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The article explores an evolution of a microstructure in AISI 420 martensitic stainless steel during selective laser
melting. Several upper layers had hardness of 750 HV and contained 21 + 12 vol.% austenite phase. The final bulk
microstructure consisted of thermally decomposed martensite with hardness of 500-550 HV and unusually high,
57 + 8 vol.%, amount of austenite. Obtained results indicate that during manufacturing a partitioning and austen-
ite reversion took place, owing to the thermal cycling of the inner regions during manufacturing. Numerical sim-
ulation was found plausible to analyze and explain thermally activated processes that occurred in situ. Results of
numerical simulation of the thermal cycles in dependence on the processing parameters suggested a possibility
to control the thermal processes by variation of the laser energy input.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic growth in metal additive manufacturing during last years is
driven by requirements of modern industries to increase product perfor-
mance by a combination of enhanced properties and sophisticated design
along with a decreased material consumption. The use of industrial metal
additive manufacturing systems in automotive, aerospace and medical
markets grows strongly [1]. Additive manufacturing methods, and partic-
ularly selective laser melting (SLM), are widely accepted for fabrication of
parts with complex geometries and inner functional structures [1,2].
These advantages are attractive for the high-tech industries, but high
demands on microstructure and properties in the final product often
limit direct applicability of as built SLM products. General progress was
obtained when a relevant manufacturing strategy was developed. This
strategy includes a multi-level hierarchical approach to minimize
manufacturing defects like porosity, cracks and deformation during
processing. A high integrity of the final 3D object can be achieved by
using the optimal strategy and process parameters [3-7]. Nevertheless,
due to the complete remelting of the powder material and the rapid solid-
ification, a microstructure which is anisotropic and different from the
conventional is usually observed in SLM parts.

SLM is a process involving heating and cooling cycles, which initiate
in situ diffusion processes similar to tempering, relaxation or precipita-
tion which in turn affect the microstructure in the already solidified
inner regions. Understanding of these processes and an ability to control
them is an advantage that can provide predictable and tailored

* Corresponding author.
E-mail address: pavel krakhmalev@kau.se (P. Krakhmalev).

http://dx.doi.org/10.1016/j.matdes.2015.08.045
0264-1275/© 2015 Elsevier Ltd. All rights reserved.

combinations of microstructure and properties in SLM objects. This in-
vestigation is focused on numerical modeling of the thermal cycling
and experimental investigation of the in situ microstructural evolution
in AISI 420 stainless steel during SLM.

2. Materials and method

Spherical gas-atomized powder AISI 420 (in wt.%: Fe-bal., Cr—13.2,
Mn—0.73, Si—0.66, C—0.39, 0—0.039, P—0.010, S—0.007) supplied by
Sandvik Osprey Ltd. was used. The volume equivalent sphere diameters
were dqp = 8.2 um, dsg = 22.5 um and dgg = 37.6 um. SLM experiments
were carried out using a single-mode continuous-wave Ytterbium fiber
laser operating at 1075 nm wavelength (IPG Photonics Corp.) in a pro-
tective atmosphere of nitrogen. The laser beam had a TEMgo Gaussian
profile, 70 um spot size, and 200 W maximum power. For microstruc-
ture assessment, cube-shape 10 x 10 x 10 mm specimens were
manufactured using a rescanning strategy: each layer was scanned
twice by the laser. In the first scan, a laser beam melts a powder layer
with a certain hatch distance and then, without deposition of any new
powder, the laser beam shifts and rescans the surface again, in the
same direction but between the previously formed tracks, Fig. 1. After
that, the scanning direction was changed to the orthogonal and next
layer was manufactured. This rescanning strategy significantly im-
proves surface quality and minimizes porosity in the final 3D SLM ob-
jects [8,9]. The laser power of 60 W, 120 mm/s scanning speed and
120 pum hatch distance were used as manufacturing process parameters.
Thickness of the deposited powder layer was 40 um.

Microstructural characterization of as built specimens was done by
means of X-ray diffraction, optical and electron microscopy. Specimens


https://core.ac.uk/display/222967709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matdes.2015.08.045&domain=pdf
http://dx.doi.org/10.1016/j.matdes.2015.08.045
mailto:pavel.krakhmalev@kau.se
http://dx.doi.org/10.1016/j.matdes.2015.08.045
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/jmad

P. Krakhmalev et al. / Materials and Design 87 (2015) 380-385 381

1900 { + 1 5
1600 -
1300 -

1000 +

Temperature, K

700 - 3 4 7 8

400 -

1-st scan rescan
100 T T T+ T T T

0 005 01 0150 005 0.1 0.15
Time, s

Fig. 1. Schematic of the used manufacturing strategy and an example of thermal cycles
estimated in the point (x) during manufacturing. Points 1, 2, 3, and 4 correspond to the
first scan and, points 5, 6, 7, and 8 to the re-scan at manufacturing of the same layer.
Arrows indicate the laser movement direction.

