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Abstract 

A multi-stage stochastic optimal portfolio policy that minimizes downside risk in the presence of 

uncertain implicit transaction costs is proposed. As asset returns in economic recessions and booms 

are characterised by extreme movements, some individual stocks show an extreme reaction while 

others exhibit a milder reaction. The study therefore considers a risk-averse and conservative investor 

who is highly concerned about the performance of his portfolio in an economic recession environment. 

Maximum negative deviation is taken as the downside risk and stochastic programming is applied with 

stochastic data given in the form of a scenario tree. A set of discrete scenarios of asset returns is 

considered, taking the deviation around each return scenario. Thus uncertainties of asset returns and 

implicit transaction costs are represented by discrete approximations of a multi-variate continuous 

distribution. The portfolio is rebalanced at discrete time intervals as new information on returns get 

realised. First-stage optimal-portfolio results show that implicit transaction costs vary from 7.1% to 

16.7% of returns on investment. 
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1. INTRODUCTION 

Banks, fund-management firms, financial consulting institutions and large institutional investors 

are faced with the challenges of managing their funds, assets and stocks towards selecting, 

creating, balancing and evaluating optimal portfolios on a continual basis. Financial crises, 

economic imbalances, algorithmic trading and highly volatile movements of asset prices in recent 

times have raised high alarms about the management of financial risks. Extreme event risk is 

present in all areas of risk management. Whether one is concerned with market, credit, 

operational or insurance risk, one of the biggest challenges facing the risk manager is how to 

implement risk management models that allow for rare but damaging events, and permit the 

measurement of their consequences.  

In financial markets, the stability and sustainability of future pay-offs of an investment are 

largely determined by extreme changes in financial conditions rather than typical movements. A 

decision-making process must be developed which identifies the appropriate weight each 

investment should have within the portfolio. The portfolio must strike what the investor believes 

to be an acceptable balance between risk and reward. In addition, the costs incurred in setting up 

a new portfolio or rebalancing an existing one must be included in any realistic portfolio selection 

analysis. Investment portfolios should be rebalanced to account for changing market conditions 

and changes in funding. 

In this study, a multi-stage stochastic maximum negative deviation (SMNDTC) model with 

uncertain implicit transaction costs in optimal portfolio selection is proposed. Maximum negative 

deviation of asset returns from expected portfolio return is used as portfolio risk. The model takes 

into account downside risk and corresponding implicit transaction costs in trading in order to 

provide an investor or investment manager an option of selecting a portfolio knowing the implicit 

trading costs which are likely to be incurred. The study uses stochastic programming with 

recourse. The uncertainty about future asset returns and corresponding implicit transaction costs 

is captured in stages by means of scenarios. Implicit costs are taken to be random as it is in the 

buying or selling of assets (whose prices are stochastic) that these costs are incurred. 

2. LITERATURE REVIEW 

It is well documented in the literature that investors generally shun positions in which they would 

be subjected to catastrophic losses however small the probability these losses carry. Such a 

“disaster avoidance motive” (Menezes et al., 1980) implies that investors care about extreme 

negative scenarios in investment and are averse to the risk of sharp price plunges. Hence the 

potential loss from extreme undesirable returns should become a significant factor in asset 

pricing. Asset returns in economic recessions and booms are characterised by extreme movements 

(Jansen & De Vries, 1991). The extreme movements of the market are not always reflected in all 

the individual stocks. Some individual stocks show an extreme reaction while others exhibit a 

milder reaction. It is in extreme cases that investors are highly concerned about the performance 

of their portfolios, particularly the downside movements.  

The notion of tail risk or extreme downside risk has increasingly gained consideration in the asset 

pricing literature. In particular, contrary to the assumptions of the standard Capital Asset Pricing 

Model (CAPM) of Sharpe (1964) and Lintner (1965), in which portfolio risk is fully captured by the 

variance of the portfolio return distribution, asset returns display significant negative skewness 
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and excess kurtosis, both of which increase the likelihood of extreme negative returns (Richard et 

al., 2015). In the studies that focus directly on the likelihood of extreme returns, Ruenzi and 

Weigert (2013) use a copula-based approach to construct a systematic tail risk measure and show 

that stocks with high crash sensitivity, measured by lower tail dependence with the market, are 

associated with higher returns that cannot be explained by traditional risk factors, downside 

beta, co-skewness or co-kurtosis. These studies examine the variation in expected returns across 

individual stocks. 

Young (1998) introduces a linear programming model which maximizes the minimum return or 

minimizes the maximum loss (minimax) over time periods and applies this to the stock indices of 

eight countries. The analysis show that the model performs similarly to the classical mean-

variance model of Markowitz (1991). Additionally, Young (1998) argues that when data is log-

normally distributed or skewed, the minimax formulation might be a more appropriate method 

compared to the mean-variance formulation which is optimal for normally distributed data. 

