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ABSTRACT 

The high strain rate behaviour and the impact toughness of Direct Metal Laser Sintering 

(DMLS) produced Ti6Al4V (ELI) parts were investigated. The as-built (AB) specimens were 

also taken through stress-relieving heat treatment and are hereinafter referred to as SR samples 

or specimens. 

The high strain rate deformation of the two forms of the alloy (AB and SR) was studied using 

the Split Hopkinson Pressure Bar (SHPB) test, in compression and tension. Two high strain 

rates of 400 s-1 and 700 s-1 in compression and 250 s-1 and 360 s-1 in tension were used in these 

tests. The test results were used to investigate the relative strain rate dependence of flow 

stresses and fracture strain. Microstructural analysis was carried out to study the dominant 

fracture mechanisms on the deformed surfaces of the compression and tensile test samples 

using optical and scanning electron microscopy. Measurements of Vickers microhardness for 

the test samples were taken before and after the compression and tensile tests. The results of 

the high rate tensile and compression tests showed significant strain rate sensitivity in both 

compression and tension. Moreover, the rate sensitivity was seen to be relatively higher in the 

SR samples than in the AB samples. Microstructural analysis of the tested specimens showed 

that adiabatic shear bands dominated the deformed surfaces in the compression test samples. 

Multiple cracks that were more pronounced on the surfaces of the tested specimens were seen 

to initiate randomly on the deformed surfaces of the tensile test samples. The Vickers 

microhardness of the tested samples were observed to be higher for loaded specimens than for 

the unloaded specimens. 

The impact properties of the AB and SR DMLS Ti6Al4V (ELI) specimens were studied using 

an instrumented Charpy impact tester. The transition curves for the absorbed energy and lateral 

expansion were obtained by performing the experiments in the temperature range 130 ºC to 

250 ºC. The effect of the orientation of the v-notch on the standard test specimen with relation 

to the base plate of the DMLS machine was investigated. Furthermore, the effects of stress-

relieving heat treatment on the notch toughness of DMLS Ti6Al4V (ELI) specimens was also 

studied. The analysis of the fracture surfaces resulting from the tests at various temperatures 

was done using a scanning electron microscope (SEM). The values of absorbed energy and the 

lateral expansion of the specimens that were determined from this series of tests indicated that 

specimens built with the v-notch facing the base plate of the DMLS machine had better impact 

toughness and notch ductility in comparison to those built with the v-notch facing away from 
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the base plate over most of the temperature range of testing. Besides improving toughness, 

stress-relieving heat treatment gave rise to a shift of the ductile-to-brittle transition 

temperatures (DBTT) to lower values. The study further established that the DMLS Ti6Al4V 

(ELI) retains appreciable notch toughness even at sub-zero temperatures.   
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CHAPTER 1 – BACKGROUND  

1.1 Introduction 

The needs from the markets to produce high-performance products with low lead times and 

more customized production are increasing every day. This has stimulated the development of 

new manufacturing techniques. One upcoming technique is the use of additive manufacturing 

(AM) to create dense, complex composite, metal and alloy components.  In the year 2010, a 

group of companies led by Materialise (Materialise 2010) formed a cluster to conduct collective 

marketing for AM. The cover story for an issue of the U.K. magazine at the time, The 

Economist (2011), highlighted the potential of AM as a revolutionary manufacturing 

technology. However, there are gaps to this day in the understanding of how these AM-built 

materials behave with respect to their mechanical performance, such as in high stain rate. 

Whilst this study focuses on the mechanical performance of AM-produced Ti6Al4V (extra low 

interstitial-ELI), this introductory chapter briefly discusses additive manufacturing in general, 

as well as occurrences, extraction and uses of titanium and its alloys. 

The AM technology represents a variety of processes in which any complex geometry can be 

processed from a 3D computer-aided design (CAD) model (Huang et al. 2013). AM enables 

production of custom-made geometries which are often impossible or too costly to manufacture 

using conventional methods (Wohlers 2014). Optimization of parts for maximum strength-to-

weight ratio is one of the applications of AM technology that has a major importance in design 

of aircraft systems (Rafi et al. 2013). 

AM is a layer-by-layer-based process also popularly known as 3D printing or freeform 

fabrication. It finds use in rapid manufacturing and rapid prototyping. The freedom of design 

that opens up when using AM allows for creation of designs impossible or very costly to 

manufacture with conventional manufacturing methods that are subtractive and therefore 

wasteful of materials (Karlsson 2015). The most common AM category for metals is Laser 

Powder Bed Fusion (LPBF) which is utilized in both Electron Beam Melting (EBM) and 

Selective Laser Melting (SLM). Direct Metal Laser Sintering (DMLS) is the specific SLM 

technology used in this study. The process starts with a 3D CAD design that is sliced up into 

thin cross-sections of specified thickness. In the DMLS machine a thin layer of powder is 

spread onto the build platform by a recoater blade (Carlstrom et al. 2013), after which a laser 

beam is focused on the powder to create a layer of fused metal by selectively fusing the powder 
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particles based on the data in the particular CAD layer. The process is repeated thereafter for 

other layers until the complete 3D product is made.  

1.2 Common Applications of Titanium and its Alloys 

1.2.1The Aerospace Industry 

The aerospace sector has been the major field of application of titanium materials (Ikuhiro et 

al. 2014), particularly in the engine and airframe systems where they comprise 36% and 7% of 

the materials used, respectively. In the USA, about 70% to 80% of all titanium requests are for 

the aerospace sector and the remainder for other industrial applications (Yang and Liu 1999). 

Titanium has a high specific strength of 0.216 N.m/Kg in comparison to steel and aluminium, 

with specific strength of 0.073 N.m/Kg and 0.17 N.m/Kg, respectively. Therefore, the primary 

reasons for using titanium in the aerospace industry are to reduce weight (primarily as a 

replacement for steel), reduce consumed space (in replacement of aluminium alloys), 

applications at high operating temperature (in replacement of aluminium where the stability 

of the alloy is not sufficient). Aluminium alloys with high specific strength are rarely used in 

aircraft engines because their strength drops sharply at temperatures of about 200 oC and above. 

The values of specific strength for titanium alloys deteriorate as the temperature rises, and are 

inferior to those of Ni-based alloys in the temperature range between 500 oC–600 oC, which is 

well above the application limit of 200 ºC for aluminium alloys (Boyer 1996). It is worth noting 

that the melting point of Titanium of 1668 oC is much higher than that of Aluminium of 660.3 

oC (Boyer 1996).  

1.2.2 The Automotive Industry 

The application of titanium materials in the automobile industry began with Formula 1 (F-1) 

racing car engine parts, primarily in the 1980s (Eisenberg 1998). However, due to the high cost 

of titanium alloys, their applications in automobiles have been restricted to racing and special-

purpose cars, despite the strong interest shown in these materials by the industry in terms of 

light weight and the attendant fuel-efficiency and performance (Eisenberg 1998). In recent 

years, however, titanium and its alloys have been actively used for a variety of automobile 

parts. A considerable number of titanium intake valves, the majority being made of the 

Ti6Al4V alloy, have been mounted in cars and motorcycles. In order to overcome the problem 

of low wear resistance of titanium alloys, parts that are exposed to wear loads are normally 

surface hardened (Faller and Froes 2001). 
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1.2.3 The Medical Industry 

Titanium alloys started gaining extensive usage in biomedical implants in the early 1970s. 

Their various forms and material specifications are described in literature, including ASTM 

and BS7252/ISO 5832 standards (Bombac et al. 2007). The use of titanium alloys as 

biomaterials has increased in time due to their relatively low elastic modulus, superior 

biocompatibility, high strength-to-weight ratio, and enhanced corrosion resistance when 

compared to conventional stainless steel and cobalt-chromium (Co-Cr) alloys. The 

commercially pure titanium (CP-Ti) and Ti6Al4V alloys are the most widely used titanium 

materials in the medical field. CP-Ti is used for dental implants and maxillofacial applications 

(Bombac et al. 2007). Nowadays, the applications of the Ti6Al4V alloy in the medical field 

include hip and knee prostheses, trauma fixation devices (nails, plates, screws, and wires), 

instruments, and dental implants. Cardiac valve prostheses, pacemakers, and artificial hearts 

are also made from titanium alloys (Elias et al. 2008). Due to its relatively poor wear resistance, 

the Ti6Al4V alloy is not suitable for applications of bearing surfaces, such as hip heads and 

femoral knee implants, without a coating of wear resistant material or surface treatment. Much 

research has shown that the elastic behaviour of α+β type alloys is not totally suitable for 

orthopaedic applications due to its high stiffness. (Kikuchi et al. 2006). For example, the α+β 

Ti6Al4V alloy has an elastic modulus around 110 GPa, while the elastic modulus of a cortical 

bone is close to 18 GPa (Parthasarathy et al. 2010). So, the use of this alloy as an implant 

causes inadequate load transfer from the implant device to the adjacent bone, which in turn 

results in degradation of the latter (He and Hagiwara 2006).  The ingrown bone (growing bones 

adjacent to the implant), which under loading will be subjected to strain, produces calcium 

(Jones 1998) and therefore formation of new bone. This phenomenon can be improved by 

increasing load transfer through, for instance, decreasing the stiffness of the implant. It has also 

been established that vanadium is toxic to the human body and its presence in the alloy 

therefore poses a potential health risk. This is the reason behind the development of β alloys, 

free of vanadium, such as Ti6Al7Nb and Ti5Al2.5Fe (Bombac et al. 2007). 

Whilst application of Ti6Al4V in the medical field is predominately at low to moderate strain 

rates and temperatures, its use in the aerospace and automobile sectors does expose the alloy 

to conditions of high strain rate.  Therefore, investigation of the response of the Direct Metal 

Laser Sintering (DMLS) alloy at high strain rates as well as possible variation of impact 

energy/toughness with changes in temperature will broaden the understanding of the alloy for 

application in both these two sectors.  
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The behaviour of metals and alloys during plastic deformation is complex and changes with 

processing parameters, such as strain rate and temperature. It has been reported that in most 

metals and alloys, thermal softening occurs rapidly at high strain rates (Wulf 1976, Lee et al. 

1995). In a series of experiments carried out in order to investigate the high strain rate 

deformation behaviour of wrought and cast Ti6Al4V alloys under conditions of dynamic 

compressive loading, it was demonstrated that the flow behaviour of the material is sensitive 

to strain rate. For a given value of true strain, the rate sensitivity (flow stress) was seen to 

increase gradually with strain rate (Semiatin et al. 1997, Yatnalkar 2010). Wulf 1976, Lee et 

al. 1995, Semiatin et al. 1997 and Yatnalkar 2010 have indicated that failure during high strain 

rate deformation of conventional (wrought and cast) Ti6Al4V occurs within the adiabatic shear 

bands. Deformation at high temperatures, on the other hand, is associated with increase in 

toughness/ductility and a drop in strength while very low temperatures lead to a decrease in 

ductility arising from the phenomenon of the ductile-to-brittle transition temperature (DBTT).  

1.3 Problem Statement  

Ti6Al4V is by far the most commonly used titanium alloy. It represents about 45% of the 

consumption of titanium used in industry. It is considered in any application where a 

combination of high strength at low to moderate temperatures, light weight and excellent 

corrosion resistance are required (McQueen 1988). Some of the many applications where this 

alloy has been used include aircraft turbine engine components, aircraft structural components, 

aerospace fasteners; high-performance automotive parts, marine applications, medical devices, 

and sports equipment (Leyens and Peters 2003). Ti6Al4V alloy for use in medical and 

aerospace sectors is presently being processed using advanced powder manufacturing methods, 

such as AM and metal injection moulding (MIM). This is because of the associated benefits, 

such as flexibility of design, reduction of wastage and opportunity to manufacture complex and 

customized products. One problem with the AM process, particularly laser powder bed fusion 

(LPBF), such as the DMLS process, arises due to the short laser–powder interaction time and 

accompanying high localized heating and subsequent rapid cooling, which lead to creation of 

thermal gradients during the process. The result of this is a build-up of thermal stresses in 

manufactured components. These parts are normally stress relieved to reduce the thermal stress 

generated during fabrication. Moreover, non-optimal scan parameters may cause melt pool 

instabilities which lead to increased porosity (Hollander et al. 2003). The mechanical properties 

of DMLS parts do not only depend on the material composition, but more so on the 
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microstructures obtained and the presence of defects in the final products, which are influenced 

by the AM process parameters and manufacturing strategy (Simchi 2006, Yadroitsev 2007). 

Therefore, the mechanical properties of AM-produced Ti6Al4V differ from those of cast and 

wrought Ti6Al4V. For instance, the yield strength of wrought and cast Ti6Al4V (ELI) are 860 

MPa and 734 MPa, respectively, while that of the alloy produced through the DMLS process 

has been reported as 1075 MPa (Moletsane et al. 2016, Azam et al. 2018). The higher values 

of yield strength of the alloy produced through the DMLS process in this case is attributed to 

the resulting ἀ (acicular) martensitic microstructure due to the rapid cooling rate associated 

with the process. 

For the reasons detailed in the preceding paragraph, Ti6Al4V parts made through the DMLS 

process are expected to see increasing usage in the manufacture of aircraft turbine engine 

components, aircraft structural components, aerospace fasteners, high-performance automotive 

parts, marine applications, medical devices, and sports equipment. Therefore, it is imperative 

to discern how such manufactured parts respond under impact at different temperatures and in 

dynamic loading conditions. This will require a better understanding of the temperature and 

strain-rate-dependent aspects of the mechanical behaviour of these alloys and their dominant 

fracture mechanisms. This will be useful in determining the behaviour of the alloys in response 

to temperature changes and strain rates that are likely to be experienced in the actual service 

environment. The application of engineering materials ranges from low to high strain rates and 

falls within a wide range of temperatures.  Typical cases of high strain rate include car crashes, 

bird impacts on aeronautic structures at low altitude, as well as at high altitudes (low 

temperatures) and fan blade containment (containment of a fan blade within the fan blade 

containment casing, in the extremely unlikely event of a part or whole blade becoming 

detached) in the engine exposed to extremely high temperatures. Cases of low to moderate 

strain rates for medical implants include low velocity impact, sprinting and downhill running, 

and events of traumatic fracture.  It is known that engineering materials show different 

mechanical responses to different strain rates and temperatures (Wulf 1976, Lee and Lin 1998, 

Xue 2002). Presently there exists a dirth of data on the response of DMLS Ti6Al4V (ELI) to 

high strain rate loading. There is therefore a need to conduct studies focused on high strain rate 

response of the material of interest here, DMLS Ti6Al4V (ELI) (Biswas et al. 2011, 

Mohammadhosseini et al. 2015 and Peng et al. 2015). 
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Research output on the mechanical behaviour of DMLS fabricated Ti6Al4V (ELI) subjected 

to dynamic high strain rate loading as well as impact over a wide range of temperatures is 

lacking (Biswas et al. 2011, Mohammadhosseini et al. 2015 and Peng et al. 2015). There is a 

need, therefore, to investigate the mechanical properties as well as study the deformation 

mechanisms of the DMLS parts under high strain rate. Further study is necessary on the 

possible variation in the impact properties of the alloy over a wide range of temperatures. The 

outcomes of such study are expected to form a background for future development of optimum 

microstructures for good toughness and high strain rate applications, through the heat treatment 

of as-built DMLS Ti6Al4V parts. 

