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a b s t r a c t

A new approach to tracking control of industrial robot manipulators is presented in this paper. The highly
coupled nonlinear dynamics of a six degrees of freedom (6-DOF) serial robot is decoupled by expressing
its variables as a function of a flat output and a finite number of its derivatives. Hence the derivation of the
flat output for the 6-DOF robot is presented. With the flat output, trajectories for each of the generalized
coordinates are easily designed and open loop control is made possible. Using MATLAB/Simulink S-
functions combined with the differential flatness property of the robot, trajectory tracking is carried out
in closed loop by using a linear flat controller. The merit of this approach reduces the computational
complexity of the robot dynamics by allowing online computation of a high order system at a lower
computational cost. Using the same processor, the run time for tracking arbitrary trajectories is reduced
significantly to about 10 s as compared to 30min in the original study (Hoifodt, 2011). The design is taken
further by including a Jacobian transformation for tracking of trajectories in cartesian space. Simulations
using the ABB IRB140 industrial robot with full dynamics are used to validate the study.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The development of industrial robots has been advanced in
the last decade. This is mainly due to increase in the complex-
ity of tasks that they execute. The controller which is a major
component of robots has received a lot of attention from robotic
researchers. This is because it has a direct impact on their per-
formance and could inhibit their deployability and applicability in
certain areas [1–3]. Many control techniques have been proposed
for modern industrial robot manipulators including the classical
PID, Computed torque, feedback linearization, inverse dynamics,
neurofuzzy, model predictive control etc. More recently, robot
control methods have been model based which simply relies on
the mathematical model of the robot.

Model based control has been applied in trajectory tracking
tasks [4–6]. However, the computational requirements of these
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model based systems are quite high as it is required to solve very
large equations in their controls. Despite fast computer processor
speeds, effective control algorithms become very computationally
expensive with high run times and in some cases impossible to
achieve. Most researchers in dealing with trajectory robot tracking
applications have had to work with lower order robotic dynamics
such as in wheeled robots [7–9], parallel robots [10] and un-
deractuated robots [1,8,11] in proposing their control algorithms.
Underactuating robotic manipulators reduces the order from a
high degree of freedom (DOF) to a lower one. As the number
of degree of freedom increases, the computational complexity of
computing the control also increases. We refer to chapter 6 of [12]
where the computational complexity of the 6-dof robot dynamics
is discussed.

In this study, a 6-dof robot is modeled using the Newton–Euler
approach. The computations done with the MAPLE software re-
sulted in very long dynamic equations, literally running into sev-
eral pages. Themere size of the equations can be a challenge to the
control engineer in terms of the computing time. The equations
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are also nonlinear which adds to the burden. In these scenarios,
classical control techniques fail due to the fact that they require
long times for solutions to be obtained. This study presents a tech-
nique of tracking a 6DOFwithout the use of underactuation or such
other assumptions that would have first reduced the complexity of
the problem.

One nonlinear control strategy that is gaining popularity
among robotic researchers is the differential flatness based control
[13–18]. It has been applied to control mobile robots [7,9,19],
UAVs, UGVs [20], flexible robots [21], underactuated planar robot
[11,22–24] and so on. Differential flatness is known to be well
suited for the problem of trajectory generation and tracking
[18,19,25]. With differential flatness, the trajectories (position,
velocity, acceleration and jerk) of a nonlinear system can be easily
interpolated by defining a smooth curve with initial and final con-
ditions. The state and control variables can then be reconstructed
without having to integrate the system equations [18].

This paper focuses on using this strategy for trajectory control
of the ABB IRB140 6-DOF industrial robot with full dynamics. This
is the main contribution of this paper. Trajectory control is carried
out in open loop and then tracking is done using feedback in a
flat controller. The control design is implemented both in joint
space and task space. Of particular interest is the performance
of tracking in task space since there is generally a problem of
lack of synchronization between motion in the end effector and
that in joint space. A small tracking error in the joint space can
easily bemagnified in the operational space. The tracking control is
simulated using the MATLAB/Simulink software environment. The
study is an extension of earlier results on differential flatness based
control by the authors [26].

The paper is organized as follows: Section 2 describes the dy-
namicmodel of an n-dof robot with particular reference to the ABB
IRB140 robot. Section 3 discusses differential flatness analysis of
the robot and shows the flat output computation. Section 4 intro-
duces trajectory planning and the flatness based controller design.
Section 5 discusses simulation and results of the flatness based
trajectory control for the IRB140 model. The paper is concluded in
Section 6.

2. Modeling of 6-dof robot

First we start by modeling the kinematics of the robot. The
robot kinematics describes motion of the joints without recourse
to the forces causing them. We present the forward and inverse
kinematics of the Irb140 robot.