Kamil et al. (2009) develop a single and two-stage stochastic programming model with recourse 

for portfolio selection in which the maximum downside deviation of asset returns from expected 

portfolio return is minimised. This study extends their formulation and develops a multistage 

stochastic maximum negative deviation (SMNDTC) model which takes into account uncertainty of 

implicit transaction costs and asset returns as well as recourse decisions in discrete time intervals 

in optimal portfolio selection.  

Investment portfolios should be rebalanced to account for changing market conditions and 

changes in funding. The investor incurs transaction costs during initial trading and in subsequent 

rebalancing of the portfolio. Trading costs are either direct or indirect. Direct trading costs are 

observable and include brokerage commissions, market fees and taxes. Indirect costs are invisible 

and include bid-ask spread, market impact and opportunity costs. Some investors do not like 

overly high transaction costs, as these are known to erode the profits of investment. The model 

being proposed considers downside risk and corresponding implicit transaction costs in trading 

to give an investor or investment manager an option of selecting portfolios knowing the implicit 

trading costs which are likely to be incurred. The uncertainty about future asset returns and 

implicit costs is captured in stages and by means of scenarios. The main contributions of this 

study include: 

 the development of a multi-stage stochastic maximum negative deviation model that 

optimizes portfolios in the presence of uncertain implicit transaction costs incurred in initial 

trading and in rebalancing of portfolios, and 

 the development of a strategy that captures uncertainty in stock returns and in 

corresponding implicit trading costs in extreme downside movements of stock prices by way 

of scenarios. 

3. PROBLEM STATEMENT 

A set of securities 𝐼 = {𝑖: 𝑖 = 1,2, … , 𝑛} is considered for an investment for the period [0, 𝑇]. The 

study seeks to determine a multi-period discrete-time optimal portfolio strategy subject to 

uncertain implicit transaction costs. The portfolio is structured in terms of asset return and 

downside risk measured as the maximum negative deviation of asset return from expected 

portfolio return. The strategy takes into account the approximate nature of a set of discrete 

scenarios by considering the negative deviation around each asset return scenario. Let 𝑅𝑡 =
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{𝑅1, … , 𝑅𝑡} be stochastic events at time periods 𝑡 = 1,2,… , 𝜏. The investment horizon 𝑇 is divided 

into two discrete times 𝑇1 and 𝑇1 defined by 𝑇1 = [0, 𝜏] and 𝑇2 = (𝜏, 𝑇]. During 𝑇1 an investor 

makes decisions and adjustments to his portfolio at each time-stage as new information on asset 

returns become available. The initial investment takes place at 𝑡 = 0, with recourse decisions 

implemented at discrete times 𝑡 = 1,2,… , 𝜏. After 𝑡 = 𝜏, no further decisions are implemented 

until investment maturity at 𝑡 = 𝑇.  

Buying of the initial portfolio assets and implementation of recourse decisions result in the 

investor incurring some transaction costs, which can erode the value of the investment. The 

decision process is non-anticipative, that is, a decision at a particular stage does not depend on 

the future realization of the random events. The recourse decision at period t is dependent on the 

outcome at period 𝑡 − 1. Given the event history up to time 𝑡, 𝑅𝑡, the uncertainty in period 𝑡 + 1 

is characterised by finitely many possible outcomes for the observations 𝑅𝑡+1. The branching 

process can be represented by a scenario tree. Below is an example of a scenario tree with two-

time periods and a three-three branching structure. 

It is considered that the uncertain asset returns, 𝑅𝑡, in period 𝑡 are represented by a finite set of 

discrete scenarios 𝛺 = {𝑠: 𝑠 = 1,2, … , 𝑆}, where the returns under a particular scenario take 

values 𝑅𝑠 = {𝑅1,𝑠, 𝑅2,𝑠, … , 𝑅𝑛,𝑠}
𝑇  with associated probability 𝑝𝑠 > 0, where ∑ 𝑝𝑠 = 1𝑆

𝑠=1 . 

 

FIGURE 1: Scenario tree 

3.1 Formulation of model constraints 

In this problem, an investor dynamically adjusts a portfolio at successive discrete times as new 

information on asset returns arises. Initial portfolio selection takes place at 𝑡 = 0 with wealth 𝑊0 

distributed among the 𝑛 assets of the initial portfolio. The investor seeks to obtain an optimal 

strategy 𝑥𝑡 = [𝑥1,1,𝑡 , 𝑥1,2,𝑡, … , 𝑥2,1,𝑡 , 𝑥2,2,𝑡, … , 𝑥1,𝑠,𝑡]
𝑇 , 𝑡 = 1,2,… , 𝜏, at the end of the planning 

phase. It is noted that 

∑ 𝑥𝑖,𝑡 = ∑ 𝑥𝑖,𝑠,𝑡 = 1,𝑆
𝑠=1

𝑛
𝑖=1  𝑡 = 1,2, … , 𝜏, (1) 
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where 𝑆 is the total number of scenarios in period 𝑡. Let 𝑎𝑖𝑠𝑡 =
𝐴𝑖𝑠𝑡

