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Students’ Dichotomous Experiences of the Illuminating and
Illusionary Nature of Pattern Recognition in Mathematics

Michael Kainose Mhlolo*

*Central University of Technology, Bloemfontein, South Africa. Email: mmhlolo@cut.ac.za

The concept of pattern recognition lies at the heart of numerous deliberations concerned with new
mathematics curricula, because it is strongly linked to improved generalised thinking. However none of
these discussions has made the deceptive nature of patterns an object of exploration and
understanding. Yet there is evidence showing that pattern recognition has both positive and negative
effects on learners’ development of concepts. This study investigated how pattern recognition was both
illuminating and illusionary for Grade 11 learners as they factorised quadratic trinomials. Psillos’s four-
conditions model was used to judge the reasonableness of learners’ generalisations in six selected
examples. The results show that pattern recognition was illuminating in the first three examples where
learners made use of localised pattern recognition. In one example, pattern recognition was coincidental
but not beneficial in terms of conceptual understanding. In the last two examples localised pattern
recognition was at the centre of learner confusion as they failed to extend its application beyond the
domain of the examples that generated the pattern. Learners’ confusion with pattern recognition could
be attributed to teachers’ failure to meet four important conditions for good generalisations. Results
from this study confirm earlier studies showing that abduced generalisations developed out of a few
localised instances might be illuminating at first but might not provide the best explanation when
extended beyond the localised domain. Further studies are needed that assist in developing pattern-
aware teachers.

Keywords: Mathematical patterns; trinomials; abduction; generalisation; factorisation

Introduction

Pattern recognition and generalisation are fundamental and valuable skills in mathematics learning,
with wide application in many topics, including algebra, where they are considered as the bedrock
of algebraic thinking (Chua & Hoyles, 2014). According to Mulligan, English, Mitchelmore, Welsby
and Crevensten (2011), mathematics learning that focuses on pattern and structure not only leads
to improved generalised thinking but also can create opportunities for students to develop mathemat-
ical reasoning. The beliefs about this ‘causal’ relationship are so strong that mathematics is itself often
defined as the ‘science of pattern’ and if learners are unable to recognise patterns then mathematical
thinking is considered as not happening (Mason, 1996). Despite this strong view that pattern recog-
nition creates opportunities for learners to develop mathematical reasoning, empirical evidence
shows that learners can be adept at making all kinds of generalisations (Ellis, 2011), some of which
are not productive in terms of being mathematically useful. In addition to students making wrong gen-
eralisations Burton (2008) points to the deceptive nature of pattern evidence itself, arguing that there
are many examples where we get surprised by the unexpected turn that a pattern takes from our initial
inference. We equally are surprised by the multitude of alternative and plausible patterns that we or
other people might recognise from the same examples that we have worked with. These observations
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point to the dichotomous nature of pattern recognition where on the one hand it can be a resource/tool
for learners of mathematics, yet it is equally true that pattern recognition can be illusionary and there-
fore a source of confusion for learners. The dichotomous nature of pattern recognition in mathematics
is rarely objectified in research on pattern generalisation. This suggests the need to further understand
the circumstances under which pattern recognition can be a resource and when it is not supportive for
learners doing mathematics.
Ellis (2011) posits that on the one hand there are potential pitfalls in the teacher’s choice of examples

that may hinder productive generalisation; on the other hand learners can interpret and generalise
those examples in unproductive ways. In mathematics there seems to be a consensus that the use
of an example is an integral part of the discipline and not just an aid for teaching and learning. With
specific reference to generalisations the link is even stronger and reciprocal, given that an example
is defined as any particular case of any larger class about which learners are expected to generalise
and reason: concepts, representations, questions, methods, and so on (Bills & Watson, 2008). In con-
trast, generalisation is defined as the processes by which one derives or induces from particular cases
or examples (Yilmaz, Argun & Keskin, 2009). Owing to this mutual link, generalisation is typical of
example-based reasoning and the view that learners must be able to generalise assumes that this
link is unproblematic. Yet current literature characterises example-based reasoning strategies as
obstacles that need to be overcome (Lockwood, Ellis & Knuth, 2013). For example, Zaslavsky and
Zodik (2007) warn that an example does not always fulfil its intended purpose owing to the mismatch
that often occurs between the teacher’s intention and students’ interpretations. This suggests that
there may be more to the role of examples than simply signifying an unsophisticated line of reasoning.
This paper is premised on the view that the specific elements and representation of examples, and the
respective focus of attention facilitated by the teacher, have a bearing on what learners notice, and
consequently on their mathematical understanding. The paper raises the following specific questions:

(1) In what way did the teacher’s examples provide the learners with an opportunity to experience
pattern recognition as a resource?

