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Abstract 

Modern automation systems rely on fixed programming to carry out their production 

routines. These systems are effective for production outputs but do not allow any 

flexibility within the production routine. Effort is required to change the ongoing 

production routine through reprogramming, redesign or complete overhaul of the 

system to cater for new production outputs. These efforts require down time and 

result in a loss of revenue.  

If a completely automated flexible system is introduced into such a production line, 

the complete reprogramming process required to cater for new production needs 

could be automated without losing production time. Within this study, a real-time 

KUKA Robotic Control system is introduced. The KUKA Robotic Controller 

maintains its original programming methods with no reprogramming required when 

executing a new production assembly. This is achieved through manoeuvring the 

KUKA Robotic System in real-time to new destinations based on image-processing 

outputs and feedback.  

For demonstration purposes and proof of concept, the system learns a design 

presented to it by an end user and then reproduces this seen design based on the 

image-processing results in terms of location and orientation. Therefore, instead of 

reprogramming each new required position, the system takes over real-time control 

of the KUKA Robotic System and carries out the required steps autonomously.  

The benefit of such a system would be that the KUKA Robotic System would not 

require reprogramming to carry out new routines. It is controlled in a real-time 

environment to carry out new procedures based on external sensors (in this case, 

image-processing outputs). KUKA Robotic Sensor Interface (RSI) software is used 

to implement real-time control of the KUKA Robotic System and is explored 

extensively throughout this study. 
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1 Chapter 1: Introduction 

The manufacturing industry is a challenging yet changing market. Flexibility within 

this industry is highly sought after in any modern production system. This versatile 

industry is driven by customer quality needs and the ability to respond to changes 

swiftly and at the lowest cost [1]. 

Flexible manufacturing systems (FMS) must be able to convert quickly to the 

production of new models, rapidly adjust capacity and produce an increased variety 

of products in unpredictable quantities. An FMS can be dedicated or flexible and 

change as needed. Flexibility can be perceived as a system’s capacity to change 

and assume various positions or states in response to changing requirements, with 

little or zero penalty in time, effort, cost and performance. 

Introducing a flexible, automated adapting system that can adjust its programming 

routine automatically while satisfying the above-mentioned requirements is a 

challenge. Flawless system operation also requires uninterrupted accuracy, speed 

and safety. This research investigates what type of robotic system can be 

implemented that can adapt automatically in real-time, with zero down time. 

A viable visual aid system will also be investigated that could possibly assist the 

flexible system to achieve its end goals. The visual system would be required to 

scan the design pallet to detect separate components which make up the design, 

and calculate optimal movement paths for the KUKA Robotic System to collect and 

place the detected components. For proof of concept and simplicity purposes, 

component pallets were made up of the same small shapes placed at 90º angles, 

while design pallets were made up of multiple shapes placed at random angles.  
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1.1 Problem Statement 

Introducing new products on an existing automated assembly line leads to manual 

reconfiguration of the entire production line to accommodate the new product’s 

needs. This can be a lengthy process, possibly requiring   down time of the entire 

system. Automating this process using visual aid with zero manual human 

intervention is key to eliminating system down time. Successful integration of visual 

aid within an assembly line can be limited, but also beneficial when implemented 

on a KUKA Robot System. 

 

1.2 Objectives 

1.2.1 Aim of the study 

The aim is to use a visually aided system that can learn new product designs in 

real-time, allowing the KUKA Robot System to adjust accordingly without the need 

for manual reconfiguration. This involves implementing real-time control of the 

KUKA using the RSI subsystem, which uses data from the visually aided system. 

This can increase production of newly introduced products, while also having 

alternative implementation options. 

 

1.2.2 Hypothesis 

The designed system should be able to build a new product design completely 

autonomously without any user intervention or manual KUKA reprogramming. 

Once a new product is introduced into the existing assembly line, the system 

should automatically adapt and build the new product, while ensuring all 

preconditions are met (i.e. the required components for the design must be 

available within the component catalogue on the component conveyor). The design 

will consist of multiple components uniquely placed to test the capability of the 

system. 
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1.2.3 System Layout 

In Figure 1-1 below, we can see the initial floor layout concept. There were two 

independent conveyor systems designed, namely a “Design Assembly Area” 

where new designs were studied by the visually aided system and rebuilt, and a 

“Component Catalogue Area” that maintained a repository of components for 

rebuilding the seen design within the “Design Assembly Area”. 

 

Figure 1-1 Layout of the system used 

Each conveyor area was equipped with inductive sensors and stop gates. This 

allowed for flow control of the pallets within the system while also relaying pallet 

position data back to the Main Control Interface. 
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1.2.4 Specific Objectives and contributions 

Specific objectives and contributions of the study are to: 

 Design an intelligent, self-learning product assembly system. 

 Design a visually aided system that can assist the process of moving 

products automatically between the product pallet and design pallet in real-

time. 

 Achieve these results using real-time control of a KUKA Robot using the RSI 

sub-system while investigating its capabilities. 

 Support multiple designs in real-time. 

 Achieving a reprogramming-free environment on new product entry. 

 Smart Pick and Placer 

 

1.2.5 System Overview 

The system comprises multiple separate systems (that can work independently) 

required to work as one unit to achieve the goals set within this study. Figure 1-2 

depicts the proposed block diagram of the system. As seen in the figure, all 

systems communicated over Ethernet standard. A more detailed diagram is 

presented later within this document. 

 

Figure 1-2 Proposed Block Diagram 

As mentioned before, each sub-system can operate independently, but requires 

instructions from the main software controller.  
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1.3 Layout of the dissertation 

 Chapter 1: Introduction to the Thesis — This chapter covers the general 

overview of the project, outlining goals and objectives. 

 Chapter 2: Literature Review — This chapter looks at previous work done 

within this field, while also covering general theory of some processes. 

 Chapter 3: Methodology and Implementation — This chapter explains in 

detail how the project was implemented to achieve results. 

 Chapter 4: Results and Discussion — This chapter documents all the results 

achieved on the system and the step-by-step procedure of obtaining the 

results. 

 Chapter 5: Conclusion — This chapter is a summary of project successes 

and potential future implementation. 

 

1.4 Conclusion 

The proposed system which was conceptually designed, was physically 

implemented with all the available hardware and software. A series of tests 

followed and the analysed results are seen in a later chapter. This chapter clarified 

the study objectives and an overall proposed system to complete the objective. 
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2 Chapter 2: Literature Review 

This chapter contains a study of current techniques used within the industry to 

automate processes and related challenges. Certain techniques used within this 

study will also be outlined and their implementation benefits discussed. Software 

choices and uses will be explained in detail. 

 

2.1 Manufacturing Systems 

2.1.1 Introduction 

Industrial automation in manufacturing is the use of “intelligent” machines required 

to complete a given task at the quickest possible rate. These machines are 

programmed to follow a fixed set of commands to complete their task. Every so 

often, adapting machines are created that can adapt to changes in requirements 

of the project at hand with minimal effort. These machines are extremely flexible, 

but may struggle to adapt correctly. 

Various types of manufacturing systems exist, such as [2]: 

 Dedicated Manufacturing System (DMS), 

 Reconfigurable Manufacturing System (RMS) and 

 Flexible Manufacturing Systems (FMS). 

These systems each contain their own unique features, such as: 

 Capacity, 

 Functionality and 

 Cost. 

Each manufacturing system has certain advantages and disadvantages within 

these above-mentioned areas [3]. As the study presented is focusing mainly on an 

FMS, only this specific manufacturing system will be covered. 
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2.1.2 Flexible Manufacturing Systems 

When it comes to Flexible Manufacturing Systems (FMS), companies are reluctant 

to make immediate changes to their current conventional systems. This could be 

due to a lack of knowledge about how to implement such systems [4]. 

Before we can detail the flexible manufacturing process, it is important to 

understand the definition of “flexibility” within an FMS context. Flexibility can be 

stated as a “range of motion” in its own context.  

Multiple definitions exist for flexibility within the context of an FMS. A simple 

definition could be “The sensitivity of a manufacturing system to changes. The 

more flexible a system, the less sensitive to changes occurring to its environment 

it is” [5].  

A second example of this definition, put forward by Ranky [6], is that an FMS deals 

with high-level distributed data processing and automated material flow using 

computer-controlled machines, assembly cells, industrial robots, inspection 

machines and so on, together with computer-integrated material handling and 

storage systems. Although the definitions presented are somewhat open to 

interpretation, research is constantly undertaken to improve the versatility of an 

FMS. 

Characteristics of an FMS have also been broadly defined. What exactly is required 

within an FMS to categorize it as an FMS? There is no set number of characteristics 

required for a system to be classified as an FMS, but some general characteristics 

should be present according to different researchers and authors. These 

characteristics are as follows [4][7]: 

 Flexible production in terms of volume and mix on the same assembly line. 

 General-purpose CNC machines present in system. 

 An automated material-handling system. 

 An overall method of control that co-ordinates all subparts of the system. 

The characteristics mentioned above are guidelines that are required for a system 

to be classified as an FMS. These characteristics are not limited to the 

aforementioned, many variations of the systems exist dependant on application 

and implementation. 
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The main reason an FMS can be classified as flexible is due to its capacity to 

process a variety of part styles simultaneously, while the production output can be 

changed in response to demand patterns. 

 

2.1.3 Production Lines 

Automated production lines, used within workspaces that have multiple unique 

assembly areas, are systems that compromise many stations that each 

independently contribute to the product in production. These sub-systems, inter-

connected through mechanical transport systems, move products between 

workspaces in pre-defined sequences for correct product assembly.  

Mechanical transport systems usually consist of conveyors that move materials 

from point to point within the system. They are usually preferred over more flexible 

transport systems such as Automated Guided Vehicles (AGVs), as parts do not 

have to wait to be picked up by an AGV and can be delivered instantly to the next 

station. Each station contains either automated processes such as drilling or 

milling, but could also contain manual labour operations such as inspections or 

manual placement of components dependant on the type of product being built [8]. 

There are benefits to using automated production lines within factories, such as: 

 Less human intervention and effort required in production.  

 Fewer production errors, better quality control. 

 Better safety control. 

 Lower production cost. 

 Increased production output. 

Automated production lines are many unique systems working together to 

complete an automated task. 
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2.1.4 Robotic Systems 

Robotic systems, used for a variety of purposes within an automated assembly line 

are machines capable of carrying out complex tasks automatically. These tasks 

include packaging, pick and place, welding, soldering, drilling, milling, etc. They 

replace the human factor within the manufacturing process, while increasing 

efficient productivity and general overall output.  

Generally, these computer-controlled machines each follow set programming 

routines dependant on their task. This ensures that each station contributes its 

specific piece to the overall product. 

Several types of robotic systems exist for different task requirements. These 

requirements may include accuracy, the ability to carry out small complex tasks or 

to move a heavy payload. These factors along with cost determine what robotic 

system is selected. 

 

2.1.4.1 End Effector 

An end effector also known as End of Arm Tooling (EOAT) is the device placed at 

the end of a robotic arm. These devices, designed specifically for the robot 

application, allows the robot to interact with its environment and complete an 

assigned task. End effectors are usually designed in a manner that is not restrictive 

to the robot in terms of weight or size, using lightweight material [9]. Common 

interaction devices can be categorized into different groups, such as: 

 Gripping devices — claws, jaws or any device that can physically grip the 

object. 

 Injection devices — needles, pins or any device that penetrates the object.  

 Suction devices — vacuum cups, magnets that use the object’s surface to 

grip the object. 

 Adhesion devices — devices that place a substance on the object.  

There are many other devices that could be attached to the robotic wrist such as 

drills, welders, tool changers, brushes, sensors, screw drivers, spray guns, etc. It 

is all dependant on the application of the robotic system. Custom-built end effectors 
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are commonly used within newer industrial applications where traditional end 

effectors are insufficient.  

Figure 2-1 shows vacuum cup end effectors which use pressurized air to create a 

vacuum that can pick up objects. Many different selections are available and 

depend on purpose, such as the size of the object to be picked up. 

 

Figure 2-1 Professional Vacuum Cup End Effectors 

These vacuum-based end effectors are easy to use and set up, with minimal 

hardware requirements or electrical interfacing required to pick up an object. 
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2.1.4.2 Conveyor Systems 

Conveyor systems are automatic transportation systems that can move bulk 

materials from one point to another. They are used in automated industrial systems 

within different applications, depending on application requirements.  

