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Summary 

 

Polyurethane heart valves have been widely studied as possible replacements for 

mechanical and biological heart valves. To function optimally, these valves have to be 

free from calcification, require no anticoagulation, function silently and have longevities 

exceeding those of biological heart valves. The potential widespread use of such valves 

certainly exists and modern materials and fabrication methods place it within reach. 

However, polymer heart valves that are available at present are unaffordable for large 

parts of the population. Therefore, the development of an inexpensive routine production 

technique for manufacturing of polyurethane heart valves will greatly benefit a very large 

number of patients in developing and emerging countries. Polyurethane heart valves 

show favourable physical properties and flow dynamics compared to human heart valves; 

however, the successful outcome of producing a polyurethane heart valve with the 

required flexibility, durability and hemodynamic function is often difficult to predict. The 

design of the mould, the selection of the material and the fabrication method used are key 

factors that influence the achievement of an acceptable heart valve for use in the human 

body.  

 

In this study, a repeatable, semi-automated dip moulding process for producing tri-leaflet 

polyurethane heart valves was developed. An experimental facility was designed and 

established, as well as an experimental dip-moulding mould, which allowed the selection 

of an appropriate set of dip-moulding process parameters and mould properties for the 

routine production of polyurethane valve leaflets with the required physical and 

mechanical properties. The results obtained from the experimental facility were evaluated 

with regard to compliance of the relevant properties, namely leaflet thickness, surface 

topography and mechanical strength, with the requirements of polymer heart valves. 

 

© Central University of Technology, Free State



Page | iv  
 

Additive manufacturing of Ti6Al4V (ELI) was used for producing the heart valve frame, 

sewing ring and mould. By applying the experimentally developed dip-moulding process 

and using the mould assembly, the valve leaflets were moulded directly onto the valve 

frame. The first prototype polyurethane heart valves were tested in the pulse duplicator 

machine of the Robert WM Frater Cardiovascular Research Centre of the University of 

the Free State. The valves displayed good opening and closing performance, mimicking 

the behaviour of natural heart valves during the pulse duplicator tests. Although these 

prototype valves did not meet all the minimum specifications of the ISO 5840 standard, it 

was clearly demonstrated that with further design improvements it would be possible to 

produce tri-leaflet valves through dip moulding, which would provide an attractive 

alternative to the tissue and mechanical heart valves currently used.  
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CHAPTER 1: INTRODUCTION 

 

1.1. Artificial Heart Valves 

Heart valve implants are prosthetic devices designed to replicate the function of the 

natural valves of the human heart [1]. The human heart contains four valves, namely the 

tricuspid valve, pulmonic valve, mitral valve and aortic valve [2][3]. Their main purpose is 

to maintain unimpeded forward blood flow through the heart and from the heart into the 

major blood vessels connected to the heart, into the pulmonary artery and into the aorta 

[4]. As a result of a number of diseases, both acquired and congenital, any one of the four 

heart valves may malfunction due to a number of acquired and/or congenital diseases, 

resulting in either impeded forward flow (stenosis) or backward flow (regurgitation) [2][4]. 

These heart diseases burden the heart and may lead to serious problems that could result 

in a heart failure [5][6]. 

 

Artificial heart valves have been developed over more than six decades. Nowadays, they 

represent the most widely used cardiovascular devices. Heart valves manufactured from 

polyurethane (PU), which is a biocompatible material, have shown good performance in 

terms of resistance to thromboembolism and structural deterioration. However, there still 

exists a need to further improve the material properties, design of the valve and 

manufacturing process so that even more acceptable and affordable PU heart valves can 

be produced. 

 

Artificial heart valves are classified into three categories based on their mechanism or the 

material of fabrication, as shown in Figure 1.1:  

● Mechanical heart valves  
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Modern mechanical valves can last over 25 years in an accelerated valve wear 

tester. However, all current mechanical heart valves require lifelong treatment with 

blood-thinning anticoagulants which requires monthly monitoring blood tests [7].  

● Polymer heart valves 

In contrast to mechanical heart valves, polymer heart valves do not require the use 

of anticoagulant drugs due to the improved blood flow dynamics, resulting in less 

red cell damage and hence less clot formation. Their weakness, however, is their 

limited lifespan [7][8].  

● Natural tissue heart valves 

Traditional tissue valves made from pig heart valves, will last 15 years on average 

before they require replacement, but will typically have a shorter lifespan in 

younger patients [5][9]. 

 

 

Figure 1.1: Types of heart valve replacement. (A): Mechanical ball-cage valve, (B): 
Mechanical tilt-disc valve, (C): Polymer valve, (D): Tissue valve. 

 

Polymer heart valves have been used over the past 60 years since the first stages of 

cardiac prosthesis development and advances have been made along with the 

development of biological and mechanical heart valves [1][5]. Their durability and 

biocompatibility have been the major limitations that hindered the acceptance of polymer 

heart valves. However, progress in materials and manufacturing techniques has been 

leading the way to a better future for these devices and their huge potential [5].  
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Following on unsuccessful attempts by the Robert WM Frater Cardiovascular Research 

Centre in the Department of Cardiothoracic Surgery of the University of the Free State, 

they approached the Centre for Rapid Prototyping and Manufacturing of the Central 

University of Technology, Free State to develop a reliable and repeatable process for 

producing polymer heart valves. 

 

1.2. Problem Statement 

There is a great demand for heart valve implants [10]. It is estimated that more than 

300 000 replacement heart valves are implanted annually worldwide [7]. However, there 

is still a need for a locally manufactured, cost effective and affordable prosthetic heart 

valve for patients in developing economies. Such a heart valve should mimic the 

hemodynamic performance of a native heart valve, which does not require anti-

coagulation medication and has a long enough fatigue life to avoid further replacement 

surgeries. To ensure the durability of polymer heart valves, the thickness (typically 100 

µm) should be very well controlled during fabrication, to avoid thinner weaker sections in 

the valve leaflets, and the surface finish of the processing mould should result in surface 

finish of the leaflets that would avoid the negative impact of blood coagulation. A 

successful development of such a fabrication process would contribute to improve the 

quality of life for cardiovascular patients in emerging and developing countries through 

the manufacturing of affordable heart valves. 

 

1.3. Aim of the Study 

The aim of this study is to establish a controllable experimental facility, expertise and a 

proven procedure that will result in a fabrication process for repeatable and reliable 

production of polyurethane heart valves. 
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1.4. Objectives 

● To establish local competence in designing experimental equipment and facilities 

to manufacture polymer heart valves through additive manufacturing and dip 

moulding technologies.  

● To determine dip moulding parameters and develop a procedure that would enable 

the production of experimental prototype polymer heart valves.  

● To apply the dip moulding procedure for the production of functional prototype 

polyurethane heart valves that would perform well when submitted to pulse 

duplicator tests. 

 

1.5. Overview of Research Approach 

The overview of the research approach can be summarised as follows: 

 

➢ Literature survey on designs of artificial heart valves  

 

A literature survey on the existing artificial heart valve designs was performed to select 

an appropriate heart valve design.  

 

➢ Identification of fabrication methods of polymer heart valves 

 

Several types of fabrication methods and materials used for the manufacturing of polymer 

heart valves were reviewed. An appropriate production method and a suitable material 

was identified for the fabrication of the polymer heart valves with leaflets meeting the 

required biomechanical properties. 
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➢ Manufacturing and testing of polyurethane films 

 

Using the selected dip moulding method and a polyurethane material, thin films were 

produced on an experimental dip moulding mould in an experimental facility. The 

thicknesses of the manufactured polyurethane films were measured and their mechanical 

properties were determined by using a tensile testing system. The surface topography of 

the polyurethane films was evaluated through optical and scanning electron microscopy. 

Based on these results, a set of parameters for dip moulding of polyurethane heart valves 

was selected.  

 

➢ Manufacturing of prototype polyurethane heart valves 

 

Using the recommended set of dip moulding procedures established for the fabrication of 

polyurethane films, a tri-leaflet polyurethane heart valve was manufactured. Thicknesses 

of the moulded leaflets were determined and analysed on scanning electron microscopy. 

 

➢ Assessment of the performance of the prototype polyurethane heart valves 

 

The dynamic functioning of the polyurethane heart valves was assessed through pulse 

duplicator tests to determine the extent to which they met the specifications for such 

valves. 

 

Figure 1.2 provides a schematic overview of this research approach. 
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Figure 1.2: Schematic of the research approach for the study. 

 

1.6. The Overview of the Dissertation Layout 

The dissertation layout is summarized in the schematic diagram in Figure 1.3. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. Brief Anatomy of Heart Valves 

There are four fluidic control components in the human heart which are responsible for 

maintaining a unidirectional blood flow during the cardiac cycle. These components were 

historically considered as passive tissues known as heart valves. The heart valve was 

believed to perform the function of closing and opening due to inertial forces exerted by 

the surrounding blood [7]. However, this description does not adequately describe the 

biomechanical complication of their function as their mechanics are multi-modal and their 

loading cycle is repeated every second [6][7][11][12].  

 

The mitral and tricuspid heart valves are atrioventricular valves which set out blood from 

the atria to the ventricles and the two semilunar valves (aortic and pulmonary) ensure 

blood flows into the arteries leaving the heart (see Figure 2.1) [11]. These heart valves 

consist of three leaflets which demonstrate distinct biomechanical features at each length-

scale and have various functions at different biological levels (such as cell-, tissue- and 

organ levels, etc.). Each leaflet is a complex and multi-layered structure [6][12]. 
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Figure 2.1: Cross-section of the heart, showing the location of the four valves of 
the heart [1]. 

 

2.2. Heart Valve Diseases 

Heart diseases may originate from the malformation in the womb of the cardiovascular 

organs and/or be acquired along the active lifespan of a person. Any of the valves may 

malfunction due to a variety of diseases, leading to a possible narrowing, leaking or the 

valve not closing properly. Such a defect will compromise the normal functioning of a 

valve, resulting in complications such as potential congestive heart failure and eventual 

death of the patient if the disease is not treated in due time [7]. 

