
CONTAMINATION PREDICTIONS OF CAPE HAKE FILLETS
DURING DISPLAY AND STORAGE BY ARTIFICIAL NEURAL
NETWORK MODELING OF HEXADECANOIC ACID
PIERRE VENTER,* HANITA SWANEPOEL,1 RYK J.F. LUES and NICOLAAS LUWES

Department of Life Science, Central University of Technology, Bloemfontein 9300, South Africa

1Corresponding author.
TEL: +27-51-507-3145;
FAX: +27 51 507 3145;
EMAIL: hswanepoel@cut.ac.za

*Presenst address:
234 Fitzherbert East Road, Palmerston North
4442, New Zealand.

Received for Publication February 2, 2015
Accepted for Publication April 29, 2015

doi:10.1111/jfpe.12241

ABSTRACT

This study aimed to design an artificial neural network (ANN) that could distin-
guish between Cape hake fillets displayed and stored on ice that have been exposed
to excessive contamination and those that were not. The selected variable was a
biochemical indicator, hexadecanoic acid, a fatty acid. Cape hake fillets with and
without excessive contamination was kept on ice and analyzed every 48 h over a
period of 10 days. A novel ANN was designed and applied, which provided an
acceptable prediction on the contaminated fillets based only on the hexadecanoic
acid changes during day 8 (T4) and day 10 (T5). The ANN consisted of a
multilayered network with supervised training arranged into an ordered hierarchy
of layers, in which connections were allowed only between nodes in immediately
adjacent layers. The network consists of two inputs, T4 and T5 connected to two
neurones that are connected to one output neuron that indicates a prediction on
contamination of the fillets. These two neurons are connected to one output
neuron that indicates a prediction on contamination of the fillets.

PRACTICAL APPLICATIONS

The model sets the stage for the development of alternative quality control mea-
sures for retailers and buyers of fish and other foods that contain fatty acids such
as hexadecanoic acid to provide saver food.

INTRODUCTION

Artificial neural networks (ANNs) have recently seen an
explosion of interest and application in numerous fields,
including piscimetrics and food analysis to model complex
real-world problems. Piscimetrics were initiated when
neural networks and other chemometrics were applied in
fisheries research. This entails the life cycle of fish, fish iden-
tification, fish stock and factors affecting it. However, there
is still scope to apply ANN on final products made available
to retail shops with specific focus on shelf life prediction
(Suryanarayana et al. 2008; Matera et al. 2014). ANNs’
attractiveness to food science is its ability to model the kinds
of data encountered in food science. A limited number of
“clean” variables are qualified on a suitable number of
samples with a basic linear or at least mildly nonlinear
model to those where many variables (possibly noisy or
highly correlated) are qualified on a small number of

samples and the functional relation is heavily nonlinear
(Basheer and Hajmeer 2000; Marini 2009). In ANN, the
development of a small database size is a concern because of
the inability to partition the database into manageable sized
subsets for training, testing and validation. To expand the
size of the database, due to difficulty or because it might be
expensive to obtain new data in a conventional manner, is to
interject random noise in the available examples to generate
new ones (Swingler 2001). This addition of noise enhances
the ANN’s robustness against measurement error (e.g.,
noise = ± instrument sensitivity) and is called data enrich-
ment (Basheer and Hajmeer 2000).

ANNs, classified as artificial intelligence, is a family of
mathematical models where the main algorithmic features
are inspired by the functioning of the human brain, simu-
lating human intelligence. However, currently, a neural
network is predominantly a mathematical rather than a bio-
logical model (Callan 2003; Marini 2009). ANN is based on
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collections of neurons or nodes that are connected in a tree
model to permit communication (Callan 2003). A single
node computes by combining the input signals with an acti-
vation function to produce an output signal (Fig. 1; Callan
2003).

