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Abstract 

Spoilage caused by yeasts is a constant and widespread problem in the beverage 

industry which can result in major economic losses. Fruit juices provide an environment 

which allows the proliferation of yeasts, leading to spoilage of the product. Some 

factories do not have the laboratory facilities to identify spoiler yeasts and it becomes a 

prolonged process if outsourced, which obstructs the planning of corrective actions. This 

study aimed to establish yeast diversity and apply a rapid method for preliminary 

identification of spoiler yeasts associated with a small scale fruit juice bottling factory. 

The yeast population in the factory was determined by isolating yeasts from the 

production environment, process equipment and the spoiled products. Yeasts were 

identified by PCR-RFLP analysis targeting the 5.8S-ITS region and sequencing the 

D1/D2 domain of the 26S rRNA gene. A total of 201 yeasts belonging to ten different 

genera (Candida, Lodderomyces, Wickerhamomyces, Yarrowia, Zygosaccharomyces, 

Zygoascus, Cryptococcus, Filobasidium, Rhodotorula/Cystobasidium and Trichosporon) 

were isolated and identified from the production environment and processing equipment. 

The overall yeast distribution showed that Candida parapsilosis and Lodderomyces 

elongisporus were widely distributed in the factory, with Candida parapsilosis being 

reported as an opportunistic pathogen. Zygosaccharomyces bailii, Zygoascus hellenicus 

and Saccharomyces cerevisiae were isolated from the spoiled products and are known 

to be highly fermentative. In addition, Zygosaccharomyces bailii and Zygoascus 

hellenicus were found to be present inside the refrigerator where the fruit pulp is stored, 

which makes it a potential point of contamination. The data also provided a yeast control 

panel which was successfully utilized to identify unknown yeast in spoiled product from 

this factory using PCR-RFLP analysis. 
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Chapter 1  

Introduction 

1.1 Background 

Fruit juices are important commodities in the global food market providing vast 

possibilities for new value added products to meet consumer demand for convenience, 

nutrition and health (Aneja et al., 2014). The food and beverage industry is one of the 

most important components of South Africa’s manufacturing sector. Beverages account 

for just over 4% of all manufacturing sales and within the food and beverage sector, 

beverages accounts for 24% of sales (FoodBev–SSP update, 2013). Increased 

consumption of fruit juices has a direct influence on the economy in a positive way, but 

becomes negatively affected when foodborne disease outbreaks and spoilage problems 

occur (Tribst et al., 2009).  

A major goal for any food processing industry is to provide safe, wholesome and 

acceptable food to the consumer. Control of microorganisms is essential to meeting this 

goal. Extensive measures have been taken to control the threat of yeast spoilage, 

especially in the fruit juice bottling industry. Growth of yeasts in fruit juices is governed 

largely by a series of physical and chemical parameters. Consequently, management of 

the environment of foods can change these factors and delay spoilage. Control over 

spoilage caused by yeasts is partly exerted through processing and preservation 

techniques that eliminate these microorganisms or prevent their growth (Bagge-Ravn, 

2003; Suárez-Jacobo et al., 2010). However; recent demands by consumers for 

preservative-free and safe foods which have then undergone milder processing while 

maintaining their extended shelf-life impose new challenges to the food industry (Lucera 

et al., 2012).  

Microbiota are also endlessly innovative and eventually seem to circumvent the barriers 

setup against them. Most food industries incur high costs in an attempt to prevent or 

reduce microbial spoilage. Quality control in bottling factories entails rigorous microbial 
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monitoring of pulps, water, air and equipment. Yet, yeast spoilage problems still occur. 

Moreover, the number of microorganisms capable of tolerating the environmental 

conditions present in the food processing, including the ability to resist and overcome 

preservative measures used to control spoilage, has increased dramatically. 

In order to design adequate strategies to prevent spoilage, it is advantageous to know 

the identity of the spoilage organisms present in the product and to get an insight into 

the source of contamination (Loureiro, 2000). Improved techniques with increased 

specificity, discriminatory power and shorter detection times for the identification of 

spoilage yeasts in foods and drinks are becoming increasingly important in the food 

sector (Casey and Dobson, 2004). Knowing the identity of the yeast causing spoilage, 

as well as its location in the factory will allow for the quicker implementation of 

intervening measures, thus reducing the effects of potential spoilage while also 

providing a means of monitoring quality control in production processes. 

 

1.2 Aim and objectives 

A prominent fruit juice bottling factory in Bloemfontein experiences an annual problem 

with ‘blowing’ of the fruit juice concentrates. Furthermore, the establishment experienced 

difficulty of long waiting periods for identification of the spoilage contaminants which 

delayed corrective actions. Therefore, the aim of this research was to compile a yeast 

diversity profile of this fruit juice bottling factory and to apply a rapid method for 

preliminary identification of spoilage yeasts associated with its products. In order to meet 

the aim the following objectives were devised: 

 

 Establish yeast diversity by isolating yeasts from different areas in the factory 

 Identify yeast isolates by PCR and 26S rRNA D1/D2 domain sequencing 

 Perform 5.8S rRNA region RFLP analysis as a possible method for identifying 

spoilage yeasts from ‘blowing’ products 

 

© Central University of Technology, Free State



3 
 

1.3 Project layout 

Chapter 1: Introduction 

 

Chapter 2: Literature review highlighting fruit juice spoilage yeasts, their implications 

and control. 

 

Chapter 3: Discusses the different yeasts isolated and identified in the factory, as well 

as distribution. 

 

Chapter 4: Evaluation of RFLP as a possible preliminary identification method for 

spoilage yeasts detected in fruit juice. 

 

Chapter 5: Summative remarks, conclusions, recommendations and future research 

© Central University of Technology, Free State



4 
 

Chapter 2  

Literature review 

2.1 Introduction 

Food production has become more complex during the past decade; production 

volumes are larger, operations are more mechanical, food is more processed and the 

time and distance between production and consumption longer (Lowes et al., 2000). 

Food borne disease and microbial spoilage of food result from failure or inability to 

control microorganisms at one or more stages of the food chain; from raw material 

production to consumption of the final product (Jaeyola et al., 2011). The implications of 

situations that result in food poisoning outbreaks or food spoilage can be severe for food 

producers, retailers, consumers and regulatory authorities (Arias et al., 2002). Potential 

sources of contamination of spoilage microorganisms are from water, air, insects and 

dirty contaminated equipment within food processing factories (Fleet, 1990; Deak and 

Beuchat, 1996; Tournas, 2006). This poses a challenge for the food industry since the 

quality and safety of products is negatively impacted and thus, rejected by consumers. 

Food products are usually produced in large quantities and this results in a major 

economic loss when the products are affected by spoilage (Loureiro, 2000). 

It is estimated that one-third of the food world production is lost by microbial activity, 

which is an economically significant problem for manufacturers, retailers and consumers 

(Lund et al., 2000). Because of the particular environmental conditions in a food system, 

only a small proportion of microorganisms present will be able to grow rapidly and cause 

spoilage. Juice concentrates are more stable than other juice products; high sugar 

concentrations, low water activity and low pH preserve these products (Combina et al., 

2008). However, the combination of these factors supports the development of a 

reduced number of microorganisms such as osmophilic or xerotolerant yeasts. It may be 

assumed that each type of food may be altered by a specific group of yeasts (Loureiro, 

2000). These selected species could thus be considered as potentially harmful in this 
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context, and should be specifically controlled in the particular food industry. The rapid 

identification of spoilage yeasts is of great importance to the food industry. Based on the 

classical taxonomy criteria, a simplified identification key for yeast species associated 

with foods has been proposed by Deak (1986, 1992). On the other hand, several 

molecular-based methodologies have also been proposed to identify these yeasts 

(Loureiro and Querol 1999; Kurtzman, 2015). Their economic importance as spoilage 

organisms makes rapid identification high priority because only when the nature of the 

spoilage is understood can an informed decision be made on cleaning procedures and 

product recall (James and Stratford, 2003; Rawsthorne and Phister, 2006; Harrison et 

al., 2011). Identification is normally done by sequencing the ITS or D1/D2 rDNA regions 

(Hulin and Wheals, 2014). However, although this is a rapid procedure it is relatively 

expensive for large scale work and unless sequencing facilities are on site, it may take 

some days to get the results. 

 

2.2 Fruit juice 

Fruit juice is mainly composed of water (Sun, 2009). Another common constituent is 

carbohydrates which comprises of sucrose, fructose and glucose (Llamas et al., 2011). 

Additionally, the amount of proteins and minerals is limited in fruit juice and juice 

contains no fat or cholesterol. Apart from sugars, vitamins and minerals, fruit juices 

contain dietary fibre (Kregiel, 2015). The quality of fruit juices is highly affected by the 

organic acid profile. Major organic acids which compose of the 90% or more of the total 

acidity in grapes are tartaric and malic acids (Soyer et al., 2003). Citric and malic acids 

were reported to be the main acids in citrus fruits (Karadeniz, 2004). Ascorbic acid 

(Vitamin C) is usually present in a large variety of commercial fruit juices (Llamas et al., 

2011). Citrus fruits and juices are good sources of ascorbic, folic acid, vitamin B1, 

thiamine and potassium (Zhang et al., 2011). A cup of citrus juice (240 ml) provides 

vitamin C in the quantity of more than daily requirements (Bates et al., 2001).  

According to the Codex General Standards for fruit juices and nectars, fruit juice is the 

unfermented but fermentable liquid obtained from the edible part of sound, appropriately 
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mature and fresh fruit or fruit maintained in sound condition by suitable means including 

post-harvest surface treatments applied in accordance with the applicable provisions of 

the Codex Alimentarius Commission. Some juices may be processed with pips, seeds 

and peels which are not usually incorporated in the juice, but some parts or components 

which cannot be removed by Good Manufacturing Practices (GMP) will be acceptable 

(CODEX STAN 247-2005; FAO/WHO Food Standards, 2005). 

The juice is prepared by standardized processes, which maintain the essential physical, 

chemical, organoleptic and nutritional characteristics of the juices of the fruit from which 

it comes (CODEX STAN 247-2005; FAO/WHO Food Standards, 2005). The juice may 

be cloudy or clear and may have restored aromatic substances and volatile flavour 

components, all of which must be obtained by suitable physical means, and all of which 

must be recovered from the same kind of fruit (R 1111 of 2005: Foodstuffs, Cosmetics 

and Disinfectants Act, No. 54 1972). Pulp and cells obtained by suitable physical means 

from the same kind of fruit may be added. A single juice is obtained from one kind of 

fruit. A mixed juice is obtained by blending two or more juices or juices and purées from 

different types of fruit. 

 

2.3 Yeast spoilage 

Food spoilage is frequently the result of microbial activity and the microorganisms that 

will proliferate in the product highly depend on the microbiota that come into contact with 

the ingredients and the product. Environmental conditions such as the composition of 

the product and the storage conditions also play a role in the occurrence of spoilage 

(Loureiro and Malfeito-Ferreira, 1993; Argyri, 2014). Yeasts are ubiquitous 

microorganisms that are often associated with the spoilage of a large variety of products 

in the food and beverage industries (Makino et al., 2010). Since yeasts can generally 

resist extreme conditions better than bacteria, they are often found in low pH products 

and those products containing preservatives to such an extent that bacteria cannot grow 

(Deak and Beuchat, 1996). Yeast spoilage in particular has increased in recent years as 
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a result of lower doses of preservatives and milder preservation processes which are 

required for higher standards of food quality (Koç et al., 2007). 

Fruit juices represent an important market within the food industry and the increasing 

variety of products being released at a baffling rate has altered the potential for spoilage 

problems (Wareing and Davenport, 2008). These products contain key nutrients which 

encourage proliferation of spoilage yeasts (Stratford, 2006). On industrial scale, sugar 

syrups or syrups of fruit juices are frequently spoiled by osmotolerant yeasts which 

occur undetected as surface films on syrups stored in metal tanks (Sperber and Doyle, 

2010). This may be governed by changes in temperature causing condensation on the 

metal above the headspace, diluting the surface layer and aiding faster yeast growth. 