 

In 2015 to 2016, the American Heart Association [13] conducted research on heart 

diseases. It was found that about 360 000 people died of heart disease in the United 

States every year. Already in 2003, 19 989 death cases were directly generated by heart 

valve disease and contributed as the cause of 42 590 deaths [14]. This included 12 471 

cases of aortic valve diseases which was found to be the most common cause of the 

mortality and contributed to 26 336 cases. It was found that 2 759 deaths were caused 
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by mitral valve disease and it contributed to 6 600 deaths. Pulmonary valve diseases 

(right side valve) resulted in 11 deaths and 35 contributory deaths, which were 

significantly less than the tricuspid valve diseases causing 16 deaths and 69 contributory 

deaths. 

 

The survey indicate that the estimated number of patients worldwide that are in need of 

heart valves would triple from 290 000 in 2003 to over 850 000 by 2050, based on the 

population growth and ageing alone [15][16]. It was also reported that in sub-Saharan 

Africa, parts of Asia and South American, developing and emerging countries, very young 

individuals suffer from similar diseases leading to premature death when they are still 

relatively young [15]. These statistics vividly show that heart diseases are threatening the 

longevity of people all over the world [6]. Heart valve abnormalities are usually treated 

with medication but in severe cases it may be imperative to proceed with heart valve 

repair and/or heart valve replacement [7][15][16]. 

 

2.3. History of Surgical Valve Replacement 

A heart valve can be replaced with either a biological or an artificial valve. These 

prosthetics are designed to replicate the function of the natural valves of the human heart. 

Commercially available artificial valves are those that are manufactured entirely from 

strong durable artificial materials. Biological valves are primarily produced from living 

tissue and include three porcine aortic heart valve leaflets and bovine pericardium. The 

biological valves can also be transplanted from donors and from the patients themselves 

[7].  

 

2.3.1. Mechanical heart valves 

There are three basic types of mechanical valve designs: (i) a caged-ball, (ii) a tilting- disc 

or mono-leaflet and (iii) bi-leaflet design valves, as shown in Figures 2.2 and 2.3 

respectively. These valves are commonly manufactured from different artificial 
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biomaterial such as titanium, cobalt, low-temperature isotropic carbon alloys, Delrin, 

Teflon, Dacron, etc. [11].  

 

 

Figure 2.2: The first concepts of caged-ball valves. (A): Charles Hufnagel valve, 

(B): Starr–Edwards valve. 

 

 

Figure 2.3: Tilting-disc design valves. (A): Mono-leaflet (Medtronic-Hall), (B): Bi-

leaflet valve (St Jude). 

 

The first mechanical valve in the form of a ball surrounded by a cage was developed by 

Charles Hufnagel in 1952 [17]. The valve consisted of a Plexiglass (methyl methacrylate) 

cage containing a ball occlude which was inserted into the descending thoracic aorta 
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(Figure 2.2 A) [7]. The caged-ball valve shown in Figure 2.2 B was the first mechanical 

heart valve used as a replacement implant of a mitral valve in 1960. The valve was 

designed by Starr–Edwards and consisted of a silastic ball with a circular sewing ring and 

a cage formed by three metal arches (Figure 2.2 B) [7][17]. Ball-cage valves operate 

similarly to industrial non-return valves allowing fluid to flow only in one direction. When 

pressure is exerted by the heart onto the blood, exceeding the pressure in the aorta, the 

ball is ultimately pushed away from the heart. This is the open position of the valve and 

blood flows into the artery. Similarly, when the heart ejects blood, the pressure inside is 

significantly reduced which then draws the ball backwards to a closed position of the valve 

[18].  

 
The caged-ball valves displayed a good durability; however, the blood encountered an 

obstruction as it pushed against the ball resulting in an extra workload for the heart. This 

type of valve experienced a larger pressure drop across it in the open position and thus 

higher mechanical stresses on the valve [7]. The valve also suffered from slow 

hemodynamic performance and continuous thromboembolism (formation of a blood clot 

in a blood vessel, called a thrombus that breaks loose and is carried by the bloodstream 

to plug another vessel). Due to these shortcomings, this type of valves is no longer 

implanted [17][18][19].  

 

Further studies on developing commercialized valves were conducted to address the poor 

hemodynamic performance of ball-cage valves. These studies resulted in a tilting-disk 

valve design. The tilting-disc valves typically comprises of a single- or double-disk 

secured by an annular metal ring (Figure 2.3). The opening angle of the disk relative to 

the valve annulus ranges from 60° to 80° and 75° to 90° for mono-leaflet and bi-leaflet 

design valves respectively, resulting in two and three distinct orifices of different sizes 

[11][18]. Although these valves resulted in a better hemodynamic performance compared 

to the caged-ball valves, their main drawback is stent fracture and related complications 

[20]. 
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Generally, it has been reported that commercially available mechanical heart valves can 

last indefinitely (the equivalent of over 25 years in an accelerated valve wear tester). 

However, current mechanical heart valves suffer from thromboembolism and require 

lifelong treatment with anticoagulation drugs (blood thinners) [11][7]. Figure 2.4 shows 

mechanical heart valves suffering from thrombosis and pannus tissue overgrowth, often 

occurring at the base of the valve or at the apex of the cage, leading to stenosis or 

blockage of the valve. 

 

 

Figure 2.4: Mechanical valves explanted for severe dysfunction. (A): Pannus 
ingrowth interacting with leaflet opening, (B): Combination of thrombus formation 

and pannus tissue growth on the valve, (C): Obstructive thrombosis of a valve. 
 

According to the literature, the pannus alone (Figure 2.4 A) may be encountered as a 

slowly progressive obstruction by a subvalvular annulus, which is often difficult to 

visualize and thus distinguish from progressive structural valve deterioration [20]. 

Thromboembolism complications are an important cause of morbidity and mortality in 

patients with mechanical heart valves as shown in Figure 2.4 B and C. In other cases, the 

thrombosis and pannus are observed in combination and this causes subacute valve 

obstruction. In the ball-caged valve shown in Figure 2.4 C, the silastic ball sometimes 

changes colour and dimensions due to lipids insudation leading to a decreased poppet 

excursion and consequent valve incompetence and thrombus [11][17][20]. 

 

© Central University of Technology, Free State



 

Page | 14  
 

It is not always possible to accurately monitor the level of anticoagulation in replacement 

heart valves since international normalized ratio (INR) clinics are not always in close 

proximity to patients, especially in developing- and emerging countries, and an 

uncontrolled anticoagulation process can lead to internal bleeding within the heart 

[21][22][23]. From medical reports it is clear that these valves are not free from the 

problems associated with mechanical prostheses in general, that is, lifelong 

anticoagulation is necessary. In addition, mechanical heart valves have characteristic 

operating sounds which can disturb patients and constantly remind them of their implant, 

lowering their quality of life. 

 

2.3.2. Biological heart valves 

Biological heart valves (BHV) have been used since the early 1960s, when aortic valves 

obtained fresh from human cadavers were transplanted to other individuals [18][24]. This 

type of heart valve is also created from animal donor valves or other animal tissue that is 

strong and flexible. Most commercially produced BHVs are mounted on and supported 

by a metal- or plastic stent, typically with three posts (sometimes referred to as struts) 

surrounded by a sewing cuff at the base. Stents vary in structural design, flexibility and 

composition [24], as shown in Figure 2.5, which shows different innovations of biological 

valves. (A): Hancock porcine valve, (B): Carpentier-Edwards pericardium. 

 

Similar to natural valves, BHVs function due to a pressure gradient across the valve. 

When the blood pressure below the valve is greater than the pressure above, the leaflets 

are pushed outwards, reversing the curvature and causing the valve to open. When the 

blood pressure above the valve is greater than the pressure below, the valve closes by 

pushing the leaflets towards the centre. As the total surface area of the leaflets exceeds 

that of the orifice, the leaflets overlap in the centre and allow for complete closure of the 

valve, without leakage [7][15]. 
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Figure 2.5: Biological valves. (A): Hancock porcine valve, (B): Carpentier-Edwards 
pericardium. 

 
These valves function quite effectively for an average of 12 to 15 years before they require 

replacement, although typically for shorter periods in younger patients, and usually do not 

require lifelong anticoagulation treatment. Compared to mechanical valves, they have 

better hemodynamic properties and resistance to thrombosis due to their similarity to 

native flexible leaflet valves [25][26].  

 

The main drawback of biological valves is their lifespan. Structural valve dysfunction is 

caused by progressive valve leaflet wear and tear (Figure 2.6 A), eventuating in 

regurgitation or stenosis. Pathological specimens showing the most common reasons for 

biological valve failure as a result of wear and tear, pannus overgrowth, calcification 

(especially in the young patient), thrombosis, endocarditis and structural valve 

deterioration are illustrated in Figure 2.6 [27]. 
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Figure 2.6: Clinical biological valve failure. (A): Leaflet failed due to wear and tear, 

(B): Calcification degeneration, (C): Pannus, (D): Endocarditis, (E): Thrombus. 

 

These valves calcify progressively and rapidly in immature animals, analogous to the 

accelerated rate of calcification in young patients, and typically develop within the 

substance of the leaflet flexion where deformation is maximal. Calcification deposits 

predominate at the commissural tissue adjacent to the stent posts, as shown in 

Figure 2.6 B [7]. Early pannus (Figure 2.6 C) is composed of myofibroblasts, fibroblasts 

and capillary endothelial cells and over time pannus calcifies. It has been reported that 

some pannus formation over the suture is normally expected and functions to form a non-

thrombogenic surface. Meanwhile endocarditis and thrombosis occur less frequently than 

the aforementioned modes of biological failure, occurring at a rate of 1.2% per year and 

0.2% per year, as shown in Figure 2.6 D and E, respectively [27][28][29][30][31].  

