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ABSTRACT 

 

    In South Africa, 40 to 60% of the total energy of a normal residential building can be 

allocated to the heating of water. Traditionally, a standard electric storage tank-water heater 

(ESTWH) has been the main device for residential water heating within the country. However, 

as a result of the increase in the South African population, economy and living standards have 

led to an energy shortage, which has resulted in a steadily increasing electricity price. As an 

attempt to solve this electricity crisis, Eskom, the main electricity supplier, has recently 

introduced energy management activities such as energy efficiency (EE) and the use of 

renewable energy (RE) systems.  

     On the one hand, the EE activities consist of reducing the total (overall) energy 

consumption during all the time periods, while load management (LM) activities aim to reduce 

the energy consumption during given time periods, such as peak times, when the Eskom grid 

cannot meet the demand. During peak times, the electricity consumption is charged at higher 

rates to encourage customers to shift their loads to off-peak and standard periods when the 

electricity is at a lower cost. This type of tariff is referred to as time-of-use (TOU) electricity 

tariff. With TOU, customers can therefore reduce their electricity bills by shifting load 

demands away from the peak time periods.  

     On the other hand, in order to reduce the larger amount of residential peak load demand, 

renewable energy systems, such as the solar water heater (SWH), was recently introduced and 

implemented in South Africa as a replacement to the ESTWH. However, it has been observed 

that SWHs was not continuously meeting the thermal comfort of the users, under certain 

weather conditions. During winter, for instance, the amount of thermal energy required is 

greater than that of summer due to the temperature difference of the water that needs to be 

heated, while the solar radiation in winter is considerably less due to shorter days and the 

position of the sun with reference to the earth’s location.  

     As a solution to this, the coupling of the SWH with the ESTWH, referred to as hybrid 

solar water heating (HSWH) system, is nowadays seen as technical and economic feasible 

option for water heating in South Africa.  The system is composed of a solar collector that 
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uses solar radiation to increase the temperature of water and the ESTWH, which stores the 

hot water.  In the case of poor solar radiation, the SWH fails to increase the temperature of 

water to the comfortable level; therefore, the required temperature is maintained by the 

ESTWH.        

     However, implementing optimal energy management of the HSWH can help to meet the 

required thermal comfort level while reducing the electricity cost, even more so when the 

TOU tariff is implemented. 

     With this in mind, the aim of this work is to develop an optimal energy management model 

that will improve the operation efficiency of the HSWH. The main objective is to minimize 

the water heating energy cost from the grid by taking advantage of the TOU electricity tariff, 

meanwhile maximizing the thermal comfort level of hot water users.    

     Simulations are performed using Matlab software, and the results demonstrate that 

operating the proposed hybrid system under the developed optimal energy management 

model reduced the operation cost when compared to a traditional ESTWH.  In addition, the 

comparisons made in lifecycle costs of these systems shows that in the long run, the hybrid 

system will be the less costly option with a 49 % saving over a project lifetime of 20 years. 

 

Keywords: 

 

Cost minimization; Flat plate solar collector; Hot water storage tank; Hybrid solar/electric 

storage tank water heater modelling; Optimal scheduling; Water heating technologies. 
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CHAPTER I: INTRODUCTION 

 

1.1 BACKGROUND 

 

     Water heating for hygienic purposes such as showering and bathing is one of the most 

energy consuming processes in residential areas.  For instance, in South Africa about 40 to 

60% of the total energy of a normal residential building can be allocated to the heating of 

water [1]. Water needs to be heated from a lower temperature to the user’s specific comfortable 

thermal temperature level.  Traditionally, a standard electric storage tank-water heater 

(ESTWH), also known as a geyser in South Africa, has been the main device for residential 

water heating within the country. However, the increase in the South African population, 

economy and living standard has led to an energy shortage that has resulted in a steadily 

increasing electricity price.  As an attempt to solve this, the main electricity supplier, Eskom, 

has recently introduced energy management activities, such as energy efficiency (EE) activities, 

and the use of renewable energy (RE) systems [2].  

     On the one hand, the EE activities consist of reducing the overall energy consumption 

during all time periods, while load management activities aim to reduce the energy 

consumption during given time periods such as peak times when the Eskom grid cannot meet 

the demand.  

     During peak times, the electricity consumption is charged at higher rates to encourage 

customers to shift their loads to off-peak and standard periods when the electricity is at lower 

cost. This type of tariff is referred to as time-of-use (TOU) electricity tariff. With TOU, 

customers can therefore reduce their electricity bills by shifting load demands away from the 

peak time periods [3]. Some EE activities on ESTWH have been suggested to reduce the 

corresponding overall energy consumption.  

     The first method is the use of insulation material on the tank for standby loss reduction. 

This solution showed significant savings in energy costs. The second method, which is the 

most cost-effective, is to reduce the temperature to which the water needs to be heated.  This 

is accomplished by simply changing the setting of the thermostat to a lower value.  The 
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temperature can be reduced to suit the consumers’ needs and thermal comfort level [4].  

However, by reducing the temperature, a risk of bacterial infection arises and this is an 

important factor that needs to be considered when assessing thermal comfort level of the hot 

water users.  This can potentially result in the production of the Legionella pnuemphilla, which 

is a hot water bacterium growing at water temperatures ranging from 20 ºC to 45 ºC.  In its 

most virulent form, it can cause Legionnaire’s Disease, however studies have shown that only 

1-5% of people exposed to the bacteria were infected [5].  

     With South Africa’s populations ever decreasing health condition and increase in immune 

virus infections, the probability of contracting this form of disease is of higher possibility.  The 

World Health Organization (WHO) has therefore determined that a temperature of 60 ºC can 

eliminate these bacteria in hot water.  It has been determined that the hot water supply should 

reach a temperature of 60 ºC once daily to prevent the formation of bacteria [6]. 

     In order to reduce a greater amount of residential peak-load demand, renewable energy 

systems such as solar water heaters (SWHs) were recently introduced and implemented in 

South Africa to serve as a replacement to the ESTWH. However, observations revealed that 

SWH was not continuously meeting the thermal comfort of the users under certain weather 

conditions.  During winter, for instance, the amount of thermal energy required is greater than 

that of summer.  This is mainly due to the temperature difference between the water that needs 

to be heated and the desired hot water. In addition, the solar radiation in winter is considerably 

less than in summer, due to shorter days and the position of the earth with reference to the 

sun [7].  As a solution to this, the coupling of the SWH with the ESTWH, referred to as a 

hybrid solar water heater (HSWH) system is seen today as a technical and economically feasible 

option for water heating in South Africa.   

     The system is composed of a solar collector that uses solar radiation to increase the 

temperature of water, and the ESTWH used to store the hot water.  In the case of poor solar 

radiation when the SWH fails to increase the temperature of water to the comfortable level 

(usually 60 °C), the required temperature is maintained by the ESTWH [8].  However, the 

periods in which the ESTWH system switches on typically falls in the high electricity cost 

regions of the TOU tariff.  A popular control method implemented by consumers is the use 

© Central University of Technology, Free State



 

3 

 

of a timer system in order to schedule the switch-on periods of the ESTWH.  This type of 

method provides cost savings in terms of the times that hot water is required, so that 

unnecessary energy usage is limited.  The drawback of this control technique is the lack of 

sensitivity to the TOU tariff regions.  In retrospect, implementing an optimal thermal and 

electrical management scheme for the HSWH can assist in meeting the required thermal 

comfort level while reducing the electricity cost, specifically with the TOU tariff taken into 

consideration.  

     With this in mind, the aim of this work is to develop an optimal energy management model 

that will improve the operation efficiency of the HSWH.   The objective is to minimize the 

water heating energy cost from the grid by taking advantage of the TOU electricity tariff, while 

maximizing the thermal comfort level of hot water users. 

 

1.2 PROBLEM STATEMENT 

 

     Several studies have concentrated on optimization and efficiency of the different types of 

solar water heating schemes. However, not many have considered the hybrid solar water 

heating (HSWH) system in conjunction with energy management factors such as the time-of-

use (TOU) electricity tariff.  

     The main problem arises from the fact that the solar radiation in a 24-hour day is at times 

insufficient to maintain the necessary temperature of the water.  This can mainly be accredited 

to insufficient solar irradiance from the sun in the event of overcast skies or lack of radiation 

during the night.  Thus, the ESTWH is essential in providing the additional energy in order to 

compensate for the periods where solar radiation is poor or absent.  Taking advantage of TOU 

tariff, an optimal energy management strategy can help reduce the total cost associated with 

the energy consumption of the HSWH system, while maintaining the thermal comfort level 

of the hot water users. 
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1.3 OBJECTIVES 

 

     The objective of this work was the development of an optimal energy management model 

for HSWH by taking advantage of the TOU electricity tariff to achieve both minimal energy 

cost and maximum thermal comfort level.  The model was developed with input variables 

such as hot water demand, solar radiation and inlet water temperatures, as well as the ambient 

air temperatures.  An economic analysis was performed which included the life cycle costs and 

break-even point evaluation. 

 

1.4 EXPECTED OUTCOME OF THE STUDY 

 

• Scientific outcomes:  

- The development of a mathematical model for optimal control of a hybrid solar 

water heating system that takes into account both physical and operational 

constraints such as the desired temperature and the switching boundaries. 

- To achieve minimal operation and life cycle costs as compared to the traditional 

storage tank water heater, based on time-of-use tariff. 

- To publish and document the research results in a master’s dissertation as well as 

conference and journal publications.   

• Social impact: 

- Increase awareness towards energy saving in South Africa. 

 

1.5 RESEARCH METHODOLOGY 

 

     To achieve the objectives of the study, the methodology is as follows: 

 

• Literature Review: A thorough survey of literatures related to water heating systems, 

hybrid solar water heating systems design and operation and the control of grid-

connected hybrid solar water heating systems have been reviewed.  
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1. Obtain all input-fixed variables, which are: 

• Time-of-Use (TOU) 

• Solar radiation 

• Ambient air temperature 

• Hot water consumption i.e. flow rate 

• Inlet water temperature 

 

2.    Set the initial value of the state variable 

State variable: Water temperature inside the storage 

tank of the electric storage tank water heater 

 

• System Modelling: After studying the operation of the hybrid solar water heating 

system, not only an optimal energy management model to minimize the electricity cost 

based on TOU tariff, but also to maximize the thermal comfort of the hot water users 

was developed. The proposed optimal energy management model considered solar 

radiation availability throughout the year and the possibility for bacterial infection if 

water temperature is too low. Both physical and operational system constraints have 

been taken into account in the model.  

• System variables: Fig. 1.1 illustrates the block diagram of the research modelling 

process with the defined variables.  

 

 

 

 

 

 

 

 

 

 

 

      3.     Solve the optimal problem by:  

•     Minimizing the daily water heating energy cost  

       while maintaining the consumer’s comfortable  

       thermal levels. 

•     Obtaining the optimal control variable, which is:  

                                      switching status of the electric resistive element 

                                               inside the storage tank 

 

Figure 1.1: Block diagram of methodology and research design 
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- Independent variables which are all input variables are classified as below: 

- Control variable i.e. manipulated variable (Switching status of the water heating 

system) and input-fixed variables i.e. exogenous variables (TOU, solar radiation, 

ambient air temperature, hot water consumption and input water temperature)  

- Dependent variables: all variables that are affected by any change or variation in the 

input variables. In this case, it is the hot water temperature inside the tank 

considered as “state variable”. 

• Data collection: The real input data used in the developed optimal energy management 

model was:  

- TOU tariff structure retrieved from Electricity supplier approval letter. 

- Hot water consumption profile measured for a specific medium density household 

in Bloemfontein. 

- Inlet water temperatures obtained from a water quality analysis done on the water 

supply networks in Bloemfontein. 

- Ambient air temperatures and solar irradiance data retrieved from a weather station 

located at the University of the Free State. 

• Solving the optimization problem:  

- The optimization problem was identified as a mixed integer non-linear problem. 

- The universal Solving Constraint Integer Programs (SCIP) solver in Matlab OPTI-

Toolbox was used for this problem due to its high speed solving capabilities. 

• Simulation: 

- The simulated results include the optimal switching function of the electric resistive 

element, the temperature of the water inside the storage tank and the daily 

cumulative costs incurred with respect to the TOU tariff structure for a Summer 

and winter case. 
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1.6 HYPOTHESIS 

 

• Electricity costs will be reduced significantly compared to the traditional electric 

storage tank water heater and this will be achieved with TOU tariffs as the core 

consideration. 

• The HSWH will have a lower lifecycle cost compared to the ESTWH. 

• The HSWH will be best suited for domestic water heating purposes compared to the 

ESTWH for the South African climate, due to the abundance in solar irradiance in the 

region. 

 

1.7 DELIMITATION 

 

     The study was conducted with the following limitations: 

• Only open-loop optimal energy management was considered 

• Only Homeflex Eskom Tariff was used since this applies to customers that consume 

energy from Eskom for the heating of water.  

• Only weekdays TOU tariff were used, since the peak demand does not take place on 

Saturdays and Sundays.  

• Only model developments and simulations were considered. 

• Electrical energy consumption of the pump (forced circulation) in the hybrid system 

was not considered, as it only operates when the HSWH is switched on and forms an 

integral part of the system to function sufficiently. 

• Only the indirect flat plate collector was considered, as it was found to be suitable for 

the case study. 
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1.9 DISSERTATION LAYOUT 

  

     This dissertation has been divided into six Chapters, with the main research results being 

presented in Chapter IV and Chapter V.  

     Chapter I presents the background of the work, underlines the problems and provides the 

objectives and methodology. 

     Chapter II reports the thorough review of advancements in water heating technologies 

and comparing the limitations, advantages, efficiency, and cost effectiveness of the different 

methods of heating water.  The chapter concludes with a recommended hybrid water heating 

system for the case study. 

     Chapter III describes the optimal control model formulation of a hybrid solar/electric 

water heating system and gives a general overview of the optimization problem.  The choice 

of a suitable optimization algorithm is presented and discussed.  The constraints of operation 

which includes the desired temperature range of the water inside the storage tank and 

switching function variable of the electric resistive element is defined.    

     Chapter IV presents and discusses all the input fixed variable data as well as the 

comparison of a baseline system to the optimized proposed system simulation results. 

     Chapter V evaluates the economic feasibility and presents the break-even point and life 

cycle cost analysis of the hybrid water heating system compared to a baseline water heating 

system.  

     Chapter VI concludes the work of this dissertation and sets the stage for future studies. 
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CHAPTER II: REVIEW OF DIFFERENT WATER    

HEATING TECHNOLOGIES 

 

2.1 INTRODUCTION 

 

      In this chapter, the most common water heating systems in South Africa in terms of water 

heating efficacy and operation are discussed.  In addition, some existing alternative methods 

of water heating are mentioned that might have relevance in the near future. The operation of 

water heating systems discussed in sections 2.1.1 - 2.1.8 include standalone renewable energy 

systems, electrical/gas input devices and hybrid systems that might exist in different 

configurations.   

     These configurations can consist of either hybrid renewable systems or a hybrid renewable 

system coupled with an electrical input device.  The most relevant publications related to water 

heating technologies have been reviewed and categorized in terms of technology used and 

contributions made in section 2.2.  Advantages and drawbacks of each of these systems have 

been discussed and summarized in section 2.3.  The conclusion in section 2.4 recommends a 

HSWH for the specific case of South Africa.   

