKA RSI is an extremely useful package as an extra option within a KUKA

Robotic System, but unfortunately has had limited amount of studies involving it.

This study presents a documented application for usage with this system, allowing

future work within this line to be referenced to this study.

5.3.4 Engine for C# - RSI Integration with visual capabilities

During this study, custom software was developed by integrating C# with KUKA

RSI as well as C# directly to Siemens S7-1200 PLC. This software also includes

Open Source image processing applications such as Aforge.net and Accord.net.

This software contains an all-in-one system that can be used for many different

applications in the future.

© Central University of Technology, Free State

116

5.4 Future Work

5.4.1 RGB-D Camera

The system currently cannot detect depth data so the Z-axis was fixed a certain

distance from the pallet. This limited the system to picking up items of the same

height. However, if an RGB-D camera was added for depth detection,, the system

would be able to pick up any component of any height, as the system would know

exactly how low to manoeuvre the KUKA Robotic System.

5.4.2 Improvement on Accuracy and Speed

As stated before, more accurate calibration would improve accuracy when picking

and placing components. Another factor that could’ve lead to small inaccuracies

was the height from which the component was released by the suction gripper.

This was due to the entire system not being completely square as the surface of

the floor was slightly skew. This resulted in having the component being released

flush on one end of the pallet and slightly higher on the other end. Accurate

calibration was not always possible (due to environmental conditions) but complete

isolation of the project and more controlled factors (such as lighting, fixing the

system to a solid surface) could be introduced to improve accuracy and speed and

eliminate any differences entirely.

5.5 Conclusion

The aim of the study was to develop a self-learning product assembly system using

a visually aided system. The system was required to learn a design on the design

conveyor and then rebuild this “seen” design from a component conveyor

catalogue. This required a real-time system implementation on the KUKA Robotic

System, namely RSI. Digital Image processing was used to detect the design and

process all calculations required for movement of the system to rebuild it.

Image processing was first done detecting various objects and calculating all

relevant data for collecting and placing objects, such as centres of gravity, erosion

techniques and angle of components. Positions were also calculated relative to the

centre of the pallets (starting point for real-time control).

© Central University of Technology, Free State

117

Real-time control directly into the KUKA Robotic System from C# was then set up

for the system to move independently from the KRL Programming on the KUKA

Robotic System.

C#, PLC and KUKA Robotic System communication was then established to

enable accurate system flow such as movement of the components around the

component conveyor system.

The system was then thoroughly tested for accuracy and speed. Six different pallet

configurations were created (at random) for the system to rebuild using the

components on the component conveyor. The main prerequisite for the design

configurations was that the build design had to be constructed from components

available to the system on the component conveyor. These results helped

determine the accuracy and speed of the system and in turn, the success of the

project.

There is limited to no other previous studies to draw upon with regards to this

research project thus comparisons and benchmarks to similar systems could not

be carried out.

© Central University of Technology, Free State

118

References

[1] T. Raj, R. Shankar, and M. Suhaib, “A review of some issues and

identification of some barriers in the implementation of FMS,” Int. J. Flex.

Manuf. Syst., vol. 19, no. 1, pp. 1–40, 2007.

[2] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren, “Reconfigurable manufacturing

systems: key to future manufacturing,” J. Intell. Manuf., vol. 11, no. 4, pp.

403–419, 2000.

[3] Y. Koren and M. Shpitalni, “Design of reconfigurable manufacturing

systems,” J. Manuf. Syst., vol. 29, no. 4, pp. 130–141, Oct. 2010.

[4] M. Kaighobadi and K. Venkatesh, “Flexible Manufacturing Systems: An

Overview,” Int. J. Oper. Prod. Manag., vol. 14, no. 4, pp. 26–49, Apr. 1994.

[5] G. Chryssolouris, K. Efthymiou, N. Papakostas, D. Mourtzis, and A.

Pagoropoulos, “Flexibility and complexity: is it a trade-off?,” Int. J. Prod. Res.,

vol. 51, no. 23–24, pp. 6788–6802, Nov. 2013.

[6] R. J. Suey, “The Design and Operation of FMS; Flexible Manufacturing

Systems,” Int. J. Prod. Res., vol. 22, no. 4, pp. 725–726, Jul. 1984.

[7] Y. Koren et al., “Reconfigurable Manufacturing Systems,” CIRP Ann. -

Manuf. Technol., vol. 48, no. 2, pp. 527–540, 1999.

[8] D. O’Sullivan, “Automated Production Lines.” National University of Ireland

Galway, Galway, Ireland, 2011.

[9] Destaco, “End Effectors.” [Online]. Available: http://www.destaco.com/end-

effectors.html. [Accessed: 03-Aug-2017].

[10] J. C. Whitaker, The Electronics Handbook, 1st Editio. CRC Press, 1996.