 

These trends indicate that the majority of implanted valves would have to be explanted 

after 15 years [28]. A young person with a biological valve would require multiple surgeries 

to replace the heart valve. This could lead to significant morbidity, such as blood 
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transfusions, renal failure, wound infection, postoperative pain, delayed recovery and 

multiple surgeries, which are expensive [32].  

 

During the past 50 years, improvements have been made in the properties of mechanical 

and biological valves, but it was reported that no significant change in their clinical 

application had been achieved. The main complications of these valves, such as 

inefficient functioning and limited long-term durability with the need for anticoagulation 

and without the ability to be accepted in different types of patients, are still problematic 

[15]. Consequently, the search for an alternative solution has attracted the attention of 

many researchers. 

 

2.3.3. Polymeric heart valves 

A flexible polymer heart valve design first appeared in 1960. Nina Star Braunwald [15][33] 

conducted groundbreaking research focusing primarily upon the development of a flexible 

polyurethane mitral valve. She designed and fabricated a valve using Teflon chordae 

tendinea, which was implanted initially into dogs. During this time, problems with durability 

and biocompatibility hindered the acceptance of polymer valves. Despite this early effort, 

utilization of polymer valves did not emerge at the time due to the success of the Starr-

Edwards valve and later prosthetic valves, as well as the subsequent development of 

safer and effective open surgical and minimally invasive mitral valve repair techniques. 

 

Nevertheless, polymer heart valves have been extensively investigated as possible 

replacement for mechanical and biological heart valves. Progress in materials and 

manufacturing techniques of polymer valves has improved the usage of these devices 

and their potential [10]. A polymer heart valve shows favourable physical properties and 

flow dynamics compared to human heart valves, however, the outcome of efforts to 

produce a polymer heart valve with the required flexibility, durability and hemodynamic 

function is often difficult to predict [7][34][18][35].  
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This study focused on the development of a polymeric heart valve. 

 

2.4. Development of Polymeric Heart Valves 

Polyurethane heart valves have a long history and it has been proven by many 

researchers that it is difficult to manufacture a flexible polymer valve which is able to 

withstand the rigours experienced by a prosthetic valve. Polymer heart valves offer the 

potential to avoid the drawbacks of both mechanical and biological valves. Because of its 

potential, much research has been conducted on the development and improvement of 

polymer heart valves. This includes finding a suitable polymer and developing a 

reproducible and affordable manufacturing process of leaflets with the correct thickness 

to obtain a durable heart valve which is biocompatible and maintains a satisfactory blood 

flow [36][16][37]. 

 

Different designs of polymer heart valves, primarily comprised of polymers, were tested 

over the years and were mostly unsuccessful due to material degradation, thrombosis 

and calcification. Figure 2.7 shows a flexible tri-leaflet heart valve developed by Reul-

Ghista using a polymer material that was unsuccessful due to the occurrence of 

calcification and regurgitation [38]. 
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closing [41]. These valves had low energy losses, and lifetimes (400 and 650 million 

cycles in vitro durability testing). ADIAM Life Science AG in Germany also developed a 

valve using the same material for the mitral position [42]. In vitro durability cycles of 600 

to a 1000 were achieved, which is equivalent to a life span of 16 to 26 years. However, 

calcification was localised only at tears and wear-induced defects in the material during 

in vitro fatigue. 

 

It has been proven that PU-based material has excellent blood compatibility, biostability, 

hydrodynamic function and durability [5][9][11][42]. However, there have been problems 

associated with long-term implants, with material degradation, particularly due to 

oxidation or hydrolysis, causing premature failure of heart valves. PCU has emerged as 

the recommended material for polymer heart valves and is also being used by the team 

from Cardiothoracic Surgery at UFS [5][13]. Based on this, polyurethane material was 

selected for this project. 

 

The physical properties of polyurethanes also depend largely on the process that is used 

to manufacture the leaflets. These factors include residual stresses which affect the 

longevity of the leaflets and could cause premature failure and chain degradation [39].  

 

2.4.2. Fabrication process of PU heart valves 

There are several types of fabrication techniques that could potentially be used for 

producing PU heart valves, such as dip moulding, injection moulding, film fabrication or 

compression moulding. Several studies have evaluated the impact of different fabrication 

techniques on the function and durability of the manufactured valves [6][15][35][36]. The 

dip moulding process involves the use of a specifically designed mould. This mould 

undergoes a repeatable cycle of being dipped into a polymer solution for moulding a part 

that can be removed from the mould after the polymer solution has cooled down [14]. 

Usually this process of manufacturing involves multiple dips into a less concentrated 

solution.  
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Heart valves can also be manufactured through the injection moulding process. During 

the injection moulding process, the granular polymer feedstock is heated until it is soft 

enough to be injected under pressure into a mould cavity to fill it completely. The valve 

leaflets are fabricated in the partially open position in a mould. The partially open position 

permits the leaflets to open easily to a wider angle resulting in an increased effective 

orifice area (EOA) for a polymer material [15][43].  

 

Thermoforming is a manufacturing process where a plastic sheet is heated to a forming 

temperature at which it becomes pliable. The sheet is then formed to a specific shape in 

a mould and trimmed to create a usable product [16]. During the film fabrication technique, 

the leaflets are produced by solvent-bonding a polymeric film to the valve frame which is 

fabricated separately. After the leaflets are glued to the frame, the assembly is subjected 

to a forming process to obtain the desired geometry of the valve [17].  

 

In compression moulding, the process consists of a static assembly (female component) 

and moving assembly (male component). When these components are closed, hot 

polymer is injected into the mould cavity to produce the whole geometry of the heart valve. 

Pressure is applied to force the material into contact with all mould areas and the process 

is maintained until the moulding material has cured. Table 2.3 provides a summary of 

advantages and disadvantages of the different fabrication processes used to 

manufacturing polymer heart valves. 
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are preheated in an oven to the required temperature (Figure 2.8 stage 1). The mould is 

then immersed into a liquid solution (stage 2) at a controlled dipping speed. This is 

followed by a retention time to allow sufficient interaction time for the mould to wet 

completely with the liquid solution. 

 

 

Figure 2.8: Illustration of the dip moulding process. 

 
The mould is then withdrawn from the solution at a controlled speed with a thin layer of 

liquid solution coated or deposited onto it. Excess liquid is allowed to drain from the 

surface of the mould. After dipping, the mould is placed in an oven (stage 3) to allow the 

solvent to evaporate from the liquid solution. During the curing process the material cross-

links to complete the forming process. This process can be repeated depending on the 

thickness of material required. The final product is removed from the mould manually, or 

with compressed air (stage 4). 

 

During the curing process the excess liquid flows across the mould surface under the 

influence of gravity and ultimately accumulates as a thicker film at the lowest areas. Other 

factors that can have an influence on the final film thickness distribution that need to be 

controlled include [34][54]: 
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● the liquid solution concentration of the particular polymer; 

● temperatures of the mould and polymer solution; 

● dipping and withdrawal speed;  

● retention time; 

● curing time and temperature of the polymer solution; 

● repeatability of dipping cycles. 

The limitations of the dip moulding process are that large parts are difficult to dip mould 

and it is difficult to control the outer surface thickness of the moulded product [4][41]. 

Automated dip moulding processes provide high productivity and improved quality due to 

the accurate control of temperatures and dipping movements [52][53]. 

 

2.6. Design of Polyurethane Heart Valves 

The valve design is another key factor influencing the haemodynamic performance of a 

polymer valve; while synthetic material offers the potential to control physical, mechanical 

and chemical properties to an extent not possible with biological material. The first step 

for the design of a polyurethane valve is to have the geometry of the natural valve. 

However, it has been reported that creating a synthetic leaflet valve with similar structure 

to the native valve does not essentially result in optimum function. In contrast to polymeric 

valves, the native valves are comprised of different layers of biological tissue with different 

degrees of anisotropy and mechanical response [34]. 

 

There are different types of polymer valve design configurations, however the tri-leaflet 

structure has superior stress distribution characteristics compared to bio- or quatro- leaflet 

valves [3][7][9]. The central flow of a the tri-leaflet valve also results in improved 

mechanical efficiency, hydraulic characteristics and flow patterns that cause much less 

© Central University of Technology, Free State



 

Page | 30  
 

blood trauma than mechanical valves. Other important parameters that have a significant 

effect on the valve performance are [7][41][55]: 

 

● the leaflet geometry, especially the thickness of the leaflet (which is found not to 

be necessarily uniform); 

● diameter of the valve; 

● width and height of the posts; 

● thickness and flexibility of the stent; 

● material properties of the leaflet and the stent. 

 

Intensive research through incorporating very thin leaflets have been conducted by a 

number of researchers [43][50][56]. A polyurethane valve leaflet with a thickness of 

between 100 – 150 µm improved the trans-valvular pressure gradient characteristics of 

the valve, resulting in less energy losses [15][57]. A better hydrodynamic function can be 

obtained by reducing the leaflet’s thickness; however, this can result in a valve with a 

shorter lifespan and durability. Generally, the results from accelerated fatigue tests have 

been unsatisfactory, with leaflet tears developing within a few tens of millions of cycles. 

Valves constructed by the Helmholtz Institute located in Aachen, survived over 400 million 

cycles in durability tests, which is equivalent to approximately 10 years cycling at 

physiological rates [15][36][41]. 

