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CHAPTER 1

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and Endocrine disrupting chemicals (EDCs) are
man-made chemicals that cause cancer and alter the function of endocrine systems in both
humans and wildlife, respectively. PAHs and EDCs are considered as one of the priority
pollutants and world-wide research is on-going to develop bioremediation strategies to
remove these toxic  xenobiotics from  environment.  Understanding indigenous
microorganisms is important to design efficient bioremediation strategies. However, much of
the information available on PAHs and EDCs has been generated from developed regions. In
this direction, recent studies revealed presence of different PAHs and EDCs in South African
natural resources. However, to date, study on analysis of microorganisms capability to
utilize/degrade EDCs has not been reported and studies on PAHs are scares from South
Afiica. Soil samples collected at the different coal-fired power stations in and around
Mpumalanga province, South Africa was used for enriching microorganisms. Enrichment
method employed for isolating fluoranthene (as a model compound for PAHs) or
nonylphenol (as a model compound for EDCs) degrading microorganisms. Identification of
microorganisms was carried out using 16S rRNA gene analysis. Phylogenetic analysis of
isolates was carried out using MEGAS. For each substrate, six pure and distinct bacterial
cultures were successfully enriched. Pseudomonas dominated the strains enriched on
nonylphenol, with 5 of the 6 isolates belonging to this genus. All four of these isolates
however belong to different species. Highest diversity observed when fluoranthene was used
as a carbon source. Strans of Pseudomonas, Stenotrophomonas, Cupravidus and
Ochrobactrum were isolated using fluoranthene as a carbon source. Study results are the
beginning of identification of microorganisms capable of degrading carcinogenic and
endocrine disruptors and pave the way for explorng PAHs and EDCs degrading

1
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microorganisms from South Africa. An article on EDCs utilization organisms and their

capability to degrade nonylphenol is submitted to South African Journal of Sciences. Here the

details:

Qhanya LB et al (2016) Isolation and characterization of endocrine disruptor

nonylphenol-using bacteria from South Africa. SAJS-2016-0287 (under review).

Apart from my Masters study, I also supervised four B. Tech student projects and

managed to publish an article with students.  Furthermore, I also worked on few

bioinformatics projects and earned co-authorship in two manuscripts listed below:

Parvez M, Qhanya LB, Mthakathi NT, Kgosiemang IKR, Bamal HD, Pagadala NS,
Xie T, Yang H, Chen H, Theron CW, Monyaki R, Raselemane SC, Salewe V,
Mongale BL, Matowane RG, Abdalla SMH, Booi WI, van Wyk M, Olier D,
Boucher CE, Nelson DR, Tuszynski JA, Blackburn JM, Yu J-H, Mashele SS, Chen
W, Syed K. (2016) Molecular evolutionary dynamics of cytochrome P450
monooxygenases across kingdoms: Special focus on mycobacterial P450s. Scientific
Reports | 6:33099 | DOI: 10.1038/srep33099.

Qhanya LB, Matowane G, Chen W, Sun Y, Letsimo EM, Parvez M, Yu J-H,
Mashele SS, Syed K. (2015) Genome-wide annotation and comparative analysis of
cytochrome P450 monooxygenases in basidiomycete biotrophic plant pathogens.
PLoS ONE 10(11): e0142100. doi:10.1371/journal.pone.0142100.

Sello MM, Jafta N, Nelson DR, Chen W, Yu J-H, Parvez M, Kgosiemang IKR,
Monyaki R, Raselemane SC, Qhanya LB, Mthakathi NT, Mashele SS, Syed K.
(2015) Diversity and evolution of cytochrome P450 monooxygenases n Oomycetes.
Scientific Reports 07/2015; 5. DOI:10.1038/srep11572 - (Discovered novel P450

fusion protein).
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In addition to the above credits, I was featured on national TV and in newspapers for
discovering a novel drug target. I also presented work at both national and nternational

(Canada) conferences.
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CHAPTER 2

INTRODUCTION AND LITERATURE REVIEW

2.1. Introduction to environmental pollution

Pollution has enormous effects on earth’s environment. Chapman et al., (2003) defines
pollution as contamination that may result in an adverse biological alteration of the natural
environment. Water, air and soil pollution have been categorised as the major types of
pollution (Chapman et al., 2003). Pollution can be caused by both natural and manmade
factors. Mines, industries, farms and urban settlements are the main contributors to heavily
polluted water bodies like the rivers and lakes (Cai et al., 2016). Accumulation of heavy
metals and metalloids such as arsenic (As), cadmum (Cd), cobalt (Co), chromum (Cr),
copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) in soil is also regarded as
pollution (Bortey-Sam et al., 2015). Natural disasters such as volcanic ash also contribute to

the ever growing concerns of environmental pollution (WHO, 2010).

Pollution is a worldwide problem and its potential to influence the physiology of
human populations is great. Exposure to air pollution is heavily linked to cause lung cancer
and more adverse effects on human (Yang et al, 2016). Prenatal growth is one of the

detrimental effects pollutants have on human growth (Schell ef al., 2006).

Environmental pollution is one of the greatest problems this world is currently facing.
The fact of the matter is that with every year passing this is increasing and may get to the
ireversible stage.  Among quite a number of different classes of chemical compounds,
polycyclic aromatic hydrocarbons (PAHs) and endocrine disrupting chemicals (EDCs)

considered one of the most hazardous environmental pollutants.

© Central University of Technology, Free State
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2.2. Polycyclic Aromatic Hydrocarbons (PAHs)

2.2.1. Introduction to PAHs

PAHs are a collection and diverse group of chemicals that are characterised by benzene
compounds that are fused together ie. two or more aromatic rings (Haritash & Kaushik,
2009; Bosetti et al., 2007). A lot of these PAHs are present in the environment due to the
incomplete combustion of organic matter. They originate from both human and natural
activities. Human activities (Anthropogenic) includes coal-fired electricity generating power
stations, burning of wood, coal, household garbage and fossil fuel (vehicle exhausts) amongst
a few. Other sources are naturally enthused like forest fires, volcano eruptions, oil seeps and
agricultural burning (Haritash & Kaushik, 2009; Samanta er al, 2002). PAHs are also
ubiquitous environmental pollutants that are very persistent under normal natural conditions
and do not degrade easily. PAHs do not easily dissolve in water and are known to have low

water solubility and are highly lipophilic (Sun er al., 2010).

According to US Environmental Protection Agency (USEPA) and International
Agency of Research of Cancer (IARC), 16 PAHs have been identified and are known to be
highly toxic pollutants. Even though about 100s of these PAH compounds have been
identified in nature only few are shown to have detrimental effects on humans and living
organisms (Figure 2.1) (Sun et al., 2010; Skupinska er al., 2004). Many of these compounds

are suspected to be mutagenic and/or carcinogenic (Peng et al., 2008).

© Central University of Technology, Free State
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phenanthrene anthracene

benzo[a]anthracene chrysene benzo[b]fluoranthene
benzo[a]pyrene
benzo[k]fluoranthene benzo[e]pyrene

()

o
eLes L

indeno[1,2,3-cd]pyrene Dibenz [a,h]anthracene benzo[ghi]perylene

Figure 2.1. Chemical structures of model PAHs (Maigari & Maigari, 2015).
2.2.2. Source and nature of PAHs

PAHs are released into the environment due to incomplete combustion activities. Incomplete
combustion is thought to occur when the temperature is low without access air. Generally,
PAHs are formed from incomplete burning of coal, crude oil, gas, wood, burning of refuse, or
other organic compounds, such as tobacco smoke and braai-meat. They occur in nature as a
complex mixture (e.g combustion products such as dust/smoke) and mostly not as separate
compounds unless manufactured for a specific purpose e.g research activity (Liu e al., 2008;
Baek et al., 1991). About 51% of PAHs are caused by anthropogenic actions from coal-fired
electricity generating power station and domestic house warming. Not only human activities

contribute to the overall PAHs in the air but also natural activities e.g volcanic eruption,

© Central University of Technology, Free State
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forest fires. Only a handful PAHs are used in the production of dyes (clothing manufactures),

pesticides and plastics (Skupinska ez al., 2004).

PAHs can occur in the air, attached to dust particle or as soil sediment. As reported by
Skupinska et al., (2004) 89% of PAHs tend to accumulate mostly in the humus layer of soil
either as wet or dry depository. Dust and sludge used as fertilizer and compost are good

sources of soil contaminated with PAHs.

Considerable quantities of PAHs can be found in some foods depending on the mode
of cooking, preservation and storage. They have also been found in a wide range of meat,
fishes, vegetables and fruits. Contamination of food by PAHs comprises of number of
sources, including environment; food processing techniques and methods of analysis. Human
exposure can be through consumption of vegetables that having taken up PAHs through
ambient arr and soil. Compared to inhalation, food ingestion is a major path of exposure
(Okedeyi et al., 2013; Lu et al., 2008). Leafy vegetables take up PAHs through atmosphere

and contaminated soil as their main source (Diggs et al., 2011).

An increase in molecular weight tends to increase the persistence of these chemicals.
PAHs contaming fewer than four rings (Low molecular weight) are linked with aquatic
animals having effects ranging from reproductive abnormalities and mortality rates whereas
higher molecular weight (containing four or more rings) are reputable for their carcinogenic
and mutagenic properties (Sun et al., 2010). Only in few and rare encounters does one find
PAHs alone in nature since the majority occur as a mixture of PAHSs; this tendency enhances

the potency of carcinogenic PAHs in the environment.