1.4 Main Aim of the Study 

The aim of the current research was to investigate the high strain rate behaviour and impact 

toughness of Direct Metal Laser Sintering (DMLS) Ti6Al4V (ELI) parts. 

1.4.1 Specific Objectives 

The specific objectives of the research were: 

i. To investigate the flow behaviour of as-built and stress-relieved DMLS Ti6Al4V (ELI) 

at high strain rates. 

ii. To study the deformation and failure mechanisms of as-built and stress-relieved DMLS 

Ti6Al4V (ELI) as a result of imposition of high strain rates. 

iii. To determine the variation of the impact toughness of as-built and stress-relieved 

DMLS Ti6Al4V (ELI) over a wide range of temperatures in order to establish possible 

service temperatures of the alloy. 

iv. To investigate the effects of stress-relieving heat treatment on the high strain rate 

behaviour and impact toughness of Direct Metal Laser Sintering (DMLS) Ti6Al4V 

(ELI). 
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CHAPTER 2 – LITERATURE REVIEW 

2.1 Introduction 

The material discussed in this chapter covers the occurrence and types of titanium ore, general 

production and metallurgy of titanium; its alloys, general heat treatment, theory of 

solidification, and the different types of AM used in the production of Ti6Al4V. The DMLS-

produced Ti6Al4V (ELI), its various microstructures as a result of different heat treatment 

processes and the related mechanical properties are also discussed. The latter part of the chapter 

details published literature on the high strain rate and impact properties of Ti6Al4V. 

2.2 Occurrence and Sources of Titanium  

Titanium is the ninth most abundant element and the fourth most abundant metal in the earth's 

crust (Knittel 1983). Its elemental abundance is about five times less than iron and 100 times 

greater than copper, yet for structural applications, titanium's annual use is 200 times less than 

copper and 2 000 times less than iron. Its commercial production commenced in 1948 driven 

by the demand from the aircraft industry. The world production of titanium sponge metal 

reached 166 000 metric tons in 2008 (Gambogi 2009a). 

According to the United States Geological Survey (USGS 2013), the leading producers of 

titanium concentrates then included South Africa (1.22 million tonnes), Australia (1.39 million 

tonnes), the USA (300 thousand tonnes), China (950 thousand tonnes), Canada (770 thousand 

tonnes) and India (366 thousand tonnes). USGS also indicated that China, with a reserve of 

ilmenite of 20 million tonnes, accounting for 29% of the world total, is the country that is most 

abundant in terms of reserves of ilmenite. Australia, with a reserve of rutile of 24 million 

tonnes, accounting for 50% of the world total, is the country that is most abundant in terms of 

reserves of rutile. The main titanium-containing minerals are rutile, ilmenite, anatase, brookite, 

and leucoxene, as shown in Table 2.1. Ilmenite supplies comprise about 91% of the world's 

demand for titanium and reached a production level of 5.19 million metric tons in 2009 

(Gambogi 2009b). 
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titanium, the beta transus temperature, is 882 C (Lütjering 1998). The atomic unit cells of the 

hcp (α-titanium) and bcc (β-titanium) are shown schematically in Figure 2.2 

 

Figure 2.2: Unit cells for the (a) α- and (b) β-phases of titanium (Leyens and Peters 2003). 

The existence of the two different types of crystal structures and the corresponding allotropic 

transformation temperature is of central importance since they are the basis for the large variety 

of properties achieved by titanium and its alloys. Both plastic deformation and diffusion rate 

are closely related to the respective crystal structures. The ease of plastic deformation increases 

from the hexagonal close-packed (hcp) lattice to the body-centered cubic (bcc). The number of 

slip systems, which is equivalent to the number of dislocation glide systems in a crystal lattice, 

is only 3 for the hcp structure while it is 12 for the bcc lattice. The number of slip systems is 

determined by the number of slip planes multiplied by the number of slip directions. The planes 

and directions of densely packed atoms are most favourable for plastic deformation (Lütjering 

1998). Further details on plastic deformation will be discussed later in this chapter. The atomic 

packaging factor of α-titanium is 0.74 compared to β-titanium, which has a value of 0.68. 

Therefore, because of the densely packed atoms in hcp α-titanium, diffusion is considerably 

lower than in bcc β-titanium. The difference in diffusion of the α- and β-titanium influences 

the mechanical behaviour of the two phases, such as creep performance, workability and 

superplasticity. The limited volume diffusion of α-titanium translates into a superior creep 

performance of α-titanium and α containing titanium alloys compared to β (Lütjering 1998, 

Leyens and Peters 2003). 
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2.4.1 Titanium Alloys and their Classifications 

Alloying elements of titanium are classified as neutral, α-stabilizer and β-stabilizer depending 

on their influence on the β-transus temperature, as shown in Figure 2.3. The α-stabilizer 

elements extend the α-phase field to higher temperatures, while the β-stabilizer elements shift 

the β-phase field to lower temperatures. Neutral elements have a minor influence on the β-

transus temperature (Lütjering and Williams 2007, Banerjee and Williams 2013). 

 

 

Figure 2.3: Schematic illustration of the influence of alloying elements on phase diagrams 

of titanium alloys (Banerjee and Williams 2013). 

 

According to Lütjering and Williams (2007), aluminium is the far most important α-stabilizer 

alloying element of titanium. In addition to extending the α-phase field to higher temperatures 

it also leads to the generation of a two-phase α + β field. The β-stabilizing elements are 

subdivided into β-isomorphous and β-eutectic elements. Of these, the β-isomorphous elements 

are important due to their much higher solubility in titanium. The β-eutectic elements lead to 

the formation of intermetallic compounds (Lütjering and Williams 2007).  

Titanium alloys are classified into α, α + β and β alloys, with further subdivision into near α 

and metastable β alloys, as illustrated in Figure 2.4. If a small fraction of β -stabilizing 

elements, below 2 wt%, are added to titanium, they are referred to as near α-alloys. If the 

proportion of β-stabilizing elements is further increased to a level where β no longer transforms 

to martensite upon fast cooling, the arising alloys are still in the two-phase field and are referred 

to as metastable β-alloys (Froes et al. 2004). 
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Figure 2.4: Schematic classification of titanium alloys (Leyens and Peters 2003). 

Although titanium alloys are expensive compared to traditional metals such as steel, aluminium 

and their alloys, their advantages of high specific strength and biocompatibility make them 

competitive in certain applications. Titanium alloys are very reactive, especially with oxygen, 

which results in the formation of an adherent stable layer of oxide on the surfaces of the alloys, 

which is corrosion resistant. Due to the reactive nature of titanium alloys in the atmosphere, 

processing at high temperature must be done in a vacuum or inert gases; otherwise the material 

would become contaminated. High strength in combination with low thermal conductivity 

make the material difficult to machine (Lütjering and Williams 2007). The chemical 

composition and the key mechanical properties of the commonly used titanium alloys are 

shown in Table 2.2. 
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Table 2.2 shows that the mechanical properties are dependent on the specific alloy. It is also 

clear that the effect of alloying is to improve the mechanical properties of titanium. The tensile 

strength of titanium and its alloys is seen from the table to vary from about 235 MPa for pure 

titanium to about 1400 MPa for the alloys. The equivalent ranges for the stiffness, yield strength 

and the hardness are (86–140) GPa, (140–1200) MPa and (100–470) HV, respectively. The 

Ti6Al4V alloy is the subject of the present research. 

2.4.2 The Ti6Al4V Alloy 

In the mid-1950s, the titanium alloy, Ti6Al4V, made a big breakthrough due to its excellent 

combination of mechanical properties and ease of manufacturing supported by low stiffness 

and therefore easier forming and wettability that facilitates welding (Lütjering and William 

2007). Compared to CP-Ti, Ti6Al4V has higher strength and fatigue resistance. It is presently 

the most commonly used among the alloys of titanium and represents about 45% of the total 

consumption of titanium. It is a two-phase α + β alloy whose phase proportion is a function of 

thermal treatment. To be stable at room temperature, the β-phase needs at least 15 wt% 

vanadium. This is achieved as a result of slow cooling in a furnace or annealing below 750 ºC. 

Normally after slow cooling the β-phase proportion is about 10–15%. Other than the two 

phases, different forms can be observed in this alloy such as (Boyer et al. 1994, Fan 1994): 

i. α' (hcp martensite). The phase forms when the alloys are quenched from the 

temperatures above the beta transus temperature. In the process, part of the β-phase 

transforms into α'. It has an acicular/fine lamellar microstructure. It is related to the  α-

phase crystallography and its lattice parameters. 

ii. α" (orthorhombic martensite). This phase emerges as a result of quenching of the β-

phase from a temperature between 700–900 ºC .The formations of α" can also be 

induced by straining metastable β. 

iii.  ω (omega precipitation). In case of a β-phase that is highly rich in vanadium (more 

than 15 wt%) precipitation of the ω-phase can occur at a temperature range of 200–

350 ºC during aging or at room temperature. 

iv. α2 (TiAl precipitation). This phase is formed when the proportion of oxygen in the grade 

alloy is less than 0.2wt% and the alloy is aged at a temperature range of 500–600 ºC. 

 

The microstructures of Ti6Al4V alloys that are formed after cooling from three different heat 

treatment temperatures, using three different cooling rates, given at magnifications of x100 and 
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x500, are as shown in Figure 2.5. It is evident from the micrographs in the figure that the final 

microstructure is determined by the heat treatment temperature and the cooling rate. 

 

Figure 2.5: Influence of thermal treatment and cooling rate on the microstructure of 

Ti6Al4V (Boyer et al. 1994). 

Three different microstructures can be obtained from heat treatment of the alloy, namely 

lamellar, equiaxed or a mixture of both. 

a. Lamellar microstructures arise are as a result of simple cooling from 

temperatures above the β-transus temperature. Depending on the cooling rate, the 

lamellar grains can be either fine or coarse. The lamellae become coarser with 

reduced cooling rates.  Rapid quenching leads to a martensitic transformation of 

the β-phase, resulting in a very fine needle-like microstructure. Figure 2.6 shows 

different lamellar microstructures formed after cooling from different temperatures 

at a cooling rate of 50 ºC /h.  

b.  Equiaxed microstructures are the result of a recrystallization process. The alloy 

is first deformed highly in the α + β field in order to introduce enough cold work 

into the material to break up the beta grains into smaller sizes. Upon subsequent 
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solution heat treatment at temperatures in the two-phase field, a recrystallized and 

equiaxed microstructure is generated. Extended annealing coarsens the equiaxed 

microstructure.  

c. Solution heat treatment just below the β-transus temperature results in bimodal 

microstructures that consist partly of equiaxed (primary) α-phase in a lamellar α + 

β matrix. This microstructure is produced by deformation in the α + β phase, 

followed by recrystallization at a temperature just below the β-transus 

(recrystallization temperature is higher than the deformation temperature in the α + 

β phase). The cooling rate after homogenization from the β field will determine the 

width of the α-lamellae which in turn will affect the size of the recrystallized 

primary alpha (αp). The recrystallization temperatures and cooling rates after this 

step will determine the volume fraction of αp and the width of the α-lamellae that 

form in the recrystallized β-grains, respectively. The equiaxed and the bi-modal 

microstructures are shown in Figure 2.7. 

From Figures 2.6 and 2.7, the microstructure of Ti6Al4V in relation to the morphology of their 

components (α or β) can be classified into two groups: 

1. Fine-grained microstructure of α or β phases for single-phase alloys or their mixtures 

for two-phase alloys, 

2. Coarse-grained microstructure of polyhedral grains of α- or β-phases for single-phase 

alloys or ones characterized by colonies of a lamellar α- and β-phases placed within the 

boundaries of the big grains of the former β-phase for the two-phase alloys (Bylica and  

Sieniawski 1985). 

The influence of the various microstructures in relation to the morphology of the constituent 

phases on the mechanical behaviour of titanium alloys has been the subject of numerous 

investigations (Bylica and Sieniawski 1985, Leyens and Peters 2003, Rack and Qazi 2006), 

thus some general statements can be made. Table 2.3 shows qualitatively how the size of the 

phases (comparison of fine and coarse microstructures) on the one hand, and the arrangement 

of the phases (comparison between lamellar and equiaxed microstructures) on the other, have 

an effect on some important selected mechanical properties. 
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                              Furnace cooling                            Water quenching 

 

Figure 2.6:  Microstructure of Ti6Al4V after slow cooling (50 ºC /h) and quenching in 

water from 1050 ºC , 800 ºC , and 650 ºC  (Leyens and Peters 2003). 

 

 

Figure 2.7: Optical micrographs (a, b c), transmission electron micrograph (d) showing 

equiaxed and bimodal microstructures of Ti6Al4V formed through 

recrystallization: a) fine equiaxed; b) coarse equiaxed; c, d) bimodal (Leyens 

and Peters 2003). 
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AM technologies include fused deposition modelling, laser micro-sintering, Direct Metal Laser 

Sintering (DMLS), three-dimensional (3D) laser cladding, Electron Beam Melting (EBM), and 

Electron Beam Sintering (EBS). This review now focuses on two of the PBF systems used to 

manufacture titanium and its alloy, namely the EBM and DMLS systems. 

2.5.1 Electron Beam Melting (EBM) 

Electron beam melting (EBM) is one of the additive manufacturing techniques mainly used to 

manufacture metallic materials. The EBM system manufactures parts by melting the metal 

powder layer by layer using a magnetically directed electron beam (of up to 3 kW) in a high 

vacuum (Al-Bermani et al. 2010). The environment in the vacuum chamber prohibits the 

introduction of oxygen and nitrogen while processing reactive materials such as titanium. In 

addition, the technology makes use of the high translational speed of the electron beam to 

preheat each layer of the powder by passing the beam over the whole powder bed. With this 

the power bed temperature of about 600–650 ºC is maintained throughout the whole building 

process followed by a slow cooling to room temperature when the process is completed (Rafi 

et al. 2013). This significantly reduces the magnitude of residual stresses, which helps to reduce 

the extent of post heat treatment (Biamino et al. 2011).  It is for this reason that EBM is 

particularly suited for the manufacturing of titanium and titanium alloy implants. Ti6Al4V has 

been manufactured through EBM by Arcam AB since 2004 and the microstructure of Ti6Al4V 

resulting from use of this process has been widely discussed in literature (Murr et al. 2009, 

Parthasarathy 2010, Lhuissier et al. 2016, Tan et al. 2016). Figure 2.9 is a schematic diagram 

of an electron beam melting system. It is widely known and accepted that the surface 

topography of biomedical implants affects biocompatibility because it influences the 

attachment, proliferation, and differentiation with reference to the bio-cells (Ponader et al. 

2008, Biamino et al. 2011). The performance of biomedical implants and their biocompatibility 

depends very much on the initial interaction between surfaces of the implants and the biological 

environment (Ponader et al. 2008). As a result, there are a number of studies that have been 

carried out to determine the biocompatibility of titanium implants manufactured via EBM 

(Suard et al. 2015, Lhuissier et al. 2016 Wang et al. 2016). The studies have concluded that 

the as-built parts via the EBM have relatively rough surfaces compared to those of 

conventionally machined surfaces. The roughness of the surface reduces the effective cross-

section, which changes the mechanical response and results in premature failure of the part. 