 

2.1.1 Electric storage tank water heater (ESTWH) 

 

     The electric storage tank water heater has two functions, to heat water using electrical 

energy and to store the hot water until such a time as to when it is required.  Electrical energy 

is supplied to electrical resistive elements inside the storage tank.  Current flows through the 

elements in order to create heat which is exchanged to the surrounding water.  The process 

gradually increases the thermal level of the entire water mass inside the storage tank water 

heater.  A thermostat maintains a certain thermal level set by its user and the electric element 

is switched on when the temperature of the water falls below a certain value therefore 

increasing hot water availability.  Some electric storage tanks have two electric elements each 
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controlled by an independent thermostat.  One element located at the bottom of the storage 

tank as illustrated in Fig. 2.1, assists in replacing lost energy due to the temperature gradient 

between the ambient air and the water [9].  The upper element provides thermal energy to the 

water when the demand is high, making the dual element storage tank more efficient than that 

of conventional single element systems [10, 11]. 

 

 

Figure 2.1: Electric storage tank water heater (ESTWH) 

 

2.1.2 Electric tankless water heater (ETWH) 

 

     This water heater works on the same principle as the ESTWH; multiple elements heat water 

to ensure instantaneous hot water access. This system is a demand type water heater, which 

means that water is heated only when it is required.  No hot water is stored assisting in the 

prevention of standby losses [12].   
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     However, due to the immense amounts of hot water needed at a specific time, the 

instantaneous heating of the water consumes a substantial amount of electricity.  Referring to 

Fig. 2.2, when hot water is needed, cold water flows into the heater where it is heated by three 

separate electrical resistive elements.  The water temperature increases while it passes through 

each heating segment so that the final desired temperature is reached at the third and final 

element.   

     The microprocessor control board regulates the amount of energy needed to heat the water 

to the temperature set by the user.  Inlet cold water temperature, outlet hot water temperature 

and the flow of the water is monitored and the power is adjusted accordingly.  Due to the 

absence of a storage tank, the heater requires less space so that it can be placed near the hot 

water demand location.  This, in turn reduces heat losses [12].  

 

 

Figure 2.2: Electric tankless water heater 

 

2.1.3 Solar Water Heater (SWH) 

 

     Only a few countries in the world receive high concentrations of solar irradiation, South 

Africa is fortunate in being one of these countries.  Fig. 2.3 presents the average annual direct 

normal solar radiation per square meter in kWh/m2 received from the sun. The Northern 
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Cape Province receives the most radiation annually, which can be described on average as 

more than 3 kWh/m2, other provinces, for example, KwaZulu-Natal and Mpumalanga, 

receive less than this average radiation (< 2 kWh/m2) [13].  All provinces in South Africa 

receives an adequate amount of solar energy for water heating purposes.  It is evident that a 

solar technology, such as solar water heaters, can thrive in the South African climate, thus its 

growing popularity throughout the country. 

 

Figure 2.3: Annual solar irradiation in South-Africa (MAP form Solargis) [13] 

 

     Solar water heaters absorb thermal energy from the sun and transfers it to water.  This 

method of water heating is beneficial due to the fact that the energy used is costless, abundant 

and indefinitely renewable.  The solar collector placement and tilt angle plays a significant role 

in the amount of energy it can absorb.   It has been established that when a collector facing 

north is tilted at an angle of approximately 30°, it will reach near optimal annual energy 

absorption rates [14].  It should also be mentioned that the collector should not at any time of 
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the day be obscured from the sun; this means that most solar collectors are mounted on the 

rooftops of buildings.  Most solar water heaters have thermal storage tanks fixed at a position 

higher than that of the collector itself.  This is done so that circulation can take place naturally 

through thermosiphon [15].  Thermosiphon is a phenomenon whereby higher density cold 

water displaces less dense hot water through natural convection.  The water circulates through 

the collector and tank in order to continuously maintain a high water temperature [16].  

     Active and passive solar water heating systems are categorized in Fig. 2.4.  The Active 

system uses forced circulation to induce a flow of the fluid in the system. This means the fluid 

is pumped to achieve the required circulation.  Furthermore, active systems can have an open 

loop (direct heating of residential water supply) or closed loop (indirect heating of the water 

by means of a heat transfer fluid) [17].  The passive system uses a natural method for inducing 

circulation through the thermosiphon phenomena.  The Integrated collector storage (ICS) 

system is an example of the passive system where natural circulation takes place. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Solar water heating systems 

 

     Four types of collectors are currently available in solar water heating technologies. The Flat 

plate collector as shown in Fig. 2.5, evacuated tube collector as illustrated in Fig. 2.6 and 

concentrated solar collectors (parabolic collectors as presented in Figs. 2.7 and 2.8).  The 

Solar water heating 

systems 

Active system 

(Forced circulation) 

Passive system 

(Natural circulation) 
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(Direct heating) 

Closed loop 

(Indirect heating) 
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integrated storage collector system is a solar collector (flat plate type) coupled with a thermal 

storage tank.  The ICS system will not be discussed due to the low frequency of usage by 

consumers. 

 

2.1.3.1 Flat plate solar collector (FPC) 

 

     Referring to Fig. 2.5, solar radiation penetrates the collector through the glazed cover. The 

heat absorbers receive thermal energy and transfer the heat radiation to the liquid substance 

flowing through it to increase the temperature of the substance.    The heated liquid is then 

transported to fluid tubes, usually fitted with heat fins to increase the surface area for 

maximum absorption, where it flows to storage [18].  A temperature and pressure relief valve 

protects the system from overheating, the valve is located at the top part of the storage tank.  

Fig. 2.5 demonstrates how the cold water flows from the storage tank to the collector where 

it is heated and, through thermosiphon action, flows back to the tank. This process repeats 

itself to maintain a high water temperature in the storage tank. 

 

Figure 2.5: Flat plate collector components and operation principle 
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2.1.3.2 Evacuated tube collector (ETC) 

 

     The top layer of the evacuated tube collector, the first transfer layer, consists of a glass tube 

casing designed to protect the heat absorbing components inside the collector.  Heat radiation 

passes through the top layer of the evacuated tube and is absorbed by a cylindrical collector 

pipe (fluid tube).  This cylindrical collector is covered in a black coating for maximum heat 

absorption.  A transfer fluid inside the tube absorbs the thermal radiation which then rises to 

the heat exchanger head.  The heat exchanger heads terminate inside an insulated manifold.  

Water flows past the heat exchanger heads in the manifold of the collector and gains thermal 

energy.  Through this action, the transfer fluid is cooled down and returns back to the bottom 

part to be heated again as illustrated in Fig. 2.6.  The water then travels from the manifold to 

the storage tank through the pipes due to natural convection.   The transfer fluid inside the 

evacuated tubes have anti freezing properties which makes it an excellent solar water heater 

for countries that frequently experience freezing temperatures [19].   

 

           

Figure 2.6:  Evacuated tube collector components and operation 
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2.1.3.3 Parabolic dish collector (PDC) 

 

     The parabolic dish collector in Fig. 2.7 uses concentrated solar energy to heat a water 

heating receiver at the focal point of the dish. The collector dish tracks the movement of the 

sun on both the vertical and horizontal axis, in order to maximize the absorption of solar 

energy throughout the day.  The tracking system requires electrical energy to operate the solar 

tracking mechanism.  The receiver absorbs the focused solar energy and transfers it to the 

circulating fluid within.  The circulating fluid can be a refrigerant or water.  The water then 

flows to the storage tank for recirculation.  This type of collector can either generate electricity 

through thermal generator action or directly heat a circulating fluid [20].   

     The parabolic dish collector is less common in the South African case due to the complexity 

of the solar tracking system.  However, the efficiency of the system has increased in recent 

years and looks to be a competitive alternative for some regions.    

 

 

Figure 2.7: Parabolic dish collector components and operation 
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2.1.3.4 Parabolic trough collector (PTC) 

 

     The parabolic trough collector works on the same principle as the PDC. This system, 

however, employs single axis solar tracking where the solar tracking only takes place on the 

horizontal axis. This system has a focal line rather than a receiving point.  The concentrator 

consists of a semi-circular reflective metal which focuses solar energy onto the focal line.  A 

tube is fitted inside the focal line with the water or transfer fluid that needs to be heated 

flowing through it. The tube is encased in glass with a black coating [21].  Circulation takes 

place through thermosiphon or with the assistance of a circulating pump.  It is usually 

recommended to place the collector facing North so that maximum absorption can take place 

in winter. Fig. 2.8 presents the system setup and operation of the parabolic trough collector 

[22]. 

 

 

Figure 2.8: Parabolic trough collector components and operation 
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2.1.3.4 Hybrid solar/electric storage tank water heater (SWH/ESTWH)  

 

     Standalone solar water heaters can sometimes prove insufficient in heating water.  Solar 

radiation is only available during the day and poses a substantial problem in meeting hot water 

demands.  When hot water is required at all times of the day, the SWH discussed in Section 

2.1.3 can be fitted to an existing ESTWH (described in Section 2.1.1), to form a hybrid solar 

water heater (HSWH) so that water can be heated when the solar radiation is inadequate.   

     Referring to Fig. 2.9, the electric element inside the storage tank increases the temperature 

of the water when the thermal level of the water falls below the desired value [23].  This hybrid 

system incorporates a circulation pump due to the matter that most existing electric storage 

tanks are fitted beneath the roof of a residential building.  The solar collector is fitted at an 

optimal absorption angle on the rooftop of the building.  While the storage tanks’ position is 

lower than the collector, natural convection (thermosiphon) cannot take place to circulate the 

fluid, hence the circulation pump is required to assist in circulation. 

 

 

Figure 2.9: Hybrid solar water heating system components and operation 
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2.1.4 Heat pump water heater (HPWH) 

 

     The heat pump water heater extracts ambient energy from the surrounding air in order to 

heat water.  This method of water heating is superior to any other electrical source water 

heater.  Other electricity based water heaters convert electrical energy into thermal energy, 

where it can be said that the heat pump water heater only transfers the thermal energy from 

one place to another. The major parts of the heat pump water heater are the compressor, 

evaporator, expansion valve and the condenser.  Refrigerant is contained within a closed loop 

where it absorbs the heat from the ambient air.  The same refrigerant is then compressed in 

order to exchange heat with water as illustrated in Fig. 2.10; condensed while the heat is 

exchanged and then expanded in order to return back to the evaporator for reabsorption of 

ambient energy.  The component that consumes the most energy is the compressor, and this 

is a modest amount in contrast to the electrical energy used by conventional electric water 

heaters [24]. 

 

 

Figure 2.10:  Heat pump operation refrigerant loop cycle  
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2.1.5 Gas fired tankless water heater (GFTWH) 

 

     This water heater instantaneously heats water when a demand for hot water presents itself.  

The water heater is switched on by igniting liquefied petroleum gas (LPG) supplied to the 

heater. After ignition, the regulator control valve maintains a constant flame.  The constant 

flame produces thermal energy captured by heating fins.  These heating fins transfer the energy 

to the water flowing through conductive pipes as shown in Fig. 2.11.  Sensors located at the 

cold water inlet valve and hot water outlet valve sends data to the microprocessor, where 

decisions are made to decrease or increase the gas flowing to the burner [25].  The gas supplied 

will be increased within operating limits if the temperature at the hot water outlet side is below 

the desired temperature set by the user.  Similarly, the gas will be decreased if the water 

temperature exceeds the desired temperature.   

     The water flow rate can be adjusted to suit the users need, but an increase in flow rate will 

require an increase in gas supplied to the burner.   This heater offers the same advantages as 

the electric tankless water heater, the only difference is the source of energy supplied [26].   

 

 

          Figure 2.11: Gas fired tankless water heater components and operation 
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2.1.6 Hybrid heat pump coupled with gas fired water heater (HPWH/GFWH) 

 

     The following setup uses a conventional heat pump water heater described in section 2.1.4 

and gas fired tankless water heater (section 2.1.5), that acts as a gas booster system.  This 

hybrid system offers increased reliability due to the ability of the two systems to operate 

independently if one system should fail.   Refrigerant is heated by the heat pump through the 

process described in section 2.4.  The heat from the refrigerant cycle is exchanged with a 

secondary closed loop heat exchanger system [27] as shown in Fig. 2.12.  The transfer fluid 

inside the secondary closed loop system has its thermal level increased further by means of 

the gas fired water heater [28].  The secondary exchanger loop has a higher thermal level due 

to this process and heat is again exchanged with water that will be used by the consumer. 

     In case of colder climates, when thermal energy in the ambient air is insufficient to heat 

water to the desired temperature levels, the gas fired tankless water heater can then increase 

the temperature independently.  Standby losses and inadequate ambient energy will increase 

gas consumption which in turn will increase the operating costs in colder climates.  

 

 

Figure 2.12:  Schematic diagram of the heat pump gas fired water heater hybrid 
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2.1.7 Geothermal water heating systems 

 

     Geothermal water heating systems can be divided into two types of systems: geothermal 

hot spring water extraction and geothermal (ground-source) energy extraction. 

 

2.1.7.1 Geothermal hot spring water extraction (GHSWE) 

 

      Geothermal energy heats groundwater, which in turn emerges from the crust of the Earth.  

The heated water at Earth’s surface level forms a hot spring.  The geothermally heated water 

occurs naturally and hot spring locations can be found in many locations across the world. 

Some locations have hot springs where the water temperature can be safe for bathing.  Only 

hot springs with water temperatures not exceeding safe bathing limits can be used as a hot 

water source.  Similarly, some hot springs have unacceptably low thermal levels, thus they are 

not suitable for bathing purposes.  When a hot spring with a suitable thermal level is found, 

the hot water from the spring can be pumped to residential areas, as long as these areas are in 

the vicinity of the hot spring.  The close proximity will minimize heat losses.   

     This water needs to be treated or filtered to avoid bacterial infection.  The hot spring water 

can be used for hygienic purposes.  Referring to Fig. 2.13, eight thermal springs in South Africa 

have thermal levels deemed appropriate for household use (exceeding 50˚C) [29]. 
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Figure 2.13: Distribution of thermal springs in South Africa [33] 

 

2.1.7.2 Geothermal heat pump water heater (GTHPWH) 

 

     Geothermal heat pumps extract thermal energy beneath ground level.  High thermal levels 

beneath the ground can be attributed to the radio-active decay of minerals and solar radiation 

absorbed by the surface of the earth. A conventional heat pump system is used, but in this 

arrangement, heat is extracted from the ground. This type of heat pump is also called a ground-

source heat pump water heater.  The system consists of a primary and secondary heat exchange 

system.  The primary heat exchanger has a transfer fluid flowing within it and the second has 

a refrigerant.  Part of the primary heat exchanger is buried underground [30].  The depth at 

which it is buried is at approximately 10 metres below the earth’s surface. Fig. 2.14 shows that 

at about 10 metres below ground level, the temperature ranges between 10 °C and 12 °C.  The 

temperature remains constant throughout the year even during winter months, where the air 

temperature is known to fluctuate significantly.   
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          Figure 2.15: Ground source heat pump and thermal loop. 

 

2.1.8 Photovoltaic-thermal water heater (PV/TWH)  

 

     The photovoltaic-thermal (PV/T) collector is the combination of a SWH and a PV cell.  A 

PV cell’s efficiency is highly dependent on temperature.  If the temperature of the cell is too 

high, the efficiency drops significantly.  This efficiency drop can be mitigated by adding a solar 

collector [32].  The solar collector acts as a heat sink while it uses the thermal energy gained 

to heat water.  Any PV module can easily and cheaply be retrofitted to become a water heater. 

     Referring to Fig. 2.16, the PV cell is surrounded by water flow ducts protected by a metal 

casing.  The top and bottom layer of the upper collector is made up of glass, so that solar 

radiation can be transferred to the PV panel [33].  The lower collector is enclosed and forms 

part of the collector casing.  Small circular channel cut-outs form part of the circulation path 

and evens out heat distribution.  Cold water is supplied to the collector system and heated, 
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while thermosiphon assists in the circulation of the water through the entire system.  This 

ensures continuous heating of the water so that the water can be used by the consumer [34]. 