These systems come in unique shapes and sizes to fulfil different requirements 

such as heavy material transportation or small component transportation. They are 

vital to the automation processes, where manufacturing processes are 

implemented without any human intervention. Overall, this increases the 

production output of the system due to increased speed and efficiency.  

Add-on modules for conveyor systems add to the modularity and flexibility of these 

systems, as pallets can be manipulated throughout the system based on certain 

requirements. An example is an automated rework system, where a pallet is 

scanned using a visual aid and directed to a certain conveyor system based on the 

outcome of the inspection. This is done using add-on modules such as deflectors 

or push diverters that direct routing within the system.  

Selection of these systems is entirely dependent on application. Many different 

systems exist, with the main systems implementing mechanical belt-driven 

conveyors, vibrating conveyors, pneumatic conveyors and flexible conveyor 

systems.  

 

Figure 2-2 CAD Example of the TS1 conveyor by Rexroth 

TS1 conveyor systems by Rexroth provide solutions for smaller payloads. These 

conveyors use anti-static pallet-based transfer systems to move small payloads 

around an assembly system. They are mobile and easily manoeuvred to apply new 

configurations in a short time frame.  
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2.1.4.3 Actuators 

Actuators are mechanical devices that act as moving or controlling mechanisms on 

a production line. Different types of actuators include hydraulic, pneumatic, electric 

and mechanical.  

Pneumatic actuators can control a system’s flow by either opening or a closing a 

valve (for example) that would in turn do some physical work on a production line. 

They require a trigger mechanism and are frequently connected to a 

Programmable Logic Controller (PLC) for input signals. They are electronically 

triggered (for example to open a valve), but generally convert compressed air into 

a linear or rotary motion.  

Figure 2-3 below shows two types of pneumatic actuators. The left is a linear 

motion piston that extends when triggered, while the right shows a Rexroth 

pneumatic stop gate used to control pallet flow within an assembly system. 

 

Figure 2-3 Actuator Examples 

In summary, actuators are vital within an industrial environment and widely used.  
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2.1.4.4 Sensor Systems 

Sensors are vital within the automated assembly process. They provide important 

feedback on the real-time status of the system in monitoring applications while also 

providing feedback on the current assembly process (for example when a pallet 

passes a certain point) to the main controlling device. A variety of sensors is 

available within the automated production process, depending on the application.  

Many factors are considered when selecting sensors to carry out application 

requirements such as accuracy, range, resolution, cost and repeatability. 

Repeatability is essential to ensure that readings returned by the sensor under the 

same conditions are consistent with minimal fluctuations.  

Some of the main sensors within industrial assembly automation include proximity 

and displacement sensors (inductive, capacitance, photoelectric, etc.), while 

photoelectric can be used for a range of other applications such as detecting 

colours. Level sensors, vision sensors and pressure sensors are specific to 

assembly automation, but there are many more.  

The data returned by the sensors enables the controller to make appropriate 

decisions in terms of the status of the system as well as the production line.  

Figure 2-4 depicts the different types of sensors used within the assembly 

automation process.  

 

Figure 2-4 Different Sensor Types within Assembly Automation 
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2.1.4.5 Logic Control Systems 

Automation within industrial environments is accomplished using different methods 

based on requirements. One of the main controllers used within these 

environments is the Programmable Logic Controller (PLC), which controls all 

logistics involved in the automated solution. This includes (but is not limited to) all 

I/O devices such as sensors, conveyors, stop gates, LEDs, transverses, data 

sharing devices, etc. Complete flow control is determined by these devices and 

their relative inputs/outputs, assuming complete automated control over the 

system.  

The logic control system is the “brain” of the system and requires precise 

programming to ensure error-free operation. It must also be designed with flexibility 

for use in an FMS. This includes creating flexible software that can adapt to 

changes as needed. In factories, it is not always possible to create fully functional 

software before the actual system is commissioned, due to specific customer 

needs. Thus, on-site adjustments are done during commissioning of the system. 

Figure 2-5 shows two PLCs, each from leading brands in the automation industry, 

namely Siemens and Allen-Brandley. 

 

Figure 2-5 Siemens and Allen-Bradley PLC controllers respectively 
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2.1.4.6 Machine Vision 

Machine vision technology is an important tool for capturing useful information 

about a scene from a two-dimensional viewpoint. It provides automatic inspection 

of objects in applications such as robot guidance, process control and quality 

control. The end goal of machine vision would be to create a real-world model 

purely from images. Machine vision is achieved through image sensors that 

capture images, which are subsequently transferred to a processing unit for 

analysis [10]. 

Figure 2-6 below shows where machine vision fits into the world of image 

processing [11].  

 

Figure 2-6 Machine Vision Processing 

Computer vision and machine vision are usually used within the same context, but 

generally, computer vision refers to a more theoretical and algorithmic-based 

approach within image processing, while machine vision refers to the practical 

aspect, including image acquisition. 
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2.1.5 Digital Image Processing 

Digital Image Processing is computerised manipulation of a digital image using 

certain techniques that alter and/or extract information from an image presented to 

accomplish certain tasks. These techniques add value to the image by looking for 

patterns and/or singling out certain interests within the image that can provide 

accurate information to the end user. The resulting data can be used to manipulate 

objects in the real world using physical devices, depending on the application area 

of these techniques. 

Advantages of using computers to process images include [12]: 

1. Flexibility and adaptability: Digital computers do not require any physical 

hardware modifications when solving different tasks, simplifying 

reprogramming. 

2. Data Storage and Transmission: Digital data can be transferred easily 

between two points while being stored efficiently as new image-

compression algorithms are developed. 

Digital image processing starts with a digital image composed of elements called 

pixels, which are the smallest sample of an image. These pixels represent the 

brightness at one point and require two important operations, namely sampling and 

quantisation when being converted into a digital format from an analogue image 

source.  

Figure 2-7 illustrates this process in block diagram format [12]. 

 

Figure 2-7 Analog to Digital Conversion  
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2.1.5.1 Acquiring an Image 

Acquiring an image is the first step within the digital image processing environment. 

This process involves a camera sensor that captures the viewed scene and returns 

it as an image to a processing unit in digital format. Information is extracted from 

the digital image by the processing unit and converted into data values that can be 

understood by a computer system, resulting in decision-making based on these 

returned values. Images are usually captured as a single frame at a certain 

resolution, based on the requirements of the application. These images are 

sometimes also stored for later use if comparisons, for example, are required within 

the application. 

 

2.1.5.2 Greyscale Images 

Greyscale images are digital images where the value of every pixel correlates to 

the pixel’s intensity information. In other words, each pixel’s value is based on a 

shade of grey where the weakest intensity would correlate to the colour black while 

the strongest intensity would signify the colour white. The intensity of the pixel 

directly corresponds to the intensity of light captured by the camera sensor (within 

a greyscale-capturing sensor).  

Greyscale images have certain depths that relate to the number representation for 

pixel intensity. For example, in an 8-bit grayscale image, each pixel would contain 

a number between 0–255 which correlates to that pixel’s level of intensity. The 

depth can be increased for a more accurate representation of the shade but would 

require greater processing power and storage space to compute the data in the 

case of a 16- or 32-bit grayscale image, as the number representation is more 

substantial.  

Figure 2-8 is a figured representation of the depths and their shading 

characteristics as the depth level is increased [13]. 
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Figure 2-8 Bit Depths and Grey Levels  

As seen in the figure above, as the depth increases, the amount of shades 

available increases proportionally. Dependant on application and resolution 

required, the correct bit-depth is selected. 

 

2.1.5.3 Subtraction 

Subtraction within image processing is the process whereby two separate images 

categorized into source and overlay image of the same size and pixel format are 

subtracted from each other to produce a new image. A simple procedure of 

completing this process is where each pixel is equal to the difference between the 

source and corresponding pixels, which results in a new image that is analysed. 

 

2.1.5.4 Template Matching 

Template matching is the process whereby a suitable template is moved over an 

image to determine at what positions in the image a precise match occurs. This 

operation reveals object matches and similar types of objects within the template 

and image being processed [14]. 

One of the simplest algorithms within template matching is the exhaustive template 

matching algorithm. This algorithm performs a complete scan of the source image 

and compares every pixel with the corresponding pixel of the template image. 

Although there have been more efficient algorithms presented (such as normalized 
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cross correlation template matching [15]), this process required minimal 

computation power with sufficient results required in this study. 

 

2.1.5.5 Erosion 

Erosion processing is a morphology image processing technique typically applied 

to binary images. The general concept is to erode boundaries of certain regions, 

resulting in the forefront of pixels taking preference.  

Binary images consist of either one of two possible values: either a 0, which 

denotes background pixels, or a 1, which denotes foreground pixels. The erosion 

operator requires two inputs for the process to complete.  

The image to be eroded usually uses a set of coordinate points (known as the 

structuring element) which determines the effect of the erosion on the image. In 

Figure 2-9, a clear example of the structuring element is presented.  

 

Figure 2-9 A 3x3 structuring element 

A 3x3 matrix (for example) is used and applied to the image as the structuring 

element. This structured matrix would be superimposed over the input range at the 

centre of the input pixel (foreground pixel) coordinates. At this point, if every pixel 

in the structuring element corresponds with the image underneath, the input pixel 
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is left as is (this applies to neighbours of the input pixel in terms of the structuring 

element size). 

If any of the corresponding pixels are background pixels, the input pixels are also 

converted to background pixels[16]. Figure 2-10 depicts the effect of a 3x3 square 

structuring element on a binary image. 

 

Figure 2-10 Effect of 3x3 structuring element on a binary image 

As seen in the figure above, after the erosion technique is applied on the binary 

image, there is cleaner depiction of the binary image with the filter cleaning up 

surrounding pixels. This is particularly useful when an image contains excessive 

amounts of noise or static that must be removed.  

 

2.1.5.6 Image Mass 

When referring to centre of mass or centre of gravity on an everyday object, these 

two properties are different if the gravitational field is not uniform across the object. 

In image processing terms, centre of mass and centre of gravity in a binary image 

fall on the same location and is the same point. Centre of gravity is covered more 

thoroughly in section 2.2.5.8. 
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2.1.5.7 Image Moments 

Within the field of image processing or computer vision, an image moment is a raw 

weighted average of the pixel intensities. These moments are used in a variety of 

applications and used to calculate items such as: 

 Centre of Gravity 

 Object Orientation 

 Area of an Image, etc. 

Images have two dimensions, so the formula requires two independent variables. 

A discrete way is used to describe each pixel in terms of moments. Equation 1 

proves this concept on a mathematical level. 

 

 

 

2.1.5.8 Centre of Gravity 

The centre of gravity of an image is the average location of the weight of the image. 

Based on image moments, this function returns an X and Y coordinate that would 

equate the centroid of the image. The returned coordinate points are generally 

used as some sort of reference point within the application. 

The centroid calculation is done by calculating the first moment of the image. All 

white pixels are added up using firstly the X coordinate and then the Y coordinate 

respectively (as seen in Equation 2 and 3 below). The sum of all these pixels is 

then divided by the overall pixel amount found within the zeroth moment. This 

results in the following Equations:  

 

 

 

 

 

As seen in Equation 4, the resultant X and Y coordinate of the centroid is returned. 

Equation 1 

 

  
 

Equation 2 

 

 
  

Equation 3 

 

 
  

Equation 4 
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2.1.5.9 Area 

When processing a binary image, the area is given by the number of pixels 

belonging to the object. Therefore, the matrix or pixel list is used to calculate the 

area of the object (or region of interest) simply by counting the number of pixels 

within the object [17]. 

 

2.1.6 Software 

2.1.6.1 Microsoft Visual Studio 

Microsoft Visual Studio is Microsoft’s primary programming software used for 

software development in languages such C, C++ and C#. Free to use at express 

version levels, this software was used to create the operational server while also 

implementing the image processing required within this study. 

  

2.1.6.2 KUKA WorkVisual 

KUKA WorkVisual is KUKA’s main programming environment when creating 

automated tasks for the KUKA Robotic System. All programming and configuration 

of the robotic system is done within this platform.  