This type of spoilage is difficult to detect in the bulk of the syrup and only emerges as a 

heavily contaminated layer when the tank is drained. As most beverage containers are 

only 300 – 400 mm height, the majority of yeast cells will have formed sediment within a 

few days and subsequent yeast growth forms thick sediment or a few visible colonies if 

the inoculum is small (Stratford, 1992). Yeast sediment may be easily visible to the 

consumer, but if the total volume of yeast is dispersed through the beverage it is largely 

undetected. 

The most visible sign of yeast spoilage is the production of excess gas, leading to 

bulging containers or Tetra Paks, ‘blown cans’ or in extreme cases, exploding glass 

bottles, which can result in physical injury (Grinbaum et al., 1994; Martorell et al., 2007). 

Swelling of the product container due to gas production is a result of fermentation of 

sugars and is termed ‘blowing’. Furthermore, the volume of gas produced, and hence 

the pressure formed, varies depending on the yeast species producing it. The few yeast 

species capable of forming sufficient gas pressure by fermentation to explode bottles 

include Zygosaccharomyces bailii, Saccharomyces cerevisiae, Dekkera bruxellensis and 

Saccharomycodes ludwigii (Stratford, 2006). 
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2.4  Yeasts as spoilage microorganisms in fruit juice 

Products that have high sugar contents are targets for spoilage by yeasts (Ridawati et 

al., 2010). The medium of these products is usually linked with low pH, low oxygen 

levels and a high sugar concentration which prevent the growth of most microorganisms. 

However these hurdles do not inhibit the growth of osmophilic yeasts. These yeasts are 

described as being osmophilic or osmotolerant because they are able to survive in a 

habitat restricted to a high solute (e.g. sugar) environment (Stratford, 2006).  

High sugar foods include honey, jams, sugar syrups, fruit juices and crystallized fruits 

(Rojo et al., 2015). They contain more than 67% sugar (w/w) and are prone to spoilage 

by osmophilic yeasts together with some xerotolerant species (Tilbury, 1980; Kuang et 

al., 2015). Osmotolerant yeasts are able to grow at 50% (w/w) sugar and at a water 

activity (aw) of 0.88 while osmophilic yeasts are capable of growth at 60% sugar (w/w). 

Xerotolerant or xerophilic yeasts are also capable of growing at a low aw of 0.62. 

The most common yeast contaminants isolated from fruit concentrates are Candida 

spp., Debaryomyces hansenii, Hansenula spp., Rhodotorula spp., Pichia spp., Dekkera 

spp., Lodderomyces elongisporus, Hanseniaspora spp., Issatchenkia orientalis, 

Kloeckera spp., Kluyveromyces marxianus, Pichia anomala, Saccharomyces spp., 

Torulaspora delbrueckii and Zygosaccharomyces spp. (Sancho et al., 2000; Maciel et 

al., 2013). Saccharomyces cerevisiae is also considered to be a predominant spoilage 

species in concentrates, juices and fruit beverages and in that respect is considered to 

be the source of most problems associated with processed fruits (Sancho et al., 2000). 

Zygosaccharomyces is a genus associated with the most extreme spoilage yeasts 

(Steels et al., 2000; Rojo et al., 2015). These yeasts are osmotolerant, fructophiles 

(prefer fructose), highly fermentative and extremely preservative-resistant. They usually 

grow slowly, producing off-odours, flavours and carbon dioxide that may cause food 

containers to swell and burst (Rawat, 2015). Zygosaccharomyces rouxii is one of the 

most extreme osmophilic microorganisms known, causing spoilage in sugar syrups and 

concentrates (Rojo et al., 2015). Zygosaccharomyces mellis is similarly osmophilic and 

causes spoilage of honey. Furthermore, Zygosaccharomyces bailii and 
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Zygosaccharomyces bisporus are the principle cause for concern in preserved foods 

due to their phenomenal resistance to preservatives (Davenport, 1997; Stratford et al., 

2000).  

Unlike bacteria, viruses and some filamentous fungi, yeasts are rarely associated with 

outbreaks of foodborne gastroenteritis, other foodborne infections or intoxications 

(Kurtzman et al., 2011). As part of normal daily food consumption, humans are 

unknowingly and inadvertently ingesting large, viable populations of a diversity of yeast 

species without significant adverse impact on their health (Querol and Fleet, 2006). 

These include yeasts in many cheeses, fermented and cured meats, fruits and fruit 

salads, home-brewed beer and wine. Nevertheless, an open mind and vigilance on 

yeasts and foodborne disease is required. 

Yeast presence in foods has been associated with the onset of a broad range of allergic 

and hypersensitive reactions in humans (Querol and Fleet, 2006). Yeasts are not known 

as aggressive infectious pathogens when compared to bacteria and viruses. However, 

although the majority of yeasts are not acknowledged to be pathogens, various species 

are considered as opportunistic pathogens (Makino et al., 2010). A growing population 

of immuno-suppressed patients has resulted in increasingly frequent diagnoses of 

invasive fungal infections, including those caused by unusual yeasts (Miceli et al., 2011). 

Moreover, increasing numbers of yeast species, other than Candida albicans and 

Cryptococcus neoformans have been associated with these infections and are now 

considered in the list of opportunistic pathogens. These include yeast species that are 

frequently found in foods such as Candida krusei, Issatchenkia orientalis, Pichia 

anomala, Kluyveromyces marxianus, Saccharomyces cerevisiae,  Trichosporon and 

various Rhodotorula, species (Makino et al., 2010; Miceli et al., 2011). Saccharomyces  

cerevisiae is now considered to be an emerging opportunistic pathogen, which has been 

addressed on several occasions (De Llanos et al., 2011). 

Although the consumption of food contaminated with yeasts may not have a direct role 

in causing opportunistic infections, there is also an increasing concern that food may be 

an underestimated source of environmental pathogens (Wirth and Goldani, 2012). It is 

also possible that foods could be a source of yeasts that colonize the intestinal tract, 
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from where they translocate to the blood system, resulting in fungaemia and distribution 

to infect various organs (Cole et al., 1996).  

2.5 Sources of contamination 

Microbial contamination may originate from any step along the beverage manufacturing 

process (Guillamón et al., 1998; Vasavada, 2010). Raw materials, factory environment, 

dirty packages and unhygienic process equipment are all potential contamination 

sources (Stratford, 2006). In order to produce microbiologically safe and stable 

beverages, controlling raw material quality is necessary. Post-harvest sources of fresh 

produce include harvesting equipment, human handling, rinse water, transport vehicles 

and processing equipment (Burnett and Beuchat, 2001; Vasavada, 2010). Chemical and 

physical treatments are usually used to ensure the quality of beverage and process 

water (Lawlor et al., 2009). If treated improperly, water may bring spoilage microbiota to 

the process areas and to the final product. Process waters, especially contaminated 

cooling and rinsing waters, are common sources of yeasts in beverages (Stratford, 

2006). 

Sweeteners and sugar have also been reported as sources of spoilage organisms 

(Davenport, 1996; Sperber and Doyle, 2010). Sweeteners used in the beverage industry 

are typically syrups. They contain on average 67 °Brix and have a low water activity. 

Mainly, osmophilic yeasts may grow in these syrups. Low water activity controls the 

growth of yeasts, and therefore it is important to prevent condensate formation in syrup 

storage tanks and containers (Juvonen et al., 2011). Drops of condensate water may 

establish microenvironments with higher water activity and lead to a rapid increase in 

yeast growth rate (Lawlor et al., 2009). 

It has been estimated that poor factory hygiene accounts for 95% of beverage spoilage 

incidences caused by yeasts (Juvonen et al., 2011). Secondary contaminations may 

arise from the factory environment and dirty processing equipment such as packaging, 

filling and capping machines, conveyors, soap, lubrication systems, meters and 

proportioning pumps and valve seals (Stratford, 2006). Returnable glass bottles can also 

be a significant source of spoilage microbes (especially yeasts) in the factory 
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environment (Lawlor et al., 2009). Poor sanitary design, improper cleaning and 

sanitation procedures favour build–up of spoilage microbiota within the factory and 

increase the contamination and spoilage risk of final products (Stratford, 2006). 

Microorganisms can also attach easily onto the manufacturing surfaces (e.g. processing 

pipes, feeding lines), forming biofilms which are difficult to clean. 

 

2.6 Factors affecting spoilage and shelf-life 

2.6.1 Intrinsic factors 

Intrinsic factors are the physical, chemical and structural properties inherent in the food 

itself. These are the properties of the final product (Bari, 2009). The most important 

intrinsic factors are water activity, pH, redox potential, available nutrients and natural 

antimicrobial substances (Huis in’t Veld, 1996). The pH of the food and its ability to 

resist pH change (buffering capacity) together with mechanical barriers to microbial 

invasion are also part of this group (Garbutt, 1997). Intrinsic factors are influenced by 

variables such as raw material type and quality as well as product formulation and 

structure (Bari, 2009). 

 

2.6.2 Extrinsic factors 

Extrinsic factors are factors in the environment in which the food is stored, notably 

temperature, humidity and atmosphere composition (Huis in’t Veld, 1996; Argyri, 2014). 

Time is also included because under any given set of circumstances, spoilage takes a 

finite period to occur and links with the storage life of a product (Garbutt, 1997). Factors 

which the final product encounters as it moves along the food chain also form part of 

extrinsic factors and are listed in Table 2.1. 
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Table 2.1 Extrinsic factors in the environment in which the food is stored and the stages at 

which they occur (Adapted from Bari, 2009) 

Extrinsic factor Stage 

Time-temperature profile Processing 

Temperature control Storage and distribution 

Relative humidity (RH) Processing, storage and distribution 

Exposure to light (Ultraviolet and Infrared) Processing, storage and distribution 

Environmental microbiological counts Processing, storage and distribution 

Subsequent heat treatment e.g. Reheating or cooking before 

consumption 

Consumer handling Household 

 

 

2.6.3 Implicit factors 

Implicit factors are those physiological properties that enable particular organisms to 

flourish resulting from the interaction of factors such as the intrinsic and extrinsic (Argyri, 

2014). These factors are the result of the development of a microorganism which may 

have a synergistic or antagonistic effect on the microorganisms present in the food 

product (Mossel et al., 1995). Synergistic effects involve the production or availability of 

essential nutrients as a result of the growth of a certain group of microorganisms which 

allows the development of other microorganisms which were initially unable to grow 

(Huis in’t Veld, 1996). Similarly, changes in pH value, redox potential and water activity 

may enable the development of microorganisms less tolerant to these inhibitory factors, 

yielding secondary spoilage.  

Antagonistic processes include competition for essential nutrients, changes in pH value 

or redox potential, the formation of antimicrobial substances e.g. bacteriocins which may 

negatively affect the survival or growth of other microorganisms (Stiles and Hastings, 

1991; Valero et al., 2012). An additional significant phenomenon in food preservation is 

the homeostasis of microorganisms (Gould, 1988; Shalini and Singh, 2014). If the 
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homeostasis of a microorganism i.e. their internal equilibrium is disturbed by 

preservative factors in foods, they will not multiply but they will remain in the lag phase 

or even die before their homeostasis is re-established. 

 

2.7 Economic implications of spoilage 

Most experiences of yeast spoilage of products are at the industrial scale. This problem 

is not unusual and the financial losses can be quite high (Arias et al., 2002; Rodrigues et 

al., 2012). Products such as fruit pulps and fruit juices are often implicated. When 

spoilage in foods is reported, the company involved may take numerous courses of 

action. Major incidents, particularly involving highly fermentative yeasts, may require a 

public recall of all products involved (Stratford, 2006). This may even extend to 

television advertising and requests to customers to return products to the shop. Such 

incidences are rare, but highly damaging to the brand image of companies concerned 

(Fleet, 2011). Minor incidents may be on a smaller scale, or may only involve spoilage to 

a lesser degree. In Europe, soft drink lines can run at 30,000 bottles per hour for 

approximately 16 h a day in summer and it has been noted that yeast spoilage is more 

prevalent in summer (Stratford, 2006). Recalling bottles from the infected line could run 

to more than ten million items. 