These nodes are interconnected with weighted connec-
tions – weight being a multiplying constant for the connec-
tion’s input. In isolation, these nodes are limited in
operation, but interconnection in a multilayered network
gives them the ability to perform complex tasks in food
analysis and food safety. These include food authentication,
prediction whether a foodstuff is contaminated or not, as
well as the identification of the kind of microbial contami-
nation and ultimately to determine the freshness, quality
and or shelf life of food products (Bertone et al. 1996;
Siripatrawan and Jantawat 2008; Limbo et al. 2009; Marini
2009; Siripatrawan et al. 2009; Venter et al. 2013).

Freshness of fish during storage depends on various
factors, including storage temperature, the fish species and
its physiological condition, initial microbial load, contami-
nation and physical handling (Huss 1995; Raatikainen et al.
2005). Deterioration of fish lipids are primarily caused by
two distinct reactions, namely hydrolysis and oxidation –
generally from endogenous enzymes and contaminant bac-
teria. These will influence among others, the organoleptic
properties and therefore the shelf life of the final product
(Ackman 1989; Huss 1995; Aubourg 1999; Baixas-Nogueras
et al. 2002). Sensory scoring methods, such as the quality
index method have been developed for the evaluation of
fish freshness and chemical and biochemical parameters
have been used in numerous studies. These parameters
include pH, trimethylamine, K value, peroxide index and
free fatty acids (Pacheco-Aguilar et al. 2000; Baixas-
Nogueras et al. 2003; Herrero et al. 2003). Free fatty acid
levels in hake muscle correlated well with sensory scoring
methods from previous studies and a conclusion was
formed that the free fatty acid level could be used instead of
sensory scoring methods to determine hake freshness
(Barassi et al. 1987).

Prediction of the remaining shelf life of the whole and
filleted fish has been investigated using numerous chemo-
metric applications (Barassi et al. 1987; Limbo et al.

2009). However, free fatty acids have not been used in com-
bination with ANN to predict if Cape hake fillets have been
exposed to excessive contamination. The aim of this study
was to apply a custom-designed ANN to a basic variable,
hexadecanoic acid, to be applied in producing and validat-
ing a recognition pattern that may be used to predict
whether fish fillets were exposed to excessive microbial con-
tamination originating from, among others, improper han-
dling or storage.

MATERIALS AND METHODS

Cape hake (Merluccius capensis and Merluccius paradoxus)
samples were harvested by a leading South African fishing
industry during the month of February from the South
African shoreline close to the city of Cape Town (Méndez
and Gonzalez 1997). The Cape hake were mechanically
scaled, headed, gutted and kept on ice (average muscle tem-
perature 7 ± 0.5C) for 24 h prior to laboratory analysis. For
analyses, 10 fishes, which weighed 166 ± 25 g and had an
average length of 21 ± 2 cm (beheaded) were selected. The
first five fishes were filleted and one fillet of each fish was
used for the shelf life study at 8C on ice – hereafter referred
to as “C8” or control. The other set of five fillets were kept at
the same temperature, but the fillets were inoculated with
an increased load of autochthonous microbiota found on
hake (5.84 × 108 cfu/mL) – hereafter referred to as “I8” or
inoculated. Both C8 and I8 simulate fillets which are dis-
played on ice corresponding with retail stores using display
refrigerators with the outside temperature monitored and
kept at 8C. The second five Cape hakes were filleted and
used for the shelf life study at ambient temperature (25C)
on ice – hereafter referred to as “C25” and “I25.” This simu-
lated fillets displayed on ice in an unmonitored environ-
ment corresponded with retail stores where fish are
displayed in the open. Fish fillets and whole fish are usually
displayed on ice in shops during the day and refrigerated
during night time. The standard duration of fish displayed
on ice by major retail stores in South Africa is 7 days.
According to the study carried out on Mediterranean hake,
hake should be rejected after 10 days (Baixas-Nogueras et al.
2003).
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FIG. 1. LAYOUT OF A SINGLE NETWORK
NODE (ADAPTED FROM CALLAN 2003)
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Fatty Acid Extraction

Of the homogenate, 0.7 g was subjected to total lipid extrac-
tion as described by Folsch et al. using chloroform : metha-
nol 2:1 (v/v) (Folsch et al. 1957). All reagents, solvents and
standards were of analytical grade (Merck, Midrand, South
Africa and Separations, Randburg, South Africa) and stored
in dark bottles.