© Central University of Technology, Free State
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2.2.3. Effects of PAHs on living organisms

Properties of PAHs play a critical role in their environmental fate. Depending on the
substance these can either dissolve very easily in water or can easily evaporate ito the air
(Guillen et al., 2007). Studies have shown that PAHs can be harmful to the health of living
organisms. Some of the PAHs have been heavily linked with causing tumours in laboratory
animals, either through eating, breathing or through skin contact. These include
benzo[b]flouranthene, benzo[a]pyrene, benz] a]anthrancene, benzo[j]fluoranthene,
benzo[k]fluoranthene, chrysene and dibenza,/]anthracene. Studies on people exposed for a
longer periods of time to a mixture of PAHs have shown that there is potential for cancer
development. IARC and EPA have determined that benz[a]anthracene and benzo[a]pyrene
are probable carcinogenic to humans (ATSDR, 1995). It has already been emphasised that
PAHs are thought to be toxic and have carcinogenic and/or mutagenic properties (Samanta et
al., 2002). In metropolitan areas, studies have revealed that there’s a significant increase in
morbidity and mortality from cardiovascular and respiratory diseases associated with
exposure to these particulate matter (Perera et al, 1992). Extensive studies conducted in
Europe (Poland and Czech Republic) shown that the population exposed to environmental
pollution have increased levels of PAH DNA adducts. Furthermore, population in Poland
showed several genotoxicity markers like chromosome aberrations, sister chromatid
exchanges and ras oncogene overexpression (Kyrtopoulos et al., 2001; Perera et al., 1992).
DNA damage occurs when exogenous PAHs (those having carcinogenic activity) modifies
the DNA often by oxidation through radicals. Endogenous damage to human DNA is more

abundant than that caused by exogenous agents (Farmer ef al., 2003).

Naphthalene, a well-known micro pollutant in potable water is an example of PAHs
with a well-documented toxicity. In humans an acute poising can lead to haemolytic anaemia
because it covalently binds to molecules in the kidneys, livers and lungs (Samanta et al.,

8
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2002). On the other hand there is sufficient evidence that Benzo(a) pyrene, benzo(b)
flouranthene, benzo(a)anthracene, benzo(k)flouranthene, dibenz(a,h)anthracene ~ and

mndeno(1,2,3-c,d)pyrene are carcnogenic to mammals (Mastrangelo et al., 1997).

2.3. Endocrine disrupting chemicals (EDCs)

2.3.1. Introduction to EDCs

International Programme on Chemical Safety (IPCS) and U.S Environmental Protection
Agency (EPA) has defined Endocrine disrupting chemicals as ‘“exogenous substance or
mixture that alters function(s) of the endocrine system and consequently cause adverse health
effect in an intact organism, or its progeny, or (sub) population” (Baker, 2001). These
chemicals are termed disruptors because they can alter the normal functioning of the
endocrine system, that is, they interfere in the complex communication system between
chemical signals and their target responsible for regulating internal functioning of the body.
Interference/mimic  actions of endocrine system could result in developmental deficit n a
wide scale of living organisms; nvertebrate, aquatic species and mammals (Roger et al.,
2013; Schug et al., 2011; NIEHS, 2010). Convincing evidence exist that these chemicals can

be classified as pollutants with adverse effect on animals (including humans and wild life).

Endocrine system functions in the controling and coordinating of various body
functions. Hormones produced by endocrine organs and glands such as testes, ovaries,
adrenal, pituitary, thyroid, and pancreas secret release into the blood to act as the body’s
chemical messengers where they directly communicate and coordinate with other tissues
throughout the body. Endocrine system is a complex system where hormones work with other
systems such as nervous, reproductive, kidney, gut and the liver, to help control and mamntain
various functions in the body such as reproduction, growth and development, homeostasis

and body energy levels. List of chemicals known to act as EDCs are shown in Figure 2.2.

© Central University of Technology, Free State
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Compound Structure Description
Estradiol Endogenous
Estrogen
DOoT Pesticide
Plastics
BPA Component
GEN Phytoestrogen
DBP Phthalate
DEHP Phthalate

Figure 2.2. Chemical structures and uses of common endocrine disruptors (Patisaul &

Adewale, 2009)

2.3.2. Source and nature of EDCs

EDCs are ubiquitous in our environment. They can be found from many different sources,
including industrial chemicals, pharmaceutical, pesticides, insecticide and household’s
products (Figure 2.3) (Kitamura et al., 2005). A number of these chemicals have also been
found in the drinking water as a result of manufacturing plants effluent been discharged nto
the streams in addition to agricultural run-off (Figure 2.3). Some appears in the personal
hygiene products or from containers of food or maybe beverages (Sellin et al., 2009;
Bonefeld-Jorgensen et al., 2007). Bisphenol-A (BPA), is well-studied EDCs. Klecka et al.,

(2009) reported up to 12 parts per billion (ppb) of BPA in the effluent in the North America,

10
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whereas 43 ppb was in the European water. Thus concludes that an exposure to these
chemicals varies with the lifestyle and the geographic region (Roger et al, 2013). Over
hundreds EDCs are manufactured for an absolutely unrelated purposes (Figure 2.3). Pesticide
and herbicides such as o,p’-dichlorodiphenyl-trichloroethane (DDT), dieldrin, chlordane and
endosulfan; polychlorinated biphenyls (PCBs) and dioxins; and BPA (used in epoxy resins).
Other derivatives of BPA such as tetrabromobisphenol A (2,2-bis-(3,5-dibromo-4-
hydroxyphenyl)propane) are used by numerous products throughout the world as a flame

retardant, as a nontoxic flame retardant (Kitamura et al, 2005; Kitamura et al., 2002; Baker.,

2001).
Clothing and the
global toxic cycle e
clothing containing residual
-t lavels of NPEs to markets
even where these chemicals
are banned in dothing
manufacture.
1) Formulations
containing
nonyliphenol
ethoxylates (NPEs)
and other chemicals
are delivered to textile 5) Washing
manufacturers for use releases NPEs
as surfactants. to water treatment
o— faciities.

s
- ©) Water treatment
is generally
Ineffective in
2) Lax regulation permits ‘ —i dealing with NPEs,
wastewater [- essentially only
of NPEs which break . speeding up their
down into persistent, breakdown
e 1o toxic NPs.
7) Hormone-disrupting

NPs end up in aquatic
systems oven in

-:‘ countries where use of
d the parent compounds
=

3) NPs
accumulate in
sediments and
can build up in
the food chain,
such as in fish,

(NPEs) is banned.

Figure 23. Endocrine disrupting chemicals global toxic cycle (taken from

http//www.individualoperator.com/2016 04 01 archive.html)
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These can also disrupt hormones. If discharged into the water, nonylphenol is highly toxic to

aquatic creatures (Brittgow, 2014).

Some EDCs are highly resistant to breaking down in the environment making them
potentially hazardous over an extended period of time hence the term “persistent organic
pollutants”.  Between 1940 and 1970, pharmaceutical diethylstibestrol (DES) was used to
prevent miscarriage in women with high risk pregnancies. Later it was observed that
daughters who were exposed to DES through their mothers have developed a rare form of
vaginal cancer and few non-cancerous changes in both sexes of offspring’s (Schug et al.,
2011). Animal models were then used to predict the long term effects of these chemicals
(NIEHS, 2010). The effects of exposure to EDCs are permanent and irreversible. This
indicates a transgenerational exposure, that is, if the mother is exposed to endocrine
disrupting chemicals before producing any offspring this chemicals can have an effect on the
offspring due to the persistence of these chemicals in body fat, directly via egg laying (birds)

or pregnancy and lactation (mammals) (Tanabe, 2002; Damstra, 2002; Colborn et al., 1993).

Nonylphenol plyethoxylates non-ionic surfactants that widely used worldwide in both
industry and households are often seen as persistent pollutants in natural aquatic environment
which possess a threat to fish species and n the raw municipal waste water (L et al., 2006).
Estrone, 17p-estradiol (natural estrones) and 17a-ethynylestradiol (synthetic estrone) are
compounds documented to have estrogenic activities in waste water treatment and sewage
runoffs from hivestock and agricultures. An occurrence in trace level (ng/L) of estrogens in
wastewater and receiving waters has been recognised (Chang et al., 2011). This further

indicates the persistence of these chemicals in the environment.

12
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2.3.3. Effects of EDCs on living organisms

In the past years there has been a great level of concern which has mtensified within the last
few years about the adverse effect linked with exposure to EDCs following reports about the
reproduction health of both humans and wildlife. The deleterious health effects have been
observed over the years and a lot of papers have been published addressing the effects of

EDCs on living organisms (Bernanke & Kohler, 2009; Baker, 2001; Colborn et al., 1993).

Endocrine disrupting chemicals have been reported for decades from as early as 1950s
to have had some adverse effect on the invertebrates, fishes and, wildlife populations. Some
reported effects include: (1) females snails exposed to tributylin resulted to masculinisation
(imposex: imposition of male sex organ, including penis and vas deferens onto females) that
lead to decline and extinction of their population in a localized area (Matthiessen & Gibbs,
1998); (2) Alligators of Lake Apopka, Florida with mmpaired sexual development and
function. Effects linked to DDT, following the pesticide spill n 1980 (Guillette er al., 1994),
(3) reproductive failure reported by Sumpter & Jobling (1995) in various fish species
associated with sewage effluents paper industry and industrial chemicals; Exposure to DDE
lnked with egg-shell thinning in bald eagles that saw a decline in numbers in Europe and
North America (Baker, 2001; Cooke, 1973). To name just a few reported cases over past the

decades on wildlife and fishes.
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Figure 2.4. Endocrine organs targeted by EDCs (taken from Schug et al., 2011).

Figure 2.4 illustrates all major endocrine organs that are wvulnerable to EDCs. The

pancreas and the thyroid gland and EDCs are also known to impact hormone-dependent

metabolic systems and bram function. In humans it might take years or decades to assess the

effects of the exposure to EDCs because of individual needs to attain a certain age in order to

assess sexual maturity and fertility. In male reproductive health, EDCs have been hugely
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linked to disrupting reproductive function, which is displayed as reduced semen quality and
mfertility; development of fetal is altered, that is abnormalities in the urogenital tract (Figure
2.5) (Diamanti-Kandarakis et al., 2009). Industrially produced EDCs phthalate is responsible
for phthalate syndrome in males. Which suppresses the fetal androgen action, which is the
driving key to male reproductive organ development and phthalate is also linked to lowering
testosterone and its derivatives by interfering with the uptake of steroid hormone. Other
pesticides are also able to block the androgen receptor, thus producing the effects that are
those of phthalate. Androgen action is necessary for the production of sperm. Overall,
reduced fertility later m life is aided by EDC disrupting androgen action during fetal
development (Sharpe, 2010). Men aged 10-27 years exposed showed slightly positive or no
difference in semen quality as was the conclusion from the study done by Mocarelli er al.,
(2008). Pesticides exposure and reduced semen quality have been heavily linked in some
occupational studies closing the gap between EDCs and reduced male reproductive health

(Schug et al., 2011).