2.1. Kinematic modeling ABB Irb140 robot

The forward kinematics is used to find the position of the
manipulator given the joint positions. This is easy once the DH
parameters of the robot is known. For this study, we use the DH
parameters as given in [27]. Given the actual end effector pose
of the robot, the inverse kinematics solves for the corresponding
joint positions. The inverse kinematics problemhasmany solutions
so it is not always unique: the same end effector pose can be
reached in several configurations, corresponding to distinct joint
position vectors. For robot manipulators with six DOF, with the
last three joints intersecting at a wrist, such as the Irb140 robot,
it is common practice to decouple the inverse kinematics problem
into two simpler problems. The problem is defined in terms of the
inverse position kinematics and inverse orientation kinematics.
Fig. 1 describes the Kinematic structure and frame assignments of
the ABB IRB 140 robot.

The DH parameters of the IRB140 robot as described by [27] are
shown in Table 1:

Table 1
DH parameters of Irb140 Robot.

Axis i αi−1 ai−1 di θi

1 0 0 d1 θ1
2 90 a1 0 θ2
3 0 a2 0 θ3
4 90 0 d4 θ4
5 −90 0 0 θ5
6 90 0 d6 θ6

where d1 = 352 mm, a1 = 70 mm, a2 = 360 mm, d4 = 380 mm, d6 = 65 mm.

Fig. 1. Kinematic structure and frame assignments of the ABB IRB 140 robot.

A geometrical solution for the inverse kinematics as derived by
[10] is described here: The Transformation matrix from frame 6
to frame 1 with respect to the base frame 0 defines the cartesian
position and orientation of the end effector as:

0
6T =

⎡⎢⎣r11 r12 r13 Pxw
r21 r22 r23 Pyw
r31 r32 r33 Pzw
0 0 0 1

⎤⎥⎦ (1)

where:
r11 = c1c23(c4c5c6 − s4s6) − c1s5s23c6 + s1(s4c5c6 + c4s6)
r12 = −c1c23c4c5c6 + c1s23s5s6 − s1s4c5s6
r13 = c1c23c4s5 + c1s23c5 + s1s4s5
r21 = s1s23(c4c5c6 − s4s6) − s1s23s5c6 − c1(s4c5c6 + c4s6)
r22 = −s1c23c4c5c6 + s1s23s5s6 − c1s4c5s6
r23 = s1c23c4c5c6 + s1s23s5 − c1s4s5
r31 = s23(c4c5c6 − s4s6) + c23s5c6
r32 = −c6s23c4c5 − c23s5s6
r33 = s23c4c5 − c23c5
Pxw = c1s23d4 + c1c2a2 + c1a1
Pyw = s1s23d4 + s1c2a2 + s1a1
Pzw = −c23d4 + s2a2 + d1.

(2)

Pxw, Pyw, Pzw describes the position of the wrist center. c1 =

cos(q1), s12 = sin(q1 + q2), etc.
The solution for the first angle q1 from Fig. 2 is:

q1 = atan(Pyw, pxw). (3)
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Fig. 2. Projection of the wrist center onto the xy plane.

Fig. 3. ABB Irb140 Robot with six axes [29].

The expressions for the remaining joints q2 to q6 will be in-
cluded in the Appendix. With the inverse kinematics, we can
determine the joint positions required for joint controls given a
reference Cartesian trajectory.

2.2. Dynamic modeling of ABB Irb140 robot

For dynamic modeling of industrial robots with n degrees of
freedom, twomethods exist: The Euler–Lagrange and theNewton–
Euler method. While the former approach is energy based, the
latter analyzes the forces between each of the links in a recursive
manner. It has been shown that the Newton–Euler method is more
suited for modeling higher degree of freedom robots since it is
faster and provides a more accurate model [28]. In this study, the
Newton–Euler method was used to derive the dynamic model of
the robot which takes the form of:

M(q)q̈ + C(q, q̇) + G(q) = K(q, q̇)u (4)

where q(t) ∈ ℜ
n is the vector of angular joint positions called the

generalized coordinates. u(t) ∈ ℜ
n are the control inputs or forces

driving the joints.M(q) is a positive definite n×n invertible matrix
representing the inertia forces [12]. C(q, q̇) is an n dimensional
vector of coriolis and centrifugal terms andG(q) is anndimensional
vector representing the gravitational forces. K(q, q̇) is the matrix
characterizing the actuating forces. It is also assumed that for an
n-dof robot, Fig. 3 dim(q) = dim(u) and rank(K) = n.