were cut to transverse cross sections, ground and mirror-like polished
with 1 um diamond paste. A standard Kalling's Ne2 reagent was used to
etch specimens for microscopy. For the EBSD observations, a colloidal sil-
ica was used for the final step of surface preparation. Vickers microhard-
ness was measured using Buehler Micromet 5104 with an indentation
load of 300 g. Scanning electron microscopy (SEM) was carried out with
LEO 1350 FEG-SEM and analytical SEM Hitachi SU70, both operated at
20 kV. Orientation imaging microscopy was performed using an electron
back-scattering diffraction (EBSD) system from HKL Technology. X-ray
diffraction (XRD) phase analysis was conducted using Cr-Ko radiation
in a Seifert XRD 3000 PTS X-ray diffractometer, operating at 40 kV and
35 mA, the spot was 2 mm in diameter. Measurements were done on
the polished cross-section to investigate amount of austenite in the
inner regions and on the as built top surface to detect amount of austenite
in the top layers. The volume fraction of the fcc phase was calculated ac-
cordingly to the standard ASTM E975-13 procedure.

3. Results and discussion
3.1. Numerical modeling of thermal cycles

In order to interpret and explain the evolution of microstructure
during the in situ heat-treatment at manufacturing, numerical simula-
tions were done. The main aim of the modeling was to estimate temper-
atures in the bulk material and to compare the results with the
experimentally observed remelting depth. As mentioned earlier, for
the manufacturing of 3D samples a rescanning strategy was applied. A
complexity of this strategy is that at the first scan, the laser remelted
the deposited powder layer, while during re-scanning laser remelts
already solidified material. Therefore, as a first attempt, for evaluation
of temperature fields, the laser-powder interaction was disregarded.
Modeling was carried out using time-dependent COMSOL module
“Heat Transfer in Solids” (COMSOL, Inc.). In the used simulation, the
laser was modeled as a moving energy source with a Gaussian energy
distribution. The laser spot was circular, 70 pm in diameter. Similarly

to [10] the conductive mode of heat transport was modeled, convection
in liquid and radiation energy losses were ignored since they have a
minor contribution in the energy dissipation. The temperature-
dependent material properties were found in the Comsol material
library, 2015. A temperature-dependent specific heat capacity was
selected with respect to the latent heat of phase transitions. The effec-
tive thermal conductivity of a liquid metal was imposed taking into
account the heat transfer due to flows. In the finite element model,
the 5 mm long scans were simulated at the top surface of a rectangular
steel block. The block was 1 mm thick with the top surface 6 x 2 mm.
The scan length of was large enough to establish a stationary process
of laser melting. The element mesh in the scanned region was 0.5 pm.
At the top surface a convective heat transfer was modeled since SLM is
done in a protective gas atmosphere. All the other surfaces of the
metal block were assumed to be thermally insulating. The chamber
temperature was maintained at 293 K. A detailed description of this
model including equations and relevant references could be found in
[7]. To validate the model, the experimentally observed geometrical
characteristics of the molten pool were compared with the modeling re-
sults. It was found that for the same set of laser spot size, hatch distance,
laser speed and, laser power the geometrical characteristics of the mol-
ten pool were in a good agreement with the experiment. Therefore, the
model was assumed plausible for an estimation of thermal cycling in
situ occurred in the SLM fabricated specimen of AISI 420 stainless steel.

The thermal cycles at depths of 0, 40, 80, 120, and 160 um were cal-
culated, Fig. 2. The selection of depths was based on microscopy obser-
vations and the depths correspond to the central points of the first
tracks in five fabricated layers. The thermal cycles at the depth of 0 pm
correspond to thermal effects in the center of the first track, during
the build-up of the top layer itself, Fig. 1. The thermal history in the pre-
vious layer, at a depth of 40 um, consists of thermal cycles when this
layer was built-up itself and thermal effects from when the subsequent
layer was built. Thus, the whole Fig. 2 represents the calculated thermal
history at the depth of five fabricated layers. The calculations showed
that simulation of more laser scans or to larger depths is not reasonable
since the estimated temperatures would be lower than the critical Mg
temperature and, therefore, assumed to have no significant influence
on the microstructure.