For reasons of commercial confidentiality, the incidence and economic cost of industrial 

outbreaks of yeast spoilage remain unreported (Loureiro and Querol, 1999; Loureiro, 

2000). In documenting the costs of such outbreaks; consideration needs to be given to 

the value of the spoiled product, the cost of recall and disposal, successive decreased 

retailer and consumer purchase of the product because of tarnished reputation and the 

legal and insurance fees associated with determining responsibility and awarding 

compensation (Fleet, 1992; Fleet, 2011). As a rule, several parties represented by 

manufacturers, suppliers of raw material and packaging and retailers are involved in 

these cases. 

As per South African legislation, recalls by the food industry are initiated voluntarily in 

the interest of public safety. However, section 2(1) of the Foodstuffs, Cosmetics and 
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Disinfectants Act, No. 54 1972 (Act No. 54 of 1972) prevents any person from selling 

food that is unfit for human consumption. The regulations relating to the powers and 

duties of inspectors and analysts conducting inspections and analysis on foodstuffs and 

food premises (R 328 of 2007), as promulgated under the Foodstuffs, Cosmetics and 

Disinfectants Act, No. 54 1972, make provision for Environmental health inspectors to 

detain, sample and if necessary seize any foodstuff, in their areas of jurisdiction, which 

is deemed harmful or injurious to human health. National policy does not currently 

address official food product recalls. As a result, it has become challenging for food 

control authorities to execute, monitor and record any official food product recalls that 

may need to be conducted in South Africa (Policy guidelines, 2004). 

 

2.8 Maintaining product quality and control measures 

A number of methods of prevention can be used that can totally prevent, delay, or 

otherwise reduce food spoilage (Gould, 1996; Alzamora et al., 2011). Preservatives can 

expand the shelf life of food. In general, more than one method of preservation will be 

employed to achieve an acceptable shelf-life for products (Prokopov and Tanchev, 

2007; Shalini and Singh, 2014). The use of different preservation methods is influenced 

not only by the shelf-life but also by the demand to preserve sensorial characteristics 

and nutritional value of the food, as some methods may significantly affect these 

aspects. 

Contamination control measures include maintaining the cleanliness of equipment, the 

control of storage temperature, hot water immersion, chemical sanitizers, surfactants, 

surface waxes (particularly in oranges) and UV irradiation (Wareing and Davenport, 

2008). Pasteurization and/or low-temperature storage protocols are also used to reduce 

the number of microorganisms in the final product (Arias et al., 2002). The chemical 

preservative dimethyldicarbonate (Velcorin) has been used to ‘cold pasteurize’ fresh 

juice products to reduce microbial loading, minimizing the use of sulphur dioxide 

(Juvonen et al., 2011). High–pressure processing, pulsed electric field and ultraviolet  
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radiation have also been investigated as novel control measures (Chen et al., 2013; 

Aneja et al., 2014).  

Modeling of yeast and bacterial growth has been used as a technique for determining 

effective preservative and other control regimes. Good hygienic practices, adherence to 

Good Manufacturing Practices (GMP), implementation of food safety management 

systems and regulatory auditing have been shown to be effective control measures for 

microbial contamination in the beverage industry, particularly for yeasts (Wareing and 

Davenport, 2008; Duan, 2012). For example, the Hazard Analysis and Critical Control 

Point (HACCP) approach, ISO and GFSI have been adopted by food processors around 

the world as a food safety management system.  

 

2.8.1 Inhibition of yeast growth by employing chemical preservatives 

Many chemicals will eradicate microorganisms or stop their growth, but the majority of 

these are not permitted in foods (Saad et al., 2005). Chemicals that are permitted as 

food preservatives in South Africa are listed in Table 2.2. Chemical food preservatives 

are those substances which are added at very low quantities (up to 0.2%) and which do 

not alter the organoleptic and physico-chemical properties of the foods (Tfouni and 

Toledo, 2002). Preservation of food products containing chemical food preservatives 

such as sorbic and benzoic acid is usually based on the combined or synergistic activity 

of several additives, intrinsic product parameters and extrinsic factors (Jay, 2005). This 

approach minimizes undesirable changes in product properties and reduces 

concentration of additives and extent processing treatments.  
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Table 2.2 Chemical food preservatives (R 60 of 2009: Foodstuffs, Cosmetics 

and Disinfectants Act, No. 54 1972) 

Foodstuff Preservative 
Quantity 

permitted 

Fruit juices Benzoic acid 

Propyl-p-hydroxy benzoate 

Methyl-p-hydroxy benzoate 

Sulphur dioxide 

Sorbic acid 

Pimaricin 

600 mg/kg 

1000 mg/kg 

1000 mg/kg 

450 mg/kg 

600 mg/kg 

5 mg/kg 

Pineapple juice Sulphur dioxide 

Pimaricin 

10 mg/kg 

5 mg/kg 

 

 

2.8.1.1 Preservatives (Sorbic and benzoic acid) 

Chemical preservatives such as sodium benzoate and potassium sorbate are often used 

to prevent microbial spoilage of fruit juices (Theron and Lues, 2010; Aneja et al., 2014). 

According to South African legislation, sorbic and benzoic acids are permitted food 

preservatives (R 60 of 2009: Foodstuffs, Cosmetics and Disinfectants Act, No. 54 1972). 

In other countries such as the USA, both acids have a generally recognized as safe 

(GRAS) status and can be found at higher concentrations. It is common and permitted to 

encounter mixtures of sorbic acid and benzoic acid in foods, both at reduced 

concentrations (Stratford, 2006). Membrane, respiration pathways and glycolysis 

metabolism are alternative sites of action for sorbic and benzoic acids. It has been 

suggested that sorbic acid is more inhibitory to yeasts than benzoic acid, conversely, 

benzoic acid is better than sorbic acid at pH 3. Sorbic acid is a six-carbon unsaturated 
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fatty acid unsaturated in positions 2 and 4, while benzoic acid comprises a carboxylic 

acid substituted into a benzene ring (Steels et al., 2000). These acids have little taste 

when used and a proven record of safe human consumption and lack of genotoxicity 

(Ferrand et al., 2000). 

Since the free acids of both sorbic and benzoic acids are difficult to dissolve, these 

preservatives are normally added to foods as soluble salts, sodium benzoate and 

potassium sorbate, respectively. Both sorbic and benzoic acid are weak acids and inhibit 

microbes only in the undissociated form which prevails at low pH levels (Hazan et al., 

2004). Undissociated, lipid-soluble acid molecules are able to diffuse rapidly through the 

microbial plasma membrane and into the cytoplasm. Within the cytoplasm weak acid 

molecules dissociate causing the cytoplasmic pH to decrease (Steels et al., 2000; 

Stratford, 2006). This decrease in cytoplasmic pH has been demonstrated for acetic acid 

and sulphite. However, sorbic acid has been calculated not to release sufficient protons 

to act as a weak acid preservative (Stratford and Anslow, 1998). The effect of sub 

inhibitory concentrations of preservatives is to cause slower growth of yeasts, smaller 

size, and much reduced cell yields. 

 

2.8.1.2 Resistance of yeasts to preservatives 

Preservative-resistant yeasts are a major concern for fruit juice and beverage industries. 

The main species playing a role are Zygosaccharomyces bailii, Zygosaccharomyces 

rouxii, Candida krusei, Saccharomyces bisporus, Schizosaccharomyces pombe and 

Pichia membranifaciens (Steels et al., 2000; Tribst et al., 2009). They are resistant to 

400 mg/ml sorbic acid and up to 900 mg/l benzoic acid at pH 4.0. Their importance in 

the beverage industry is enhanced by their xerophilic behaviour. 

Yeast resistance to preservatives appears to result primarily from an inducible system, 

which pumps preservatives out of the cell (Virgilio, 2000). It has been reported to involve 

ejection of protons via the plasma membrane H+-ATPase proton pump, encoded by 

PMA1 (Stratford et al., 2013a). This removes protons from the cytoplasm with a normal 

stoichiometry of 1 proton ejected/ATP although this may decline to 0.1 proton/ATP in 
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starved cells. In addition, it has been demonstrated in S. cerevisiae that Pdr12p which 

encodes an ABC transporter involved in weak-organic acid resistance has a major effect 

on weak-acid resistance (Hazelwood et al., 2006). It has been proposed that this 

plasma-membrane pleiotropic drug resistance pump causes ejection of preservative 

anions from the cytoplasm into the external media (Stratford et al., 2013a). 

The remarkably high resistance of the food spoilage yeast species Zygosaccharomyces 

bailii to weak acid food preservatives such as acetic acid, benzoic acid and sorbic acid 

was related to its ability to use weak acids as carbon sources, even when glucose is 

present (Mira et al., 2010). Stratford et al. (2013b) confirmed the high resistance of all 38 

tested strains of Z. bailii to weak-acid preservatives. Further tests showed that a 

representative strain of Z. bailii was resistant to a wide variety of lipophilic and 

hydrophilic weak acids. Martorell et al. (2007) also found that Z. bailii and Z. rouxii 

displayed physiological behaviours which included resistance to weak-acid 

preservatives. 

 

2.8.2 Application of disinfectants against yeast formed biofilms 

Areas such as industrial water systems and food processing industries are highly 

affected by problems associated with biofilm formation (Augustin and Ali-Vehmas, 2004; 

Srey et al., 2013). Spoilage yeasts also proliferate on process surfaces as complexes of 

yeast cells in biofilms which occur at both low and elevated temperatures (Salo and 

Wirtanen, 2005) and being protected against sanitizing agents. Colonization of these 

suspended yeast cells in biofilm growth is generally controlled through cleaning and 

disinfection. In industrial settings, cleaning and disinfection plans are applied on a 

regular basis (Araújo et al., 2013). The control of microbial contamination in food 

processing plants, generally involves clean-in-place (CIP) procedures which consist of 

running alternated cycles of detergent and disinfectant solutions with water rinses in 

high turbulence regimes through the plant and pipeline circuits without dismantling or 

opening the equipment. 
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Characteristics of an ideal disinfectant include having a broad spectrum of antimicrobial 

activity, but should be non-toxic and non-irritating (Mazzola et al., 2009). Furthermore, it 

should be compatible with the surfaces to be disinfected, easy to prepare and use, and 

should lack any unpleasant odour. Additionally the disinfectant should be stable, 

affordable and readily available. Formulation of the product may greatly affect the 

efficacy of antimicrobial active ingredients, such that products with the same levels of 

antimicrobials may exhibit varying levels of effectiveness. Levels of pH, detergent base, 

emollients, humectants, ionic nature of the formulation and type of surfactants may 

affect efficacy (Augustin and Ali-Vehmas, 2004). 

According to Brugnoni et al. (2012), the combined action of 0.5% NaOH and 500 ppm 

sodium hypochlorite produced a reduction of viable cells greater than 70% for Candida 

krusei. Minimum inhibitory concentration studies have shown that quaternary ammonium 

compounds were effective in reducing Zygosaccharomyces spp. in all in-use 

concentrations tested and Rhodotorula mucilaginosa only in the stronger in-use 

concentration. Hypochlorite, peracetic and phosphoric acid as well as anionic 

compounds efficiently killed two unknown yeast strains together with Saccharomyces 

cerevisiae isolated from orange juice (Salo and Wirtaten, 2005). Citric and lactic acid 

compounds were found to be less effective.  

The food industry commonly uses disinfectants such as chlorine compounds, alcohols, 

hydrogen peroxide and peracetic acid compounds, persulphates, quaternary ammonium 

and iodophors (Salo and Wirtanen, 2005; Bilska, 2014). It is desirable to use a lengthy 

cleaning procedure in the food industry since the duration of treatment is one of the 

important factors affecting the antimicrobial activity (Augustin and Ali-Vehmas, 2004), 

although this may negatively impact production cycles. There is a trend towards longer 

production runs with shorter intervals for disinfection and cleaning in the food industry. In 

addition, contact time is not the only aspect but also the concentration and the 

composition of the agent affect the antimicrobial activity.  
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2.8.3 Thermal pasteurization 

Thermal processing remains the most widely used technology for pasteurization of fruit 

juice (Shaheer et al., 2014). Juice pasteurization is based on a 5-log reduction of the 

most resistant microorganisms of public health significance (FDA, 2001). This method 

relies on the heat that is generated outside a food and then transferred into the food 

through conduction and convection mechanisms (Pereira et al., 2010). The aim of 

thermal pasteurization is to kill pathogens and substantially reduce the number of 

spoilage microorganisms through a suitable time/temperature combination 

(Ramaswamy et al., 2005). Traditional thermal pasteurization can be classified into low 

temperature/long-time (LTLT) and high-temperature/short-time (HTST) processes. LTLT 
pasteurization involves heating a food at about 63ºC for no less than 30 min, while for 

fruit juices, HTST pasteurization is applied at temperatures around 72ºC with holding 

times of 15 s and above (FDA, 2001). Both methods may degrade the taste, colour, 

flavour and nutritional quality of foods (Charles-Rodr´ıguez et al., 2007). The 

temperature of HTST pasteurization applied for different fruit juices ranged from 72 to 

108ºC, while the treatment duration was always 1 min or a shorter time period. 

