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A B S T R A C T

An approach to solving the challenges encountered in groundwater vulnerability assessment in Sub-Saharan
African countries is discussed in this paper. The aim of this review is to highlight the gaps and difficulties
encountered and provide guidelines for groundwater protection measures in sub-Saharan African countries,
particularly countries without specific regulations and methodology of carrying out aquifer vulnerability as-
sessments. Highlighted difficulties in groundwater vulnerability mapping in Sub-Saharan Africa include limited
data, shortage of skilled professionals, inapplicability of most existing vulnerability methods and non-avail-
ability of funds. The numerical, travel time and parametric vulnerability approaches were recommended for use
in sub-Saharan Africa based on the unique geomorphological features of the African continent. The goal of
outlining the challenges and providing a guideline was to minimise the impact of groundwater pollution and to
prioritise groundwater mapping in an aquifer protection assessment.

1. Introduction

Groundwater resources are the foundation of rural water supplies,
sustaining livelihoods for the poorest of the poor communities in sub-
Saharan African (SSA) countries (Turton et al., 2006). Groundwater is
an important source for drinking, livestock and irrigation water in these
countries. It is of vital importance to meeting the target of the Millen-
nium Development Goals (MDGs) of all people having access to clean
water, as most of rural Africa, and a considerable part of urban Africa,
are supplied by groundwater (Altchenko et al., 2011; Lapworth et al.,
2017). This goal cannot be achieved without a proper understanding of
groundwater quality and quantity, location, accessibility, as well as its
protection.

Groundwater qualities around the world and in SSA are increasingly
being hampered negatively by anthropogenic sources and activities (Li
et al., 2017). Contaminating sources such as human settlement devel-
opments (demographic dynamics, ignorance, improper watershed and
waste management, advanced agricultural production and industrial
activities) are the major threat that compromise groundwater quality
and quantity (Baalousha, 2010; Li, 2016; Muhammad et al., 2015).
Lapworth et al. (2017) reported that in many urban and peri-urban
centres in Africa groundwater are being put under considerable pres-
sure from pollution loading.

Adelana et al. (2008) concluded that groundwater is a crucial re-
source for future development in many SSA countries. Although gen-
erally not visible from the surface, groundwater is an accessible water

supply to many SSA countries, the reason being that its development is
simple and the quality of groundwater is generally good (MacDonald
et al., 2012). Groundwater is also considered as the most resilient
source of drinking water across much of Africa (Lapworth et al., 2107).
The major constraints for obtaining and using of groundwater are the
lack of precise data on aquifers such as depth, storativity and con-
tamination status. This lack of information has hampered groundwater
development and protection.

The importance of groundwater to SSA countries makes its protec-
tion critical. Groundwater vulnerability assessments are important
components of groundwater protection and management. Such assess-
ments are simple ways of evaluating the risk of contamination of an
aquifer. Groundwater vulnerability assessments can generally not be
made in the field, but are based on the evaluation of field data recorded
prior to the assessment (Vrba and Zaporozec, 1994). Even though,
groundwater vulnerability has been researched since the late 1960s and
early 1970s (Albinet and Margat, 1970; Margat, 1968), the break-
through came with the work of Aller et al. (1987) in the DRASTIC
formulation.

Existing vulnerability methods have been reviewed by many re-
searchers (Gogu and Dessargues, 2000; Goldscheider, 2002; Kumar
et al., 2015; Liggett and Talwar, 2009; Oke, 2017; Vrba and Zaporozec,
1994). Based on availability of input data of the hydrogeological
system, three basic vulnerability methods can be adopted: subjective
overlay or index methods, statistical methods and physically based
methods (Oke, 2017). The subjective or index-based method is the most
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important and commonly used method. It includes methods such as
Parametric (DRASTIC, SINTACS, SEEPAGE, EPIK, HAZARD_PATHWAY-
TARGET, GOD, AVI, PI), Non-Parametric (INDICATOR KRIGING) and
Hybrid (ISIS). The subjective method is based on the rating of in-
dividual hydrogeological factors (Kumar et al., 2015, 2016).

Qian et al. (2012) suggested ways of validating vulnerability
methods and attempted to modify the DRASTIC index vulnerability
method. DRASTIC, which was initially developed by Aller et al. (1987)
and reviewed by the US Environmental Protection Agency (USEPA)
(1993) has been modified by adding different parameters to the original
seven. OREADIC (Qian et al., 2012), AHP-DRASTIC (Thirumalaivasan
et al., 2003), SINTACS (Civita and De Maio, 2000) are examples of
these modifications. Others are land use, lineament, sewage, pesticides,
impact of contaminants to the original DRASTIC methods to produce
good results (Secunda et al., 1998; Shahid, 2000; Panagopoulos et al.,
2006).

The physically based method is an objective method. It is also
known as the processed-based method and it is widely used next to the
subjective method. The physically based method relies on the physical
processes that take place in the hydrogeological systems. They are used
for groundwater assessment where similar contaminants are present.
Statistical methods are mostly applied where there is need for assess-
ment between spatial variables and the presence of contaminants
(Kumar et al., 2015). This means they are mostly relevant for assess-
ment of groundwater where similar contaminants are present. Process-
based simulation methods are popular for assessing specific vulner-
ability (Bazimenyera and Zhonghua, 2008).