 

Most tri-leaflet valve designs require a supporting frame or stent. The frame may be 

titanium or titanium-alloy, although any implantable metal material may be appropriate, 

such as stainless steel or cobalt-chromium alloys. Additive manufacturing is a suitable 

manufacturing process for the manufacture of the frame or stent. 
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2.7. Additive Manufacturing 

Additive manufacturing (AM) is defined by both the ASTM and ISO as a process of joining 

materials to make parts or objects from 3D model data, usually layer upon layer [58]. The 

part is produced by selective melting of material in the x-y plane to create a layer. In the 

z-plane the layers are stacked on top of one another, which results in a stair-step effect 

on inclined or curved surfaces of the product. The surface finish can be improved if the 

build settings are adjusted to a finer resolution [59]. AM differs from conventional 

manufacturing processes such as turning, milling, grinding, etc., which are subtractive, 

meaning that material is removed in the form of shavings from the stock material.  

 

AM technologies offer the following advantages: 

● reduced lead-times to produce prototype products; 

● product visualization in its physical state; 

● early detection and reduction of design errors; 

● waste elimination and avoidance of costly late design changes; 

● ability to plan for assemblies [60]. 

 

The AM processes use the following five basic steps to make a prototype or product 

[61][62]. 

i. Design a digital 3D model using a CAD package. 

ii. Convert the CAD model into Standard Triangulation Language (STL) file format. 

This format converts a CAD part drawing to a set of triangles by tessellating it. The 

disadvantage is that the part loses some resolution as only triangles, and not true 

arcs, splines, etc. represent it. However, the errors introduced by these 

approximations are acceptable as long as they are less than the inaccuracy 

inherent in the manufacturing process. 

iii. Slicing of the STL file into 2D cross-sectional layers with a typical thickness of 75 

to 250 µm, depending upon the AM process. These 2D layers are stacked upon 

one another resulting in a 3D part. This sectioning approach is common to all 
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currently available AM processes. Obviously, the thinner the sections, the more 

accurate the part and longer the time required to build the part.  

iv. Production of the prototype part. 

v. Post processing. This involves removing the part from the machine and detaching 

any supports depending on the process. 

A schematic diagram of the Direct Metal Laser Sintering (DMLS) process is shown in 

Figure 2.9. 

 

 

Figure 2.9: Schematic drawing of the Direct Metal Laser Sintering process. 
 
This process was used to manufacture the stent, frame and tri-leaflet mould due to its 

ability to manufacture complex geometries. To produce the valve frame, selective laser 

melting was used to fuse titanium alloy (Ti6Al4V (ELI)) powder particles into solid layers. 

Ti6Al4V (ELI) was selected due to its high strength and fatigue resistance and its 

biocompatibility.  
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2.8. Thickness Measurement 

Precise control of leaflet thickness is a critical parameter in development of polyurethane 

artificial heart valves. Several measuring processes, including microscopy and reflectivity 

methods, such as profilometry, atomic force microscopy, and X-ray reflectivity, have been 

developed to measure the thicknesses of thin films in the nanometre regime. However, 

often measurements should be rapid and non-destructive to determine film thicknesses 

prior to further surface characterization [63]. This also applies to the current study. 

 

Ellipsometry is a rapid, non-contact, and non-destructive method for probing thickness 

and refractive index in nanoscale polymer coatings through changes in polarization due 

to the reflection of light from a surface. This technique is applicable for both ex-situ 

measurements in air and in-situ experiments in a liquid media. However, like other 

reflectivity techniques, thickness determinations via ellipsometry are determined by the 

film's optical properties [63]. Accurate thickness measuring techniques using a 

mechanical probe (a sharp tip) of either a contact profiler or a scanning probe microscope 

are also available for this kind of work [64]. 
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CHAPTER 3: METHODOLOGY 

 

3.1. Overview of Research Methodology 

In collaboration with the Robert WM Frater Cardiovascular Research Centre in the 

Department of Cardiothoracic Surgery of the University of the Free State (UFS), a long- 

term research and development programme was initiated to establish local competence 

in designing, manufacturing and testing of polyurethane heart valves at a competitive cost 

with regard to current commercial alternatives. A four-phased approach was adopted for 

this long-term programme. Figure 3.1 illustrates the research methodology of the 

complete programme. 

 

Figure 3.1: Diagrammatic representation of the full polyurethane heart valve 
research programme.                     Phase 1,                       Phase 2,                    

Phase 3 and                      Phase 4. 
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The following outline defines the four-phased approach that was adopted. 

● Phase 1 consists of the design and establishment of an experimental dip moulding 

facility for the determination of the dip moulding process variables. 

● Phase 2 focuses on determining a set of dip moulding process parameters and 

procedures with an experimental mould that would result in controllable and 

reproducible polymer films with the potential to be used for heart valves.  

● In Phase 3, the set of dip moulding parameters and procedures determined during 

Phase 2 was applied to the actual mould to produce the first functional PCU heart 

valve prototypes for testing in a pulse duplicator. 

● Phase 4 entails producing further prototype PCU heart valves to be tested for 

functionality and durability in a pulse duplicator and fatigue tester at the UFS. 

Successful outcome of the testing will lead to the production of PCU heart valve 

prototypes that will be used for clinical and biological compatibility tests in animals. 

The Robert WM Frater Cardiovascular Research Centre in the Department of 

Cardiothoracic Surgery of the UFS will be responsible for conducting these animal 

trials. 

In this study, the project plan was followed through to Phase 3 where the first prototype 

PCU heart valves were produced and tested in a pulse duplicator at the UFS. 

 

The four phases of the programme are described in detail in the following sections. 
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3.2. Phase 1: Experimental Dip Moulding Facility 

For the experimental dip moulding facility, a Computer Numerical Control (CNC) milling 

machine was converted to function as an automated dip moulding machine. With the 

spindle of the CNC machine moving in the vertical direction (z-axis), together with the 

collet holding the mould, the dipping process can be accurately controlled. Experimental 

moulds with square cross-sections were manufactured and numbered according to the 

number of dips required per mould. A controllable heating system was developed to 

preheat these moulds to specified temperatures to influence the viscosity of the PCU 

liquid material that flows over the four faces of the mould. Figure 3.2 shows the 

experimental facility used during the dip moulding process. 

 

 

Figure 3.2: Schematic layout of the experimental facility used during the dip 
moulding process. 

 

© Central University of Technology, Free State



 

Page | 37  
 

The mould is placed in the heating oven 1 shown in Figure 3.2 for different periods of time 

to investigate the mould heating temperature that will provide an optimal viscosity of the 

PCU solution when the mould is dipped into it. Solutions with the required concentrations 

are heated in the second oven (oven 2) to dissolve PCU into the liquid solvent completely, 

allowing solutions with varying viscosities to be prepared. During a dip moulding cycle, 

the heated mould is placed into the collet of the CNC machine and is dipped into the 

solution contained in a glass container on the bed of the CNC machine, as shown in 

Figure 3.2. The entry and extraction speeds during the dipping are controlled by a CNC 

program. After the dipping process, the mould with the excess solution on its surface is 

transferred back to oven 1 for curing at a specified temperature. This allows for the 

evaporation of excess liquid solvent, allowing the PCU to cure. To increase the thickness 

of the film, the mould with a solidified PCU film, is again clamped in the collet of the CNC 

machine for a second dipping cycle. This process is repeated until a satisfactory thickness 

of the film is achieved.  

 

3.3. Phase 2: Determination of Dip Moulding Process Parameters 

This phase of the study entailed trials to optimize the dip moulding procedure by using 

experimental square moulds. Tests were conducted to analyse the effect of different sets 

of dip moulding parameters. The number of dips was varied to determine the difference 

in thickness of the moulded material. Tensile tests were conducted on the moulded films 

to determine their mechanical properties and compare these with the mechanical 

properties of natural heart valve leaflets. Scanning electron microscopy (SEM) studies 

were performed on some samples to verify the wall thickness measured using thickness 

measuring equipment and also to evaluate the surface topography of the film surfaces 

facing towards and away from the mould. 

 

Figure 3.3 shows a diagrammatic representation of the research methodology used 

during Phase 2, to determine a set of process parameters suitable for the dip moulding 

of heart valve leaflets. 
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Figure 3.3: A diagrammatic representation of the Phase 2 research methodology 

aimed at determining suitable dip moulding parameters for heart valve 

production. 

 

Trial runs were performed, the trial samples were analysed and the dip moulding 

procedure was modified. Once satisfactory results were obtained and an optimised 

procedure was established, the development proceeded to Phase 3. 

 

3.3.1. Polymer solution preparation 

Polyurethane is a Food and Drug Administration (FDA) approved thermoplastic polymer 

for cardiovascular devices. Thermoplastic polyurethane is a biocompatible polymer 

material with relatively good mechanical properties and good hydrodynamic function. The 

commercial trademark polyurethane, known as PC3595A-clear, is one of the series of 

PCUs, which is a family of aliphatic and aromatic polycarbonate-based thermoplastic. In 
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this study, PC3595A granules were supplied by the Lubrizol Europe Coordination Centre, 

which is part of the Lubrizol Life Science Group. The granules were dissolved in an N, N-

dimethylacetamide (DMAc) solvent to obtain a solution that was used to fabricate 

polyurethane samples through the dip-moulding process. 

 

The PCU and DMAc constituents were mixed at room temperature in a glass container 

(Figure 3.4) to obtain a PCU solution with concentrations of 15%, 20% and 35% (w/w). 

An AWTC 2000 precision balance scale was used to accurately determine the weights of 

the solution constituents. A blender (Bosch MSM66110 shown in Figure 3.4) with four 

sharpened winged blades and variable speed settings was used to obtain a 

homogeneous solution of PC3595A in DMAc. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Bosch MSM66110 hand blender used in mixing the PC3595A-clear with 

N, N-dimethylacetamide solvent. 
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Because the PC3595A-clear does not dissolve quickly in the DMAc solvent, the mixing 

process was performed for a period of 5 minutes followed by a 30 minutes break to allow 

quiescent conditions to set in before repeating the stirring of the solution. The process 

was repeated four times. The homogeneous mixture was stored at room temperature for 

12 hours and stirred again before it was placed into an oven at 50⁰C for two hours to 

obtain the required viscosity for the dip-moulding process. 