 

Figure 2.16: Photovoltaic-thermal collector with dual absorber channels 

 

2.2 REVIEW OF RELEVANT LITERATURE 

 

     Numerous authors have done energy efficiency, load management and optimal parameter 

design studies with the decrease in energy consumption of water heating systems in mind. 

Table 2.1 summarizes different papers by the different authors in which attempts have been 

made to increase the efficiency of the water heating systems by using the different methods 

and procedures as explained thus far. This table provides the source authors, the contributions 

made by the respective authors and a summary of the findings/results of each water heater 

system. 
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Table 2.1: Review of papers linked to optimization and improving efficiency of different 

water heating configurations 

Authors Highlights/Contribution Technology 

Abbas N.,  

Nawaz R., 

Khan   N.    

[35] 

• Refrigerant Parametric Quantification 

method was developed for optimal 

thermosiphon operation for SWHs.  

• CO2 has a high quality factor when compared 

to other refrigerants while R-1234yf showed 

superior characteristics for commercial 

heating applications. 

SWH 

Aguilar F.J., 

Aledo S., 

Quiles P.V. 

[36] 

• Feasibility study done on PV energy supplying 

heat pump water heaters. 

• Results denoted a performance factor of 8.92 

with a solar input energy compared to non-

renewable input was 61.7% 

HPWH 

Alberto P.    

and  

Ferrer F.     

[37] 

• Feasibility evaluation of solar water heater 

systems for low density residential areas with 

estimated water consumer profiles. 

• Results show that the payback time is onwards 

of eight years and exceeds the life cycle 

warranty period by three years. 

SWH 

Atikol U.      

and 

Aldabbagh 

L.B.Y. 

[38] 

• Development and experimental analysis of 

exergy clearance and stand by time between 

discharging periods, tested for altering initial 

volume discharges. 

• More exergy efficient storage tank designs and 

strategies of operation can be of result when 

evaluating correlations. 

ESTWH 
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Bagarella G., 

Lazzarin R., 

Noro M.      

[39] 

• Model was simulated with summer and winter 

temperatures in order to evaluate the average 

efficiency of the setup throughout the year. 

• Small size HPWH connected in a parallel 

arrangement can increase energy savings by 

setting the cut-off temperature below the 

boiler temperature, whereas larger systems 

have no advantages applying this method. 

HPWH 

Benrejeb R., 

Helal   O., 

Chaouachi B. 

[40] 

• Parabolic dish concentrator coupled to an 

integrated collector storage system was 

designed in order to increase energy absorbed 

from solar irradiance. 

• Results showed higher temperatures obtained.   

SWH 

Benrejeb R., 

Helal    O., 

Chaouachi B. 

[41] 

• Truncated parabolic dish reflectors coupled to 

an integrated collector storage system was 

designed in order to increase energy absorbed 

from solar irradiance that could operate while 

insulation periods are low at acceptable 

thermal comfort levels. 

• Manufacturing costs will decrease with the 

proposed truncation. 

• Optimal thermal performance has been 

found. 

SWH 

Benrejeb R., 

Helal O., 

Chaouachi B. 

[42] 

• Effect on optical and thermal performance of 

full parabolic concentrators was investigated 

when adding truncation. 

• Optical and thermal performances remained 

acceptable for domestic use. 

SWH 
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Bleicher A. 

and  

Gross  M.     

[43] 

 

• Geothermal energy harvesting technologies 

caused reservations concerning 

environmental impacts and technical viability.  

• Decentralized geothermal energy sources are 

not ready-made and need to be modified in 

order to improve compatibility to the 

situation. 

GTHPWH 

Bourke G.   

and           

Bansal P.     

[44] 

• Experimental analysis of the performance of 

in line gas boosters coupled to solar water 

heating systems.  

• Condensing gas booster has higher 

performance when used in conjunction with 

solar water heaters, however non-condensing 

gas boosters was found to lag behind. 

Hybrid 

GFTWH/SWH 

Bourke G. and 

Bansal P., 

Robert R.   

[45] 

 

• Gas-fired tankless water heater was tested 

with regard to efficiency against several 

standards.  

• Results shows that there is significant 

difference between the different standards 

tested. 

GFTWH 

Bovand M. 

and 

Rashidi S.,  

Esfahani J.A. 

[46] 

• Porous solar water heater numerically 

investigated with focus on heat transfer and 

fluid flow.  

• Results show an increased Nusselt number 

when increasing the radiation parameters.  

SWH 

Browne M.C. 

and  

• Performance of a photovoltaic thermal water 

heating system coupled with a phase-change 

material arrangement experimentally analysed. 

Hybrid PVT/PCM 
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Norton B., 

McCormack 

S.J. 

[47] 

• Temperature increase was observed with the 

phase change material in place rather than 

without. 

Calise F., 

d’Accadia 

M.D.,  

Figaj R.D., 

Vanoli L.    

[48] 

• Modelling of HPWH and absorption chiller 

mainly for air conditioning purposes supplied 

by PVT collectors and grid input. 

• Thermo-economic evaluation of a poly-

generation system.   

• With incentive, the calculated system payback 

period is approximately eight years. 

Hybrid PVT/HPWH 

Carnevale E.,  

Lombardi L., 

Zanchi L.    

[49] 

• Life cycles of PV cells and SWH compared 

and evaluated.  

• Evaluation show that SWH scheme has longer 

life cycles than PV modules, these modules 

can have an improved life cycle score if 

recycled at the end of their respective life 

cycle. 

SWH 

Das D.          

and   

Basak T.       

[50] 

• Modelling and optimization in discrete solar 

water heaters in favour of increased heating 

efficiency. 

• Triangular-type 2 enclosure casing has 

increased internal thermal mixing.  

SWH 

Del Col D., 

Azzolin M., 

Benassi G., 

Mantovan M. 

[51] 

• Investigation of ground source heat pump 

water heater field data. 

• Maximized seasonal coefficient of 

performance of the HPWH is predicted. 

GTHPWH 
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Deng W.      

and                  

Yu J.              

[52] 

• Investigation of performance of a hybrid solar 

and air source heat pump water heater.  

• Results show that higher performance is 

obtained when the amount incoming solar 

irradiance is low.  

Hybrid SWH/HPWH 

Deng Y.,  

Zhao Y.,   

Quan Z.,     

Zhu T.          

[53] 

• Experimental testing of a flat plate collector 

solar water heater with micro heat pipe 

arrangement packed closely for maximum 

solar irradiance absorption and surface area 

maximization. 

• Tested collector showed excellent thermal 

operation and heat absorption.  

SWH 

Der J.P., 

Kostiuk L.W., 

McDonald 

A.G.              

[54] 

• Tankless water heater hybrid performance 

evaluated. 

• Results show that for thermal levels set at 

between 38°C and 60°C, efficiencies of 

approximately 90% for water demand of 7.6 

litres/min. 

• Efficiency decreases with higher water 

demand. 

ETWH 

Devanaravan 

K.  

and  

Kalidasa 

Murugavel K.               

[55] 

• Review of integrated solar collector storage 

water heater systems with the use of 

compound parabolic reflector developments. 

• Latest designs in the integrated solar collector 

storage water heaters shows good operating 

possibilities with the added benefit reliability 

for longer periods of time. 

SWH 
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Gong J.      and    

Sumathy K. 

[56] 

• Evaluation and review of solar energy 

supplied water heaters and market their 

market potential. 

• Review indicates that solar water heaters have 

gained popularity across the world with a high 

market potential.  

SWH 

Zou D.,         

Ma X.,           

Liu X.,    

Zheng P.,     

Cai B.,    

Huang J.,   

Guo J.          

[57] 

• Grey system theory used to predict energy 

consumed by a domestic heat pump water 

heater. 

• Investigation shows positive results from 

using the evaluated theory with high accuracy 

heat detection. 

HPWH 

Hafez A.Z., 

Attia A.M., 

Eltwab H.S., 

Elkousy .O., 

Afifi A.A., 

AbdElhamid 

A.G.,  

[58] 

• Survey of mathematical methods, design 

parameters and simulated models of the 

parabolic trough collector in several countries. 

• Results indicates that optical efficiency values 

are close to 63% and possible maximum 

optical efficiency can be at 75%  

PTC 

Hepbasli A. 

and          

Kalinci  Y.   

[59] 

 

• Review of HPWH, focusing on energetic and 

exergetic aspects was done. 

• Review showed that GEHP systems have 

gained efficiency in both space heating and 

water heating applications. 

HPWH 
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Higgins A., 

McNamara C.,       

Foliente G. 

[60] 

 

• Forecast model was developed to predict the 

uptake of  PV’s and solar water heaters.  

• Considerable differences in the efficacy of 

different policy scenarios to increase the 

uptake of PV systems and solar water heaters 

was observed.  

PV/TWH 

Huang B.J., 

Wang J.H., 

Wu J.H.,   

Yang P.E.      

[61] 

 

• Fast response heat pump water heater with 

isolated dual storage tanks developed and 

experimentally analysed.  

• Acceptable for domestic operation, 50 litres of 

water with a temperature increase of 30 °C in 

40 minutes was observed.  

HPWH 

Ibrahim O.,  

Fardoun F., 

Younes R., 

Hasna L-G. 

[62] 

• Model of a wind turbine, solar collector and 

battery storage system all serving as an energy 

supply to the heat pump water heater.  

• The model evaluation shows that the setup is 

feasible with savings incurred annually. 

HPWH 

Ibrahim O.,  

Fardoun F., 

Younes R., 

Hasna L-G. 

[63] 

• Review of most commonly used water heating 

setups.  

• Solar water heating systems and heat pump 

water heaters was observed to be most 

economically feasible.  

WH 

Johnson G. 

and    

Beausoleil 

Morrison I. 

[64] 

• Modelling and verification of a gas fired water 

heating system. 

• Model predictions of energy consumption 

correlates with field data. 

GTWH 
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Kato T.         

and  

Suzuoki Y. 

[65] 

• Automatic heat pump switching control in 

order mitigate voltage spikes due to voltage 

generated from photovoltaic systems.  

• Controlled switching was successful in 

mitigation of voltage rises in the system. 

HPWH 

Keinath C.M.               

and    

Garimella S.        

[66] 

• Cost and energy comparison regarding three 

different domestic water heating technologies. 

• Gas-fired heat pump water heaters have a 

payback period of around four years when 

compared to electric storage tank water 

heater. 

• Electric heat pump water heaters have a 

payback period of about 3.6 years. 

ESTWH & GFTWH 

& HPWH 

Keinath C.M., 

Garimella S., 

Garrabrant 

A.M.  

[67] 

• Experimental analysis of Coefficient of 

Performance of a gas-fired heat pump water 

heater under different water and ambient 

temperature test conditions. 

• Performance was successfully predicted 

whereby the system uses a 227-liter storage 

tank. 

• Stand-by losses response was investigated. 

GFHPWH 

Kepplinger P.,          

Huber G., 

Petrasch J.   

[68] 

• Optimized linear model developed under one-

way communicated incentives. 

• Up to 12% savings were observed when 

compared to normal operation. 

ESTWH 

Kepplinger P.                   

and           

Huber G., 

• Experimental field testing of autonomous 

demand side management method of electric 

storage tank water heaters.  

ESTWH 
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Petrasch J.   

[69] 

• Results show that thermal mixing is improved 

in the triangular style 2 enclosure. 

Li K.,               

Li T.,            

Tao H.,        

Pan Y.,   

Zhang J.      

[70] 

• Heat and flow transfer performance of SWH 

with elliptical collector arrangement were 

numerically investigated. 

• Results show that velocity measurements were 

not equal, while temperature distributions of 

the tube segments remained similar.  

SWH 

Li S.,                  

Li S.,        

Zhang X.    

[71] 

• Dual source heat pump water heater designed 

and performance was simulated with different 

refrigerants.  

• R744 refrigerant satisfied both energy saving 

and environmental requirements.  

HPWH 

Liu Z.,          

Fan P.,      

Wang Q.,    

Chi Y.,       

Zhao Z.,       

Chi Y.          

[72] 

• Development of an air source heat pump 

water heater in conjunction with a compressor 

casing thermal storage. 

• Hot water with a volume of 10 litres at a 

temperature of 30 °C was gained at the 

standard heating time of 2.5 hours. 

HPWH 

Michael J.J. 

and            

Iniyan S.      

[73] 

• Thermal performance investigated 

experimentally of nanofluid (CuO/H2O) 

prepared from Cu(CH3COO)2 on passive 

based indirect flat plate SWH.  

• Increased efficiency was noted with an 

increased laminar flow to turbulent flow, 

performance was increased when using 

SWH 
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nanofluid in thermosiphon circulation test 

condition.  

Milani D.    

and           

Abbas A.    

[74] 

• Examination of the heat capture rate of a 

diffuse flat reflector fixed to the back of an 

evacuated tube collector system.  

• Overall increase of 85.53% of annual energy 

savings was noted. 

SWH 

Moreau A.   

[75] 

 

• Triple reduction of the grid’s peak demand 

when applying control algorithm. 

• Minimizes pick-up demand during the initial 

stages of the on cycle of a resistive element 

whilst ensuring the consumers hot water 

supply. 

ESTWH 

Murali G., 

Mayilsamy K.               

[76] 

• Evaluation of performance of a SWH with 

multiple inlet locations under discharge.   

• Results indicates that hot water availability has 

been maintained for longer periods of time. 

SWH 

Paull L.,          

Li H.,      

Chang L.      

[77]  

• Multi-objective energy management model of 

an electric storage tank water heater was 

evaluated.  

• Accurate prediction of peak demand usage, 

peak shaving can be maximized with little 

effect to user’s thermal comfort level.  

ESTWH 

Peng J.,              

Li H.,       

Zhang C.L.              

[78] 

• Development and validation of a Quasi-

steady-state model of a HPWH with an 

electronic expansion valve, a shortened tube 

orifice and thin internal diameter tube as 

expansion devices. 

HPWH 

© Central University of Technology, Free State



 

38 

 

• Results indicate that shortened tube orifice 

was an appropriate fit to the heat pump water 

heater with the most benefits. 

Qu M.        and          

Chen J.      [79] 

• Dual source HPWH was analysed with 

emphasis on one of the sources which was the 

solar PVT water heater.  

• Efficient operation was noted. 

Hybrid PVT/HPWH 

Saravanan A. 

and  

Senthkumaar  

J.S.                  

[80] 

 

 

 

• Experimental analysis comparing Nusselt 

numbers of V-trough SWH with helix shaped 

tape, square cut helix tape, V-cut helix tape in 

identical operational conditions.  

• Comparisons show that V-cut helix has a 

Nussalt number of 9.13% higher than helix, 

and V-cut has a Nusselt number of 3.08% 

higher than square cut. 

SWH 

Sathyamurthy 

R.             

and          

Harris Samuel 

D.G  

[81] 

• Baffled parabolic trough solar collector water 

heater was designed to improve hot water 

output. 

• The percentage increase in outlet temperature 

is directly proportional to the amount of 

incoming solar irradiance. 

PTC 

Scarpa F., 

Tagliafico 

L.A.,        

Bianco V.            

[82] 

• Optimal operation conditions and appropriate 

design parameters with minimisation of non-

renewable energy usage for hybrid gas/solar 

heat pump water heater discussed.  

• Suitable approach taken in line with regulation 

and design requirements.  

Hybrid 

GFWH/SWH/HPWH 
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Shan F.,       

Cao L.,       

Fang G.        

[83] 

• Modelling and evaluation of a PVT water 

heating system. 

• Results showed that reduced series-connected 

PVT arrangements, low inlet water 

temperature at increased flow rate resulted in 

higher efficiency. 

PV/TWH 

Sheng X.H.               

[84] 

• Experimental evaluation on a SWH in 

conjunction with phase-change energy 

storage.  

• Comparison of performance between phase-

change energy storage collector and evacuated 

tube direct heating system. 