Each method has its weakness and strengths which lies in their
suitability under a particular set of factors. The statistical method uses
spatial variation (Babiker et al., 2005). Major constraints to process-
based methods are computational difficulties, field calibration and
proper assessment of contaminant movements in vadose zones (Saha
and Alam, 2014). Unavailability of adequate data is another major
shortcoming for using the process-based method. The major advantage
of index-based techniques is that it can be applied with different levels
of available data. This is the main reason for its wide acceptance and
applicability and it is the most widely used method in SSA countries
where hydrogeological data availability is a major constraint.

The results of vulnerability assessments are often presented in the
form of vulnerability maps showing areas that are vulnerable to con-
taminant impacts. The reliability of these maps is influenced by the
availability, quality and interpretation of the field data (Ravbar and
Goldscheider, 2007). Vulnerability maps on a country-wide scale are
not available for SSA countries, apart from a few exceptions, such as
South Africa and the recent work of Ouedraogo et al. (2016). This lack
of availability of vulnerability maps is mainly due to low funding of
scientific research in SSA countries and low research outputs from these
countries as compared to those of developed economies (Thornton
et al., 2006). This paper therefore describes the challenges faced when
performing groundwater vulnerability assessments in SSA countries,
proposes guidelines to mapping of vulnerability assessments for SSA
countries and reviews existing methodologies applied to SSA countries
which can be reapplied to assess the groundwater vulnerability for the
rest of the continents.

2. Disparity in the definition of groundwater vulnerability

The definition of groundwater vulnerability as it appears in the lit-
erature is perceived to be ambiguous and lacking clear definition (Daly
et al., 2002; Frind et al., 2006; Sorichetta, 2010; Stigter et al., 2006). A
simple description of groundwater vulnerability is that it is a relative,
non-measurable and dimensionless property (Vrba and Zaporozec,
1994). Groundwater vulnerability has a different meaning to other
terms that are often used when discussing groundwater and its risks to
contamination. Terms such as pollution risk and contamination risk all
have distinct meanings. The terms groundwater vulnerability,

groundwater susceptibility, and aquifer sensitivity are frequently used in-
terchangeably, but are different to groundwater risk. Groundwater risk is
defined as a threat posed by a hazard to human health due to pollution
of a specific natural aquifer discharge. Groundwater risk is different to
groundwater vulnerability because groundwater risk is related to the
presence and level of a particular contaminating substance in ground-
water systems, while the assessment of groundwater vulnerability is
predicting the degree to which the groundwater in an aquifer is sensi-
tive to contamination (Focazio et al., 2002).

Frind et al. (2006), Popescu et al. (2008), Sorichetta (2010) and
Vrba and Zaporozec (1994) describe widely used definitions of
groundwater vulnerability. These descriptions include:

“Groundwater vulnerability is the tendency of, or likelihood for,
contaminants to reach a specified position in the groundwater
system after introduction at some location above the uppermost
aquifer” (National Research Council [NRC], 1993),

and:

“Groundwater vulnerability is an intrinsic characteristic of the nat-
ural environment, which is independent of contaminant type and
source, as well as specific land use and management practices”
(United States Environmental Protection Agency [USEPA], 1993).

The above definitions are just two of the many definitions proposed
in groundwater vulnerability studies. In general, groundwater vulner-
ability assessments can be grouped into three different approaches:

1) Those that assume groundwater vulnerability to be related to the
response of the system to impacts from natural processes and human
activities (Bachmat and Collin, 1987; Sotornikova and Vrba, 1987;
Villumsen et al., 1983).

2) Those that consider vulnerability to be an intrinsic (natural) prop-
erty of the groundwater system without considering the properties
of the contaminants impacting on the system (International
Association of Hydrogeologists [IAH], 1994; Margat, 1968; Olmer
and Rezac, 1974, SNIFFER, 2004).

3) Those that are used to synthesise complex hydrogeologic informa-
tion into a useable form for planners, decision makers and policy-
makers, geoscientists and the public (Liggett and Talwar, 2009).

With the available approaches to vulnerability assessments, the
aims and objectives of a specific vulnerability assessment should be
considered when selecting an approach and when determining which
actions to take as part of the assessment. Although most vulnerability
assessments focus on vulnerability to contamination, the groundwater
resource is also vulnerable to other impacts, such as drought and cli-
mate change. When assessing the vulnerability of an aquifer to drought,
for example, the above definitions of groundwater vulnerability would
not necessarily be applicable. By considering a specific definition of
groundwater vulnerability that is relevant to the particular vulner-
ability assessment, ambiguity can be avoided. Furthermore, the choice
of vulnerability definition used during particular assessments is im-
portant because it is more dangerous than beneficial to use vulner-
ability categories that are unclear and not practically defined (Foster
et al., 2013).