 

2.1.6.3 KUKA RSI 

KUKA RobotSensorInterface(RSI) is the primary software environment used to set 

up a remote input into the KUKA Robotic System. Its primary purpose is to 

configure the remote inputs and outputs that will be used by the system, in a block 

diagram programming environment. 

 

2.1.6.4 Total Integrated Automation Portal 

The Total Integrated Automation (TIA) Portal provided by Siemens is their resident 

software to provide an end user with a complete range of digitalized automation 

services. This software, used to program all Siemens PLC’s and HMI’s in the user’s 

preferred language, contains a range of features — from digital automation 

planning to integrated engineering. 
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2.2 Conclusion 

This chapter covered a literature review to gain relevant knowledge of flexible 

manufacturing systems as well as hardware involved in making these systems 

operate. It also covered image processing techniques that could be used within 

these environments to allow visual aids to assist flexible manufacturing systems.  
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3 Chapter 3: Methodology and Implementation 

This chapter contains a detailed overview of the techniques and design strategies 

implemented within the formation of this system. Various subsystems were 

deployed to complete the overall objective, including KUKA KR AGILUS sixx, 

KUKA RSI, KUKA WorkVisual, Siemens S7-1200 PLC System, a Basler AG 

Camera, and a C# Programming Environment using visual libraries such as 

Aforge.net and Accord.net.  

These systems were all configured individually to ensure each sub-system was 

working satisfactorily, followed by combining and configuring all sub-systems to 

work as a single unit, which allowed the project objective to be carried out and 

analysed.  

 

3.1 Hardware Systems 

As many different hardware platforms was used throughout this system, it is 

necessary to detail each process individually as well as state each systems 

contribution to the overall design. 

3.1.1 KUKA AGILUS R900 sixx 

The KUKA AGILUS R900 sixx is an industrial robot intended for handling tools and 

fixtures, or for processing or transferring of components or products. The robot 

compromises an assortment of components. Many underlying components are not 

always present to the eye but are crucial to the operation of the manipulator.  

Figure 3-1 below is a representation of the components and their uses [18]. 
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Figure 3-1 Components of an Industrial Robot 

From the above figure, we can label each component as: 

1. Manipulator 

2. smartPAD teach pendant 

3. Connecting cable, smartPAD 

4. Robot controller 

5. Connecting cable, data cable 

6. Connecting cable, motor cable 

The KUKA AGILUS R900 sixx was selected due to its wide industrial use and ease 

of integration with external systems. KUKA RSI was fully supported by this robot, 

which was essential to establish real-time control [18]. 
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3.1.1.1 Tool calibration 

Tool calibration is necessary to implement a coordinate system for the end effector. 

The end effector is mounted on the mounting flange at the head of the KUKA Robot 

and allows interaction with any objects as needed. The tool coordinate system has 

its origin at a user-defined point. This is called the TCP (Tool Centre Point). The 

TCP is generally situated at the working point of the tool. 

Within this study, the tool or end effector was a suction gripper, which uses 

compressed air and a vacuum configuration to pick up items. This tool was selected 

due to its relative ease of use and ability to pick up lightweight payloads using a 

suction system. 

Advantages of tool calibration include [19]: 

 The tool can be moved in a straight line in the tool direction. 

 The tool can be rotated about the TCP without changing position of the TCP. 

 In program mode: The programmed velocity is maintained at the TCP along 

the path. 

Multiple tool calibration methods are available, namely: 

 XYZ 4-point method 

 XYZ reference method 

 ABC World method 

 ABC 2-point method 

 Manual Numeric Input 

Although the base coordinate system was used throughout the program’s main 

functionality, it was still required to calibrate the tool for testing purposes. The XYZ 

4-point method was used for calibration due to undemanding requirements for the 

process, which can be seen in Figure 3-2 below [19]. 
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Figure 3-2 XYZ 4-point method example 

An object with a sharp point was placed on top of the pallet situated on top of the 

conveyor. Using the end effector head as reference, the head was then 

manoeuvred around the point as seen in the steps above to calibrate the tool head 

to the system. This coordinate system enabled a new offset to be defined using the 

TCP for testing purposes, relating to the movement of the end effector attached to 

the KUKA Robot. 
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3.1.1.2 Robot bases and calibration 

Configuring robot bases is essential to the robot’s accuracy. Factors that can affect 

the robot in different working spaces include: 

 Alignment of working surfaces. 

 Angle of robot base. 

 Movement of overall system during operation after fixing positions. 

Two separate robot bases were configured for the robot for accuracy 

considerations on either side of the robot working space. For example, the 

alignment of floor surface was different to the alignment of the surface on the other 

end, causing the robot to “dip” into the Z axis when moving the robot on either the 

X or Y axis. The solution was to configure separate bases for either side of the 

working space, resulting in correct calibration for each side. The program would 

then automatically switch between these two separate bases when working on 

each side respectively. 

Robot bases can be calibrated using two different methods namely: 

 3-point method 

 Indirect method 

The 3-point method was used for calibration of both bases as this was the most 

reliable option. The robot first moves to the origin of the base as well as two further 

points. These three points define the new base. An example of the process can be 

seen below in Figure 3-3, while Figure 3-4 shows the real-world implementation of 

this process [19]. 
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Figure 3-3 A CGI example of the calibration process 

 

Figure 3-4 Calibration using the system 
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3.1.2 Siemens PLC 

The Siemens S7-1200 PLC is a modern-day industrial controller primarily used 

within the automation environment. Focused on overall control of an automated 

system, the Siemens PLC is a cost-effective automated solution.  

The PLC is used as an I/O device within this system, controlling conveyors and 

stop gates while also receiving sensor inputs. The device acted as a 

communication tool between the KUKA and C# environment, transferring shared 

variables between the respective systems. The PLC was configured with a raw 

Transmission Control Protocol/Internet Protocol (TCP/IP) connection 

configuration, which allowed direct communication via the TCP/IP to the .NET 

environment. All devices was configured using the standard TCP/IP configuration 

while transferring data strings that would be parsed into a certain function within 

the PLC program.  

The PLC also contained feedback functionality to alert the program to changes (on 

top of the shared variables) happening on the system, such as pallets arriving at 

stop gates that would then trigger the next set of events within the main application. 

Based on the role that the PLC took in this study, it could be perceived as a partial 

gateway device to other devices in the system. 

  

© Central University of Technology, Free State



43 
 

3.1.3 Conveyor Transport System 

An automated conveyor movement system transported components around a 

closed loop conveyor, with a parallel conveyor to feed new designs and learn them. 

The Rexroth conveyor system was selected due to its lightweight payload 

capabilities and mobility. The system can easily be rearranged into different 

settings, adding to the flexibility of the system and allowing new configurations to 

be tested without labour intensive activities. 

These conveyors also included stop gates and detection sensors which controlled 

pallet flow on the system. The detection sensors stopped the pallets containing the 

components for a picture to be taken and/or for a component to be collected. A 

secondary stop gate was placed where a queue of components was ready to be 

scanned and/or collected. This ensured that no secondary pallet made its way into 

the image processing vicinity while an ongoing operation was present. 

The design conveyor also consisted of two stop gates with their respective 

detection sensors. The first stop gate was the design queuing area while the 

second was the design build area. If a pallet arrived at the first sensor while no 

pallet was present at the second sensor, it would automatically be fed through to 

the first gate. As mentioned above, this ensured no second pallet entered the 

current pallet’s vision processing area. 
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3.2 Vision System 

3.2.1 Basler AG Camera 

The Basler AG Camera is an industrial camera that specializes in many application 

areas requiring cameras such as production, medical, traffic, transportation and 

retail. The camera acquired for the vision system in this project was specific to the 

production industry for robotics where detailed inspection is required.  

The Basler scA1390-17gm is an Area Scan Camera with the Sony ICX267 CCD 

sensor that can deliver 17 frames per second at a 1.4 MP resolution. The camera 

is a GigE, connected via an Ethernet connection.  

A 12 mm lens was attached to this camera, which required constant changes to 

focus and zoom which was very dependent on the KUKA’s current location above 

the pallet. To overcome this, two fixed points were established for the camera 

positioning (the camera was attached to the KUKA). 

 

3.2.2 Camera Calibration 

Camera calibration was done using Basler Pylon, which is used to capture live 

feeds of the camera. The lens was adjusted using focus as well as light input. Auto 

adjust was deactivated from the beginning to use manual calibration instead (light 

was insufficient on both sides of the conveyor, so a constant source was used for 

both sides). Manual exposure was set on the camera with auto exposure 

deactivated because of both artificial light (such as ceiling lights) and natural light 

entering the project area.  

Fixed lighting conditions (from the LEDs attached to the system) and fixed 

positioning of the camera at the system’s two image-capturing reference points 

enabled manual exposure and focus setting. This process was done through the 

Basler Pylon software while a component was placed on the pallet and optimal 

exposure and focus was determined and set. 

If the lighting environment changed, manual recalibration was required to avoid 

under or over exposure on the capturing device resulting in extremely inaccurate 

results when doing image processing on the pallets. 
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3.2.3 Lighting Environment 

A fixed lighting environment (using the LEDs attached to the system) was used due 

to changing lighting conditions — natural lighting and artificial lighting such as the 

50 Hz light flicker found in AC light sources (such as ceiling lights) — within the test 

area. 

A fixed DC-supplied lighting environment was implemented using standard DC 

halogen lighting. These lights were controlled using the PLC which triggered the 

lighting when a picture scan was conducted. Once the system successfully initiated 

the lighting environment, it would proceed to acquire the image requested by the 

system. On successful return of the image, the lighting was deactivated and system 

operation would continue. 

This fixed lighting environment allowed consistent picture results, removing the 

need for constant manual camera adjustment in terms of exposure. Figure 3-5 

below shows how the lights were attached to the KUKA end effector with the 

camera situated between the two. 

 

 

Figure 3-5 Example of the fixed lighting setup attached to the end effector 
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3.3 Software System 

A number of unique software packages and programming languages was used 

throughout the system to complete the overall objective. 

3.3.1 KUKA RSI 

KUKA RSI better known as KUKA Robotic Sensor Interface is a real-time 

communication platform used to communicate directly to the KUKA Robotic 

System from a remote input through a specific communication channel. The data 

read by the KUKA Robotic System from the remote data source allows real-time 

adjustment of the KUKA Robotic Systems position, depending on the data received 

from this remote module. This process allows a remote system full control of the 

KUKA Robotic Systems position, which enables a whole new range of applications 

when using the KUKA Robotic System. 

Robot Sensor Interface is an add-on technology with the following functions: 

 Data exchange between robot controller and sensor system. 

 Data exchange via Ethernet or the I/O system of the robot controller. 

 Cyclical signal processing and evaluation at the sensor cycle rate. 

 Influence on the robot motion or program execution by processing sensor 

signals.  

 Configuration of the signal flow (RSI Context) with the graphical editor RSI 

visual. 

 Library with RSI objects for configuration of the signal flow (RSI context). 

 Online visualization of the RSI signals (RSI monitor) [20]. 

Data exchange via Ethernet was the selected communication preference. 

In Figure 3-6, the fundamental principles regarding Ethernet exchange are 

depicted [20]. 
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Figure 3-6 Data Exchange via Ethernet 

RSI allows for continual influence over the robot motion by means of sensor data.  

An object relates to a certain property or variable that will be updated through the 

RSI system. A certain object will be configured as either an inbound object or an 

outbound object. This principle is clearly visible under section 3.4.1.3, which 

illustrates the RSI setup utilizing a visual aid with its inbound and outbound objects. 

Different modes of correction can be configured, namely: 

1. Motion-suppressed sensor correction 

a. Axis-angle correction, absolute or relative 

b. Cartesian correction, absolute or relative 

2. Sensor-guided motion 

a. Axis-angle correction, absolute or relative 

b. Cartesian correction, absolute or relative 
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3.3.1.1 Sequence of events 

The RSI system follows a strict sequence of events that must take place correctly 

to establish and maintain a successful and consistent connection. This ensures the 

system and end user’s safety during real-time control. 

When the RSI system is activated within the KRL, a channel is prepared for sending 

data to the sensor system via User Datagram Protocol/Internet Protocol (UDP/IP). 