3.2. Microstructural characterization

The characterization of microstructures showed that the SLM speci-
men of AISI 420 stainless steel has a pore-free microstructure without pri-
mary carbides. Microscopy, microhardness profile measurements and
XRD analysis showed that the upper layers of the specimen have a micro-
structure of fresh martensite with a maximum hardness of 750 HV to
depths of about 100-120 um. XRD detected 21 4= 12 vol.% of retained aus-
tenite in the top surface layers. The inner regions showed an appearance
similar to tempered martensite and a hardness of 500-550 HV, with a
high content of austenite, 57 + 8 vol.%, as revealed by XRD.

In the annealed condition this steel commonly contains primary Cr-
rich carbides. However, no primary carbides were detected by SEM or
XRD in the microstructure after SLM. This could be a result of the repeat-
ed remelting of the material that leads to complete dissolution of the
primary carbides, together with rapid solidification which prevents pre-
cipitation of them. Similar carbide-free structures were reported for
laser treated [11] and welded [12] AISI 420 stainless steel. According
to the CCT diagram presented in [13], at cooling rates of 2°/s or higher,
the primary carbides are not formed at continuous cooling. Numerical
modeling of the heating-cooling cycle showed, see Fig. 1, that the
cooling rates at SLM were substantially higher than that threshold of
2°/s. Similarly, quite high cooling rates were reported for direct laser
fabricated AISI 420 [14] and SLM austenitic stainless [15] steel.

At SLM of steels, the austenite formed at rapid solidification after
remelting has a morphology of elongated colonies of cellular cells. This
type of microstructure has been investigated thoroughly for instance
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Fig. 2. Numerical simulation of thermal cycling at different depths during laser melting of AISI 420 steel. The insert illustrates modeled temperatures and time after 1-st scan at the top
layer, 0 um depth. Axis X represents an order of the scans and the layers during manufacturing.

Critical points adopted from [13].

in the austenitic stainless AISI 316L steel and other metallic materials
manufactured by SLM [3,16,17]. In steels, TEM and EBSD investigations
have shown that the cells in a single colony were coherent, i.e. have the
same crystallographic orientation, and grew along the <100> crystallo-
graphic direction [ 16,18]. Boundaries between cells are thick dislocation
structures, different from the regular high-angle grain boundaries [3].
This type of cellular microstructures has been observed in laser
or electron beam manufactured metals [17,19]. In AISI 420 steel, the
austenite-martensite phase transformation takes place after cooling
below the Mg temperature. The martensite phase has a distinct
needle-like morphology, as observed at the top surface of the SLM
fabricated specimens, Fig. 3a.

The morphology of the parental austenite phase, the cellular struc-
ture and colony boundaries, are still visible on the surface. At martens-
itic transformation, dislocations from the parental austenite are
inherited by the fresh martensite, therefore, the cells were clearly visible
in the martensitic structure observed on the top surface of the speci-
men, Fig. 3a. Notably, the martensitic needles grew through the cells
and stopped at the high-angle colony boundaries. The martensitic trans-
formation is a diffusionless and displacive transformation where the
fresh martensite has a certain crystallographic relationship with the pa-
rental austenite (commonly by Kurdjumov-Sachs relationship {111}, ||
{011}y and <10-1>, || <11-1>¢). The observation that martensite
needles have grown through the cell boundaries is therefore additional
confirmation of coherency of the parental austenite cells.

Hardness profile measurements showed typical hardness values for
fresh martensite of 750 HV to depths down to 100-120 pm. This indi-
cates that there was not any extensive thermally activated decomposi-
tion of the martensite in the two-three last deposited layers. Analysis
of the thermal history of the three upper layers shows that at
manufacturing of the top layer, the temperature reaches above the A¢q
temperature at depths down to 80 um. After the last austenitization,
by the heat from the first track at rescanning, point “a” in Fig. 2, the

steel is rapidly quenched to martensite due to the high cooling rates.
The heat from the second track at rescanning, point “b”, will heat the
material above M, once, while further tracks will not heat the inner re-
gions higher than the M temperature, points “c” and “d”.

Theoretically, those temperatures are high enough to initiate diffu-
sional decomposition of fresh martensite. According to [20], carbon can
diffuse already at 100-200 °C and segregate at lattice defects. At temper-
atures of 250-350 °C, the formations of carbides, however, are influenced
by alloying elements. Alloying elements like Cr, W, Mo, C and Co impedes
precipitation in martensite by affecting the diffusion rate of carbon in the
supersaturated solid solution so that martensite can retain up to 450-
500 °C [20]. Therefore, enrichment of the steel with alloying elements
due to the complete dissolution of the primary carbides could slow
down the precipitation. According to the numerical simulation, Fig. 1, a
heating-cooling cycle at SLM is very rapid. It is therefore assumed that
in the upper layers the martensitic structure remains virtually unaffected
due to the higher content of the alloying elements and the kinetic factor.