3. The vulnerability concept

Groundwater protection is complex and groundwater is affected by
a wide range of natural processes and human activities, particularly
those involving land usages. The vulnerability concept can sometimes
be confusing and if not specifically stated, the wrong method of in-
vestigation may be applied in assessing the vulnerability of an aquifer.
To have a common understanding of the available techniques of vul-
nerability assessment, scientists of different groundwater vulnerability
forums have cooperated to outline the various methodologies of
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vulnerability assessment. These forums include the International
Conference on Vulnerability of Soil and Groundwater to Pollutants (van
Duijvenbooden and van Waegeningh, 1987), the Committee on
Techniques for Assessing Groundwater Vulnerability (1993), the Eur-
opean Cooperation in Science and Technology (COST, 1995, 2003). At
the conference on Groundwater Vulnerability – From Scientific Concept
to Practical Application (Witkowski, 2016), significant changes in the
general approach to groundwater vulnerability assessment and its
practical application in the context of the identification of potential
groundwater pollution hazards were highlighted. The different con-
cepts emanated from these forums, are today used in vulnerability as-
sessment studies.

The objective of vulnerability assessment is to distinguish between
areas where the groundwater system is more vulnerable to con-
tamination and areas with lower groundwater vulnerability. Vrba and
Zaporozec (1994) emphasised that vulnerability of groundwater is a
relative, non-measurable, dimensionless property. They distinguished
between intrinsic (natural) vulnerability and specific vulnerability.
COST (2003) suggested that vulnerability should be investigated based
on the origin-pathway-target model of environmental management.
Due to the importance of groundwater as a non-commercial product, a
directive from the European Union on water protection (Water Fra-
mework Directive [WFD], 2000) instructs scientists to distinguish be-
tween groundwater resource protection and groundwater source pro-
tection.

In the assessment of groundwater vulnerability, an additional factor
that should be considered is the scale of the assessment. Due to local
variations in the conditions affecting vulnerability, vulnerability as-
sessments on a local scale are likely to differ from those done on a
regional scale.

3.1. The origin-pathway-target model in vulnerability assessment

The origin-pathway-target model of vulnerability assessment was
modelled after the methodology used in environmental investigations
to assess the risk that contaminants pose to potential receivers.

The term origin describes the location of a potential contaminant
release. The term target refers to the groundwater body that could po-
tentially be impacted on by the contaminants, while the pathway in-
cludes all the earth materials between the origin and the target. For
groundwater vulnerability assessments, COST (2003) suggested taking
the land surface as the origin, because contaminant releases often occur
at surface. However, contaminant releases may also take place below
the ground surface, for example via leakages in sewerage systems and
underground petrochemical tanks. In groundwater vulnerability as-
sessments, the target (receptor) is the groundwater that must be pro-
tected from contaminant impacts.

A distinction is often made between resource protection and source
protection. For resource protection, the groundwater surface is con-
sidered the target, while for source protection the target is the water in
the well or spring. For resource protection, the pathway consists of the
material through which contaminants must travel vertically to reach
the groundwater surface (Fig. 1). For source protection, the water in the
well or spring is the target and the pathway includes mostly horizontal
movement in the aquifer (Goldscheider et al., 2000).

This origin-pathway-target model is also referred to as the European
approach to vulnerability investigations (COST, 2003). The concept was
developed with the aim of protecting both the groundwater resources
and the groundwater sources (Daly et al., 2002). Different existing
groundwater vulnerability assessment methodologies based on the
European approach are EPIK (Doerfliger et al., 1999), the Irish ap-
proach (Daly and Drew, 1999), COP (Vías et al., 2006) and PI
(Goldscheider et al., 2000).

It is important to state that it is erroneously believed that the more
complex and detailed vulnerability assessment methods are, the more
reliable the assessments become (Sililo et al., 2001). It is rather the

selection of parameters considered during the assessment that de-
termines the reliability of the assessment. Groundwater vulnerability in
a specific area may be more sensitive to certain parameters than to
others. Including redundant parameters in the assessment will not add
to the reliability of the assessment. Foster et al. (2013) stated that “the
more complex the vulnerability assessment procedure is, the more
likely it is to obscure the obvious and make the subtle indistinguish-
able”.

3.2. Intrinsic versus specific vulnerability

The term intrinsic vulnerability is used to define the vulnerability of
groundwater to contaminations generated by human activities (Daly
et al., 2002). It takes into account the geological, hydrological and
hydrogeological characteristics of an area, but is independent of the
nature of the contaminants (Goldscheider, 2002). Intrinsic vulnerability
strictly evaluates the properties of the earth materials through which
contaminants must pass before reaching the aquifer system. The as-
sessment of intrinsic vulnerability involves the investigation of the
possibility of retardation, degradation or filtration of the contaminant
as it travels through the system. To evaluate intrinsic vulnerability,
three factors need to be taken into consideration (Daly et al., 2002):

1) The advective travel time through the system.
2) The quantity of contaminants that reach the target because not all

contaminants that leave the surface catchment infiltrate into the
aquifer, some leaves as surface run-off.

3) The physical attenuation of the contaminant as it travels through the
system such as dispersion or dilution.