• Phase-change SWH performs less efficiently 

than the evacuated tube system under 

exposure for same collector area.  

Hybrid SWH/ESTWH 

Sichialu S.M.                          

Xia X.      

Zhang J.                      

[85] 

• Optimized switching strategy for a multi-

source (grid connection and photovoltaic) 

heat pump water heater.  

• Short payback period for PV module was 

noted, while a 41.5% energy savings was 

observed, however in winter periods, the heat 

pump could not supply enough thermal 

energy to meet the demand. 

HPWH 

Sichialu S.M. 

and                 

Xia X.           

[86] 

• Optimized switching strategy for a multi-

source (grid connection, photovoltaic and 

battery source) heat pump water heater.  

• A 52.5% energy savings was observed. 

HPWH 
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Sichialu S.M. 

and  

Xia X.           

[87] 

• Optimized switching strategy for a multi-

source (diesel generator, photovoltaic and 

battery source) heat pump water heater.  

• A 68.09% energy savings was observed. 

HPWH 

 

Sichilalu S.,  

Mathaba T., 

Xia X.          

[88] 

• HPWH supplied by multiple sources (wind 

generation, photovoltaic and grid connection) 

optimization control modelling.  

• Cost saving of approximately 70.74% on daily 

basis.  

HPWH 

Sichilalu S., 

Tazvinga H., 

Xia X.           

[89] 

• Optimized energy usage of a multi energy 

source (wind, fuel cell, photovoltaic, electrical 

grid input) heat pump water heater model. 

• A maximum cost saving of 33.8% was reached 

in simulation, acceptable heat pump hot water 

temperature level was reached and energy 

saving of 27.68% was obtained.     

HPWH 

Singh R., 

Lazarus I.J., 

Souliotis M. 

[90] 

• Review of several solar collector systems with 

phase change materials and heat retaining 

properties.  

• Heat loss reduction strategies for colder 

periods, thermal performance and respective 

design characteristics were reviewed.  

SWH 

Tang R., 

Cheng Y.,    

Wu M.,             

Li Z.,                    

Yu Y.              

[91] 

• Flat plate passive circulation solar collectors 

with and without solar selective absorbers 

were tested in order to obtain data about 

ability to withstand freezing temperatures.  

• Non-solar selective absorber type collectors 

may suffer from damage due to temperatures 

SWH 
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below 0 °C, while solar selective absorbers 

have a reduced chance of damage due to 

freezing temperatures.  

Tang R.        

and           

Cheng Y.     

[92] 

• Experimental investigation on evacuated tube 

solar collector with direct heating in order to 

measure reverse flow and heat loss during 

night time.  

• Increased reverse flow was observed at night 

time, reverse flow caused mainly by collector 

tilt angle rather than atmospheric 

disturbances.  Low heat losses during the 

night was observed. 

SWH 

Tanha K.     

and              

Fung A.S.    

[93] 

• Experimental analysis on drained water heat 

recovery on FPC and ETC setups.  

• Flat plate solar collector produces approx. half 

the energy that an evacuated tube solar 

collector with the same area produced 

annually.  

SWH 

Tinti F., 

Barbaresi A., 

Torreggiani 

D.,         

Brunelli D., 

Ferrari M. et 

al. 

[94] 

• Experimental thermal response test done on 

geothermal source.  Smart control 

implementation on hybrid ground/air source 

heat pump water heater. 

• Testing confirmed that increased efficiency 

was obtained with the hybrid heat pump 

system. 

GTHPWH 

© Central University of Technology, Free State



 

42 

 

Tsai H-L.      

[95] 

• Model developed of a heat pump water heater 

being supplied by thermal and electrical 

energy from a PVT collector.  

• Model results shows increased accuracy and 

adequate confidence.  

Hybrid PVT/HPWH 

Tse K.           

and            

Chow T.      

[96]  

• Indirectly heated, natural flow solar water 

heating setup with a cylindrical tube ring 

arrangement as heat exchanger was designed 

and analysed.   

• The new design had improved performance 

when compared to helical coil as heat 

exchanger setups.   

SWH 

Wang P.,         

Li S.,               

Liu Z.           

[97] 

• A larger application based evacuated tube 

solar air heater in conjunction with a compact 

compound parabolic reflector with a 

concentric heat exchanger was developed to 

provide high temperature air flow for water 

heating purposes. 

• Thermal efficiency was noted to be 52% with 

an air temperature of 70 °C and 35% at a 

temperature of 150 °C.  Efficiencies decline 

with higher air temperatures. 

SWH 

Wanjiru E.M., 

Sichilalu S.M., 

Xia X.          

[98] 

• Optimized control of a heat pump and 

instantaneous water heaters supplied by 

integrated energy systems. 

• Optimized model shows that 7.5 kWh can be 

sold to the grid, while energy costs can be 

reduced by 19% daily. 

HPWH 
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Willem H.,    

Lin Y.,     

Lekov A.     

[99] 

• Survey of heat pump water heaters in terms of 

performance and system efficiency. 

• Increased Coefficient of Performance (COP) 

of 2.8 to 5.5 can be observed with new 

technological advances. 

• The survey identifies and recommends key 

focus areas for future work in order to boost 

COP numbers. 

HPWH 

Wilson Jr. R.P. 

[100] 

• Conservation of energy discussion for both 

gas tankless water heaters and electric storage 

tank water heaters.  

• Both water heating systems can have reduced 

energy usage as a result when looking at global 

figures especially with recent advances in 

these respective technologies. 

GFTWH and ESTWH 

Xiaowu W. 

and               

Ben H.       

[101] 

• Exergy usage and loss management and 

minimization for cost saving purposes for 

solar water heater. 

• High amounts of exergy losses occur in the 

storage tank, careful consideration in the 

design of the tank should be taken in order to 

improve exergy efficiency.  

SWH 

Yan C.,     

Wang S.,        

Ma Z.,            

Shi W.        

[102] 

• Development of an optimal design method 

regarding tank volume and collector area of a 

SWH system.  

• The storage tank size is highly dependent on 

the collector area, while the collector area 

SWH 
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optimization is not affected significantly by 

the tank size.  

Yang L.,    

Yuan H.,   

Peng J.W., 

Zhang C.L. 

[103] 

• Development and validation of a domestic 

heat pump water heater model with the 

performance of off-design components in 

mind.  

• Using experimental data from literature, it was 

deduced that the heat pump performance was 

competitive in cold weather.      

HPWH 

Ziapour B.M. 

and         

Palideh V. 

[104] 

• An integrated solar collector system combined 

with a photovoltaic cell was modelled in order 

to observe the change in PVT power 

conversion efficiency.   

• An increased area of the collector has a 

decreased system efficiency as a result.   

PV/TWH 

Zou B.          

and             

Dong J.      

[105] 

 

• A proposed compact parabolic trough 

collector for heating water in colder areas was 

tested to verify if a viable solution to 

shortcomings of conventional solar collectors 

could be found.  

• The parabolic trough collector had acceptable 

operation in cold testing conditions with 

exceptional anti-freezing properties.  

PTC 
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2.3 DISCUSSION  

 

2.3.1 Key results and findings 

 

     After reviewing the research studies linked to domestic water heating technologies, it is 

evident that a wide spectrum of hybrid arrangements has emerged.  These hybrid systems can 

consist of two or more water heating technologies.  Consequently, higher energy and cost 

savings are observed in domestic households.  Table 2.2 presents some advantages, drawbacks, 

approximate installation cost and life expectancy.  This information gives an indication on 

which technologies are most suited for a specific case in South Africa.  

Table 2.2: Techno-economic comparison of water heating technologies. 

Technology Specific comments applicable 

to the South African case 

Approximate 

install cost 

(ZAR) 

Average Life 

Expectancy 

(years) 

Electric storage tank 

water heater 

•   Hot water always available 

• Large amount of non-

renewable   energy 

required to heat water 

•   High LCC 

•   Standby losses due to tank 

 2584 – 4000 5 - 10 

Electric tankless water 

heater. 

•   Hot water always available 

• High energy    

consumption  

• Compact 

• No standby losses 

• Medium LCC 

2799 – 4800 5 - 8 
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Solar water heater • Hot water available only 

during the day 

• Consumes renewable 

energy (free) 

• High standby losses during 

night time 

• Low LCC 

7000 – 11 598 5 - 20 

Heat-pump water 

heater 

• Hot water availability 

limited to warmer months 

• Consumes less electrical 

energy when compared to 

ESTWH and ETWH 

• Medium LCC 

• Standby losses due to tank 

12000 – 18762 5 - 8 

Gas fired tankless 

water heater 

• Hot water always available 

• Consumes significant 

amount of non-renewable 

energy 

• Compact 

• No standby losses 

• High LCC 

3984 – 5597 6 - 8 

Geothermal water 

heating (springs) 

• Hot water always available 

• Limited hot spring 

locations 

• Uses small amount of 

electrical energy (pump) 

• Low LCC 

N/A (Method 

of hot water 

transport cost 

may vary) 

N/A 

(Depends on 

pumping 

system) 
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• Heat losses through 

extended pipes 

Hybrid 

Photovoltaic/Thermal 

(PVT) water heater 

• Hot water only available 

during the day 

• Only small amounts of 

water can be (limited to 

cell area) 

• Low retro fitment cost 

• Low LCC 

• Increases power efficiency 

of the PV cell 

•  Standby losses during night 

10 000 + 

(180W panel 

and copper 

piping) 

10 - 15 

Hybrid heat pump gas 

fired water heater 

• Hot water always available 

• Large amount of energy 

required. 

• Complicated system 

• High LCC 

• Standby losses due to tank 

15984 – 24359 5 - 8 

Hybrid solar electric 

water heater with 

evacuated tube 

collector (indirect 

system) 

• Hot water always available 

• More efficient solar energy 

conversion than FPC 

HSWH 

• Uses renewable energy as its 

primary energy source 

• Medium LCC 

• Standby losses due to tank 

15170 – 18 000 5 - 20 
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Hybrid solar electric 

water heater with flat 

plate collector 

(direct/indirect) 

• Hot water always available 

• Less efficient energy 

conversion than FPC- 

HSWH 

• Uses renewable energy as its 

primary energy source 

• Lower LCC compared to 

ETC/ESTWH 

• Standby losses due to tank 

11100 - 14710 5 - 20 

Hybrid geothermal 

heat pump water 

heater 

• Hot water always available 

• More efficient than 

standalone HPWH 

• Bulky 

• High Initial install cost 

• Medium LCC 

• Standby losses due to tank 

12000 – 18762 

(with an 

additional 7000 

for 

underground 

heat exchanging 

conduits) 

5 - 8 

 

2.3.2 Impact of water heating systems on South African energy efficiency program 

 

     The idea of using hybrid water heating systems in South Africa has become increasingly 

popular in recent years.  This is mainly due to its ability to shave off significant energy costs 

and high reliability [106].  Rebates and incentives from the government have played a key role 

in the rise of renewable energy system implementation in the country.  This is not only good 

news for the consumer, but also for the electricity supplier, Eskom.  Eskom mentions that 

saving 1000 kWh can reduce carbon dioxide production by 990 tons, which translates into a 

saving of 60 kilotons of carbon dioxide released in the air annually [107].   However, with the 

increasing population the demand will soon exceed the generating capacity.  Eskom has had 

some problems in the past with meeting electrical demand.   
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     Innovative ways of saving energy is needed more than ever to save the electrical grid from 

total shutdown.  Furthermore, price hikes approved by NERSA have recently dampened the 

mood of many South Africans.   Statistics show that approximately 54% of South Africa’s 

population lives under the poverty line making it hard to withstand all the price hikes that the 

electricity supplier has recently announced [108].   

     In addition, a large number of South Africans live with the human immunodeficiency virus 

(HIV), which makes it easier for opportunistic diseases i.e. legionnaires disease to be 

contracted.  Legionnaire’s disease is caused by Legionella Pneumophila bacteria commonly 

located in water.  In order to eliminate these bacteria, the water needs to be heated to at least 

60 ºC once per day according to the World Health Organization (WHO) [109, 110].  The 

South African populous needs to be educated in the importance of hygiene and saving energy, 

not only to save money, but more importantly to secure a future with a pollution free 

environment. 

 

2.4 SUMMARY  

 

     Conventional water heaters can consume as much as half of the total energy used by a 

traditional household.  This high consumption of energy is mainly due to inefficient and 

outdated electric storage tank water heating technologies, combined with lack of energy 

efficient activities.  Research and development on new, more energy efficient water heating 

technologies has been done surrounding most aspects associated with energy management 

and design.  Furthermore, heat loss reduction and optimization studies have also brought 

significant changes to energy consumption and load management of these water heating 

systems.   

     This chapter presented a survey of improvements and research done on most common 

water heating methods.  These technologies include electric water heaters, solar water heaters 

(passive and active systems), heat pump water heater, geothermal water heaters, photo-

voltaic/thermal water heater and the gas-fired tankless water heater.  An increased reliability 
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and the potential to lower energy costs was observed for hybrid systems if these systems are 

combined in such a way that they could function independently.   

     The feasibility, cost effectiveness and life expectancy of each technology was discussed.  

Drawbacks and benefits have been outlined for clear comparison between the different 

methods. The solar water heater (SWH) coupled with an electric storage tank water heater 

(ESTWH) was shown to be the most viable.  This viability is based on hot water availability 

and cost saving being the top concern for consumers.  The flat plate collector type is 

approximately 30% less costly to install than the evacuated tube collector.  Furthermore, 

studies suggest that more than enough solar energy is captured to maintain a comfortable 

temperature level, even with a 30% less efficient heat absorbance factor compared to the ETC.  

In addition, the evacuated tube collector array system is more expensive to replace in the event 

of damage caused by hail, whereas only the glass pane over the flat plate collector need be 

replaced at a minimal cost for the same instance.   

     The impact resistance of glass covers for the FPC system have improved in recent years 

with the advent of superior glass hardening techniques.  This in turn reduces the probability 

of hail damage to the collector cover.   The only major drawback of the flat plate collector is 

lower frost resistance in colder climates.  This is especially true for the direct collector systems.  

In retrospect, the indirect FPC coupled to an existing or new ESTWH is proposed for the 

South African case with the country’s climate taken into consideration.  The amount of solar 

radiation the country receives makes it an ideal water heater system for all provinces.    

     Low-income households can benefit from Eskom rebates to implement these systems.  The 

ESTWH part can assist in the prevention of infection by heating water to 60 ºC daily.   

     The consumers should be able to implement a system that suits their geographical and hot 

water needs with the suitable financial support from the governing body in order to reduce 

the use and dependency on fossil fuels.   

     Energy efficient systems with applicable knowledge of the advantages these systems might 

offer can decrease the severity of the energy crisis that South Africa is facing.  This will, in 

turn, allow South Africans to improve their financial condition.   
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CHAPTER III:  OPTIMAL ENERGY MANAGEMENT                                                                

OF THE HYBRID SOLAR/ELECTRIC    

WATER HEATER AND ALGORITHM 

FORMULATION 

 

3.1 INTRODUCTION 

 

     In this chapter, the mathematical modelling of the operation of the hybrid solar/electrical 

water heater system is discussed.  The hybrid system consists of an indirect flat plate collector 

coupled to an existing electric storage tank water heater.  The electric storage tank is located 

inside the residential building’s roof space, while the solar collector is fitted on the roof close 

to the storage tank.   

     The model is developed and presented with the aim to minimize costs, taking into account 

the time-of-use tariff, while maintaining the desired water temperature inside the ESTWH.   

     The relevant components are discussed in Section 3.2.  The optimal energy management 

model formulation and constraints are discussed in Section 3.3.  Section 3.4 presents the 

summary of the chapter.  