Part of the challenges of using EBM in the manufacturing of implants is therefore the 

optimization of the surface finish of the final components. This is a major limiting factor for 
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the wide adoption of the EBM technology in the manufacturing of biomedical implants, as well 

as parts for use in other industries such as the aerospace sector. However, post treatments such 

as the adaptive computer numerical control abrasive (grinding and polishing) material removal 

process, and the chemical and plasma material removal processes, can be applied to improve 

the surface roughness. The necessity of post treatment neutralizes the advantages of design 

freedom of EBM-built components (Safdar et al. 2012a). 

 

Figure 2.9: Schematic diagram of an EBM system (Al-Bermani 2010). 

 

2.5.2 Direct Metal Laser Sintering (DMLS) 

DMLS is a specific technology within the more generic category of SLM. In the DMLS system, 

a high-powered laser beam with a power of 200 W to 400 W is used to fuse metal powder into 

a solid component based on a 3D CAD file. In a similar manner to the EBM system, 

components are built from the atomised powder one layer onto the next layer using the additive 

method, with the layer thickness being typically 20–50 μm. Figure 2.10 shows a schematic 
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diagram of a DMLS system. The piston of the powder dispenser rises up to supply the powder 

which a recoater arm wipes over the build platform to ensure a layer of powder of even height 

is left on the powder bed. Thereafter, the even layer of powder is scanned with a high energy 

laser beam from a Yb-fibre laser system according to a pattern defined by the data of the 

associated CAD slice. The laser emits a laser beam which is guided by an optical fibre and 

optic beam expander.  The laser beam arriving from the optics beam expander is further guided 

by the scanner along a defined path over the building area using two mirrors operated by 

galvanometers. An integrated auto-calibration feature (home-in function) checks the position 

of the mirrors and regulates their positions as necessary. Thus, the homing-in sensor detects 

and corrects any scanner drift at regular intervals and eventually the offset drift and gain drift 

are significantly reduced. The laser beam focuses on the building area using an F-Theta 

objective lens. The laser beam is automatically switched between two pre-defined sizes 

(diameter) during the exposure using a dual system. A fine focus is typically used for accurate 

exposure of contours and a broader focus for fast exposure of larger areas. The sizes (diameter) 

are manually selected according to the material being produced. Upon completion of one layer 

of the build, the laser sintering process is repeated till the whole part is created. The powder is 

locally melted at the tip of the laser beam and then solidifies immediately upon its passing. A 

metal platform serves as structural support and heat dissipation medium during sintering. The 

process normally takes place in an atmosphere of argon gas in order to prevent oxidation of the 

powder and built components (Hollander et al. 2003, Custompart.net 2017).  

 

Figure 2.10: The DMLS system (Hollander et al. 2003, Custompart.net 2017). 
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The DMLS technology overcomes the challenge of manufacturing biomedical implants with 

the desired surface finish without the need of much post process polishing, as it is able to 

produce components with a surface finish of 6–10 μm (Longhitano et al. 2015). The DMLS 

surface finish provides a valid substratum for the adsorption of protein, consequently 

facilitating the adhesion of bio-cells (Carlstrom et al. 2013). Hollander et al. (2003) carried out 

in vivo (within living organisms) studies in order to investigate the suitability of the DMLS 

surfaces of Ti6Al4V fabrication for biomedical implants, particularly biocompatibility with 

human osteoblast cells (HOB). The in vivo experiment demonstrated that the DMLS-fabricated 

Ti6Al4V allowed structure-oriented growth of human osteoblasts on its surface. 

2.6 Microstructure of Additively Manufactured Ti6Al4V 

AM components have complex thermal histories and their microstructure will depend on the 

manufacturing process, chemical composition and process parameters used. Generally, during 

solidification of Ti6Al4V in the AM process, the melt completely transforms to the β-phase by 

passing above the solidus line, as shown in Figure 2.4 (on page 12). The β-grains formed 

initially are known as prior β-grains. Rafi et al. (2013) demonstrated that the microstructure 

resulting for the DMLS process differs from that of the EBM process. The minimum cooling 

rate required for the formation of α phase (acicular martensitic structure) is 420 °C /s. The 

cooling rates for both EBM 107 °C /s and DMLS of (103–105) °C /s are therefore high enough 

to enable formation of the α phase. Even though the material processed in the DMLS and EBM 

processes undergoes very high cooling rates, the processes differ in the transformation of the 

β-phase into the α-phase during cooling below the beta transus temperature. The DMLS process 

results in an α phase (acicular martensite) due to rapid cooling to temperatures below the 

martensitic temperature curve (Ms). For EBM, the build chamber is maintained at a temperature 

of 650–700 °C which is well above the martensitic temperature (Ms) of Ti6Al4V. Therefore, 

even if the cooling rates in EBM systems are high at elevated temperatures, rapid reduction of 

temperature is suspended at temperatures of 650–700 °C , to form the α+β-phase instead of the 

acicular martensitic structure (Rafi et al. 2013, Safdar et al. 2012b). 

Depending on the application, DMLS parts might need separate heat treatment to transform the 

α phase into the more ductile (α+β) microstructure (Thijs et al. 2010). When passing the 

liquidus line into the beta phase, in both the DMLS and EBM processes, the growth of prior β-

grains occurs very quickly. The prior beta grains grow in a columnar manner in the same 

direction as the building direction. The beam in each process forms a melt pool from which 
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2.6.4 Levels of Residual Stresses for the As-Built DMLS Ti6Al4V Parts 

Residual stresses are stresses within a plastically deformed material that remain within the 

structure after the load that deformed it has been removed (Black et al. 2008). These stresses 

are not always disadvantageous – glass plates are cooled rapidly many times to introduce 

compressive stresses on their surfaces, thus increasing the overall resistance to loading and 

preventing the growth of cracks on their surfaces (Black et al. 2008). In most of the cases, 

however, residual stresses are unwanted, since they result in losses of intended mechanical 

properties. Tensile pre-stress, for instance, adds to the stresses caused by external loading, thus 

reducing the strength of the parts and favouring propagation of cracks from the surface.  

During the DMLS process, the major source of the residual stresses is the heat cycling as the 

laser scans across each layer, where previously solidified layers are re-melted and cooled at 

different levels of heating with each run. Owing to the rapid heating of the upper surface by 

the laser beam and the low thermal conductivity of titanium, which slows the conduction of 

heat to the previously solidified layers below the surface, a steep temperature gradient 

develops. Since the expansion of the heated top layer is restricted by the underlying material, 

compressive strains are induced in it. When the material’s yield strength is reached, the top 

layer will undergo compressed plastic deformation. In the absence of mechanical constraints, 

a counter-bending toward the laser beam would be perceived. During cooling, the currently 

laid layer solidifies and starts shrinking and so does the plastically deformed compressed upper 

layers, both due to the thermal contraction. This deformation is again inhibited by the 

underlying material, thus introducing tensile stresses in the added top layer and compressive 

stresses below. Figure 2.15 shows a schematic illustration of the development of residual 

stresses during the DMLS process. 

 

Figure 2.15: Development of residual stresses in a DMLS process (Patterson et al. 2017). 
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Technology, Free State. The sample used for measurement of residual stresses is as shown in 

Figure 2.16. Measurements were done on both the large outer (B) and the small inner (A) 

diameters. 

The researchers found the levels of the tensile residual stresses to be at a maximum on the 

surface of the large diameter (B) at a value of 1142±285 MPa and at a minimum on the surface 

of the smaller diameter (A) at 616±60 MPa (Knowles et al. 2012). However, the authors did 

not look into details of the relationship of residual stresses with the build orientation. They 

concluded though that the residual stresses were exceedingly high in the specimens and in some 

areas approached and exceeded the yield strength of the material. 

2.6.5 Effect of Surface Roughness on Additive Manufactured Ti6Al4V 

Surface roughness will affect the mechanical properties of components. Different 

manufacturing processes, such as EBM and DMLS, generate different levels of surface 

roughness depending on process parameters and powder sizes. The surface roughness of EBM-

produced components are usually worse than that of DMLS. The DMLS building process is 

generally one order of magnitude slower than the EBM building process, resulting in lower 

productivity but better surface quality. However, there are several other parameters which 

affect the surface roughness of AM-produced Ti6Al4V parts, such as powder size, layer 

thickness and power density of the beam (Rafi et al. 2013). For powder bed fusion processes, 

such as EBM and DMLS, there are no gaps between the built parts and the unmelted powder. 

Thus, these parts have similar surface roughness to sand-cast metallic components in which the 

diameter of the powder particles affects the degree of roughness. The main reason for surface 

roughness in additive manufactured Ti6Al4V parts is the staircase effect and it could also be 

related to unmelted powder or powder which has been sintered onto the surface, as shown in 

Figure 2.17. There are several process parameters which affect the melting or sintering of 

powder. A high beam current and slow scan speed will generate a larger melt pool which yields 

worse surface roughness (Safdar et al. 2012a). The effect shown in Figure 2.17 is more 

prominent in EBM than in DMLS due to the higher temperature of the build environment and 

the powder. 
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Figure 2.17: Illustration of partly molten powder sintered to the surface of a fully dense 

component (Mohammadhosseini et al. 2012). 

In summary, the surface roughness of the Ti6Al4V processed via SLM (MCP realizer), EBM 

(Arc) and DMLS (EOS) has been reported as 3-10μm, 10-60μm and 10-30μm, respectively 

(Safdar et al.2012a, Rafi et al. 2013). 

Surface roughness can determine how a component performs mechanically (Safdar et al. 

2012a). Rougher surfaces avail more sites for crack initiation because local stress 

concentrations are higher, as is evident in Figure 2.18. Small internal cracks, surface defects or 

porosity can also be locations for crack initiation.  

 

Figure 2.18: Local surface roughness acting as initiation sites for cracks 

(Mohammadhosseini et al. 2012). 

2.7 The β/α-Phase Transformation in Ti6Al4V 

After cooling of the Ti6Al4V alloy from the β-phase, the most densely packed planes of bcc β-

phase {110} transform to the basal planes {0001} of the hcp α-phase. The distance between 

the basal planes in the α-phase (hcp lattice) is slightly larger than the corresponding distance 
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between the {110} planes in the β-phase (bcc lattice), being a ratio of 1 and 0.87, respectively. 

This leads to atomic distortion during transformation (Figure 2.19).  

 

Figure 2.19: BCC/HCP transformation according to Burgers relationship – the open and 

filled circles represent atoms in bcc and hcp crystal structure, respectively (Leyens and 

Mercelis 2003). 

Slight contraction of the c-axis relative to the a-axis in the hcp reduces the c/a ratio below the 

value of the ideal hcp atomic structure (Leyens and Mercelis 2003). 

The transformation of the slip planes of the bcc β-titanium into the basal planes of the hcp α-

titanium and the respective orientations of the slip direction are given by the following 

relationship (Lütjering and Williams 2007): 

{0001} α // {110} β,   <112̅0> α // < 111> β 

The ideal hcp lattice has c/a ratio of 1.633 while α-titanium has c/a ratio of 1.587. The presence 

of aluminium in the alloy of titanium increases the c/a ratio to slightly higher than 1.587. The 

reduced ratio in the α-phase leads to a larger spacing in between prism planes, causing the 

packing density of the prism planes to increase relative to the basal planes. Hence, slip on the 

prism planes will be favoured rather than on the basal planes (Lütjering and Williams 2007). 

2.8 Deformation Mechanisms in Two-Phase Ti6Al4V 

Deformation occurs when a load applied on the material increases the stress and 

correspondingly increases the strain, initially linearly until the yield point for elastic 

deformation, and plastically beyond the yield point causing irreversible changes of the shape 

of the material. Plastic deformation occurs due to the movement of dislocations, which are 

defects within the crystal lattice. These dislocations move in crystallographic directions, a 
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motion called slip and involves local shear (Dieter 1986). The slip of dislocations occurs in 

particular planes and directions, hence referred to as the slip systems. The preferred slip plane 

is the plane with the highest inter-planar spacing/largest plane atomic density, while the 

preferred slip direction is the direction that contains the shortest Burgers vector or the direction 

of highest atomic density (Lütjering and Williams 2007). The denser the slip planes, the easier 

dislocations can glide on them. Therefore, gliding of dislocations on a slip plane in the α-phase 

(hcp) with a packing density of 91% should be easier than on a slip plane in the β-phase (bcc) 

with a packing density of 83%. Nevertheless, the energy needed for plastic deformation is also 

directly dependent on the length of the minimal slip path (Burgers vector - b). For a hcp lattice 

structure, the minimum slip path corresponds to 𝑏𝑚𝑖𝑛 = 1. 𝑎, while for a bcc structure 𝑏𝑚𝑖𝑛 =

0.87. 𝑎, where (a) stands for the lattice parameter of the respective unit cell. The foregoing then 

favours plastic deformation in the bcc structure over the hcp structure (Leyens and Peters 

2003). 

To understand deformation mechanisms in the α- and β-phases of Ti6Al4V alloys, it is 

important to understand the active and dominant slip systems in each phase of the alloy and the 

factors that affect them as well. Lütjering and Williams (2007) observed that the number of 

slip systems in the β-phase is 12 and 3 in the α-phase. Therefore, there is comparatively much 

less plastic deformation in the α-phase (hcp) compared to the β-phase (bcc) of the Ti6Al4V 

alloy. Activation of slip is dependent on the critical resolved shear stress and the Schmid factor 

as a function of the grain orientation relative to the loading direction (Callister 2007). Slip is 

initiated when the resolved shear stress produced by the applied load equals the critical resolved 

shear stress. Schmid’s Law is given here as Equation 2.2 and is illustrated in Figure 2.20. 

  𝜏𝑟 = 𝜎𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆                                                                                                                  (2.2) 

where τr is the resolved shear stress in the slip direction, σ is the applied stress, φ is the angle 

between the normal to the slip plane and the loading direction and λ is the angle between 

loading direction and slip direction. 
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Figure 2.20: Illustration of the Schmid factor (Askeland et al. 2011). 

Other than plastic deformation due to motion of dislocations, there are several twinning planes 

observed in α-titanium. Twinning planes {112̅1} and {112̅2} with directions of intersection of 

plane of shear <112̅0> and <224̅3>, respectively, are examples of this. The twin {112̅1} allows 

an extension along the c-axis, while the {112̅2} twin permits a reduction of extension. 

Therefore, twining is very dependent on the sense of the applied stress in contrast to plastic 

deformation by dislocations (Lütjering and Williams 2007). Alloying elements such as 

aluminium and interstitial elements, such as oxygen in Ti6Al4V, suppress twinning. Therefore, 

twinning as a deformation mode to allow a shape change parallel to the c-axis of α-titanium, 

plays a role only in pure or commercially pure titanium with lower concentrations of oxygen 

(Paton et al. 1973). 

2.9 High Strain Rate Properties of Ti6Al4V 

The strain rates in most engineering applications range from 10-8 s-1 to 104 s-1 (Ravi 2010).The 

strain rates are categorized into different domains based on the different applications. The 

different domains are given in Table. 2.9, with their experimental set-ups and applications. 