(2) To what extent did learners experience pattern recognition as a source of confusion?
(3) How could this confusion have possibly been avoided?

Conceptualisation of Mathematical Patterns
This paper acknowledges that a pattern is an ill-defined concept in mathematics (Carraher, Martinez &
Schliemann, 2008), but analysis would not be meaningful without taking a clear position in terms of
howpatternsarebeing conceptualised.Mulliganet al. (2011) havedescribedapattern asanypredictable
regularity involvingnumber, space,measureor structure, or theway inwhich variouselements areorgan-
ised and related. Most pattern recognition research has concentrated on the regularity involving number
and shape yet recognising patterns in computational procedures permeates every area of mathematical
thinking to such an extent that mathematics problems have been described as typically ‘tame’ and
‘benign’ (Head&Alford, 2015). Unlike the social worldwhere there are ‘wicked problems’, inmathematics
thereare rules for classifying families of problemssuch thatfindingasolution toanew task (computational
procedure) is usually a process of recognising a pattern or regularity in previously worked solutions that
matches the new task. In such cases where regularity is recognised in the techniques of solving similar
problems, pattern recognition is seen as a generalisation of method. This paper analyses teachers’
choices of examples when factorising quadratic trinomials, hence it was considered important to look
at pattern recognition from the perspective of a generalisation ofmethod, that is, the predictable regularity
in computational procedures, techniques, methods or processes for solving related quadratic trinomials.

Attributes of Useful Examples
The issue of judging the usefulness of a teacher’s choice of examples in facilitating learners’ pattern
recognition and generalisation is central to this paper. Given this focus, there was a need to
develop a tool to enable such judgement. In doing so the paper borrows from Rivera and Becker’s
(2007) Pattern Generalisation Scheme, which illustrates how the process of generalisation materia-
lises from the beginning phase of noticing a regularity (abduction) in a a few specific cases (examples)
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to the establishment of a general form (pattern recognition) as a result of confirming it in several exten-
sions of the pattern (induction) and then finally to the statement of a generalisation. Briefly, Rivera and
Becker’s (2007) Pattern Generalisation Scheme suggests that the act of generalisation starts by devel-
oping and discovering a perceived commonality (abduction), which is then verified by repeated testing
(induction) leading to a generalisation. In order to decide the goodness of an abduction in relation to
pattern construction and generalisation, Rivera and Becker suggest that we need to look at the charac-
teristics of a good abductive generalisation. In doing so they borrow from Psillos (1996), who used the
term ‘ampliative reasoning’ to describe the generalisation process and advanced the following con-
ditions that an ampliative inference must fulfil in order to yield valid and necessary conclusions: (a)
it must be non-monotonic; (b) it must deal with the cut-off point problem; (c) it must allow for vertical
extrapolation; and (d) it must accommodate the eliminative dimension of ampliative reasoning. I elab-
orate on each of these conditions briefly.
The requirement of non-monotonicity foregrounds the necessity of stating assumptions about a

pattern undergoing generalisation; it assists in confronting the biases and resolving situations of conflict
between several viable claims of generalisations for the same pattern. The requirement of a cut-off point
demands the justification for a global-type of generalisation (vs a local one) that holds in both specific
cases and the entire class of cases. An abduced generalisation that offers the best explanation provides
the cut-off point in that it can explain why the stated generalisation that depends only on a few instances
(sample) actually holds for the entire class (population). The requirement for vertical extrapolation
focusesonprovidingageneralisation that canbeexplained in adeeperwayusingperceptual knowledge
or other relevant mathematical idea or concept that bears on the class. The requirement for an elimina-
tive dimension makes it possible not only to consider several possible generalisations for a pattern,
however, it also necessitates making a judgement about which one(s) will make the most sense.
Peirce (1966) gave three more conditions as follows: (a) a good abductive generalisation made