𝑊𝑡
 and 𝑣𝑖𝑠𝑡 =

𝑉𝑖𝑠𝑡

𝑊𝑡
, be, respectively, 

the buying and selling proportions of asset 𝑖 of scenario 𝑠 of period 𝑡, where 𝐴𝑖𝑠𝑡 is the amount of 

money used to buy new shares and 𝑉𝑖𝑠𝑡  is the money obtained from selling shares of asset 𝑖 of 

scenario 𝑠 of period 𝑡. It is derived that 𝑥𝑖,𝑠,𝑡 = 𝑥𝑖,𝑠,𝑡−1 + 𝑎𝑖,𝑠,𝑡 − 𝑣𝑖.𝑠,𝑡, 𝑖 = 1,2,… , 𝑛; 𝑠 =

1,… , 𝑆; 𝑡 = 1,… , 𝜏,  and also that 𝑎𝑖,𝑠,𝑡 ∙  𝑣𝑖,𝑠,𝑡 = 0 since we cannot buy and sell the same asset at 

each time that recourse decisions are implemented. 

The expected return of asset 𝑖 of period 𝑡 can now be stated as  𝑟𝑖𝑡 = ∑ 𝑝𝑠 ∙ 𝑅𝑖𝑠𝑡 ∙ 𝑥𝑖𝑠𝑡 ,𝑠∈𝑄  𝑖 =

1,… , 𝑛; 𝑡 = 1,… , 𝜏, where 𝑄 ⊂ 𝛺 is a set of scenarios of asset 𝑖 of period 𝑡. Thus, the gross 

expected return of the portfolio of period 𝑡 becomes 𝑟𝑝𝑡 = ∑ 𝑝𝑠 ∙ 𝑅𝑖𝑠𝑡 ∙ 𝑥𝑖𝑠𝑡
𝑆
𝑠=1 , 𝑖 = 1,… , 𝑛; 𝑡 =

1,… , 𝜏.  During portfolio rebalancing, it is ensured that 

0 ≤ 𝑣𝑖𝑠𝑡 ≤ 𝑥𝑖𝑠𝑡;  𝑖 = 1, … , 𝑛; 𝑡 = 1,… , 𝜏 (2) 

since the portfolio is self-financing and there is no additional funding to the portfolio at 𝑡 > 0. 

Thus the volume of asset 𝑖 of scenario 𝑠 in period 𝑡 sold for portfolio rebalancing should not exceed 

the volume of the asset in the portfolio. 

It is observed here that 𝑣𝑖𝑡 = ∑ 𝑝𝑠 ∙ 𝑣𝑖𝑠𝑡𝑠∈𝑄  and 𝑥𝑖𝑡 = ∑ 𝑝𝑠 ∙ 𝑥𝑖𝑠𝑡𝑠∈𝑄 . In a self-financing portfolio 

being rebalanced, the amount of money gained from selling asset 𝑖 of period 𝑡 should be at most 

the amount of money used to buy asset 𝑗 (𝑖 ≠ 𝑗) of the same period. This results in the constraint 

0 ≤ ∑ 𝑎𝑖𝑠𝑡 = ∑ 𝑣𝑗𝑠𝑡 ,

𝑗=1,𝑗≠𝑖

 𝑖 = 1, … , 𝑛; 𝑠 = 1,… , 𝑆

𝑖=𝐴

 (3) 

where set 𝐴 contains all assets for which volumes have been bought. To avoid short-selling, the 

constraint  

0 ≤ 𝑥𝑖𝑠𝑡 ≤ 𝑈𝑖𝑠𝑡 , 𝑖 = 1, … , 𝑛; 𝑠 = 1,… , 𝑆; 𝑡 = 1,… 𝜏, (4) 

is considered where 𝑈𝑖𝑠𝑡  is the maximum proportion allowed for scenario 𝑠 of period 𝑡 for each 

asset 𝑖. If 𝑘𝑖𝑠𝑡  and 𝑙𝑖𝑠𝑡 are the transaction cost rates for buying and selling, respectively, a unit 

volume of asset 𝑖 in scenario 𝑠 for portfolio rebalancing at the beginning of period 𝑡, then either 

𝑘𝑖𝑠𝑡 ∙ 𝑎𝑖𝑠𝑡 = 0 or 𝑙𝑖𝑠𝑡 ∙ 𝑣𝑖𝑠𝑡 = 0 or both are zero. The transaction cost incurred by the investor for 

buying or selling asset 𝑖 of scenario 𝑠 in period 𝑡 is given by 𝑘𝑖𝑠𝑡 ∙ 𝑎𝑖𝑠𝑡 + 𝑙𝑖𝑠𝑡 ∙ 𝑣𝑖𝑠𝑡  . Therefore, the 

expected transaction cost of the portfolio of period 𝑡 is ∑ 𝑝𝑠{𝑘𝑖𝑠𝑡𝑎𝑖𝑠𝑡 + 𝑙𝑖𝑠𝑡𝑣𝑖𝑠𝑡}, 𝑖 = 1,… , 𝑛;𝑆
𝑠=1  