It is important to express (4) in a first order nonlinear form to
facilitate its representation for flatness analysis. The equation can
be written in the form

q̇ = f(q,u). (5)

Hence based on (5), we can write (4) as:

q̈ = −M(q)−1(C(q, q̇) + G(q)) + M(q)−1K(q, q̇)u. (6)

For a 6-dof robot, Eq. (6) has six second-order differential equa-
tions. This can be transformed to twelve first order differential
equations. Setting:

x1 = q1, x7 = q̇1
x2 = q2, x8 =

.
q2

...

x5 = q5, x11 =
.
q5

x6 = q6, x12 =
.
q6.

(7)

The first order form is hereby expressed by:

ẋ1 = x7,
.
x7 = f7(x, u) =

..
q1

.
x2 = x8,

.
x8 = f4(x, u) =

..
q2

...

ẋ6 = x12, ˙x12 = f12(x, u) =
..
q6.

(8)

The equation in states space is now of the form

ẋ = f(x) + g(x)u (9)

and the output vector is given by:

y = h(x) (10)

f(x) : ℜ
2n

→ ℜ
2n , g(x) : ℜ

n
→ ℜ

2n. f maps ℜ
2n to ℜ

2n, g is
a smooth matrix function and h is a smooth function (defined in
Eq. (12)). This means that the functions are continuously differen-
tiable for sufficient number of times. These vectors are defined as:

f(x) =

[
x2
M(x1)−1(−C(x1, x2)x2 − G(x1))

]
g(x) =

[
0n×n

M(x1)−1

]
.

(11)

Eq. (11) depicts a 2nd order system with 12 state variables. The
outputs to be controlled are a vector of the joint angles of the robot
given by:

y = h(x) = Cx (12)

where C is a matrix defined by C =
[
In×n 0n×n

]
.

3. Differential flatness analysis of an n-dof robot arm

Differential flatness is derived fromdifferential geometrywhich
allows us to simplify high dimensional computational problems of
differential manifolds. The merit of the approach is to reduce the
computational complexity of the dynamics of the system by defin-
ing a flat output which enables us to characterize the dynamics of
whole robot as trivial. For an n-dof robotwith n actuators to be flat,
all the n states and inputs of the robot must be defined in terms of
the flat output and a finite number of its derivatives. We compute
the flat output in the next subsection.

If the dynamic equation given in Eq. (4) is equivalent to equa-
tions in terms of the flat output, then the robot is said to be
Lie–Backlund (LB) equivalent (see [18]) to a linear system by
endogenous feedback [30,31]. Once the dynamic equations are
completely linearized, then the trajectories of the n-dof robot can
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now be planned and controlled with much ease. This property
of equivalence makes differential flatness well suited for motion
planning in complex robotic manipulators.

From the affine system of (9), the whole system can be ex-
pressed in terms of its flat output such that the generalized output
is yof dimensionn. y and its successive derivatives are independent
and the system variables x and u are expressed in terms of the
generalized coordinates y and its successive derivatives to a finite
number. That means:

(y1................ ym) = φ(x, u, . . . .....u(l))

and

x = φ0(y, y, ÿ......, y(s)), u = φ1(y, ẏ, ÿ......, y(s+1))

where s and l are positive integers.
The vector y can be represented by:

y = (x1, x2, x3, x4, x5, x6)T . (13)

We now show the mathematical derivation of the flat output
for the 6-DOF robot.

3.1. Flat output computation

The dynamics of the robot represented by Eq. (4) reads

M(x)ẍ + C(x, ẋ)ẋ + G(x) = u

where u is the vector of exterior forces and torques. We can also
write the equation in the form of:

x2 = ẋ1
u = M(x1)ẋ2 + C(x1, x2)x2 + G(x1).

(14)

Applying the algorithm based on the Smith decomposition [18],
after eliminating u from the above equation, the system reads

ẋ1 − x2 = 0

or(
d
dt

− 1
)(

x1
x2

)
= 0 (15)

which is a linear equation.

Right-multiplying the matrix of dynamics
(

d
dt

−1
)

by(
0 1

−1
d
dt

)
gives

(
1 0

)
which is the desired Smith decomposition.

Therefore, keeping the second column of thematrix
(

0 1

−1
d
dt

)
, i.e.(

1
d
dt

)
gives the relation

(
x1
x2

)
=

(
1
d
dt

)
y (16)

and

y = x1 (17)

which means that x1 is the flat output.
The flat output y usually has a physical meaning. In this case, it

is the vector of angular displacements at each joint of the robot.

3.2. Lie derivatives

In order to establish the flatness and exact linearization by
feedback for the fully actuated robot, we employ the Lie derivative
function to fulfill certain conditions for the affine equation of (9).