about a pattern should be able to explain the facts, tha tis, there is a reliable and justifiable causal
story behind why the known, including and especially the unknown, instances are the way they are;
(b) the generalisation should not surprise us, that is, we expect that it will hold in the largest domain
possible—we do not want to frustrate ourselves with a generalisation that seems to always fail in situ-
ations when new cases are introduced for verification; and (c) the generalisation should stand exper-
imental verification, that is, in Psillos’s (1996) terms, it is non-monotonic with a well justified cut-off point
and has been vertically extrapolated. These conditions then formed the basis for judging the quality of
teachers’ examples towards generalisations.

Methodology

Research Design
This paper uses Qualitative Secondary Analysis of data (Irwin, 2013), which refers to the (re)using of
data produced on a previous occasion to glean new social scientific and/or methodological under-
standings. This may involve prioritising a concept or issue that was present in the original data but
was not the analytical focus at that time (Irwin, 2013). In the present analysis I prioritise learners’
experiences of pattern-based thinking which was present in the original data but which was ignored
previously when teachers were prioritised. Proponents of Qualitative Secondary Analysis suggest
that we can come to understand re-using qualitative data not as the reuse of pre-existing data, but
as a new process of recontextualising data (Savage, 2005).

Sample
Four experienced (7–10 years) high school mathematics teachers (two female and two male), in pre-
viously disadvantaged schools, were purposively sampled to take part in this study. Each of these tea-
chers were teaching an average of 35 learners in their classes and this paper focuses on how these
±140 learners made use of pattern recognition when solving tasks.
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Procedure
Theauthor observedand video-recorded one teacher teaching five lessons onNumberPatterns and the
other three teachers teaching a total of 15 lessons on Functions and Algebra. In the 20 lessons there
were opportunities for learners to recognise patterns and use the structures to solve related tasks.

Data Analysis
Six examples are analysed in terms of both the teacher’s choice of examples and his/her presentation
as well as the learners’ interpretations. The judgements are in accordance with Psillos’s (1996) indi-
cators to see if these generalisations meet the (a) non-monotonic, (b) cut-off point problem, (c) vertical
extrapolation and (d) eliminative dimension criteria.

Validity and Reliability
A number of measures were taken to enhance the accuracy, credibility and validity of data. Firstly, par-
ticipation was voluntary. During and after the lesson observations, there were frequent member checks
with the participants (Lincoln & Guba, 1985). For example, during the lesson observations there was
constant dialogue with participants in order to verify the researcher’s inferences. Participants were
asked to read transcripts of dialogues in which they had participated in order to either agree or disagree
that the summaries reflected their views, feelings and experiences. Throughout the research process
the study was also subjected to peer scrutiny through conference presentations, peer discussions and
research indabas.

Results

Example One
At the beginning of the lesson the teacher writes on the board a2 + 14a + 48 and explains that the
lesson will be on factorisation of such quadratic trinomials. He then draws these two rectangles and
puts a in each of them to show the arrangement of the factors of a2. He then leaves the middle part
of the trinomial and focuses on listing the factors of the last term (48). We pick up the discussion
when the teacher points to what he calls the crux of the matter.

Teacher: But where is the crux of the matter? The crux of the matter is here on 14a. If you add these two
factors of 48 they must give us a positive 14a. So we are going to choose now. Of the factors,
both are factors of what, 48. So we want to put signs (pointing back into the rectangles) which
will give us a positive 14a. We want to choose factors which when you add them they give us a
plus 14a and when we multiply them they give us a plus 48. Which are the two factors?
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Class: 8 and 6

Teacher: The next thing we are going to do is we are going to say a × 8 (showing the cross-multiplication)
and we put 8a here (on the right-hand side of the first rectangle). Then we are going to say 6 × a
(again showing the cross multiplication) then we put 6a here. When you add 8a plus 6a what do
they give us? 14a. If you multiply 8 × 6 what do they give us? 48. The fact that these two terms
give us a positive 48 and the fact that this 8a plus 6a gives us 14a, and a × a gives us a2, what
can we say about these two numbers here? [Pointing to the binomials (a + 8)(a + 6).] What can
we say about these two expressions here? Are they the factors of a2 + 14a + 48?