The robot controller initiates the data exchange with a data packet and transfers 

data packets to the sensor system at the sensor cycle rate. The sensor system 

should be constantly listening for a data connection from the robot controller to 

avoid possible errors on the KRL program. When a packet is received at the sensor 

system end, the system must respond to the robot controller with its own unique 

packet. A general overview is seen below in Figure 3-7 [20]. 

 

Figure 3-7 Data Exchange via Ethernet (Sequence)   
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A data packet received by the sensor system must be answered within the sensor 

cycle rate of the robot controller, meaning a packet must be returned to the robot 

controller within the same sensor cycle in which it was sent. If any data exchange 

requirements are not met during the transfer period, the communication channel is 

closed and will have to be reinitialized.  

After the initialization, there is constant packet transfer between the robot controller 

and the sensor system, even if there is no current correction. The channel remains 

open until either an error occurs, or a closing packet is conveyed to terminate the 

connection. 

Every data packet transfer is encoded with information as set up in RSIVisualShell 

interface. RSIVisualShell will be discussed in section 3.4.1.4 in detail regarding its 

uses and requirements for RSI set up on the KUKA Robotic System. 

 

3.3.1.2 Sensor Cycle Rate 

The sensor cycle rate is the rate at which the signal processing is calculated, i.e. 

the specified cycle time in which all work should be completed to and from the 

sensor system. The RSI system supports two sensor processing rates, namely 

Input Processing Output (IPO) mode which sets the processing rate to 12ms. A 

faster processing rate is available using IPO_FAST mode which fixes the 

processing rate to 4ms. All data must be processed within this cycle rate for it to 

be a valid operation.  

An IPOC cycle is the overall cycle keyword used within the RSI context to generate 

a time stamp for both systems (robot controller and end sensor system) to know 

which cycle is currently being processed. The IPOC time stamp value is checked 

during every cycle. The data packet is only valid if the time stamp corresponds to 

the time stamp previously sent. This ensures that the correct operation is carried 

out by the RSI with regards to the packet received. 

  

© Central University of Technology, Free State



50 
 

3.3.1.3 RSIVisualShell 

RSIVisualShell is the programming environment used to configure an RSI 

connection to an external device such as a sensor or other external input. 

Programming is done in an offline environment where I/O variables, correction 

settings and feedback variables are defined. This setup creates various files which 

must be transferred to the KUKA Robot via the WorkVisual environment as the files 

are directly embedded into the KUKA file system.  

The settings defined within these files must match the setup that will flow in and 

out of the Ethernet connection to allow error-free operation. Manual manipulation 

is also required for certain RSI files, which are not part of the automatic processing.  

Within RSIVisualShell, different blocks are added from a toolbox. These blocks all 

have different purposes and create different outcomes. 

Firstly, an Ethernet connection must be set up using an Ethernet block. This will 

enable the Ethernet channel while also allowing inputs to be set up.  These inputs 

will be fed into the system (from an external source) while the outputs will be fed 

from the Ethernet out to separate blocks to make changes to the KUKA system. 

POSCORR can be set up to allow correction on the system using the currently 

selected coordinate system (BASE). 

AXISCORR is more specific and is used to correct a specific axis on the robot such 

as A6. 

Limitations are also set up within this environment to only allow a certain amount 

of movement at a given time. This is done for safety reasons and prevents over-

correction issues. 
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Figure 3-8 below shows the section that returns data from the robot to C# as well 

as the Ethernet block to set up Ethernet connectivity to and from the KUKA Robotic 

System. Basically, it returns the status of internal variables as configured within the 

KRL program such as current location, motor current, etc.  

 

Figure 3-8 RSIVisualShell block diagram section A 

As seen above, blocks are created and linked together using virtual wires which 

mimics the flow of data within the system. Outputs can also be mapped to local 
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variables on the KUKA Robot System in their respective format, enabling data 

sharing as well as data correction across these devices. 

Figure 3-9 shows the Ethernet connected directly to the POSCORR block which 

allows for position correction of the KUKA Robotic System (real-time control). This 

allows for correction on the XYZ coordinate systems. 

 

Figure 3-9 RSIVisualShell block diagram section B 

A stop block is required to break RSI operation within the KRL program. This is 

important because if the connection from the server side is interrupted before this 

block executes, the KRL program (running in the KUKA Robot) will return an error 

and will have to be re-initialized. This can be seen in Figure 3-10. 

As mentioned previously, the AXISCORR is for specific axis correction (which was 

required within this study). Figure 3-10 depicts this within the RSIVisualShell setup. 
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Figure 3-10 RSIVisualShell section C 

Manual editing is required for embedded files on the KUKA Robotic system, such 

as the RSI_EthernetConfig XML file which houses settings such as IP address and 

PORT number. These settings must correspond to the host settings set up on the 

PC for the connection to be established. 

Figure 3-11 below displays the setup of the XML configuration done on the KUKA 

Robotic System. This file setup corresponds to the setup within RSIVisualShell 

which notifies the RSI system which data to expect when sending and receiving 

data over Ethernet to the sensor system. These elements are basically how the 

data is “split” and sorted when receiving or sending. 

© Central University of Technology, Free State



54 
 

 

Figure 3-11 XML file configuration for RSI communication 

The above setup contains non-vital information passed between the RSI system 

and the sensor system such as motor current, etc. which is only used for display 

purposes, with the vital information being R.Korr {variable} which is used to 

implement correction on the KUKA Robotic System [21]. 
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3.3.1.4 Virtual Addressing 

Virtual Network Address can be defined as having more than one internet protocol 

address assigned to the same physical adapter interface. The virtual internet 

protocol does not actually correspond to a physical interface. This creates two 

separate networks that can communicate independently from one another over the 

same physical space. 

Virtual Network Addressing is used to establish an RSI Ethernet Connection 

between the KUKA and remote system. The KUKA Line Interface Port x66 on the 

KUKA is used as the RSI Interface in addition to the WorkVisual Interface. For both 

applications to function correctly, virtual addressing must be implemented on both 

the KUKA and the remote sensor endpoint; in this case, the PC implementing the 

vision processing techniques. 

As seen in Figure 3-12 below, the physical adapter consists of multiple Internet 

Protocol addresses, these being virtual addresses. 

 

Figure 3-12 Virtual Addresses assigned to one physical adapter 

  

© Central University of Technology, Free State



56 
 

3.3.1.5  XML Packet Transfer 

The Extensible Mark-up Language is a standard for creating machine and human 

readable documents in the form of a specified structure tree. Packet transfer over 

Ethernet is bi-directional, enabling a user to set up return parameters, such as robot 

position coordinates or any other returnable parameter. This creates a closed 

feedback loop where stability of the system is maintained in real-time due to the 

feedback from the robot controller. These parameters are additionally used to 

ensure the robot is on the desired path.  

Figure 3-13 below shows how data is moved into an XML string, which is then 

added to the overall XML string packet and sent to the RSI system on the KUKA 

Robotic System. 

 

Figure 3-13 XML String creation in C# 

In the above snippet, we can see each axis being defined within the XML format 

(X, Y, Z, A, B, C) while also linking them to a new object, which is their correction 

amount per IPOC cycle. During every IPOC cycle, a string like the one depicted 

above will be transferred to the robot controller. Depending on the correction 

required, the objects referencing each axis will contain a float value, which is the 

distance the KUKA is required to move that axis within that specific IPOC cycle. 

The KUKA Robot can only move a certain distance within one IPOC cycle. These 

values should be kept low to ensure smooth motion of the KUKA Robot when 

correction is taking place. If the value is greater than a certain threshold, a jerking 

motion could result. 
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3.3.1.6 Integration with C# 

Integration with the .NET framework environment was vital for establishing 

successful communication. The created application would need to respond to the 

KUKA within a given IPOC cycle while encoding the data for movement 

requirements as well as decoding the feedback data. 

The server was created over the UDP protocol which has no validation whether a 

packet reaches its intended destination. This can be advantageous if speed is a 

major factor in the project. In this case, speed is a major factor as the program 

would need to reply within the IPOC cycle to maintain the connection. It can also 

be disadvantageous, because if packets are lost en route, there is no way of 

recovering them or even validating that they were ever received.  

Due to the environment and the limited number of switches between the endpoint 

and the KUKA Robotic System, this problem never occurred. In a more complex 

network setup where network hardware is under constant strain, this could become 

a problem. Migrating to the TCP protocol to ensure packet arrival and upgrading 

network infrastructure would be a feasible solution. 

A virtual addressing scheme was created to allow a clean channel for data transfer. 

This channel is only used by the RSI transfer system while any other system data 

goes through a different virtual addressing scheme. 

On every string received by the KUKA Robot (in the XML scheme), the system first 

decodes the string to generate an answer. The IPOC string information is first 

extracted and saved for generating the answer required by the system. Next, the 

system extracts the feedback data sent to the system regarding the status of each 

axis (A1-A6). Each axis data is shown in terms of actual position, target position 

and motor current. This is useful when ensuring that the KUKA Robot’s actual 

position and target position corresponds. 

Next, an answer is generated with an updated IPOC inserted into the XML packet 

and the RSI movement values added if any movement is required during the cycle. 

The RSI connection can be open, transferring packets with zero correction 

adjustment, meaning the system will maintain its current position. Other data such 

as variables can also be transferred with this scheme if it was set up within 

© Central University of Technology, Free State



58 
 

RSIVisualShell beforehand. The generated XML packet must match the 

RSIVisualShell configuration exactly or communication will fail. 

Figure 3-14 below shows the process of how the XML strings are handled and 

generated. Once a newly generated packet is sent, the system then returns to a 

“waiting” step where it waits to receive a packet from the KUKA Robotic System. 

This process is then repeated until the real-time correction is completed. 

 

Figure 3-14 XML packet handling 
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3.3.2 PLC Programming 

3.3.2.1 Overview 

A PLC controller was integrated into the system to control the conveyors and 

pallets, to relay sensor data and enable data sharing between the KUKA Robot 

and the .NET environment. PLCs have multiple programming languages, such as: 

 Ladder Diagram (LAD) 

 Function Block Diagram (FBD) 

 Structured Control Language (SCL) 

Ladder Diagram (LAD) was selected as the suitable language to program the PLC 

due to prior expertise in this language. 

The programming was divided into six categories to maintain structure throughout 

the main block function. These categories were: 

 TCP Control Network 

 Comparison Network 

 Sensor and Air Feedback Network 

 KUKA Position Control Network 

 TCP Queue System Network 

 RSI & Light Control Network 

Raw byte data was passed between the two systems with lookup tables on either 

side used to decode the function required by the main system. The system also 

feeds data back to the main program to confirm command execution. This ensures 

proper sync between the actual events and the events recorded on the system.  
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3.3.2.2 TCP Control Network 

A TCP/IP network was set up on the PLC to allow TCP/IP data to be transferred 

between the PLC and any other TCP/IP capable device. This was cost and time 

efficient as there was no need to implement a middle man such as an OLE for the 

Process Control (OPC) server to connect the PLC to environments such as the 

.NET framework. A simpler system was created instead to enable faster and more 

reliable data exchange between the two devices.  

The Ladder Diagram includes TCP\IP function blocks which can implement packet 

transfer on the Ethernet connector. Figure 3-15 depicts the SEND and RECEIVE 

blocks used for communication on the PLC. 

 

Figure 3-15 Send and Receive Block within the PLC Network 

As seen above, separate SEND and RECEIVE blocks are configured 

independently. These blocks control all direct communication to the .NET platform, 

which housed the main software for the system. 
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3.3.2.3 Comparison Network 

The comparison network would decode data received through a lookup table. This 

comparison network acted as the controlling network for most of the devices within 

the project such as the conveyors, stop gates, KUKA positioning, etc. Once a 

command was decoded, it would activate the appropriate sub-network to carry out 

the function required. The system would then provide feedback to the main server, 

indicating that the process was completed successfully. 

Figure 3-16 below is an example of how the data flow progressed. Once the data 

received was compared to the fixed value, it would activate the subsequent process 

while also activating the feedback command to confirm it was received and 

processed. 