The efficacy of HTST treatment can also be affected by other factors such as the 

complexity of the product and microorganisms (Chen et al., 2013). HTST pasteurization 

shows much better performance on less complex single juices than on more 

complex/viscous multiple-juice products. Single species of microorganisms were more 

sensitive to heat treatment compared with mixed native populations of microorganisms 

present in the product. 

 

2.8.4 High pressure processing (HPP) 

High pressure processing (HPP) is carried out with intense pressure in the range of 100-

1000 MPa, with or without heat, allowing most foods to be preserved with minimal effect 

(Yordanov and Angelova, 2010). The inactivation of pathogens, spoilage bacteria, 

yeasts and moulds by HPP has been reported (Olivier, 2010). High pressure processing 

was demonstrated to be used for inactivation of microorganisms, modification of 
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biopolymers (enzyme activation or inactivation, protein denaturation, gel formation), 

preservation of quality attributes (flavour and colour) and functionality (Yaldagard et al., 

2008). The mechanism of the system depends on the protein denaturation and cell 

injury. The enzymes essential in the cell metabolism are denatured after the pressure 

treatment (Rivalain et al., 2010). Alternatively, shrinkage may occur in the cell size due 

to the pressure effect. Consequently, membrane construction can be injured or 

disrupted causing leakage of the cell content (Lado and Yousef, 2002). This brings 

about cell death (Guerero-Beltran, et al., 2005). Raso, et al. (1998) achieved almost 5-

log reductions in the number of Zygosaccharomyces bailii after high pressure application 

of 300 MPa.  

HPP (High Pressure Processing) is proven to meet the FDA requirement of a 5-log 

reduction of microorganisms in fruit juices and beverages without sacrificing the sensory 

and nutritional attributes of fresh fruits (San Martin et al., 2002). Jams, fruit compotes 

and fruit dressings have been the first marketed HPP pasteurized foods. These are 

particularly favourable matrices as the low pH values enhance the HPP microbial 

inactivation and the chilled storage of acidic foods causes a further inactivation of sub-

lethally injured cells (Linton et al., 1999). Recently, such a technique has been 

successfully used on apple, apricot, cherry and orange juices as well as smoothies 

(Patras et al., 2009; Keenan et al., 2012). Compared to thermal processing, HPP has 

many advantages. It can provide safe products with reduced processing time. Moreover, 

it is environmentally friendly since it requires only electrical energy and no waste by-

products generated (Ramaswamy, et al., 2005; Toepfl et al., 2006). Due to these 

advantages, HPP has been widely used in food product preservation including fruit and 

beverages in the areas of microbial inactivation and shelf-life extension. However, costs 

can be high for smaller manufacturers as HPP equipment requires a substantial capital 

investment. 

 

2.8.5 Ultraviolet Technology (UV) 

Ultraviolet technology (UV) has been utilized in the food industry to disinfect water and 

effectively destroy microorganisms on surfaces and packaging (Chia et al., 2012). 
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Ultraviolet radiation involves the use of radiation from electromagnetic spectrum from 

100 to 400 nm. It is classified as UV-A (320-400 nm), UV-B (280-320 nm) and UV-C 

(200-280 nm) (Keyser et al., 2008). UV treatment is performed at a low temperature and 

254 nm wavelength UV light is widely used in the juice and beverage industry 

(Rupasinghe et al., 2012). UV-C light inactivates microorganisms by damaging their 

DNA that absorbs UV light from 200 to 310 nm. UV creates the pyrimidine dimers which 

prevent microorganisms from replicating and thus rendering them inactive (Keyser et al., 

2008). UV radiation was successfully used to reduce the microbial load in different fruit 

juices, mainly apple juice, fruit nectars and apple cider. Clear liquids such as apple juice 

needed lower doses of UV to reach efficient reduction of microbial load. Other food 

liquids such as orange juice with pulp and nectars needed higher doses of UV light due 

to the greater amount of suspended solids and fibres, which protect microorganisms 

against the action of UV light (Turtoi and Borda, 2013). 

 

2.8.6 Hurdle Technology 

Hurdle technology was developed several years ago as a concept for the production of 

safe, stable, nutritious, tasty and economical foods (Leistner and Gorris, 1995; Alzamora 

et al., 2011). Existing and new preservation techniques are deliberately combined to 

create a series of preservative factors (hurdles) that any microorganism present should 

overcome. In the last decade, emerging preservation procedures have been included as 

hurdles in combined preservation systems to ensure food safety and to retain or improve 

food quality (Alzamora et al., 2011; Shalini and Singh, 2014). This type of processing 

techniques for food preservation reduce microbial load and at the same time, allow 

better retention of product flavour, texture, colour and nutrient content than comparable 

conventional treatments.  

There is a wide range of novel alternative physical agents  intensely investigated in the 

last 25 years, which can cause inactivation of microorganisms at ambient or sub lethal 

temperature (i.e. high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed 

light and ultraviolet light) (Ferrario et al., 2013). The choice of non-thermal hurdles 

involved in the combined processes depends on the target within the microbial cells 

© Central University of Technology, Free State



23 
 

such as cell membrane, DNA or enzymes system. Other targets involve the extrinsic 

environment such as pH, temperature or water activity.  

Ultrasound (US) has been identified as a potential pasteurization technology for juice 

that meets the FDA requirement of a 5-log reduction (Patil et al., 2009). According to 

Butz and Tauscher (2002), it has been shown that ultrasonic waves cause cell rupture 

attributed to intracellular cavitation. However, ultrasound alone is not very effective for 

microbial inactivation; it needs to be combined with other technologies to enhance the 

lethal effect on microorganisms. Ultrasound combined with mild temperature (thermo-

sonication) or pressure (mano-sonication) could be an efficient technology to inactivate 

microorganisms (Ortuño et al., 2012). Several studies have reported reduced microbial 

counts using ultrasound combined with mild temperature applied on juice. It has also 

been demonstrated that the use of US combined with thermal temperatures was a 

promising alternative for inactivating yeasts in apple juice (Ferrario et al., 2013; Abid et 

al., 2014). 

 

2.9 Routine microbiological monitoring in food production facilities  

There are different methods or techniques to ensure quality control in bottling factories. 

These involve sampling for microbiological analysis. The sampling regime in a factory is 

influenced by legislation or requirements from specific dealer owned brands. 

Enumeration of total counts of bacteria, coliforms, yeasts and moulds are the most 

common microbiological inspections carried out to assess the microbial contamination of 

surfaces. This type of test will determine the hygiene of equipment and the results are 

checked for compliancy with standards. South African legislation (R 962 of 2012: 

Foodstuffs, Cosmetics and Disinfectants Act, No. 54 1972) stipulates that swabs should 

be taken according to the SABS Standard Test method 763: Efficacy of Cleaning Plant, 

Equipment and Utensils. Upon analysis, viable counts should not be more than 100 

CFU/cm2. Moreover, hand swabs of production workers should be taken every week and 

examined for the presence of contaminants. When the microbial counts are out of 

specifications, corrective actions should be implemented and the areas are re-swabbed. 
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According to South African regulations (R 1111 of 2005: Foodstuffs, Cosmetics and 

Disinfectants Act, No. 54 1972), 1 ml of fruit juice should not contain a total viable count 

of more than 10 000 of colony forming units (CFU), a coliform count of more than 100 

CFU and a yeast/mould count of 1000 CFU. Samples of the final product and raw 

materials are tested to maintain quality of products and ensure compliancy with legal 

requirements. The final products are sampled before the batch is released to retailers.  

 

2.10 Identification Techniques 

Traditionally, identification and characterization of yeast species have been based on 

morphological traits and physiological capabilities (Arias et al., 2002). These 

characteristics are strongly influenced by culture conditions and can give uncertain 

results (Guillamón et al., 1998). This conventional methodology requires the evaluation 

of some 60 to 90 tests, resulting in a complex, laborious and time-consuming process.  

In addition, conventional methodologies are not suited to industrial laboratories even 

when these procedures are automated and computerized (Sancho et al., 2000). In 

contrast, molecular biology techniques provide alternative and additional methods and 

are becoming an important tool in solving industrial problems (Guillamón et al., 1998). 

The simplicity of PCR-based detection methods and the highly specific nature of the 

results has an advantage over most conventional differential methods known today 

(Sancho et al., 2000).  

 

2.10.1 Molecular analysis 

2.10.1.1 Restriction Fragment Length Polymorphism 

One of the most successful methods for yeast species identification is restriction 

fragment length polymorphism (RFLP) analysis of the 5.8S rRNA gene and the two 

flanking internal transcribed sequences (ITS) (Arias et al., 2002). The fungal rRNA gene 

consists of the 18S, ITS1, 5.8S, ITS2, 26S, intergenic spacer (IGS) 1, 5S and IGS2 
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regions (Figure 2.1) (Sugita and Nishikawa, 2003). These genes encoding ribosomal 

RNAs are organized in arrays which contain repetitive transcriptional units (Korabecna, 

2007). The units are transcribed by RNA polymerase I and separated by non-transcribed 

intergenic spacers (IGS) as represented in Figure 2.1. Because ribosomal regions 

evolve in a concerted fashion they have low intraspecific polymorphism and high 

intraspecific variability. Consequently, RFLP analysis of the 5.8S-ITS region is an 

effective tool for yeast identification. 

PCR-RFLP analyses have several advantages that are attractive to quality assurance 

analysis in the food and beverage industries (Beh et al., 2006). Once a pure yeast 

culture has been obtained, identification to species level can be done in several hours. 

Essentially, DNA is extracted from the yeast biomass, amplified by specific PCR using 

conserved oligonucleotide primers against the 26S and 18S rRNA genes, amplicons 

digested with the restriction nucleases and the products separated by gel 

electrophoresis. The work load and equipment needs are minimal and data are 

generally reproducible, while the expenses and time for sequencing are avoided (Arias 

et al., 2002).  

 

 

 

 

 

 

 

Figure 2.1 Schematic representation of the fungal rRNA gene (Sugita and Nishikawa, 

2003). 
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2.10.1.2 D1/D2 domain sequencing 

Comparison of RNA (rRNA) and its template ribosomal DNA (rDNA) has been used 

extensively in recent years to assess both close and distant relationships among many 

kinds of organisms including yeast species identification. Sequence-based DNA 

identification methods are based on sequence analysis, primarily of the 26S rDNA 

D1/D2 domain and of the 18S subunit (Querol et al., 2003). The use of two universal 

and two species-specific primers derived from the D1/D2 region of the 26S rDNA and 

subsequent sequencing of this domain has facilitated rapid and accurate species 

identification. Saccharomyces spp., Kluyveromyces spp. and a small collection of wine 

yeast species have been identified using this method (Hesham et al., 2014). 

Kurtzman and Robnett (1998) have shown that most ascomycetous yeast species can 

be identified from sequence divergence in this domain and that the D1/D2 domain is 

sufficient to infer phylogenetic relationships between species. The D1/D2 domain 

sequences for most basidiomycetous yeast species have become available, which 

means that this sequence is available for almost all currently described yeast species 

(Fell et al., 2000). The D1 and D2 domains are approximately located in the first 650 

bases of the 26S rRNA gene and are two rapidly evolving regions that account for most 

of the sequence divergence amongst 26S rDNA sequences (Wesselink et al., 2002). 