𝑡 = 1,… , 𝜏. This results in the net expected portfolio return, 𝑁𝑝𝑡, of period 𝑡 as 𝑁𝑝𝑡 = 𝑟𝑝𝑡 −

∑ 𝑝𝑠{𝑘𝑖𝑠𝑡𝑎𝑖𝑠𝑡 + 𝑙𝑖𝑠𝑡𝑣𝑖𝑠𝑡},
𝑆
𝑠=1  with the portfolio net wealth of period 𝑡 given by 

𝑊𝑡 = (1 + 𝑁𝑝𝑡) ∙ 𝑊𝑡−1, 𝑡 = 1,2, … , 𝜏.   (5) 

Scenarios may reveal identical value for the uncertain quantities up to a certain period. Such 

scenarios must yield the same decisions up to that period. This results in the constraint 

𝑥𝑖𝑠𝑡 = 𝑥𝑖ℎ𝑡 , (6) 

for all scenarios 𝑠 and ℎ with identical past up to time 𝑡. 
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3.2 Portfolio risk 

During the period [0; 𝜏], the downside risk of asset 𝑖 of scenario 𝑠 in period 𝑡 is defined as 𝐾𝑖𝑠𝑡 =

|min [0, 𝑅𝑖𝑠𝑡 − 𝑟𝑝𝑡]|. Thus the expected downside portfolio risk at any time period 𝑡 becomes 

∑ 𝑝𝑠𝐾𝑖𝑠𝑡𝑥𝑖𝑠𝑡 .
𝑆
𝑠=1   

This results in the expected downside portfolio risk, 𝐻, for all time periods as 

𝐻 =
1

𝜏
∑ ∑ 𝑝𝑠𝐾𝑖𝑠𝑡𝑥𝑖𝑠𝑡 .

𝑆

𝑠=1

𝜏

𝑡=1
 (7) 

If 𝛽𝑡 = ∑ 𝑝𝑠𝐾𝑖𝑠𝑡𝑥𝑖𝑠𝑡 ,
𝑆
𝑠=1  the expected portfolio risk for the entire rebalancing phase becomes 𝐻 =

1

𝜏
∑ 𝛽𝑡

𝜏
𝑡=1 . 

3.3 The multi-stage stochastic maximum negative deviation model 

The objective in this problem is to obtain an optimal portfolio that minimizes the expected 

portfolio risk subject to constraints describing the growth of the portfolio in all periods, a 

performance constraint and bounds on decision variables. Letting 𝜃 to be the minimum desired 

expected portfolio mean return and λ to be the minimum acceptable transaction cost, the 

following optimization model is obtained: 

Minimize 
𝐻 =

1

𝜏
∑ 𝛽𝑡

𝜏

𝑡=1
 (8) 

 

Subject to 𝑁𝑝𝑡  ≥  𝜃 

 𝑊𝑡  =  (1 + 𝑁𝑝𝑡)𝑊𝑡−1, 𝑡 = 1,… , 𝜏, 

 0 =  𝛽𝑡 − ∑ 𝑝𝑠𝐾𝑖𝑠𝑡𝑥𝑖𝑠𝑡 ,   𝑖 = 1, … , 𝑛; 𝑡 = 1,… , 𝜏,𝑆
𝑠=1  

 0 ≤  ∑ 𝑎𝑖𝑠𝑡 ≤ ∑ 𝑣𝑖𝑠𝑡 ,   𝑠 = 1,… , 𝑆; 𝑡 = 1,… , 𝜏,𝑛
𝑗=1,𝑗≠𝑖𝑖∈𝐴  

 𝜆 ≥  ∑ 𝑝𝑠{𝑘𝑖𝑠𝑡𝑎𝑖𝑠𝑡 + 𝑙𝑖𝑠𝑡𝑣𝑖𝑠𝑡}, 𝑖 = 1, … , 𝑛; 𝑡 = 1,… , 𝜏,𝑆
𝑠=1  

 1 =  ∑ 𝑥𝑖𝑠𝑡 ,   𝑖 = 1, … , 𝑛; 𝑡 = 1,… , 𝜏,𝑆
𝑠=1  

 0 ≤  𝑣𝑖𝑠𝑡  ≤  𝑥𝑖𝑠𝑡 , 𝑖 = 1, … , 𝑛; 𝑠 = 1,… , 𝑆; 𝑡 = 1,… , 𝜏, 

 0 ≤  𝑥𝑖𝑠𝑡  ≤   𝑈𝑖𝑠𝑡 , 𝑖 = 1, … , 𝑛; 𝑠 = 1,… , 𝑆; 𝑡 = 1,… , 𝜏, 

 𝑥𝑖𝑠𝑡  =   𝑥𝑖ℎ𝑡  , 𝑖 = 1, … , 𝑛; 𝑠 = 1,… , 𝑆; 𝑡 = 1,… 𝜏. 