The Lie derivative of a scalar function h(x) with respect to a
vector field f is defined by [32,33] Lf h = ∆hf .

LgLk−1
f h(x) = 0 ∀x in a neighborhood of x, k = 1..........r − 1

and

LgLr−1
f h(x0) ̸= 0. (18)

From the definition in (18), r is the relative degree of the system.
Differentiating the output y, using Lie derivatives, we have,

y(k) = Lkf h(x), k = 1.....r − 1

y(k) = Lkf h(x) + LgLk−1
f h(x)u, k = r.

(19)

The derivatives of the output will be:

ẏ =
∂h
∂x

ẋ =
∂h
∂x

(f + gu) = Lf h(x) + Lgh(x)u

ÿ =
∂Lf h
∂x

(f + gu) = L2f h(x) + LgLf h(x)u
(20)

using the output vector from Eq. (12) we have

y = h(x) = x = L0f h(x)
ẏ = ẋ
ÿ = −m−1(cx∗

+ g) + m−1u
(21)

where

cx∗
=
[
c1x7 c2x8 c3x9 c4x10 c5x11 c6x12

]T
g =

[
g1 g2 g3 g4 g5 g6

]T
m−1 is the matrix describing the inverse of the inertia matrix. cx∗

represents the vector of coriolis terms and g is the gravity vector.
Hence

y = h(x) = L0f h(x)
.
y = L1f h(x) + Lgh(x)u = L1f h(x), Lgh(x) = 0
..
y = L2f h(x) + LgL1f h(x)u = v.

(22)

After differentiating the output twice, we obtain an input on
the RHS of Eq. (22). Hence the relative degree r for the robot is
2. The manipulator described in (4) has 2n states and n inputs
actuating every joint of the manipulator. If the manipulator is fully
actuated, then we can have up to n outputs such that yi = qi, i =

1, . . . ., n where each of these outputs has a relative degree of
2. The total sum of the relative degree for the manipulator for
the n outputs is given as 2n. This is the same as the dimension
of the manipulator states. This implies that the whole state (of
dimension 2n) and input can be recovered by y and its derivatives
up to the second order. Hence the exact linearization by feedback
and flatness for the fully actuated robot is established [8,18,34].
Flatness in this case is equivalent to the well-known input/output
decoupling property without zero dynamics and controlled torque
method.(ref). Using a chain of two integrators we can design a
linear system of the form

ÿ = v (23)

where v is given by:

v = α + βu

and
α = −m−1(cx∗

+ g)
β = −m−1 (24)

v can be designed using pole placement to stabilize the loop.

v = ẍ1ref − k1ẋ1∗
− k0x1∗ (25)

where x∗
= x1 − x1ref .

To illustrate a global change of coordinates, we represent the
generalized coordinates y by a new variable z, from Eq. (21), we
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define y = z as the flat output. The state vector transformation is
thereby,

z1 = x1
z2 = ∆z1f = x2

(26)

x1 and x2 represent the vector of the generalized coordinates and
its derivative respectively.

The set of linear equations of the 2nd order is given by:

ż1 = z2
ż2 = v

(27)

and the input transformation u becomes

u = K−1(x1, ẋ1)(M(x1)ẍ1 + C(x1, ẋ1) + G(x1)). (28)

The vector u can be expanded for the individual joints as fol-
lows:

u1 = m1(x1)ẍ1 + C1(x1, ẋ1) + G1(x1)
u2 = m2(x1)ẍ1 + C2(x1, ẋ1) + G2(x1)
u3 = m3(x1)ẍ1 + C3(x1, ẋ1) + G3(x1)
u4 = m4(x1)ẍ1 + C4(x1, ẋ1) + G4(x1)
u5 = m5(x1)ẍ1 + C5(x1, ẋ1) + G5(x1)
u6 = m6(x1)ẍ1 + C6(x1, ẋ1) + G6(x1).

(29)

It can be seen that these control inputs are all expressed in terms
of the flat output x1. The variables of Eq. (29) are further defined in
the Appendix.