 

 

Figure 3-16 Example of how data is decoded for correction function 
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3.3.2.4 TCP Queue System Network 

A TCP queue system was set up on the PLC to ensure no data loss due to 

simultaneous feedback being relayed to the main program. This occurred when 

two (or more) pallets arrived at a detection sensor on the conveyor within 50ms of 

one another. The result was that the data being prepared to be relayed back was 

overwritten and lost, leading to a discrepancy between actual events on the 

conveyor system and the events recorded on the main program. This caused errors 

during flow operations as the system was waiting for a pallet to arrive which had in 

fact already arrived, although the data had been lost. 

The solution to this problem was to set up a TCP queue system where data to be 

relayed back to the main program would first be added to a queue stack. The 

waiting data would be added to an array and triggered as soon as the channel 

became available. If an operation is currently relaying data back, the system would 

increase a tracking variable indicating that more data is to be relayed once the 

current operation is complete. The tracking variable would be compared to the 

current cycle number and if the two variables differed, the system would fetch the 

new data and re-execute the relaying function. This process ensured all data would 

successfully reach the main program, allowing identical events to be showcased 

as they occurred on the conveyor system.  

The steps taken to create this system are depicted below in Figure 3-17. 

 

Figure 3-17 TCP queue network system in ladder logic 
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The system may seem complicated as seen in Figure 3-17, but it is surprisingly 

simple logic. When data must be sent, it increases the “AmountToSend” after 

moving the data into the next available position on the data array. At this point, the 

comparison between IX (the value that keeps track of the data in the array) and the 

amount to send differ, meaning data has been moved into the array and is waiting 

to be sent. This value (IX) keeps track of the send queue using a counter that 

increases the value by one every time the system sends new data. The system will 

then start the send process and wait 20ms, after which it will set subsequent 

variables to enable a further delay of 50ms. After the initial 20ms delay, the IX 

counter is increased and if the value equates to 99, it resets back to 0 and the data 

[that has already been sent] is overwritten from position 0.  

The array will store the previous 99 commands sent back to the main program to 

streamline troubleshooting. AmountToSend is also increased as the program has 

cycled the send function an additional time, meaning data was sent back to the 

main program. The process then repeats itself with the initial IX value being 

compared again to the AmountToSend variable. 
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3.3.3 C# Programming 

3.3.3.1 Object Orientated Programming 

Object Orientated Programming (OOP) is a concept that organises data around 

objects rather than “actions”. This concept was used programmatically to store all 

data regarding each “product” and “design” and how they were inherited from one 

another. The concept makes use of procedures (known as methods) that allows 

data to be easily modified and linked based on the “product” or “design” at hand. 

Once a product is identified, an object is created containing all the relevant data. 

When a new design is studied, the specific product’s object data is collected, and 

a new object is created based on the previously collected data.  

In Figure 3-18, we can see how the Design Object hierarchy is linked to each other. 

 

Figure 3-18 A Design Object Hierarchy 

The figure above depicts the hierarchy structure of how the data is composed into 

an object. This process is repeated for each subsequent design learnt and saved 

for later use. 
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3.3.3.2 Overall System Flow 

3.3.3.2.1 Introduction 

Overall System flow was vital for successful operation of the system. This section 

covers how the system controls the flow of each sub-application to successfully 

learn a design, followed by rebuilding it using available product components. 

 

3.3.3.2.2 Methods Used 

The system design was programmatically split up into five different sections: 

 Communication Processing 

 Image Processing 

 RSI Processing 

 Automation Processing 

 Overall Processing 

Each section contained all methods required to complete the functions specified in 

the section heading. For example, communication processing would contain all 

functions and methods required for successful communication to be established 

with all devices within the project.  

Each section directly communicated with each other through global variables within 

the status section to ensure that no function was carried out without its prerequisite 

functions being met. This ensured that, for example, the system would not attempt 

to acquire an image before the KUKA Robotic System had physically moved to its 

intended destination.  
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In Figure 3-19, we can see how the communication flow was established while 

updating status variables concurrently. 

 

Figure 3-19 Communication Processing Flow Diagram 

If at any point the communication between any devices fails, the system comes to 

a complete emergency stop while the system attempts to re-establish 

communication with the device. 
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In Figure 3-20, the image-processing flow diagram is depicted, which returns a 

processed image from the Basler Camera system on board the end effector. 

 

Figure 3-20 Image processing Flow Diagram 
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Figure 3-21 shows the process that the system follows when the server requests 

to take over real-time control of the Robotic System. 

 

Figure 3-21 RSI Processing Flow Diagram 

If any of the systems do not reply within the sensor cycle rate, the connection is 

automatically closed, and the Robotic System comes to a complete halt. 
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Figure 3-22 shows the process followed when the system is required to automate 

a build. 

 

Figure 3-22 Automation Processing Flow Diagram 

It should be noted that the above diagram only depicts major processes. Minor 

processes do exist, such as pallet management using stop gates, sensors, etc.   

© Central University of Technology, Free State



70 
 

Figure 3-23 shows how the software is integrated and cooperates to achieve the 

final project goal. 

Overall Processing Control would submit requests to execute functions while the 

Status Variables acted as the middle-man for sharing data between each section. 

 

Figure 3-23 Overall Flow within Software 
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3.3.4 Image Processing Techniques 

Various image processing applications and techniques were used throughout the 

project. This included various open source libraries available for free online as well 

as software in high-end image processing cameras such as the Basler AG 

Industrial Camera. 

 

3.3.4.1 Basler Integration 

The Basler AG camera is integrated into the C# environment using the Basler Pylon 

plugin provided by Basler AG. This acquires pixel-based data which is stored in a 

byte array. It must be manually generated into a static image using a pixel algorithm 

loop. This is done by taking each pixel and setting the RGB value for each position 

given by the inputted width and height of the image. Figure 3-24 and 3-25 below 

shows how the image is stitched together. 

 

Figure 3-24 Pixel Creation A 

The pixel algorithm first places the byte data [RGB] in the specified horizontal 

manner (as above) and then downwards, layer by layer. For every 1392 

interactions of the horizontal placement, the process undergoes one vertical 

downward shift. The process then repeats itself as seen below. 
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Figure 3-25 Pixel Creation B 

Vertical columns are filled until the entire loop has completed the image creation. 

This process is only used to acquire the image correctly from the Basler camera 

system, after which it undergoes multiple processes to ensure the picture is 

processed correctly. 
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3.3.4.2 Region of Interest 

The Region of Interest (ROI) is a selected region within a dataset that is identified 

for a particular purpose. This area is usually where processing is done, or a specific 

item is identified. The entire region outside of this specified ROI is completely 

ignored and unprocessed. Figure 3-26 below shows the ROI used on the image. 

The red line indicates the ROI which fits directly around the pallet. 

 

Figure 3-26 Example of the region of interest placed around the pallet within the 
software. 

 

3.3.4.3 Calibration 

The ROI is calibrated carefully in conjunction with the KUKA Robot System 

alignment above the pallet. Accurate measurements using the visual processing 

requires a 1000x1000 pixel block that fits perfectly around the pallet. This perfect 

fit requires the KUKA Robot’s end effector to be set at a specific height. Imperfect 

fits would create errors in distance calculations.  

Calibration was done for both the Product pallet and the Design pallet. The pallets 

would stop at the same spot every time due to the stop gate placement, making 

calibration a one-time process for a single pallet on each side. All future pallets 

arriving at these points should maintain the calibration properties. 
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3.3.4.4 Distance Measurement 

Distance measurement techniques were applied on the acquired image to 

determine placement of the components. All distances were measured to the 

centre point of the pallet, which had a default coordinate of 0 and 0 on each axis 

respectively. The pixel-based measurements enabled calculation of the distance 

to each centre point of gravity using average pixel distance in an image. The region 

of interest block was fixed at 1000x1000 pixels and a coordinate system was 

created that could easily be related to real-world distances.  

The acquired image was fixed at 1392 x 1040. The pallets measured 16 cmx16 cm 

and a block sized 1000x1000 pixels could fit perfectly around the edge of the pallet, 

meaning that each pixel equates to 0.16 mm. These data values and the number 

of pixels between the centre point of the pallet and the components’ centre point of 

gravity, enabled calculation of the exact distance of the component from the centre 

of origin. 

The height of the camera is crucial to ensure accurate results. The KUKA Robot’s 

position above the pallet requires precise calibration. Figure 3-27 is a 

representation of pixels correlating to distance when doing distance measurement 

on an image. 

 

Figure 3-27 Image Distance Measurement Example (Not to scale)  
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Figure 3-28 Distance Measurement (Close up) 

As seen in Figure 3-28 above, the red line depicts the path that the KUKA Robotic 

System would move to align itself above the centre of gravity of the object. The 

number of pixels would be counted between these points, which correlates to the 

distance to be moved in the physical world. 

The red line depicted above shows the required movement, purely to calculate the 

number of pixels. In reality, the KUKA Robotic System would move in a more direct 

path as seen in Figure 3-29 below. This is due to the X and Y movements 

happening simultaneously.  

 

Figure 3-29 Distance Measurement (Direct Path) 
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3.3.4.5 Aforge.net 

Aforge.net is a C# framework designed for developers and researchers in the fields 

of Computer Vision and Artificial Intelligence. This includes sub-categories such as 

image processing, neural networks, genetic algorithms, machine learning and 

robotics. The platform comes with many features in each category to ease the task 

of developing new innovative systems.  

The system was implemented within this project taking up the role of image 

processing on all the acquired images. Using this diverse tool, many features could 

be extracted and processed from a single 2D-image. Features in the system 

included (but were not limited to) centre of gravity calculations, edge detection, 

template matching, blob detection, erosion filling and subtraction and addition 

algorithms. General image processing functions are also available in the platform 

such as invert functions, greyscale functions and thresholding. 

The system used blob detection to isolate different items on the pallet that were 

within the defined threshold, such as size and region of interest.  

Aforge.net is free to use and available online, making it a convenient tool for image 

processing in a budget-critical application. 
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3.3.4.5.1 Centre of Gravity 

Centre of gravity was a key factor when picking up objects. The centre of gravity 

can be defined as “a point from which the weight of a body or system may be 

considered to act.”  This valuable data was used as the best possible pick-up 

location on each object, enabling the KUKA Robotic System to maintain stability 

when moving components.  

The vacuum system for acquiring components required even weight distribution of 

the components to avoid detachment mid-transit. The centre of gravity was 

acquired using the method seen within section 2.2.5.8.  

Distance measurement was calculated to determine the best possible path to this 

point from the centre point of the pallet (one of the default reference points of the 

KUKA). Figure 3-30 shows this process taking place. 

 

Figure 3-30 Example of the system applying multiple processes to an acquired image 

The green line layered over the image indicates the path that the KUKA Robotic 

System would need to follow to manoeuvre itself above the object to be picked up 

(or placed). In reality, the X and Y movements are carried out simultaneously, 

therefore a more direct path the centre of gravity is followed. 
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The circle representation as seen in Figure 3-31 below was a replica of the sucker 

size and positioning over the component when collecting the object. 

 

Figure 3-31 Centre of Pallet to Centre of Gravity preview 

As seen in Figure 3-32 below, the system returns the measurements from the 

centre of the pallet to the pickup location on the object which was the centre of 

gravity of the component. As the starting point for real-time control was the centre 

of the pallet, the exact distance to be fed into the real-time controller was 

established using the component’s centre of gravity. 

 

Figure 3-32 Raw data output of object location 

 

3.3.4.5.2 Raw and Central Moments 

Moments were used to return vital information about the object(s) in question 

during image processing on the pallet. This information included the centre point 

of the object as well as the orientation data. 

 

3.3.4.5.3 Edge Point 

Edge point detection was used to outline the perimeter of the component and 

clearly visualize the component detected. It also clearly distinguished the 

component from other unique components within the processed image. As the 

component pallets were using a white base, while the components were black, their 

edge point perimeter was easily detected by the camera system, assuming the 

system was adequately lit and correctly calibrated. 

  

© Central University of Technology, Free State



79 
 

3.3.4.5.4 Erosion 

Erosion filling techniques were implemented on all image processing to eliminate 

noise on the acquired image. Several factors caused erosion, such as external 

light, reflections and calibration issues. These issues appeared as white static on 

an image as seen in Figure 3-33 below. 