Table 2.10 shows different occurrences and levels of strain rates in actual environmental 

conditions. 
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The possibility of determining the stress and strain history in a specimen, without direct 

measurement on the specimen itself, is generally acknowledged to be one of the main 

advantages of the SHPB technique compared to other high strain rate techniques. In the test, a 

homogeneous stress and strain distribution is assumed in the gauge section of the specimen 

(Lava et al. 2009). The strain determined from the SHPB measurements only corresponds to 

the local strain in a component if the deforming section of the specimen is well-defined. The 

actual distribution of this deformation is dependent on both the specimen geometry and the 

constitutive behaviour of the material. If an appropriate specimen geometry is used, for metals 

and alloys showing significant strain hardening, the measured stress–strain curve is still a good 

representation of the real behaviour of the materials. This is because deviation arising from the 

effect of strain hardening only occurs beyond the elastic limit. In metals with low strain 

hardening, such as Ti6Al4V, no compensation occurs and the calculated strain accurately 

represents the actual strain reached. The tensile true stress–strain behaviour cannot be assessed 

beyond diffuse necking with SHPB, which means that a large part of the plastic behaviour of 

materials with large non-uniform plastic deformation remains unknown in such materials (Peirs 

et al. 2009).   

2.9.1 Effect of Both High Strain Rates and Temperature Changes on the Mechanical 

Properties of Ti6Al4V 

Many researchers have conducted experimental studies on the mechanical behaviour of 

Ti6Al4V alloy produced by traditional manufacturing processes, at high strain rates as well as 

high temperatures. Yatnalkar (2010) investigated the strain rate behaviour of Ti6Al4V under 

tension, compression and torsion. Significant strain rate dependence was reported in this work 

for all loading conditions studied with increases of 50, 56 and 77 percent of flow stress for 

compression, tension and torsion loading, respectively, for strain rates ranging from 10-4s-1 to 

1300s-1. Results from the work of Wulf (1976) displayed directly proportional stress flow-

strain rate dependence for Ti6Al4V in compression at strain rates of 3000s-1 to 30000s-1. Lee 

et al. (1995) presented the Ti6AlV4 data at compressive strain rates of 0.02s-1 to 1.0s-1 and at 

temperatures ranging from 25 oC to 500 oC. The researchers found that the yield strength 

increased with increasing strain rate at the same temperature but decreased with increasing 

temperature at similar strain rates. They also observed that work hardening decreased as the 

temperatures and strain rates increased. This was attributed to thermal softening which 

occurred at the high temperatures and high strain rates. The former is due to the natural 

© Central University of Technology, Free State



  

41 
 

consequence of elevated temperature, while the latter arises from the development of a rise in 

temperatures due to adiabatic heating during deformation at high strain rates.  

More recently, a few studies have attempted to investigate high strain rate performance of AM 

Ti6Al4V. The work of Peng et al. (2015), paid special attention to the coupled effects of the 

high strain rate and high temperatures on compressive and tensile plastic flow behaviour and 

fracture characteristics of Ti6Al4V prepared by 3D-laser-deposition technology. The study 

showed that the flow stress under compressive loading increased with high strain rates, whereas 

the flow stress under tensile loading decreased with higher strain rates. The researcher proposed 

this anomalous strain rate effect on tensile flow stress when compared to compressive flow 

stress, as result of fusion pores that were observable on the undeformed samples examined 

under scanning electron microscope (SEM). The authors suggested that the fusion pores 

expanded upon dynamic tensile loading but they tended to close under dynamic compressive 

loading. However, the material exhibited negative flow stress temperature rate sensitivity under 

both loading conditions. They concluded that compressive fracture was a result of formation 

and expansion of adiabatic shear bands over the entire range of selected high strain rates. 

Elsewhere, Mohammadhosseini et al. (2015), studied the dynamic compressive properties of 

Ti6A4V alloy processed by Electron Beam Melting (EBM). The study found that the fracture 

strain was lower in dynamic compression in comparison to the static compression. 

Microstructural investigation highlighted the presence of adiabatic shear bands (ASBs) on 

those samples that were tested at high strain rates. Biswas et al. (2012) studied the deformation 

and fracture behaviour of Ti6Al4V produced by the laser engineered net shaping (LENS) 

technique under dynamic and static compression. Both the flow stress and fracture exhibited 

appreciable rate sensitivity. Microscopic analysis suggested that the formation of adiabatic 

shear bands was likely to be the major failure mechanism for the alloy and that inherent pores 

were likely to initiate and nucleate at ASBs and subsequently cause failure. 

ASBs are considered as a strain localization phenomenon of metals and alloys during high 

strain rate deformation (Wulf 1976, Lee and Lin 1998, Wang 2008). They are a result of plastic 

instability arising from thermal softening which can overcome the effect of work 

hardening/strain hardening. When a material is subjected to high shear strain due to high rates 

of the applied load, the external work will initiate plastic deformation in the material. The 

process leads to an increase in the temperature of the material. Most of the external work, 

especially for materials with considerably high rates of diffusion of heat, is dissipated as heat. 
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But since materials are rarely pure without flaws, in-homogeneities in the material form areas 

of concentration for plastic deformation. For high rates of loading and therefore high rates of 

deformation, the heat generated in these areas is more than is dissipated. This gives rise to an 

increase of temperature in materials at such areas. The experimental results by Meyers et al. 

(1994) indicated that the formation of the adiabatic shear bands occurs in two stages. Stage one 

is the instability produced by thermal softening and enhancement of the thermal assistance in 

the motion of dislocations. Stage two is localization of strain due to major microstructural 

changes in the material as a result of thermal softening. According to Teirlink et al. (1988), 

failure of ductile materials is associated with the onset of localised plastic deformation along 

narrow shear bands. Once formed, shear bands signify imminent failure by the rapid nucleation, 

growth and coalescence of voids and cracks within the bands under increasing stress. Failure 

may be delayed due to the collapse of the voids formed, increasing crack friction which affects 

the crack growth and propagation or suppression of the nucleation voids. In the presence of  

sufficiently large confining stresses, shearing of the shear bands eventually leads to fracture of 

a sample. Deformation of materials through the formation and subsequent deformation of 

adiabatic shear bands is generally observed in cases of ballistic impact, explosive 

fragmentation, machining, grinding and metal forming (Liao and Duff 1988). 

Ti6Al4V is expected to exhibit failure due to the formation and shear of ASBs because it 

possesses a low thermal conductivity (6.7 W/m.K). Timothy and Hutching (1987) studied the 

structures of ASBs in the Ti6Al4V alloy resulting from ballistic impact. Metallographic 

examination of well-developed shear bands by these authors showed that they consisted of 

zones of intense shearing distortion of the original microstructure, modified by the elevated 

temperatures arising due to the applied high strain rates. Shear bands in the α + β microstructure 

were noted by the authors to consist of a distributed β-phase within an α-matrix whose 

characteristics differed from those of adjacent un-deformed α-grains. In the study, it was noted 

that the structure of the shear zones in the α martensitic parent alloy appeared to be in a 

tempered form and different from the original microstructure. However, it was observed in this 

work that there was no clear evidence in the alloy to show that the shear bands in the α + β 

microstructure had undergone a martensitic phase transformation. It is evident from the 

foregoing material that the mechanical properties of the Ti6Al4V alloy vary significantly with 

strain rate and temperature (Timothy and Hutching 1987, Meyer et al. 1994). 
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of specimens very soon after the onset of plastic deformation (Peirs et al. 2009). Consequently, 

the traditional assumption of a homogeneous distribution of stress and strain is not valid 

anymore and no unambiguous relationship exists between the measured force applied on the 

specimen and its elongation and the resulting stress and strain in such a specimen (Verleysen 

et al. 2008). 

2.10 Impact Toughness  

Toughness is a measure of the energy absorbed in a material which is exposed to load before 

fracture, often estimated by calculating the area beneath the stress–strain curve. Ductile 

materials experience large deformations and therefore absorb significant amounts of energy 

before fracture. Dieter (1986) and Hashemi (2006), separately observed that brittle materials, 

on the other hand, exhibit low deformations and tend to shatter on impact. In general, materials 

with high values of ductility and strength have good impact toughness (Fischer and Antony 

2007). However, depending on the material, impact toughness can be very sensitive to 

temperature changes. Many materials experience a shift from ductile to brittle behaviour as the 

ambient temperature is lowered below a certain point. The temperature at which this shift 

occurs varies from material to material and is commonly known as the ductile-to-brittle-

transition temperature (DBTT) (Dieter 1986). When designing parts for low- and high-

temperature applications, it is therefore important to keep in mind that low temperatures can 

adversely affect the toughness of many commonly used engineering materials. 

The values of the DBTT are usually determined through a standardized Charpy impact test at 

varying temperatures. The details of the Charpy test will be discussed further in Chapter 3. 

Several factors may cause the DBTT to increase, including crystal structure, thickness of the 

material, the rate at which the material is loaded (i.e. strain rate), defects in the material 

microstructure (often the result of alloying), and the presence of stress concentrations in a part. 

However, the basic three factors affecting the DBTT are: triaxial state of stress, low 

temperatures and high strain rate (Dieter 1986, Hertzberg 1996, and Courtney 2000). The 

presence of a notch in a material leads to the generation of a triaxial state of stress upon 

application of load, as shown in Figure 2.22. The contractions are opposed by the unyielding 

faces A of the notch; consequently, transverse tensile stresses σ zz and σ xx are set up ahead of 

the tip of the notch. 
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Figure 2.23: Influence of multi-axiality on the transition temperature (Hertzberg 1996). 

 

The curve for the multi-axial yield strength is seen to be translated horizontally with reference 

to that of the uniaxial yield strength. The effect of multi-axial yield strength is therefore seen 

in Figure 2.23 to be an increase an increase in the transition temperature. 

Figure 2.24 shows curve plots of stress versus temperature for to two cases of static yield 

strength and high strain rate yield strength.  

 

Figure 2.24: Yield strength and the cleavage fracture stress as a function of temperature 

and loading rate (Hertzberg 1996). 
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Temperature influences fracture behaviour mainly due to its effect on yield strength and the 

transition from ductile to brittle fracture (Hertzberg 1996). Figure 2.24 shows schematically 

the yield strength and the microscopic cleavage fracture stress as a function of temperature for 

a ferritic steel. The yield strength falls with increasing temperature, whereas the cleavage 

fracture stress remains constant. The transition temperature is defined by the intersection 

between the curves for yield strength and cleavage fracture strength. Below the transition 

temperature, specimens fail without previous plastic deformation (brittle fracture). Above the 

transition temperature, cleavage fracture can still occur due to the effect of deformation-

induced work hardening. At higher temperatures cleavage is not possible and the fracture 

becomes fully ductile (Dieter 1986).  

The yield strength rises with increasing loading rate, whereas the microscopic cleavage fracture 

stress shows no strain rate dependence. This rise causes the DBTT to move to higher values at 

higher rates of loading. Thus, an increase of loading rate and a reduction of temperature have 

the same adverse effect on toughness. The rate of loading/strain rates plays an important role 

in a material’s ductile to brittle transition behaviour. As the rate of loading is increased, 

materials tend to behave in a more brittle manner (Dieter 1986) and the transition temperature 

region is shifted to higher temperatures. Figure 2:25 shows a shift in the DBTT curve as a result 

of increased strain rates. 

 

 

Figure 2.25: Effect of increasing loading rate on the DBTT curve (Hertzberg 1996). 
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2.10.1 Impact Toughness of Ti6Al4V and its Dependence on Temperature 

Generally, the fracture behaviour of all bcc and some hcp- (beryllium, zirconium and zinc) 

structured metals varies with temperature. At low temperatures these metals and their alloys 

fracture in a brittle mode but become more ductile as the temperature increases. All fcc and 

some hcp metals, however, do not show a dramatic change in fracture behaviour with 

increasing temperatures (Dieter 1986). Chernov et al. (2016) suggested that low temperature 

embrittlement is a characteristic property of the metals and alloys with high values of Peierls 

barrier and high energy of the elastic interaction of dislocation with point defects. 

Normally the results of impact Charpy tests are presented in the form of curves for DBTT. The 

curves of DBTT for selected fcc, bcc and hcp materials are shown in Figure 2.26. 

 

Figure 2.26: The curves of DBTT for materials with different crystal-packing geometries 

(Dieter, 1986). 

It is interesting to note that Ti6Al4V exists as dual-phase alloy (α as hcp and β as bcc) with its 

mechanical properties being a function of its thermo-mechanical history, which determines the 

percentage proportion of individual phases. 

The curves of DBTT typically show three different distinct regions: lower shelf, upper shelf 

and the transition region as shown in Figure 2.27.  
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Figure 2.27: Regions of a typical curve for DBTT (Dieter 1986). 

At low temperatures, the surfaces of brittle fracture for materials consist primarily of cleavage 

facets and in some cases have small areas of ductile dimples. As temperatures increase, the 

areas of cleavage facets reduce while the regions of ductile dimples/ductile tearing increase. 

Brittle fracture allows limited mobility of dislocations, which leads to little or no appreciable 

plastic deformation, fast propagation of cracks and propagation of cracks in a direction that is 

nearly perpendicular to the direction of the applied stress. Low energy is consumed in such a 

process. Cracks can also propagate along specific crystallographic planes leading to cleavage 

facets. At the transition region the absorbed energy increases rapidly with increasing 

temperature and the fracture surfaces of specimens show a mixed mode of ductile and brittle 

(cleavage) failure. The percentage of each mode of failure depends on the test temperature. At 

high temperatures, the percentage of ductile area is greater, and vice versa. In the upper shelf 

region of the DBTT curve, fracture becomes fully ductile. Such fracture shows surfaces that 

are relatively rough, dull and grey due to the formation and subsequent coalescence of micro 

voids. This type of fracture behaviour provides for the highest absorption of energy and comes 

with extensive plastic deformation (Dieter 1986, Hashemi 2006). 

The transition temperature is used to determine the suitable service temperatures for a particular 

material, in order to avoid catastrophic failure due to brittle fracture (Hashemi 2006). The 

criteria used to determine the transition temperature are shown in Figure 2.28. 
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a wide range of transition temperatures and/or little change in toughness with temperature. T2 

is considered as the lower service temperature of a material in which the percentage of the areas 

of cleavage and ductile fracture are equal (Chernov et al. 2016). It is considered as the point of 

inflection of the DBTT curve. There are several metallurgical factors that affect the DBTT 

curves. These include: crystal structure, defects (content of interstitial atom), grain size, heat 

treatment and orientation of the test specimen. Only bcc and some hcp crystal structures 

experience DBTT due to the limited active slip systems existing at low temperatures (see 

Figure 2.26) in the respective crystal lattices, and the implied low plastic deformation. Small 

grain sizes shift the DBTT curve to the left, meaning that the material has appreciable toughness 

at lower temperatures thus increasing the range of service temperatures. Heat treatment that 

provides grain refinement helps to lower the transition temperature. Increase in the level of 

interstitial elements such as C, O, Mo and Si increases the transition temperature (shifts the 

curve to the right side of the graph). Anisotropic properties that are prevalent in rolled or forged 

products give different values of absorbed energy according to the orientation of the test 

specimen (location of the v-notch with respect to the direction of rolling). The best absorption 

of energy is observed when the v-notch is machined orthogonal to the direction of rolling. This 

is because cracks in the test specimens propagate orthogonally to the direction of rolling upon 

impact (Dieter 1986). 