Fatty Acid Analysis

Transesterification of the fish lipids was carried out by addition
of trimethylsulfonium hydroxide (Merck) (Butte 1983;
Gómez-Brandón et al. 2008; Trobović et al. 2013). Extracts
were stored in glass vials and frozen at −18C until chromato-
graphic readings were performed. The fatty acid methyl esters
were analyzed and separated on a Finnegan Focus (Thermo
Finnegan, San Jose, CA, USA) Gas chromatogram (GC)
equipped with a 30 m × 0.25 mm ZB-1 (Separations) glass
capillary column. The column contained 100% dimethyl
polysiloxane (0.25 μm) with helium as carrier gas (constant
flow – 3.0 mL/min) and functioned in a splitless mode of
injection. The temperature program is summarized as follows:
40C to 90C at a rate of 8C/min, followed by a ramp from 90C
to 280C at 10C/min. The column was attached to a Finnegan
Focus DSQ mass spectrometer (MS) for mass detection of
fragments with m/z smaller than 1,000. Mass analysis was
performed at eV with an ion source temperature of 200C. Inte-
gration of the peaks was performed on the total ion chro-
matogram using Xcalibur software version 1.4 SR1 (Finnegan).
Fatty acid methyl esters were identified by comparison of their
mass spectra and retention time using the internal library of
GC-MS equipment and standard. From all the fatty acids origi-
nally detected, only hexadecanoic acid was selected to be used
in this study. The selection of this acid was carried out as it has
been reported to be the most abundant fatty acid in fish, as well
as being used often as a reference component in quantitative
and qualitative assessments (Baixas-Nogueras et al. 2002, 2003;
Tocher 2003; Trobović et al. 2013).

Data Analysis

Total signal results of all the fatty acids were used to determine
the final data used in the ANN. The raw data underwent
several preprocessing techniques, e.g., reducing input dimen-
sionality and data transformation, treatment of nonnormally
distributed data, data inspection and deletion of outliers to
accelerate convergence before it could be used for training in
an ANN. Every individual fatty acid’s total signal was divided
by the total of all the fatty acids to render the data between 0
and 1. All calculations were carried out using Microsoft Office
Excel 2003 (Microsoft, Redmond, WA, USA).

It was complex to create an ANN with the available
hexadecanoic acid results to determine both the difference

between the temperature as well as excessively contaminated
samples. In order to increase the number of hexadecanoic
acid results, an ANN was created to differentiate only
between excessively contaminated samples or noncon-
taminated samples. With two examples of contaminated
and two of noncontaminated in a training set, more data
were required to effectively teach the neural network.
Random noise of up to ±20% was, therefore, added to the
data set at each learning cycle, artificially extending the data
set. This provided a larger training set as well as a model
with more robust generalization properties (Swingler 2001;
Venter et al. 2013).

It is important to balance the data in classification prob-
lems. Training data were distributed as evenly as possible
between the various classes to prevent the network from
being biased to the overrepresented classes. Some of the
overrepresented classes may, therefore, be removed or extra
examples may be added, pertaining to the underrepresented
class. Alternatively, the underrepresented input/output
examples may be duplicated and random noise could be
added to their input data while keeping the output class
unchanged (Basheer and Hajmeer 2000; Venter et al. 2013).

Calculations

By calculating the error at each net or node followed by the
adjustment of weights accordingly to produce all the
required outputs, a multilayered network with supervised
training was designed to be able to learn a required func-
tion. This process can be mathematically simulated with the
formula of the neuron as follows (Callan 2003; Venter et al.
2013)

net x wj i j i ji

N
=

=∑ , ,1
(1)

where N is the number of inputs, i is the node number for a
specific input, j is the number of the net, x is the input value
and w is the weights or constants.