[11] P. D.-I. H. Frey, “Machine Vision, Lecture Notes.” Ulm, Germany, p. 1, 2014.

[12] S. Jayaraman, S. Esakkirajan, and T. Veerakumar, Digital image processing.

New Delhi : Tata McGraw Hill Education, 2009.

© Central University of Technology, Free State

119

[13] Olympus America Inc, “Basic Properties of Digital Images,” Microscopy

Resource Center, 2012. [Online]. Available:

http://www.olympusmicro.com/primer/digitalimaging/digitalimagebasics.html

. [Accessed: 07-Aug-2017].

[14] R. Davies, Computer and Machine Vision, 4th Edition Theory, Algorithms,

Practicalities Opsylum. Royal Holloway, University of London, UK: Academic

Press, 2012.

[15] K. Briechle and U. D. Hanebeck, “Template matching using fast normalized

cross correlation,” Proc. SPIE, vol. 4387, pp. 95–102, 2001.

[16] A. W. and E. W. R. Fisher, S. Perkins, “Erosion,” 2003. [Online]. Available:

http://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm. [Accessed: 21-Aug-

2017].

[17] B. Jähne, Digital Image Processing. Springer Berlin Heidelberg, 2013.

[18] K. R. Gmbh, “KR C4 compact.” KUKA, Augsburg, Germany, 2014.

[19] K. R. Gmbh, “KUKA System Software 8.3 Operating Instructions.” KUKA,

Augsburg, Germany, 2013.

[20] K. R. Gmbh, “KUKA.RobotSensorInterface 3.3.” KUKA, Augsburg, Germany,

2015.

[21] M. Edberg and P. Nyman, “Implementing Multi-Touch Screen for Real-time

Control of a Robotic Cell,” Chalmers University of Technology, Göteborg,

Sweden, 2010, 2010.

© Central University of Technology, Free State

120

Scientific Outputs

 “Using a Vision System for Real-Time control of an Automated Adapting

Robot System” presented by HJ Vermaak and L Rogers at the World

Conference on Robotics and Artificial Intelligence 2018 (WCRAI2018), 26-

27 July 2018 in Barcelona, Spain.

 “Automated programming robot component transfer system utilizing

machine vision as detection interface” presented and included in

proceedings by HJ Vermaak and L Rogers at the International Conference

on Materials and Manufacturing (ICOMM 2018), 16-18 July 2018 in

Melbourne, Australia.

 “Automated adapting component transfer system using real-time robot

control within a KUKA RobotSensorInterface environment”, presented and

included in proceedings by L Rogers and HJ Vermaak at the International

Conferences on Electrical, Electronic and IT research (AFRICON 2017)

conference, 18 – 20 September 2017, Cape Town.

© Central University of Technology, Free State

121

Appendix A – PLC Report

© Central University of Technology, Free State

122

© Central University of Technology, Free State

© Central University of Technology, Free State

124

© Central University of Technology, Free State

125

© Central University of Technology, Free State

126

© Central University of Technology, Free State

127

© Central University of Technology, Free State

128

© Central University of Technology, Free State

129

© Central University of Technology, Free State

130

© Central University of Technology, Free State

131

© Central University of Technology, Free State

132

Appendix B – KUKA Code

DEF MainMasterRSI ()

; Declaration of RSI variables

DECL INT ret ; Return value for RSI commands

DECL INT CONTID ; ContainerID

 ;FOLD INI;%{PE}

 ;FOLD BASISTECH INI

 GLOBAL INTERRUPT DECL 3 WHEN $STOPMESS==TRUE DO IR_STOPM ()

 INTERRUPT ON 3

 BAS (#INITMOV,0)

 ;ENDFOLD (BASISTECH INI)

 ;FOLD USER INI

 ;Make your modifications here

 ;ENDFOLD (USER INI)

 ;ENDFOLD (INI)

 ;FOLD PTP HOME Vel= 100 % DEFAULT;%{PE}%MKUKATPBASIS,%CMOVE,%VPTP,%P 1:PTP,

2:HOME, 3:, 5:100, 7:DEFAULT

 $BWDSTART = FALSE

 PDAT_ACT=PDEFAULT

 FDAT_ACT=FHOME

 BAS (#PTP_PARAMS,100)

 $H_POS=XHOME

 PTP XHOME

 ;ENDFOLD

;FOLD INITIALIZE RSI AND BITS

;=======================

;RESET OUT BITS!

;=======================

$OUT[99] = FALSE

$OUT[100] = FALSE

$OUT[101] = FALSE

$OUT[102] = FALSE

$OUT[103] = FALSE

$OUT[104] = FALSE

;=============================

;CREATE RSI CONTEXT TO USE RSI!