2.10.2 Impact Toughness of Additively Manufactured Ti6Al4V 

It is generally known that Ti6Al4V has a wide variation of impact energy for different fractions 

of the hcp α-phase and bcc β-phase. Lee et al. (2017) using miniature specimens, (5 x 5 x 27.5 

mm), demonstrated that the average impact energy of the as-built SLM Ti6Al4V was 6.0 J, 

while that of heat-treated samples (stress relieving in an atmosphere of argon at 650 °C for 3 

hours, and then furnace cooled) was approximately 7.3 J. This showed the impact energy to 

increase by approximately 20% as a result of stress relieving.  Charpy impact testing of as-built 

SLM Ti6Al4V by Yasa et al. (2010) gave rise to values of toughness that were lower than 

reported values for cast material, with an impact energy of 11.5 J for the as-built SLM material 

compared to 15 J for cast Ti6Al4V. The heat treatment carried out subsequently did not 

improve the toughness, for instance, annealing at 735 oC for 2 hours reduced the impact energy 

to 10 J, and stress relief at 595 oC for 3 hours decreased it further to around 7.5 J. The lower 

amount of brittle martensitic microstructure present in stress-relieved specimens was suggested 

as a cause of the lower toughness. The research of Yasa et al. (2010) is contrary to expectations 

since heat treatment of martensitic structure of Ti6Al4V, with its high dislocation density due 
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to rapid cooling, is known to lower the yield strength and increases the ductility of parts, 

thereby improving the toughness. A review of literature on the variation of the impact energy 

with temperature for additively manufactured Ti6Al4V done in this work has shown there to 

be very limited information. The available literature rather focuses on the impact energy of 

various microstructures of the alloy at specific temperatures such as room temperature (Lee et 

al. 2017, Yasa et al. 2010).  

The impact energies of various types of Ti6Al4V alloys that are produced by the traditional 

methods of casting vary significantly, with values of impact energies of lamellar 

microstructures varying between 34 J–49 J, of bimodal microstructure lying between 27 J–

36 J, and of equiaxed microstructure varying between 8 J–41 J (Buirette et al. 2014). Lamellar 

and duplex microstructures exhibit crack-arresting behaviour and considerable consumption of 

energy due to stable crack growth. For martensitic and aged microstructures, the overall 

consumption of energy up to failure is significantly lower. After crack initiation, the test 

specimens exhibit unstable crack growth and only small amounts of energy are absorbed 

thereafter till failure (Lütjering 1998). 

2.11 Summary 

The aim of this chapter was to provide a review of topics that are pertinent to the current 

research work. The chapter entails sources and general metallurgy of titanium and more 

particularly Ti6Al4V. Additive manufacturing was discussed alongside the mechanical 

properties of, and effect of, heat treatment on DMLS Ti6Al4V. It is evident from the chapter 

that the as-built DMLS-produced Ti6Al4V parts have residual stresses which are detrimental 

to their mechanical properties. Upon stress relieving, the ductility is improved, while at the 

same time the tensile strength reduces.  Moreover, the effects of high strain rate on the 

mechanical properties of wrought Ti6Al4V alloy and the impact toughness of wrought and 

SLM Ti6Al4V were introduced and discussed based on published literature. The literature 

reviewed in this chapter has demonstrated that wrought and cast Ti6Al4V is sensitive to high 

strain rate, with flow stresses increasing with increasing strain rate. The dominant failure 

mechanism during high strain compressive loading of wrought and cast Ti6Al4V has also been 

shown to be through the formation of adiabatic shear bands. The published literature on the 

impact toughness of additively manufactured Ti6Al4V gives different values of the impact 

energy. 
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CHAPTER 3 - MATERIALS AND RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter presents the experimental designs for plastic deformation under high strain rates 

as well as the impact toughness tests for DMLS-manufactured Ti6Al4V (ELI). A brief 

background, theory for data analysis, as well as details on the preparation of the test specimens 

for each test method are also presented here. Procedures for metallographic preparation of 

sections of deformed specimens and fracture surfaces for micrographic analysis are described 

briefly. 

3.2 A Brief Background of High Strain Rate Tests 

Studying the dynamic behaviour of materials requires the performance of dynamic tests on a 

wide range of strain rates. The classical Split Hopkinson Pressure Bar (SHPB) is used for cases 

of high strain rates (Gray 2000). The classical SHPB device is capable of attaining strain rates 

ranging from 102 s−1 to 104 s−1. The technique is well-known for characterizing the high strain 

rate behaviour of materials in tension, compression and shear. 

3.2.1 The Split Hopkinson Pressure Bar (SHPB) Test Equipment  

The SHPB is also commonly known as the Kolsky Bar. It is widely used to investigate the 

dynamic behaviour of solid materials at high strain rates (Ellwood et al. 1982, Chmielewski et 

al. 2004). The device is named after John Hopkinson and his son Bertram (Hopkinson, 1905). 

John investigated the propagation of stress waves in a wire. This later resulted in the 

development of a method for recording the movement of a cylinder during strongly dynamic 

conditions, by his son Bertram. Davies (1948) improved this technique with better accuracy of 

measured data to output pressure versus time history curves. Later Kolsky used two elastic bars 

instead of one with the specimen placed between them to achieve the same results (Weinong 

and Song 2011). 

There are various designs of SHPBs adopted by many researches; however, all of them work 

on similar principles and different designs have only minor alterations. That said, there is no 

universal standard design for the SHBP test apparatus. According to Gray (2000), all SHPB 

test apparatus share common design elements such as: 

 The gas gun assembly that fires a projectile 

 Striker bar 
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end of the incident bar. The impact of these two bars produces a wave in the pressure bar that 

is then transmitted into the test specimen which is sandwiched in between the two pressure bars 

(the incident bar and the transmitter bar). 

The length (l) and the diameter (d) of the pressure bars are chosen to meet a number of criteria 

for test validity and to obtain the maximum strain rate desired in the specimen. For proper 

operation of the Split Hopkinson Pressure Bar, and to ensure the propagation of a one-

dimensional wave, a few conditions must be met. These include, the bars must be physically 

straight and free to move without bending and they must be carefully assembled and aligned to 

ensure that they do not bend. If the bars cannot move freely they produce noise in the 

measurements, which raises difficulties of determining stress–strain relations for the test 

specimens. The striker bar is normally fabricated from the same material and is the same 

diameter as the pressure bars. The diameter and the velocity of the striker bar are chosen to 

produce the required total strain and strain rate within the specimen. When the striker bar 

impacts the incident bar it generates a one-dimensional longitudinal wave in it. Once this wave 

travels through the incident bar and reaches the interface with the test specimen, part of the 

longitudinal wave is transmitted through the specimen, while the rest of it is reflected back into 

the incident bar. The strain and strain rate in the specimen are proportional to the amplitude of 

the reflected wave while the stress is proportional to the amplitude of the transmitted wave, as 

explained in Section 3.2.2.  

3.2.2 SHPB Theory (Gray 2000, Chen and Song 2011) 

To help understand the theory and functioning of SHPB, the following section presents 

derivations of the stress strain and strain rates from the equation of propagation of elastic 

waves, the impact of two long cylindrical bars on either side of a test specimen, generation of 

elastic waves and the phenomena of the reflection and transmission of waves at the free ends 

of a test specimen. 

3.2.2.1 Basic Equation of Wave Propagation 

The relation for stress σ vs. strain in one dimension in the x-direction (
𝜕𝑈

𝜕𝑥
) is given by: 

 𝜎 = 𝐸
𝜕𝑈

𝜕𝑥
                                                                                                             (3.1)  

In this equation, the symbol, E, stands for the elastic modulus of the material. 
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The general solution of the elementary wave equation is given as, 

  𝑈 = 𝑓(𝑥 − 𝐶𝑜𝑡)                                                                                                (3.7) 

where U is the displacement, t the time, Co is the longitudinal wave velocity and x the 

displacement of the particle. The one-dimensional strain is determined by differentiating the 

displacement equation 3.7 with respect to x to give: 

 𝜖 =
𝜕𝑈

𝜕𝑥
= 𝑓′                                                                                                        (3.8) 

Differentiating the displacement in Equation (3.7) with respect to the time gives the expression 

for velocity: 

 𝑣 =
𝜕𝑈

𝜕𝑡
= −𝐶𝑜𝑓′                                                                                                (3.9) 

where f’ denotes the differentiation of the function f with respect to x. The velocity in terms of 

the strain 𝜖 and the wave velocity, Co is given by; 

 𝑣 =
𝜕𝑈

𝜕𝑡
= −𝐶𝑜𝑓′ = −𝐶𝑜

𝜕𝑈

𝜕𝑥
                                                                             (3.10) 

It is evident from Equation 3.10 that: 

 𝑣 = −𝐶0𝜖                                                                                                        (3.11) 

The longitudinal velocity is a function of the material property of the striker bar and is given 

by the expression: 

𝐶𝑜 = √
𝐸

𝜌
             ∴          𝐸 = 𝐶0

2𝜌                                                                        (3.12) 

 where the symbol ρ stands for the density of the striker bar and the symbol E represents the 

elastic modulus of the striker bar. Substituting the relationship, 𝜎 = 𝜖𝐸, for linear elastic 

deformation into Equation 3.11, followed by substitution of Equation 3.12 into the arising 

equation gives rise to: 

𝑣 = −𝐶𝑜
𝜎

𝐸
     ∴    𝑣 = −

𝜎

𝐶𝑜𝜌
   ⟹   𝜎 = −𝜌𝐶𝑜𝑣                                               (3.13) 

The negative sign in wave Equation 3.13 indicates the direction of the transmitted tensile pulse 

used to determine the stresses in the striker bar as the negative x-direction. The transmitted 

compressive pulse moves in the opposite direction to the transmitted tensile pulse and therefore 

can be represented by the expression:  
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𝜎 = 𝜌𝐶𝑜𝑣                                                                                                           (3.14) 

The velocity at the incident bar/specimen interfaces (labelled 1 in Figure 3.2) is the sum of the 

particle velocity due to the incident pulse and the reflected pulse, 

                 𝑣𝑠1 = 𝑣𝑖 + 𝑣𝑟                                                                                                     (3.15) 

In Equation 3.15, the symbol 𝑣𝑠1 stands for the particle velocity in the incident bar at interface 

1, while the symbols 𝑣𝑖  and 𝑣𝑟 represent the particle velocities in the incident bar associated 

with the incident and the reflected pulses, respectively. For an incident (compressive) pulse 

travelling in the positive x-direction in the specimen; 

                     𝑣𝑖 = 𝐶𝑜𝜖𝑖                                                                                                       (3.16) 

The reflected pulse in the incident bar travels in the negative x-direction and is given by the 

expression: 

   𝑣𝑟 = −𝐶𝑜𝜖𝑟                                                                                                      (3.17) 

Substituting the two preceding equations into Equation 3.15 transform it to: 

                  𝑣𝑠1 = −𝐶0(𝜖𝑟 − 𝜖𝑖 )                                                                                         (3.18) 

The velocity of the transmitted pulse traveling in positive x-direction at the 

specimen/transmitter bar interface (labelled 2 in Figure 3.2) is equal to: 

                  𝑣𝑠2 = 𝐶0𝜖𝑡                                                                                                         (3.19) 

The strain rate in the specimen is proportional to the difference in velocity between the ends of 

transmitter (vs2) and incident (vs2) bars, given by: 

                 𝜖̇= 
𝑣s1−𝑣𝑠2

𝑙𝑠
                                                                                                            (3.20) 

where ls is the length of the specimen. 

From Equations 2.18 and 2.19  

                  𝜖�̇� =
−𝐶𝑜(𝜖𝑟−𝜖𝑖−𝜖𝑡)

𝑙𝑠
                                                                                              (3.21) 

The force at the interface 1 is the sum of the forces due to the incident and reflected pulse and 

can be expressed as follows. 

                 𝐴𝑠𝜎𝑠1 = (𝜎𝑖 + 𝜎𝑟)𝐴0                                                                                       (3.22a) 
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where the 𝐴𝑠  𝑎𝑛𝑑 𝐴0 stand for the cross-sectional areas of the specimen and the bars, 

respectively, the symbol 𝜎𝑠1 denotes the specimen stress at the interface 1, and the 

symbols 𝜎𝑖 𝑎𝑛𝑑 𝜎𝑟 denote the incident and reflected pulse stress, respectively. 

 

The stress at interface 2 is given by the expression, 

                 𝐴𝑠𝜎𝑠2 = 𝜎𝑡𝐴0                                                                                                  (3.22b) 

The symbol 𝜎𝑡 in the foregoing equations stands for the transmitted stress pulse. 

 

A specimen is considered to be in equilibrium of stress (i.e. 𝜎𝑠1 = 𝜎𝑠2) after a few cycles of 

propagation of stress waves.  

 

Assuming equilibrium of stress and therefore equating Equations 3.22a and 3.22b to one 

another gives rise to: 

                 𝜎𝑡 = 𝜎𝑖 + 𝜎𝑟                                                                                                      (3.23)  

Using the relationship,𝜎 = 𝐸𝜖 for linear elastic deformation, allows Equation 3.23 to be 

rewritten as: 

                 𝜖𝑡 = 𝜖𝑖 + 𝜖𝑟                                                                                                       (3.24) 

From Equation 3.22b and the relationship, 𝜎 = 𝐸𝜖 for linear elastic deformation, the stress in 

the test specimen, 𝜎𝑠 = 𝜎𝑠1 = 𝜎𝑠2 can be written as: 

                 𝜎𝑠 =
𝐸𝐴0𝜖𝑡

𝐴𝑠
                                                                                                          (3.25) 

The expression for the strain rate (Equation 3.21) can be rewritten using Equation 3.24 as: 

                  𝜖�̇� =
2𝜖𝑟𝐶0

𝑙𝑠
                                                                                                         (3.26) 

The strain at any time t in a loaded specimen can be now be determined by integrating the strain 

rate from 0 to t, 

                  𝜖𝑠 = 2
𝐶0

𝑙𝑠
∫ 𝜖𝑟

𝑡

0
𝑑𝑡                                                                                             (3.27) 

 

3.2.3 Control and Data Acquisition System for SHPB Equipment  

The electronic data acquisition system of the SHPB equipment typically consists of strain 

gauges, strain gauge conditioner, and oscilloscope and instrumentation amplifier. The strain 

gauge conditioner is used to form a full bridge strain gauge circuit on the incident and 

transmitter bars in order to measure the longitudinal strains involved in each test. The 
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waves in the test equipment bars induce changes in the resistance of strain gauges mounted on 

them. In the data collection sub-system, these changes in resistance are converted to 

proportional changes in voltage, and then amplified, digitally sampled and stored as numerical 

data. The data can be later visualized or processed as desired in the data analysis sub-system. 

The data analysis sub-system in the SHPB equipment analyses the data collected to deliver the 

stress–strain graph of the material being tested for the test strain rates. The input into the 

MatLab program includes strain signals collected from the incident bar and the transmitter bar. 

Dimensions of the bars and the specimen, material properties of the bar including its modulus 

of elasticity, mass and the pressure of the striker bars are also constant inputs to the program 

(Chapra 2007). 