Class: Yes.
Teacher: Can you see it? This is how you factorise the trinomials but now we are going to check. What is

the next step now?
Class: [So they multiply (a + 8)(a + 6) to get the initial trinomial of a2 + 14a + 48.]

Example Two

Teacher: (Writes a new task on the board: a2 + 47a − 48.) Who can come and try to do this one?
Remember here we have a negative sign (pointing to the last term).

Learner 1: (Comes to the board and makes a table of factors of −48)

Class: (Following the example that they have just worked before, the class agree that the table of the
required factors should be as follows:)

[So by cross multiplying (a + 48)(a −1) the class is able to show that this is the correct factorisation of
a2 + 47a − 48]

Teacher: Is that correct?
Class: Yes, yes, yes.
Teacher: Now I want you from that table to write as many different trinomials as possible with −48 as the

third part hence can be factorised using the factors in the table.
Class: [The class is able to generate 10 different trinomials that can be factorised using the factors of

−48 in the table.]
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Example Three

Teacher: (Writes another task on the board: n2 −16mn + 15m2.) Who can come and try to do it? Remem-
ber here we have a negative sign (pointing to the middle term). I want someone to come and try
it. What we have done is we have only changed the sign here. (He draws the rectangles again
and learners take turns to complete the table.)

These are the possible factors of 15m2. So from this list of possible factors we are saying if we
add the factors theymust give us a what? A (−16mn). Are we together?We are going to have an
n here (putting the n in the rectangles).

Class: The factors that we want from the table are –m and −15m.

Discussion 1: In what way did the teacher’s examples provide learners with an opportunity to
experience pattern recognition as a resource?
There are two main reasons why examples 1–3 are being discussed concurrently. Firstly we cannot
observe and generalise a pattern in just one example because a pattern suggests regularity which
implies that a phenomenon has occurred more than once. In fact the literature suggests that on
average the brain will generalise a pattern after being exposed to it three times (Laughbaum, 2009).
The second reason is that these are the three examples which address my first research question,
that is, in what way did the teacher’s examples provide the learners with an opportunity to experience
pattern recognition as a resource?
We start by asking the question: what was presented by the teacher and what pattern was recog-

nised by learners when factorising a quadratic trinomial of the form ax2 + bx + c? In example one
the teacher points to the crux of the matter being the link between two factors of c that must add up
to b. He concludes that example by saying ‘this is how we factorise the trinomials’. Learners check
the accuracy of this procedure of factorising by multiplying the factors and are convinced that it
works. So following Rivera and Becker’s (2007) framework, at this stage we can say the learners
have discovered a potential regularity R that suggests that when factorising a trinomial we look for
factors of c that add up to b. In example 2 we can say there is induction taking place because there
is now repeated testing of this regularity. When the learners check again this viable general form F
and confirm that it always gives correct results (under current assumptions), then learners conclude
and therefore generalise the procedure to example 3 with a slightly different task. Consistent with
Rivera and Becker’s (2007) framework, we can see how the procedure for factorising trinomials has
moved from abduction, through induction to generalisation. In terms of answering the first research
question of this paper, ‘In what way did the teacher’s examples provide the learners with an opportunity
to experience pattern recognition as a resource?’, in these three examples we see how pattern recog-
nition indeed was a resource for learners when they were factorising quadratic trinomials. Admittedly
their abductive generalisation might have been limited in that it was localised to trinomials with a
leading coefficient of 1, but all the same this pattern recognition helped learners (under current
assumptions) to make sense of factorising similar trinomials. The next few exercises in the textbook
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which had tasks with a leading coefficient of 1 did not present any problems for learners and it can be
argued that if learners were to met similar tasks in future they would be able to solve them.