 

3.2 MATHEMATICAL MODEL FORMULATION  

 

     The proposed hybrid system consists of an electric storage tank water heater and an indirect 

flat plate solar collector in Figs. 3.1 and 3.2.  The solar collector is accompanied by a circulation 

pump to aid in the flow of water through the system.  The layout of this system is illustrated 

in Fig. 3.2.  The mathematical models of the different components in the system in terms of 

heat and electrical energy is presented. 
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3.2.1 Dynamic model of the hybrid solar/electric water heating system 

 

     All factors with regards to the operation of the proposed hybrid water heater needs to be 

taken into consideration if a mathematical model is to be developed.          

      To start with, referring to Fig. 3.1, the cold water is supplied from the mains and enters 

the thermal storage tank.  It can be considered that large degrees of thermal stratification occur 

due to natural convection.  This natural convection is the process whereby cold water displaces 

hot rising water.  Higher density cold water can therefore be assumed to be located at the 

bottom of the storage tank and the lower density hot water would be situated at the top.  

Hence, for modelling purposes, cold water is supplied by the storage tank to the collector.  

     The supply outlet as illustrated in Fig. 3.1 is located at the bottom of the storage tank water 

heater.  With this in mind, it can be assumed that the temperature of the water supplied to the 

storage tank is equal to the temperature of the water supplied to the collector.  A similar 

assumption can be made that the temperature of water from the solar collector outlet is equal 

to the temperature of the water supplied to the hot water user [111].   

     

 

Figure 3.1: Hot water storage tank with thermal stratification 
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      In Fig. 3.2, the complete water heating system is illustrated, which includes an indirect flat 

plat collector (FPC) with a heat exchanger located inside the collector.  The FPC is coupled to 

an electric storage tank water heater with a single water heating element.  The circulation pump 

for the collector arrangement operates automatically and can be seen as an independent 

system.  The pump is controlled by a temperature differential control circuit.  This control 

circuit monitors the temperature difference between the cold water inlet and hot water outlet 

of the collector.  When the temperature difference reaches a certain value, the circulation 

pump is switched on.  This system ensures that when solar irradiance is absent or insufficient, 

the pump will remain off so that cold water is not continuously being circulated through the 

storage tank.  This is necessary to prevent a decrease of the thermal level of the water supplied 

to the consumer. 

 

Figure 3.2: SWH/ESTWH system layout 

     All thermal gains and losses in the system are calculated in order to form an energy balance 

equation.  The energy gain calculations are discussed followed by the losses in the system.  In 

order to calculate the primary energy gain (energy gained from solar irradiance), all input 

variables have to be found as well as their coefficients.   

     The electrically supplied water heating system serves as an auxiliary heater to increase hot 

water availability. Therefore, if the solar energy supply is ineffective to heat water, the electric 

resistive element will switch on.  The solar thermal energy is dependent on several factors.  

These factors include time of year (season), weather and time of day. 
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     The difference in temperature between the cold and hot water supplied to and from the 

collector can be calculated by obtaining the heat energy gained by the collector shown in Eq. 

(3.1).  The heat gain, therefore can be calculated in terms of the temperature differential of the 

water between the collector inlet and outlet as follows [112]: 

( ) ( ( ) ( ))coll c co ciQ m t c T t T t               (3.1) 

Where: 

collQ  is the heat gained by the collector (J), 

( )cm t  is the variable flow rate of the water inside the collector (kg/h), 

c  is the heat capacity of the water inside the collector (4184 J/kg.°C), 

( )coT t is the variable collector water output temperature (°C), 

( )ciT t is the variable collector water input temperature (°C), 

Due to large degrees of thermal stratification, ( )ciT t is considered to be equal to the inlet water 

temperature ( ( )mT t ), this gives Eq. (3.2): 

( ) ( ( ) ( ))coll c co mQ m t c T t T t               (3.2) 

     Similarly, the heat gain can be calculated in terms of solar irradiance absorbed by the 

collector.  The total hourly solar radiation absorbed by the collector can be evaluated using 

the isotropic diffuse model in Eq. (3.3) [113, 114]. 

1 cos( ) 1 cos( )
( ) cos

2 2

coll coll
DNI DHI GHI gG t G G G

 
 

    
     

   
        (3.3) 

Where: 

( )G t is the variable total hourly solar radiation on a tilted collector (
2/W m ), 
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DNIG is the horizontal beam radiation (
2/W m ), 

DHIG is the horizontal diffuse radiation (
2/W m ), 

GHIG is the horizontal global radiation (
2/W m ), 

 is the incidence angle on a titled surface (°), 

coll is the slope of the collector array (°), 

g is the ground reflectance factor. 

The total hourly solar irradiation can then be used in Eq. (3.4) [114, 115],  

( )[ ( ) ( ) ( ( ) ( ))]coll c R h R L co mQ A F G t t F U T t T t             (3.4) 

Where: 

cA is the area of the collector (m2), 

RF  is the collector heat removal factor, 

  is the transmittance absorbance product, 

( )G t  is the variable global solar irradiance absorbed by the collector ( 2/W m ), 

( )ht  is the time (3600 s ), 

LU  is the collector overall heat transfer coefficient ( 2/ .W m C ), 

( )aT t  is the variable ambient temperature ( C ). 

    The collector heat gain equations (Eq. (3.1) and Eq. (3.4)) are equated to yield Eq. (3.5) as, 

( )( ) ( ( ) ( )) [ ( ) ( ) ( ( ) ( ))]c co m c R h R L co mm t c T t T t A F G t t F U T t T t            (3.5) 
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       The temperature difference between the hot water out and the cold water in 

( ( ) ( ))co mT t T t  of the collector after heat exchanger action has taken place, can then be 

calculated in Eq. (3.6): 

( )( ( ) ( ) )
( ( ) ( ))

( )

s R h

co m

c c R L

A F G t t
T t T t

m t c A F U

 
   

 

           (3.6) 

The new collector heat gain can therefore be calculated as in Eq. (3.7) 

So that,         

( )( ( ) ( ) ) ( )

( )

s R h c

coll

c c R L

A F G t t m t c
Q

m t c A F U

 
  

 

            (3.7) 

     Referring to Fig. 3.2, the secondary heat gain ( ( )ELQ t )can be calculated as shown in Eq. 

(3.8), adapted from [114].  The power supplied to the electric resistive element remains 

constant.  Full rated power is supplied to the electric element when it is switched on and no 

power is supplied when it is switched off.   

( )( ) ( )EL EL h eQ t P t S t                         (3.8) 

Where:  

( )ELQ t is the variable heat gain from the electric resistive element ( J ), 

ELP is the full rated power supplied to the element (W ), 

( )ht is the time (3600 s ), 

( )eS t  is the variable switching status of electric resistive electric element.  

   The energy losses due to hot water demand ( ( )DQ t ) and convectional (standby) loss ( ( )LQ t ) 

can be calculated using Eq. (3.9) and (3.10) respectively.   
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      The standby losses, LQ , represent power losses through the casing material surface 

conduction [114]. 

( )( ) ( ( ) ( ))L s h s s aQ t U t A T t T t                               (3.9) 

Where: 

sU  is the heat loss coefficient of a storage tank ( 2/ .W m C ), 

sA  is the area of the storage tank ( 2m ), 

( )ht  is the time (3600s), 

( )sT t is the variable temperature of the water inside the storage tank ( C ), 

( )aT t is the variable ambient temperature of the surrounding air ( C ). 

     The hot water demand loss ( ( )DQ t ) occurs when hot water is drawn by the consumer. 

Consequently, every time hot water is required, the hot water demand flow rate is initiated and 

( )sT t drops due to cold water flowing into tank.  The cold water flows into the tank in order 

to keep a constant volume. Losses due to the hot water demand are given in Eq. (3.10), [116].  

( ) ( )( ( ) ( ))D D s mQ t cW t T t T t                                          (3.10) 

Where: 

c  is the heat capacity of water ( 4184 / /J kg C ), 

( )DW t is the variable hot water demand flow rate ( /kg h ), 

( )mT t is the variable temperature of the inlet water ( C ). 

     The energy balance equation is described in terms of all the heat gains and losses in the 

system, given in Eq. (3.11).                      
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s s coll EL L DM cT Q Q Q Q
•

                       (3.11) 

Where: 

 sM is the water mass inside the storage tank ( kg ), 

 c  is the heat capacity of water ( 4184 / /J kg C ), 

sT
•

is the derivative of the temperature variation of the water inside the storage tank ( C ). 

By substituting Eq. (3.7) -(3.10) into Eq. (3.11), s s sM c T
•

, can be presented in Eq. (3.12): 

( )

( )

( ( ) ( ) ) ( )
( )( ( ) ( )) ( ( ) ( ))

( )

s R h c

s s e EL D s m s s h s a

c c R L

A F G t t m t c
M cT S Q cW t T t T t AU t T t T t

m t c A F U

•  
      

 

   (3.12) 

For the sake of simplicity, ( )( ( ) ( ) ) ( )

( )

s R h c

c c R L

A F G t t m t c

m t c A F U

 
 

 

in Eq. (3.12) is replaced with ( )Y t in Eq. (3.13). 

( )( ) ( )( ( ) ( )) ( ( ) ( ))s s e EL D s m s s h s aM cT Y t S Q cW t T t T t AU t T t T t
•

           (3.13) 

sT
•

 is made the subject of the formula in Eq. (3.14).   

( ) ( )( ) ( )( ) ( )( )
( ( ))

D s s h s s h ae EL D m
s s

s s s s s

cW t AU t AU t T tS Q cW t T tY t
T T t

M c M c M c M c M c

• 
                    (3.14) 

Eq. (3.14) is divided into the separate components, shown in Eq. 3.15 – 3.18, so that a 

state space equation is formulated.  The state space equation is converted so that the 

temperature of the water inside the storage tank (state variable) is made the subject of the 

formula, denoting [116]:  

( )( )
( )

D s s h

s

cW t AU t
A t

M c


            (3.15)  
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EL

s

Q
B

M c
              (3.16)

( ) ( )( ) ( ) ( )
( )

s s h aD m

s s s

AU t T tcW t T t Y t
t

M c M c M c
                                            (3.17)  

( ) ( ) ( ) ( )s s eT A t T t BS t t
•

             (3.18)  

    In the state space given by equations (3.14)–(3.17), the control or decision variable is ( )eS t , 

while the state variable is 
sT
•

 and the disturbance variable in the system is ( )t  shown in Eq. 

(3.18). 

 

3.2.2 Discretized hot water temperature 

 

     Eq. (3.18) is a continuous function and needs to be transferred into a general discrete 

formulation in terms of the thk  hot water function.  The forward Euler method was used in 

order to find the general discreet equation.  This equation assists in the visualisation of the 

temperature variation inside the storage tank at any time interval: 

1 (1 )
kk k s k s e s kT T t A t BS t                 (3.19) 

 kT in Eq. (3.19) is the temperature variation inside the storage tank. 

     Since the state variable,  1kT  has to be expressed in terms of its initial value, 0T and the 

control variable, 
keS , 1kT   at each interval is first derived as: 

When substituting 0k  , then 1T  in Eq. (3.19) becomes Eq. (3.20): 

01 0 0 0(1 )s s e sT T t A t BS t                                             (3.20) 

Similarly, when 1k  , then 2T  is given in Eq. (3.21): 
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12 1 1 1(1 )s s e sT T t A t BS t                     (3.21)  

Substitute 1T   in Eq. (3.20) into Eq. (3.21) so that Eq. (3.22):  

0 12 0 1 0 1 1[ (1 ) ](1 )s s e s s s e sT T t A t BS t t A t BS t                                        (3.22) 

After expansion and factorization, 2T will become Eq. (3.23): 

0 12 0 0 1 1 1 0 1[(1 )(1 )] [(1 ) ] [(1 ) ]s s s s e e s sT T t A t A t B t A S S t t A                           (3.23) 

Following the same steps taken for Eq. (3.20) - (3.23) after 2k  , 3T will then become Eq. 

(3.24): 

0 1 23 0 1 2 1 2 2

1 2 1 2

[(1 )(1 )(1 )] [(1 )(1 ) (1 ) ]

[(1 )(1 ) ]

s s s s s s e s e e

s s s

T t A t A t A t B t A t A S t A S S

t t A t A  

          

  
    (3.24)  

. 

. 

.  

( 1) 0

0 00 1 1

(1 ) (1 ) (1 )
j

k k kk k

s j s e s i s j s i

jj

k

jj i j i

T t A t B S t AT t t A
     

                          (3.25) 

Where: 

0T and kT  are the initial and k-th water temperatures inside the tank respectively ( C ), 

st  is the sampling time (s),  

jeS is the switching status with a single binary value (1 to represent the ON status and 0 

indicates an OFF status).   

 

 

© Central University of Technology, Free State



 

61 

 

3.3 CONTROL OPTIMIZATION PROBLEM  

 

3.3.1 Algorithm formulation 

 

• Operation cost minimisation 

 

     The primary objective is to minimize the cost of energy supplied to the electric resistive 

element. In order to accomplish this, most of control switching-on needs to take place in off-

peak periods.  When switching on during off-peak periods, the cost of electrical energy will be 

significantly reduced.  The Eskom 2017/2018 TOU tariff periods [117] are represented by Fig. 

3.3.  

 

Figure 3.3: Time-of-Use Periods [117] 

 

     The tariff circle chart on the left represents the TOU tariff periods of the low demand 

season, whereas the circle chart on the right denotes the periods of the high demand season. 

     The low demand season is from September to May, while the high demand season starts 

in June and ends in August.  The winter season peak period starts an hour earlier than the 

summer season.  This can be accredited to increased energy requirement to heat water to the 

desired temperature and the usage of other high energy consumption appliances such as space 

heaters. 
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     The TOU tariff structure forms a substantial part of the primary objective function and is 

derived in Eq. (3.26) which is the electricity cost pJ  minimization [118].  The switching 

function “
keS ” is therefore highly dependent on the TOU tariff.   

 

1
k

N

p s EL k e

k

J t P p S


             (3.26) 

 

Where: 

st  is the sampling time (hours), 

kp  is the TOU tariff function ( /R kWh ), 

ELP is the rated power of the electric resistive element ( kW ), 

keS is the switching status function of the element. 

 

• Thermal discomfort level minimisation 

 

    The level of thermal discomfort can be defined by the experience of the user once the 

temperature levels of the hot water are above or below the desired temperature.  The 

discomfort level is reduced or minimized when the thermal level reaches the desired hot water 

temperature.  The secondary objective therefore becomes the minimization of thermal 

discomfort experienced by the user.  In order to know when the desired temperature needs to 

be reached, a user specific load profile is evaluated.  The load profile is a continuous function 

represented by ( )F t  and denotes the desired hot water temperature of the user.  ( )sT t is the 

temperature of the water inside the storage tank and needs to be close or equal to the desired 

temperature at the time when hot water is required.   

     In other words, the difference between ( )F t  and ( )sT t needs to be as small as possible at 

the precise time when hot water is usually drawn.  Thus, the difference in temperature 

 ( 2( ) ( ))sT t F t ) will be minimized [119]. 
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 The secondary objective function, sJ , is shown in Eq. (3.27). 

Min 𝐽𝑠

0

2( ( ) ( ))

ft

s

t

T t F t dt                                                                                           (3.27) 

Where : 

0t is the initial sampling interval at 0( ) ( )s sT t T t  (initial temperature) 

ft is the final sampling interval at ( ) ( )s s fT t T t  (final temperature) 

 

• Fixed-final state condition 

 

     In order to simulate continuous operation and repeated implementation of the optimal 

energy control strategy for the hybrid system, the thermal energy stored in the storage tank at 

the end of the control horizon should be equal to the thermal energy at the beginning of the 

control horizon.  Therefore, the sum of all the energy gained should be equal to all the energy 

lost in the system for the respective control horizon.  This is represented in Eq. (3.28).  The 

final temperature ( ( )fT t ) in the last sampling interval should thus be equal to the initial 

temperature ( 0( )T t ) of the water inside the storage tank at the initial sampling interval of the 

control horizon. 