3.3. Trajectory planning

Trajectory planning for nonlinear systems requires an iterative
solution by numerical methods to find control such that the initial
and final time maneuvers for the system dynamics are satisfied.
This process is often plagued by input saturation, nonlinearities
and singularities. However, with the flat output: for the variables
x1(t) given by the curve t ↦→ x1(t), there exist a trajectory

t ↦→

(
x(t)
u(t)

)
=

(
φ0(x1(t), ẋ1(t), ẍ1(t)......, x1(q)(t))
φ1(x1(t), ẋ1(t), ẍ1(t)......, x1(q+1)(t))

)
(30)

that satisfies the robot manipulator system equations as follows;

t ↦→

(
x(t)
u(t)

)
=

(
x1(t), ẋ1(t), ẍ1(t)
M(x)ẍ1(t)

)
=

(
x1(t), ẋ1(t), ẍ1(t)
M(x1)v(t)

)
. (31)

These trajectories are obtained without integrating any system
of differential equations. The robot states x(t) and inputs u(t) are
parameterized by the flat output x1(t) using (31). Hence themotion
planning problem can be defined as finding a trajectory t ↦→ x∗(t)
and t ↦→ u∗(t) satisfying

.
x
∗
(t) = f (x∗(t), u∗(t)) from an initial state

x0 ∈ x1 to a final state xT ∈ x1 (where T > 0) such that

x∗(0) = x0, x∗(T ) = xT .

To track the reference trajectory with added disturbances or un-
certainty, we define a function [18] fd ∈ Tx1 given a reference
trajectory t ↦→ x∗(t) of (x, f ). We find a feedback law x ↦→ u(x)
and the error x − x∗ denoted by e such that
.
e(t) = fd(e(t) + x1∗(t), u(e(t) + x1∗(t))) − f (x1∗(t), u∗(t)) (32)

is asymptotically stable for all disturbances.
There are many methods of generating these trajectories. They

include, Bezier interpolation, fourier series and polynomials. New-
ton interpolation is used in this study to generate the coefficients
of the flat output polynomials.

Fig. 4. Flatness based Controller Design in joint space.

4. Flatness based controller design

The robot control problem is seen as a determination of torques
or forces generated by the actuators for the purpose of accom-
plishing a desired task. For the robot in study, we desire to ac-
curately execute a planned trajectory using the end effector (e.g.
in laser welding applications). These kinds of tasks require robust
controllers to achieveminimumerrors. The design of the controller
is model based. Hence with the computed dynamics described in
Section 2 and the flat output of the robot, the controller parameters
are determined. The inertias, gravity, coriolis and centrifugal forces
are all considered in the design. The control is done in two stages:
first is the open loop control which involves the generation of
nominal flat feedforward trajectories. These explicit trajectories
allow for a more precise tracking of the robot. In the second stage,
we take advantage of flatness property of the robot in designing
a feedback linearizing control that will stabilize the robot in the
presence of disturbances. The approach to flatness based control
is known as the two degrees of freedom control [35]. One aspect
deals with feedforward nominal control using trajectories and the
second facet deals with feedback in the presence of disturbances.
We consider both scenarios in this study for both joint space and
task space control. (See Fig. 4).

The linear control used to stabilize the robot in the presence
of disturbances is given in Eq. (25) and the gains used for the
simulations in vector form is given by:

k1 =

⎡⎢⎢⎢⎢⎢⎣
400 0 0 0 0 0
0 400 0 0 0 0
0 0 400 0 0 0
0 0 0 400 0 0
0 0 0 0 400 0
0 0 0 0 0 400

⎤⎥⎥⎥⎥⎥⎦ (33)

and

k0 =

⎡⎢⎢⎢⎢⎢⎣
40 0 0 0 0 0
0 40 0 0 0 0
0 0 40 0 0 0
0 0 0 40 0 0
0 0 0 0 40 0
0 0 0 0 0 40

⎤⎥⎥⎥⎥⎥⎦ . (34)

The same gains were used for the PD control for comparison
purposes.

4.1. Trajectory generation in joint space

The problem of generating trajectories involves parameterizing
the flat outputs and their derivatives over instants in time t1
to t2. The flatness property enables easy mapping between the
trajectories in the nonlinear system and that of the flatness space.
Terminal conditions for the flat outputs and their derivatives are
made equivalent to the initial and final states of the complex
manipulator dynamics over a specified period of time. (See Fig. 5.)

Using the boundary conditions at t1 = 0 and t2 = 5 s for
the 6 flat outputs and their derivatives, the terminal conditions
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Fig. 5. PID control diagram in simulink.

for the 12 states are also obtained. A 5th degree polynomial is
used to determine the coefficients of the trajectories. The boundary
conditions for these trajectories are set bearing in mind the joint
limits of the robot model.

x∗

1(τ ) = α0 + α1τ + α2τ
2
+ α3τ

3
+ α4τ

4
+ α5τ

5 (35)

where

τ =
t − t1
t2 − t1

. (36)

Steering the robot about the individual joints, a reference was
defined for the joint coordinate and the following were obtained
for reference trajectories: For a reference coordinate from origin
(0, 0, 0, 0, 0, 0) to (−pi/2, 0, pi/2, −pi, pi/3, pi), we obtained

x∗

11 = −0.1257τ 3
+ 0.0377τ 4

− 0.0030τ 5
;

x∗

12 = 0;
x∗

13 = 0.1257τ 3
− 0.0377τ 4

+ 0.0030τ 5
;

x∗

14 = −0.2513τ 3
+ 0.0754τ 4

− 0.0060τ 5
;

x∗

15 = 0.0838τ 3
− 0.0251τ 4

+ 0.0020τ 5
;

x∗

16 = 0.2513τ 3
− 0.0754τ 4

+ 0.0060τ 5.