Example Four

Teacher: (writes the next task 5y2 − 13y − 28 on the board) I want three learners to come to the board and
try this example. But before that let us complete the table of factors for them. (They complete
this table on the board as a class.)

Learner 3: (works as follows:)

(5y − 14)(y + 2) = 5y2 − 4y − 28

Learner 4: (works as follows:)

(5y − 4)(y + 7) = 5y2 + 31y − 28

Learner 5: (works as follows:)

(5y + 7)(y − 4) = 5y2 − 13y − 28

[So by cross-multiplication Learner 5 was able to show that (5y + 7)(y − 4) is the
correct factorisation of 5y2 − 13y – 28.]

Teacher: Who of the five learners is correct?
Class: Learner 5, yes she is correct.
Teacher: [To Learner 5.] Can you explain how you got the correct factors.
Learner 5: I just played around with the factors and then placed them in the brackets, checked by expand-

ing the brackets and it worked.
Class: [They clap for Learner 5]. Some are mumbling saying but sir you just said that if the factors

don’t add to the middle term then they are wrong.

Discussion 2: In what way was pattern recognition coincidental?
Although this question was not initially raised, what emerged from example 4 deserves special atten-
tion because, instead of exposing the fallibility of the learners’ generalisation, the task tended to further
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confirm the regularity that had been abduced earlier. This is evident in that, when factorising the quad-
ratic trinomial 5y2 − 13y – 28, the factors of −28 listed in the table had no causal connection with the
middle term of −13y yet it turned out coincidentally that −4 and +7 worked well when placed in the two
brackets. So in example 4 it can be argued that Learner 5 arrives at the correct factorisation by coinci-
dence. Diaconis and Mosteller (1989) defined a coincidence as a surprising concurrence of
events, perceived as meaningfully related, with no apparent causal connection. Was this helpful for
learners? The answer could be either ‘yes’ if we consider that the correct solution was found but in
terms of conceptual understanding it might be ‘no’. This is confirmed by the learners who pointed
out to the teacher; ‘but sir you just said that if the factors don’t add to the middle term then they are
wrong’. That learners were confused is further evidenced when Learner 5 is asked to explain how
she got the correct factors—she says that she just played around with the figures and it worked—
typical of trial and error—but we cannot encourage learners to rely on trial and error if we aim at con-
ceptual understanding.
Following the rule that has been generalised from the first three examples we see how the other two

learners 3 and 4 failed to identify factors of −28 that would add up to −13y, pointing to the fallibility of the
generalised pattern. By clapping for Learner 5, the class therefore believed something that was wrong
simply because coincidentally it worked. Burton (2008) posited that unconscious pattern recognition
contains a probability of correctness, which is consciously experienced as a feeling of knowing. The
closer the fit between previously learned patterns and the new incoming pattern, the greater the
degree of the feeling of correctness will be. In this example we see this close fit between what the lear-
ners had generalised before and this new incoming observation, leading learners to believing this
‘wrong’ process to be correct. The literature, however, warns that sometimes even mathematically
correct solutions to mathematically correct pattern recognition problems are not a good use of
student time and sometimes they are misleading. Indeed the abduced pattern was not helpful later
when the learners were faced with trinomials whose leading coefficient was something other than 1.

Example Five

Teacher: Now what I want us to do is in pairs let us try numbers 11 and 12. Can you do these ones for
me in pairs? Teacher writes on the board:

(11) d2 − 5d + 8

(12) 6t2 − 19t + 15

Class: (After some time of trial and error they complain that they cannot get the solutions.)
Teacher: Can somebody come to the board and show how you worked it.
Learner 6: (Comes to the board and creates a table with factors of 8.)

(Learner 6 checks from the list of factors but does not appear to get what he is looking
for, that is, factors of 8 that will give the middle term of −5.)

Class: (Meanwhile the class is following this working and comparing with what they wrote in their books
in pairs.)
Sir there are no factors of 8 that can add up to −5. This method is now confusing us.
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Teacher: Okay let’s see how you worked number 12 in your books. Can someone come to the board and
show us what you did.

Example Six

Learner 7: (Comes to the board and creates a table with factors of 15.)