 

 

Figure 3-33 Raw Image with noise present 

As seen above, the screws are visibly affecting the output of the image due to the 

reflection of the metallic tip. Multiple erosion filter iterations patched the holes 

successfully as seen in Figure 3-34. Multiple solutions are available to contain this 

problem within image processing, but erosion was sufficient in this case. 
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Figure 3-34 Resultant Image after Erosion processing 

Almost 99% of the noise was eroded and only the object in question is detected. 

All subsequent noise was patched, improving the accuracy of the detection system. 

This ensured no false positives were detected within the image. To ensure the 

component itself was not eroded, a minimum threshold was set up in terms of 

component size.  In this case, the metallic tips were much smaller than the 

components used on the system. 
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3.3.4.5.5 Template Matching 

Template matching was required to compare orientation angles from blobs 

captured on the design pallet. For the correct template to be matched to the blob, 

the design blob is first compared to the values within the database such as area, 

corner features, etc. and when these values correspond to the current blob at hand, 

the correct template is referenced for calculating the orientation data. This ensured 

the component could be rotated correctly, as all the components on the component 

conveyor were placed at a default orientation of 90 degrees.  

On the design pallet end, the components were randomly placed, requiring 

orientation data calculation. The rotation of the actual KUKA Robotic from one 

conveyor to the next also had to be considered. The two conveyors were parallel 

to one another so work done on one end would be 180 degrees out of phase 

compared to work done on the opposite end. When the camera was also attached 

to the rotating KUKA Robot, this kept the components “in-sync” with the current 

job. Figure 3-35 shows two template examples created by the system. 

 

 

 

 

 

 

 

 

 

 

Figure 3-35 Example of two templates created by the system that is compared during 
operation 
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3.3.4.6 Accord.net 

Accord.net is an open source .NET library written in C# with audio and image 

processing capabilities. The complete framework contains tools for building 

production-grade computer vision, computer audition, signal processing and 

statistics applications including commercial application uses. Accord.net contained 

vital libraries for orientation calculations needed within the program that did not 

feature within the Aforge.net library, hence the use of this additional framework. 

The framework contains imaging functions such as raw and central moments 

required to impose an orientation on an image (or blob in this case). 

 

3.3.4.6.1 Orientation 

Calculating the orientation of a blob was vital for correct placement of the object. 

Once a blob was extracted from an image, it would need orientation data to 

accompany it for the component to be rotated correctly at the design pallet section. 

Orientation calculations were performed on an extracted blob from the design pallet 

section during the first learning cycle of a new build. This new orientation value 

joined the data regarding the blob. Note that a blob’s orientation is defined within 

180-degree cycles. This means that theoretically, if a component was rotated 180 

degrees, it would have the same orientation as previously seen.  

The solution to this problem was to create an image subtraction function that would 

take the default template (which is at 0 degrees), offset it by the difference between 

the blob extracted and the template in question and then perform a subtraction of 

the two images. If the result of the subtraction was not 0 or the image was not 99% 

similar (due to noise present at the time of image capturing), it would be obvious 

that the two objects were 180 degrees out of phase. The simple solution was to 

either add or subtract an additional 180 degrees dependant on the original angle. 

This would then allow the component to be rotated correctly as seen in the initial 

design. 
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3.3.5 Network System 

3.3.5.1 Overall Network 

The network system played an important communication role within the project. All 

systems were connected via Ethernet standard, while implementing the TCP/IP 

protocol. An industrial Siemens Ethernet switch was used for data switching with 

all sub-components connecting to this connectivity device. 

A general network overview can be seen in Figure 3-36 below, which depicts the 

network connectivity between all the devices used. 

 

Figure 3-36 Network Overview 
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3.3.5.2 PROFINET Connection 

A PROFINET connection is an industrial Ethernet connection protocol established 

between two industrial devices. Many services are distributed over a single 

Ethernet connection including: 

 Real-time communication 

 Distributed Field Devices 

 Drivers & Motion Control 

 Distributed Intelligence 

 Network Installation 

 IT Standards and Security 

 Safety 

 Automation Processing 

PROFINET allows for seamless integration of industrial devices to establish 

successful communication and setup. PROFINET was set up between the KUKA 

Robotic and the PLC for the two devices to share processing data with each other. 

Shared variables were set up across the two devices, each with its own read/write 

properties to pass on feedback data and control flow of the system. 
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3.3.5.3 TCP/IP 

A static TCP/IP system was implemented to bypass the need for a DHCP server. 

This allows consistent access to the same equipment via the same unique IP 

address, eliminating the problem of changing IP addresses due to DHCP leasing.  

Table 1 - Internet Protocol Device List 

Device IP Address 

Basler AG Camera 192.168.4.7 

Siemens S7-1200 PLC 192.168.4.8 

KUKA X66 Ethernet Port 192.168.4.10 

KUKA X66 Ethernet Port (Virtual) 192.168.2.10 

PC Adapter 192.168.4.11 

PC Adapter (Virtual) 192.168.2.11 

An IP address has two components, the network address and the host address. A 

subnet mask separates the IP address into the network and host address. 

Subnet masks were all set at 255.255.255.0 to ensure the last segment in the IP 

address was addressed as a host while the first three segments were addressed 

as the network. This is vital to ensure no cross-communication occurs between the 

virtual networks. 

Firewalls on all the systems were turned off to ensure no port blocking was present 

during communication. As this was a private network separate from the internet, 

no repercussions could be suffered from doing so. 

3.4 Conclusion 

This chapter contained a detailed overview of the techniques and design strategies 

implemented within the formation of this system. The various subsystems that were 

deployed to complete the overall objective was also covered, showing each 

process individually in detail. 
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4 Chapter 4: Results 

This chapter discusses a series of tests that were undertaken on the system to test 

its capabilities. The system was challenged through various experiments that 

would require it to build a “Design” in the quickest, most efficient manner possible. 

The speed and accuracy were recorded under different circumstances such as 

unique designs, similar components within the designs, etc. 

Comparisons were conducted between the manual procedure of configuring the 

KUKA Robotic System and the Automated Process that this study presents when 

introducing a new design on an existing assembly system. Factors such as ease 

of setup, time consumption and reliability were all considered while allowing leeway 

for the introduced system to thrive. 

Although the speed of picking and placing components is greatly reduced due to 

the real-time control of the KUKA Robotic System, movements between fixed 

points are still capable of running at 100% speed as these are fixed points within 

the KRL program on the KUKA Robotic System. 

All results are tabulated within this section in terms of speed (time) and accuracy 

with a discussion following these results. 
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4.1 Open Pallet Design 

Contrary to conventional methods, an open pallet design was used to 

accommodate any style or “object” on the system. This created a versatile system 

that could work with any object of any size (within the dimensions of the pallet) 

placed on the pallet. A fixed (moulded) designed pallet that can fit specific objects 

is beneficial in many scenarios, but this setup limits the flexibility of the system and 

therefore an open pallet design was best. 

A rubber mask was applied to the top of the pallet to ensure no movement of 

components during normal conveyor transit (general movement, sliding at stop 

motion on stop gates). Initially, components would slightly rotate (as all 

components are defaulted to 90 degrees on the component conveyor) which 

resulted in a slight offset when components were placed on the design pallet. The 

rubber mask layer corrected this issue, creating resistance to movement of the 

components. 

Figure 4-1 below shows an example of the open pallet design with a rubber mask 

layer applied to the surface. 

 

Figure 4-1 Open Pallet Design with Rubber Mask 
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4.1.1 Components Used 

For simplicity and proof-of-concept purposes, the designed components resembled 

random shapes distinguishable from one another using different surface areas and 

corner properties. These shapes, designed in CORELDrawX7, were laser cut out 

of 3 mm wood and referred to as components for the purpose of this study. The 

component pallets held multiple similar components, while the design pallet 

contained multiple uniquely designed components. 

The components were spray painted with a matt black finish to ensure easy 

detection on the pallet when the camera captures an image. 

Note that the components used were not of fundamental importance within this 

study. They were merely used as a gateway to prove the real-time concept using 

KUKA RSI and Image Processing. Figure 4-2 depicts the components used. 

 

Figure 4-2 Different style components used for testing purposes 

 

4.1.2 Configurations Used 

Similar component types were grouped together as a unit on the component pallet 

conveyor. This ensured that the system learned all the components available to 

the system in the most efficient manner possible. All components were initially 

placed at the same angle on the component pallet, from which a template would 

also be generated by the system and used later when detecting offset of 

components on the design pallet conveyor. Figure 4-3 depicts how the components 

were configured on the component pallets. This example only shows one of the 
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five components’ pallets. The remaining components are configured in a similar 

fashion. 

 

Figure 4-3 Example of component pallet configuration 

As seen in Figure 4-3 above, the components are all rotated to the same angle. 

This is required as the template is created from a single component within the 

overall image. If certain components were offset by a different angle, the resulting 

angle on the design pallet when placing the component would be incorrect. 

Various configurations of different components were used on the design pallets, 

ensuring complete randomness was maintained throughout for the system to 

determine new paths on every iteration of a build required. This allowed speed 

measurement recording and analysis of system accuracy in different build 

environments. Figure 4-4 depicts the different configurations used during testing 

on the design pallet. 
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Figure 4-4 Various configurations used one through six 

As seen in the figure above, these configurations had no fixed pattern and were 

set in random configurations for testing purposes. The system had no pre-

programmed positions regarding collection or placement of these randomly placed 

components, therefore requiring the real-time image processing and movement to 

access these components on the pallets. 

 

4.2 System Learning 

4.2.1 Introduction 

The system has no knowledge of any components or designs within its repository, 

therefore some sort of learning is initially required. The system is required to learn 

all the available components that can be used to build a new design on the 

component conveyor before starting to build.  

The system analyses each component pallet individually and proceeds to save all 

data regarding the design within the system database. Once a pallet has been 

scanned and saved, the stop gates trigger sending the pallet forward, allowing the 

next pallet to enter the scanning area. This process continues until the first 

component pallet returns to its initial position. This is confirmed by re-scanning the 

first pallet to confirm that the component type exists within the database. 
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Figure 4-5 shows an example of where the pallet scan takes place and the 

movement of the pallets along the component catalogue conveyor. 

 

Figure 4-5 Component Catalogue Conveyor 

Once all components are mastered on the catalogue conveyor, the system is fully 

prepared to redesign any design observed on the design conveyor, as long as the 

design pallet only contains components available within the component catalogue 

area. 

 

4.2.2 Processing 

Once a picture is acquired by the system, the picture is analysed and the resulting 

data stored within a database object. Only data within the region of interest is 

analysed and saved. Calculated data includes centre of gravity, number of corners, 

position relative to the centre of the pallet and area of the object. Each seen 

component is saved individually, from which an overall component pallet object is 

then created and identified. Due to lighting, results may differ in terms of area of 

the objects. When a component pallet is scanned, an average area of all the 

components is calculated as all component types are the same. This allows more 
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accurate detection of similar components on the design pallet end when rebuilding 

a design. The process is repeated for each new component pallet seen. Before 

adding any pallet to the database object, the system will first compare the incoming 

data with current data in the database, ensuring no data is duplicated. 

The area of the object and corner objects detected are used at certain thresholding 

levels to detect similar components. This implementation method was used for 

simplicity purposes and relates to the underlying study as any implementation 

option could be utilized. 

Figure 4-6 and Figure 4-7 depict the results received visually and the raw data 

when a picture is acquired. 

 

Figure 4-6 Image Processing complete on component pallet with centre points shown 

 

Figure 4-7 Raw data results from the image processing 
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As seen in Figure 4-7, the overall average area and corners are returned and 

saved. Each component’s individual distance from the centre point is also returned 

and used to manoeuvre the KUKA Robotic System in real-time. The KUKA Robotic 

System then carefully moves to pick up a specified component when required 

within the design. This process outlined above concludes the processes for 

creating a component pallet in the system. 

A similar process is carried out when learning a new design pallet. Instead of the 

system learning a unique component individually, a design pallet contains multiple 

unique components on one pallet that must be compared to the available learnt 

components outlined in the previous section. For the system to be able to rebuild 

the seen design, all components on the design pallet must be learnt beforehand 

on the component conveyor and be available for use. 

Once these pre-requisites are met, the system will process the design pallet, 

creating a data object revolving around this newly learnt design pallet. Each 

component is compared using area, corners and template matching to the 

component pallets and when matched, are added to the new design pallet object. 