 

3.3.2. Design and manufacturing of an experimental mould 

For the initial experimental work aimed at determining the optimum dip moulding 

parameters, an experimental square mould consist of a 20 x 20 mm2 cross-section and a 

height of 80 mm was designed, as shown in Figure 3.5. The geometry and dimensions of 

the mould were determined by the technical specifications of the mechanical testing 

machine. A 25 mm cylindrical mild steel rod was used for the manufacturing of the 

experimental square mould. Milling to produce the 60 mm long flat surfaces of the mould 

was performed along the longitudinal direction (x-axis) of the mould. This practice was 

beneficial when conducting mechanical tests, since the cutter marks were along the x-

axis of the mould. The slot in the mould allowed a cartridge heater to be inserted into the 

mould to improve the effective viscosity of the moulded material by heating the mould. 

The four faces of the mould were numbered 1 to 4 and the mould was numbered 

according to the number of dips required. Figure 3.5 illustrates the CAD design of the 

experimental square mould used to determine the mechanical properties of the 

experimental samples. 
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Figure 3.5: Line drawing of the mould used for producing experimental samples. 

 

The mould was fixed in a vice for precision and uniform polishing of all four flat surfaces, 

removing the cutter marks produced during the manufacturing of the mould. A 280- and 

600 grit aluminium-oxide polishing stone, bathed in paraffin as lubrication, was 

respectively applied longitudinally to the mould. When the stone and paraffin rubbed on 

the surface of the mould, a slurry was formed, which cut and smoothened the surface. 

For further improvement of the surface finish, 800 grit water sandpaper bathed in paraffin 

was applied to the polished surfaces. The mould was cleaned with paraffin, sprayed with 

ethanol to dissolve and remove any dirt and then positioned upright in the oven for 

preheating at 25°C. 

 

3.3.3. Measuring the surface roughness of the square moulds 

Surface roughness measurements of the polished moulds were performed using a 

Mitutoyo SURFTEST SJ-210 surface roughness measuring instrument. The SURFTEST 

SJ-210 (Figure 3.6) is a portable surface roughness measuring instrument, which traces 

the surfaces of parts, calculates their surface roughness based on roughness standards 

and displays the results on a LCD screen.  
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Because the mould consisted of four flat surfaces, a supporting stand (see Figure 3.6) 

was manufactured to obtain accurate roughness measurements of the different surfaces. 

Each surface of the mould was positioned such that it was parallel to the axis of movement 

of the stylus of the surface roughness measuring instrument. This enabled the stylus to 

make proper contact with the measured surface while it was tracing across the surface. 

The surface roughness was measured at three locations on each surface of the mould, 

i.e. left, middle and right. 

 

 

Figure 3.6: The clamping of the mould and surface roughness measurement 

setup. 

 

After setting of the desired measurement parameters, such as the cut-off length λc, the 

number of samplings N and the traversal measuring speed, the measuring instrument 

was positioned on the stand. The flat surface of the square mould was positioned slightly 

lower than the detector to bring the surface that must be measured smoothly in contact 

with the stylus. After the stylus was in contact with the surface flat surface of the mould, 

the START/STOP button on the control board of the display unit was pressed. The stylus 
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Figure 3.7: Experimental set up for the dipping stage consisting of a square 

mould fixed into a collet of the CNC machine and the PCU solution in position for 

dip moulding. 

 

The mould and PCU solution were placed in two different ovens at controlled 

temperatures for preheating. After the mould and solution reached the required 

temperatures, the mould was inserted into a collet of the CNC machine. The heat loss of 

the liquid solution to the surroundings was reduced by placing a sheet of wood between 

the PCU solution and the steel bed of the CNC machine 

 

The temperature of both the mould and the PCU solution were measured with a non-

contact (MT694) infrared thermometer before lowering the mould to a predetermined 
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3.4. Characterization of the Films Produced during Phase 2 

The thicknesses of PCU film samples produced from different solution concentrations and 

different numbers of dips were measured. Tensile tests were performed on the films to 

determine their mechanical properties. The surface topography of these film samples 

were assessed using optical and scanning electron microscopy. The homogeneity of the 

material was also determined by investigating fracture surfaces prepared as described in 

section 3.4.4.  

 

3.4.1. Film thickness measurement 

A Fisher Dual Scope FMP40 Compact handheld instrument for non-destructive coating 

thickness measurement, according to the magnetic induction method or the Eddy current 

method for all metal substrates, was used during the thickness measurements. The 

FMP40 instrument automatically recognises the substrate material and integrates both 

measurement methods. The instrument is capable of measuring numerous coatings both 

on steel and iron and on non-ferromagnetic metals. 

 

The quality of the thickness measurement depends on several key factors. These include 

the proper probe selection and the quality of the probe itself. Important aspects for probe 

selection are the thicknesses of the coating and the substrate material, the measurement 

area dimensions as well as the shape and the surface condition of the specimen. An 

FD10 probe (see Figure 3.8) was selected because it can recognize the base material 

under a coating, has a small probe tip and can detect smooth surfaces and thin coatings 

by making use of the Eddy current test method, which is activated automatically for the 

patented conductivity compensation. Figure 3.8 shows the thickness measuring 

assembly of the experimental square mould clamped in the stand, the Fisher Dual Scope 

FMP40 with the FD10 probe applying the Eddy current measurement principle and the 

measuring ruler. 
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Figure 3.9: Lloyds LS 100 Plus electromechanical universal testing machine. 

 

Each experimental square mould produced four PCU film samples, one on each of the 

faces of the mould (see Figure 3.5), which were stripped off the mould after curing. Three 

of the samples from each mould were investigated by optical microscopy before they were 

used for mechanical testing; while one sample from each mould was used for SEM. 

Samples were cut from the moulds to obtain consistent sample dimensions of 40±1 mm 

long and 14±1 mm wide. 
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Three samples of each type of film produced through dipping the mould once, twice and 

three times in PCU solutions with concentrations of 15, 25 and 35% (w/w) were used for 

the mechanical tests. The thickness, height and width of each sample was measured with 

a Mitutoyo Digimatic calliper with an accuracy of 0,02 mm. Straight curved stainless steel 

hemostat forceps with locking clamp were used to fix both ends of the film sample into 

the machine clamps. The PCU film sample was mounted at a nominal gauge length of 

6 mm and held between two manually tightened steel grips lined with P120 waterproof 

sandpaper to prevent slippage, as illustrated in Figure 3.10. 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: PCU film sample mounted on nominal gauge and two steel grips. 

 

The upper grip was attached to the 500 N cross-head load cell. The width and thickness 

of the PCU samples were measured and entered into the programmable test set-up 

(NEXYGEN Plus). A cross-head speed of 10 mm/min and a pre-load of 0,1 N were used. 

Constant tension was applied on both ends of the PCU film sample with an extension rate 

of 3 mm/min. The data were recorded on a personal computer. 
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3.4.3. Optical microscopy 

Optical microscopy in reflected and transmitted mode was performed to investigate the 

surface topography of the samples. A polarised light (ZEISS Axio Scope.A1) equipped 

with a camera (resolution 5 megapixel) and dedicated image analysis software 

(AxioVision SE64) for evaluating the surface topography of the samples was used. 

Figure 3.11 displays ZEISS Axio Scope.A1 used for all the optical microscopy analysis. 

 

 

Figure 3.11: ZEISS Axio Scope.A1 optical microscope used during the optical 
microscopy analysis. 

 

Two surfaces were inspected on each prepared sample, one on the surface facing 

towards the mould and the other on the surface facing away from the mould. The aim was 

to investigate the possible irregular surface finish of the films. Images of thin films sections 

were captured at different magnification levels and positions on the surface. 
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3.4.4. Scanning electron microscopy 

To obtain further detailed information about the samples, SEM analyses were conducted 

on the samples. SEM is an instrument that produces a large magnified image by using a 

focused beam of electrons as opposed to light. The surfaces of a specimen from the 

square mould were examined through SEM. Each specimen was divided into three 

samples, with dimensions of about 10 x 14 mm and one sample with a dimension of 

20 x 14 mm. The two 10 x 14 mm samples were used to observe the surface topography 

facing towards- and away from the mould respectively. The third sample was clamped 

with two hemostat forceps, straight curved stainless steel, with locking clamp 

(Figure 3.12. A) and dipped in liquid nitrogen and then broken into two pieces 

(Figure 3.12. B). This allowed the fracture surfaces to be imaged in the SEM and to 

subsequently determine the film thickness from the cross-sectional views. 

 

 

Figure 3.12: Preparation of film samples for SEM. (A): Film clamped with two 
hemostat forceps, straight curved stainless steel, with locking clamp, (B): Film 

samples dipped into liquid nitrogen. 
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The processed specimens were mounted on the aluminium pin stubs (SPI suppliers, Rick 

Loveland & Associates cc, Halfway House, South Africa) using a high strength, hand 

mouldable, putty-like adhesive (Pratley Steel Quickset) and left for six hours to cure (see 

Figure 3.13. A). Figure 3.13. B shows the samples which were sputter-coated with gold 

to obtain a conductive surface required for the electron microscopy process. 

  

 

Figure 3.13: PCU film samples prepared for SEM. (A): Film mounted on aluminium 
pin stubs, (B): Film samples sputter-coated with gold. 

 

During these processes, the specimens were stored in an airtight container until studied 

in a SEM (Shimadzu SSX 550), shown in Figure 3.14. The operating parameters/settings 

of the SEM on the following scanning modes were used to photograph the samples: 

● Accelerating voltage: 5kV 

● Probe size: 150 nm 

● Working distance: ±15 mm 

● Magnification: between x140 and x1200. 