Therefore, the D1/D2 domains were used to search for deterministic patterns for yeast 

species. Analysis of D1/D2 26S rDNA sequences has the advantage that it not only 

enables species identification, but also permits phylogenetic analysis (Sugita and 

Nishikawa, 2003). It is very difficult to deduce the phylogenetic position of a genus or 

family of an isolate from the ITS regions as they are more diverse than the 26S region. 

 

2.10.2 Fourier Transform Infrared Spectroscopy (FT-IR) 

FT-IR is a powerful technique for identifying types of chemical bonds in a molecule 

(Santos et al., 2010). Characterizing the chemical composition of very complex probes 

such as microorganisms is also a feature performed by this technique. One of the 

strengths of FT-IR spectroscopy is its ability, as an analytical technique, to obtain 
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spectra from a very wide range of different compounds. The infrared region of the 

electromagnetic spectrum extends from the visible to the microwave. This technique has 

been successfully applied in various fields of quality control and for the identification of 

filamentous fungi and yeasts (Kummerle et al., 1998; Wenning, 2002; Sandt et al., 

2003). Microbiologic FT-IR typing is fast, effective and reagent-free. Moreover, it is 

applicable to all microorganisms and requires a small quantity of biomass (Essendoubi 

et al., 2007).  

FT-IR spectroscopy has demonstrated its powerful characteristics as a sound technique 

applied to identification, characterization and authentication of several filamentous fungi 

and yeast strains (Santos et al., 2010). The advantages of this new approach as a 

microbial authentication method are: (a) a simple sample preparation procedure, (b) a 

short time of analysis; and (c) reliability of the data. Statistically, the reference spectrum 

library is crucial for accurate microbial characterization. It should be assembled based 

on well characterized strains and species. The success of the method is therefore 

directly dependent on the complexity of the reference spectrum library (Essendoubi et 

al., 2007). Identification is limited only by the quality of the reference spectrum library 

which can be improved steadily by adding further microorganism isolates to the 

database. 

 

2.10.3 Matrix–Assisted Laser Desorption/Ionisation (MALDI) 

Numerous studies demonstrated, that matrix-assisted laser desorption ionization-time of 

flight mass spectrometry (MALDI-TOF MS) based identification is a rapid and reliable 

method for routine identification of bacteria, yeast and fungi from clinical samples, even 

to the subspecies level (Pavlovic et al., 2014). The technique relies on the generation of 

microorganism protein fingerprints that are compared to reference spectra in a well-

characterized library (Dhiman et al., 2011). 

MALDI-TOF MS detects many different biomolecules, such as nucleic acids, peptides, 

proteins, sugars and small molecules (Pavlovic et al., 2013). This technology identifies 

microorganisms via the generation of fingerprints of highly abundant proteins followed 
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by correlation to reference spectra in a database. The basic principle of all mass 

spectrometric methods is the ionization of a neutral molecule and the subsequent 

accurate determination of the resulting primary ions and their decay products in high 

vacuum (Parker et al., 2010). A typical mass spectrometer is composed of three 

components: an ion source, a mass analyser, and the detector.  

Until now, not much data has been available concerning the performance of MALDI-TOF 

MS for classification or identification of foodborne yeast isolates (Pavlovic et al., 2014). 

Since this technique has been substantially used for clinical isolates, further update of 

MALDI-TOF MS databases with attention to food relevant yeast species will decrease 

the portion of not identifiable isolates. 
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Chapter 3  

Yeast diversity in a typical fruit juice bottling 

factory 

3.1 Introduction 

Yeasts are defined as unicellular fungi reproducing by budding or fission (Kurtzman et 

al., 2011). They are a phylogenetically diverse group of fungi which are divided into two 

groups, namely, the Ascomycetes and Basidiomycetes (Takashima et al., 2012). The 

distinction of yeasts from other fungi is based on their sexual spores produced without 

fruiting bodies. This is one group of microorganisms that is best known for their positive 

contributions in fermentation of a broad range of food commodities such as bread, 

alcoholic beverages and other products (Fleet, 1992). However, yeasts also play a role 

as spoilage organisms in foods and beverages (Makino et al., 2010).  

Yeasts are usually the contaminants that affect the quality and shelf life of fruit juices 

(Sancho et al., 2000; Arias et al., 2002; Maciel et al., 2013). This contamination 

represents a great problem to industries that process fruit or fruit products (Patrignani et 

al., 2010). This negative effect is linked with well-known physiological characteristics of 

yeasts (Makino et al., 2010). The low pH and high sugar content of the product favour 

yeast growth and consequently product deterioration is predominantly due to yeast 

activity (Patrignani et al., 2010). Yeasts are characterized by a wide dispersion of natural 

habitats, which are essential vehicles for carrying yeasts into food-processing facilities. 

They flourish on flowers, plant leaves and especially fruits (Deak and Beuchat, 1996; 

Lachance et al., 2001). They also occur on the skin, hide, feathers and the alimentary 

tract of herbivorous animals. Some of these yeasts are associated with insects and 

several are part of the normal intestinal microflora of humans. Soil is an important 

reservoir in which yeasts can survive during unfavourable conditions (e.g. extreme pH, 

temperatures and low nutrients) and then be dispersed to foods (Deak and Beuchat, 

1996; Polyakova et al., 2001; Botha, 2011).  
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The development of yeast biofilms may cause adverse effects on processing equipment 

in factories (Brugnoni et al., 2007). While previous studies on biofilm development has 

been devoted to bacterial species, there is little information about yeast diversity or their 

adhesion capacity in fruit juice processing lines (Brugnoni et al., 2012). The 

microorganisms involved are likely to be a mixture of many species in a processing 

environment (Bagge-Ravn, 2003). In food processing lines, yeasts belonging to the 

genera Saccharomyces, Candida and Rhodotorula have been isolated from conveyor 

track surfaces as well as can and bottle warmers in the packaging departments of the 

beverage industry (Brugnoni et al., 2012). Knowledge of the diversity of microorganisms 

in and on process equipment is regarded as valuable information in designing cleaning 

and disinfection procedures (Bagge-Ravn, 2003). 

The ability to control contamination of food products and to design adequate intervention 

measures requires an appropriate strategy which includes hygiene measures. 

Disinfection and sanitizing through CIP (Cleaning in place) and the addition of 

preservatives to fruit juice, are the two methods used by this fruit juice facility to inhibit 

the growth of yeasts. Analysis of critical control points of production lines and 

investigations of the routes and sources of contamination are also essential to decrease 

and eliminate spoilage microorganisms (Lopandic et al., 2006). Microbial monitoring in 

bottling factories involves the analysis of pulps, water, air and equipment. Enumeration 

of microorganisms on selective media is the most common method in practice, which for 

yeast and mould only provide total counts (Combina et al., 2008). When planning 

approaches and systems to prevent spoilage it is ideal to be familiar with the identity of 

spoilage microorganisms present in the product to get an insight into the source of 

contamination (Loureiro, 2000; Combina et al., 2008). Therefore, this investigation 

aimed to isolate and identify yeasts associated with the production environment and 

equipment of this fruit juice bottling facility. 
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3.2 Materials and Methods 

3.2.1  Sampling protocol 

Samples were obtained from a fruit juice bottling factory in Bloemfontein, South Africa. 

The factory has been operating for 24 years producing fruit juice concentrates of 

different flavours. It consists of nine blending tanks and three filling lines. Approximately 

24 000 litres of juice is produced a day. 

Surface swabs were obtained from the production environment and processing 

equipment. Areas included the refrigerator, powder blenders, pipes, blending tanks, 

holding tanks, nozzles and the ramp (Figure 3.1). Yeast isolates originating from weekly 

routine analysis of surface swabs and air samples taken after Cleaning in Place (CIP) 

protocols were carried out, were also isolated from Chloramphenicol agar plates. All 

isolates were collected over a period of one year and cryopreserved in 15% glycerol at 

-20°C. 

 

3.2.2 Enumeration and isolation of yeasts 

Surface swabs were suspended in 10 ml peptone water (Merck), vortexed for 1 min and 

serially diluted. Dilutions were plated onto Rose Bengal Chloramphenicol (RBC) agar 

(Merck) and incubated at 30°C for 48 h. Yeast colonies from the Chloramphenicol agar 

plates, which were provided by the factory technician, were also transferred to RBC agar 

and incubated at 30°C for 48 h. The resulting colonies were selected based on colony 

morphology differences and purified by repeated sub-culturing (Barata et al., 2008). 

 

3.2.3 Yeast identification 

3.2.3.1 PCR amplification and RFLP analysis of 5.8S-ITS rDNA 

Whole cell PCR amplification and RFLP analysis of the 5.8S-ITS rDNA region were 

performed on all isolates and reference strains. For comparison and preliminary 
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identification, 17 reference strains frequently isolated from fruit juice were obtained from 

the UNESCO-MIRCEN Biotechnological Yeast Culture Collection of the University of the 

Free State (Table 3.1). 

Yeast cells from 48 h single colonies were suspended in 50 µl PCR reaction mix 

containing 0.52 µM primer ITS 1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS 4 (5’-

TCCTCCGCTTATTGATATGC-3’) (White et al., 1990), 0.2 µM dNTPs, 1X reaction buffer 

Thermopol® (New England Biolabs), and 1 U of NEB Taq Thermopol® (New England 

Biolabs). Amplification conditions included 1 cycle at 95°C for 3 min, followed by 30 

cycles of 95°C for 30 sec, 55°C for 30 sec, 68°C for 1 min. A final elongation step was 

performed at 68°C for 7 min. Successful amplification was confirmed by agarose gel 

(1%) electrophoresis. PCR products were stained with ethidium bromide (Merck) and 

visualised under UV light. These PCR products represent the 5.8S – ITS rRNA gene 

and varied in length from 300 – 900 bp. All amplicons (10 ul) were digested with 1 unit of 

CfoI, HaeIII and HinfI restriction enzymes (Thermo Scientific) using FastDigest™ and 

Tango™ buffers (Thermo Scientific) in separate reactions (Esteve-Zarzoso et al., 1999). 

Fragments were separated in a 3% agarose gel and stained and visualised as 

mentioned. Digital images were captured with the Molecular Imager Gel Doc™ XR 

system (BioRad laboratories Inc.). Band sizes were calculated with reference to a 

GeneRuler™ 1 kb DNA ladder Plus and GeneRuler™ 50 bp DNA ladder (Thermo 

Scientific) using Quantity One® 1-D Analysis software (BioRad laboratories Inc.). 

Resulting PCR-RFLPs were grouped according to profiles (Table 3.2), compared to the 

reference strain profiles for preliminary identification and Sanger sequenced for 

confirmation.  
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Table 3.1 List of reference strains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3.2 Yeast genomic DNA extraction  

Genomic DNA (gDNA) extraction was performed on the representative isolates from the 

different profiles as described by Labuschagne and Albertyn (2007). The isolates were 

cultivated on 5 ml Yeast extract-malt glucose (YM) broth in 16 mm capped test tubes at 

30ºC for 48 h while shaking. Cells were harvested by centrifugation following addition of 

500 μl DNA lysis buffer and glass beads. This solution was vigorously mixed and cooled 

Yeast species  Strain no. 

Candida intermedia UOFS Y-0649 

Candida parapsilosis UOFS Y-0206 

Candida tropicalis UOFS Y-0534 

Dekkera anomala UOFS Y-1062 

Hanseniaspora occidentalis UOFS Y-0153 

Kluyveromyces marxianus UOFS Y-0797 

Lodderomyces elongisporus UOFS Y-2394 

Millerozyma farinosa UOFS Y-0203 

Pichia kudriavzevii UOFS Y-0814 

Rhodotorula slooffiae/Cystobasidium slooffiae UOFS Y-0972 

Saccharomyces bayanus UOFS Y-0912 

Saccharomyces cerevisiae UOFS Y-0792 

Saccharomycodes ludwigii UOFS Y-0540 

Torulaspora delbrueckii UOFS Y-1016 

Wickerhamomyces anomalus UOFS Y-0810 

Zygosaccharomyces bailii UOFS Y-1535 

Zygosaccharomyces rouxii UOFS Y-0763 
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on ice for 5 min. Ammonium acetate (275 ml, 7M, pH 7.0) was added. After incubation at 

65°C for 5 min followed by 5 min on ice, 500 µl chloroform was added, vortexed and 

centrifuged (13 000 rpm, 2 min at 25°C). The supernatant was transferred to a new tube 

and DNA was precipitated with isopropanol and centrifuged at 11 000 rpm for 2 min at 

4ºC. The pellet was washed with 70% (v/v) ethanol, dried and dissolved in 100 μl TE (10 

mM Tris–HCl, 1 mM EDTA, pH 8.0).  