EDCs can also alter the female reproductive health and function, this was clearly
demonstrated in the used of DES on pregnant women, with their daughters later shown to
have rare cervicovagmnal cancers, they also seem to reach menopause early and decrease in
fertility (Figure 2.5) (Goldberg & Falcone, 1999, Hatch et al., 2006). Research on DES in
human and animals have revealed the susceptibility of female fetus to environmentally
induced reproductive abnormalities also reproductive deformation may only appear decades
later after exposure. Puberty starts later n childhood life, this transition period were
mndividual’s move from non-reproductive to reproductive state. In females, this leads to
oestradiol secretion from the ovaries. The onset of puberty is thought to be determined by a
number of factors including: nutrition, ethnicity, psychosocial and socio-economic

conditions. But in the past decades, a trend of earlier age reaching puberty has been noted,
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particularly in the Europe and US (Parent er al., 2003). As noted by Schug er al., (2011), that
exposure to DES can impart a hormonal imprint on the developing uterus thus causing an
increase in estrogen-responsive gene expression. One hypothesis to explain this change in
the timing of puberty was exposure to EDCs in the pre-pubertal period. While there has been
a number of studies’ suggesting that there has not been a conclusive link between early

puberty and environmental agents (Fowler er al., 2012).

| Endocrine-disrupting compounds

FO mother Effects in exposed generation

F1 fetus Effects in children

F2 germ cells Effects in grandchildren

F3 NOT directly exposed

v

Effects in great-grandchildren = epigenetic

Figure 2.5. Schematic representation of effects of EDCs across generations (taken from
Fowler et al., 2012). If the mother is exposed to EDCs directly her fertility may be affected
and, if she is pregnant, her foetus will be directly exposed (F1, children). However, the germ
cells in the foetus will also be exposed and this may result in disturbance of both the F1

directly and of the F2 in the form of the F1 germ cells for a true trans-generational effect.
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2.3.4. Mechanisms of EDCs on the Endocrine system

EDCs can only interfere with hormone signalling because of their structure and activities
(Figure 2.6). An ordinary chemical structure of a chemical does not make it an endocrine

disruptor.

0 & Normal Hormone

Hormone
Receptor

g/"“’ o ;’/::'::::°
%o ¢ <
Q &

Cell
Nucleus

o u @

Y Y v
Cellular Response Cellular Response CellufpR&Sponse

Figure 2.6. Mechanisms of EDCs. When absorbed in the body, an endocrine disruptor can
decrease or increase normal hormone levels (left), mimic the body's natural hormones

(middle), or alter the natural production of hormones (right) (taken from NIEHS, 2010).

With the complexity of the endocrine system, possiilities of EDCs interfering or
altering endocrine functions are countless. The interference with the system include: (1)
mimicking the effects of a natural hormones (e.g. sex hormones; estrogen and androgen) by
binding to therr natural receptors — as agonists or as antagonists by blocking the natural
hormone from binding to the hormone receptor (Figure 2.6); (2) by reacting
directly/indirectly with the breakdown and synthesis of natural hormones; (3) by changing the

functioning and production of hormones (Schug et al., 2011; Baker, 2001).
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2.4. Bioremediation of EDCs and PAHs

Various environmental pollutants are posing as threats to humans and the ecosystem. These
pollutants only enter the ecosystem through soil, water and air. A major contributor to soil
contammation reported in recent years are the mdustries and agricultural activities (Udeigwe
et al, 2011; Ha et al, 2014). Air and water pollution is propelled mostly through
anthropogenic activities, which are the burning of the fossil fuels and forest fires etc. Water
pollution can either be from industries directly dumping effluent into the stream or runoff
waste water treatments. Main environmental pollutants include PAHs, EDCs and lastly
heavy metals. There has been a lot of research done to remove these pollutants from our
environments. Bioremediation has been one of the methods that standout. Which is the
process of employing living microorganisms in degrading and transforming hazardous
compounds to less hazardous/non-hazardous form, it’s efficient and costs little compared to
chemical and physical remediation technologies available (Arun er al., 2008; Librando &
Pappalardo, 2013; Chen et al., 2015). The use of microorganisms (algae, bacteria or fungi) to
degrade these molecules (PAHs and EDCs) is mostly used. A large number of studies
conducted across the world have shown that microbes have the ability to breakdown various
organic compounds by biotransformation or mineralization. To devise an effective
bioremediation system one has to take into consideration a number of limiting factors ranging
from pH, temperature, oxygen, type of microbial population and availabilty of nutrients
(Haritash & Kaushik, 2009). As of 14 October 2016, 38517 publications were found in
PubMed using the word “bioremediation” indicating the importance on use of microbes to

remove the pollutants from the environment.
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2.5. EDCs and PAHs in South Africa

Studies on EDCs from South Affica in particular are very scarce. A report presented
by the Water Research Commission of South Africa revealed the presence of EDCs in South
African water (Burger & Nel, 2008). In addition to this report, studies conducted in a few
places within South Africa also revealed the presence of EDCs. DDT, DDE, and phthalate
esters have been found in Limpopo (Fatoki et al., 2010; Aneck-Hahn et al., 2009 & 2007);
Estrone, estradiol, and estriol (steroids hormones) in the Western Cape (Swart & Pool, 2007)
and m Kwazulu Natal (Manickum & John, 2014); p-nonylphenol, diethylhexyl phthalate and
dibutyl phthalate n Gauteng (Mahomed, 2008) and Ilasty DDT, chlordane,
hexachlorobenzene, heptachlor and endosulfan in the Eastern Cape (Fatoki & Awofoly,
2004). In addition, quite a large number of EDCs were found in upstream and downstream

sections of wastewater treatment plants (Olyimi ef al., 2012; Olyjimi et al., 2010).

Despite a great deal of evidence of contamination of our natural resource with toxic
chemicals, studies on isolation and further utilization of indigenous microorganisms capable
of degrading these toxic chemicals are scarce. So far only two microbes that can degrade
PAHSs, Pseudomonad and Alcaligenes spp are the only studied organisms isolated from soil
and mine drainage in South Africa (Tikilli & Nkhalambayausi-Chirwa, 2011). However, the
detoxification ability of the isolates has not been studied. In addition to the above, to date,
studies on the analysis of the capabilities of microorganisms to utilize/degrade EDCs have

not been reported from South Africa.
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2.6. Rational and aims and objectives of the study

It has been found that soil and water particularly from mines in and around South Africa is
contaminated with hazardous chemicals and compounds that are possible cancer causing
agents and endocrine disruptors. About 15 polycyclic aromatic hydrocarbons (PAHs) have
been identified in soils in three areas at South African coal-fired power plants (Okedeyi et al.,
2013). The PAHs ranged from phenanthrene, anthracene, flouranthene and pyrene etc.
(Okedeyi et al., 2013). The river water in Vaal Triangle area in South Africa, is amongst few
places where these compounds are found (Moja er al., 2013). Furthermore these compounds
are detected as late as at wastewater treatments plants, which the process itself is not designed

to remove these compounds.

Thorough understanding of indigenous microorganisms and therr capabilities is
necessary to design efficient bioremediation strategy. Considering the contamination of our
natural resources with toxic compounds and the apparent lack of studies on the isolation and
utilization of indigenous microbiome for therr capability towards degrading the toxic
compounds, it is very critical that the abundant microbiome should be explored due to their
possible potential in the degradation of both type of toxic compounds ie. carcinogenic and

endocrine disrupting chemicals.

The proposed master study is aimed to (i) Isolate microorganism(s) capable of
utilising carcinogenic chemical fluoranthene and endocrine disrupting chemical nonylphenol
as a carbon source and (i) Identification and phylogenetic analysis of isolated

microorganisms.
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CHAPTER 3

ENRICHEMENT AND ISOLATION OF FLUORANTHENE AND NONYLPHENOL
UTILISING MICROORGANISMS

3.1. Introduction

For few years new techniques have been devised to increase the number of microbes that can
be cultivated in the laboratory. Staley and Konopka (1985) were the scientists who expressed
therr frustrations about uncultivable microbes in laboratories from different natural
environments, on their paper titled “The Great Plate Count, Anomaly”. Which compared
direct microscopic counts to number of colonies that have grown on plates mnoculated which
the same sample (Nichols, 2007; Schloss and Handelsman, 2004; Sait et al., 2002; Amann et
al. 1995). Several studies have documented success by altering a variety of traditional
cultivation methods, including substrate, incubation period, pH, and O,/CO, concentration.
Study by Mitsui et al. (1997) revealed a different bacteria from soil, when comparison studies
were performed between diluted nutrient broth and nutrient rich broth. A lot has been
achieved with the slightest change of existing methods (Overmann, 2006; Joseph et al., 2003;
Janssen et al., 2002; Satit et al., 2002).