© Central University of Technology, Free State



 

Page | 53  
 

 

Figure 3.14: Scanning Electron Microscopy (Shimadzu SSX 550). 
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3.5. Phase 3: Manufacturing of Prototype Polyurethane Heart Valves 

During this phase the dip moulding procedure developed in Phase 2 was applied to the 

actual mould designed to produce the tri-leaflet PCU heart valve. Thicknesses of the 

moulded leaflets were measured and SEM analysis was done on the leaflets. The dip-

moulding procedure was reviewed and altered until the results were satisfactory. 

Figure 3.15 illustrates the layout of the research methodology followed during Phase 3, 

aimed at manufacturing prototype tri-leaflet PCU heart valves. 

 

Figure 3.15: A diagrammatic presentation of the Phase 3 research methodology. 
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3.5.1. Computer-aided design model of tri-leaflet valve 

A CAD model of a natural heart valve did not exist. An extensive effort was required to 

obtain a CAD model of the valve leaflet geometry. The process of duplicating an existing 

component without the aid of drawing is known as reverse-engineering. Through the 

application of this technique, an existing model is recreated by acquiring its surface or 

geometrical data using contact or non-contact digitizing or measuring devices. 

 

The Carpentier-Edwards Perimount Magna 19 mm valve (Figure 3.16), as recommended 

by the Robert WM Frater Cardiovascular Research Centre in the Department of 

Cardiothoracic Surgery of the University of the Free State, was reverse-engineered to 

obtain the baseline geometry. The valve typically comprises three thin leaflets attached 

to a cylindrical support frame, referred to as the stent that incorporates a sewing ring. The 

stent has three posts to support the flexible leaflets. The sewing ring has three arch 

saddles to ensure conformity with the aortic annulus. 

 

 

Figure 3.16: Carpentier-Edwards Perimount Magna 19 mm valve. 

 

Figure 3.17 displays the technical specifications of the Carpentier-Edwards Perimount 

Magna 19 mm valve. 
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Figure 3.17: Technical specifications of the Carpentier-Edwards Perimount Magna 
19 mm valve. 

 

A Carpentier-Edwards Perimount Magna 19 mm valve was fixed in a sewing cuff and 

silicone was cast onto both sides of the valve and allowed to cure, as shown in 

Figure 3.18 C. The two negative silicone halves were laser-scanned using a Renishaw® 

Cyclone 2 Coordinate Measuring Machine (Figure 3.18 A). 

 

 

Figure 3.18: Reverse-engineering process. (A): Renishaw Cyclone 2 scanner 
device, (B): Wolf and Beck OTM3M laser scanning unit on cyclone, (C): Negative 

silicone half of the heart valve. 
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Scan data was obtained with a Wolf & Beck OTM3M optical laser scanner (shown in 

Figure 3.18 B) at a scanning rate of up to 400 points per second with a resolution of 

0.1 mm and 5 µm respectively. A cloud of points obtained from the scanned data was 

converted to a STL file using Trace Scan 24A software. The resultant mesh was cleaned 

up, smoothed and sculpted to the required shape with the use of Geomagic® Quality 

software. The final non-uniform rational base spline (NURBS) file was exported to CAD 

software to generate a solid model of the valve. Figure 3.19 shows an exploded view of 

the assembled dip moulding tool. From Figure 3.19, the complex geometry of the leaflets 

is revealed, with different curvatures in the circumferential direction (i.e. parallel to leaflet 

free edge), and radial direction (i.e. perpendicular to the circumferential direction). 

 

 

Figure 3.19: Exploded view of the CAD tri-leaflet mould assembly. 

 

The CAD model of the tri-leaflet dip moulding tool (Figure 3.19) consists of the stent with 

three posts where the three PCU leaflets are attached, with an exterior diameter of 
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19 mm. The frame part was designed in such a way to lock the sewing ring onto three 

hooks. This design feature was implemented to locate the stent correctly and fix it to the 

mould assembly.  

 

3.5.2. Additive Manufacturing of the mould assembly 

AM was the most suitable manufacturing method to manufacture the tri-leaflet mould, 

frame and sewing ring. This manufacturing technique allows prototypes with complex and 

intricate shapes to be built. The mould assembly components were produced through the 

Direct Metal Laser Sintering (DMLS) process followed by a stress-relieving heat 

treatment. Ti6Al4V (ELI) was selected due to its high strength and fatigue resistance.  

 

3.5.3. Surface finish of the tri-leaflet mould 

Despite significant progress made in material flexibility and mechanical performance of 

AM, a relatively poor surface finish when compared to the surface finish of traditional 

fabrication methods, still presents a major limitation in all types of AM processes. The 

surface quality is greatly influenced by the “stair-step” effect, which is the stepped 

approximation of curved and inclined surfaces by the layered AM structure, as shown in 

Figure 3.20. 

 

 

Figure 3.20: Schematic illustration of the stair-step effect typical of the DMLS 
surface finish. 
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For certain applications, surface finish improvement of AM parts after the building process 

is very necessary. The surface topography of the PCU heart valve leaflets can influence 

thrombus formation (clotting) in the blood. Therefore, a smooth finish on both surfaces of 

the dip moulded PCU leaflet was required. Obtaining a mirror-like surface on the mould 

would significantly influence the inside surface of the moulded leaflet, therefore, removal 

of stair-steps on the mould was necessary. Figure 3.21 shows the rough surface finish of 

the Ti6Al4V(ELI) tri-leaflet mould produced by the DMLS technique and application of 

Micro Machining Process. 

 

 

Figure 3.21: Ti6Al4V(ELI) tri-leaflet mould manufactured with DMLS. (A): Showing 
the rough surface finish obtained in as-built state, (B): Showing mould after Micro 

Machining Process. 

 

An improvement of surface roughness was obtained through First Surface 

Oberflächentechnik®, a company based in Munich, Germany. Their adaptation of the 

Micro Machining Process technology is capable of selectively filtering out successive 

levels of roughness without changing the basic form of the surface, see Figure 3.21 B. 

Evaluation of the surface area between the actual profile obtained from DMLS and the 

Micro Machining Process technology was conducted. The arithmetic average of the 

absolute surface roughness, denoted by Ra, the root square average, Rz and the 
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maximum height of the profile, Rt were measured in the four areas, indicated in 

Figure 3.21 A. 

 

3.5.4. Tri-leaflet mould assembly 

A cylindrical mild steel rod consisting of two sections, 1 and 2, was manufactured. 

Section 1 (15 mm in diameter and 25 mm long) was designed to be press-fitted in the 

bottom hole of the mould, which is 12 mm deep. Section 2 (10 mm diameter and 30 mm 

long) served as the mounting section of the mould into the CNC machine collet. A 

cylindrical bush was used to allow for the vertical suspension of the mould assembly 

(Figure 3.22) on a supporting stand for the solvent to evaporate after the dipping process. 

A fixing grub screw was used to secure the bush onto section 1.  

 

Figure 3.22: Tri-leaflet mould assembly. 

 

The stent and frame assembly slide over the mounted mould into position. Slide fit 

tolerance was adopted on the tri-leaflet mould to secure the stent and frame to the mould. 
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3.5.5. Dip moulding of the PCU heart valve 

The aim of Phase 3 was to produce a functional prototype of a polyurethane heart valve. 

Key parameters that had an influence on producing acceptable leaflets were established 

in Phase 2. These parameters include (i) the concentration of the polymer in the polymer-

solvent solution, (ii) dipping and withdrawal speed of the mould, (iii) curing temperature 

and (iv) the number of dips. To manufacture a dip moulded polymer heart valve, a solution 

of polyurethane (PC3595A clear) was dissolved in a solvent (DMAc). A 20% w/w solution 

was prepared, as described in section 3.3.1. The tri-leaflet mould and PCU solution were 

placed into ovens for preheating. Thereafter, the respective temperatures were measured 

(refer to section 3.3.4). When the correct temperatures were reached, they were removed 

from ovens. The mould assembly was then mounted in a collet of the CNC machine and 

lowered at a controlled speed into the concentrated PCU solution. This technique reduces 

the formation of air bubbles which can result in fatigue failure of the finished product and 

ensures a more even polymer thickness distribution across the leaflets.  

 

After the dipping process, the mould, with a thin polymer coating, was removed from the 

CNC machine. After each dipping, excess polymer solution was allowed to drain. The 

mould was then placed vertically (see Figure 3.22) with the free edges of the mould 

(shown in Figure 3.23) facing downwards in an air circulating oven at 25°C for an hour to 

remove the excess DMAc solvent from the solution. The leaflet formed as the solvent 

evaporated and a thin layer of polymer remained on the mould. This process was 

repeated until the required leaflet thickness was obtained. Upon removal of the dip 

moulded leaflets from the mould, the leaflet edges were trimmed by hand to separate the 

individual leaflets from one another and to dispose of the thick ridge of PCU which formed 

along the free edges during the dipping and drying process. 
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The thickness of the dip moulded heart valve leaflets were measured at different locations 

on the leaflets, as indicated in Figure 3.23. These eight locations were identified as critical 

areas in each leaflet, influencing the hydrodynamic behaviour of the valve [34][9]. A Fisher 

Dual Scope FMP40 with FD10 probe based on an Eddy current measurement principle 

was used for the thickness measurements. The influence of the dip moulding parameters 

was determined by comparing the layer thickness of the valve leaflets. 

 

3.6.2. Surface topography of the PCU heart valve 

It is desirable that both sides (the side facing the mould and the side facing away from 

the mould) of the leaflets have very similar surface topography. The mould used to 

produce the heart valves has six vertical flat- (see Figure 3.23 number 1 and 3) and three 

upper curved surfaces (see Figure 3.23 number 5, 6, 7 and 8). The vertical flat and bottom 

curved surfaces of the prototype valve were cut from the valve leaflets and inspected with 

SEM. Refer to section 3.4.4 for the preparation of the specimens, and section 3.4.4 for 

the machine parameters used. 