The model (8) has a non-linear objective function and the third constraint is also non-linear. The 

model is transformed into a linear stochastic programming model as follows. For each scenario 𝑠, 

let𝑀𝑖𝑠𝑡 ≥ 𝐾𝑖𝑠𝑡 = |min [0, 𝑅𝑖𝑠𝑡 − 𝑟𝑝𝑡]|, 𝑠 = 1,… , 𝑆. Then, the expected portfolio risk becomes 𝐺 =
1

𝜏
∑ ∑ 𝑝𝑠𝑀𝑖𝑠𝑡𝑥𝑖𝑠𝑡,

𝑆
𝑠=1

𝜏
𝑡=1  where the expected portfolio risk at any period 𝑡 is given by 

∑ 𝑝𝑠𝐾𝑖𝑠𝑡𝑥𝑖𝑠𝑡 .
𝑆
𝑠=1  If 𝑍𝑡 = ∑ 𝑝𝑠𝑀𝑖𝑠𝑡𝑥𝑖𝑠𝑡,

𝑆
𝑠=1  then the expected portfolio risk for the period [0, 𝜏] is 

𝐺 =
1

𝜏
∑ 𝑍𝑡

𝜏
𝑡=1 . The programming model (8) is transformed into the following linear stochastic 

model. 
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Minimize 
𝐺 =

1

𝜏
∑ 𝑍𝑡

𝜏

𝑡=1
 (9) 

 

Subject to 𝑁𝑝𝑡  ≥  𝜃 

 𝑊𝑡  =  (1 + 𝑁𝑝𝑡)𝑊𝑡−1, 𝑡 = 1,… , 𝜏, 

 0 =  𝑍𝑡 − ∑ 𝑝𝑠𝑀𝑖𝑠𝑡𝑥𝑖𝑠𝑡 ,   𝑖 = 1, … , 𝑛; 𝑡 = 1,… , 𝜏,𝑆
𝑠=1  

 0 ≤  ∑ 𝑎𝑖𝑠𝑡 ≤ ∑ 𝑣𝑖𝑠𝑡 ,   𝑠 = 1,… , 𝑆; 𝑡 = 1,… , 𝜏,𝑛
𝑗=1,𝑗≠𝑖𝑖∈𝐴  

 𝜆 ≥  ∑ 𝑝𝑠{𝑘𝑖𝑠𝑡𝑎𝑖𝑠𝑡 + 𝑙𝑖𝑠𝑡𝑣𝑖𝑠𝑡}, 𝑖 = 1, … , 𝑛; 𝑡 = 1,… , 𝜏,𝑆
𝑠=1  

 1 =  ∑ 𝑥𝑖𝑠𝑡 ,   𝑖 = 1, … , 𝑛; 𝑡 = 1,… , 𝜏,𝑆
𝑠=1  

 0 ≤  𝑣𝑖𝑠𝑡  ≤  𝑥𝑖𝑠𝑡 , 𝑖 = 1, … , 𝑛; 𝑠 = 1,… , 𝑆; 𝑡 = 1,… , 𝜏, 

 0 ≤  𝑥𝑖𝑠𝑡  ≤   𝑈𝑖𝑠𝑡 , 𝑖 = 1, … , 𝑛; 𝑠 = 1,… , 𝑆; 𝑡 = 1,… , 𝜏, 

 𝑥𝑖𝑠𝑡  =   𝑥𝑖ℎ𝑡  , 𝑖 = 1, … , 𝑛; 𝑠 = 1,… , 𝑆; 𝑡 = 1,… 𝜏. 

The following theorem shows that models (8) and (9) yield the same optimal values. 

Theorem 1 

If 𝑥∗ is an optimal solution to (8), then (𝑥∗, 𝐺∗) is an optimal solution to (9). Conversely, if 

(𝑥∗, 𝐺∗) is an optimal solution to (9), then 𝑥∗ is an optimal solution to (8). 

Proof 

Without loss of generality, let 𝑥∗ = 𝑥𝑖𝑠𝑡
∗ . If 𝑥∗ is an optimal solution to (8), then (𝑥∗, 𝐺∗) is a 

feasible solution to (9), where 𝐺 =
1

𝜏
∑ 𝑍𝑡

𝜏
𝑡=1 =

1

𝜏
∑ ∑ 𝑝𝑠𝑀𝑖𝑠𝑡𝑥𝑖𝑠𝑡

𝑆
𝑠=1

𝜏
𝑡=1 ≥

1

𝜏
∑ ∑ 𝑝𝑠𝐾𝑖𝑠𝑡𝑥𝑖𝑠𝑡.