In principle, analysis of the thermal history in the upper layers sug-
gests that in the SLM objects, a few top layers always have a different
thermal history than the inner regions. In the investigated martensitic
stainless steel this effect gave a top layer, with higher hardness than the
inner regions due to the formation of martensite. For selected applica-
tions, a harder surface could be undesirable, therefore, manufacturing-
related differences in microstructure and properties in the outer layers
should be predicted and taken into account.

Microstructural analysis of inner parts showed a microstructure sim-
ilar to tempered martensite with a hardness of 500-550 HV. Additional-
ly, unusually high amount of austenite, 57 4+ 8 vol.%, was revealed by
XRD in the inner parts of the specimen, and these findings qualitatively
were confirmed by EBSD, Fig. 4. Red pixels (dark pixels in black and
white version) in Fig. 4b correspond to areas in the microstructure iden-
tified as fcc iron. Correct quantitative analysis of this data was not pos-
sible due to a high amount of not indexed pixels, which could be a

Fig. 3. (a) — Martensitic needles at the top surface, the top surface was not etched or polished, BSE SEM image, (b) — inner regions of thermally affected microstructure of the SLM fab-

ricated AISI 420 steel, etched cross-section, SE SEM image.
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Fig. 4. (a) — SEM image of inner parts of the SLM fabricated AISI 420 steel, (b) — EBSD aus-
tenite map of the same region, the building direction is marked by an arrow, an example of
the pool boundary marked with a dash line, (c) — XRD pattern obtained from the top sur-
face and the inner region.

result of high residual stresses. Therefore, the quantitative data on the
volume fraction of fcc phase was obtained by XRD. Nevertheless,
Fig. 4b illustrates a distribution of the fcc phase in the inner parts of
the specimen. It is seen that the detected fcc phase distributed quite
unevenly.

XRD data presented in Fig. 4c shows peaks of alpha and gamma iron
obtained from the top surface and from the inner regions of the speci-
men. The intensity of gamma peaks substantially different and higher
in the inner regions. According to [11] retained austenite in laser surface
melted AISI 420 is located at cell boundaries, which is in agreement with
the microstructure presented in the SEM picture in Fig. 3b. Here the cen-
tral regions of a single cell have a morphology of tempered martensite,
while the boundaries rather look like retained austenite. Nevertheless,
the very high amount of austenite observed in the inner regions cannot
be related only to the retained austenite. XRD from the top surface
showed presence of 21 £ 12 vol.% austenite, about a half of that

measured in the inner regions. As an alternative, the high amounts of
austenite in the inner regions could be related to the in situ thermal
cycling during manufacturing and, be a result of a partitioning and
austenite reversion processes.

Partitioning is a process based on a redistribution of carbon between
the martensite and austenite phases at temperatures slightly above M.
The steel is quenched to temperatures close to Mg and then held for
some time at constant temperature to cause carbon redistribution
resulting in stabilization of the austenite in the microstructure
[21-24]. Usually, this treatment does not lead to formation of new aus-
tenite, but to stabilization of the retained austenite already existing at
the partitioning temperature. Recently, other regimes for partitioning
in AISI 420 have been described [21], where the steel has been
quenched down to room temperature and then heated up to 300-
500 °C and held for relatively short times to activate diffusion. Substan-
tial austenite reversion, from 8-20 vol.% retained austenite in the as-
quenched microstructure up to 40 vol.% has been achieved by this
heat treatment for 30 min at 400 °C [21]. This transformation has been
explained by a segregation of carbon to martensite-martensite or mar-
tensite-retained austenite phase boundaries during quenching. At
further heating, the carbon-enriched regions at the martensite-mar-
tensite interfaces can revert to the austenite phase. Carbon segregated
at the martensite-retained austenite phase boundaries promotes
growth of the retained austenite phase [21].

The SLM is a multi-step process involving many quick heating-
cooling cycles and therefore, the in situ partitioning process taking
place at laser manufacturing has an interrupted character. Numerical
simulation of the thermal history in the inner regions, Fig. 2, showed
that the temperatures experienced by the inner regions at fabrication
were high enough to initiate carbon diffusion. However, because of
the short cycle times the diffusion was limited. Apparently, carbon
atoms could diffuse short distances and along more defected areas, in
this case the cell boundaries. The cell boundaries in the austenite were
found to be dislocation structures between coherent cells formed at so-
lidification [3,16], and they were inherited by the martensite, Fig. 3a.
Segregation during solidification and further, selective diffusion of car-
bon, therefore, resulted in the austenite reversion along cell boundaries.
This effect is illustrated in Fig. 3b, where the cell boundaries were deco-
rated by the reversed austenite clearly differ from the cell cores. Prefer-
able formation of the austenite phase at cell boundaries can also explain
an uneven distribution of the fcc phase observed in the inner regions,
Fig. 4. Higher amounts of fcc could locate in regions where cells were
finer i.e. contained higher fraction of cell boundaries.