Commonly used intrinsic vulnerability assessment methods are
subjective methods (also known as overlay or index methods). The most
common subjective methods are described by Gogu et al. (2000) and
include the methods of Albinet and Margat (1970), Carter et al. (1987),
Goossens and Van Damme (1987), as well as GOD (Foster, 1987),
DRASTIC (Aller et al., 1987), SINTACS (Civita, 1994), SEEPAGE
(Moore, 1990), AVI (Van Stempvoort et al., 1993), ISIS (Civita and De
Regibus, 1995), EPIK (Doerfliger et al., 1999) and the German Method
(von Hoyer and Söfner, 1998).

The DRASTIC method was developed at the U.S. Environmental
Protection Agency in Oklahoma in collaboration with the National
Water Well Association in Dublin, Ohio, with the sole aim of evaluating
the potential of groundwater pollution by considering the hydro-
geological parameters (Aller et al., 1987). The method is based on the
Delphi techniques of ranking important hydrogeological parameters of
the aquifer, namely depth to groundwater (D), net recharge (R), aquifer
media (A), soil media (S), topography (T), impact of vadose zone (I) and
hydraulic conductivity (C). These seven parameters were ranked and a
weight assigned according to their passive ability to degrade infiltrating

Fig. 1. Illustration of the origin-pathway-target model for groundwater vulnerability
mapping and the concept of resource and source protection modified after Goldscheider
et al. (2012)
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contaminants. The assigned weight is from 1 (least important) to 5
(most important). The weights and ratings of the seven parameters
considered in the DRASTIC method are presented in Table 1.

The DRASTIC index produced from summation of the seven hy-
drogeological parameters is shown in Equation below:

= + + + +

+ +

DRASTIC Index D D R R A A S S T T

I I C C
R W R W R W R W R W

R W R W

Where D, R, A, S, T, I and C are the seven parameters of the method
and the subscripts R and W are the corresponding ratings and weights,
respectively. The DRASTIC method assumes the following points while
evaluating the vulnerability of aquifer to pollution:

a) The contaminant is released from the earth surface.
b) The contaminant moves with the velocity of water.
c) The contaminant flushes into the groundwater through precipita-

tion.
d) The area under investigation should be large.

A number of authors suggested that DRASTIC equivalent results can
be obtained by using fewer parameters (Babiker et al., 2005; Kumar
et al., 2015; Merchant, 1994; Qian et al., 2012). Others still opined that
DRASTIC must be modified to suit the specific hydrogeological condi-
tions to be assessed (Kumar et al., 2015, 2016; Qian et al., 2012).

The SINTACS method considered the same hydrogeological para-
meters and formulation of vulnerability index as in the DRASTIC
method but using different nomenclature (Civita, 1994; Ricchetti and
Polemio, 2001). Depth to water (S), Net infiltration (I), Unsaturated
zone (N), Soil media (T), Aquifer media (A), Hydraulic conductivity (C)
and Slope (S) are the seven parameters (Civita, 1994). The difference
lies in the way the parameters were assigned weights and relative rat-
ings. Also, the model considered more than one weight assignment to
consider the land use factor and calculated vulnerability indices for
different zones (Kumar et al., 2015).

GOD was proposed by Foster (1987) and its acronyms were coined
from the first word of its parameters, namely the type of groundwater
occurrence (G) (e.g. none, confined, unconfined), the overlying li-
thology (O) (e.g. loam, gravel, sandstone, limestone), and the depth of
the groundwater table (D) (Kumar et al., 2015; Shirazi et al., 2012).
GOD is rated between 0 and 1. The overall values for vulnerability
assessment is derived by multiplying the three factors, and conse-
quently the ranges, between 0.0 (negligible) and 1.0 (extreme). GOD
has lesser parameters in comparison to methods such as DRASTIC, and
its modification such as SINTACS, ISIS, SEEPAGE and OREADIC. This
makes GOD easy and quick to use. Its main advantage is that it can be

applied to any type of aquifer, except in the karst areas, because it does
not consider the special nature of epikarst and vertical shaft of karst can
cause a problem when using this method. Another shortcoming includes
the overrating of the factor D, for example depth of 100 m to water
table is assigned moderate vulnerability (0.4; Kumar et al., 2015; Oke,
2017).

Specific vulnerability is the term used to describe the vulnerability
of groundwater to a particular contaminant or group of contaminants. It
takes into account the properties of the contaminants and their re-
lationship to the various aspects of the intrinsic vulnerability
(Goldscheider, 2002). Some methods in COST (2003) relate to land use
practices to specific vulnerability (Goldscheider et al., 2000; Ravbar,
2007), while other methods are based on the assumption that specific
vulnerability is independent of the land use practices (Vrba and
Zaporozec, 1994). As stated by Stigter et al. (2006), specific vulner-
ability integrates the contamination risk placed upon aquifers by
human activities. Two commonly used methods for the assessment of
specific vulnerability are the Slovene Approach (Ravbar, 2007; Ravbar
and Goldscheider, 2007) and the several modifications of DRASTIC
method (Alam, 2014; Babiker et al., 2005; Muhammad et al., 2015;
Saha, and Alam, 2014; Secunda, 2008; Sener and Davraz, 2013; Shahid,
2000; Wang et al., 2007), with the addition of land use, pesticides,
lineament and GIS.