𝑆
𝑠=1

𝜏
𝑡=1  

If (𝑥∗, 𝐺∗) is not an optimal solution to (9), then there exists a feasible solution (𝑥, 𝐺) to (9) such 

that 𝐺 < 𝐺∗, where  

G = 
1

𝜏
∑ ∑ 𝑝𝑠𝐾𝑖𝑠𝑡𝑥𝑖𝑠𝑡

𝑆
𝑠=1

𝜏
𝑡=1  

 = 
1

𝜏
∑ ∑ 𝑝𝑠 ∙𝑆

𝑠=1
𝜏
𝑡=1 |min [0, 𝑅𝑖𝑠𝑡 − 𝑟𝑝𝑡]| ∙  𝑥𝑖𝑠𝑡  

It is observed that 
1

𝜏
∑ ∑ 𝑝𝑠 ∙𝑆

𝑠=1
𝜏
𝑡=1 |min [0, 𝑅𝑖𝑠𝑡 − 𝑟𝑝𝑡]| ∙  𝑥𝑖𝑠𝑡 = 𝐺 < 𝐺∗ and tha 𝐺 < 𝐺∗ =

1

𝜏
∑ ∑ 𝑝𝑠 ∙𝑆

𝑠=1
𝜏
𝑡=1 |min [0, 𝑅𝑖𝑠𝑡 − 𝑟𝑝𝑡]| ∙  𝑥𝑖𝑠𝑡

∗ t. This is a contradiction since 𝑥∗ is an optimal solution 

of (8). 

Conversely, if (𝑥∗, 𝐺∗) is an optimal solution of (9), where 

 𝐺 =
1

𝜏
∑ ∑ 𝑝𝑠 ∙

𝑆

𝑠=1

𝜏

𝑡=1
|min [0, 𝑅𝑖𝑠𝑡 − 𝑟𝑝𝑡]| ∙  𝑥𝑖𝑠𝑡 , 
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then 𝑥∗ is an optimal solution of (8). Otherwise, there exists a feasible solution 𝑥 to (8) such 

that  

𝐺 
=

1

𝜏
∑ ∑ 𝑝𝑠 ∙

𝑆

𝑠=1

𝜏

𝑡=1
|min [0, 𝑅𝑖𝑠𝑡 − 𝑟𝑝𝑡]| ∙  𝑥𝑖𝑠𝑡  

 
<

1

𝜏
∑ ∑ 𝑝𝑠 ∙

𝑆

𝑠=1

𝜏

𝑡=1
|min [0, 𝑅𝑖𝑠𝑡 − 𝑟𝑝𝑡]| ∙  𝑥𝑖𝑠𝑡

∗  

 = 𝐺∗ 
 

which contradicts that (𝑥∗, 𝐺∗) is an optimal solution to (9). This completes the proof. 

3.4 Measurement of transaction costs 

Transaction costs incurred by an investor when buying or selling shares of securities at a stock 

market are broadly of two types, namely implicit and explicit costs. Explicit costs can easily be 

determined before execution of trade, as they do not rely on the trading strategy. These include 

market fees, clearing and settlement costs, brokerage commissions, and taxes and stamp duties. 

Implicit costs, on the other hand, are invisible. They depend mainly on the trading characteristics 

relative to the prevailing market conditions. They are strongly related to the trading strategy and 

provide opportunities to improve the quality of trade execution. They are of three categories, 

namely market impact, opportunity costs and spread. These costs can turn high-quality 

investments into moderately profitable investments or low-quality investments into unprofitable 

investments (D’Hondt & Giraud, 2008). When an investment decision is immediately executed 

without delay, implicit costs are largely a result of market impact or liquidity restrictions only, 

and defined as the deviation of the transaction price from the ‘unperturbed’ price that would have 

prevailed if the trade had not occurred. Thus, in this study, immediate execution of trade is 

assumed, and hence market impact accounts for the total implicit costs. Hau (2006) provides a 

methodology for calculating these implicit costs which this study adopts. The transaction price is 

taken to be the last price of the month and the spread mid-point is used as benchmark. The 

effective spread is then calculated as twice the distance from the mid-price measured in basis 

points. Thus obtaining the effective spread (implicit transaction cost) as 

𝑆𝑝𝑟𝑒𝑎𝑑𝑇𝑟𝑎𝑑𝑒 =
200 × |𝑃𝑇 − 𝑃𝑀|

𝑃𝑀  

where 𝑃𝑇 is the transaction price and 𝑃𝑀 is the mid-point of the bid-ask spread. 