 

3.2.3.3 Amplification and sequencing of D1/D2 domain 

The D1/D2 domain of the 26S rRNA gene was amplified from 3 isolates representative 

of a specific PCR-RFLP profile and sequenced for identity confirmation. One ul of 

extracted gDNA was used as template in a  25 µl PCR reaction containing 0.52 µM 

primer NL 1 (5’-GCATATCAATAAGCGGAGGAAAAG-3’) and NL 4 

(5’GGTCCGTGTTTCAAGACGG-3’) (White et al., 1990), 0.2 µM dNTPs, 1X reaction 

buffer Thermopol® (New England Biolabs), and 1 U of NEB Taq Thermopol® (New 

England Biolabs). Amplification conditions included 1 cycle at 95°C for 3 min, followed 

by 30 cycles of 95°C for 30 sec, 55°C for 30 sec, 68°C for 1 min. A final elongation step 

was performed at 68°C for 7 min. Successful amplification was confirmed by agarose 

gel (1%) electrophoresis. PCR products were stained with ethidium bromide (Merck) and 

visualised under UV light. 

Sequencing was performed on the ABI Prism 3130 XL genetic analyser using the Big 

Dye® Terminator V3.1 Cycle Sequencing Kit and DNA was precipitated with EDTA and 

ethanol (Applied Biosystems). Both strands of amplified DNA were sequenced, using 

primers NL-1 and NL-4 in separate reactions, to eliminate sequencing artefacts and to 

ensure accuracy of data generated. The DNA Baser (v4) sequence assembly software 

was used to assemble DNA contigs. The sequences obtained from the contigs were 

compared to those present in the National Centre for Biotechnology Information (NCBI) 

database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) using the BLAST algorithm (megablast) 

(Altschul et al., 1997) for identification. Sequences were deposited into the NCBI 

database and accession numbers are depicted in Table 3.3. 

© Central University of Technology, Free State



48 
 

3.3 Results and discussion 

Figure 3.1 represents the floor plan of the production and processing areas in the 

factory. The production flow is as follows: The pulp from the refrigerator (area A) and dry 

powder ingredients (area B) delivered by powder blenders and mixed in blending tanks 

(area C). Juice is then pumped in to the holding tanks (area E) and filled into bottles on 

the filling line (area F). The raw materials store is separate from the other sections, 

bottle caps are delivered from the second floor above (area E and F) and no barriers 

exist among the different sections of production and processing. (Area G) is not part of 

the workflow but serves as an entry site for workers into the factory.  

 

3.3.1 PCR and RFLP analysis 

A total of 201 yeasts were isolated and identified according to 5.8S-ITS polymorphisms 

(White et al., 1990). The isolates showed different PCR product sizes, ranging from 300 

to 900 bp (Figure 3.2, Table 3.2). The PCR products digested with CfoI, HaeIII and HinfI 

enzymes were analysed for all isolated strains and 18 distinct profiles were obtained 

(Table 3.2), designated by an alphabet letter. For comparison, PCR-RFLP of the 5.8S-

ITS region was simultaneously applied to reference strains from the UNESCO-MIRCEN 

Biotechnological Yeast Culture Collection as controls (Table 3.1). Fragments smaller 

than 50 bp were not included in Table 3.2. Representatives of each profile were 

confirmed by sequencing the D1/D2 domain of the 26S rRNA gene (Table 3.3). 
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Figure 3.1 Schematic representation of the factory layout showing different production and processing areas: A– 
Refrigerator, B– Dry raw materials, C– Powder blenders, blending tanks and pipes, D– Ramp (Steel stairs), 
E– Fillers, Holding tanks and nozzles, F– Filling lines, bottles and caps, G– Entrance to production and 
processing areas. 
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Figure 3.2 1% agarose gel of 5.8S-ITS PCR products representing selected reference 
strains (A) and unidentified isolates (B). Lane M in both gels represents 
GeneRulerTM 1 kb Plus DNA Ladder (Thermo Scientific). Gel (A) lane 1- 
Dekkera anomala, 2– Candida tropicalis, 3- Pichia kudriavzevii, 4- 
Kluyveromyces marxianus, 5- Candida parapsilosis, 6- Wickerhamomyces 
anomalus, 7- Torulaspora delbrueckii, 8- Saccharomyces bayanus, 9- 
Saccharomyces cerevisiae. Gel (B) unidentified isolates representing 
different profiles; lane 1- X; 2- O; 3- F; 4- G; 5- D; 6- W; 7- A; 8- E and 9- H. 

 

Profile G (Yarrowia lipolytica) had the smallest amplicon size of 377 bp, this 

differentiating it from the rest of the yeasts identified (Table 3.2). Yeast species 

belonging to profiles G (Yarrowia lipolytica), C1 (Candida intermedia) and V 

(Trichosporon ovoides) had smaller amplicon sizes ranging from 377 – 480 bp (Table 

3.2). A similar characteristic of these three species was a lack of HaeIII restriction site 

and digestion with HinfI resulted in the production of two bands almost equal in size. 

Profile A1 (Candida parapsilosis) and P1 (Cryptococcus laurentii) have the same 

amplicon size but digestion with CfoI differentiates the two species. The data showed 

that profile R1 (Candida tropicalis and Candida sojae) could not be differentiated based 

on 5.8S-ITS PCR amplicon size and restriction profiles, since they exhibit similar bp 

sizes for all the amplified and digested fragments. Phylogenetic analysis of the nuclear 

large subunit (26S) ribosomal DNA partial sequences, places C. tropicalis near C. sojae 

(Kurtzman and Robnett, 1998). Thus, profile R1 required further processing by 

sequencing the D1/D2 domain of the 26S rDNA to allow differentiation.
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Table 3.2 Characterization of yeast isolates based on 5.8S-ITS rDNA region PCR and RFLP data, as well as D1/D2 domain of the 26S 
rDNA sequence identifications. Data arranged according to PCR product size 

Profile RFLP based identification 
(compared to reference strains) 

Fragment lengths (bp) Identification 
(D1/D2 domain 

sequencing) PCR CfoI HaeIII HinfI 

G unknown 377 214, 174 377 182 Yarrowia lipolytica 

C1 Candida intermedia (UOFS Y-0649) 400 212,174 400 215, 193 Candida intermedia 

V unknown 480 272 476 234 Trichosporon ovoides 

A1 Candida parapsilosis (UOFS Y-0206) 515 290, 220 410, 112 281, 257 Candida parapsilosis 

P unknown 515 252, 202, 64 399 236 Cryptococcus laurentii 

R1 Candida tropicalis  (UOFS Y-0534) 527 293, 238 468 274 Candida sojae 

O Lodderomyces elongisporus (UOFS Y-2394) 576 323, 240 527 298, 261 Lodderomyces elongisporus 

X unknown 596 317 423, 141 318 Candida oleophila 

H unknown 611 612 586 339, 265 Candida spandovensis 

A unknown 612 281, 310 508 357, 280 Filobasidium capsuligenum 

H unknown 624 392, 308 487 261, 242, 146 Filobasidium uniguttulatum 

I1 unknown 634 320, 226, 66 420, 137 312 Candida quercitrusa 

E unknown 635 385 536 350, 292 Cryptococcus saitoi 

F Wickerhamomyces anomalus (UOFS Y-0810) 640 569 640 308 Wickerhamomyces anomalus 

K1 unknown 643 331 643 343, 171, 122 Zygoascus hellenicus 

W Rhodotorula slooffiae/ Cystobasidium slooffiae (UOFS Y-0972) 647 647 647 325, 253 Rhodotorula slooffiae 

R unknown 687 341, 321 387, 209 221, 215, 103 Rhodotorula dairenensis 

D Zygosaccharomyces bailii (UOFS Y-1535) 782 336, 284 712 331, 230, 160 Zygosaccharomyces bailii 
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Profile H (Candida spandovensis) and A (Filobasidium capsuligenum) have similar 

amplicon sizes and a similar restriction pattern when digested with HinfI but restriction 

with CfoI and HaeIII differentiates the two species (Table 3.2). This emphasises the 

requirement for more than one restriction enzyme to be used to reliably identify a 

species or genus (Satora et al., 2013). Profile I1 (Candida quercitrusa) and E 

(Cryptococcus saitoi) have the same amplicon size but digestion with all three enzymes 

resulted in different profiles, enabling immediate distinction between the two species. 

Profile K1 (Zygoascus hellenicus) and F (Wickerhamomyces anomalus) have the same 

amplicon size and profile when digested with HaeIII, but digestion with CfoI and HinfI 

reveals different profiles for both. The restriction enzyme HaeIII showed one fragment of 

640 bp for the isolates belonging to Wickerhamomyces anomalus (Table 3.2). The 

enzyme HinfI showed a single restriction site resulting in two fragments of the same size 

(308 bp) presented as a single band on the agarose gel. The pattern is in accordance 

with the results reported by Jeyaram et al. (2008) and Pham et al. (2011). Profile K1 

(Zygoascus hellenicus) similarly lacks a restriction site with HaeIII (Sun and Liu, 2014). 

Yeasts belonging to profile D (Zygosaccharomyces bailii) had the largest amplicon size 

of 782 bp. This characteristic distinguishes this species immediately from the rest of the 

yeast species identified in this study (Table 3.2). Amplicon sizes for profiles O, X, H, W, 

and R ranged from 527 – 687 bp. These species had unique profiles and included 

Lodderomyces elongisporus, Candida oleophila, Filobasidium uniguttulatum, 

Rhodotorula slooffiae/Cystobasidium slooffiae and Rhodotorula dairenensis, 

respectively. 

Minor discrepancies were observed in amplicon sizes and restriction profiles among 

species in different studies. Small differences in the fragment sizes may be related to 

sequence differences between strains of a given species. It may be expected that 

differences in recorded fragment sizes as great as 20 bp are possible simply due to the 

manner in which the bands sizes were determined and this would account for many of 

the small size variations reported by different researchers for the same strain of a 

species (Esteve-Zarzoso et al., 1999; Granchi et al., 1999; Coton et al., 2006; Pham et 

al., 2011). 

© Central University of Technology, Free State



53 
 

3.3.2 Sequences of the D1/D2 region of the 26S rDNA 

Eighteen profiles were obtained from the RFLP data and three representatives of each 

were identified using D1/D2 domain sequencing. D1/D2 domain rDNA PCR products 

ranged from 500 to 600 bp (Figure 3.3) as expected (Kurtzman and Robnett, 1998). 

Sequence comparisons were performed for all yeasts using the Basic Local Alignment 

Search Tool (BLAST) program within the GenBank database. Each profile was ascribed 

to the species showing the highest matched sequence identity (Table 3.3). Sequence E-

values of all isolates were 0.0 and the accession numbers of the BLAST hits are shown 

in brackets and those which were submitted to NCBI are indicated in the designated 

column. 

 

 

 

Figure 3.3 1% agarose gel showing D1/D2 domain PCR products of isolates 
representing the 18 profiles described Tables 3.2 and 3.3. Lanes M- 
GeneRulerTM 50 bp DNA Ladder (Thermo Scientific). Lanes 1- 
Filobasidium capsuligenum, 2- Filobasidium uniguttulatum, 3- Zygoascus 
hellenicus, 4- Candida intermedia, 5- Candida parapsilosis, 6- Candida 
sojae, 7- Candida quercitrusa, 8- Candida spandovensis, 9-Candida 
oleophila, 10- Lodderomyces elongisporus, 11- Wickerhamomyces 
anomalus, 12- Yarrowia lipolytica, 13- Zygosaccharomyces bailii, 14- 
Cryptococcus laurentii, 15-Cryptococcus saitoi, 16- Rhodotorula 
dairenensis, 17- Rhodotorula slooffiae, 18-Trichosporon ovoides. 
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Most of the sequences exhibited sequence identities of 98 – 100% during comparison 

with sequences available on the NCBI nucleotide database. Only Cryptococcus laurentii 

and Rhodotorula slooffiae showed identities of 97%. The preliminary identification with 

the reference strains successfully identified all isolates which were represented with the 

exception of Candida sojae.  