(37)

To obtain derivative functions of x∗

1, we differentiate Eq. (37) up to
twice.

4.2. Task space control

Using the inverse kinematics equations of Section 2 and the
robot jacobian, trajectorieswere generated for the end effector and
converted to joint angles which was applied to the flat controller
loop. The output from the control is then converted back to task
space trajectories using the forward kinematics of the robot. The
block diagram of the control in Simulink is shown in Fig. 6. The
robot Jacobian is not shown here since it has already been reported
in [27].

5. Simulation, results and discussion

Extensive computer simulations were carried out in Simulink/
Matlab environment. Firstly, the open loop dynamics of the Irb140
was simulated under several scenarios. The robot was simulated
under gravity and no gravity conditions. The open loop simulations
were done using desired torque values that were computed based
on the computed dynamics of the robot. Then a feedback flat
controller was designed to simulate and stabilize the system in
closed loop. The reference trajectories and the complete dynamics

Fig. 6. Task space control in cartesian space.

Fig. 7. Open loop with gravity compensation.

of the Irb140 robot are generated using Matlab based S-functions.
This enables online computations and updating of its functions
with every time step in the simulations.

5.1. Open loop

Simulations were initially done under no gravity and zero
torque situation (under specific initial conditions) with the robot
being in a stable/rest posture. When the robot is at rest posi-
tion, i.e. the joint vector initial conditions have the configura-
tions (0, 0, pi/2, 0, −pi/2, 0) and (0, 0, 0, 0, 0, 0) for the velocities
respectively. At this position, the gravity terms of the robot are
compensated for and hence the robot is at steady state. Moving
away from the initial conditions at rest, the robot displays unstable
behaviors. An attempt to actuate the robot in open loop results in
a chaotic situation as the robot tries to gain balance. An example of
such behavior is seen in Fig. 8 (refer to online version for colors).
When gravity is added to the dynamics, the situation is more
chaotic. This condition persists even when gravity compensation
is included in the input torque vector. For example, in Fig. 7, the
robot is being driven by a gravity compensating torque. At first, the
response is stable and then joint 5 becomes unstable. This behavior
shows how highly nonlinear and unpredictable the robot behaves
in open loop. Formore information on this robot’s behavior in open
loop, see the work by Herman [36].

Using the differential flatness technique, a feedforward control
was designed and used to maneuvre the robot from one boundary
point to another. Once these boundaries are set, the robot is easily
driven along those boundaries in open loop. However, the initial
conditions of the robot in flat space must be the same as that of
the real robot. This is the case, in Fig. 9(a), this simulation is done
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Fig. 8. Open loop without gravity compensation.

Fig. 9. Open loop using Flatness with gravity compensation.

Fig. 10. Open loop using Flatness without gravity compensation.

with gravity compensation. In Fig. 9(b), the initial conditions were
varied hence the joint trajectories are not accurate.When the robot
is driven in open loop under no gravity compensation situations,
unstable response is seen at the various joints. This can be seen in
Fig. 10.

5.2. Closed loop trajectory tracking

For tracking the nominal trajectories, the flatness based con-
troller stabilizes the loop and compensates for uncertainties. In this

Fig. 11. Set Point Regulation comparing PID and Flat control.

Fig. 12. Trajectory Tracking using PID.

Fig. 13. Trajectory Tracking using Flat control.

study, the nonlinear gravitational effects are taken as disturbances.
The function of the controller is to track these trajectories as
accurately as possible in the presence of disturbances. The initial
conditions of the robot which was observed in open loop is not
critical once the feedback flat control is in place. Tracking of the
reference trajectories are guaranteed with the flat controller in the
presence of disturbances. To compare performance, the robot was
regulated for certain setpoints using PD and flat control. The results
are shown in Fig. 11. The flat control settles faster than the PID
control. In terms of the tracking errors, both PID and flat controller
compete favorably. However, the PID control runs into saturation
when the controller gains are very high. This is not so with the flat
controller.

The flatness generated trajectories were tracked using the PID
controller for comparison.With gravity compensation, the tracking
response in Fig. 12 shows tracking error of about 0.15 rads. On the
other hand, tracking using the flat controller produced accurate
results under gravity and no gravity compensation (Fig. 13). The
tracking errors using the flatness based control is almost zero.
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Fig. 14. Tracking a straight line in cartesian space.