 

 

Figure 3.4: Schematic of a SHPB data acquisition and analysis system. 

3.2.4 Assumptions of a Valid SHPB test (Gray 2000) 

1. Propagation of stress waves in the bars is one-dimensional. This is achieved by ensuring 

that the bars are homogeneous and isotropic with a uniform cross-sectional area and a 

straight neutral axis; the stress in the bars remains below the elastic limits and is 

uniformly distributed over the entire cross-section; the bars are free of dispersive 

features. 

2. The bars/specimen interfaces remain in the same plane during the test. 

3. The specimen is in stress equilibrium after an initial “ringing-up” period. The ring up 

period is that period of time taken to attain dynamic equilibrium between the input and 

the output bars of the SHPB equipment. 

4. There are minimal friction and inertial effects. The effects can be decreased by using a 

lubricant at the interfaces of specimen and bars. 
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(8 AB and 8 SR). The use of two different heights of specimens during the SHPB compression 

testing was in order to attain two different high strain rates using the same equipment setting 

(striker velocity). Tests with the specimens of a height 6 mm yielded higher strain rates than 

those with a height of 10 mm. The specifications further required a height-to-diameter ratio of 

at most 2 in order to facilitate dynamic stress equilibrium (Noori and Al-Maliky 2014). The 

tolerance on the diameter of the specimens was not considered critical in the test, but rather the 

ends, which are supposed to be flush with the ends of the bars, and therefore were required to 

be flat and parallel within a tolerance of 0.02 mm. This tolerance was achieved by facing off 

the specimens on a lathe. This tolerance was set in order to ensure close contact between the 

specimen and the pressure bars of the SHPB apparatus during impact loading. 

The tensile specimens gauge sections were rectangular in shape with values of length, width 

and height of (10 x 4 x 4) mm, respectively. The shoulders of the tensile specimens were printed 

with threads whose specifications are shown in Figure 3.5(c), in order to mesh with the grips 

used in SHPB apparatus at the BISRU. 

3.4 Experimental Procedures for High Strain SHPB Testing  

3.4.1 SHPB High Strain Rate Compression testing 

For compression testing the SHPB set-up was as shown in Figure 3.6. The incident and the 

transmitter bars were made of high strength 4340 steel. The bars were 3 000 mm long and 20 

mm in diameter. A momentum trap at the end of the transmitter bar was used as an energy 

damping material to bring the bars to rest. The 710 mm long striker bar was fired into the 

incident bar at velocities in the range of (10–11 m/s).  

 

Figure 3.6: Schematic representation of SHPB equipment for compression testing. 
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Strains in the incident and the transmitter bars were measured with strain gauges in full 

Wheatstone bridge configuration. The strain bridges were constructed from four Micro-

Measurement ED-DY-125AC10C 1 000 strain gauges placed at the centres of both the incident 

and transmitter bars. An excitation voltage of 1.50 V was provided through two Agilent E 

2630A power supplies. To reduce the friction and maintain uniaxial compression in the sample, 

molybdenum disulphide grease was used to lubricate the interface between the bars and the 

specimen. The changes in resistance on the strain gauges as the striker bar struck the incident 

bar were converted to proportional changes in voltage, and then amplified, digitally sampled 

and stored as numerical data. The signal from the full bridge was fed into a Burr-Brown INAl10 

fast-settling instrumentation amplifier, which was mounted on custom built boards, with an 

amplification of 1000 and then fed into an ADLINKPCI-9812 high-speed data acquisition card 

where it was sampled, at a maximum rate of 20 MHz and at 12-bit resolution, and stored as a 

TXT file. The data that was captured by the digital oscilloscope was stored in a Microsoft Excel 

file. With a Microsoft Excel/MatLab link, the data was sent to MatLab, where correction for 

dispersion was performed and then sent back as a Microsoft Excel sheet. Low-pass filtering, 

with a cut-off frequency of 100 kHz, was used during post processing to remove electrical 

noise. The dimensions of each specimen were measured carefully and recorded prior to testing 

in order to monitor any slight differences in fabrication. The signals of strain in the SHPB 

testing were collected from the incident and transmitter bars, then input into the MatLab 

program for computation of the stress, strain and strain rate. 

The Equations 3.25–3.27 were computed numerically through cumulative summation using a 

cumtrapz built-in MatLab function in the SHPB data capture and analysis system, which is 

based on the method of trapezoids (Chapra 2007). The computations were carried out for a 

given number of data points within the range of time the reflected strain signal was obtained. 

Both the stresses and strains that were induced in the test specimens were stored simultaneously 

for the same number of given data points within the time range. The graphs of stress versus 

strain for the specimens were obtained by plotting these computed values of stress 𝜎(𝑡) versus 

strain 𝜀(𝑡) for the given strain rates. 

Generally, the SHPB experiment is associated with uncertainties of dispersion and effect of 

friction which affect the recorded pulse and produce spurious results (Bertholf and Karnes 

1975). Therefore, during the experiment, testing at each strain rate range was repeated seven 

times and the stress and strain data captured, in all instances, averaged in order to enhance its 
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credibility using the MatLab codes that were generated in the present work. An extra specimen, 

in each case, was used for calibration of the compression pressure bars prior to compression 

testing. The compressive behaviour of the DMLS Ti6Al4V (ELI) specimens, both for the as-

built (AB) and stress relieved (SR) was determined here for the two high strain rates.  

3.4.2 SHPB High Strain Rate Tensile Testing 

The principles of direct tension SHPB and the previously described compression SHBP are 

similar; however, there are some differences in the machine design and operations. In a tensile 

SHPB, the incident loading wave is tensile. At BISRU, this is achieved by a tubular striker that 

is pulled back over the input bar and impacting against a transfer flange / collar(see Figure 3.7), 

as opposed to the compressive SHPB where the striker is fired towards the input bar. The 

shoulder of the test specimen was connected to the one end of the incident bar while the other 

shoulder was connected to the right end of the transmitter bar. Both connections were 

established through mechanical joints. A compressive loading pulse was generated in the tube 

(hollow striker bar) which loads the specimen under tension. Both the elastic wave pulse at the 

incident and the transmitter bars were recorded to measure the force and velocities applied at 

the specimen boundaries. The set-up for high strain rate tension testing is shown in Figure 3.7. 

 

Figure 3.7: Schematic representation of SHPB equipment for tension testing 

 

The incident and transmitter bars used for tension testing were made of 7075-T651 aluminium. 

The incident and transmitter bars were each of length 3 000 mm and of diameters 19.06 mm 

and 20.0 mm, respectively. The mechanical connections for clamping the test specimen, one 

end to the incident bar and the other end to the transmitter bar of the SHPB equipment, have 
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threads to mesh with the shoulders of the test specimen shown in Figure 3.5. Four strain gauges 

were mounted on each one of the two bars to measure the strain induced in them. The gauges 

on the incident bar were located 1 824 mm from the specimen while the gauges on the 

transmitter bar were mounted 1 854 mm from the specimen. A 2.04 V excitation was provided 

through two Agilent E 2630A power supplies. The signals from the gauges were conditioned 

with a differential amplifier. Low-pass filtering, with a cut-off frequency of 100 kHz, was used 

during post processing to remove electrical noise. 

In order to obtain two strain rate regimes, the velocity of the striker was varied. However, the 

tensile loading SHPB equipment that was used was fairly limited in terms of the velocity range 

in which it could be operated safely. A widely differing strain rate regime, as was obtained in 

the case of high strain rate compression testing, was therefore not achievable in this case. The 

velocities of 10 m/s and 15 m/s were used to attain two high tensile strain rates. Half of the AB 

and SR specimens shown in Table 3.2 were tested at each strain rate.  During the experiment, 

the tensile test under each strain rate was repeated seven times and the data of stress and strain 

captured, in all instances, averaged using MatLab codes that were developed in the present 

work in order to enhance the credibility of the data. An extra specimen in each case was used 

for calibration of the tensile pressure bars prior to tensile testing. The dimensions of each 

specimen were measured carefully and recorded prior to testing in order to monitor any slight 

differences in fabrication.  

3.5 Impact Testing 

Instrumented impact tests are normally conducted on a Charpy impact machine equipped with 

an instrumented striker. The Charpy test was developed in the 1940s by the French scientist 

George Charpy as a method of determining the relative impact strength of metals and their 

alloys (Lucon and McCowan 2011). It is also applied on composites, ceramics and polymers. 

The test provides a standard method of studying the impact strength of a component containing 

a stress concentration in the case of notched specimens. 

3.5.1 Charpy Impact Test Theory (The Pendulum Impact Machine) 

A typical pendulum impact machine, according to ASTM E23, consists of a machine 

framework, rod/arm or pendulum, calibrated impact measuring scale and striker (hammer) 

whose geometry varies in accordance with the testing standard. Figure 3.8 shows a schematic 

diagram with descriptions of a Charpy impact test machine and some images of the same, taken 
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 𝐸𝑝 = 𝑚𝑔ℎ                                                                                                        (3.29) 

where the symbols stand for, m the mass of the hammer, g the acceleration due to gravity and 

h the height of the pendulum. After release, its potential energy is gradually converted into 

kinetic energy. At the time of impact, the kinetic energy (Ek) of the pendulum is given by the 

expression: 

                𝐸𝑘 =
1

2
𝑚𝑣2                                                                                                                        (3.30)    

where v is the velocity of the hammer at the time of impact. 

 

As impact occurs at the lowest point of the swing of the pendulum, the kinetic energy of the 

pendulum is equal to its potential energy at the time of release of the pendulum, thus: 

               𝐸𝑝 = 𝑚𝑔ℎ = 𝐸𝑘 =
1

2
𝑚𝑣2                                                                                                (3.31)  

Making the velocity (v) the subject gives rise to: 

               𝑣 = (√2𝑔ℎ)                                                                                                                        (3.32)   

Considering the angles of inclination of the arm of the pendulum at the start of falling and 

rising of the hammer to the vertical axis of rotation as φ and ψ, respectively, and the pendulum 

arm radius as R, then the initial height ℎ and final height ℎ′of the pendulum are given by: 

                ℎ = 𝑅(1 − 𝑐𝑜φ)                                                                                                                (3.33) 

                ℎ′ = 𝑅(1 − ψ)                                                                                                                   (3.34) 

From Equations 3.33 and 3.34 the potential energy (Ei) of the pendulum at start and its potential 

energy at the final height after fracture (Ef) are given by; 

               𝐸𝑖 = 𝑚𝑔𝑅(1 − 𝑐𝑜𝑠 φ)                                                                                                      (3.35) 

               𝐸𝑓 = 𝑚𝑔𝑅(1 − 𝑐𝑜𝑠 ψ)                                                                                                      (3.36) 

The energy absorbed by the specimen (Eabs) is therefore equal to: 

               𝐸𝑎𝑏𝑠 = 𝑚𝑔𝑅(𝑐𝑜𝑠𝜑 − cos𝜓)                                                                                            (3.37) 

This absorbed energy is equal to the fracture energy of the fractured specimen, and is what is 

read off the dial indicator on the Charpy impact test machine. 

© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



  

72 
 

The Charpy impact machine used for the current research has a maximum capacity of 292 J 

and a maximum impact velocity of 5.2 m/s. The angle of free swinging of the pendulum was 

120o. Distances from the radius of the pendulum to the centre of the percussion and to the 

striking edge of 765 mm and 770 mm, respectively, were used. ASTM E 23 requires the centre 

of percussion of the pendulum hammer to be within 1% of the distance between the axis of 

rotation and the centre of the strike on the specimen, which corresponds to the length of the 

pendulum. This requirement ensures that minimum force is transmitted to the point of rotation. 

 

 Prior to testing of the specimens, the Charpy impact pendulum was allowed to swing freely 

and the value of the energy absorbed due to friction of the bearings and dials recorded. The 

recorded value was used as correction factor for all the values of energy absorbed that were 

subsequently obtained for the test specimens. After every test the pendulum was lifted to the 

start position, while the measuring dial was reset to the zero position. The tests were conducted 

at temperatures of the specimens of, -130 oC, -100 oC, -50 oC, 0 oC, 27 oC, 50 oC, 90 oC, 150 

oC, 200 oC and 250 oC. All these temperatures, except the temperature of 27 oC, which was the 

room temperature at the time of testing, were obtained by conditioning of each specimen, 

through either heating or cooling as appropriate, using the appropriate liquid medium. For all 

cases each test specimen was positioned in the bath or beaker in accordance with SANS and 

ISO standards (2013). The standards stipulate a grid position of the specimen being 

conditioned, to be at least 10 mm from its side and covered by at least 25 mm of the liquid 

medium. The medium in the heating bath was constantly agitated and brought to the desirable 

temperature using a H3760-H hot plate for all temperatures above the room temperature. A 

water medium was used to obtain temperatures lying between 50 oC and 90 oC, while an oil 

medium was used to obtain all other temperatures above this range. Temperatures below the 

room temperature were obtained by adding liquid nitrogen to absolute ethanol in a beaker 

surrounded by ice and then stirring the mixture until a particular desirable temperature was 

obtained. The specimens were soaked at each desirable temperature with a tolerance of ±2 °C 

for a period of at least 15 minutes before they were tested. Placing the specimen from the 

heating or cooling medium and striking it with the impact hammer took at most five seconds 

as stipulated in the ASTM E23 standard. For the temperature of the test specimen to rise or 

drop by 1 oC, the estimated time taken can be calculated using the following heat equations; 

                  
𝑄

𝑡
=

𝑘 𝐴∆𝑇

𝑑
                                                                                                           (2.36) 

                 𝑄 = 𝑚 𝐶𝑝∆𝑇                                                                                                     (2.37) 
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where Q is the heat transferred, k coefficient of thermal conductivity, A surface area, d and m 

thickness and mass of the sample, respectively, Cp specific heat capacity of the 

material, ∆𝑇change in temperature and t time. The specific heat capacity, coefficient of 

thermal conductivity and density for Ti6Al4V (ELI) are known to be 526.3J/kg.k, 6.7W/m.K. 

and 4.43g/cm3, respectively (ASM 2018). The volume of each sample is equal to (55 x 10 x 

10) mm3. Using these parameters, the heat energy corresponding to a change in temperature of 

1 oC is equal to:  

 𝑄 = 55 × 10 × 10 × 10−9 × 4.43 × 103 × 526.3 × 1 = 12.82 𝐽                                  (2.38) 

The heat loss per second, for the surface area (A) of each specimen of 2,400 mm2, was 

calculated from Equation 2.36 to be: 

                  
𝑄

𝑡
=

6.7 𝑥2400 𝑥10−6 𝑥 1

10 𝑥 10−3 = 1.60 J/s                                                                       (2.39) 

Substituting the value of Q from Equation 2.38 into the foregoing equation, making the 

temperature change (t) the subject, gives rise to: 

                 𝑡 =
12.82

1.608
= 7.9 𝑠𝑒𝑐                                                                                            (2.39) 

Therefore, the time required for the specimen to experience a drop in temperature of 1 oC is 

equal to 7.9 s. The period of 5 s used to transfer the test specimens from storage until impact 

by the pendulum would thus have led to a small change of temperature that is less than one 

degree centigrade. The results obtained from this testing can, therefore, safely be taken to have 

occurred at the soaking temperatures, as the largest error arising from this change in 

temperature is about 2.34% for a test temperature of 27 oC.  