 

1

( ) 0
k

N

s

k

Q


              (3.28) 

 

     This can be achieved by minimizing the difference between the actual final temperature 

and the desired final temperature, which is equal to the initial temperature of the water inside 

the storage tank.  The same method used to minimize the discomfort level of the user can be 

applied for this instance, as shown in Eq. (3.29).  In this case, the difference between the final 

and initial temperature is minimized, so that Eq. (3.29) forms part of the final objective 

function. 
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0

2

0( ( ) ( ))

ft

t f

t

J T t T t             (3.29) 

  

• Operation cost and discomfort level minimization 

 

     In order to minimize the operational cost of the solar water heater while maintaining the 

thermal comfort level of the user, the primary, secondary and tertiary objective functions need 

to be added as in Eq. (3.30). 

 

Min p s tJ J J J                 (3.30) 

 

     The aggregate objective function needs to be represented in discreet-time domain.  Eqs. 

(3.27) and (3.29) is converted from continuous-time domain to discreet-time domain and 

substituted into Eq. (3.30), Eq. (3.26) does not need to be converted and is substituted without 

alteration, so that one gets Eq. (3.31):  

 

Min J
2 2

1 2 0

1 1 1

( ) ( ( ) ( ) )
k k

N N N

s EL k e k k N

k k k

w t P p S w ts T F ts T T
  

                      (3.31)  

 

Where: 

1w is the weighting factor for energy cost, 

2w  is the weighting factor for comfort level, 

 J is the aggregated objective function to be minimized. 

 

• Constraint on the state of temperature inside the storage tank 

 

     The desired temperature when evaluating the load profile should be between 55 °C and   

65 °C at 06:30 in the morning and at 20:00 in the evening, while from 07:00 to 20:00, the 
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temperature should be maintained at 60 °C. The temperature can fluctuate without any 

constraints in the remaining hours of the day.  For repeated operation, the final temperature 

in the control horizon should be equal to the initial temperature.  Eq. (3.32) shows the 

temperature requirements throughout a 24-hour control horizon. 

 

0 0

( ), [00 00,06 00) [20 30,24 00)

( ) 60, [06 30] [20 00]

( ), [24 00]

sT t t h h h h

F t t h h

T t t h

 


  
 

                  (3.32) 

 

Where: 

( )F t  is the desired temperature function, 

And, 0

0 00 1 1

( ) (1 ) (1 ) (1 )
j

k k kk k

s s j s e s i s j s i

j jj i j j i

T t T t A t B S t A t t A
     

                        (3.33) 

 

     The switching function, 
keS , which is the function which describes how the electric element 

will switch on or off, either full rated power or no power is delivered, respectively.  This means 

that the switching status can only be a single binary value as illustrated in Eq. (3.34).  The 

constraint on the temperature inside the storage tank is presented in Eq. (3.35): 

 

jeS {0, 1}                                           (3.34)  

 

min maxkT T T                                                                                               (3.35) 

 

3.3.2 Proposed optimization solver and algorithm 

 

     The objective function as shown in Eq. (3.31) is a non-linear function with an integer binary 

control variable that needs to be solved in order to obtain the optimal switching status of 

electric resistive element. This type of problem can be solved by the universal SCIP (Solving 
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Constraint Integer Programs) solver in Matlab optimization toolbox.  SCIP has also been 

reported to be one of the fastest solvers in the Matlab interface OPTI-Toolbox [120].  

     The MINLP form needs to be satisfied so that SCIP can operate properly. The form 

MINLP form is shown in Eq. (3.36); the objective function is minimized by default and is 

subjected to the constraints shown.  The mathematical model needs to be rearranged to fit the 

SCIP constraints in order to solve the optimization problem.  The end result is an optimal 

switching status function constrained to take on a binary value [121].  

 

 

 

                                                                             (3.36) 

 

 

 

 

Where: 

( )f x is the objective function, 

Ax b  is the linear inequality constraint, 

eq eqA x b  is the linear equality constraint, 

lb x ub  is the decision variable bounds, 

( )c x d  is the nonlinear inequality constraint, 

( )eq eqc x d  is the nonlinear equality constraints, 
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ix  is an integer number decision variable, 

jx  is a binary number decision variable. 

     The objective function is consequently replaced with ( )f x . The decision variable shown 

in Eq. (3.34) is a binary value, which means only a 1 or a 0 can be taken as the switching 

status.  The lower and upper boundaries are therefore shown in Eq. (3.37) and Eq. (3.38) 

respectively: 

[0...0 ]T

Nlb                         (3.37) 

[1...1 ]T

Nub                                   (3.38) 

 

The control variable that needs to be optimized is therefore constrained as shown in Eq. (3.39) 

 

lb x ub               (3.39) 

 

3.4  SUMMARY 

 

     In this chapter, the objective function, control, state variables and disturbances were 

identified and mathematically expressed in the developed model.  For any solar/electric water 

heating setup with different design variables as well as operating conditions (solar radiation, 

ambient temperature, inlet water temperature, hot water consumption, etc.), the developed 

model’s decision variables can be optimized using any suitable advanced algorithm able to 

solve such a problem.  The SCIP solver in the Matlab interface OPTI-Toolbox has been 

chosen to solve this problem. 

     The constraints on the operation have been set and outlined according to the hot water 

users’ specific thermal comfort level while attaining the maximum savings possible.  This is 

achieved by shifting the load profile maximum energy usage times to time intervals where 

energy is charged at off-peak tariffs increasing savings in cost.  
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CHAPTER IV: SIMULATION RESULTS AND 

DISCUSSION 

 

4.1 INTRODUCTION 

 

     In this Chapter, the optimal operation control model of the hybrid energy system is 

simulated using SCIP solver in Matlab OPTI-Toolbox. The objective of the present simulation 

is to demonstrate the effectiveness of the optimal control strategy of the hybrid system.   

     The minimization of the daily operation cost and the level of discomfort experienced by 

the consumer is shown in this chapter as well as a baseline comparison. A load profile and all 

other appropriate data for summer season as well as winter season were obtained and shown.  

 

4.2 DATA DESCRIPTION 

 

     This section describes a case study from which the environmental data, hot water 

consumption profile and system component sizes are presented.  The data is used as input to 

the developed optimization strategy for the proposed hybrid system.  

     In section 4.2.1 the data is illustrated at 1-minute averaged intervals.  The sampling time      

is taken to be 15 minutes with the resulting total sampling interval and control horizon as well 

as other relevant parameters discussed in section 4.2.2.   

     The data is converted to 15-minute averaged intervals in order to simulate a baseline water 

heating system and the optimally controlled HSWH discussed in sections 4.2.3 and 4.2.4, 

respectively.  Section 4.2.5 compares these two systems with the aim to draw a conclusion.    
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times of 9 and 10 minutes, respectively.  The times during the day at which the showers of the 

first 2 occupants took place was between 06:30 and 07:30. At 11:00, a dishwasher/washing 

machine draws hot water to complete one washing cycle.  The third occupant as per the normal 

daily routine showered at 20:00.   

     As described by [124] the winter hot water consumption of a medium density household 

in South-Africa is approximately 1.7 times higher than the consumption in the summer.  This 

is mainly due to the large temperature differential between the inlet water and the hot water 

supplied from the water heater in the winter season.  As a result, additional hot water is 

required to compensate for the differential.  Consequently, the hot water consumption in 

winter was estimated to be higher by a factor of 1.7., this estimated winter demand profile is 

shown in Fig. 4.6.    

 

 

Figure 4.5: Summer hot water demand i.e. flow rate 
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Figure 4.6: Winter hot water demand i.e. flow rate 

 

4.2.2 Component size and simulation model parameters 

 

     As specified in the study objective (Chapter I, section 1.4), the aim of the current work is 

principally on the optimal energy management of the hybrid water heating system.  A baseline 

model in section 4.2.3 is adapted from the hybrid water heating system model in section 4.2.4 

to simulate thermostat operation without solar irradiance as input.  Rather the only energy 

input to the system will be the energy supplied from the electric resistive element.  The baseline 

model is hence simulated with the same component sizes and input data as the hybrid system 

without the influence of the collector.  The component sizes and parameters of the baseline 

and hybrid system are shown in Table 4.1. Retrieved from [111,115,125-129] and adapted for 

South African case.   

     In chapter 2, section 2.1.3, the optimal tilt angle of the collector is taken to be 30°.  Most 

certified collector installers in the region usually use this angle as a rule of thumb.  The solar 

angles of incidence were calculated for the days on which the data was taken.  The angles 

obtained were 67.6° for winter (June 2017) and 109° for the summer (January 2017). 

© Central University of Technology, Free State



 

74 

 

 The storage tank size was taken as 150 litres, this choice in capacity was based on the 

requirements of the 3 occupants in the case study.  The 150 litre ESTWH is accompanied by 

a 3-kW electric resistive element. 

Table 4.1: Component sizes and parameters of the hybrid solar electric water heater 

Parameter Description    Value 

collA  Effective absorbance area of the collector ( 2m )  2 

sA  Storage tank area ( 2m ) 1.1 

coll  Tilted angle of the collector array (°) 30 

C  Heat capacity of water (J/kg.°C) 4184 

RF  Heat removal factor (-) 0.6646 

)(tmc  Collector flow rate (kg/s. 2m ) 0.011 

M  Storage tank capacity (kg) 150 

ELP  Rated power of electric resistive element (W) 3000 

ELQ  Energy delivered to resistive element (MJ/h) 10.8 

g  Ground reflectance (-) 0.2 

dT  Desired hot water temperature (°C) 60 

max,sT  Default thermostat switch-off temperature (°C) 65 

tstatT   Thermostat switch-on temperature (°C) 60 

,s  Summer incidence angle on tilted surface (°) 109 

,w  Winter Incidence angle on titled surface (°) 67.6 

  Transmittance absorbance product (-) 1.12 

LU  Collector overall heat transfer coefficient (W/ 2m .°C) 7.28 

sU  Heat loss coefficient of storage tank (W/ 2m ) 0.3 

 

     The TOU tariff structure and pricing layout is illustrated in Table 4.2, the tariff is enforced 

by Centlec (electricity distribution and managing company for the Bloemfontein and 
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surrounding area).  From the table, the high demand season with the most costly electricity 

prices falls in winter period which is from June to August, while the low demand season is 

between September and May.  Additionally, the low and high demand season’s peak, off-peak 

and standard periods start and end at different hours during the day.  The highest electricity 

price at R3.23, is effective in the peak period of the high demand season, while the lowest is 

R1.20 during the off-peak period of the low demand season.  This means that there is a 

difference of 269% from the lowest electricity price to the highest for the same year [130,131].  

 

Table 4.2: Homeflex single phase TOU tariff structure and pricing 

Season  Months                   Period               Time 
 Rate 

(ZAR) 

High 

Demand 

(Winter) 

June - 

August 

Off-peak 

Standard 

Peak 

00:00-06:00,   22:00-24:00 

09:00-17:00,   19:00-22:00 

06:00-09:00,   17:00-19:00 

1.7875 

1.8643 

3.2351 

Low 

Demand 

(Summer) 

September -

May 

Off-peak 

Standard 

Peak 

00:00-06:00,   22:00-24:00 

06:00-07:00, 10:00-18:00, 20:00-22:00 

07:00-10:00,   18:00-20:00 

1.2063 

1.3269 

1.7108 

 

     The simulation parameters are shown in Table 4.3.  For increased accuracy of the results, 

a sampling interval of 15 minutes was taken over a control horizon of 24 hours.  Therefore, 

the number of samples in the control horizon will be 96. 

Table 4.3: Simulation parameters 

Parameter Description Value 

  st    Sampling time (minutes)          15 

  N   Samples over the control horizon (-)                  96 

  Hours            Total hours in control horizon (hours)        24 
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4.2.3 Baseline  

 

      In order to validate if the optimal switching model reduces energy costs to the consumer, 

a baseline needs to be established.  The baseline model is an electric storage tank water heater 

(ESTWH) without a solar collector.  The temperature is regulated by means of a thermostat, 

where the default temperature is set at 65 °C.  The thermostat will maintain an approximate 

temperature of 65 °C throughout the day by automatically switching the electric resistive 

element on and off at the times when it is required.  The thermostat has a temperature range 

of 5 °C.  This means that the element will switch on to increase the thermal level, when the 

temperature drops to the lower thermostat switch on temperature which in this case is 60 °C.  

     Most electric storage tank water heaters in South Africa use the bi-metal thermostat system, 

this system is known to deviate from the actual set temperatures by an average of 3 °C.  The 

simulation of the thermostat operation should hence stay within the 3 °C range so that the 

accuracy of the baseline operation is maintained [132].   

     Two separate cases are simulated to represent the winter and summer months.  The 

switching function of the thermostat and the associated change in water temperature inside 

the storage tank is shown in section 4.2.3.1 for winter and section 4.2.3.2 for summer. 

 

4.2.3.1 Baseline: Winter case  

 

    In Fig. 4.7, the switching function of the thermostat is shown.  For the specific hot water 

consumption profile, inlet water temperature and ambient air temperature described in section 

4.2.1, the switching of the electric element is shown to take place during the peak and standard 

periods of the TOU tariff structure.  Fig 4.8 illustrates the resultant change in temperature of 

the water inside the storage tank due to the switching in Fig. 4.7.  After the first two occupants 

have finished their showers at 07:45, the temperature drops below the thermostat switch-on 

temperature so that water can be heated to 65 °C.  The dishwasher/washing machine draws 

water at 11:00, however, the associated temperature drop is not enough to permit the electric 

resistive element to switch on.  The temperature drops after 20:00 due to the last hot water 
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4.2.4.1 Optimal scheduling of the HSWH: Winter case  

 

     The optimal switching function of the HSWH is shown in Fig. 4.11 and the resultant 

temperature of the water inside the storage tank is shown in Fig. 4.12.  In order to reach the 

desired temperature at the instant when a hot water demand occurs, switching needs to take 

place prior to when this demand occurs as shown in Fig. 4.11.   

     Most of the switching occurs during the off-peak periods, once in the morning at 04:30 

and once at night at 10:15.  The heating element is switched on for 15 minutes so that the 

water temperature can reach the desired temperature at 06:30 and the water temperature 

decreases from 04:30 to 06:30 until it reaches a temperature above the desired level.  The 

decrease in temperature is caused by stand by losses.  At 06:30, the first occupant draws hot 

water, a sharp decrease of temperature is observed, while at 07:00, the water is still within the 

desired thermal comfort level so that switching is not required to increase the thermal level.   

     The temperature of the water in the storage tank at 07:30 when the second occupant has 

ended his shower is shown to drop slightly below the comfortable level.  This thermal level at 

54 °C can still be seen as acceptable if one of the first two occupants decide to take a longer 

shower.  Solar radiation starts to increase the thermal level of the water inside the storage tank 

at the same time-step.  The temperature rises until 11:00 where it suddenly drops due to the 

hot water consumed by the dishwasher or washing machine.  At 11:30, the water temperature 

slowly rises due to the solar irradiance supplied to the collector. At 20:00, the third occupant 

showers and the temperature drops due to the inflow of cold water in the storage tank while 

hot water is drawn, after the third occupant’s hot water consumption routine, the temperature 

remains within the desired temperature range.  However, no hot water demand is expected 

after 21:00, meaning that no switching is required.   

     The element switches on for the last time at 22:15 during the off-peak period in order to 

maintain final fixed state conditions.   