 

3.6.3. Testing of prototype PCU valve in pulse duplicator 

To obtain detailed information about the functioning of the prototype heart valves, they 

were subjected to tests in the pulse duplication system of the UFS. The pulse duplication 

test assesses heart valve function under simulated cardiac conditions. The ViVitro Labs 

Model Left Heart system (Figure 3.24), operated by UFS simulates the function of the 

heart’s ventricle which generates pulsatile flow through a prosthetic heart valve. The 

setup consisted of a reservoir, a volumetric pumping system and a valve housing unit 

designed according to the guidelines of the ISO 5840 Standard. The pressure ports and 

flow measuring locations allow for data collection from the aortic or mitral sites. The 

ViVitest software controls the system while simultaneously collecting and analysing 

physiological flow and pressure data. 
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Figure 3.24: The ViVitro Labs Model Left Heart pulse duplicator machine. 

 

Before the pulse duplication can commence, the valve needs to be prepared. Woven 

Dacron, rolled up into a doughnut shape, is stitched around the outside of the sewing ring 

of the valve. The attachment is high enough to reduce paravalvular leaks, however, taking 

care not to impede the movement of the leaflets. A custom-made plastic fitting is fitted 

around the outside of the sewing ring. The plastic fitting is then inserted into a silicone 

rubber which has been manufactured to fit the pulse duplicator exactly. The silicone 

rubber ensures that the valve seats securely within the pulse duplicator and that there is 

no leakage between the upper and lower halves of the pulse duplicator. 

 

The following results were obtained from the pulse duplicator:  

● Average pressure drop 

● Effective orifice area (EOA) 

● Closing volume 

● Leakage volume 

● Total regurgitation 
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To meet testing requirements, each valve was tested at the following conditions: 

● 60 Beats per minute (BPM) and 60 ml Stroke Volume (SV) 

● 70 BPM and 70 SV 

● 80 BPM and 80 SV 

● 100 BPM and 80 SV 

● 120 BPM and 80 SV 

 

The total regurgitation was divided between closing and leakage volume, as the 

difference in the value of each relates to the functioning of the valve. Test 1, 2 and 3 were 

performed with valve 1, valve 2 and valve 3 respectively. Continuous and pulsatile flow 

tests were performed using distilled water at room temperature (25°C). 
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A graphical representation of the surface roughness of the square mould is shown in 

Figure 4.1. 

 

Figure 4.1: Surface roughness measurements on square moulds before and after 
polishing. 

 

The left, middle and right side of the flat surface face on the mould were referred to as 

position A, B and C respectively (see Figure 3.5). From Table 4.1, the surface finish Ra of 

Face 1 of the mould after CNC machining, was observed to gradually vary from 0.853 µm 

on position A to 1.15 µm on the right side (position C). Despite the inconsistent surface 

roughness on 3 different positions on one face of the mould, each measured position 

showed consistence surface finish across the same position on four faces of the mould. 

However, this rough surface topography quantified by the high Ra numbers will result in 

rough surfaces of the heart valve leaflets, which will influence thrombus formation in the 

blood. Therefore, an improvement of the surface finish across all surfaces of the mould 

was necessary.  
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Figure 4.3: Variation of the PCU film thickness along the measurement points 
after one, two and three dips in the 15%, 20% and 35% PCU solutions. 

 

From Figure 4.3 it is clear that the thickness of the films produced through dip moulding 

increases with increasing concentration of the PCU solution. Furthermore, the thickness 

of the films increases from the first dip to the second dip, and from the second dip to the 

third dip. In Figure 4.3 it can be seen that for point 2, which is located at 20 mm from the 

bottom, with a solution concentration of 15%, the thickness is 12 µm for the first dip, 

46 μm after the second dip and 92 μm after the third dip. This trend was also recorded 

for the 20% solution. 
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A benchmark for acceptable heart valve leaflet thickness is indicated in a study of in vivo 

fatigue testing that found good durability for polyurethane valves with leaflet thicknesses 

of 100 to 300 µm [20]. From Figure 4.3 it is evident that this thickness range is not 

achieved with any of the three solution concentrations after only a single dip. After two 

dips in the 15% and 20% concentrations the minimum thickness of 100 μm was still not 

obtained. Only 75 μm could be achieved with the 20% solution at position 2. However, 

after two dips in the 35% concentration solution the desired thickness range was 

obtained. A thickness of 296 µm was obtained at point 2, 234 μm at point 3 and 167 µm 

at point 4. 

 

From Table 4.3 it is clear that even after three dips the required minimum film thickness 

could not be obtained. With a concentration of 20%, the required range is almost achieved 

(92 to 153 μm from point 4 to point 2). However, due to the time consummation between 

consecutive dips (approximately 24 hours), it is evidently necessary to limit the number 

of dips. Therefore, it was concluded that a solution of 35% concentration and two dips 

would be the optimal solution to obtain the thickness required for the heart valve leaflets. 

 

4.2.3. Optical microscopy observations 

Figure 4.4 gives representative images of the first moulded film surface facing towards 

the square mould as well as away from the mould. It is clear that the mould surface finish 

left an irregular striated structure on the surfaces of the films that had faced towards the 

moulds, see Figure 4.4 A. Considering the detrimental effects of rough surfaces with 

regard to possible blood clotting, this observation indicated that greater care had to be 

taken in polishing the mould surfaces.  
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Figure 4.4: Optical micrographs of surface structural features on the films 
produced by a CNC finished experimental mould. (A): Surface facing towards the 

mould (B): Surface facing away from the mould. 

 

An observation at a higher resolution in a SEM provided more evidence of localised 

damage introduced on the surfaces of the polyurethane films during peel-off. After this 

early detection, further investigations were conducted with a hand-polished experimental 

square mould. 

 

4.2.4. Scanning electron microscopy 

Figure 4.5 shows the surface topography of the polyurethane films produced with the 

three different PCU solutions for surfaces facing the mould and surfaces facing away from 

the mould. In all cases, the topography of the film surfaces facing away from the mould 

was smoother than the topography of the surfaces facing towards the mould. The 

topography of the surfaces facing the mould was clearly determined by the roughness of 

the mould surfaces. Although the surface finish of the experimental square moulds used 

to produce the films shown in Figure 4.5 D to E were similar, the film produced from the 

35% PCU liquid solution had a rougher surface than the films produced from the other 

two solutions. It appeared as if this solution, with its higher viscosity than the other two, 

did not produce a film that replicated the topography of the experimental mould surface 
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as effectively as the other two solutions. This indicated that the 20% PCU solution would 

be preferred above the 35% solution for producing heart valve leaflets of the required 

thickness. 

 

 

Figure 4.5: SEM micrographs of the polyurethane film surface topography for the 
different PCU solutions at sense of scale 10 µm. (A): 15% solution, film surface 

facing away from the mould, (B): 20% solution, film surface facing away from the 
mould, (C): 35% solution, film surface facing away from the mould, (D): 15% 

solution, film surface facing towards the mould, (E): 20% solution, film surface 
facing towards the mould, (F): 35% solution, film surface facing towards the 

mould. 

 

The surface topography of the polyurethane heart valve leaflets can influence thrombus 

formation (clotting) of the blood. Therefore, a smooth finish on both surfaces of the dip-

moulded polyurethane film should be produced. Figure 4.6 shows the surface finish of 

polyurethane films produced with three dips in the 20% PCU solution, using two moulds 

with surface finish values of Ra = 0.853 µm and Ra =0.158 µm, respectively. 
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Figure 4.6: SEM micrographs showing the variation of the surface topography of 
polyurethane films produced with two moulds of differing surface finish values 

(sense of scale 10 µm). (A): Ra = 0.853 µm, (B): Ra = 0.158 µm 

 

It is clear from Figure 4.6 that there is a significant difference in the surface topography 

of the polyurethane films resulting from the different surface finishes of the two moulds. 

A mould with a surface finish better than Ra = 0.158 µm delivers films with satisfactory 

surface topography. However, as seen in Figure 4.6 B, some areas of the produced films 

still contained air bubbles. To avoid the formation of these air bubbles, the travelling speed 

of the mould during dip moulding must be properly controlled. Figure 4.7 shows the 

fracture surfaces of the polyurethane films produced with the three different PCU 

solutions as observed in the SEM. 

 

 

Figure 4.7: SEM micrographs of the fracture surfaces of films produced with the 
three different PCU solutions at sense of scale 50 µm. (A): 35% solution, two dips, 

(B):20% solution, three dips, (C): 15% solution, three dips. 
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for all films as thicknesses for determining the mechanical properties of the samples. 

Among other factors, the physical performance of an artificial heart valve is assessed by 

the Young’s modulus of the material used to produce it. The average Young’s modulus 

of the film from three dips in the 20% solution is 29±5 MPa, which is below the value of 

33 MPa that is the acceptable maximum Young’s modulus for useful prosthetic heart 

valve leaflets [8]. The 35% solution was found to obtain a fairly lower average Young’s 

modulus of 12 MPa. 

 

4.2.6. Recommended dip-moulding parameter set 

From the film thickness, topography, internal integrity and mechanical property results 

obtained in this study, it became apparent that a 20% PCU solution has the potential to 

provide polyurethane film properties that would be acceptable for producing heart valve 

leaflets. With this solution it appeared to be possible to obtain the required leaflet 

thickness with three, or at most, four dips during dip moulding. 

 

4.3. Observation and Analysis of Phase 3 Results 

4.3.1. Surface roughness measurement of the tri-leaflet mould 

The surface roughness of the tri-leaflet mould was measured after DMLS on the as-built 

surface and after application of the MMP technology on the mould surface areas shown 

in Figure 3.21. The application of the MMP technology displayed a smooth surface finish 

with an average Ra number of 0.204 µm, compared to as-built DMLS surface with Ra 

number of 11.34 µm, see Table 4.1. 
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and 2 are 0.139 µm and 0.165 µm, respectively (see Table 4.5), indicating a good surface 

finish produced from one surface to another. The Micro Machining Process technology 

demonstrated a consistent surface finish across all surfaces of the mould produced. 