4. Challenges of mapping groundwater vulnerability in Sub-
Saharan African countries

At present, limited research has been done on groundwater vul-
nerability assessments in SSA countries. This is due to many factors that
affect groundwater research in these countries. The major challenges
identified are discussed below.

4.1. Lack of comprehensive hydrogeological data

The major impediment to vulnerability assessments in SSA countries
is the lack of hydrogeological data. Due to this lack of data, hydro-
geologists in these countries generally do not have access to compre-
hensive hydrogeological maps of their respective countries on a
country-wide scale. Such hydrogeological maps could include maps
showing the distribution of groundwater levels, aquifer types, hydro-
chemistry, soil types and hydraulic conductivity. This type of data is the
foundation of groundwater vulnerability assessments. Table 2 lists a
few studies carried out on the hydrogeology of Sub-Saharan African
countries, as highlighted in Working Paper 6 of the African Climate
Policy Centre (ACPC) of the United Nations Economic Commission for
Africa (Altchenko et al., 2011). Table 2 also lists the available

Table 1
Assigned weights for DRASTIC hydrogeological factors.

Rating Depth of water
(m)
D × (5)

Net recharge
(mm/y)
R × (4)

Aquifer media
A × (3)

Soil media
S × (2)

Topo-
graphy
T × (1)

Impact of vadose zone
I × (5)

Hydraulic conductivity
(GPD/ft2)
C × (3)

10 0.0–1.5 Karst limestone Thin or absent, gravel 0–2 Karst limestone <2 000
9 1.5–4.5 >250 Basalt Sandstone and volcanic 2–3 Basalt
8 180–250 Sand and gravel peat 3–4 Sand and gravel 1 000–2 000
7 4.5–9 Massive sandstone and

limestone
Shrinking and/or aggregate
clay/alluvium

4–5 Gravel, sand

6 100–180 Bedded sandstone,
limestone

Sandy loam, schist, sand,
karst volcanic

5–6 Limestone, gravel, sand,
clay

700–1 000

5 9–15 Glacial Loam 6–10 Sandy silt
4 Weathered Metamorphic/

Igneous
Silty loam 10–12 Metamorphic gravel and

sandstone
300–700

3 15–23 50–100 Metamorphic/
Igneous

Clay loam 12–16 Shale, silt and clay

2 23–31 Massive shale Muck acid, granitoid 16–18 Silty clay 100–300
1 >31 0.0–50 Non-shrink and non-

aggregated clay
> 18 Confining layer, granite 1–100
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hydrogeological data which can be adapted to produce local scale
vulnerability maps for the regions being studied.

4.2. Limitations of established vulnerability assessment methods

Many of the proposed vulnerability assessment methods that are
based on the European Approach were designed for assessing ground-
water vulnerability in the karst landforms of European countries. These
methods include EPIK, COP, PaPRIKa and COP+K but are not generally
valid for other aquifer systems, such as fractured rock aquifers.
Groundwater in SSA countries occurs in different types of aquifer sys-
tems (Fig. 2), including weathered crystalline basement aquifers,
aquifers in recent coastal limestones, aquifers in intermontane valley-
fill material, consolidated/unconsolidated sedimentary aquifers and
major alluvial formations (Foster et al., 2012; Gaye and Tindimugaya,
2012). Since these aquifer systems are significantly different to karst
aquifers, vulnerability assessment methods based on the assumption of

karstic conditions are inapplicable when assessing groundwater vul-
nerability in SSA countries when not dealing specifically with karst
morphology. However, other index-based groundwater vulnerability
methods are applicable, as stated in Kumar et al. (2015) and take into
account some specific hydrogeological conditions of SSA.

4.3. Political and social challenges

The understanding of groundwater vulnerability to pollution and
the need for its protection has led to the development of several policies
to ease groundwater research across the European countries. The EU
countries established parallel groundwater-related legislation which the
WFD (2000) harmonised into a directive. This effort has significantly
aided groundwater management and cooperative research. Such colla-
boration is lacking in SSA considering the transboundary nature of
groundwater and aquifer diversities. Aquifers transcend political
boundaries, socio-political borders, tribal and ethnic associations. This

Table 2
Selected regional hydrogeological studies and maps available in SSA countries.

Study Region Scale Data

Howard et al. (1992) Uganda Country Groundwater potential
Wright (1992) Africa Continent Groundwater potential
Chilton and Foster (1995) Africa Continent Groundwater potential
Biemi (1996) Ivory Coast Country and sub-continent Water crises and constraints, groundwater availability
Taylor and Howard (2000) Uganda Country Groundwater potential, flow types; groundwater balance
Tindimugaya (2000) Uganda Country Groundwater potential, groundwater balance
Macdonald et al. (2001) Ethiopia Country Groundwater availability
Taylor et al. (2004) Uganda Country Groundwater potential, flow types
Mantin and Van de Giesen (2005) Volta Basin Basin Groundwater potential
Woodford et al. (2006) South Africa Country Groundwater balance
Tindimugaya (2008) Uganda Country Groundwater potential, sustainability, storage capacity, flow types
WHYMAP (2008) Africa Continent Groundwater resources
BGS (2011) Africa Continent Basin yield, storage capacity, flow types, saturated thickness
Forkuour et al. (2011) Northern Ghana Sub-country Groundwater potential, accessibility
SADC (2011) SADC Sub-continent Groundwater drought vulnerability
Gumma and Pavelic Ghana Country Groundwater potential

Fig. 2. Distribution of rock types hosting aquifers
systems in SSA countries (Foster et al., 2006)
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transboundary nature of aquifers calls for increased collaboration of
researchers across borders and regions in SSA.