     The temperature (58 °C) at the final sampling interval is equal to the initial temperature so 

that the cycle can be repeated for the next day. 
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4.2.4.2 Optimal scheduling of the HSWH: Summer case 

 

     Referring to Fig 4.13 and 4.14, the switching function shows that switching only takes place 

once at 05:30 for 15 minutes in order to prepare for the first occupant’s hot water demand. 

The switching function remains at zero throughout the rest of the control horizon.  The lack 

of switching during the summer period can be accredited to low hot water demand and higher 

ambient and inlet water temperatures compared to the winter season.  However, the angle at 

which the solar radiation (beam radiation) penetrates the collector in the summer season is 

higher than that of winter.  This means that the total effective solar irradiance absorbed by the 

collector is less.   The combined effect of all these factors gives rise to a storage tank water 

temperature that remains within the comfortable thermal level with minimal switching 

required as shown in Fig. 4.13.     

     At 07:30 when the first two occupants have finished their daily hot water consumption 

routine, the temperature briefly falls but stays within the desired range. Afterwards the heat 

from the sun increases the temperature.  The dishwasher/washing machine demand at 11:00 

causes a small reduction in temperature, while it is once again recovered by solar energy up 

until 20:00, when the third occupant draws hot water.  At 20:15, after the last demand of the 

day has taken place, the temperature drops down to 58.3 °C, where it decreases further due to 

standby losses.  At 24:00 the temperature reaches approximately 58 °C which is equal to the 

initial temperature in the control horizon to maintain fixed final state conditions.  

 

 

 

 

 

 

 

 

 

© Central University of Technology, Free State



© Central University of Technology, Free State



 

84 

 

4.2.5 Comparison between the baseline and optimal scheduling of the HSWH  

 

     For both the baseline and the optimized hybrid system, the temperature of the water inside 

the storage tank exceeds 60°C at least twice a day for the winter as well as the summer case. 

As discussed in Section 1.1, this reduces the risk of contracting Legionair’s disease caused by 

the Legionella pnuemphilla bacteria.  

     It is evident that switching the resistive element on during off-peak periods, rather than 

peak or standard periods, the desired thermal level of the hot water consumer can still be 

maintained.  The fact that the temperature remained within the preferred range for the winter 

case, when hot water consumption is higher in comparison, substantiates the need for an 

optimal control strategy.     

     All optimal control scenarios shown in section 4.2.4 have been solved with equal weighting 

factors so that equal priority is given to cost and discomfort minimization.  For the optimal 

scheduling scenario, it can be observed that all switching takes place during off-peak periods.  

This means that if higher priority was given to cost minimization, the cost savings would not 

increase.  However, if priority was given to discomfort level minimization, higher energy costs 

could result.    

 

4.3 SUMMARY 

 

     In this Chapter, the hybrid system’s optimal operation control model has been simulated 

using SCIP solver in Matlab OPTI-Toolbox.  Realistic and actual historic data was used and 

the developed model has been successfully used to represent the operation of a baseline as 

well as an optimal control strategy of the proposed system. The daily non-linear load, non-

linear renewable resources as well as the storage tank temperature dynamic was evaluated in 

terms of the impact on the hybrid system’s daily operation cost compared to a baseline. 

     The optimal energy management model has also been used to: 

• Obtain the minimized operation costs achieved by using a certified hybrid 

SWH/ESTWH combination.  
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• Analyse the impact of the solar irradiance on the storage tank temperature dynamic 

during the two seasons represented by the TOU tariff implemented by the electricity 

supplier. 

• Reveal the importance of taking into account the differences in seasonal load profiles 

and variations in the renewable energy resource, water inlet temperature as well as 

ambient temperatures while calculating the daily and annual operation cost of the 

hybrid system. 

     The developed model, as well as the solver (SCIP) used in this work, required low 

computational power to solve with high accuracy, while the added benefit of fast processing 

and simulation was experienced.  The processing specifications of the computer used to solve 

the optimal control problem included an Intel Core i7 -7700HQ (Processor) and 16 GB of 

DDR4 RAM.  The time taken to solve the optimal control problem for the summer and winter 

cases were 2.35 seconds and 21.08 seconds respectively.  
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CHAPTER V: ECONOMIC ANALYSIS 

 

5.1 INTRODUCTION 

 

     In order to evaluate the cost effectiveness of the hybrid system in terms of money spent, 

several economic performance indicators exist.  These indicators can include the simple 

payback period (SPP), life cycle cost (LCC), benefits-to-cost ratio (BCR) and initial rate of 

return (IRR).  The SSP is the easiest to understand due to its simplified cost calculation, 

however, limitations exist in the sense that it does not take into account future inflation that 

might affect the total cost over the lifetime of a project.  Another drawback of the SPP is that 

it does not account cash flows beyond the payback period (PBP), as the project lifetime is not 

taken into consideration.  This reduces the accuracy of the economic analysis and leaves 

investors with an approximate cost or profit prediction. With this in mind, methods such as 

the BCR, LCC and IRR offer a more precise cost analysis when compared to SSP due to the 

fact that inflation and project lifetime are taken into account [133].  Therefore, for increased 

accuracy, a total life cycle cost evaluation is done followed by a break-even point (BEP) 

analysis in terms of the baseline and proposed hybrid system.  The life cycle costs will then be 

compared to calculate the savings over a specific project lifetime.  The project lifetime for this 

case study was chosen to be 20-years. 

 

5.2 INITIAL INSTALL COST OF THE PROPOSED HYBRID SYSTEM 

 

     The initial investment cost of a hybrid SWH/ESTWH system is shown in Table 5.1. The 

ESTWH and SWH combination was chosen, due to the manufacturer being approved by the 

Eskom rebate programme.  Furthermore, the manufacturers’ products all comply with Eskom 

and South African Bureau of Standards (SABS) criteria.  The rebate reduces the total 

investment cost by approximately 40%. The Flat plate collector listed is frost resistant, so that 

it is suitable for Bloemfontein’s freezing temperatures in winter. In addition, the flat plate was 
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chosen over the evacuated tube system due to the major cost difference as mentioned in 

Chapter II, section 2.4.  The prices in Table 5.1 obtained from [134-136] are average 

component prices for the year 2017. 

 

Table 5.1: Bill of quantity of HSWH 

Component description Quantity      Net price (ZAR) 

150L GAP Eco Electric Storage tank water 

heater 

1 2560.40 

150L GAP 2.1m2 Flat Plate Collector 1 4586.80 

Geyserwise Max controller 1 1222.08 

Air release valve 1 277.00 

Circulation pump 1 1425 

22mm thermostatic mixing valve (55°C) 

Labour 

Eskom rebate 

Total initial investment cost 

1 

- 

- 

- 

624.15 

1500 

-4677.00 

7518.43 

 

5.3 CUMULATIVE COST COMPARISON 

 

     Calculating the cumulative costs incurred over a specific project lifetime, in this case 20-

years, some factors need to be taken into consideration. Described in section 5.2, the initial 

cost of implementation cannot be seen as cumulative, due to the fact that the cost 

implementation is a once off amount incurred only at the inception of the project.  With this 

in mind, the annual costs incurred, which includes replacement costs and operation & 

maintenance (O & M) costs after each year since the starting point of the project can directly 

be added to the initial implementation cost in order to obtain the total cumulative cost over 

the project’s lifetime.   
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     Salvage costs at the end of the project lifetime are also included, however, similar to the 

case of the initial cost of implementation, this cost can be seen as once off.  Moreover, the 

salvage cost can be deducted from the total life cycle cost and seen as a cost benefit rather 

than a loss.   

 

5.3.1 Cumulative energy cost  

 

    In order to calculate the daily cumulative energy cost, the primary objective function can be 

adapted from chapter III so that Eq. (5.1) can be used in this instance: 

1

. ( . )
k k

N

daily EC s EL TOU e

k

C t P C S



                 (5.1) 

Where; 

ts is the sampling time, 

ELP  is the rated power of the electric resistive element (3 kW ), 

kTOUC  is the time-based cost of electricity at each kth interval defined in chapter IV, section 

4.2.2, Table 4.2 in ZAR/kWh, 

keS is the switching status of the electric resistive element. 

     With this, the daily cumulative daily cost values (ZAR) were obtained and illustrated in 

section 5.3.1.1. - 5.3.1.2. and compared in section 5.3.1.3. for the summer and winter cases, 

respectively.  In section 5.3.1.4., the annual cumulative costs were calculated using the total 

daily energy cost values obtained in terms of the low and high demand seasons defined by 

Eskom. 
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5.3.1.3 Daily energy consumption and savings 

 

     The cumulative costs and energy consumed after each simulation of the baseline and 

optimal control strategies are shown and compared in Table 5.2.  A 60% saving of the energy 

in the winter season is observed, while a 50% saving during summer is noted.   With switching 

taking place (optimal control strategy) in the low-cost regions of the TOU tariff function, a 

saving of 75.2% in cost can be observed for winter season while in summer a total savings in 

electricity cost of 60.5% made.  The results of this comparison highlights the importance of 

avoiding the use of electricity during high demand periods.   

Table 5.2 Daily energy consumption and savings 

 Strategy  

 

 

Season   

Baseline 

(ESTWH) 

Optimal control 

(SWH/ESTWH) 

Daily Savings 

(ZAR) 

Daily Savings 

        (%) 

Energy 

(kWh) 

Cost 

(ZAR) 

Energy 

(kWh) 

Cost 

(ZAR) 

Cost     Energy 

 

 Cost 

 

Winter 3.75 10.08 1.5 2.68 7.40 60 75.2 

Summer 1.5 2.28 0.75 0.90 1.38 50 60.5 

 

5.3.1.4 Annual energy consumption and savings 

 

     The total cost saving is calculated over the period of one year by using the data in Table 

5.2.  According to Eskom’s tariff structure, the winter season is a total of 92 days, whereas the 

summer duration is 273 days.  The product of the number of days in the season and the cost 

saving for the respective season can equate to the total seasonal savings.  When adding the 

savings of the two seasons, an approximate annual saving in electricity cost can be obtained.    

Using this method, the savings in 2017 were calculated and shown in Table 5.3.  
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Table 5.3 Annual energy consumption and savings 

 Strategy 

 

 

Season 

Baseline 

(ESTWH) 

Optimal control 

(SWH/ESTWH) 

Annual 

Savings 

(ZAR) 

Annual Savings 

(%) 

Energy 

(kWh) 

Cost 

(ZAR) 

Energy 

(kWh) 

Cost 

(ZAR) 

Cost  

 

Energy 

 

Cost 

 

Winter 345 927.36 138 246.56 680.8 60 75.2 

Summer 409.5 622.44 204.75 245.70 376.74 50 60.5 

Total 754.5 1549.80 342.75 492.26 1057.54 52.52 64.21 

 

 

5.4 LIFE CYCLE COST ANALYSIS 

 

     In order to reduce the margin of error, a project lifetime of 20 years was chosen for the 

hybrid system.  The 20 year lifetime was chosen based on the guaranteed collector lifetime 

being 10 years, however several reports have shown the lifetime reaching over 30 years.  Hence 

the average number of years between guaranteed and actual reported lifespan was chosen.   

       The salvage costs were taken as 20% of the initial cost of implementation for both the 

baseline and the hybrid water heating system, this accounts for replacement upgrades to more 

efficient systems in the future.   

       The replacement cost is calculated using Eq. (5.2).  With the average inflation rate shown 

in Fig. 5.3., the future costs of components can be predicted by assuming that the average 

inflation rate will be equal to the interest rate [133].   

 

1

. (1 . )
repN

rep cap

k

C C k n r


               (5.2) 
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     Eq. 5.2 is used to calculate the total replacement cost ( rep ESTWHC  ) over the project 

lifespan and the results are noted in Table 5.4. 

 

Table 5.4: Total replacement cost for the ESTWH 

Parameters           Value 

150L GAP ESTWH lifetime (years) 7 

rep ESTWHN   2 

rep ESTWHC   8072.68 

rep BTCC   8072.68 

      

      The cumulative electricity costs incurred over a 20-year lifespan for the baseline system is 

shown in Appendix B.  The cumulative cost of energy for the first year was taken from Table 

5.3.  The cost at the end of year 20 equates to the total cumulative electricity cost ( )ECC , with 

an increase of 10% annually taken into account, shown in Eq. 5.4. 

 

20

1

. (1 )EC initial EC

k

C C k a



               (5.4) 

 

Where; 

inititail ECC   is the cumulative cost of energy at the end of year one (ZAR), 

k  represents the year at which the cumulative cost should be calculated (years), 

a  is the annual increase of 10%. 

 

    The operation and maintenance costs at the end of each year ( i ) of the ESTWH can be 

taken as 1% of the initial implementation cost, so that Eq. (5.5) will be: 

 

20

1

. (1 )OM initial OM

k

C C k r



                (5.5) 
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     The initial cost of implementation ( initialC ), equal to R2560.40 shown in Table 5.1 is the cost 

of the ESTWH. 

     A salvage cost (
salvageC ) is 20% of the initial implementation cost ( initialC ) of the ESTWH, 

can be calculated using Eq. 5.6. 

 

 0.2salvage initialC C                (5.6) 

 

     The addition of Eqs. (5.2-5.5) and the subtraction of the salvage cost ( salvageC ) will be 

equal to the total life cycle cost for the ESTWH in Eq. (5.7):  

 

ESTWH initial rep BTC EC OM salvageLCC C C C C C                (5.7) 

 

     The total lifecycle cost value EST WHLCC   (ZAR) using Eq. (5.7), is shown in Table 5.5.  Over 

a 20-year project lifetime, a total amount of approximately R 99 777.47 will be spent in the 

case of the ESTWH. 

Table 5.5: Total life cycle cost for the ESTWH 

Cumulative Cost            Value (ZAR)                       

initialC  2560.40 

rep BTCC   8072.68 

OMC  891.68 

ECC  88 764.79 

salvageC  512.08 

ESTWHLCC  99 777.47 
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5.4.2 Hybrid system with optimal scheduling life cycle cost analysis 

Table 5.6: Total replacement cost for the SWH/ESTWH 

Parameters       Value 

Hybrid system lifetime, n (years) 20 

150L GAP FPC lifetime (years) 20 

rep SCN  (-) 0 

rep SCC  (ZAR) 0 

150L GAP ESTWH lifetime (years) 7 

rep ESTWHN  (-) 2 

rep ESTWHC  (ZAR) 8072.68 

Geyserwize Max controller lifetime (years) 7 

rep CONTN  (-) 2 

rep CONTC  (ZAR) 3853.10 

Air release valve (years) 20 

rep ARVN  (-) 0 

rep ARVC  (ZAR) 0 

Circulation pump (years) 12 

rep CPN  (-) 1 

rep CPC  (ZAR) 2363.79 

22mm thermostatic mixing valve lifetime (years) 20 

rep TMVN  (-) 0 

rep TMVC  (ZAR) 0 

rep TCC  (ZAR) 14289.56 
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          In the case of the hybrid system, several more components exist with different life 

expectancies so that the total replacement costs ( repC ), calculated using Eq. 5.2, over the 20-

year project lifespan for all the hybrid system’s components shown in Table 5.6 is added in 

order to get the total lifecycle replacement costs ( rep TCC  ) denoted in Eq. (5.8).   

 

rep TC rep SC rep ESTWH rep CONT rep ARV rep CP rep TMVC C C C C C C                 (5.8) 

 

     The same method for cumulative electricity cost with an annual 10% increment was 

calculated for the hybrid system using Eq. (5.4) as well as for the salvage cost and the 

cumulative operation and maintenance costs for the HSWS in Eq. (5.5) and (5.6), respectively.  

Eq. (5.9) shows the calculation of the life cycle cost for the HSWS. 