The flatness based control is computationally efficient as all
simulations in this study were carried out within a few seconds.
Compared to the PD control simulation run times in the original
study [36], the flatness based control is more than ten times faster.

5.3. Task space trajectory tracking

The results given in the sections above show the effectiveness
of the proposed control for trajectory tracking in joint space. Since
the manipulator tasks are defined in the operational space, few
trajectories planned in cartesian space are used to show the re-
sults. Using the set up in SIMULINK of Fig. 6, we first performed
simulations using a simple straight line and then an arc.

The robot was able to trace the straight line as shown in Fig. 14
and an arc in Fig. 15.

6. Conclusions

This article has described the flatness based tracking control of a
6-DOF industrial robotmanipulator with full dynamics in joint and
task space. The flatness based approach to trajectory control offers
a fast alternative to PID control for such high dimensional robots.
Compared to PID, the gains of the flat controller can be increased
to reduce tracking errors without any fear of saturation. Having
determined the flat output of the robot, trajectory control was
achieved with reasonable accuracy within seconds as compared
to when using the PID control. Therefore the proposed control is
fast and gives accurate trajectory tracking. Thismakes itwell suited
for online practical implementation. In future work, more complex
trajectories will be developed and tested with the flatness based
controller.

Appendix

A.1. Robot kinematics equations

The expressions for q2 and q3 given q1 are obtained from Fig. 16:

q2 = atan(Pzw − d1,
√
(pxw + a1cos(q21)) + (pyw + a1sin(q1))2)

−atan(d4sin(q3), a2 + d4cos(q3))
(38)

using the law of cosines which is c2 = a2 + b2 − 2abcosC , it is easy
to see that

cos(q3) =
L2 + S2 − a22 − d24

2a2d4
(39)

then

q3 = atan(±
√
1 − D2,D). (40)

Putting:

D = cos(q3) =

(Pxw + a1cos(q1))2 + (pyw + a1sin(q1))2 + (pzw − d1)2 − a22 − d24
2a2d4

(41)

then

q3 = atan(±
√
1 − D2,D) (42)

q4 = atan(s1r13 − c1r23, c1c23r13 + s1c23r23 + s23r33) (43)

q5 = atan(c1c23c4 + s1s4)r13 + (s1c23c4 − c1s4)r23 + s23c4r33,
(c1s23)r13 + (s1s23)r23 − c23r33

(44)
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Fig. 15. Tracking an arc in Cartesian space.

Fig. 16. Projection onto the plane formed by links 2 and 3.

q6 = atan(−c1c23s4 + s1c4)r11 − (s1c23s4 − c1c4)r21 − s23s4r31,
(−c1s23s4 + s1c4)r12 − (s1c23s4 + c1c4)r22 − s23s4r32.

(45)

A.2. Robot dynamic equations

Some of the dynamic equations used for the study are defined
in this section. Because of large size of the equations from maple
computations, only part is shown here.

M(q) is defined as⎡⎢⎢⎢⎢⎢⎣
m11 m12 m13 m14 m15 m16
m21 m22 m23 m24 m25 m26
m31 m32 m33 m34 m35 m36
m41 m42 m43 m44 m45 m46
m51 m52 m53 m54 m55 m56
m61 m62 m63 m64 m65 m66

⎤⎥⎥⎥⎥⎥⎦ (A.1)

m1 =
[
m11 m12 m13 m14 m15 m16

]
m2 =

[
m21 m22 m23 m24 m25 m26

]
m3 =

[
m31 m32 m33 m34 m35 m36

]
m4 =

[
m41 m42 m43 m44 m45 m46

]
m5 =

[
m51 m52 m53 m54 m55 m56

]
m6 =

[
m61 m62 m63 m64 m65 m66

]
.

(A.2)

Putting

x1 = q1
x2 = q2
x3 = q3
x4 = q4
x5 = q5
x6 = q6
x7 = q̇1
x8 = q̇2
x9 = q̇3
x10 = q̇4
x11 = q̇5
x12 = q̇6

(A.3)
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from Eq. (11)

f (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x7
x8
x9
x10
x11
x12
M(q)−1(−C(q, q̇) − G(q))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.4)

g(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

m11 m12 m13 m14 m15 m16
m21 m22 m23 m24 m25 m26
m31 m32 m33 m34 m35 m36
m41 m42 m43 m44 m45 m46
m51 m52 m53 m54 m55 m56
m61 m62 m63 m64 m65 m66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.5)

where:
m11 = cos((q5+2pi−2q4−2q3−2q2))0.216840434497100888e−
18+cos((−2q2+pi))0.224527199999999994e1+cos((2q4+2q3+