 

4.3.2. Optimisation of dip moulding process parameters 

Key parameters that have an influence on producing acceptable heart valve leaflets were 

assessed. These parameters included: 

● The concentration of the polymer in the polymer-solvent solution,  

● Dipping and withdrawal speed of the mould,  

● Curing temperature,  

● The number of dips. 

 

Figure 4.9 shows the influence of each parameter on producing acceptable PCU heart 

valves. With three dips, the dipping speed was varied from 2 to 79 mm/min. The highest 

dipping speed was found to display a higher number of air bubbles (Figure 4.9 A) which 

consequently will lead to early failure of the valve. The lowest possible dipping speed 

(2 mm/min) resulted in significant elimination of air bubbles (Figure 4.9 C) for the first dip, 

however that speed did not completely eliminate them when a second or third dip was 

performed (see Figure 4.9 D and E). Figure 4.9 F shows a valve produced from a single 

dip with no air bubbles entrapped. 

 

 

Figure 4.9: Samples of the valves produced with different dip mould parameters. 
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At room temperature, PC3595A granules were found partially dissolved in the DMAc 

solvent. When the temperature of both the mould and polymer solution was raised to 

90ºC, it was observed that a homogeneous solution was obtained. However, the 

preheating process of the mould and the solution resulted in about a 15% decrease of the 

resultant thickness of the heart valve leaflets, which was less than the minimum 

acceptable heart valve leaflet thickness.  

 

To increase the thickness, the withdrawal speed was raised from 20 to 790 mm/min. This 

effect was also seen by other researchers [54][65]. Figure 4.10 shows a valve produced 

with a higher concentration of polymer-solution, when the mould and polymer solution 

were preheated at 90ºC with a single dip at a lower dipping speed and a higher withdrawal 

speed.  

 

 

Figure 4.10: Tri-leaflet PCU valve produced through the dip-moulding process 
without final trimming. (A): Side view of the valve, (B): Top view of the valve. 
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Furthermore, the thickness measurements taken at locations 1 and 3 on the upper area 

of the tri-leaflet valve were greater than 150 µm, which is the maximum thickness for good 

hydraulic functioning of the heart valve leaflets. However, in practice this area is 

eliminated by trimming it from the operational parts of the heart valve leaflets. The SEM 

was used to assess the variation of the thickness in the vertical direction (see 

Figure 4.11). The minimum thickness was found to be 76 µm at the lowest edge of the 

heart valve leaflet while the maximum value was 249 µm at the upper edge of the heart 

valve leaflet. This correlates with the previous findings where it was mentioned that the 

thickness varied linearly from lower edge with a minimum value to the upper edge with 

the maximum thickness.  

 

4.3.4. Surface topography of the valve leaflet 

It is desirable that both sides (the side facing the mould and the side facing away from 

the mould) of the leaflets have more or less the same surface topography. The mould that 

was used had six vertical flat- and three upper curved surfaces (Figure 3.23). It was 

observed that for all vertical flat- and curved surfaces, the leaflet sides facing away from 

the mould displayed more or less the same surface topography, see Figure 4.12 A & C. 

The same trend was also observed for the sides facing towards the mould 

(Figure 4.12 B & D). This indicated that the polishing technique of the flat vertical- and the 

curved surfaces produced the same quality of surface finish. However, the sides facing 

away from the mould (Figure 4.12 A & C) still displayed smoother surface topography 

than the sides facing towards the mould (Figure 4.12 B & D). 

© Central University of Technology, Free State



 

Page | 83  
 

 

Figure 4.12: SEM micrographs of the polyurethane leaflet surface topography for 
different mould faces. (A): Flat surface of the mould facing; away from the mould, 
(B): Flat surface of the mould; facing towards the mould, (C): Curved surface of 

the mould; facing away from the mould, (D): Curved surface of the mould; facing 
towards the mould. 

 

A cross-section of solidified typical polyurethane leaflet formed with the dip moulding 

method is shown in Figure 4.13. It can be observed that the high temperature of the 

solution (90°C) during the preheating stage of the dip moulding process, resulted in 

eliminating the air bubbles on the heart valve leaflets. 
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Figure 4.13: SEM micrograph of the fracture surface of a leaflet produced with a 
single dip PCU solution. 

 

4.3.5. Assessment of prototype PCU heart valves in a pulse duplicator machine 

Pulsatile hydrodynamic tests were performed in a pulse duplicator to acquire visual 

information and quantitative indicators of the fluid mechanical behaviour of the first 

prototype PCU valves manufactured through the dip moulding process. A video camera 

was used to capture the operational performance of the valve. Figure 4.14 shows a tri-

leaflet polyurethane valve displaying the functionality of the valve during testing inside the 

pulse duplicator machine. 

 

Figure 4.14: Functioning of the polyurethane heart valve as captured on the pulse 
duplicator video, (A): Valve fully closed, (B): Valve fully opened. 
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The low percentage regurgitation from valve 2 and valve 3 indicates both valves were 

completely closed, not allowing the liquid to flow back through the valve. The marginally 

small difference between these two could be due to the (i) slightly different position of the 

sewing ring, (ii) tightness of the stitching and (iii) amount of material placed around the 

sewing ring in the fitting to reduce leakage. However, according to the requirements of 

the ISO 5840 standard, the percentage regurgitation must be below 10%, which is met 

by both valve 2 and valve 3. 

 

EOA, which incorporates both flow rate and pressure drop data, is defined by the Gorlin 

equation as [66]: 

𝐸𝑂𝐴 =  
𝑄𝑟𝑚𝑠

51.6 ∗ √
∆𝑃
𝜌

 

which shows the relationship between the root mean square (𝑄𝑟𝑚𝑠) of the flow rate and 

pressure drop. Figure 4.16 shows the comparison of the EOA for valve 1, valve 2 and 

valve 3 at five different BPM. From the pulse duplicator data it became apparent that a 

significant gap around the valve 1 frame and sewing ring affected the results of the 𝑄𝑟𝑚𝑠, 

which had an impact on the measured EOA values of valve 1. The comparison of valve 2 

with valve 3 gave unexpected EOA results, because valve 2 performed worse than 

valve 3 for the first two testing conditions, while valve 3 performed better than valve 2 for 

the last three testing conditions. It was expected that valve 2 would outperform valve 3 

on the EOA due to its slightly thinner leaflets that should allow easier opening of the valve. 

For this study, the long- term project plan was followed until Phase 3; however, 

preliminary performance data of the first prototypes were obtained. This anomaly should 

be further investigated leading to Phase 4 of this long-term project (see Figure 3.1). 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

 

5.1. Conclusions 

An optimally designed and manufactured polymer heart valve that would ideally be free 

from calcification, require no anticoagulation, function silently with a longevity that 

exceeds the biological valves is in high demand in cardiology. Medical grade segmented 

polyurethane has been successfully applied in various cardiovascular devices. However, 

more research has been performed on PCU which has shown the potential of 

manufacturing heart valves with excellent mechanical properties and biostability. 

 

Experimental equipment and facilities to determine the dip moulding process variables 

that resulted in producing controllable and reproducible polyurethane films were 

successfully established. Through application of a reverse engineering technique, 

existing human heart valve leaflet geometry was converted to a CAD model. The complex 

leaflet mould with different curvatures in the circumferential and radial directions was 

manufactured through additive manufacturing in Ti6Al4V (ELI), a high strength, fatigue-

resistant, biocompatible alloy. 

 

A set of dip moulding parameters and a procedure which resulted in the successful 

production of prototype polymer heart valves was obtained through this research. From 

the results obtained, it was demonstrated that valves meeting the thickness requirements 

and also showing excellent surface topography without air bubbles could be produced by 

a relatively low dipping speed with a uniformly polished mould. It was shown that with a 

polyurethane solution concentration varying between 20 and 30%, a single dip could 

produce a tri-leaflet heart valve with leaflet thickness varying from 76 to 249 µm in 

different locations on the heart valve leaflet. 

 

© Central University of Technology, Free State



 

Page | 90  
 

The valves displayed good opening and closing performance, mimicking the behaviour of 

natural valves in pulse duplicator tests. Measured against the ISO 5840 standard, certain 

valves exceeded the minimum EOA performance requirements by obtaining values larger 

than 0.85 cm2 for corresponding pulsatile-flow conditions of 70, 80, 100 and 120 BPM. 

Altogether, the hydrodynamic assessment presented in this study indicates that tri-leaflet 

heart valves produced through dip moulding would make an attractive alternative to the 

tissue and mechanical heart valves currently used. 

 

The correlation between the PCU tri-leaflet valve performance and ISO standard 

requirements was found to be 80% or even better. Therefore, this study has confirmed 

that the long-term goal of producing a fully functional, durable, and cost-effective heart 

valve, capable of regulating the one-way flow of blood through the heart valve, is indeed 

achievable. It has also gone a long way towards establishing a joint competence between 

CUT’s CRPM and UFS’s Robert WM Frater Cardiovascular Research Centre to produce 

affordable polyurethane heart valves suitable for the populations of emerging and 

developing countries. 

 

5.2. Future Work 

Future work should focus on Phase 4 shown in Figure 3.1. This would entail pulse 

duplicator and fatigue tests of additional prototype polyurethane heart valves to obtain 

data that would confirm acceptable hemodynamic and life performance in conformance 

with regulatory authorities. 

 

During Phase 4, the design of the PCU valve should be further improved. These design 

changes would improve the performance of the valve further, which would require further 

pulse duplicator tests to confirm the improvement. 
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Once the valve performance has been optimised, biological trials in animals will follow. If 

these are successful, the valve can be used in clinical trials.  
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