(Learner 7 checks from the list of factors but does not appear to get what he is looking
for, that is, factors of 15 that will give the middle term of −19.)

Class: Sir so where are we going wrong now? (Bell rings to end the lesson.)
Teacher: Let’s leave it like this for today we will continue where we left tomorrow. In that case I’m not

going to give you homework until we clarify this matter.

Discussion 3: To what extent did learners experience pattern recognition as a source of confusion?
The second research question is addressed in these two examples (5 and 6) which I argue were at the
centre of learners’ confusion. While the generalised procedure of finding two factors of c that would add
up to b had worked nicely so far, it was now clear that this procedure was not always true for all tri-
nomials of the form ax2 + bx + c. Despite the fact that the learners followed the abduced procedure
conscientiously, when attempting to factorise d2

− 5d + 8 and 6t2 − 19t + 15, it did not help them to
get factors of the last term that would add up to the middle term. When they checked in the table of
factors for a pair that might coincidentally fit in the brackets as the previous example, luck was not
on their side either. Hence I argue that pattern recognition was now at the centre of their confusion
about the pattern of factorising trinomials.
There are a number of possible reasons why learners were getting confused with these two

examples. Firstly the generalisation students made about the process of factorising quadratic tri-
nomials was based on too limited examples and this might have led to learners forming a concept
image or figural concept which was different from (a gap) a concept definition (Vinner, 1991).
Concept images can be founded on too limited an exploration of the examples encountered so that
the features of the examples that are not part of the concept are retained in the concept image
(Watson & Mason, 2005). In this case students retained a concept image suggesting that the last
term in every quadratic trinomial will always have factors that add up to the coefficient of the middle
term. This, however, is not true for all such trinomials. Therefore the few examples that were used
by the teacher had noise in them, which is described by Skemp (1969) as the possession of conspic-
uous attributes that are not essential to the concept. However, because the examples worked well in all
cases of factorable trinomials with a leading coefficient of 1, they fit into the category described by Riss-
land-Michener (1978) as start-up examples, which help motivate basic definitions but are not sufficient
for concept formation. Another reason why learners experienced confusion, is that the teacher did not
provide some counter-examples. Skemp (1969) wrote about the learning of mathematical concepts
through abstraction from examples and advised that non-examples should be included. Counter- or
non-examples are useful in drawing attention to the distinction between essential and non-essential
attributes of the concept and hence in refining its boundaries. Both examples 5 and 6 could have
been used as counter-examples instead of being used to test students’ understanding. Example 5
is not factorable and example 6 requires a different schema to factorise it and so their use would
have enabled the learners to refine the boundaries for their generalisations.
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Discussion 4: How could this confusion have possibly been avoided?
In order to address my third research question, I go back to the criterion for assessing a good general-
isation. The first requirement is that an abduced regularity must be non-monotonic, that is, it must state
the assumptions about a pattern undergoing generalisation. In order to understand why it was important
for an assumption to be stated and why the procedure worked in the first examples that the class worked
with, let us look at the method of factorising trinomials as an example. Samson, Cheriyaparambil and du
Toit (2011) provide the alternative method of splitting the middle term in its more simplified but compre-
hensive form. Their method follows an observation in mathematics that when we multiply two binomials,
for example, (a + 3)(a + 4), we end up with two centre terms (+3a) and (+4a) that need to be combined.
So when we factorise (which is like reversing the process of expansion), it makes sense to find these
centre terms to help us see the numbers that factor correctly. In general, given a quadratic trinomial of
the form ax2 + bx + c (which can be factorised), the middle coefficient b of our trinomial must be the
sum or difference of two factors of the value ac. So to factorise this trinomial we try to find two terms
whose sum is b and whose product is ac the master product. This will lead to the quadratic trinomial
being factorised pairwise. Following this argument let us take the example of 6t2 − 19t + 15 that pre-
sented problems for learners, and split the middle term −19t into −9t and −10t whose product is 90t2.
Re-write the quadratic trinomial as 6t2 − 9t − 10t + 15 and the pair-wise factorisation will be 3t(2t − 3)
−5(2t − 3).We then take out the greatest common factor (2t − 3), which is common in both parentheses,
implying that (3t −5)(2t − 3) are the factors that we are looking for.
It should be clear from this rule that, as long as the leading co-efficient (a) is equal to (1), then the

master product ac will always be equal to c. Hence in the examples that the learners initially worked
with (which all had a leading coefficient of 1), the factorisation always worked even though the
master product ac was never mentioned and the assumption of the leading coefficient of 1 was not
stated. In fact another assumption that should have been stated is that the trinomial should be able
to be factorised because not all quadratic trinomials of the form ax2 + bx + c can be factorised. For
example d2