In recent years, the most preferred method of isolating microorganisms from the
environment is the enrichment culture technique. The essence of this process is to provide
suitable conditions for the growth of microorganisms capable of metabolising desired
compounds. By providing the compound as a sole carbon source, microorganisms that can
utilize the provided compound can be enriched (Gaskin & Bentham, 2005; Bastiaens et al.,
2001). These organic compounds can easily be broken down as a source of carbon and energy
by variety microorganisms. Only those microorganisms that can use the compounds in the
media will grow, while others will not, because they unable to use the compounds as a sole

carbon source and energy.
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Hence, in this study, enrichment culture technique was followed to isolate
microorganisms capable of utilizing fluoranthene and nonylphenol as a sole source of carbon.
3.2. Materials and methods

3.2.1. Soil sample collection and preparation

Soil samples were aseptically collected from different coal-fired power stations in and around
the Mpumalanga province, South Africa. The selected sampling areas with GPS coordinate
ware represented Figure 3.1. Soil samples (5g) were resuspended in 30 ml of DNase-free and
RNase-free water. The samples were vigorously vortexed for 5 min, followed by incubation
on a rotary shaker for 1 hour at room temperate at 100 rpm. After incubation, the soil was
allowed to settle out of solution (30 min), and the supernatants were collected and used for

isolation of microorganisms.
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Figure 3.1. Schematic representation of soil sample collection areas in Mpumalanga, South
Africa. The numbers 1 to 6 in stars indicates the areas collected soil samples. The sampling

areas GPS co-ordinates are listed in the figure.
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3.2.2. Media preparation

All chemicals and reagents used in this study were purchased form Sigma-Aldrich, unless
otherwise stated. Minimal medium (Boldrin et al., 1993; Zhang et al., 2004) with the addition
of trace element solution (Zeng et al., 2010), was used for isolation of microorganisms. The
minimal medium consisted of 8.5 g/l Na,HPO4.2H,O; 3.0 g/l KH,PO4. 0.5 g/1 NaCl;, 1.0 g/l
NH4CL 0.5 g/l MgS04.7H,0; 14.2 mg/l CaCl, and 0.15 g/l KCL. The minimal medium was
supplemented with 10 ml of trace element solution (Zeng et al., 2010), consisting of 0.4 mg/l
CuSOy4; 1.0 mg/l KI; 4.0 mg/l MnSO4.H,0; 4.0 mg/l ZnSO4.7H,0; 5.0 mg/l H3BOs; 1.2 mg/l
Na;M0O4.2H;0 and 2.0 mg/l FeCL.6H,0; per litre of medium. Technical grade Nonylphenol
(Catalog number: 290858) and Fluoranthene (Catalog number: 423947) was added as a sole

source of carbon to a final concentration of 5 mM.

3.2.3. Enrichment procedure

Supernatant (1 ml) from the soil samples was used to moculate 100 ml of mmnimal medum n
a 500 ml of conical flask, supplemented with nonylphenol and fluoranthene as sole carbon
sources. Controls were set up to contain medium and nonylphenol and fluoranthene, without
moculation of soil samples. After four weeks of mcubation at 37°C at 100 rpm, 1 ml of
culture was used to ioculate fresh minimal medium (100 ml) with nonylphenol and
fluoranthene as sole carbon sources. This serial enrichment of bacterial isolates was repeated
until a single, homogenous culture was obtained. Aliquots (100 pl) of cultures were spread on
mmimal medium agar plates with nonylphenol (5 mM) and fluoranthene (5 mM) as sole
carbon sources, to monitor the growth of microorganisms at 37 C. The minimal medium
plates with nonylphenol were prepared as described elsewhere (Porter and Hay, 2007). In
addition, bacterial growth was also analysed by measuring the absorbance at 600 nm. Fresh
mnoculum was prepared by inoculating a homogeneous colony in a 15ml LB broth. All
isolates were stored as a liquid cultures containing 20% glycerol at -80°C.
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3.3 Results and discussion

To isolate microorganisms capable of utilizing nonylphenol and fluoranthene as the sole
source of carbon standard enrichment culture technique were followed. Soil samples
collected from six different places (Figure 3.1) were inoculated into minimal mediuum
supplemented with nonylphenol and fluoranthene as carbon source. After 4 weeks of
incubation, growth of bacteria was observed on minimal medium plates supplemented with
nonylphenol as a carbon source (Figure 3.2). The mitial bacterial growth on plates was non-
homogenous, suggesting the presence of more than one type of species. After three
successive serial culturing, a homogenous population of bacteria was observed on minimal
medium plates (Figure 3.3). This indicated that successive serial culturing resulted n the
enrichment of single type bacteria that are capable of utilizing nonylphenol and fluoranthene
as sole source of carbon (Figure 3.2). In this study, twelve bacteria were isolated from the six

different soil samples.

Week 4

Flouranthene

Nonylphenol 1

34

© Central University of Technology, Free State



Central University of

CHAPTER 3: ENRICHMENT AND ISOLATION OF FLUC. X %eeoeg. free S2e ND NONYLPHENOL UTILISING MICRRORGANISMS

Figure 3.2. Analysis of growth of microorganisms on minimal medium plate supplemented
with fluoranthene and nonylphenol as sole carbon source. Panels A to D represent samples

spread on plates at indicated time-period.
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Flouranthene

5 6 Control

Figure 3.3. Isolation of homogenous bacteria capable of using fluoranthene and nonylphenol
as carbon source.

3.4. Conclusion

It is evident from the study that enriching and isolating microorganism from soil can be
achieved. The indigenous microorganisms found i the soils of South Africa do have the
capabilities of utilizing fluoranthene and nonylphenol. In the present study enrichment culture

technique resulted i isolation of bacterial species.
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CHAPTER 4

IDENTIFICATION AND PHYLOGENETIC ANALYSIS OF

BACTERIAL ISOLATES

4.1. Introduction

The prerequisite for the functional understanding of bacteria in the soil environment is often
based on studying bacterial genetics and physiology. The applications of molecular methods
have been in use since the early 1990s, ever since, these ecological methods have assisted in
the mvestigation of cultivation-independent microbial communities from soil (Janssen, 2006).
Through this, new diagnostic and quantitative methods have been developed to target
functional genes and phylogenetically informative genes, or RNAs (Liesack & Dunfield,
2002; Gray & Head, 2001). The most useful and influential biomarkers have proven to be
16S rRNA genes in bacteria (Janssen, 2006; Rappé & Giovannoni, 2003; Pace et al., 1997,

Woese, 1987).

16S rRNA genes are widely used in studying bacterial identification due to the
essentiality of the gene and consist of highly conserved regions which have endured slow
evolution (Janssen, 2006; Rappé & Giovannoni, 2003; Pace et al., 1997; Woese, 1987). This
highly conserved region serves as templates for designing specific PCR primers or specific
nucleotide probes (Lane, 1991; Giovannoni et al., 1990). PCR aids in the analysis of 16S
rRNA genes by amplifying target sequences. PCR primers for 16S rRNA amplification are
widely available and this has helped to provide better understanding of bacterial diversity
(Marchesi et al., 1998; Wheeler et al., 1996; Lane, 1991). Solely based on the application of
molecular approaches bacterial diversity can be mvestigated from the natural environment
without cultivation of any culture (Santos & Ochman, 2004; Marchesi er al., 1998; Amann et

al., 1995).
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In this chapter the am is to identify the bacterial species isolated m previous chapter

usmg 16S rRNA gene.

4.2. Materials and methods

4.2.1. Isolation of genomic DNA and PCR amplification of 16S rRNA gene

Genomic DNA (gDNA) from bacterial isolates were extracted usmg the ZR Fungal/Bacterial
DNA MmiPrep kit (Cat. No. D6005, Inqaba Biotec, South Afiica) accordmg to the
manufacturer’s protocol The gDNA was visualised usmg Agarose-gel electrophoresis, and
¢DNA concenfration was measwed usmg SmpliNano microvolune spectrophotometer
(catalog mumber: GE29-0617-12, Sigma-Aldrich Co. LLC. USA). The isolated gDNA was
used for PCR amplification of 16S tRNA gene. 16S tRNA gene was PCR-amplfied usng
primers 63f and 1387r as described elsewhere (Table 4.1) (Marchesi ef al., 1998). 16S tRNA
gene was amplfied usmg the KAPA HiFi HotStart PCR kit (catalog number: KK2501,
KAPA Biosystems, USA) accordng to manufactuer’s mstructions. PCR conditions for
amplification of 16S rRNA gene are listed m Table 4.2. The PCR products were nm on 0.8%
Agarose-gel and were purified usmg the Wizard® SV Gel and PCR Clean-Up System

(Catalog mumber: A9281, Promega, USA).

Table 4.1. 16S tRNA gene amplification primer sequence (Marchesi et al., 1998).

Primers Sequences
63f 5’-CAGGCCTAACACATGCAAGTC-3’
1387r 5’-GGGCGGWGTGTACAAGGC-3’

40

© Central University of Technology, Free State




University of
o

CHAPTER4: IDENTIFICATION AND PHYLOGENETIC AE.%?;LEX Freesae SACTERTIAL ISOLATES

Table 4.2. PCR conditions for amplification of 16S rRNA gene.

Step Temperature During Cycles
Initial denaturation 95°C 3 mm 1
Denaturation 98°C 20 sec
Annealing 60 - 75°C 15 sec 25
Extension 72°C 45 sec
Fmal extension 72°C 1 mm 1

4.2.2.16S rRNA gene sequencing

Samples were prepared for sequencmg usmg the BigDye™ Termmator V3.1 Cycle
Sequencmg Kit (Catalog number: 4337455, Thermo Fischer Scientific, USA). The
aforementioned primers 63f and 1387r (Marchesi et al., 1998) were used for sequencmg. The
sequencmg reactions were performed accordmg to the parameters described by the
manufacturer (Table 4.2). Sequencmg reactions were puified usmg the EDTA-Ethanol
method described by the mamifacturer, and submutted for sequencmg usmg a 3130x1
Genetic Analyzer (Appled Biosystems, USA). Consensus sequences were derived from
the sequences obtamed from the forward and reverse primer reactions for each product, usmg

Geneious® R9 9.1.2. Software.