This is commonly put through a sigmoid function as
follows (Callan 2003; Venter et al. 2013)

f
e

j net j
=

+ ⎡⎣ ⎤⎦
−( )

1

1
(2)

where net is the output of the net and j is the number of the
net.

To calculate the error, the network applies a generaliza-
tion of the delta rule by starting at the last layer with
(Chauvin and Rumelhart 1995; Callan 2003; Venter et al.
2013)

δ j j j j jt o o o= −( ) −( )1 (3)

where t is the required output, o is the net output and j is
the number of the net.
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Subsequently, the error at the hidden layers is calculated
as follows (Callan 2003)

δ δj j j k j kk
o o w= −( )∑1 , (4)

where o is the net output, j is the number of the net, k is the
number of the net from where the error originates, δk is the
error from the previous layer and l is the number of that
specific path.

The weight change for each node is then calculated with
(Callan 2003)

Δw xi j i j j, ,= ( )η δ (5)

where η is the learning rate, i is the node number for a spe-
cific input, j is the number of the net, x is the input value
and δ is the error from each layer.

Thereafter, the weights are adjusted as follows (Callan
2003)

W w wi j i j i j, , ,= + Δ (6)

where Δw is the weight change and W is the old weight.
A training data set was mapped that simulates a real-

world problem. This training data set consisted of inputs
with the corresponding outputs that were fed to the neural
network for weight adaptation. It is advantageous to ran-
domize the order of the presentation for each training
sample (Callan 2003; Gurney 2003; Marini 2009; Venter
et al. 2013).

RESULTS AND DISCUSSION

A multilayered network with supervised training was
arranged into an ordered hierarchy of layers, in which con-
nections are allowed only between nodes in immediately
adjacent layers, which coded for evaluations. Figure 2 illus-
trates the multilayered network developed. The network
consists of two inputs T4 (data from day 8) and T5 (data
from day 10) connected to two neurons. These two neurons
are connected to one output neuron. The output neuron
produces one output that indicates a prediction on con-
tamination. This is a network with two layers of weights
capable of approximating any continuous functional
mapping. The inputs of T4 and T5 of hexadecanoic acid,

methyl ester, were used to train the network. The output
would be a percentage of probability of contamination at
8C.

The sigmoid’s best resolution for an output is between
0.9 and 0.1. The input values are between this and need no
further processing. The output is converted from yes and no
to a probability of yes (contaminated). The output range
would be from 0.1 of 0% probability and 0.9 for a 100%
probability. To ease interpretations, the output is stepped
through a function that would give the probability as a per-
centage. This function is as follows

y
x= −( ) ×0 1

0 8
100

.

.
(7)

where y is the output probability in percentage and x is the
output of the network in the range of 0.1 for 0% to 0.9 for a
100%.

The yes prediction is converted to 0.9 and a no prediction
to 0.1 and the data divided up into training and evaluation
sets in Table 1.
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FIG. 2. MULTILAYERED NETWORK FOR THE
TWO ANALOGUE INPUTS TO TWO NODES
TO ONE NODE TO THE ONE OUTPUT

TABLE 1. THE DATA SETS USED IN THE NEURAL NETWORK, DIVIDED
INTO THE NECESSARY TRAINING AND EVALUATION SETS

Training data set 1 2 3

T4 0.551429 0.541386 0.551429
T5 0.487019 0.518307 0.487019
Control 0.1 0.1 0.1
T4 0.541386 0.522321 0.522321
T5 0.518307 0.515228 0.515228
Control 0.1 0.1 0.1
T4 0.497288 0.506668 0.497288
T5 0.50756 0.516287 0.50756
Contaminated 0.9 0.9 0.9
T4 0.506668 0.498248 0.498248
T5 0.516287 0.502239 0.502239
Contaminated 0.9 0.9 0.9