The original intention was to undertake three tests at selected temperatures for each set of 

specimens. However, initial tests demonstrated the need to expand the test range in order to 

obtain data falling in the horizontal parts of the transition curve in order to sufficiently 

characterize the transitional behaviour over a wide range of temperatures. This meant that 3 

specimens were therefore tested at temperatures of -130 oC, -50 oC, 27 oC, 90 oC and 200 oC 

and a single specimen at the remaining temperatures, as listed in Table 3.4. 
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Figure 3.14: Micrograph of typical indentations done on the cut surfaces of the specimens. 

 

3.8 Summary  

This chapter has presented the background theories related to the experimental work given in 

the chapter. The experimental procedures used in this study to investigate the high strain rate 

and Charpy impact properties of DMLS Ti6Al4V (ELI) have also been given. Details on the 

preparation of the test specimens for each test have been presented. The details as well as 

preparation of the test specimens in each test were then presented. The DMLS machine 

processing parameters used for production of the test specimens and the details (soaking 

temperatures and time) for the heat treatment used to relieve the residual stresses developed 

during fabrications have been presented. The procedures for microstructural examination as 

well as the hardness testing have also been discussed. 
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CHAPTER 4 – EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Introduction 

This chapter presents the results obtained from the tests of high strain rates and impact 

toughness carried out in accordance with the experimental procedures outlined in Chapter 3. 

The experimental results are analysed in this chapter and discussed as well. 

4.2 High Strain Rate 

The data presented in this section of the chapter are for the AB and SR DMLS Ti6Al4V (ELI) 

test specimens that were tested at two strain rate regimes under high strain rate compression on 

the one hand and tension on the other hand. The microstructures of the AB and SR specimens 

prior to loading, obtained under an optical microscope, are presented and discussed here as a 

reference. The micrographs of the fractured and deformed surfaces of the tested samples are 

also presented and discussed in this section. The results of Vickers microhardness testing for 

the samples before and after stress-relieving heat treatment prior to loading, as well as for the 

loaded specimens are presented and discussed here. 

4.2.1 High Strain Rate Compression Test Results and Discussion 

Figure 4.1 shows typical output data from the strain gauges on the incident and transmitter bars 

of the SHPB equipment in a typical high strain rate compression test, obtained for DMLS 

Ti6Al4V (ELI). It is clear that the time at which the waves start picking up in magnitude was 

not the same for the transmitted and the reflected wave. The estimated picking up time in Figure 

4.1 for the reflected and the transmitted wave was 1.214 s and 1.229 s, respectively. This 

difference is due to the fact that the incident wave was immediately reflected at the incident 

bar/specimen interface, while it took some time for the wave to travel to the transmitter bar 

/specimen interface. This time is referred to as the ‘ring up’ period.  The reflected signal 𝜀𝑟(t) 

was identified from the strain wave of the incident bar while the transmitted strain signal 𝜀𝑡 (t) 

was identified from the strain wave of the transmitter bar for the same range as the reflected 

strain wave. 
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stress- strain curve that does not reflect the material flow stress (Gray 2000). The average 

values of compressive stresses and strains for the seven specimens, less outliers, tested at each 

strain rate were computed using MatLab codes up to the point where the first incidence of 

fracture was reported, in each case at average strain rates of 400 s-1 and 700 s-1 for both the AB 

and SR specimens. For ductile material such as Ti6Al4V, the true stress (𝜎𝑡𝑟𝑢𝑒) and strain 

(𝜀𝑡𝑟𝑢𝑒) values are normally used to represent their mechanical behaviour as the curves in such 

a representation show a continuous increase of stress up to fracture/or unloading. The curves 

for engineering stress (𝜎𝑒𝑛𝑔) and strain (𝜀𝑒𝑛𝑔) were therefore converted into true stress–strain 

curves using the following relationship (Hashemi 2006); 

 𝜎𝑡𝑟𝑢𝑒(𝑡) = 𝜎𝑒𝑛𝑔(𝑡)(1 − 𝜀𝑒𝑛𝑔(𝑡))                                                                                   (4.1) 

 𝜀𝑡𝑟𝑢𝑒(𝑡) = −𝐼𝑛(1 − 𝜀𝑒𝑛𝑔(𝑡)                                                                                          (4.2) 

The developed MatLab codes were as follows: 

The values for the seven curves of strain initialized as x were not the same at the same data 

point, hence the definition of a value defined as the xavg, thus:  

  xavg = mean ([x1 x2 x3 x4 x5 x6 x7], 2);  

 Initializing values of stress as (y1, y2………y7); 

y1avg= interp1(x1, y1, xavg); 

y2avg=interp1(x2, y2, xavg); 

y3avg=interp1(x3, y3, xavg); 

. 

. 

. 

Y7avg=interp1(x7, y7, xavg); 

 

Yavg=mean (y1avg y2avg y3avg …. ….  Y5avg], 2); 

 

 

x true =-In( 1+xavg); 

y true = yavg( 1+xavg); 

% compute and interpolate the average of 

y (stress) for the value of xavg. 

% assuming xs are column vectors of same   

size.                                                                      

 

% assuming yavgs are column vectors of 

same size.                                                                      

 

% computing of the values of true stress and 

strain from averaged engineering stress and 

strain. 
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Figure 4.8: Comparative values of Vickers microhardness of the unloaded samples. 

 

Figure 4.9: Comparative values of Vickers microhardness of the AB samples. 

 

Figure 4.10: Comparative values of Vickers microhardness of the SR samples 
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corresponding average plastic shear strain were higher; transformation occurred earlier and the 

shear stress corresponding to this transformation was higher, hence a wider transformed ASB 

may be expected. Moreover, at high strain rates, high peak temperatures in the ASBs and 

steeper profiles of temperature in ASBs are expected (Xue et al. 2002 and Wang 2008). The 

variation of the width of the transformed ASBs at the same strain rate for the AB and SR may 

also be considered to be a result of differences in the hardness of the two forms of the alloy.  

The research of Bradley et al. (2015) proved that the width of the shear bands was greatly 

influenced by the hardness of materials and it decreased with increasing hardness. As 

previously demonstrated in Section 4.2.1.2 (page 88), stress relieving at a temperature of 

650 °C and a soaking period of 3 hours decreased the Vickers microhardness of AB specimens 

from an average value of 384 ±8.5 HV200 to 371±6.2 HV200. 

As suggested above, fracture of those compression-loaded specimens that did fracture occurred 

along the primary adiabatic shear bands (ASBs) through a process of initial formation of voids 

in the shear band zones, followed by the coalescence of the circular or elliptical voids leading 

to eventual fracture (Figures 16 and 17). In a general case of uniaxial loading, the specimens 

are expected to split at an angle of 45o to the load axis, which is the inclination of the maximum 

shear stress to this axis (Lee and Lin 1998). Hence the orientation of the primary ASB on a 

section of a deformed surface can be expected to be inclined at an angle 45o to the axis of 

loading. However, the presence of stresses other than uniaxial loads, such as the known residual 

tensile stresses in DMLS produced components will certainly influence the orientation of the 

angle of maximum shear (Hertzberg 1996). Considering the results obtained from the high 

compressive strain rate testing, the angle of orientation of the shear bands were seen to be 

slightly higher than 45o.  

Figure 4.18, which presents typical optical micrographs of deformed surfaces taken near the 

edges towards the centre of one typical fractured specimen is considered now. The description 

of the loading axis and angles of inclination of the shear bands are shown with the blue arrows 

for the AB and SR samples. The average values of the measured angle (θs) of inclination of the 

primary shear bands from the compression axis, for the AB and SR specimens were measured 

as 56.6 ± 2o and 48 ± 3o, respectively.  
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Figure 4.18: Typical micrographs with the description of the angles of inclination and load 

axis for the (a) AB and (b) SR specimens. 

The general equation for the inclination of the plane of maximum shear in a two-dimensional 

stress state is given by the expression: 

 

 𝑇𝑎𝑛 2𝜃𝑠 =
𝜎𝑦−𝜎𝑥

2𝜏𝑥𝑦
               or                                                                                      (4.5) 

                                                                                                                                  

where θs is the angle of inclination of the plane of maximum shear from the vertical load 

axis, 𝜎𝑥 and 𝜎𝑦 are the externally induced direct stresses acting along the x- and y-axis, 

respectively, and 𝜏𝑥𝑦 is the externally induced shear stress. 

Considering that the expressions for the principal stresses are developed in the basic 

assumptions of positive direct stresses (𝜎𝑥 and 𝜎𝑦), if the load applied in the longitudinal 

direction is compressive then the term (
𝜎𝑥−𝜎𝑦

2𝜏𝑥𝑦
) changes to (

𝜎𝑥+𝜎𝑦

2𝜏𝑥𝑦
).  

Considering the case for the axially loaded SR specimens where there are no known lateral, 

externally induced direct stresses, which implies that 𝜎𝑥 = 0,   𝜎𝑦 ≠ 0   , 𝜏𝑥𝑦 ≠ 0, where 𝜎𝑦 is 

the stress induced by the externally applied high strain rate, which transforms Equation 4.5 to: 

   𝑇𝑎𝑛 2𝜃𝑠 = − (
𝜎𝑦

2𝜏𝑥𝑦
) =

−𝜎𝑦

2𝜏𝑥𝑦
                                                                                       (4.6) 

For 𝜏𝑥𝑦 = 0,         2𝜃𝑠 = 𝑇𝑎𝑛−1 [∞] ⟹ 2𝜃𝑠 = 90° ,270° and 𝜃𝑠 = 45° ,135° 

𝑇𝑎𝑛 2𝜃𝑠 = − (
𝜎𝑥 − 𝜎𝑦

2𝜏𝑥𝑦
) 
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Therefore, the value of 𝜃𝑠 is equal to 45°, as has been stated at the beginning of the discussion 

here on the angle of inclination of the plane of maximum shear stresses. 

However, the angle of inclination of the plane of maximum shear from the compression axis 

that was recorded for the SR specimens is seen in Figure 4.18(b) to be equal to an average 

value of 48°. This is for the case where no known externally induced transverse direct stresses 

and/or transverse residual stresses exist which would imply the presence of externally induced 

shear stresses (𝜏𝑥𝑦). 

Taking this to be the case converts Equation 4.6 to:

 𝑇𝑎𝑛 (2 × 42) = 𝑇𝑎𝑛 84 =
−𝜎𝑦

2𝜏𝑥𝑦
   ∴

−𝜎𝑦

2𝜏𝑥𝑦
  = 9.514 (4.7) 

∴  𝜏𝑥𝑦 =
−𝜎𝑦

2 × 9.514
=

−𝜎𝑦

19.028
   

Considering the case for the AB samples with transverse residual stresses acting along the x 

axis and a longitudinally applied load gives rise to the relationships,𝜎𝑦 ≠ 0𝑐, 𝜎𝑥 =

𝑎𝜎𝑦 and, 𝜏𝑥𝑦 ≠ 0 . The symbol 𝜎𝑦 stands for the externally induced axial stress, 𝜎𝑥 is the in 

situ transverse residual stress and the parameter (a) is a constant of proportionality.  In this 

definition, no assumptions have been made about the sense of the transverse residual stress 

transforms Equation 4.5 to:    

 𝑇𝑎𝑛 2𝜃𝑠 = − (
𝑎𝜎𝑦+𝜎𝑦

2𝜏𝑥𝑦
) = −

(𝑎+1)𝜎𝑦

2𝜏𝑥𝑦
. 

For 𝜏𝑥𝑦 = 0  then,         2𝜃𝑠 = 𝑇𝑎𝑛−1 [∞] ≅ 90° ,270° and 𝜃𝑠 = 45° ,135° 

 

Therefore, the value of 𝜃𝑠 is in this case also equal to 45° as stated at the beginning of the 

discussion here on the angle of inclination of the plane of maximum shear stresses. 

 

However, the angle of inclination of the plane of maximum shear from the vertical load axis 

that was recorded for the AB specimens is seen in Figure 4.18 to be an average value of 56.6°. 

This, even for the case where there are known externally induced transverse direct stresses (the 

residual stresses), would imply the presence of externally induced shear stresses 𝜏𝑥𝑦. Taking 

this to be the case converts the foregoing equation for Tan2 to: 

𝑇𝑎𝑛(2 𝑥 33.4) = 𝑇𝑎𝑛66.8 = −
[𝑎 + 1]𝜎𝑦

2𝜏𝑥𝑦
  ∴  − 

[𝑎 + 1]𝜎𝑦

2𝜏𝑥𝑦
  = 2.333  

© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



  

103 
 

about 40μs (‘ring up’ period) for the wave to be transmitted at the output specimen/bar 

interface. 

 

Figure 4.22: Raw data output from high strain rate tensile test for DMLS Ti6Al4V (ELI). 

The two SHPB striker velocities of 10 m/s and 15 m/s used during the high strain tensile testing 

yielded two high strain rates of 250 s-1 and 360 s-1. Figure 4.23 show the strain rates against 

time attained by the two velocities. The stress-strain relationships of both the DMLS Ti6Al4V 

(ELI) AB and SR specimens were determined at these two average strain rates. 
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Figure 4.29: Comparative trends in Vickers microhardness test for the SR samples. 

The values of Vickers microhardness for most of the indentations of the loaded AB and SR 

specimens were higher than those of the samples that were not loaded. It has been argued here 

previously that two forms of the alloy experienced almost instantaneous strain hardening upon 

imposition of the high strain rates. Prior to necking, the assumption of homogenous stress and 

strain distribution in the gauge section of the loaded specimen is valid. Therefore, the overall 

gauge section is expected to experience strain hardening (during the process of uniform plastic 

deformation) resulting in the general increase in hardness (strength) seen in Figures 4.28 and 

4.29. The values of mean and standard deviation of the indentation data shown in Figures 4.28 

and 4.29 are presented in Figure 30. 

 

Figure 4.30: The comparison of mean Vickers microhardness values of unloaded and 

loaded DMLS Ti6Al4V at strain rate of 250 s-1. 

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35

V
ic

k
er

s 
m

ic
ro

h
a

rd
n

es
s 

(H
V

 2
0
0
g
)

Indentations number

Unloaded 250/s

340

350

360

370

380

390

400

410

420

AB (Unloaded) AB(250/s) SR (Unloaded) SR ( 250/s)

V
ic

k
er

 M
ic

ro
h

a
rd

n
es

s 

(H
V

2
0

0
g

) 

© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



© Central University of Technology, Free State



  

122 
 

LO specimens. This inference is supported by the data in Table 4.10, which shows the average 

impact energy at room temperature (27 ºC) for the UP and LO specimens to be 14.41 J and 

16.18 J, respectively. At this temperature then, the difference of impact resistance between the 

UP and LO specimens in terms of the absorbed energy was 1.77 J (or 12.2% of the lower value). 

The lateral expansion is also consistent with this trend giving 2% and 2.2% elongation for the 

UP and LO specimens, respectively; a difference of 0.2% elongation, which is 10% of the lower 

value. The difference of these elongations may be attributed to the difference in magnitude of 

the residual tensile stresses, with respect to the v-notch, which for the UP specimens was 

maximum, aiding more opening up of the notch in comparison to the LO specimens. The 

initiation of a crack at the tip of the notch due to impact loading was therefore likely to occur 

with less resistance for the UP than LO.  