4.2.3. Phylogenetic analysis

16S tRNA gene sequences of bacterial isolates were subjected to BLAST analysis at NCBI
agamst 16S ribosomal RNA sequences (Bacteria and Archaea) to identify closest homologs.
Among the resultmg hits, the 16S tRNA sequences with 100% or 99% identity homologs
were selected. Based on the obtamed bacterial species, the type strams belongmng to each
species was selected, and its 16S rRNA sequences were retrieved from elsewhere

(http//www.bacterio.net/). The Escherichia coli ATCC 11775 type stram 16S rRNA gene
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sequence (also retrieved from http//www.bacterio.net/) was used as an out-group.
Phylogenetic analysis was carried out using the Maximum Likelihood method based on the
Tamura-Nei model (Tamura & Nei, 1993). Initial tree(s) for the heuristic search were
obtained by applying the Neighbour-Joining method to a matrix of pairwise distances
estimated using the Maximum Composite Likelhood (MCL) approach. All positions
containing gaps and missing data were eliminated. Evolutionary analyses were conducted in
MEGAS (Tamura et al., 2011). Phylogenetic analysis included the isolate 16S rRNA gene
sequence, hit homologs and Type strain 16S rRNA gene sequences. The phylogenetic tree
was presented with branch lengths, and the bacterial isolates identified in this study were

highlighted with bold font.

4.2.4.16S rRNA gene sequences accession numbers

GebBank accession numbers for 16S rRNA gene sequences of bacterial isolates were

obtained from GenBank (https//www.ncbinlm.nih.gov/genbank/). The GenBank assigned

16S rRNA gene accession numbers for 12 isolates are listed in respective tables.

4.3. Results and Discussion

4.3.1. 16S rRNA gene amplification and sequencing

In order to identify the enriched bacterial isolates, 16S rRNA gene sequence-based
phylogenetic analysis was carried out. The 16S rRNA genes from the gDNA of bacterial
isolates were PCR amplified using the 63f and 1387r primer set as described elsewhere
(Marchesi et al., 1998). Analysis of the PCR amplified products on Agarose gel showed
prommnent DNA bands with approximate sizes of >1200 base pairs (Figure 4.1). This
indicates specific amplification of 16S rRNA gene. The amplified 16S rRNA gene was gel
purified and subjected to sequence analysis using the same primers used for its amplification.
Sequence analysis was performed using both the forward and reverse primers, yielding a

consensus sequence of 300-500 overlapping base pairs between the sequences.
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Figure 4.1. Agarose gel electrophoresis analysis of 16S rRNAs genes amplified from twelve
bacterial isolates. PCR amplified products were run on 1% Agarose gel. Lane M, indicates
DNA Ladder (O’GeneRuler DNA Ladder Mix 100-10000 base pair, from ThermoFisher,
Catalog number SM1173). Markers with high intensity were indicated with their size. Lanes

1 to 6 indicate the respective bacterial isolates with either fluoranthene or nonylphenol.

4.3.2. Identification of nonylphenol degrading bacteria

16S rRNA sequence of isolates 1 and 2 showed 100% identity to Pseudomonas species, while
isolates 5 and 6 also had 99% identity to Pseudomonas species (Table 4.3). Isolate 3 showed
99% identity to Stenotrophomonas species and Isolate 4 showed 99% identity to
Enterobacter species. This indicates most of the isolates belong to Pseudomonas (Table 4.3).
Phylogenetic analysis of isolates based on 16S rRNA gene sequences compared to the 16S
rRNA gene sequences of hit species, highlighted the differential alignment of bacterial
isolates with different species (Figure 4.2). Based on the phylogenetic alignment the six
bacterial isolates were named as shown i Table 4.3. Furthermore, homology analysis
(percent identity) of 16S rRNA gene sequences among bacterial isolates (Table 4.3) revealed

that isolates 3 and 4 have low percent identity compared to other isolates, clearly reinforcing
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that they in fact belong to different bacterial genera. Species assigned to Pseudomonas on the
other hand showed high percent identity (Table 4.3), demonstrating that they belong to the

Same genus.

Nonylphenol degradation by the bacterial species identified in this study is reinforced
by literature. Species belonging to the genus Pseudomonas have been shown to degrade
EDCs such as di-n-butyl phthalate (Liao et al., 2010), p-nonylphenol (Chakraborty & Dutta,
2006) and polyethoxylated nonylphenols (Ruiz et al, 2013; John & White, 1998). Bacterial
species belonging to Stenotrophomonas were previously found to be capable of using either
nonylphenol or octylphenol as sole carbon source (Toyama et al., 2011). For species
belonging to the well-known human-pathogenic and plant association, Enterobacter,
degradation of EDCs has been reported particularly for bisphenol A (Badiefar er al., 2015),
polychlormated biphenyls (Jia et al., 2008), endosulfan (Abrahan & Silambarasan et al.,

2015), dibutyl phthalate (Fang er al., 2010) and nonylphenol (Kageyama & Morooka, 2005).
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Table 4.3. Information regarding nonylphenol degrading bacterial isolates identification.

Sample | 16S rRNA sequenced | GenBank accession NCBI Blast hit results Name assigned to the
number | gene size (base pair) numbers bacterial isolate
Dominant bacteria | Percent Query  cover
genus identity percentage
1 1242 KX364074 Pseudomonas 100 100 Pseudomonas
nitroreducens strain
LBQSKNI1
2 1239 KX364075 Pseudomonas 100 100 Pseudomonas putida
strain LBQSKN2
3 1196 KX364076 Stenotrophomonas 99 100 Stenotrophomonas  sp.
LBQSKN3
4 1240 KX364077 Enterobacter 99 100 Enterobacter  asburiae
strain LBQSKN4
5 1245 KX364078 Pseudomonas 99 100 Pseudomonas sp.
LBQSKNS5
6 1237 KX364079 Pseudomonas 99 100 Pseudomonas sp.
LBQSKNG6
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Figure 4.3. Phylogenetic analysis of nonylphenol degrading bacterial isolates 16S rRNA
gene sequences. Phylogenetic analysis was performed as described in the materials and
methods. 16S rRNA genes sequences of the type strains belonging to the same genus and an
out-group bacterial species (E. coli) were also included in the analysis. Superscript letter “T”
next to strain name indicates the type strain. Each bacterial isolate was named based on its
alignment to the homolog bacterial species. Branch lengths are also shown in the tree.

Bacterial species isolated and named i this study are highlighted with bold font.
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4.3.3. Identification of fluoranthene degrading bacteria

Phylogenetic analysis of fluoranthene degrading isolates is based on 16S rRNA gene
highlighted the alignment of bacterial isolates with different species (Figure 4.3 and Table
4.4). 16S rRNA sequences of isolates 2 and 6 showed 100% identity to Pseudomonas species,
while isolates 3 and 4 showed 100% identity to Stenotrophomonas species (Table 4.4.)
Isolate 1 showed 99% identity to Ochrobactrum species and isolate 5 showed 100% identity
Cupravidus species (Table 4.4). Based on the Phylogenetic alignment and percent identity to

the homolog species, the six bacterial isolates were named as shown in Table 4.4.
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Figure 4.4. Phylogenetic analysis of fluoranthene degrading bacterial isolates 16S rRNA
gene sequences. Phylogenetic analysis was performed as described in the materials and
methods. Type strains belong the same genus and an out group bacterial species (E. coli) 16S

rRNA genes sequences were also included in the analysis. Superscript letter “T”” next to strain
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name indicates it’s a type strain. Bacterial isolate was named based on its alignment to the
homolog bacterial species. The branch lengths were also shown in the tree. Bacterial species

isolated and named i this study is highlighted with bold font.
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Table 4.4. Information regarding fluoranthene degrading bacterial isolates identification.

Sample | 16S rRNA sequenced | GenBank accession NCBI Blast hit results Name assigned to the
number | gene size (base pair) numbers bacterial isolate
Dominant bacteria | Percent Query  cover
genus identity percentage
1 1185 KX364068 Ochrobactrum 99 100 Ochrobactrum
intermedium strain
LBQSKF1
2 1249 KX364069 Pseudomonas 100 100 Pseudomonas geniculata
strain LBQSKF2
3 1240 KX364070 Stenotrophomonas 100 99 Stenotrophomonas  sp.
LBQSKF3
4 1259 KX364071 Stenotrophomonas 100 99 Stenotrophomonas
maltophilia strain
LBQSKF4
5 1230 KX364072 Cupravidus 100 100 Cupravidus sp.
LBQSKFS5
6 1236 KX364073 Pseudomonas 100 100 Pseudomonas
guariconensis strain
LBQSKF6
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The prevalence of Pseudomonas species enriched in this study for both substrates is not
surprising, as the hydrophobic carbon degradation abilitiess of this organism have been
demonstrated previously (Sharma et al., 2015; Kumar et al., 2011; van Beilen & Funhoff,
2007). Pseudomonas has been widely and globally been either isolated from polluted soils
and/or considered for bioremediation studies based on degradation properties and
biosurfactant production. Such studies have been undertaken from Asia (Sharma et al., 2015;
Lin et al., 2013) and Europe to South America (Silva et al. 2014); and from the Arctic ocean
(Dong et al., 2015) to the Antarctic soil (Ma et al., 2006). PAH degradation by Pseudomonas
has in particular been well characterized (Dong et al., 2015; Ma et al., 2013; 2012; Zhang et

al, 2011; Ma et al., 2006).

Degradation of PAHs using Stenotrophomonas (Mangwani et al., 2014), in particular
Stenotrophomonas maltophilia (Singh et al., 2015; Juhasz et al., 2000; Boonchan et al.,
1998) has been investigated. The PAH degradation ability of Stenotrophomonas maltophilia
in the presence of various surfactants was investigated (Boonchan er al., 1998), with
promising results obtained for pyrene degradation using a biosurfactant-producing strain

(Singh et al., 2015).