Evaluation set 1 2 3

T4 0.522321 0.551429 0.541386
T5 0.515228 0.487019 0.518307
Control 0.1 0.1 0.1
T4 0.498248 0.497288 0.506668
T5 0.502239 0.50756 0.516287
Contaminated 0.9 0.9 0.9
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TABLE 2. SIX EXAMPLES OF EACH SAMPLE (T4 AND T5) WITHIN EACH TRAINING DATA SET (1, 2 AND 3) PLUS NOISE AFTER THE NEURAL
NETWORK WAS TAUGHT FOR 500,000 CYCLES AT A RATE OF 0.5, INCLUDING THE EVALUATION DATA SET AND THE RESULTS

Training data set 1 First sample Control Second sample Control Third sample Contaminated Fourth sample Contaminated

T4 0.5514 0.1 0.5414 0.1 0.4973 0.9 0.5067 0.9
T5 0.4870 0.5183 0.5076 0.5163
Six examples of input values from each set plus random ±20% noise

Input/output First set Output Second set Output Third set Output Fourth set Output

T4 0.4741 −11.9581 0.4806 2.2766 0.4330 97.8478 0.4582 97.1088
T5 0.4187 0.4601 0.4419 0.4669
T4 0.5758 −12.1758 0.4451 4.4470 0.4219 97.4932 0.5741 99.6816
T5 0.5085 0.4261 0.4306 0.5850
T4 0.6222 −12.2235 0.4529 3.9397 0.4490 98.3333 0.4627 97.2353
T5 0.5495 0.4336 0.4583 0.4715
T4 0.5132 −12.0681 0.6106 −3.1895 0.4152 97.2726 0.4086 95.5912
T5 0.4533 0.5846 0.4237 0.4163
T4 0.5801 −12.1811 0.5288 −0.1423 0.4618 98.7015 0.4882 97.9036
T5 0.5123 0.5063 0.4713 0.4975
T4 0.4730 −11.9545 0.4627 3.3266 0.4470 98.2759 0.5188 98.6195
T5 0.4178 0.4429 0.4563 0.5286

Evaluation data set 1 Status Trained net output Prediction

T4 First set 0.5223 Control 40.3814 ✓
T5 0.5152
T4 Second set 0.4982 Contaminated 84.4114 ✓
T5 0.5022

Training data set 2 First sample Control Second sample Control Third sample Contaminated Fourth sample Contaminated

T4 0.5414 0.1 0.5223 0.1 0.5067 0.9 0.49825 0.9
T5 0.5183 0.5152 0.5163 0.50224
Six examples of input values from each set plus random ± 20% noise

Input/output First set Output Second set Output Third set Output Fourth set Output

T4 0.5880 −12.4453 0.5880 3.4874 0.4523 109.2513 0.5127 98.9813
T5 0.5630 0.5630 0.4609 0.5168
T4 0.4518 −12.2487 0.4518 6.3607 0.4286 108.7255 0.5707 101.2974
T5 0.4325 0.4325 0.4367 0.5753
T4 0.4601 −12.2727 0.4601 3.1107 0.5796 110.9931 0.5700 101.2706
T5 0.4404 0.4404 0.5906 0.5746
T4 0.6109 −12.4566 0.6109 5.8861 0.5839 111.0299 0.4045 93.7142
T5 0.5848 0.5848 0.5950 0.4078
T4 0.5103 −12.3735 0.5103 4.4205 0.4228 108.5856 0.5978 102.2628
T5 0.4885 0.4885 0.4309 0.6026
T4 0.5077 −12.3697 0.5077 8.1403 0.5251 110.4236 0.4535 96.2505
T5 0.4860 0.4860 0.5351 0.4571

Evaluation data set 2 Status Trained net output Prediction

T4 First set 0.5514 Control −12.5000 ✓
T5 0.4870
T4 Second set 0.4973 Contaminated 110.6229 ✓
T5 0.5076