2q2 + q5))0.216840434497100888e − 18 + cos((−2q4 + 2q3 +

2q2+ q5))0.216840434497100888e− 18+ sin(−q2+ pi/0.2e1−

q3)0.333200000000000052e0 + 0.6800000000e − 4cos((2q5 +

3pi+ q4−2q3−2q2))−0.1700000000e−4cos((2q5+pi+2q3+

2q2−2q4))+cos((q5+q4+2q3+2q2))0.275499999999999964e−
2+cos((q5+2pi−q4−2q3−2q2))(−0.275499999999999964e−

2) + sin((q5 + pi − q4 + q3))0.260999999999999991e − 2 +

cos((q5+2q2+2q3−q4))0.275499999999999964e−2+cos((pi+
2q4+ q5))(−0.433680868994201774e− 18)− 0.6800000000e−

4cos((−q4 + 2q5 + pi + 2q3 + 2q2)) + sin((q5 + 2pi −

q4 − q3 − 2q2))0.260999999999999991e − 2 + sin((q5 + q4 +

q3 + 2q2))0.260999999999999991e − 2 + cos((q5 + 2pi −

2q3 − 2q2))0.551000000000000101e − 2 + sin((q5 + pi +

q3))0.521999999999999982e − 2 +

sin((q5 + pi − q3))(−0.521999999999999982e − 2) + cos(−q2 +

pi/0.2e1)0.192948000000000008e1 +

cos((−2q2 + pi + 2q4))0.138777878078144570e − 16 + sin(q3)
(−0.856800000000000006e0) − 0.1700000000e − 4cos((2q5 +

3pi−2q3−2q2+2q4))+0.3400000000e−4cos((2q4+2pi+2q5))+
cos((2q4−2q3−2q2+pi))0.340000000000062474e−4+cos((q5+

2pi+2q4−2q3−2q2))0.216840434497100888e−18+sin((−q3−

2q2+pi))0.856800000000000006e0−0.6800000000e−4cos((q4+

2q5+pi+2q3+2q2))+cos((q5+pi))(−0.110200000000000020e−
1) + cos((q5 + 2q2 + 2q3))0.551000000000000101e − 2 +

sin(q5 + 0.3e1/0.2e1pi − q3 − q2)(−0.203000000000000012e −

2) + sin((q5 + pi + q4 − q3))0.260999999999999991e −

2 + sin((q5 + pi + q4 + q3))0.260999999999999991e −

2 + sin((q5 + pi − q4 − q3))0.260999999999999991e −

2 + cos((pi − 2q4 + q5))(−0.433680868994201774e − 18) −

0.1700000000e − 4cos((2q5 + 3pi − 2q4 − 2q3 − 2q2)) +

0.6800000000e − 4cos((2q5 + 3pi − q4 − 2q3 − 2q2)) +

sin((q5 + 2pi + q4 − q3 − 2q2))0.260999999999999991e −

2 + sin((q5 − q4 + q3 + 2q2))0.260999999999999991e −

2 − 0.6800000000e − 4cos((2pi + 2q5)) + cos((−2q2 +

pi − 2q3))(−0.499655500000000030e0) + 0.3400000000e −

4cos((−2q4 + 2pi + 2q5)) − 0.1020000000e − 3cos((2q5 + 3pi −
2q3 − 2q2)) − 0.1020000000e − 3cos((2q5 + pi + 2q3 + 2q2)) +

sin(q5 + pi/0.2e1 + q3 + q2)0.203000000000000012e − 2 +

cos((q5 + 2pi − 2q2 − 2q3 + q4))(−0.275499999999999964e −

2) − 0.1700000000e − 4cos((2q5 + pi + 2q4 + 2q3 + 2q2)) +

cos((2q4))(−0.679999999999847394e − 4) + cos((−2q4 − 2q3 −

2q2 + pi))0.340000000000062474e − 4 + sin((q5 + 2pi −

q3 − 2q2))(−0.521999999999999982e − 2) + sin((q5 + q3 +

2q2))0.521999999999999982e−2+0.374662799999999940e1+

sin(q5+ pi/0.2e1+ q3+ q2+ q4)0.101500000000000006e− 2+

sin(q5+0.3e1/0.2e1pi−q3−q2+q4)0.101500000000000006e−

2+sin(q5+pi/0.2e1+q3+q2−q4)0.101500000000000006e−2+

sin(q5+0.3e1/0.2e1pi−q3−q2−q4)0.101500000000000006e−

2 + cos((−2q2 + pi − 2q4))0.138777878078144570e − 16.
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