A strain of Ochrobactrum intermedium was enriched on fluoranthene (Figure 4.4).
PAH degradation has been observed by stramns of Ochrobactrum, particularly halotrophic
strains (Arulazhagan & Vasudevan, 2011; Ghosal et al., 2010; Yirui et al., 2009). The
degradation of various types of hydrocarbons by these bacteria have been demonstrated
(Bacosa et al., 2012), particularly for substituted aromatic compounds (Berezina et al., 2015;
Chang et al., 2011), as well as PAHs (Reddy et al, 2015; Jones et al., 2014). A fascinating
study demonstrated that a diverse range of starting hydrocarbon substrates, including PAHs,
can in fact be used for PHB production, representing a great opportunity for coupling

bioremediation to the production of valuable material (Reddy er al., 2015). Metabolite
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profiling of 2, 4-dichlorophenoxyacetic acid biotransformation by a strain of Cupriavidus
demonstrated metabolites indicating the degradation of the substituent group, followed by
ring hydroxylation to the corresponding catechol (Chang et al., 2011). Taken together, the

above results help to explain the ability of Cupravidus to degrade PAHs (Berezina et al.,

2015; Reddy et al., 2015; Chang et al., 2011).

4.4. Conclusion

In this chapter, bacterial isolates were successfully identified using 16S rRNA gene
sequences. 16S rRNA gene was amplified and sequenced. The sequence was subjected to
phylogenetic analysis and all bacterial isolates were named based on their 16S rRNA gene
percentage identity and phylogenetic alignment with homology species. 16S rRNA gene

accession number were obtained from GenBank and presented in the chapter.
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4.6. APPENDIX
Bacterial isolates 16S ribosomal RNA gene sequences

>1 Ochrobactrum intermedium stran LBQSKF1

CGTGGGACGTACCATTTGCTACGGAATAACTCAGGGAAACTTGTGCTAATACCGTATGAGCCCGAAAGGGGAAAGAT TTATCGGCAAATGATCG
GCCCGCGTTGGAT TAGCTAGT TGGT GGGGTAAAGGCCTACCAAGGCGACGATCCATAGCT GGTCTGAGAGGATGATCAGCCACACTGGGACTGA
GACACGGCCCAGACTCCTACGGGAGGCAGCAGT GGGGAATATT GGACAAT GGGCGCAAGCCTGATCCA GCCATGCCGCGTGAGTGATGAAGGCC
CTAGGGTTGTAAAGCTCTTTCACCGGTGAAGATAATGACGGTAACCGGAGAAGAAGCCCCGGCTAACT TCGTGCCAGCAGCCGCGGTAATACGA
AGGGGGCTAGCGTTGTTCGGATT TACTGGGCGTAAAGCGCACGTAGGCGGGCTAATAAGT CAGGGGTGAAAT CCCGGGGCTCAACCCCGGAACT
GCCTTTGATACTGTTAGTCTTGAGTATGGTAGAGGTGAGT GGAAT TCCGAGTGTAGAGGT GAAAT TCGTAGATAT TCGGAGGAACACCAGTGGC
GAAGGCGGCTCACTGGACCATTACTGACGCTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGAT
GAATGTTAGCCGT TGGGGAGT TTACTCT TCGGT GGCGCAGCTAACGCATTAAACATTCCGCCT GGGGAGTACGGT CGCAAGATTAAAACT CARA
GGAATTGACGGGGGCCCGCACAAGCGGT GGAGCATGTGGT TTAAT TCGAAGCAACGCGCAGAACCTTACCAGCCCTTGACAT CCCGATCGCGGT
TAGTGGAGACACTATCCTTCAGTTCGGCTGGAT CGGAGACAGGTGCTGCATGGCT GTCGT CAGCTCGTGTCGTGAGATGT TGGGT TAAGT CCCG
CAACGAGCGCAACCCTCGCCCTTAGTTGCCAGCATTCAGT TGGGCACT CTAAGGGGACTGCCGGT GATAAGCCGAGAGGAAGGT GGGGATGACG
TCAAGTCCTCATGGCCCTTACGGGCTGGGCTACACACGTGCTACAATGGT GGTGACAGTGGGCAGCGAGCACGCGAGTGTGAGCTAATCTCCAA
AAGCCATCTCAGTTCGGATTGCACTCTGCAACTCGAGT GCATGAAGTGGAATCGCTA

>2 Pseudomonas geniculate stram LBQSKF2

GAGTGGCGGACGGGTGAGGAATACATCGGAATCTACTCTGTCGTGGGGGATAA CGTAGGGAAACT TACGCTAATACCGCATACGACCTACGGGT
GAAAGCAGGGGACCTTCGGGCCTTGCGCGATTGAATGAGCCGATGTCGGATTAGCTAGTT GGCGGGGTAAAGGCCCACCAAGGCGACGATCCGT
AGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGACT CCTACGGGAGGCAGCAGTGGGGAATAT TGGACAATGGGCGC
AAGCCTGATCCAGCCATACCGCGTGGGTGAAGAAGGCCTTCGGGT TGTAAAGCCCTTTTGTTGGGAAAGAAATCCAGCTGGCTAATACCCGGTT
GGGATGACGGTACCCAAAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGT GCAAGCGTTACTCGGAATTACTGGGC
GTAAAGCGTGCGTAGGTGGTCGTTTAAGTCCGT TGTGAAAGCCCTGGGCT CAACCTGGGAACT GCAGT GGATACT GGGCGACTAGAGTGTGGTA
GAGGGTAGCGGAATTCCTGGT GTAGCAGTGAAATGCGTAGAGATCAGGAGGAACATCCAT GGCGAAGGCAGCTACCTGGACCAACATGACACTG
AGGCACGAAAGCGTGGGGAGCAAACAGGAT TAGATACCCTGGTAGTCCACGCCCTAAACGATGCGAACTGGATGT TGGGTGCAATTTGGCACGC
AGTATCGAAGCTAACGCGTTAAGTTCGCCGCCTGGGGAGTACGGTCGCAAGACTGAAACT CAAAGGAAT TGACGGGGGCCCGCACAAGCGGT GG
AGTATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATGTCGAGAACTT TCCAGAGATGGATT GGTGCCTTCGGGAACTC
GAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTT GCCAGCA
CGTAATGGTGGGAACTCTAAGGAGACCGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCAT CATGGCCCTTACGGCCAGGGCTAC
ACACGTACTACAATGGTAGGGACAGAGGGCTGCAAGCCGGCGACGGTAAGCCAAT CCCAGAAACCCTATCTCAGT CCGGATTGGAGT CTGCAAC
TCGACTCCATGAAGTCGGAATCGCTA

>3 Stenotrophomonas sp. LBQSKF3

GGGTGAGGAATACATCGGAATCTACTCTGT CGT GGGGGATAACGTAGGGAAACTTACGCTAATACCGCATACGACCTACGGGTGAAAGCAGGGG
ATCTTCGGACCTTGCGCGATTGAATGAGCCGATGT CGGAT TAGCTAGT TGGCGGGGTAAAGGCCCACCAAGGCGACGATCCGTAGCTGGTCTGA
GAGGATGATCAGCCACACTGGAACTGAGACACGGT CCAGACTCCTACGGGAGGCAGCAGT GGGGAATATT GGACAAT GGGCGCAAGCCTGATCC
AGCCATACCGCGTGGGTGAAGAAGGCCTTCGGGTTGTAAAGCCCTTTT GT TGGGAAAGAAATCCATCTGGCTAATACCCGGGTGGGATGACGGT
ACCCAAAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGT TACTCGGAAT TACTGGGCGTAAAGCGTGC
GTAGGTGGTCGTTTAAGTCCGTTGTGAAAGCCCTGGGCTCAACCTGGGAACTGCAGTGGATACTGGGCGACTAGAAT GTGGTAGAGGGTAGCGG
AATTCCTGGTGTAGCAGT GAAAT GCGTAGAGAT CAGGAGGAACAT CCATGGCGAAGGCAGCTACCTGGACCAACATTGACACTGAGGCACGAAA
GCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGCGAACTGGAT GTTGGGT GCAAT TTGGCACGCAGTATCGAAG
CTAACGCGTTAAGTTCGCCGCCTGGGGAGTACGGT CGCAAGACTGAAACT CAAAGGAATT GACGGGGG CCCGCACAAGCGGT GGAGTATGTGGT
TTAATTCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATGTCGAGAACTT TCCAGAGATGGATCGGTGCCTTCGGGAACTCGAACACAGGT
GCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTTGCCAGCACGTAATGGTG
GGAACTCTAAGGAGACCGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACGTACTA
CAATGGTAGGGACAGAGGGCTGCAAGCCGGCGACGGTGAGCCAAT CCCAGAAACCCTATCTCAGT CCGGATT GGAGT CTGCAACT CGACTC CCAT
GAAGTCGGAATCGCTAGT

>4 Stenotrophomonas maltophilia stran LBQSKF4

TTGGGT GGCGAGT GGCGGACGGGTGAGGAATACAT CGGAATCTACTCT GTCGTGGGGGATAACGTAGGGAAACTTACGCTAATACCGCATACGA
CCTACGGGTGAAAGCAGGGGATCTTCGGACCTTGCGCGAT TGAAT GAGCCGAT GT CGGAT TAGCTAGT TGGCGGGGTAAAGGCCCACCAAGGCG
ACGATCCGTAGCTGGT CTGAGAGGATGATCAGCCACACTGGAACTGAGACACGGT CCAGACTCCTACGGGAGGCAGCAGT GGGGAATATTGGAC
AATGGGCGCAAGCCTGAT CCAGCCATACCGCGTGGGTGAAGAAGGCCT TCGGGTTGTAAAGCCCT TTTGT TGGGAAAGAAAT CCAGCCGGCTAA
TACCTGGTTGGGATGACGGTACCCAAAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGT GCAAGCGT TACTCGGAA
TTACTGGGCGTAAAGCGTGCGTAGGTGGTCGTTTAAGT CCGTTGTGAAAGCCCTGGGCTCAACCT GGGAACTGCAGTGGATACTGGGCGACTAG
AGTGTGGTAGAGGGTAGCGGAAT TCCTGGT GTAGCAGT GAAAT GCGTAGAGAT CAGGAGGAACAT CCATGGCGAAGGCAGCTACCTGGACCAAC
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ACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGAT TAGATACCCTGGTAGTCCACGCCCTAAACGATGCGAACTGGATGT TGGGTGCAA
TTTGGCACGCAGTATCGAAGCTAACGCGTTAAGTTCGCCGCCTGGGGAGTACGGT CGCAA GACTGAAACT CAAAGGAATT GACGGGGGCCCGCA
CAAGCGGTGGAGTATGTGGTT TAAT TCGAT GCAACGCGAAGAACCTTACCTGGCCTTGACATGTCGAGAACT TTCCAGAGATGGATT GGTGCCT
TCGGGAACTCGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTTA
GTTGCCAGCACGTAATGGTGGGAACTCTAAGGAGACCGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGT CAAGT CATCATGGCCCTTACGG
CCAGGGCTACACACGTACTACAATGGTAGGGACAGAGGGCTGCAAGCCGGCGACGGTAAGCCAAT CCCAGAAACCCTATCTCAGT CCGGATT GG
AGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTA

>5 Cupriavidus sp. LBQSKF5

GGCGACGGGTGAGTAATACATCGGAACGTGCCCTGTCG TGGGGGATAACTAGT CGAAAGATTAGCTAATACCGCATACGACCTGAGGGTGAAAG
CGGGGGACCGTAAGGCCTCGCGCGATAGGAGCGGCCGATGTCTGATTAGCTAGTT GGT GGGGTAAGAGCC TACCAAGGCGACGAT CAGTAGCTG
GTCTGAGAGGACGATCAGCCACACTGGGACTGAGACACGGCCCAGACT CCTACGGGAGGCAGCAGTGGGGAATTT TGGACAATGGGGGCAACCC
TGATCCAGCAATGCCGCGTGT GTGAAGAAGGCCTT CGGGT TGTAAAGCACTTTTGTCCGGAAAGAAAT GGCCGGGTTAATACCTGGGGTCGATG
ACGGTACCGGAAGAATAAGCACCGGCTAACTACGT GCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGT TAATCGGAAT TACTGGGCGTAAAG
CGTGCGCAGGCGGTTTGATAAGACAGGCGT GAAAT CCCCGAGCTCAACTT GGGAATGGCGCTTGTGACTGTCAGGCTAGA GTATGTCAGAGGGG
GGTAGAATTCCACGTGTAGCAGTGAAATGCGTAGAGAT GTGGAGGAATACCGATGGCGAAGGCAGCCCCCTGGGACGTCACT GACGCTCATGCA
CGAAAGCGTGGGGAGCAAACAGGAT TAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGTTGTTGGGGAT TCATTTCT TCAGTAACG
TAGCTAACGCGTGAAGTTGACCGCCTGGGGAGTACGGT CGCAAGATTAAAACT CAAAGGAATT GACGGGGACCCGCACAAGCGGT GGATGATGT
GGATTAATTCGATGCAACGCGAAAAACCTTACCTACCCTTGACATGCCACTAACGAAGCAGAGATGCATCAGGTGCCCGAAAGGGAAAGTGGAC
ACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGAT GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCTCTAGT TGCTACGAAAGG
GCACTCTAGAGAGACTGCCGGTGACAAA CCGGAGGAAGGT GGGGATGACGTCAAGTCCTCATGGCCCT TATGGGTAGGGCTTCACACGTCATAC
AATGGTGCGTACAGAGGGTTGCCAACCCGCGAGGGGGAGCTAATCCCAGAAAACGCATCGTAGTCCGGAT CGTAGTCTGCAACTCGACTACGTG
AAGCTGGA

>6 Pseudomonas guariconensis stran LBQSKF6

GGGTGAGTAAT GCCTAGGAAT CTGCCTGGTAGT GGGGGACAAC GTTTCGAAAGGAACGCTAATACCGCATACGTCCTACGGGAGAAAGTGGGGG
ATCTTCGGACCTCACGCTATCAGATGAGCCTAGGT CGGAT TAGCTAGT TGGTGAGGTAAT GGCTCACCAAGGCGACGATCCGTAACTGGTCTGA
GAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGT GGGGAATATT GGACAAT GGGCGAAAGCCTGATCC
AGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACT TTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGT TTTGACGTT
ACCGACAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAAT TACTGGGCGTAAAGCGCGC
GTAGGTGGTTCGT TAAGT TGGAT GT GAAAGCCCCGGGCTCAACCT GGGAACTGCATCCAAAACTGGCGAGCTAGAGTACGGTAGA GGGTGGT GG
AATTTCCTGTGTAGCGGT GAAATGCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACT GACACTGAGGTGCGAAA
GCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCAACTAGCCGT TGGAATCCTTGAGAT TTTAGTGGCGCAGC
TAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTT
TAATTCGAAGCAACGCGAAGAACCTTACCAGGCCTTGACATGCAGAGAACTTTCCAGAGATGGAT TGGTGCCTTCGGGAACT CTGACACAGGTG
CTGCATGGCTGTCGTCAGCTCGTGTCGTGAGAT GT TGGGT TAAGT CCCGTAACGAGCGCAACCCTTGTCCTTAGT TACCAGCACGTTATGGT GG
GCACTCTAAGGAGACTGCCGGTGACAAACCGGA GGAAGGT GGGGATGACGTCAAGTCATCATGGCCCTTACGGCCTGGGCTACACACGTGCTAC
AATGGTCGGTACAGAGGGTTGCCAAGCCGCGAGGT GGAGCTAATCTCACAAAACCGAT CGTAGTCCGGAT CGCAGTCTGCAACTCGACTGCGTG
AAGTCGGAATCGCT

>7 Pseudomonas nitroreducens strain LBQSKN1

GGGTGAGTAATGCCTAGGAAT CTGCCTGGTAGT GGGGGACAACGT TTCGAAAGGAACGCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGG
ACCTTCGGGCCTTGCGCTATCAGAT GAGCCTAGGT CGGAT TAGCTAGT TGGTGGGGTAARAGGCCTACCAAGGCGACGATCCGTAACTGGTCTGA
GAGGATGATCAGT CACACTGGAACTGAGACACGGT CCAGACTCCTACGGGAGGCAGCAGT GGGGAATATT GGACAAT GGGCGAAAGCCTGATCC
AGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACT TTAAGTTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGT TTTGACGTT
ACCAACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAAT TACTGGGCGTAAAGCGCGC
GTAGGTGGTTTGGTAAGATGGATGT GAAAT CCCCGGGCTCAACCTGGGAACTGCATCCATAACTGCCTGACTAGAGTACGGTAGAGGGTGGT GG
AATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACT GACACTGAGGTGCGAAA
GCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTAGCCGT TGGGATCCTTGAGAT CT TAGTGGCGCAGC
TAACGCGATAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTT
TAATTCGAAGCAACGCGAAGAACCTTACCTGGCCTTGACATGT CCGGAAT CTTGCAGAGATGCGAGAGTGCCTTCGGGAATCGGAACACAGGTG
CTGCATGGCTGTCGTCAGCTCGTGTCGTGAGAT GT TGGGT TAAGT CCCGTAACGAGCGCAACCCTTGTCCTTAGT TACCAGCACGTTATGGT GG
GCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGT GGGGATGACGTCAAGTCATCATGGCCCT TACGGCCAGGGCTACACACGTGCTAC
AATGGTCGGTACAGAGGGTTGCCAAGCCGCGAGGT GGAGCTAATCCCATAAAACCGAT CGTAGTCCGGAT CGCAGTCTGCAACTCGACTGCGTG
AAGTCGGAATCGCTAGTAAT
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>8 Pseudomonas putida stram LBQSKN?2

GGGTGAGTAATGCCTAGGAAT CTGCCTGGTAGT GGGGGACAACGT TTCGAAAGGAACGCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGG
ACCTTCGGGCCTTGCGCTATCAGAT GAGCCTAGGT CGGAT TAGCTAGT TGGTGAGGTAAT GGCTCACCAAGGCGACGATCCGTAACTGGTCTGA
GAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGT GGGGAATA TTGGACAAT GGGCGAAAGCCTGATCC
AGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATT GTAAAGCACT TTAAGTTGGGAGGAAGGGCAGTAAGCTAATACCTTGCTGT TTTGACGTT
ACCGACAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAAT TACTGGGCGTAAAGCGCGC
GTAGGTGGTTCGTTAAGT TGGATGT GAAAGCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTGGCGAGCTAGAGTACGGTAGAGGGTGGT GG
AATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACT GACACTGAGGTGCGAAA
GCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCAACTAGCCGT TGGAATCCTTGAGAT TTTAGTGGCGCAGC
TAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAAT TGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTT
TAATTCGAAGCAACGCGAAGAACCTTACCAGGCCT TGACATGCAGAGAACTTTCCAGAGATGGAT TGGTGCCTTCGGGAACT CTGACACAGGTG
CTGCATGGCTGTCGTCAGCTCGTGTCGTGAGAT GT TGGGT TAAGT CCCGTAACGAGCGCAACCCTTGTCCTTAGT TACCAGCACGTTATGGT GG
GCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGT GGGGATGACGTCAAGTCATCATGGCCCTTACGGCCTGGGCTACACACGTGCTAC
AATGGTCGGTACAGAGGGTTGCCAAGCCGCGAGGT GGAGCTAATCTCACAAAACCGATCGTAGTCCGGAT CGCAGTCTGCAACTCGACTGCGTG
AAGTCGGAATCGCTAGT