Training data set 3 First sample Control Second sample Control Third sample Contaminated Fourth sample Contaminated

T4 0.5514 0.1 0.5223 0.1 0.4973 0.9 0.49825 0.9
T5 0.4870 0.5152 0.5076 0.50224
Six examples of input values from each set plus random ± 20% noise

Input/output First set Output Second set Output Third set Output Fourth set Output

T4 0.5056 −12.5000 0.4212 2.9666 0.5103 109.9299 0.5842 97.2802
T5 0.4465 0.4154 0.5208 0.5889
T4 0.4518 −12.5000 0.5223 −1.1512 0.4797 109.3321 0.4067 86.0592
T5 0.3990 0.5152 0.4896 0.4100
T4 0.5899 −12.5000 0.5325 −1.4766 0.4601 108.8758 0.4556 89.5618
T5 0.5210 0.5253 0.4696 0.4592
T4 0.6604 −12.5000 0.5657 −2.4413 0.3999 106.9862 0.4235 87.2979
T5 0.5833 0.5580 0.4082 0.4269
T4 0.6418 −12.5000 0.5614 −2.3239 0.5718 110.7972 0.4980 92.3508
T5 0.5669 0.5538 0.5837 0.5020
T4 0.6433 −12.5000 0.4262 2.7193 0.4483 108.5647 0.4052 85.9470
T5 0.5682 0.4204 0.4575 0.4084

Evaluation data set 3 Status Trained net output Prediction

T4 First set 0.5414 Control −12.4513 ✓
T5 0.5183
T4 Second set 0.5067 Contaminated 109.0538 ✓
T5 0.5163
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There are only two examples of contaminated and two
examples of not contaminated in a training set. This is not
enough to effectively teach the neural network. To expand
this, random noise of up to approximately 20% was added
to the data set at each learning cycle. Artificially extending
the data set would provide a larger training set as well as a
model with more robust generalization properties (Swingler
2001).
A training cycle would be as follows

• Read randomly in a sample from the training set (T4,
T5 and the corresponding output).

• Add random noise of up to ±20 % to T4 and T5.
• Compare the network output with the required output

to calculate the error and adjust the weights.
• Start again

The training cycle is performed until acceptable results are
produced. The evaluation is fed in to evaluate (it was never
part of the training set) and the neural network is evaluated.
The neural network is evaluated on the learning set plus
noise including the evaluation set. The network is trained
with a training set that will consist of T4, T5 with their cor-
responding outputs. This is randomized and the noise is
added (Table 2).

Because the random noise is added, it is not possible to
over-train the network, whereas 500,000 training cycles at a
learning rate of 0.5 would be a sufficient training. Training
took 232 s on an Intel Pentium (Intel, Santa Clara, CA,
USA) 4 Central Processing Unit (CPU) 3.40 GHz, 2.87 GB
Ram.

The ANN model was able to predict correctly whether
the fillets were contaminated or not (control) after all
three training sets during the evaluation set. Even on the
first set, where the prediction was high (40%), it was still
under the 50% split, suggesting the control fillet, which is
correct.

CONCLUSION

This study confirms the possibility to use a selected fatty
acid, e.g., hexadecanoic acid in an ANN model to effectively
predict whether a fillet has been exposed to contamination.
The neural network created, trained and tested during this
study ensured an objective and reliable prediction of the
Cape hake fillets under given conditions. The model sup-
ports the development of an alternative quality control
measures for retailers and buyers of fish and other foods
that contain fatty acids such as hexadecanoic acid. This
would contribute in providing food with a higher level of
safety to consumers and to improve the due diligence that a
supplier has to prove in their food safety management
systems. However, the ANN presented in this paper is less
suitable for endpoint sampling, as growth was followed over
10 days. A network designed to incorporate more than one

biological indicator in addition to chemical indicators
should, therefore, be considered.
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