If a match is not found for a component within the design, an error is returned, and 

the process is terminated. 

Figures 4-8 and 4-9 show the results after image processing takes place at the 

design pallet conveyor. Figure 4-8 shows the first configuration for demonstration 

purposes. 

 

Figure 4-8 Image Processing complete on design pallet with centre points shown 
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Figure 4-9 Results feedback with angle difference shown and component ID 

As seen above in Figure 4-9, the system outputs the angle difference compared to 

the template, which is captured when processing the component conveyor 

components. A template match error occurs and the system compensates by 

adding -180 degrees to ensure correct placement on the design conveyor. This is 

found by rotating the component to the nominal 90-degree template image format 

and subtracting it from the template. If the result is not a 99% match, a template 

match error occurs, and 180 or -180 degrees is added to the current angle, as the 

component is out of phase by 180 degrees. Whether the angle added is positive or 

negative is based on the initial angle result calculated by the system (offset from 

90 degrees). 

Once the process is complete, the system saves the data within an overall object 

and a design ID is assigned. The system now has all the data required to rebuild 

the seen design. 

The data required to build a seen design includes (for each component on the 

design pallet): 

 Component ID (matching component seen on component conveyor) 

 Centre of gravity 

 Number of corners 

 Distance on X and Y axes to centre point of pallet. 

This data is captured within an overall design object, referencing the seen object’s 

ID generated by the system when learning the components for the first time.  
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4.3 System Building 

The system is ready to rebuild a seen design once: 

 All components have been learnt on the component conveyor. 

 The required build has been seen (and learnt) on the design conveyor and 

the data has been saved on the system. 

 An empty pallet is presented to the system on the design conveyor. 

The system has the option to either rebuild the previous seen design or build a 

specific design decided by the end operator (providing that there is more than one 

seen design).  

This process involves searching for the required component on the component 

conveyor. Once found, the system moves the KUKA Robot to the pickup location 

where real-time control is activated and the system takes full control of the KUKA 

Robot’s movement. The system manoeuvres the end effector to the component’s 

centre of gravity to safely pick it up. Once above the component (motion complete 

on the X and Y axes), the system will then move on the Z-axis, 63mm in a 

downwards motion until the end effector is flush with the required component. The 

sucker system then activates, picking up the component and attaching it to the 

KUKA end effector. 

Real-time control deactivates at this point and pre-programmed settings move the 

KUKA Robot over the empty pallet on the design conveyor. Once the KUKA Robot 

is confirmed in position above the empty pallet, real-time control is reactivated. The 

system uses data captured during the design pallet learning phase to place the 

component in the same manner as it was learnt. This involves navigating the KUKA 

Robot to the centre point of the previously seen component and then rotating it to 

match the component design offset. 

 

4.3.1 Step-by-step procedure 

In the example to follow, the system has no knowledge of any component of design. 

The following step-by-step procedure will be demonstrated using the first test 

configuration. 
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The system will start by learning all the components available on the component 

conveyor individually, while saving all associated data within the pallet’s object. 

The system moves each conveyor after each pallet completes the learning 

process.  

Figure 4-10 depicts the KUKA Robotic System learning a component pallet. The 

pallet is bright due to the active lighting system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10 Component Conveyor - KUKA Robotic scans pallet to learn items 

 

Figure 4-11 shows the data returned via console for every component pallet learnt. 

All data regarding the components learnt can be seen here. 
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Figure 4-11 Data returned after learning the first component pallet. 

As seen in Figure 4-11, each component pallet is learned individually, and all the 

respective data is presented through the console. The total area of the object, the 

corners (using Graham Scan, contour calculation) and the total number of objects 

on the pallet with their respective positions and the distance from the centre of the 

pallet can be seen. A template is then saved of this component and an ID is 

assigned. This process continues until all pallets on the conveyor have been 

scanned. 
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Figure 4-12 shows the initial component learning process being completed. 

 

Figure 4-12 First component pallet arrives back at the scanning point 

The system shows that the initial pallet that was scanned has returned, therefore 

all the pallets have been scanned. 

Now that all the components have been learnt, the system is ready to learn its first 

design. As stated previously, the brightness is due to the active lighting system 

during image capturing. 

 

Figure 4-13 System learning a new design to rebuild 
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Figure 4-14 Data returned from learning the design pallet with matches found 

 

Each component match can be seen within the console feedback, with the 

respective ID match including the angle difference to the template. 
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Figure 4-15 First design learnt by the system 

Now that the presented design has been learnt successfully, the system is 

presented with an empty pallet and begins to build the previously seen design. The 

KUKA Robot will return to the component conveyor to search for the component(s) 

required to build the design (as the system has confirmed that they exist on the 

component conveyor). 

Figure 4-16 below shows a component compared to the template within the 

system. As seen in the subtraction, the match is nearly 99% when the subtraction 

takes place. In the design block, the top component on the design pallet is being 

compared. 

 

Figure 4-16 Visual Comparison of a design component to the learnt components 
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Figure 4-17 depicts the system finding the component on the component conveyor 

and activating real-time control to pick up the specified component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-17 Example of the system finding a component and preparing for collection 

Now that KUKA RSI is activated, the system has full real-time control over the 

KUKA Robotic System. The KUKA Status section, as seen in Figure 4-18 below, 

shows the actual position of the KUKA Robotic System as well as the target 

location. This is in reference to the Base Coordinate system.  
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Figure 4-18 KUKA Status, returned by the KUKA RSI System 

 

Figure 4-19 shows the component collected in real-time from the component 

conveyor (left) and placed on the empty design pallet (right). The component is 

placed with reference to the design that is seen in Figure 4-15. 

 

Figure 4-19 Example of the first component being picked up and placed on the design 
conveyor 

Figure 4-20 below shows the feedback from console that the component has been 

successfully placed, along with all the references to the component in the system. 

Figure 4-20 Console feedback of the process completing successfully 
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The same process repeats for each design component. The design pallet is 

populated with each pick and place iteration. Figures 4-21 and 4-22 show this 

process step-by-step. 

 

Figure 4-21 Pick and Place of first configuration A 
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Figure 4-22 Pick and Place of first configuration B 

The accuracy and speed of the system is determined by how well the system is 

calibrated. This is due to initial offsets from where the KUKA Robotic systems pre-

programmed locations are and the camera’s ability to accurately detect the 

distances from the centre point of the pallet to the objects placed on the pallet. The 

KUKA Robot’s speed was limited to 50% because of its unstable supporting 

structure by not being bolted to the floor (limited support was available in test 

environment). As speed increases, vibrations around the system also increases, 

which would affect the stability of the system. If the system was bolted to the floor, 

the speed could be significantly increased.  
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4.4 Speed and Accuracy 

4.4.1  Introduction 

This section covers the speed and accuracy of the system with all results tabulated. 

All results were recorded completely automatically. The system’s feedback 

regarding positions and time were used. Initially, the system returns all the 

components on the design pallet with their relative positions. Once the system 

rebuilt the required design, an additional scan was done, with the system returning 

the new positions (after build) of the newly placed components. These results help 

determine the difference between before and after and overall accuracy as shown 

below. 

Time was also recorded using the internal timing of the system for accurate results. 

All components have a “number” and an “ID”. The number represents the physical 

component number (irrespective of design) that the system is working on, while the 

ID refers to the internal design ID allocated to the design by the system.  

In all cases, there would be at least two of the same component design, therefore 

the same ID number might appear twice. The system assigns IDs as they are 

learnt, meaning no ID equates to a certain “design of component”. It solely depends 

on the order in which they were learnt. Components that have angles of 0° present 

in the tables below means the component was a circle, therefore no angle is 

considered. Placing this component in any direction does not affect the outcome.  
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4.4.6 Results from the fifth pallet configuration 
Table 10 - Raw Results for the fifth configuration 

Fifth Pallet Configuration 

Component Before After Difference 

Number ID X(mm) Y(mm) Angle(◦) X(mm) Y(mm) Angle(◦) X(mm) Y(mm) Angle(◦) 

1 0 -35.9079101 -14.0068994 72.24586 -32.965415 -16.22049 72.5592 2.9424951 2.213591 0.31334 

2 0 -26.17765625 24.05897461 -62.10514 -25.078926 22.488701 -60.9802 1.0987303 1.570274 1.12494 

3 1 29.11233398 -30.8868212 57.67874 29.564746 -32.49792 56.70877 0.452412 1.611099 0.96997 

4 2 11.09193359 48.52538086 -81.56414 12.756025 51.216806 -81.4995 1.6640914 2.691425 0.06464 

5 3 26.89583984 7.157392578 41.44555 26.558798 8.5044531 40.07979 0.3370418 1.347061 1.36576 

6 4 -22.5604785 -55.539396 0 -18.33593 -56.89244 0 4.2245485 1.353044 0 

Overall Average       1.7865532 1.797749 0.639775 

Time is calculated for Pick & Place from the moment the KUKA Robotic System re-scans the component conveyor pallet (with a 

positive match) to the point where RSI is deactivated after placing the component (the point where the real-time control ends). 

Table 11 - Timing results for configuration five 

Number ID Objective Time 

  Learn Design 2.75s 

1 0 *Pick and Place 1 57.23s 

2 0 *Pick and Place 2 56.63s 

3 1 *Pick and Place 3 56.17s 

4 2 *Pick and Place 4 59.54s 

5 3 *Pick and Place 5 54.53s 

6 4 *Pick and Place 6 55.66s 

*Recalculation of the component pallet is done before pickup for safety in case objects shift (time includes this).  

© Central University of Technology, Free State



© Central University of Technology, Free State



112 
 

4.5 Results Discussion 

The tables seen above give a clear representation of the system’s capability in 

terms of accuracy and speed. Table 14 and 15 below are a summary of the results 

above to indicate overall accuracy and time. 

Table 14 - Overall average accuracy results based on all builds 

Build X (mm) Y(mm) Angle(°) 

1 1.7810555 1.391437 0.36042 

2 2.6764228 1.134341 1.159303 

3 1.3676975 1.421224 0.799562 

4 1.5639524 1.54429 0.774123 

5 1.7865532 1.797749 0.639775 

6 1.289422 0.904378 0.965501 

Overall Average 1.7441839 1.365569 0.783114 
 

Table 15 - Overall average time results based on all builds 

Build Time Taken(s) 

1 342.54 

2 340.94 

3 342 

4 334.6 

5 342.51 

6 341.01 

Overall Average 340.6 

 

The system achieved an average of within 1.74mm of the X-axis and within 

1.37mm on the Y-axis. The angle of placement of the components achieved a more 

desirable average of within 0.78°. The system was calibrated to the best possible 

level, but theoretically, if an even more accurate calibration is achieved, the system 

could certainly improve on these averages. Many factors could affect calibration, 

such as movement of the system, camera accuracy (focus, lens), etc. 

The system’s speed was also excellent, taking an average of 5.67 minutes to learn 

a design and rebuild it into the correct configuration. This is beneficial in 

environments where constant unique pick and placing tasks are required, saving 

reprogramming time. The system can immediately rebuild the seen design quickly, 

without needing any changes to the software. This time included the learning of the 

new design as well as picking and placing six components from the component 

conveyor over to the design conveyor based on the required configuration. 
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The KUKA Robotic system was limited to 50% of its maximum capable speed to 

maintain stability. At speeds greater than 50% in the project environment, 

vibrations from the quick movement of the KUKA Robotic System would influence 

calibration settings as the system was not fixed/bolted into the ground (not possible 

in test environment). Theoretically, the average build time achieved could be 

reduced if the system is implemented in a more stable environment. This would 

only increase the speed of movements between the component and design 

conveyor and not the speed of the real-time control (picking and placing 

components) as this was already set at the maximum stable speed. 

As discussed in Chapter 3, RSI can only move the KUKA Robot a maximum 

distance within one IPOC cycle, otherwise the KUKA Robot responds with a jerking 

motion trying to move over a greater distance within a smaller time frame. The most 

optimal distance was determined using trial and error (to maintain stability at the 

highest possible moving distance). The optimal distance per IPOC-cycle was 

0.05mm within every 4ms. This resulted in smooth movement when using real-

time control on the system. 