;=============================

ret = RSI_CREATE("RSI_Ethernet.rsi",CONTID,TRUE)

IF (ret <> RSIOK) THEN

 HALT

© Central University of Technology, Free State

133

ENDIF

;==========================

;SET DEFAULT BASE AND TOOL

;==========================

$BASE = BASE_DATA[1]

$TOOL = TOOL_DATA[1]

;ENDFOLD

;FOLD START POSITION

;=====================

;GO TO Start Position

;=====================

StartPos()

;ENDFOLD

;START MAIN LOOP

LOOP

;FOLD Position Control

;FOLD Position PRODUCT

if ($IN[1] == TRUE) THEN

 $BASE = BASE_DATA[2]

 PTP {A1 -73.85, A2 -65.80, A3 75.99, A4 -4.95, A5 74.53, A6 -50.02}

 $OUT[100] = TRUE

 WAIT SEC 0.5

 $OUT[100] = FALSE

ENDIF

;ENDFOLD

;FOLD POSITION PRODUCT SUCK

if ($IN[2] == TRUE) THEN

 $BASE = BASE_DATA[2]

 PTP {A1 -92.47, A2 -51.55, A3 97.82, A4 0.50, A5 37.76, A6 -71.55}

 $OUT[101] = TRUE

 WAIT SEC 0.5

 $OUT[101] = FALSE

ENDIF

;ENDFOLD

;FOLD POSITION DESIGN

if ($IN[3] == TRUE) THEN

 $BASE = BASE_DATA[1]

 PTP {A1 105.70, A2 -69.12, A3 79.25, A4 -3.10, A5 73.54, A6 -50.20}

 $OUT[102] = TRUE

 WAIT SEC 0.5

 $OUT[102] = FALSE

© Central University of Technology, Free State

134

ENDIF

;ENDFOLD

;FOLD DESIGN SUCK

if ($IN[4] == TRUE) THEN

 $BASE = BASE_DATA[1]

 PTP {A1 87.89, A2 -53.20, A3 100.70, A4 0.11, A5 37.57, A6 -70.51}

 $OUT[103] = TRUE

 WAIT SEC 0.5

 $OUT[103] = FALSE

ENDIF

;ENDFOLD

;FOLD START POS (RESET)

if ($IN[8] == TRUE) THEN

$BASE = BASE_DATA[1]

StartPos()

ENDIF

;ENDFOLD

;ENDFOLD

;FOLD SUCKER ACTIVATE/DEACTIVATE

if ($IN[5] == TRUE) THEN

 $OUT[104] = FALSE

 $OUT[105] = TRUE

 else

 $OUT[104] = TRUE

 $OUT[105] = FALSE

ENDIF

;ENDFOLD

;FOLD RSI Processing

;FOLD RSI for Design

;LET RSI TAKE OVER CONTROL WHEN TRUE (for Design Area) (BASE 1)

if ($IN[6] == TRUE) THEN

 $BASE = BASE_DATA[1]

 ret = RSI_ON(#RELATIVE)

 IF (ret <> RSIOK) THEN

 HALT

 ENDIF

 ; Sensor guided movement

 RSI_MOVECORR()

© Central University of Technology, Free State

135

 ; Turn off RSI

 ret = RSI_OFF()

 IF (ret <> RSIOK) THEN

 HALT

 ENDIF

ENDIF

;ENDFOLD

;FOLD RSI FOR PRODUCT

;LET RSI TAKE OVER CONTROL WHEN TRUE (for PRODUCT Area) (BASE 2)

if ($IN[7] == TRUE) THEN

 $BASE = BASE_DATA[2]

 ret = RSI_ON(#RELATIVE)

 IF (ret <> RSIOK) THEN

 HALT

 ENDIF

 ; Sensor guided movement

 RSI_MOVECORR()

 ; Turn off RSI

 ret = RSI_OFF()

 IF (ret <> RSIOK) THEN

 HALT

 ENDIF

ENDIF

;ENDFOLD

;ENDFOLD

ENDLOOP

 ;FOLD PTP HOME Vel= 100 % DEFAULT;%{PE}%MKUKATPBASIS,%CMOVE,%VPTP,%P 1:PTP,

2:HOME, 3:, 5:100, 7:DEFAULT

 $BWDSTART = FALSE

 PDAT_ACT=PDEFAULT

 FDAT_ACT=FHOME

 BAS (#PTP_PARAMS,100)

 $H_POS=XHOME

 PTP XHOME

 ;ENDFOLD

END

© Central University of Technology, Free State

136

DEF StartPos()

PTP {A1 0, A2 -90, A3 90, A4 0, A5 83, A6 -68}

$OUT[99] = TRUE

WAIT SEC 0.5

$OUT[99] = FALSE

END

© Central University of Technology, Free State

137

Appendix C – C# Code and Videos

The code for the overall C# project, as well as videos of the project can be found

on the CD.

© Central University of Technology, Free State