The 5.8S-ITS RFLP profile for each of the yeast species associated with this factory can 

now be utilized as a control panel for quick analysis and identification of new 

contamination detected during routine monitoring. Species with unique restriction 

profiles have been observed and may potentially provide reliable restriction profiles for 

identification. In one instance, species of the same genus have displayed similar 

restriction profiles (Candida tropicalis/Candida sojae) and can thus not be considered 

species-specific, but necessitates confirmation by sequencing the D1/D2 region of the 

26S rDNA for identification.  
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Table 3.3 Identification of yeast isolates compared and submitted to NCBI database 

Profile Blast hit 
# of 

isolates 
Identity bp  

Accession 

number 

 Ascomycetes     

C1 Candida intermedia isolate C1/23 large subunit ribosomal RNA gene, partial sequence (KM246051.1) 27 100% 523 KU708236 

A1 Candida parapsilosis strain N01-1.2 26S ribosomal RNA gene, partial sequence (FJ432627.1) 38 99% 614 KU708237 

R1 Candida sojae partial 26S rRNA gene, strain IMUFRJ 51946 (FN424102.1) 7 100% 525 KU708238 

I1 Candida quercitrusa 18S rRNA gene (partial), ITS1, 5.8S rRNA gene, ITS2 and 26S rRNA gene (AM160627.1) 5 100% 587 KU708239 

U Candida spandovensis strain NRRL Y-17761 26S ribosomal RNA gene, partial sequence (DQ438228.1) 11 99% 558 KU708240 

X Candida oleophila strain 163 26S ribosomal RNA gene, partial sequence (JN544012.1) 8 100% 572 KU708241 

O Lodderomyces elongisporus, 18S rRNA gene, ITS1, 5.8S rRNA gene, ITS2, 28S (LN827703.1) 12 100% 569 KU708243 

F Wickerhamomyces anomalus strain Cf20 26S ribosomal RNA gene, partial sequence (KM978209.1) 25 100% 573 KU708244 

G Yarrowia lipolytica strain HG12 26S ribosomal RNA gene, partial sequence (JQ680462.1) 6 99% 523 KU708245 

D Zygosaccharomyces bailii 26S ribosomal RNA gene, partial sequence (KF908879.1) 6 99% 603 KU708246 

K1 Zygoascus hellenicus strain CBS 5839 26S large subunit ribosomal RNA gene, partial sequence (AY447007.1) 7 99% 597 KU708235 

 Basidiomycetes     

P Cryptococcus laurentii strain HB84-1 26S ribosomal RNA gene, partial sequence (KJ507290.1) 5 97% 624 KU708248 

E Cryptococcus saitoi strain HB26-2 26S ribosomal RNA gene, partial sequence (KJ507267.1) 4 100% 607 KU708249 

A Filobasidium capsuligenum 26S ribosomal RNA gene, partial sequence (AF075501.1) 14 100% 633 KU708233 

H Filobasidium uniguttulatum strain PD411 large subunit ribosomal RNA gene, partial sequence(KJ439613.1) 8 98% 638 KU708234 

R Rhodotorula dairenensis strain MB202 26S ribosomal RNA gene, partial sequence (KC798400.1) 6 99% 600 KU708250 

W Rhodotorula slooffiae gene for large subunit ribosomal RNA, partial sequence (AB566328.1) 10 97% 630 KU708251 

V Trichosporon ovoides partial 26S rRNA gene (HE660084.1) 8 99% 626 KU708252 
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3.3.3 Yeast diversity in the fruit juice bottling factory 

Many types of yeasts are potential spoilage agents of fresh and concentrated fruit juices 

due to favourable pH conditions and high sugar levels of these beverages (Tribst et al., 

2009). Contamination may originate from any step along the beverage manufacturing 

process (Guillamó et al., 1998). Raw materials, factory environment, packaging and 

processing equipment are all potential contamination sources (Stratford, 2006). In a 

‘Forensic approach’ to spoilage of soft drinks, Davenport (1996; 1997; 1998) noted that 

most yeast contaminants encountered could be divided into four categories, i.e. Groups 

1-4. Group 1 constitute spoilage yeasts which are fermentative and preservative 

resistant, Group 2 comprises spoilage or hygiene types and Group 3 are indicators of 

poor factory hygiene. Group 4 yeasts are ‘aliens’ which are out of their normal 

environment.  

A total of 201 yeasts belonging to 10 different genera were isolated and identified from 

the production environment and process equipment. Ascomycetous yeasts included the 

species from the genera Candida, Lodderomyces, Wickerhamomyces, Yarrowia, 

Zygosaccharomyces and Zygoascus (Figure 3.4). Yeast diversity in this factory was 

dominated by Ascomycetes, which was not surprising since most of the ascomycetous 

yeasts are found in environments with high concentrations of sugar (Van Eck et al., 

1993). Basidiomycetous yeasts were represented by Rhodotorula 

slooffiae/Cystobasidium slooffiae, Rhodotorula dairenensis, Cryptococcus laurentii, 

Cryptococcus saitoi, Filobasidium uniguttulatum, Filobasidium capsuligenum and 

Trichosporon ovoides. Basidiomycetous yeasts are generally found in soil, plant 

materials and bird droppings and are not usually associated with spoilage and industrial 

processes, but are regarded as hygiene indicator species (Tokuoka, 1993; Davernport, 

1996; Tekolo et al., 2010). As such, these yeasts were also less abundant in the factory 

equipment compared to ascomycetous yeasts (Figure 3.4). 

Candida species made up the largest proportion of yeasts found on all the equipment 

(Figure 3.4). These species were present on all the equipment, but not in the 

refrigerator. The genus Candida has become one of the largest in species number, 

present in almost every environment (Frutos et al., 2004). Yeasts of this genus are 
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abundantly distributed in nature on land and sea as well as being associated with 

animals, plants or inanimate objects. As observed in this study, species of this genus 

can also be found in food processing environments and have been recovered as 

contaminants in a high number of foods, including fruits, fruit juices, soft drinks, alcohol 

beverages and products with a high sugar content (Frutos et al., 2004; Chang et al., 

2012; Maciel et al., 2013).  

Candida parapsilosis, Candida intermedia, Lodderomyces elongisporus, and 

Wickerhamomyces anomalus are classified as Group 2 yeasts which are able to cause 

spoilage and are indicators of problems in the cleaning program. The overall yeast 

distribution shows that C. parapsilosis and L. elongisporus are widely distributed in this 

factory, isolated from all other areas tested except the holding tanks, refrigerator and 

pipes (Figure 3.4). C. parapsilosis is an opportunistic spoilage yeast, frequently isolated 

in low numbers from a variety of sources and causing occasional spoilage in a wide 

variety of materials (Boekhout and Robert, 2003). These materials range from soft drinks 

to shampoo. L. elongisporus similarly causes occasional spoilage of both soft drinks and 

fruit juices in bottling plants. Both these species, extensively distributed in nature and 

dispersed by insects, animals and humans, are potential causes of food and beverage 

contamination, as well as infectious disease (Chang et al., 2012). 

Zygoascus hellenicus and Zygosaccharomyces bailii resort under Group 1 spoilage 

yeasts (Davernport, 1996, 1997, 1998). The occurrence of these yeasts indicates the 

likely presence of fruit concentrates and sugar syrup residues in the factory 

environment. Trichosporon ovoides, Cryptococcus laurentii, Rhodotorula slooffiae, 

Filobasidium capsuligenum and Filobasidium uniguttulatum fall under Group 3 yeasts. 

These yeasts indicate problems related to the hygiene status of the factory when 

isolated in high numbers and also reveals the presence of excessive dust-like particles. 

Yarrowia lipolytica belongs to Group 4 yeasts indicative of the presence of oil or dairy 

products. 
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Figure 3.4 Data wheel showing the yeast distribution in the fruit juice bottling factory, in terms of culturability and presence. 

Isolates originated from the refrigerator (area A), powder blenders, pipes, blending tanks (area C), holding tanks, 

nozzles (area E), bottles, caps (area F) and the ramp (area D). 
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The level of yeast contamination varied among the different equipment and diversity 

findings are discussed based on the workflow in the factory (areas A-F, Figure 3.1). Four 

types of yeasts namely, Cystobasidium slooffiae (61%), Zygoascus hellenicus (13%), 

Wickerhamomyces anomalus (13%) and Zygosaccharomyces bailii (13%) were isolated 

from the air samples taken from the refrigerator (area A) where the concentrated pulps 

are stored. Cystobasidium slooffiae previously known as Rhodotorula slooffiae (Yurkov 

et al., 2015) was the dominant yeast isolated from this area. The latter may be due to 

the reason that basidiomycetous pigmented yeasts such as Rhodotorula spread easily in 

the air (Dworecka-Kaszak and Kizerwetter-Swida, 2011). All of the species isolated from 

the refrigerator have been frequently isolated from fruits (Thomas and Davenport, 1985; 

Prakitchaiwattana et al., 2004; Anhansal et al., 2008; James and Stratford, 2011; Walker, 

2011). 

In the powder blenders (area C) which are used for mixing powder ingredients, eight 

different yeast species were detected. Candida intermedia (34%) and Candida 

parapsilosis (32%) were the dominant yeasts isolated. Both yeasts have previously been 

isolated from reconstituted fruit juice (Maciel et al., 2013) and C. parapsilosis has been 

reported as an opportunistic pathogen responsible for various mycoses (Jaques and 

Casaregola, 2008). It is reasonable to assume that contamination of equipment by C. 

parapsilosis is a result of food handlers since isolates of C. parapsilosis are frequently 

found in blood, skin and nails (including hands of health-care workers) (Nosek et al., 

2009). Furthermore, Welthagen and Viljoen (1998) reported that workers' hands and 

aprons were also responsible for a high rate of yeast contamination in other food 

processing environments. All yeast species isolated from the powder blenders can 

potentially contaminate the product given that the powder blenders are directly linked to 

the blending tanks. Zygosaccharomyces bailii (2%) was isolated from the powder 

blenders at a relatively low occurrence compared to Wickerhamomyces anomalus (12%) 

and Lodderomyces elongisporus (8%). L. elongisporus has been reported to cause 

occasional spoilage of soft drinks and fruit concentrates (Stratford and James, 2003). 

Candida spandovensis (8%) which has been associated with frozen fruit pulps (Trindade 

et al., 2002) and Candida sojae (2%) was also isolated from the powder blenders. The 

yeast species isolated from the powder blenders comprises of Group 2 yeasts which are 
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spoilage and hygiene types, able to cause spoilage of fruit juices, but only if 

complications arise during manufacturing such as low level or absence of preservative, 

ingress of oxygen, failure of pasteurization or poor standards of hygiene (Davenport, 

1996). 

The pipes (area C) which connect the powder blenders to the blending tanks were 

largely colonised by Candida parapsilosis (50%). Species of Trichosporon ovoides (17%) 

was isolated from the pipes and Trichosporon spp. are classified by Davenport (1996; 

1997; 1998) as belonging to Group 3 organisms which are hygiene indicators, not 

causing spoilage. Trichosporon spp. are widely distributed in nature and found 

predominantly in tropical and temperate areas (Colombo et al., 2011). These species are 

able to utilize different carbohydrates and carbon sources and degrade urea, but 

members of this genus are non-fermentative. Wickerhamomyces anomalus, Candida 

sojae and Rhodotorula dairenensis were also isolated. Not unexpectedly, the blending 

tanks shared similar diversity with the pipes and also contained Filobasidium 

capsuligenum, Candida intermedia, Lodderomyces elongisporus, Rhodotorula slooffiae, 

Zygoascus hellenicus, Candida quercitrusa and Candida spandovensis. The high sugar 

content and low water activity of the ingredients in the blending tanks favour the growth 

of yeasts and this contributed to the large diversity isolated from this equipment. 