>9 Stenotrophomonas sp. LBQSKN3

CGTAGGGAAACTTACGCTAATACCGCATACGACCTACGGGTGAAAGCAGGGGATCTTCGGACCTTGCGCGAT TGAAT GAGCCGAT GTCGGAT TA
GCTAGTTGGCGGGGTAAAGGCCCACCAAGGCGACGATCCGTAGCTGGT CTGAGAGGAT GATCAGCCACACTGGAACTGAGACACGGT CCAGACT
CCTACGGGAGGCAGCAGTGGGGAATATT GGACAAT GGGCGCAAGCCTGAT CCAGCCATACCGCGT GGGTGAAGAAGGCCTTCGGGTTGTAAAGC
CCTTTTGTTGGGAAAGAAATCCATCTGGCTAATACCCGGGTGGGATGACGGTACCCAAAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGC
GGTAATACGAAGGGTGCAAGCGTTACTCGGAAT TACTGGGCGTAAAGCGT GCGTAGGT GGTCGTT TAAGT CCGTTGTGAAAGCCCTGGGCTCAA
CCTGGGAACTGCAGTGGATACTGGGCGACTAGAAT GTGGTAGAGGGTAGC GGAATTCCTGGTGTAGCAGT GAAAT GCGTAGAGAT CAGGAGGAA
CATCCATGGCGAAGGCAGCTACCTGGACCAACATT GACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGAT TAGATACCCTGGTAGTCCACGC
CCTAAACGATGCGAACTGGATGTTGGGTGCAAT TTGGCACGCAGTATCGAAGCTAACGCGTTAAGTTCGCCGCCT GGGGAGTACGGT CGCAAGA
CTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGT GGAGTATGTGGTT TAATT CGATGCAACGCGAAGAACCTTACCTGGCCTTGACAT
GTCGAGAACTTTCCAGAGATGGATCGGTGCCTTCGGGAACTCGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTT
AAGTCCCGCAACGAGCGCAACCCTTGTCCTTAGTT GCCAGCACGTAATGGTGGGAACT CTAAGGAGACCGCCGGTGACAAACCGGAGGAAGG TG
GGGATGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACGTACTACAATGGTAGGGACAGAGGGCTGCAAGCCGGCGACGGTGAGCC
AATCCCAGAAACCCTATCTCAGTCCGGATTGGAGT CTGCAACT CGACTCCATGAAGTCGGAATCGCT

>10 Enterobacter asburiae stran LBQSKN4

GGACGGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGAG
GGGGACCTTCGGGCCTCTTGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCT CACCTAGGCGACAATCCCTAGCTGGT
CTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTG
ATGCACCCATGCCGCGTGTATGAAAAAGGCCTTCGGGT TGTAAAGTACTT TCACCGGGGAGGAAGGCGATAAGGT TAATAACCTTGTCTATTGA
CGTTACCCGCAGAAAAAACACCGGCTAACTCCGTGCCACCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGC
GCACGCAGGCGGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCAT TCGAAACT GGCAGGCTAGAGTCTTGTAGAGGGGG
GTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGT GGCGAAGGCGGCCCCCTGGACAAAGACTGACGCT CAGGTGC
GAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGT CCACGCCGTAAACGATGT CGACT TGGAGGT TGTGCCCTTGAGGCGTGGCTTCCG
GAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACT CAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGT
GGTTTAATTCGATGCAACGCGAAGAACCTTACCTACTCTTGACAT CCAGAGAACTTTCCAGAGATGGATT GGTGCCT TCGGGAACTCTGAGACA
GGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTT GGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTCCGGC
CGGGAACTCAAAGGAGACTGCCAGT GATAAACT GGAGGAAGGT GGGGATGACGTCAAGTCATCAT GGCCCTTACGAGTAGGGCTACACACGTGC
TACAATGGCGCATACAAAGAGAAGCGACCT CGCGAGAGCAAGCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCC
ATGAAGTCGGAATCGCTA

>11 Pseudomonas sp. LBQSKNS5

GCGGCGGACGGGTGAGTAATGCCTAGGAAT CTGCCTGGTAGTGGGGGACAACGTT TCGAAAGGAACGCTAATACCGCATACGTCCTACGGGAGA
AAGCAGGGGACCTTCGGGCCTTGCGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGGGGTAATGGCTCACCAAGGCGACGATCCGTAA
CTGGTCTGAGAGGATGAT CAGTCACACT GGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGARAA
GCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGT CTTCGGAT TGTAAAGCACTT TAAGT TGGGAGGAAGGGCAGTAAGT TAATACCTTGCTGT
TTTGACGT TACCGACAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGT
AAAGCGCGCGTAGGTGGTTCGTTAAGTTGGATGTGAAAGCCCCGGGCT CAACCTGGGAACTGCAT CCAAAACTGGCGAGCTAGAGTACGGTAGA
GGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAACACCAGT GGCGAAGGCGACCACCTGGACTGATACTGACACTGA
GGTGCGAAAGCGT GGGGAGCAAACAGGATTAGATACCCTGGTAGT CCACGCCGTAAACGATGT CAACTAGCCGTTGGAATCCTTGAGATTTTAG
TGGCGCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACT CAAATGAATTGACGGGGGCCCGCACAAGCGGT GGAG
CATGTGGTTTAAT TCGAAGCAACGCGAAGAACCTTACCAGGCCTTGACATGCAGAGAACT TTCCAGAGATGGATTGGTGCCTTCGGGAACTCTG
ACACAGGTGCTGCATGGCTGTCGTCAGCTCGTIGTCGTGAGATGTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACG
TTATGGTGGGCACTCTAAGGAGACT GCCGGTGACAAACCGGAGGAAGGTGGGGATGACGT CAAGT CATCATGGCCCT TACGGCCTGGGCTACAC
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ACGTGCTACAATGGTCGGTACAGAGGGT TGCCAAGCCGCGAGGTGGAGCTAAT CTCACAAAACCGATCGTAGTCCGGATCGCAGTCTGCAACTC
GACTGCGTGAAGTCGGAATCGCT

>12 Pseudomonas sp. LBQSKN6

GGGTGAGTAATGCCTAGGAAT CTGCCTGGTAGT GGGGGACAACGT TTCGAAAGGAACGCTAATACCGC ATACGTCCTACGGGAGAAAGTGGGGG
ATCTTCGGACCTCACGCTATCAGATGAGCCTAGGT CGGAT TAGCTAGT TGGTGAGGTAAT GGCTCACCAAGGCGACGATCCGTAACTGGTCTGA
GAGGATGATCAGTCACACTGGAACTGAGACACGGT CCAGACTCCTACGGGAGGCAGCAGT GGGGAATATT GGACAAT GGGCGAAAGCCTGATCC
AGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATT GTAAAGCACT TTAAGTTGGGAGGAAGGGCAGTAAGCTAATACCTTGCTGTTTTGACGTT
ACCGACAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCAAGCGTTAATCGGAAT TACTGGGCGTAAAGCGCGC
GTAGGTGGTTCGTTAAGT TGGAT GT GAAAGCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTGGCGAGCTAGAGTACGGTAGAGGGTGGT GG
AATTTCCTGTGTAGCGGTGAAAT GCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTGAGGTGCGAAA
GCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAAACGATGTCAACTAGCCGTTGGAAT CCTTGAGATT TTAGT GGCGCAG
CTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCCGCAAGGT TAAAACT CAAATGAATT GACGGGGGCCCGCACAAGCGGTGGAGCATGTGGT
TTAATTCGAAGCAACGCGAAGAACCTTACCAGGCCTTGACATGCAGAGAACTT TCCAGAGATGGATTGGTGCCTTCGGGAACTCTGACACAGGT
GCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGT TATGGTG
GGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTC ATCATGGCCCTTACGGCCTGGGCTACACACGTGCTA
CAATGGTCGGTACAGAGGGTTGCCAAGCCGCGAGGTGGAGCTAAT CTCACAAAACCGATCGTAGT CCGGATCGCAGT CTGCAACT CGACTGCGT

GAAGTCGGAATCGCT
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CHAPTER 5

CONCLUSION AND FUTURE WORK

PAHs and EDCs distribution, their effects towards living organisms and microorganisms
capable of degrading PAHs and ECDs, and the mechanisms of degradation have been
thoroughly documented by the developed world. Information on these matters is however
lacking from Africa. In this direction, our study is first of its kind from South Africa, in
which we successfully enriched and isolated indigenous bacterial strains capable of using
nonylphenol and fluoranthene as sole carbon source. The areca where soil samples were
collected, previously reported to be polluted with PAHs, resulted n the isolation of bacterial
species capable of degradation of the both fluoranthene and nonylphenol, suggesting that

these organisms have the capability to degrade a variety of xenobiotic chemicals.

Further nvestigation on the capacity of the isolates to degrade different EDCs and
PAHs are currently under investigation. The results presented in this study will lead to
isolation and characterization of microorganisms from different parts of South Africa capable
of degrading different PAHs and EDCs, and thus enrich PAHs and EDCs-related nformation

from Africa.
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Genome-wide annotation and comparative analysis of cytochrome P450
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Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s),
heme-thiolate proteins, with catalytic versatility. The present study demonstrated the presence of
unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have
originated from the adaptation of these species to different ecological niches (host influence).
Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three
different orders, revealed the presence of numerous putative P450s ranging from 267 to 14. Analysis
of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in
these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant
pathogens revealed the presence of unique P450 family patterns in these organisms, possibly
reflecting the characteristics of their order. Comparison of P450 families with basidiomycete non-
pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families. The CYP63,
CYP5037, CYP5136, CYP5137, CYP5221, CYP5233 and CYP5341 P450 families were expanded
in the biotrophic plant pathogens. The present study initiates our understanding of P450 family
patterns in basidiomycete biotrophic plant pathogens.
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Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases
(P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have
yielded most of the available information on basidiomycete P450s. This resulted in observing
similar P450 family types in basidiomycetes with few differences in P450 families among
Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450
family patterns in basidiomycete biotrophic plant pathogens that could possibly have
originated from the adaptation of these species 0 different ecological niches (host influence).
Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three
different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora
Jaricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina
(Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of
numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of
P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in
these biotrophic plant pathogens. Order-level comparison of P450 families between
biotrophic plant pathogens revealed the presence of unique P450 family patterns in these
organisms, possibly reflecting the characteristics of their order. Further comparison of P450
families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens
harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136,
CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other
Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis
and M. Jaricis-populina. The present study revealed that expansion of these P450 families is
due to paralogous evolution of member P450s. The presence of unique P450 families in these
organisms serves as evidence of how a host/ecological niche can influence shaping the P450
content of an organism. The present study initiates our understanding of P450 family patterns
in basidiomycete biotrophic plant pathogens.
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