4. DATA AND SAMPLE 

The historical monthly data of securities on the Johannesburg Stock Market from January 2008 to 

September 2012 is considered, and the following criteria are used to select securities available 

for portfolio selection: 

 stocks with negative mean returns for the entire period considered are excluded from the 

sample, 

 companies which were not listed on the Johannesburg Stock Market by January 2008 and only 

entered afterwards are excluded, and 

 securities having the highest positive mean returns for the entire period. 
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Empirical distributions computed from past monthly returns are taken as equi-probable 

scenarios. A scenario, 𝑅𝑖𝑠𝑡, for the return of asset 𝑖 of period 𝑡 is calculated as 𝑅𝑖𝑠𝑡 =
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
− 1, 

where 𝑃𝑖,𝑡  is the historical monthly price of asset 𝑖. Five scenarios are considered for each asset 

return and corresponding implicit cost at each time period and the model is applied over one 

stage. The initial portfolio is selected from 13 assets and empirical distributions of these 

securities are considered. Since for each security we have 54 monthly returns for the period under 

study, the months are numbered from 1 to 54 and random numbers used to select asset returns 

and associated transaction costs to get scenarios for each asset. It is assumed that transaction 

costs are random since they are randomly selected together with corresponding asset returns. 

Thus a scenario comprises an asset return and the associated transaction cost. The transaction 

cost is given as a rate and scenarios are taken to be equally likely to occur. Thus, each asset’s 

return and transaction cost scenario has a probability of occurring of 
1

5𝑛
, where 𝑛 is the number of 

assets in the portfolio. The number of scenarios is restricted to 5, since in stochastic programming 

the scenario tree grows exponentially. At the end of the first stage, the investor decides on the 

first-stage optimal portfolio as given by the investor’s chosen portfolio risk, the gross portfolio 

mean return or net portfolio mean return as the case may be and the portfolio transaction cost. 

4.1 Model application and results 

The study considers an investor who has R10 000 to spend on the initial portfolio. The optimal 

portfolios describing the first-stage efficient frontier are shown in TABLE 1. The phrase ‘D. Lim’ 

stands for ‘diversification limit’. 

TABLE 1: Stage 1 optimal portfolios: risk, cost and expected return unconstrained 

D. Lim Gross mean Net mean Risk Cost % Cost Net wealth 

0.100 0.031 0.027 0.034 44.82 12.9 10265.78 

0.125 0.034 0.029 0.031 55.15 14.7 10286.85 

0.150 0.036 0.030 0.029 63.49 16.7 10297.01 

0.175 0.038 0.032 0.027 60.04 15.8 10317.61 

0.200 0.039 0.036 0.025 36.48 7.7 10357.12 

0.225 0.040 0.036 0.025 39.47 10.0 10359.09 

0.250 0.040 0.036 0.024 42.45 10.0 10361.05 

0.275 0.041 0.035 0.024 44.28 12.1 10362.78 

0.300 0.041 0.036 0.024 46.10 12.1 10364.50 

0.325 0.041 0.037 0.023 47.93 9.8 10366.23 

0.350 0.042 0.037 0.023 44.71 11.9 10372.89 

0.375 0.042 0.038 0.023 38.98 9.5 10382.03 

0.400 0.042 0.039 0.022 33.24 7.1 10391.16 

Source: Authors’ analysis 
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As portfolios become less diversified, there is an increase in both the gross portfolio mean return 

and the net portfolio mean return. The risk declines and the net wealth increases with increasing 

diversification limit. However, the total implicit transaction cost rises from R44.82 to R63.49 as 

the diversification limit increases from 0.1 to 0.15 respectively. Thereafter, the transaction cost 

declines in a fluctuating pattern to a lowest value of R33.24 obtained when the diversification 

limit is 0.4. Efficient frontiers of net mean portfolio returns and gross mean portfolio returns 

reveal the impact of neglecting implicit transaction costs in portfolio selection. The total implicit 

transaction costs incurred to achieve each optimal portfolio vary from 7.1% to 16.7% of returns 

on investment. 

Analysis of portfolio composition of assets in optimal portfolios is carried out and the information 

is shown in TABLE 2. It is evident from the table results that the SMNDTC model allocates the 

maximum weight possible to each of the selected assets except when an even distribution is 

impossible. The model reflects consistency in selection of assets as portfolios become less 

diversified. 

TABLE 2: Assets percentage composition: Stage 1 optimal portfolios 

D. Lim AVI ASR APN CSB CLS CML PNC CPI IPL 

0.100 10 10 10 10 10 10 10 10 10 

0.125 12.5 12.5  12.5 12.5 12.5 12.5 12.5 12.5 

0.150 15 15  15  10 15 15 15 

0.175 17.5 17.5  12.5   17.5 17.5 17.5 

0.200 20 20     20 20 20 

0.225 22.5 22.5     22.5 10 22.5 

0.250 25 25     25  25 

0.275 27.5 27.5     27.5  17.5 

0.300 30 30     30  10 

0.325 32.5 32.5     32.5  2.5 

0.350 35 35     30   

0.375 37.5 37.5     25   

0.400 40 40     20   

Source: Authors’ analysis 

4.1.1 Sensitivity analysis 

Sensitivity analysis of the SMNDTC model is done by calculating the sensitivity index (SI) for each 

parameter. The methodology by Hoffman and Gardner (1983) and Bauer and Hamby (1991) is 

employed. Output percentage difference is calculated by varying one input parameter at a time, 

from its minimum value (zero in this case) to its maximum value (parameter value in optimal 

portfolio). Sensitivity indices are obtained as follows:  
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Sensitivity Index (SI)=
𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥
 

where 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 are the minimum and maximum output values respectively. We consider 

maximum output values of 0.1, 0.15, 0.2 up to 0.3, which are the imposed diversification limits. 