Overall, the system performed optimally and completed all given tasks without any 

issues. The system’s accuracy and speed were impressive with “everyday” 

calibration in a changing environment. If the system could be calibrated to 

perfection, the results could be even more impressive. 

4.6 Conclusion 

This chapter discussed a series of tests that were undertaken on the system to test 

its capabilities. The system was challenged through various experiments that 

would require it to build a “Design” in the quickest, most efficient manner possible. 

The speed and accuracy were recorded under different circumstances with all 

these results being tabulated for an easier overview of the results obtained. 
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5 Chapter 5: Conclusion 

This chapter summarizes the project and revisits the research goals and objectives 

of the study. This chapter also covers contributions made and implementation 

options using this system. Future work will also be discussed. 

 

5.1 Summary 

Chapter 1 introduced the project and gave background to the study’s intentions, 

including the problem statement, the hypothesis and the specific objectives of the 

project. The proposed layout and system overview was also covered in this 

chapter. 

Chapter 2 presented a literature study conducted to gain knowledge on flexible 

manufacturing systems while also reviewing concepts required to carry out the 

study, including required image processing techniques and hardware. 

Chapter 3 covered methods and implementation options available and used within 

the study to achieve the goal. It covered more detail regarding concepts used and 

their implementation to create the proposed system. 

Chapter 4 shows how the system was tested and how the objectives laid out in the 

beginning were achieved. Results presented in this chapter indicated how the 

system performed and the system’s accuracy and speed were captured and 

analysed. 

 

5.2 Research Goals and Objectives 

The main aim and goal of the study was to use a visually aided system that can 

learn new product designs in real-time, allowing the KUKA Robotic System to 

adjust accordingly without needing manual reconfiguration. Real-time control of the 

KUKA with the RSI subsystem using data from the visually aided system can 

increase production output of newly introduced products, while also having 

alternative implementation options. 
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5.3 Contributions 

The project delivered the following contributions: 

5.3.1 Solution to new product introduction 

As previously discussed, when new products are introduced on existing assembly 

lines, a reconfiguration is sometimes necessary to handle the new product’s needs. 

The proposed system could adapt in real-time with image processing and real-time 

control of the KUKA Robotic System without requiring any manual reconfiguration 

via human intervention. 

 

5.3.2 Smart Pick and Placer 

A smart pick and placer could be implemented on a factory floor where changing 

items on an existing assembly system need to be relocated from one pallet to 

another (or to a different assembly line), i.e. there are no “fixed” locations of the 

incoming product. This could save costs when changing the uses of an existing 

line as no reconfiguration would be necessary in terms of pallet design or 

programming. (An open pallet design is used within this study, no fixed positions). 

 

5.3.3 Implementation option for KUKA RSI 

KUKA RSI is an extremely useful package as an extra option within a KUKA 

Robotic System, but unfortunately has had limited amount of studies involving it. 

This study presents a documented application for usage with this system, allowing 

future work within this line to be referenced to this study. 

 

5.3.4 Engine for C# - RSI Integration with visual capabilities 

During this study, custom software was developed by integrating C# with KUKA 

RSI as well as C# directly to Siemens S7-1200 PLC. This software also includes 

Open Source image processing applications such as Aforge.net and Accord.net. 

This software contains an all-in-one system that can be used for many different 

applications in the future. 
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5.4 Future Work 

5.4.1 RGB-D Camera 

The system currently cannot detect depth data so the Z-axis was fixed a certain 

distance from the pallet. This limited the system to picking up items of the same 

height. However, if an RGB-D camera was added for depth detection,, the system 

would be able to pick up any component of any height, as the system would know 

exactly how low to manoeuvre the KUKA Robotic System. 

 

5.4.2 Improvement on Accuracy and Speed 

As stated before, more accurate calibration would improve accuracy when picking 

and placing components. Another factor that could’ve lead to small inaccuracies 

was the height from which the component was released by the suction gripper. 

This was due to the entire system not being completely square as the surface of 

the floor was slightly skew. This resulted in having the component being released 

flush on one end of the pallet and slightly higher on the other end.  Accurate 

calibration was not always possible (due to environmental conditions) but complete 

isolation of the project and more controlled factors (such as lighting, fixing the 

system to a solid surface) could be introduced to improve accuracy and speed and 

eliminate any differences entirely. 

 

5.5 Conclusion 

The aim of the study was to develop a self-learning product assembly system using 

a visually aided system. The system was required to learn a design on the design 

conveyor and then rebuild this “seen” design from a component conveyor 

catalogue. This required a real-time system implementation on the KUKA Robotic 

System, namely RSI. Digital Image processing was used to detect the design and 

process all calculations required for movement of the system to rebuild it. 

Image processing was first done detecting various objects and calculating all 

relevant data for collecting and placing objects, such as centres of gravity, erosion 

techniques and angle of components. Positions were also calculated relative to the 

centre of the pallets (starting point for real-time control). 
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Real-time control directly into the KUKA Robotic System from C# was then set up 

for the system to move independently from the KRL Programming on the KUKA 

Robotic System. 

C#, PLC and KUKA Robotic System communication was then established to 

enable accurate system flow such as movement of the components around the 

component conveyor system. 

The system was then thoroughly tested for accuracy and speed. Six different pallet 

configurations were created (at random) for the system to rebuild using the 

components on the component conveyor. The main prerequisite for the design 

configurations was that the build design had to be constructed from components 

available to the system on the component conveyor. These results helped 

determine the accuracy and speed of the system and in turn, the success of the 

project. 

There is limited to no other previous studies to draw upon with regards to this 

research project thus comparisons and benchmarks to similar systems could not 

be carried out. 
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Appendix A – PLC Report 
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Appendix B – KUKA Code 

 

DEF  MainMasterRSI ( ) 

 

; Declaration of RSI variables 

DECL INT ret   ; Return value for RSI commands 

DECL INT CONTID   ; ContainerID 

 

   ;FOLD INI;%{PE} 

      ;FOLD BASISTECH INI 

         GLOBAL INTERRUPT DECL 3 WHEN $STOPMESS==TRUE DO IR_STOPM ( ) 

         INTERRUPT ON 3  

         BAS (#INITMOV,0 ) 

      ;ENDFOLD (BASISTECH INI) 

      ;FOLD USER INI 

         ;Make your modifications here 

          

      ;ENDFOLD (USER INI) 

   ;ENDFOLD (INI) 

    

   ;FOLD PTP HOME  Vel= 100 % DEFAULT;%{PE}%MKUKATPBASIS,%CMOVE,%VPTP,%P 1:PTP, 

2:HOME, 3:, 5:100, 7:DEFAULT 

      $BWDSTART = FALSE 

      PDAT_ACT=PDEFAULT 

      FDAT_ACT=FHOME 

      BAS (#PTP_PARAMS,100 ) 

      $H_POS=XHOME 

      PTP  XHOME 

   ;ENDFOLD 

 

;FOLD INITIALIZE RSI AND BITS 

;======================= 

;RESET OUT BITS! 

;======================= 

$OUT[99] = FALSE 

$OUT[100] = FALSE 

$OUT[101] = FALSE 

$OUT[102] = FALSE 

$OUT[103] = FALSE 

$OUT[104] = FALSE 

 

;============================= 

;CREATE RSI CONTEXT TO USE RSI! 

;============================= 

ret = RSI_CREATE("RSI_Ethernet.rsi",CONTID,TRUE) 

IF (ret <> RSIOK) THEN 

  HALT 
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ENDIF 

;========================== 

;SET DEFAULT BASE AND TOOL 

;========================== 

$BASE = BASE_DATA[1] 

$TOOL = TOOL_DATA[1] 

 

;ENDFOLD 

 

;FOLD START POSITION 

;===================== 

;GO TO Start Position 

;===================== 

StartPos() 

;ENDFOLD 

 

;START MAIN LOOP 

LOOP 

 

;FOLD Position Control 

 

;FOLD Position PRODUCT 

if ($IN[1] == TRUE) THEN  

   $BASE = BASE_DATA[2]    

   PTP {A1 -73.85, A2 -65.80, A3 75.99, A4 -4.95, A5 74.53, A6 -50.02} 

   $OUT[100] = TRUE 

   WAIT SEC 0.5 

   $OUT[100] = FALSE 

ENDIF 

;ENDFOLD 

 

;FOLD POSITION PRODUCT SUCK 

if ($IN[2] == TRUE) THEN  

   $BASE = BASE_DATA[2]    

   PTP {A1 -92.47, A2 -51.55, A3 97.82, A4 0.50, A5 37.76, A6 -71.55} 

   $OUT[101] = TRUE 

   WAIT SEC 0.5 

   $OUT[101] = FALSE 

ENDIF 

;ENDFOLD 

 

;FOLD POSITION DESIGN 

if ($IN[3] == TRUE) THEN  

   $BASE = BASE_DATA[1]    

   PTP {A1 105.70, A2 -69.12, A3 79.25, A4 -3.10, A5 73.54, A6 -50.20} 

   $OUT[102] = TRUE 

   WAIT SEC 0.5 

   $OUT[102] = FALSE  
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ENDIF 

;ENDFOLD 

 

;FOLD DESIGN SUCK 

if ($IN[4] == TRUE) THEN 

   $BASE = BASE_DATA[1] 

   PTP {A1 87.89, A2 -53.20, A3 100.70, A4 0.11, A5 37.57, A6 -70.51} 

   $OUT[103] = TRUE 

   WAIT SEC 0.5 

   $OUT[103] = FALSE 

ENDIF 

;ENDFOLD 

 

;FOLD START POS (RESET) 

if ($IN[8] == TRUE) THEN 

$BASE = BASE_DATA[1] 

StartPos() 

ENDIF 

;ENDFOLD 

 

;ENDFOLD 

 

;FOLD SUCKER ACTIVATE/DEACTIVATE 

if ($IN[5] == TRUE) THEN 

   $OUT[104] = FALSE 

   $OUT[105] = TRUE 

   else 

   $OUT[104] = TRUE 

   $OUT[105] = FALSE 

ENDIF 

;ENDFOLD 

 

;FOLD RSI Processing 

 

;FOLD RSI for Design 

;LET RSI TAKE OVER CONTROL WHEN TRUE (for Design Area) (BASE 1) 

if ($IN[6] == TRUE) THEN    

 

   $BASE = BASE_DATA[1] 

    

   ret = RSI_ON(#RELATIVE) 

   IF (ret <> RSIOK) THEN 

    HALT 

   ENDIF 

 

   ; Sensor guided movement 

   RSI_MOVECORR() 
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   ; Turn off RSI  

   ret = RSI_OFF() 

   IF (ret <> RSIOK) THEN 

    HALT 

   ENDIF 

 

ENDIF 

;ENDFOLD 

 

;FOLD RSI FOR PRODUCT 

;LET RSI TAKE OVER CONTROL WHEN TRUE (for PRODUCT Area) (BASE 2) 

if ($IN[7] == TRUE) THEN    

 

   $BASE = BASE_DATA[2] 

    

   ret = RSI_ON(#RELATIVE) 

   IF (ret <> RSIOK) THEN 

    HALT 

   ENDIF 

 

   ; Sensor guided movement 

   RSI_MOVECORR() 

 

   ; Turn off RSI  

   ret = RSI_OFF() 

   IF (ret <> RSIOK) THEN 

    HALT 

   ENDIF 

 

ENDIF 

;ENDFOLD 

 

;ENDFOLD 

 

ENDLOOP  

 

 

   ;FOLD PTP HOME  Vel= 100 % DEFAULT;%{PE}%MKUKATPBASIS,%CMOVE,%VPTP,%P 1:PTP, 

2:HOME, 3:, 5:100, 7:DEFAULT 

      $BWDSTART = FALSE 

      PDAT_ACT=PDEFAULT 

      FDAT_ACT=FHOME 

      BAS (#PTP_PARAMS,100 ) 

      $H_POS=XHOME 

      PTP  XHOME 

   ;ENDFOLD 

END 
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DEF StartPos() 

PTP {A1 0, A2 -90, A3 90, A4 0, A5 83, A6 -68} 

$OUT[99] = TRUE 

WAIT SEC 0.5 

$OUT[99] = FALSE 

END 
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Appendix C – C# Code and Videos 

The code for the overall C# project, as well as videos of the project can be found 

on the CD. 
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