4.4. Scarcity of skilled hydrogeologists

SSA countries often have a limited number of qualified hydro-
geologists. This scarcity of hydrogeologists is partly also due to the
brain drain as qualified groundwater scientists find employment on
other continents. The lack of groundwater experts and trained hydro-
geologists has a negative effect on groundwater research on the con-
tinent (Adelana and MacDonald, 2008).

4.5. Lack of funding, poor policies and legal tools

Inadequate mechanisms for policy creation and implementation, as
well as poor governance, are major contributing factors for the lack of
groundwater research in many SSA countries. Many of these countries
lack regulation and enforcement of water laws. There is lack of legis-
lative support to enable vulnerability assessment and inadequate ca-
pacity for implementation. Agencies charged with groundwater re-
search and monitoring are mostly underfunded. Groundwater
infrastructure development in rural areas is tackled locally by rural
communities with limited funding (Foster et al., 2006). Solutions to the
poor groundwater governance in SSA is contained in the comprehensive
groundwater governance frameworks (Kumar et al., 2017; UNESCO-
IHP, 2016), motivated by five groundwater networks (Global En-
vironment Facility, World Bank, Food and Agriculture Organization of
the United Nations, UNESCO-International Hydrological Programme
[IHP] and the International Association of Hydrogeologists) for the
betterment of groundwater resources.

5. Proposed methodology for vulnerability assessments in Sub-
Saharan African countries

Marin and Andreo (2015) presented a guideline for the assessment
of the vulnerability of karst aquifers and for the protection of springs
emanating from these karst aquifers. This guideline can be adapted to
be applicable to the assessment of groundwater vulnerability in SSA
countries. The adapted guideline could serve as the basis from which
SSA countries could develop their own set of guidelines based on the
specific hydrogeological conditions that prevail in the specific country.

Step 1 – Hydrogeological studies and characterisation of the phy-
sical variables that affect the level of natural protection of aquifers

To a greater or lesser degree, all aquifers are vulnerable to con-
taminant impacts as long as recharge occurs. However, the earth ma-
terials overlying an aquifer may serve as a natural protection from
impacts due to processes such as filtration and absorption. The initial
step in vulnerability assessment involves a comprehensive study of the
geological and hydrogeological conditions to delineate the aquifer and
to investigate the properties of the overlying earth materials. The
characterisation must include all processes that influence contaminant
movement from the point of release to either the groundwater table
(resource protection) or the well from which water is abstracted (source
protection).

Due to the known lack of hydrogeological data and detailed maps in
most SSA areas (Butler, 2010), other sources of information should be
included when assessing groundwater vulnerability in SSA countries.
These sources could include geological maps and reports, topographic
maps, soil cover and vegetation maps, data on precipitation, as well as
data on topsoil conditions with particular attention to run-off and in-
filtration. Data on water table elevations could be obtained from field
measurements (particularly for source vulnerability evaluation) or de-
rived from Landsat imagery for regional assessments.

Step 2 – Regional and localised vulnerability mapping, delineation
of protection zones and pathway characterisation

In arid and semi-arid areas of the Sahel-Sahara and in Southern

African areas (Fig. 2), vulnerability assessment could be challenging,
particularly where the estimation of recharge from rainfall is challen-
ging due to the low rainfall generally experienced and the variability in
the duration and intensity of rainfall events. If recharge can be esti-
mated through other methods, not based on rainfall volumes, such
methods can be used in the vulnerability assessments. These methods
include the chloride-mass-balance method, water balancing, and
methods based on water table fluctuations (Butler, 2010; Edmunds,
2010).

Robins et al. (2007) suggested that vulnerability assessments in SSA
countries should be done on field scale, rather than on a regional basis.
They reasoned that the high degree of inhomogeneity associated with
the widespread occurrence of weathered basements rocks necessitates
investigations on a more local scale. They further concluded that vul-
nerability assessment should exclude aquifer recharge potential to en-
sure that poorly productive, but socially important, aquifers can be
assessed and the questionable reliance on a long-term effective rainfall
value can be avoided (Robins et al., 2007).

The WFD supports the downgrade of recharge potential in vulner-
ability assessment (Dochartaigh et al., 2005). This approach allows for
assessing a single fracture or multi-fracture occurrence in an exposed
basement aquifer common in SSA. Since fractured rocks are recognised
to be highly vulnerable, providing little attenuation and easy pathways
for contaminants to reach the groundwater resources (Robins et al.,
2007), assessment on a localised scale will allow the delineation of
those parts of the fractured aquifer system that has been impacted on,
while excluding the unaffected areas of the larger aquifer system.