The model being proposed is stochastic and works by replacing one parameter by a ‘less profitable’ 

one when we assign a weight of zero to the asset of the optimal portfolio. This happens because 

of the condition imposed by the model that the sum of assets’ weights be unity. 

This results in a relative sensitivity value. Hence, 𝐷𝑚𝑖𝑛 value of the model output is a relative 

value. Thus, applying the above method yields a relative sensitivity analysis of the model, the 

results of which are shown in TABLE 3. 

TABLE 3: SMNDTC model sensitivity analysis 

D. Lim Parameter Proxy Max value Cost SI Risk SI Wealth SI 

0.10 X1  0.10 0.0357 0.3235 0.0027 

 X2   -0.0076 0.0000 0.0026 

 X3   -0.0036 0.0588 0.0004 

 X4   0.4931 0.0882 -0.0011 

 X5 X7(10)  0.0134 0.0294 0.0008 

 X6   0.0442 0.1176 0.0007 

 X8   0.2700 -0.0294 0.0008 

 X11   0.0192 0.2353 0.0018 

 X12   0.0451 0.1765 0.0018 

 X13   0.0013 0.2353 0.0001 

0.15 X1  0.15 0.0128 0.3793 0.0019 

 X2   -0.0331 0.0000 0.0018 

 X4   0.4971 0.1379 -0.0038 

 X6 X5(10)  0.0217 0.1724 -0.0011 

 X8   0.2608 0.0000 -0.0009 

 X11   -0.0047 0.2759 0.0006 

 X12   0.0227 0.2414 0.0006 

0.20 X1  0.20 -1.1239 0.3600 0.0075 

 X2   -1.2303 -0.0400 0.0074 

 X8 X4(20)  -0.5482 -0.0400 0.0039 

 X11   -1.1645 0.2800 0.0058 

 X12   -1.1009 0.2400 0.0058 

0.25 X1  0.25 0.0436 0.4583 0.0021 

 X2 X11(25)  -0.0707 0.0000 0.0020 

 X8   0.6620 0.0000 -0.0023 

 X12   0.0683 0.2917 0.0001 
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D. Lim Parameter Proxy Max value Cost SI Risk SI Wealth SI 

0.30 X1  0.30 0.4583 0.4583 0.0025 

 X2 X11(10)  0.0417 0.0417 0.0024 

 X8   0.0417 0.0417 -0.0028 

 X12   0.3333 0.3333 0.0000 

Source: Authors’ analysis 

It is observed that, for each diversification limit considered, the same asset is being chosen as 

the proxy. However, these proxies vary from one diversification limit to the other. The results show 

small percentages of model variability of optimal wealth due to changes in input parameter value. 

The wealth sensitivity index ranges from -0.38% to 0.75%. This is a good indication that the model 

output values are not significantly influenced by specific input values. Some wealth sensitivity 

indices are negative, implying that the respective proxies result in better wealth. However, the 

cost sensitivity indices vary from -1.2303 to 0.6620. The negative indices show that the proxies 

result in higher implicit transaction costs compared to assets in optimal portfolios. All such 

proxies cause a decline in portfolio wealth, since all corresponding wealth S.I. values are positive.  

5. CONCLUSION 

In this study, a multi-stage stochastic maximum downside risk model that incorporates 

uncertainty of asset returns and implicit transaction costs is proposed. The model best applies to 

periods of economic recessions which are characterised by extreme movements in asset prices. In 

such times, investors are highly concerned about the performance of their portfolios, particularly 

the downside movements. The contribution of this study includes:  

 the development of a multi-stage stochastic maximum negative deviation model that 

optimizes portfolios in the presence of uncertain implicit transaction costs incurred in initial 

trading and in subsequent rebalancing of portfolios, and 

 the development of a strategy that captures uncertainty in stock returns and in 

corresponding implicit trading costs in extreme downside movements of stock prices by way 

of scenarios. 

The methodology allows investors and investment managers to decide on optimal portfolios 

realizing the associated implicit transaction costs. It is a linear programming model and hence it 

is feasible for large-scale portfolio selection, as it reduces considerably the time needed to reach 

a solution. It is, however, left for further research to obtain a model that captures both implicit 

and explicit transaction costs in uncertain market environments.  
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