− 5d + 8 cannot be factorised. This failure to state the assumptions did not assist the lear-
ners in confronting other examples. This confirms Psillos’s (1996) observation that an abductive gen-
eralisation of a pattern that offers the best explanation (in this case when the leading coefficient is 1)
can still be shown false if additional or different assumptions (leading coefficient not equal to 1, or not
factorable) are made that would necessitate developing a different generalisation.
Following Psillos’s second requirement, an abductive generalisation that offers the best explanation

should provide the cut-off point in that it should explain why the stated generalisation that depends only
on a few instances (sample) actually holds for the entire class (population). This requirement demands
that we think about a generic example which makes explicit the reasons for the truth of an assertion
and provides justification for a global-type generalisation that holds in both specific cases and the
entire class of cases. Similarly Peirce (1966) cautioned that we do not want to frustrate ourselves
with a generalisation that seems to always fail in situations when new cases are introduced for verifica-
tion. Hence there should be a reliable and justifiable causal story behind why the known instances are
the way they are. In all the examples 1–6 learners were not provided with such a reliable justification as
to why things worked the way they did. The focus was more on procedural understanding rather than
conceptual understanding.
The third requirement in Psillos’s model is that of vertical extrapolation which focuses our attention on

whether or not an abductive generalisation draws on the deeper structure of the available and unavail-
able cues. In this case learners were not provided with the deeper mathematical structures and ideas
but instead a superficial generalisation that could only be generalised locally for trinomials with a
leading coefficient of 1 and not further. Comparing with the way the method of splitting the middle
term is described earlier, it can be concluded that the way the teacher guided the learners into general-
ising the procedure for factorising trinomials clearly lacked such deep perceptual knowledge.
The final requirement for eliminative dimension suggests that we need to consider several possible

generalisations for a pattern before making judgement about which one will make the most sense.
Consistent with this requirement, an abductive generalisation of a pattern that offers the best expla-
nation should be chosen from several plausible ones and judged most tenable on the basis that it pro-
vides a maximal understanding of the pattern beyond what is superficially evident. In this case there
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was no consideration of other plausible ones (such as counter-examples with no factors or those with
coefficients other than 1), hence the generalisation could not provide maximal understanding of the
pattern beyond those trinomials with a leading coefficient of 1.

Conclusion

This paper investigated ways in which patterns were both illuminating and illusionary for learners fac-
torising trinomials. Psillos’s (1996) four conditions were applied in judging the quality of examples
chosen by the teacher and the explanations thereof. Examples 1–3 selected from classroom inter-
actions show that learners made use of a localised pattern recognition when factorising trinomials
with a leading coefficient of 1. In example 4 the learners find the correct solution coincidentally.
However in examples 5 and 6 it is evident that the localised pattern recognition is now at the centre
of their confusion as they try to extend its application beyond the domain of the examples from
which it was generated. This confirms the argument that patterning can be leading and misleading
at the same time. Thus, the findings of this case study indicate that there is a need to provide increased
support to teachers and learners in an effort to enhance their knowledge of patterning. Teachers who
are aware of these four conditions in relation to the formation of a generalisation about a pattern should
be capable of exercising judgement about which examples and counter-examples will offer the best
explanation; it will also enable them to separate ‘good’ from ‘bad’ potential explanations. Further
studies are needed that might assist in creating ‘pattern aware’ learners who can make informed
decisions about patterning activities and recognise worthwhile pattern learning experiences. Addition-
ally such studies would also inform the development of curriculum resource material on patterning as
well as support teacher professional development about patterning.
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