After the quenching and partitioning heat treatment, the AISI 420 steel
with high amounts of reversed austenite demonstrates a distinctive com-
bination of high ductility and high ultimate tensile strength, associated
with deformation-driven austenite-to-martensite transformation [21].
The results obtained in this investigation of AISI 420 stainless steel showed
that partitioning and austenite reversion occurred in situ at SLM
manufacturing. The fact that these in situ processes changes microstruc-
ture which controls the final properties offers an attractive opportunity
to manufacture a component with complex shape and tailored properties
in one step, without additional heat treatments afterwards. Additionally,
the in situ heat treatment takes place locally in every point, which could
eliminate issues related to component thickness and hardenability, the
whole bulk, except the top surface, would experience the same heat treat-
ment all the way through. Therefore, a concept of the controllable in situ
heat treatment at SLM manufacturing would be realized, if suitable pro-
cess parameters to control in situ processes were found.

The diffusional character of the in situ processes observed at SLM of
AISI 420 steel showed that the control of temperature and heating-
cooling time at manufacturing cycles is of highest importance. If the
cycle time depends on material properties and is difficult to be manipu-
lated, the temperature can vary substantially with changes of the pro-
cess parameters. It has been experimentally shown [3] that the key
parameters, which influence temperature the most, were laser power
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and laser scanning speed. Additionally, these parameters were easy to
control. To estimate the influence of SLM parameters on in situ heat
treatment, a change in depth of the Ty, Ac; and M; critical points'
isotherms was numerically simulated in dependence on the laser
power and laser scanning speed. The isotherms were calculated for a
single laser scan with laser scanning speeds of 100, 120 and 140 mm/s
and laser powers of 50, 60 and 70 W. The points in Fig. 5 represent the
maximum depths of Ty, Ac; and M isotherms, obtained from the corre-
sponding longitudinal contour plots. It is seen that changes of these pa-
rameters mostly influence the depth for the Mg isotherm, Fig. 5. With an
increase of the laser power from 50 to 70 W and a decrease of the laser
scanning speed from 140 to 100 mmy/s, the estimated depth of the Mg
isotherm increased by 90-100 pm. In terms of temperature, at an arbi-
trary selected depth of 200 um, the same changes of process parameters
resulted in an estimated temperature rise by 245 + 25 °C. This change of
the affected depth implies that a selected region will reach higher tem-
peratures during manufacturing. According to [21,25] changes in tem-
perature substantially influenced the amount of reversed austenite in
AISI420 steel, and thus also the final properties. The results of the nu-
merical simulation show that the heat affected zone can be quite well
controlled by control of the energy input, therefore supporting the con-
cept of a controllable in situ heat treatment during SLM manufacturing.
Nevertheless, the concept requires a more systematic experimental ver-
ification before it becomes possible to manufacture parts and compo-
nents with tailored properties at industrial scale.

4. Conclusions

The microstructure of AISI 420 steel manufactured by SLM depends
on local thermal cycling conditions, which could be predicted by nu-
merical simulation.

 Thermal cycles modeled for the upper regions suggested that the tem-
peratures were high enough to start diffusional transformation, but an
enrichment of the martensite with alloying elements and a very short
time at high temperature restricted the martensite decomposition. At
the used process parameters, the upper region consisted of martensite
with 21 £ 12 vol.% retained austenite and a hardness of 750 HV to the
depth of 100-120 pm.

Microstructures in the inner regions were formed due to carbon
partitioning and diffusional processes occurred in situ. At a multiple
thermal cycling between M; and A, temperatures, a diffusion of car-
bon segregated at the interphase boundaries during solidification was
initiated. Carbon atoms diffused to the most defected regions, the cell
boundaries, with a subsequent austenite reversion or growth of the

retained austenite. A total amount of 57 + 8 vol.% austenite and a
hardness of 500-550 HV were measured in the inner region.
Numerical simulation of the thermal history showed good agreement
with the experiment, therefore was found plausible to predict the in
situ heat treatment occurred in the as built AISI 420 martensitic stain-
less steel. Based on the experimental results and the numerical analy-
sis, a concept of a controllable in situ heat treatment during SLM to
manufacture objects with tailored properties was suggested for future
development.
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