For vulnerability assessments, it is important to make a distinction
between (1) fractured basement aquifers and (2) aquifers in fractured
basement rocks that are also associated with a thick weathered zone;
the latter are more vulnerable than the former due to the flow prop-
erties of intergranular materials present in weathered systems. Thick
weathered basement aquifers, which are often major sources of water
supply in SSA countries, should be assessed on a regional scale differ-
ently to fractured basement aquifers with little or no weathered over-
burden.

In West African countries, aquifers are in crystalline basements
rocks and groundwater occurs in secondary porosity due to chemical
weathering, fracturing, jointing and shearing. Over 60% of such aqui-
fers are discontinuous (Pavelic et al., 2012). Therefore, source vulner-
ability assessment is recommended above resource vulnerability as-
sessment in such conditions. Similarly, source assessment is also
recommended where pit latrines and waste disposal sites are situated
near wells which supply to households, as is the case in many major
cities and towns in SSA (Lapworth et al., 2017). Considering the above
scenario, Robbins et al. (2007) argued for re-rating of the index
methods, such as DRASTIC, to include the significance of source pol-
lution.

Step 3 – Validation of vulnerability assessments
The various groundwater vulnerability assessment methods each

have different objectives, pathways and targets, and numbers of avail-
able assessment parameters. Vulnerability assessments are also done on
different aquifer types and in different geomorphological conditions.
These factors result in differences in the vulnerability maps created
using different vulnerability assessments methods. Therefore, the focus
of validation of vulnerability assessments should be on validating the
input parameters used during the assessments, and not on validating
the vulnerability maps themselves, as is often done at present.

Common groundwater vulnerability validation methods employed
by researchers include:

1) using the hydrographs of chemical parameters to determine the
relevant signature and water flow;

2) bacteriology;
3) tracer techniques;
4) water balancing;
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5) calibrated numerical simulations; and
6) analogy studies (Daly et al., 2002).

Due to the lack of available data, applications of most of these
outlined methods may be challenging in a SSA context. However,
adopted validation techniques could only serve as a check to see if the
vulnerability maps are correct or wrong. It is incorrect to validate
vulnerability maps derived from combinations of parameters with a
single parameter. This represents one of the limitations of validation. To
this end, validation should be carried out with the combination of
common tracers such as chloride and bacteriology with dissolved
oxygen (Butscher et al., 2011; Oke, 2015) or with hydrography of
chemical data (Nguyet and Goldscheider, 2006a).

For the assessment of drinking water and other resources, validation
should be both quantitative and qualitative, using a standard such as
the drinking water guidelines of the World Health Organization.
Methods based on the residence time of conservative chemical sub-
stances in the saturated and unsaturated zones are used widely in the
SSA (Butler, 2010; Cook et al., 1992; Edmunds and Tyler, 2002; Tyler
et al., 1996), and may also be very good vulnerability validation
techniques. Conservative chloride is recommended for the estimation of
travel/residence time. This is because it is easily accessible, inexpensive
to analyse and locally and regionally applicable (Edmunds, 2010).
Where available, natural isotope data or artificial tracers (Jeannin et al.,
2001) could be used to validate the travel times of the contaminants
from the source to the target, which could further support vulnerability
assessments made with the techniques that are based on travel times.

6. Suggested methods to vulnerability mapping for Sub-Saharan
African countries

Robins et al. (2007) highlighted the inapplicability of most Eur-
opean methods in assessing vulnerability of SSA due to reasons stated
earlier; however, groundwater vulnerability researches have been suc-
cessfully carried out in SSA by either applying an existing methodology
or assessment based on newly developed methods. Examples of the
mainly successful vulnerability approaches applied to SSA can be sub-
divided into the following and are hereby recommended to be used on a
country-wide application:

6.1. Travel time approach

The idea of vulnerability assessment by consideration of the travel
time of contaminants from source to target was recommended by Fried
(1987). This method was used by Saayman et al. (2007) for the intrinsic
vulnerability assessments at Secunda, Mpumalanga and the Coastal
Park waste disposal site in Cape Town, South Africa. The travel time of
a conservative contaminant from surface to the aquifer was calculated
based on a simple formula:

=T Z θ
V
.

time
d

where: Ttime = travel time in years, Z = thickness of the vadose zone in
metres, θ = average moisture content or volumetric water content of
the vadose zone, Vd = the average recharge rate in m/day. The lim-
itations of this method include not considering the concentrations of
infiltrating contaminants, land use and other human activities that
generate contaminations. The travel time approach can be used in
tracking contaminants that flow into unconfined aquifer systems in
sedimentary and weathered basement aquifers.