Figure 4.40 shows the graph of the Charpy impact energies and lateral expansion /% elongation 

against temperature of the tested UP and LO stress-relieved SR specimens. The general trends 

of the curves shown in Figure 4.40 are similar to those of the as-built samples discussed 

previously, with the notch impact toughness increasing with the increasing temperature. The 

results shown in Figures 4.40 exhibit a very small variation in the impact energy and lateral 

expansion recorded at the same temperatures for the two cases of UP and LO specimens. In all 

instances at which a set of three specimens was tested at the same temperature, the values of 

mean and standard deviation were calculated. At room temperature, the impact energy 

absorbed was recorded (see Table 4.8) as 19.31 J and 19.64 J (1.72% of the lower value) with 

lateral expansion of 2% and 2.1% elongation (a difference of 0.1%) for the UP and LO 

specimens. There is a significantly smaller difference of 1.72% in impact energy for the SR, 

UP and LO specimens at room temperature compared to the one in the curves shown in Figure 

4.37 of 12.2% for AB at room temperature. This implies that stress relieving of the SR 

specimens that was done at a temperature of 650 ºC, with soaking for 3 hours, clearly did 

decrease the undesirable residual stresses resulting from rapid cooling during the DMLS 

processes significantly. The two sets of curves for the Charpy impact energy and lateral 

expansion shown in Figure 4.40 are seen to intersect at one point in each case, at values of 90 

ºC and 75/-85 ºC, respectively. The largest percentage difference between the results of the two 

specimen types in both cases was small; being less than 7% and 1% over the curve range, 

respectively. This difference is small enough for it to be ignored and therefore also the effect 

of residual stresses.  
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temperatures, fcc and some hcp structures, such as zinc and magnesium, do not. Low-

temperature embrittlement is a characteristic property of crystallographic structures with high 

values of Peierls barrier (force required to move a dislocation within a plane of atoms in the 

unit cell) and high energy of the elastic interaction of dislocations with point defects. These 

conditions are met when the direction of slip (direction of the Burgers vector) is along the odd 

axes of symmetry for the crystal lattices. In bcc crystal lattices, this occurs in the direction 

<111> and for hcp crystal lattices it occurs in the direction <112̅3>. Practically all bcc crystal 

structures belong to this category with the odd axes of symmetry <111>. It is only in some, but 

not all, hcp crystalline structures that the odd axes of symmetry <112̅3> are realized and 

therefore, the effect of low-temperature embrittlement. The αphase (acicular martensitic 

structure) of Ti6Al4V has a hcp structure similar to that of the α-phase but one that is slightly 

distorted and has slipping directions along the axes of an even order (<112̅0>) (Lütjering and 

Callister 2007). This results in a small Peierls barrier and weak elastic interaction of 

dislocations with point defects in a manner similar to all fcc lattice structures with axes of an 

even order <110> (Chernov et al. 2016). Such slip directions are along closely packed planes. 

Consider the Peierls-Nabarro stress τp of the form: 

 𝜏p = 3𝐺𝑒𝑥𝑝 (−
2𝜋𝑤

𝑏
 )                                                                                                  (4.8) 

where G is the shear modulus, w is the width of dislocations and b is the Burgers vector. From 

Equation 4.8, τp will be lower for wide dislocations (w) and higher for narrow dislocations. 

According to Dieter (1986), wide dislocations are found in close-packed crystal structures. 

Availability of closely packed planes give rise to low Peierls stresses and hence it is easier for 

the plane of atoms to slide by each other. 

The number of slip planes governs the movement of dislocations and this governs the ductility 

and the impact strength of a material (Lütjering and William 2007). However, increase in 

temperature increases the internal energy of the atoms within the crystal structure. As a result, 

the atoms of the material vibrate more vigorously with more thermal agitation and the 

movement of dislocations is accelerated (Dieter 1986). The stress (Peierls barrier) required to 

tear the dislocations from their equilibrium positions decreases accordingly. The ease of the 

material to deform plastically is therefore enhanced. This explains the general observed 

increase in the notch toughness and the % elongation (lateral expansion) for the AB and SR 

DMLS Ti6Al4V (ELI) specimens, with the increase of temperature. 
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The percentage area of shear fracture is shown in Table 4.14 and Figure 4.48 to increase with 

the test temperature for the two forms of the alloy. It is worth noting, however, that overall 

fracture energy was not solely dependent on the area of shear fracture but also on the 

microscopic fracture mechanisms in the macroscopic brittle (flat) area. While no relationship 

has been established between the percentage area of shear fracture and toughness, it is worth 

noting that the toughness of the two forms of the Ti6Al4V (ELI) alloy has also been shown 

here to increase with increasing temperature, albeit nonlinearly. 

The resulting fracture surfaces of the specimens that were tested, exhibited four distinct 

regions, each representing a specific failure mechanism, an example of which is shown in 

Figure 4.49. Crack initiation at the tip of the root occurred by fibrous tearing, thus producing 

microscopic dimples that were aligned in the direction of tearing or shear, as is evident in the 

bottom left image of Figure 4.49. Final failure and separation occurred in the form of ductile 

shear, evident from the elliptical dimples elongated along the direction of shear shown in the 

top right image of Figure 4.49. The multiple crack initiation sites that are typified by dimples 

in the bottom left image of Figure 4.49 occurred at the tip of the root of the notch. The presence 

of a notch in the specimen introduces multiaxial stresses at the notch which give rise to planes 

of both high normal stress and high shear stress. Microscopic examination of the fracture plane 

of high shear stress (shear lips), shown in the middle right image of Figure 4.49, highlight the 

presence of elliptical dimples and ridges that are aligned in the direction of shear.  
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The fracture surfaces appear macroscopically brittle (flat). Microscopic examination of the 

fracture surfaces in the flat portion and the wall of the cup for the AB and SR specimens that 

were tested at different temperatures revealed dimples, an example of which is shown in 

Figures 4.52 and 4.53. The orientations of these dimples were consistent with shear failure and 

showed failure zones that were similar to those seen on compressive high strain rate failure 

surfaces, as well as the well-known cup-and-cone failure surfaces of uniaxially loaded tensile 

ductile specimens. Ductile cracking, as evident by the presence of dimples, through the 

coalescence of micro voids resulted in macroscale brittle fracture (a term used here to designate 

crack propagation in a direction transverse to that of the existing direct stresses) since the 

cracking was enhanced by the test specimen geometry (presence of the notch). Some 

micrographs in Figures 4.52 and 4.53 show secondary cracks propagating randomly on the 

fracture surfaces. The presence of pores shown in Figures 4.52 and 4.53, may form sites for 

nucleation and propagation of cracks due to high stress concentration. The pores/voids shown 

in these same micrographs may be as a result of incomplete melting and fusion of the built 

layers or presence of gaseous argon in raw powder during the DMLS process. Similar cases 

were reported by Marlo et al. (2014). 

 

A typical micro-CT scan analysis of porosity for the broken halves of specimens that were 

tested at the two extreme temperatures is shown in Figures 4.54 and 4.55. 
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The unloaded AB specimens exhibited values of Vickers hardness that were higher than those 

for the unloaded SR specimens. The measured values of Vickers microhardness for the 

compressive and tensile high strain rate deformed specimens that did not fracture showed an 

increase with increasing strain rate. Failure of the high strain rate compression specimens 

occurred by the formation of adiabatic shear bands. The surface and internal defects (pores) 

were found to be the features from which failure occurred under tension. Failure in both cases 

occurred by the propagation of cracks that were inclined at an angle to the direction of load 

axis. The angles of inclination, in the case of compression high strain rate loading, was used to 

verify the presence of residual tensile stresses in the specimens. 

The results of the change of impact properties of as-built and stress-relieved DMLS Ti6Al4V 

(ELI) specimens with change in temperature were also presented in this chapter. The results 

have shown the toughness of DMLS Ti6Al4V (ELI) to be sensitive to temperature showing 

clear ductile to brittle transition. The orientation of the v-notch in the test specimens with 

reference to the base plate of the DMLS machine was found to affect the magnitude of the 

recorded values of the impact energy significantly more for the AB than the SR specimens. 

Stress-relieving heat treatment led to an increase in the values of impact toughness. The shear 

lip (shear fracture) and the macroscopic cleavage fracture (flat region) were the dominant 

fracture regions on the fracture surfaces of the Charpy specimens. The estimated percentage 

shear fracture (shear lips) areas for both forms of the alloy were seen to increase with increasing 

test temperature. The shear fracture surfaces were characterised by elongated dimples and 

ridges. The cleavage fracture regions were characterised by cup-and-cone fracture. 

Microscopic examination of the fracture surfaces in the flat portion of the cup showed the 

presence of dimples. Moreover, the CT scans showed that the specimens experienced the 

highest lateral contraction at the root of the v-notch and an expansion on the surface of impact. 
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CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

5.1 Conclusions  

The Split Hopkinson Pressure Bar test was used to study the high strain rate properties of the 

two forms of the alloy under compression, as well as tension high strain rate uniaxial loading. 

The following conclusions arose from the study: 

5.1.1 High strain rate testing 

a. The flow stress under the compressive high strain rate loading increased, while the 

fracture strain decreased, for a higher strain rate for both the AB and SR samples. 

b. The flow stresses under the higher strain rate in tension for the SR samples increased, 

while the true fracture strain decreased. The initial yield stress for the AB samples 

showed positive strain sensitivity at the two strain rates used in this work. However, 

part of the post-yielding curve after a strain of 0.44 showed negative strain rate 

sensitivity. Moreover, the fracture strain for AB samples did not show strain rate 

sensitivity. 

c. The relative strain rate sensitivity of the stress-relieved samples was higher than of the 

as-built samples in both compression and tension high strain rate testing. 

d. Stress-relieving heat treatment resulted in a reduction in Vickers microhardness of the 

as-built specimens. 

e. The Vickers microhardness generally increased with strain rate in both the compression 

and tension high strain rate tests.  

f. SEM analysis of the fractured and non-fractured specimens that were exposed to high 

strain rate compression indicated that the fracture for both the AB and SR specimens 

was as a result of the development of adiabatic shear bands for both the two strain rates 

used.  

g. At the same strain rate, the transformed adiabatic shear bands for as-built samples were 

narrower than those in stress-relieving heat treated samples. This was suggested to be 

as a result of variation in microhardness between the two forms of the alloy. The width 

of the adiabatic shear bands, nevertheless, was higher for the higher strain rate for both 

the AB and SR specimens. 

h. Tensile fracture of the alloy was found to be related to surface and internal defects and 

pores formed during the DMLS process. The defects and pores acted as crack initiation 

and propagation sites. It was proposed that the surface roughness inherent in the DMLS 
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process also contributed to the initiation and propagation of cracks due to high stress 

concentrations arising from these surface irregularities.  

 

5.1.2 Charpy Impact Testing 

The instrumented Charpy testing machine was used to study the impact properties of AB and 

SR DMLS Ti6Al4V (ELI). The following conclusions arise from the tests done: 

a) The as-built DMLS Ti6Al4V (ELI) specimens that were printed with the v-notch facing 

the base plate showed values of toughness that were 18% higher than those that were 

printed with the notch facing away from the base plate, over almost the entire testing 

range of temperatures. The effect on toughness of the orientation of the v-notch with 

respect to the base plate for stress-relieved samples over almost the entire range of 

temperatures was, on the other hand, smaller, being (≤5%) and could be disregarded. 

b) The DMLS Ti6Al4V (ELI) specimens showed values of impact toughness at the lowest 

temperature of -130 ºC, which were about 70% and 59% of the values that were 

obtained at room temperature for AB and SR specimens, respectively. This is a positive 

finding for applications as it indicates that this alloy still retained appreciable toughness 

even at sub-zero temperatures, way below those experienced by submarines and high 

altitude aircraft. 

c) The Charpy impact toughness of the DMLS Ti6Al4V (ELI) specimens were 

temperature sensitive, showing clear ductile to brittle transition. 

d) The presence of residual stresses in the samples gave rise to lower values of the DBTT 

for the LO (specimens built with the open end of the v-notch facing towards the base 

plate) than those for the UP (specimens built with the open end of the v-notch facing 

away from the base plate) for the as-built specimens. Stress-relieving heat treatment 

shifted the DBTT to lower values from 74 ºC (LO) and 80 ºC (UP) to 55 ºC (LO) and 

60 ºC (UP). 

e) For both the AB and SR specimens, the toughness at DBTT of the LO specimens was 

higher than that of the UP specimens at their respective transition temperatures. 

f) Other than shifting the DBTT to lower temperatures, stress-relieving heat treatment also 

shifted the transition curve upward along the y-axis of the graphs for toughness versus 

temperature. This indicated an improvement of impact toughness as a result of heat 

treatment. 
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g) The values of toughness obtained at ambient temperatures, were 48% and 22% lower 

for AB and SR specimens, respectively, than the recommended value for use in the 

aerospace industry. This limits the use of the alloy in this area of application. 

h) Optical microscopic examination of the fracture surface shear lips showed the presence 

of elliptical dimples and ridges that were aligned in the direction of shear even at the 

lowest temperatures for both the AB and SR specimens. Similar cases of elliptical 

dimples were observed on the crack initiation and final ligament surfaces, revealing 

ductility even at the lowest temperatures. 

i) The area of the flat fracture surface (plane strain) decreased gradually with temperature. 

Even though this surface appeared macroscopically brittle, failure occurred by a ductile 

mechanism resulting in the typical cup-and-cone failure surface associated with ductile 

failure in uniaxial tensile loading. 

 

5.2 Recommendations  

a. The SHPB equipment used in the current research study was limited in terms of the 

ranges of strain rates (striker velocity) that could be achieved in both compression and 

tension at the time of the test. It was also not possible to conduct tests at low and 

medium strain rates due to unavailability of equipment suited for such tests. For future 

studies it is recommended that the high strain properties of DMLS Ti6Al4V (ELI) be 

investigated over a wider range of strain rates, from 10 /s to 103 /s. Moreover, 

comparative studies of the mechanical properties (flow stress and true fracture strains) 

at low and medium strain rates should also be carried out. Such studies would enable 

determination of the parameters for various models, such as the Johnson Cook and 

Cowper Symonds models for the material, while facilitating comparison of the values 

obtained in studies with those from various published constants for wrought and cast 

Ti6Al4V. 

b. It was not possible with the SHPB high strain compression and tensile testing facility 

used in this work to fully attain constant strain rates during testing. Constant strain rates 

are important in testing materials such as Ti6Al4V, since its mechanical properties are 

strain rate dependent. A way of adapting the equipment, such as the use of pulse shaping 

to achieve constant strain rates, should be developed for future studies.  
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c. Future studies should also focus on the effect of the build orientation (specimens printed 

in X-Y, X-Z directions and possibly at different angles of inclination) on the impact 

properties of the DMLS Ti6Al4V (ELI). 

d. Future work should also aim at developing ideal microstructures (bimodal and 

equiaxed) of DMLS-produced Ti6Al4V (ELI), with optimal strength and ductility, 

thereby enhancing toughness, for application in the aerospace sector where such 

mechanical properties are vital for the reliability of parts. 
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Appendix A: Estimation of percentage (%) shear areas (ASTM E23-07) 
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