    

HSWH initial rep TC OM EC salvageLCC C C C C C               (5.9) 

 

Table 5.7: Total life cycle cost for the HSWH with optimal scheduling 

Cumulative Cost              Value (ZAR) 

initialC  7518.43 

rep TCC   14 289.56 

OMC  2618.61 

ECC  28 194.19 

salvageC  1503.69 

HSWHLCC
 

51 117.10 

 

 
 

 

© Central University of Technology, Free State



 

98 

 

     The total lifecycle cost value HSWHLCC  (ZAR) using Eq. (5.9), with the data shown in Table 

5.7 is calculated. Over a 20-year project lifetime, a total amount of approximately R51 117.10 

will be spent in the case of the SWH with an optimal energy management scheme 

implemented. 

 

5.4.3 Break-even point (BEP) 

 

     The break-even point is determined when the total implementation and operating costs of 

two systems incurred are equal.  In this case, the baseline water heater is compared to the 

proposed hybrid system with the optimal energy management scheme in terms of the total 

cumulative annual energy cost in the project lifetime of 20 years.   

     The cumulative cost curves which includes the initial investment cost and the total annual 

costs incurred over this period for the baseline and optimal hybrid system is plotted on the 

same axis.  The intersect point of these two curves shows the point in time (years) at which 

the two systems breaks even.   

     From Table 5.1, the initial total cost of implementation of the hybrid and the standalone 

ESTWH is R7518.43 and R2560.40 respectively.  These values are therefore starting points of 

the two curves in Fig. 5.3.  After the first year has passed the total annual cost of energy is 

added to the initial investment cost, which is the total present cost of energy shown in Table 

5.2.  This equates to the total cumulative cost for the first year after implementation.  For the 

second year after implementation, a 10% increase in the price of electricity is taken into 

account to calculate the annual energy costs, this amount is again added to the previous total 

cumulative cost of the first year.  The same method is followed for years 3 to 10 in Fig. 5.3.  

In this curve, the replacement costs and lifetimes of all the components are taken into account 

for increased accuracy of cumulative cost representation.  From Fig. 5.3, a clear observation 

can be made that the break-even point occurs early in the project lifetime. In 3.5 years, the 

costs incurred are equal at R 10 360 and the differences in total money spent at the end of the 

project lifetime also presents an important economic performance indicator and is discussed 

in section 5.3.4. 
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The detailed life cycle cost breakdown is shown in Appendix B, illustrating the cumulative 

costs after each year.   

 

5.5 SUMMARY 

 

     In this chapter, the cost effectiveness of the hybrid solar/electric water heating system was 

evaluated.  The differences in cumulative energy consumption and costs were noted so that 

the annual energy usage and cost savings comparisons could be made.   

     A break-even point analysis was done in order to calculate when the proposed system 

would have an equivalent cumulative cost compared to the baseline system.  The analysis 

showed that after 3.5 years, the cumulative costs were lower for the proposed system as 

opposed to the baseline.  It was observed that after the break-even point, the difference in 

cumulative costs significantly increased with the baseline cost following an exponential trend. 

     The break-even point analysis was followed by a thorough life cycle cost evaluation so that 

the savings over a project lifetime of 20 years could be calculated.  The LCC comparison of 

the proposed system with respect to the baseline presented a R48 660.37 saving in cost over 

the project lifetime.  In order to put this in perspective, a saving of 49% in cost was calculated.   

Therefore, the LCC analysis substantiates the hypothesis in Chapter I section 1.6 that the 

traditional water heating system (baseline), has a lower initial investment cost, however in the 

long term it will incur much higher costs compared to the proposed system.  

      The LCC calculations for both systems included a relatively low interest rate, which in the 

real terms, can increase the costs of replacements of components if it were to be higher than 

the average calculated 5.49%.  Furthermore, a 10 % increase in electricity cost can also be seen 

as a conservative assumption due to the fact that past increments in cost was much higher in 

comparison.  With this in mind, it can be said that the calculated 49% saving in cost can be 

observed as the minimum saving that could be achieved with the proposed system.  
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CHAPTER VI: CONCLUSION 

 

6.1 FINAL CONCLUSIONS 

 

     This Chapter serves as a conclusion on the research done on the optimal operation control 

and simulation of a hybrid energy system consisting of a solar collector array, electric storage 

tank water heater and all associated components.     

    This work developed an optimal control strategy model wherein the operation was 

simulated using the exogenous variables that would represent a typical winter and summer day 

in Bloemfontein.  The winter and summer periods as defined by the TOU tariff structure 

implemented by the electricity supplier of South Africa, was from June to August (winter) and 

September to May (summer).  

    The major concern addressed in this research was the substantial energy consumption and 

the associated costs of operation of the most commonly used water heaters (the electric 

storage tank water heater) in South Africa.  This research was based on the assumption that 

an optimal control strategy implemented on a hybrid solar electric water heater can reduce the 

energy costs when compared to traditional methods used for the heating of water.  The aim, 

therefore, was to develop an optimization tool to minimize the daily operation costs of the 

hybrid system. 

     In order to define the operation of the hybrid system mathematically, the model of the 

hybrid system has been developed and described in Chapter III.  The emphasis was on the 

minimization of energy cost, discomfort and the differential between the initial and final 

thermal energy states of the storage tank.  While in the same chapter, the appropriate solver 

was chosen and described.      

     In Chapter IV, all the component sizes and parameters of the hybrid solar electric water 

heater, the detailed time-based pricing structure applicable for the case study, simulation 

parameters, variable input and load data was presented.  A baseline was established which 

represented the operation of a thermostat temperature controlled ESTWH.  The baseline as 

well as the optimal control model has been simulated and the results obtained were presented. 
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The presented results illustrate a considerable annual energy saving of 52.52%, while 

maintaining the desired temperature when compared to the baseline model.  The potential 

annual cost savings in energy was shown to be 64.21%.  

     Chapter V presented an economic analysis based on the cost savings obtained in Chapter 

IV.  The bill of quantities of the hybrid water heater with all the relevant components were 

included with the aim to determine the life cycle cost and break-even point.  The analysis 

revealed that the hybrid system was economically feasible with a potential cost saving of 49% 

and a break-even point of 3.5 years. 

     The inconsistencies in daily operation cost realised for the two respective seasons, highlight 

the potential of the suggested optimization strategy to reduce energy consumption for the 

hybrid system as opposed to the ESTWH only scenario. These results furthermore prove that 

it is imperative to take into consideration the seasonal variations of the input variables, when 

calculating the daily operation cost of the system.  

 

6.2 SUGGESTIONS FOR FURTHER RESEARCH 

 

     This dissertation has been presented as part of an ongoing research project at the Central 

University of Technology, the next step might include real time closed loop modelling and 

implementation of the system.  This dissertation is not the conclusion on optimal control of a 

HSWH, several questions remain.  This study focused on the case of Bloemfontein, the 

research could be adapted to fit different geographical locations with different input 

parameters, which might in turn change the configuration of the hybrid system. 

     The demand profile, renewable resources and environmental data used for simulation in 

this work have been collected on a 15-minute basis.  Promising results might be obtained if 

minute averaged data could be used over an annual control horizon with the aim of evaluating 

the performance of the developed model in terms of results accuracy.  The drawback of such 

an approach, while it is apparent that SCIP solver is one of the fastest solvers available in the 

Matlab interface OPTI toobox, is that the simulation time of such an undertaking could last 

significantly longer.  
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APPENDICES 

 

APPENDIX A: EXOGENOUS DATA (30-MINUTE AVERAGED) 

 

Appendix A1: Winter data  

 

Time 

 

 

 

Global 

horizontal 

irradiance 

[W/ m2] 

Direct 

normal 

irradiance 

[W/ m2] 

Diffuse 

horizontal 

irradiance 

[W/ m2] 

Ambient air 

temperature 

[°C] 

 

Inlet water 

temperature 

[°C] 

 

Hot water 

consumption 

[l] 

 

00:00 0 0 0 10,04 15 0 

00:30 0 0 0 9,55 15 0 

01:00 0 0 0 9,24 15 0 

01:30 0 0 0 9,35 15 0 

02:00 0 0 0 8,94 15 0 

02:30 0 0 0 8,37 15 0 

03:00 0 0 0 7,839 14 0 

03:30 0 0 0 6,25 14 0 

04:00 0 0 0 4,865 14 0 

04:30 0 0 0 5,235 14 0 

05:00 0 0 0 4,613 14 0 

05:30 0 0 0 4,057 14 0 

06:00 0 0 0 4,971 13 0 

06:30 0 0 0 4,562 13 38,6631 

07:00 0 0 0 5,201 13 49,7097 

07:30 40,256 371,23 13,043 4,872 13 0 

08:00 117,074 587,572 26,4254 4,489 13 0 

08:30 213,085 699,653 34,157 6,863 13 0 

09:00 310,381 756,024 41,139 8,47 13 0 

09:30 405,021 819,074 42,8894 12,06 13 0 
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10:00 488,506 862,797 44,398 13,99 13 0 

10:30 555,914 885,494 47,3752 13,79 13 0 

11:00 604,2 892,604 50,9291 14,84 13 11 

11:30 637,29 898,219 52,1292 15,76 13 0 

12:00 653,092 895,211 55,4938 16,7 14 0 

12:30 654,919 892,637 56,6212 17 14 0 

13:00 637,945 885,528 57,1116 17,34 14 0 

13:30 607,54 878,326 56,3196 18,02 14 0 

14:00 555,746 852,151 56,6822 18,8 14 0 

14:30 494,613 832,137 54,5361 18,9 14 0 

15:00 419,061 799,034 52,4899 19,33 14 0 

15:30 331,196 754,944 47,6943 19,19 14 0 

16:00 234,224 695,949 40,5004 18,81 14 0 

16:30 133,297 572,395 33,1852 18,07 14 0 

17:00 49,1995 360,129 18,3454 17,11 14 0 

17:30 0,402176 0 0,127412 15,46 14 0 

18:00 0 0 0 14,91 14 0 

18:30 0 0 0 13,86 15 0 

19:00 0 0 0 13 15 0 

19:30 0 0 0 11,89 15 0 

20:00 0 0 0 12,16 15 55,23 

20:30 0 0 0 10,93 15 0 

21:00 0 0 0 10,35 15 0 

21:30 0 0 0 10,13 15 0 

22:00 0 0 0 9,86 15 0 

22:30 0 0 0 9,98 15 0 

23:00 0 0 0 9,58 15 0 

23:30 0 0 0 8,51 15 0 
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Appendix A2: Summer data  

 

Time 

 

 

 

Global 

horizontal 

irradiance 

[W/ m2] 

Direct 

normal 

irradiance 

[W/ m2] 

Diffuse 

horizontal 

irradiance 

[W/ m2] 

Ambient air 

temperature 

[°C] 

 

Inlet water 

temperature 

[°C] 

 

Hot water 

consumption 

[l] 

 

00:00 0 0 0 21,96 25 0 

00:30 0 0 0 20,94 25 0 

01:00 0 0 0 20,86 25 0 

01:30 0 0 0 20,32 25 0 

02:00 0 0 0 20,39 25 0 

02:30 0 0 0 20,46 25 0 

03:00 0 0 0 21,04 24 0 

03:30 0 0 0 20,62 24 0 

04:00 0 0 0 20,22 24 0 

04:30 0 0,013693 0 18,88 24 0 

05:00 0 0 0 18,2 24 0 

05:30 0 0 0 17,19 24 0 

06:00 36,467 265,316 21,7287 18,05 23 0 

06:30 77,6371 90,5631 62,9353 17,77 23 22,61 

07:00 160,288 179,102 111,018 18,29 23 29,07 

07:30 262,911 353,803 126,542 19,46 23 0 

08:00 449,131 559,136 173,1 21,58 23 0 

08:30 576,487 696,098 164,165 24,69 23 0 

09:00 752,366 929,623 110,858 27,49 23 0 

09:30 744,271 807,218 119,13 26,89 23 0 

10:00 936,704 967,007 119,328 27,43 23 0 

10:30 952,619 895,161 141,405 27,93 23 0 

11:00 1063,29 965,543 145,561 28,34 23 6 
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11:30 1127,9 1054,02 88,7868 29,65 23 0 

12:00 1140,56 1025,14 109,635 30,12 24 0 

12:30 1174,31 1051,06 114,231 30,24 24 0 

13:00 1121,5 930,602 190,022 30,5 24 0 

13:30 1096,57 911,52 200,228 30,39 24 0 

14:00 1056,41 848,766 257,961 31,3 24 0 

14:30 1026,3 981,309 145,527 32,08 24 0 

15:00 929,177 1038,33 56,0581 32,51 24 0 

15:30 837,918 1024,21 53,6154 32,12 24 0 

16:00 708,317 962,071 55,7567 32,32 24 0 

16:30 618,933 970,799 49,6873 32,34 24 0 

17:00 491,122 917,01 46,7403 32,44 24 0 

17:30 359,921 843,811 42,4697 32,45 24 0 

18:00 232,078 738,098 37,1542 32,13 24 0 

18:30 113,173 558,434 28,8341 30,71 25 0 

19:00 21,175 220,804 10,8497 28,86 25 0 

19:30 0 0 0 27,17 25 0 

20:00 0 0 0 25,86 25 32,3 

20:30 0 0 0 25,71 25 0 

21:00 0 0,410523 0 23,21 25 0 

21:30 0 0 0 22,25 25 0 

22:00 0 0 0 21,46 25 0 

22:30 0 0 0 20,89 25 0 

23:00 0 0 0 20,24 25 0 

23:30 0 0 0 19,84 25 0 
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APPENDIX B: ANNUAL ENERGY AND CUMULATIVE COSTS (LCC) 

 

year 

 

 

ESTWH  

energy 

cost after 

each year 

(ZAR) 

 

 

HSWH  

 energy 

cost after 

each year 

 (ZAR) 

 

O & M 

ESTWH 

cost after 

each year 

(ZAR) 

 

 

O & M 

HSWH 

cost after 

each year 

(ZAR) 

 

 

ESTWH  

(Annual 

cumulative 

cost) 

 (ZAR) 

 

 

HSWH 

(Annual 

cumulative 

cost)  

(ZAR) 

 

 

0 - - - -        2 560,40       7 518,43  

1    1 549,80          492,26      25,60         75,18        4 135,80       8 085,87  

2    1 704,78          541,49      27,01         79,31         5 867,59       8 706,66  

3    1 875,26          595,63      28,49         83,66          7771,33       9 385,96  

4    2 062,78          655,20      30,05         88,25         9 864,17      10 129,41  

5    2 269,06          720,72      31,70         93,10       12 164,93      10 943,23  

6    2 495,97          792,79      33,44  98,21       14 694,34      11 834,23  

7    2 745,57          872,07      35,28       103,60       21 019,55      18 045,98  

8    3 020,12          959,28      37,22       109,29       24 076,88      19 114,55  

9    3 322,13       1 055,20      39,26       115,29       27 438,27      20 285,04  

10    3 654,35       1 160,72      41,41       121,62       31 134,04      21 567,38  

11    4 019,78         276,80      43,69       128,30       35 197,50      22 972,47  

12    4 421,76       1 404,48      46,09       135,34       39 665,35      26 876,08  

13    4 863,94       1 544,92      48,62       142,77       44 577,90      28 563,77  

14    5 350,33       1 699,42      51,28       150,61       54 507,84      37 103,49  

15    5 885,36       1 869,36      54,10       158,88       60 447,30      39 131,72  

16    6 473,90       2 056,29      57,07       167,60       66 978,27      41 355,61  

17    7 121,29       2 261,92      60,20       176,80       74 159,76      43 794,33  

18    7 833,42       2 488,11      63,51       186,51       82 056,69      46 468,95  

19    8 616,76       2 736,92      67,00       196,75       90 740,44      49 402,62  

20    9 478,44       3 010,62      70,67       207,55     100 289,55      52 620,79  

Salvage - - - - -512.08 -1503.69 

LCC - - - - 99777.47 51117.10 
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