6.2. Parametric approach

This is the most common vulnerability assessment method applied
to SSA aquifers. Parametric methods include the Rating System, Point
Counts System Models (PCMS) and Matrix Factors. DRASTIC is the most

widely used parametric method in SSA. DRASTIC and its modified
forms have been applied for vulnerability assessments by various au-
thors, including the following: Lynch et al. (1997) and Musekiwa and
Majola (2013) (South Africa); Issiaka et al. (2006) (Abidjan Quaternary
aquifer, Côte D′Ivoire); Parfait and Daouda (2015) (Abomey-Calavi area
in Benin); Munga et al. (2006) (Kisauni area, Kenya); and Ojuri and
Bankole (2013) (selected parts of the Lagos aquifer, Nigeria). Makonto
and Dippenaar (2014) used the Weighted Overlie Vulnerability Method
for assessing the Letaba Catchment of Limpopo, South Africa.
Ouedraogo et al. (2016) applied the DRASTIC methods to assess the
African continent. Robins et al. (2007) suggested re-rating of the
DRASTIC methods to include information on water quality from in-
dividual boreholes in areas where pit latrines or waste disposal sites
occur.

The EUZIT (Excel-based Unsaturated Zone Index Tool) and modified
UGIF vulnerability assessment methods developed in South Africa by
Saayman et al. (2007) are other examples of parametric methods de-
signed for the saturated and unsaturated zones. These authors created a
data base combining travel time, physical and chemical properties and
hydraulic properties. A rating factor was applied to each of the para-
meters according to the estimated importance and the method that was
used to assess the vulnerabilities of aquifers at the Coastal Park Waste
Site as well as a site at Goedehoop, South Africa. Nick (2011) applied
the PI method to assess the vulnerability of aquifers in Lusaka (Zambia)
and surrounding areas. He chose the PI method due to its accuracy and
the fact that it accounts for both karst and non-karst aquifers. A sim-
plified version of the PI method for data-scarce areas, such as SSA, was
applied to tropical mountainous karst areas by Nguyet and
Goldscheider (2006b).

Oke et al. (2016) applied the RTt method to assess the vulnerability
of the shallow aquifers of the Dahomey Basin of southwestern Nigeria.
The RTt method was developed with reduced parameters often applied
in groundwater vulnerability assessment. The DART method developed
by Dennis and Dennis (2012), was designed in South Africa and applied
to assess the South African aquifer systems. DART uses four parameters
(depth, aquifer type or storativity, recharge and transmissivity) which
focuses more on groundwater sustainability and quality studies.

Most methods using parametric approaches have been applied to all
types of aquifers systems in SSA, such as the karst system, fractured
rock, weathered basement rocks and sedimentary rock. Limitations of
the DRASTIC method, as with other parametric methods, are that re-
sults can be ambiguous and open to more than one interpretation (Lim
et al., 2009). Dominant flow classification in the PI method is unclear
and does not leave room for possible flow processes outside the listed
range (Oke, 2017). Daly et al. (2000) suggested the use of permeability
to evaluate the protective properties. This will eliminate the uncertainty
contained in the PI protective function. The main hindrances to the use
of the RTt method are its lack of factors that account for large water
bodies, karst topography, contaminant types (Oke, 2015), as well as
human activities that generate contamination in SSA countries such as
pit latrines, soakaways, overpopulations. Other methods that have
limitations that do not account for human activities, land use and fate of
contaminants, are the DRASTIC, EUZIT and DART methods.

6.3. Numerical approach

Schwartz (2006) applied numerical models to vulnerability studies
in Namibia. Aquifer vulnerability was classified based on the residence
time range from<1 year in areas with carbonate rocks to> 500 years
in desert areas. This was reported to be compatible with the ground-
water response to rainfall (Schwartz, 2006). The simulated net in-
filtration rates were compared with the recharge values calculated in-
directly with the chloride-balance method (Herczeg and Edmunds,
2000) for the six groups of lithologies and profiles with soil thickness in
the range of 0–1 m. Using numerical modelling, three practical ques-
tions put forward by Brouyère et al. (2001) should serve as guide,
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namely: If pollution occurs, (1) when will it reach the target (travel
time)? (2) at which concentration? and (3) for how long will the target
be polluted? The best merits of numerical methods are that it can
consider large inherent properties and parameters of an area through
which groundwater get contaminated.

7. Conclusions

This paper highlighted the disparities in groundwater vulnerability
definitions, the stages of formulating the vulnerability concepts and the
challenges of assessing groundwater vulnerability in SSA countries.
Most African countries lack country-wide groundwater vulnerability
maps, and in the need to provide one for the SSA, the target of pro-
tection most be identified. SSA countries need to test the recommended
methods of groundwater vulnerability assessment in this paper on a
country wide-scale to determine which methods are most appropriate
in different hydrogeological environments and at different scales.

The guidelines outlined in the paper are to assist the SSA countries
in managing challenges associated with groundwater research and
protection. The advantages of using the suggested guidelines in a SSA
context is the allowance to factor in local African geological and hy-
drogeological conditions (weathered overburden aquifers, fractured
basement rock aquifers, alluvial sedimentary aquifers, desert conditions
and arid environments) into the vulnerability assessment methods.
Some of the suggested methods also accept assessment based on in-
formation or data availability, time and resources available. This paper
will guide the SSA countries in identifying peculiar challenges of as-
sessing groundwater vulnerability, identifying an appropriate metho-
dology of assessment and prioritising the need for aquifer vulnerability
assessment.
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