Wickerhamomyces anomalus (28%) and Filobasidium uniguttulatum (28%) were equally 

dominant in the holding tank (area E). This tank also harboured Yarrowia lipolytica, 

Candida intermedia and Candida oleophila. C. oleophila is widely distributed in fruits 

(Glushakova et al., 2007). Yarrowia lipolytica is known to occasionally cause spoilage of 

dairy products (Zinjarde, 2014). The presence of a fruit dairy blend in the tank, such as 

the Coco Pine Dairy Blend, creates a hydrophobic and substrate-containing 

environment, which can encourage the growth of Y. lipolytica. 

The steel stairs used by the production staff to reach the top of the blending tanks are 

referred to as “the ramp” (area D) and the yeast diversity found here is similar to that of 

the blending tanks. The workers are continuously walking up to the tanks and it has 

been found that footwear can be a vehicle for the transfer of microorganisms from 

production areas. This structure can be a source of yeasts detected in the tanks.               
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Studies by Taylor et al. (2002) have shown that under factory conditions, when footwear 

was soiled with both food debris and microorganisms, the foot baths and boot washers 

were largely ineffective at removing all organic soil and could not remove or 

decontaminate all microorganisms. In addition, footwear can transport contamination at 

significant distances (Gardner, 2014). Boot washers also have the potential to disperse 

microbial aerosols that can transfer contamination from the footwear to the operative’s 

clothing or the processing environment. 

Candida parapsilosis (62%) and Lodderomyces elongisporus (25%) were the dominant 

species isolated from the nozzles (area E) which release the fruit juice into the bottles 

during filling. Both yeasts are common contaminants in bottling factories, but can be 

effectively controlled if GMPs are strictly adhered to (Davenport, 1996). Cryptococcus 

saitoi (13%) was also isolated from the nozzles. C. parapsilosis (33%), L. elongisporus 

(33%), Candida sojae (12%), Candida oleophila (12%) and Cryptococcus laurentii 

(17%), were isolated from the bottles and caps which are used for packaging during 

filling. Caps and bottles (area F) are not washed prior to filling and are stored in the roof 

area which is not properly insulated. The latter is likely to introduce soil and dust-related 

yeasts such as L. elongisporus and C. laurentii into the packaging material (Stratford 

and James, 2003; Slavikova et al., 2007; Cloete et al., 2010). 

Wickerhamomyces anomalus was also isolated in many areas within the factory (Figure 

3.4.). In a study conducted by Marvig et al. (2014), W. anomalus was also isolated in 

relatively high numbers from sugar syrups and syrup tank swab samples. W. anomalus 

is known to exhibit a great diversity with regard to its natural habitat, growth morphology, 

metabolism, stress tolerance and antimicrobial properties (Walker, 2011). It has been 

isolated from sources such as flowering plants, fruit skins, insect intestinal tracts, human 

tissues and faeces, wastewaters, dairy and baked food products. There are some 

detrimental roles of W. anomalus in relation to food production and storage (Deak, 

2008). As a food spoilage yeast, its contamination of sugary foods and beverages 

(Lanciotti et al., 1998; Rojas et al., 2001) can lead to taints commonly referred to as 

“chemical adulteration”.  
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Zygosaccharomyces bailii was not widely distributed in the processing equipment 

analysed, although it has been reported as one of the main spoilage yeasts associated 

with fruit juice (Figure 3.4) (Stratford et al., 2013b). This observation can be linked to the 

fact that it exhibits the lowest capacity of adhesion to stainless steel along with the 

lowest percentage of hydrophobicity (Brugnoni et al., 2007). Stainless steel is the most 

frequently used food contact material in the fruit juice processing industry. The two 

above mentioned cumulative parameters combined, leads to a significant decrease of 

the adhesion capacity of this strain (Brugnoni et al., 2007). Even though the presence of 

Z. bailii may be low on stainless steel, it can multiply gradually in concentrates and as 

little as one cell per container of diluted stock is enough to cause spoilage (Wareing and 

Davenport, 2000). Flavourings, fruit pulp and water can also be potential sources of 

contamination. 

In conclusion, the diversity data revealed that this fruit juice factory environment 

harbours a variety of yeast species, even after cleaning and disinfection. Some of these 

yeasts are common contaminants of fruit juice and could potentially affect the product as 

spoilers. Furthermore, the presence of hygiene indicator yeast species in the factory 

environment suggests that the current GMPs could be improved.  
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Chapter 4  

Application of RFLP analysis for preliminary 

identification of unknown spoilage yeasts in 

fruit juices 

4.1 Introduction 

Early detection of microbial contamination is of considerable importance to the food 

industry and provides a means of monitoring quality control in production processes. It 

also enables quicker implementation of intervening measures, thus reducing the effects 

of potential spoilage (Loureiro, 2000; Casey and Dobson, 2004; Combina et al., 2008). 

The most common microbial indicator used by the food industry to evaluate the 

presence of foodborne yeasts is still enumeration of total yeasts and mould making use 

of rich culture medium (Combina et al., 2008) supplemented with antibiotics, such as 

chloramphenicol and oxytetracycline, to prevent bacterial growth (Mossel et al., 1995). 

Such non-descriptive media cannot distinguish between dangerous and innocuous 

yeasts, making it impossible to determine whether more than one species of yeast may 

be present. Furthermore, if the identity of the spoiler/contaminant is not known, it 

becomes extremely difficult to decide on the suitable preventative measure to be taken 

in cases of high levels of contamination (Loureiro, 2000).  

Traditionally, yeast identification has been based on morphological and physiological 

traits. However, these methodologies are laborious and time consuming (Baffi et al., 

2011). Traditional, labour-intensive, physiological methods have largely been replaced 

by molecular techniques (Kurtzman, 2006; Pincus, 2007). Each method has its own 

advantages and disadvantages with respect to speed, reliability, robustness, scale, cost, 

infrastructure requirements, training and expertise, and these will always need to be 

evaluated with respect to the requirements of the user (Harrison et al., 2011). There are 

many recent, complex and sensitive identification tools such as Next Generation 
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Sequencing (NGS), metagenomics, Matrix–Assisted Laser Desorption/Ionisation 

(MALDI) and Fourier Transform Infrared Spectroscopy (FTIR) for rapid identification of 

pathogens and spoilers, but for small scale fruit juice bottling factories, the need exists 

for a basic and fast method, at least for preliminary identification.  

According to Baffi et al. (2011), reliable identification can be achieved by restriction 

analysis (PCR-RFLP) of non-coding ribosomal DNA regions. These regions include, but 

are not limited to, the internal transcribed spacers and the 5.8S region (ITS-5.8S region) 

of the large 26S subunit of rRNA. RFLP relies on the use of restriction enzymes to digest 

DNA into fragments of various lengths that may be species-specific (Kurtzman, 2015). 

Usually the DNA to be digested represents an amplicon of e.g. combined ITS and D1/D2 

regions to ensure an adequate DNA concentration for detection on gels (Ferreira et al., 

2010). Comparisons are usually based on the use of patterns that have been generated 

by several different restriction enzymes. 

The fruit juice bottling factory where samples were obtained for this study performs in-

house microbial culturing. However, the factory is not equipped with laboratory facilities 

to identify spoiler yeasts to species level. Moreover, species identification is a lengthy 

process if outsourced which hampers planning of corrective actions. Therefore, the aim 

of this study was to apply a PCR-RFLP approach in the preliminary identification of 

spoilage yeasts associated with spoiled products from a fruit juice bottling factory in 

Bloemfontein. 

 

4.2 Materials and methods 

4.2.1 Spoiled fruit juice samples 

Eight fruit juice samples, each representing a different batch affected by spoilage 

(blowing), were collected, retained on ice during transportation to the laboratory and 

analysed without delay. Four different fruit juice flavours were sampled including, Apple 

Ice-Tea, Jungle Yum Cordial, Peach and Apricot and Coco Pine Dairy Blend. 
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4.2.2 Enumeration and isolation of yeasts 

Fruit juice samples were serially diluted in sterile peptone water (Merck). The series of 

dilutions were plated onto RBC agar as well as Malt Extract agar (MEA) and incubated 

for up to 3 days at 30°C. Of the resulting colonies, approximately 10% were selected 

based on colony morphology and used as template in whole cell PCR (Barata et al., 

2008). Isolates were also purified by repeated sub-culturing and cryopreserved in 15% 

glycerol at -20°C. 

 

4.2.3 Control panel for comparison 

A representative of each yeast species characterized in the diversity study (Chapter 3), 

as well as reference strains, were included as a control panel to serve as comparisons 

for the application of RFLP analysis. 

 

4.2.4 PCR amplification and 5.8S–ITS rDNA RFLPs 

Whole-cell PCR and restriction enzyme digestion were performed on the unknown 

isolates as well as the control panel yeasts. Yeast cells from 48 h single colonies were 

suspended in 50 µl PCR reaction mix containing 0.52 µM primer ITS 1 (5’-

TCCGTAGGTGAACCTGCGG-3’) and ITS 4 (5’-TCCTCCGCTTATTGATATGC-3’) 

(White et al., 1990), 0.2 µM dNTPs, 1x reaction buffer Thermopol® (New England 

Biolabs), and 1 U of NEB Taq Thermopol® (New England Biolabs). Amplification 

conditions included initial denaturation at 95°C for 3 min, followed by 30 cycles of 95°C 

for 30 sec, 55°C for 30 sec, 68°C for 1 min. A final elongation step was performed at 

68°C for 7 min. Successful amplification was confirmed by agarose gel (1%) 

electrophoresis. PCR products were stained with ethidium bromide (Merck) and 

visualised under UV light. These PCR products represented the 5.8S–ITS rRNA region 

and varied in length from 300 – 900 bp. All amplicons (10 ul) were digested with 1 unit of 

CfoI, HaeIII and HinfI restriction enzymes (Thermo Scientific) using FastDigest™ and 

Tango™ buffers (Thermo Scientific) in separate reactions (Esteve-Zarzoso et al., 1999). 
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Fragments were separated in a 3% agarose gel and stained and visualised as 

mentioned. Digital images were captured with the Molecular Imager Gel Doc™ XR 

system (BioRad Laboratories Inc.). Band sizes were calculated with reference to 

GeneRuler™ 1 kb DNA ladder Plus and GeneRuler™ 50 bp DNA ladder (Thermo 

Scientific) using Quantity One® 1-D Analysis software (BioRad Laboratories Inc.). 

Resulting PCR-RFLPs were grouped according to profiles and compared to the diversity 

control panel for preliminary identification. 

 

4.3 Results and discussion 

4.3.1 Identification of unknown yeasts from spoiled fruit juices 

The factory relevant to this study experiences an annual problem with ‘blowing’ of the 

fruit juice concentrates and a rapid, cost effective method is required to identify spoiler 

yeasts. The detection and identification of yeast species in spoiled fruit juice would be 

useful in providing information about the composition of yeast populations which affect 

the organoleptic properties of the final product (Granchi et al., 1999). Moreover, since 

different populations of yeasts can spoil the same batch, timely knowledge on which 

yeast community is present should assist with corrective actions and problem solving. 

A proposed PCR-based yeast colony identification protocol, consisting of RFLP analysis 

of amplified 5.8S-ITS rDNA is illustrated in Figure 4.1. This protocol comprised the 

following steps: (1) Dilution and plating of spoiled fruit juice sample; (2) 72 h incubation; 

(3) direct whole cell PCR amplification of 5.8S- ITS rDNA (4) restriction analysis with 

enzymes (CfoI, HaeIII and HinfI) and agarose gel electrophoresis; (5) digital acquisition 

of restriction profiles and comparison with the control panel yeasts for preliminary 

identification; and (6) D1/D2 domain sequencing of representative isolates for 

confirmation. Steps 1 and 2 can also be carried out in the factory laboratory. 
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Figure 4.1 A flow diagram illustrating the 5.8-ITS rDNA RFLP based protocol for 
preliminary identification of yeast present in spoiled fruit juice. 
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Figure 4.2 Agarose gel (1%) showing representative PCR products amplified from 

different yeasts isolated from each fruit juice. Lanes M- O’GeneRulerTM 1 kb 

Plus DNA Ladder, Lane 1- Unknown yeast 1 from “Jungle Yum cordial” Lane 

2- Unknown yeast 2 from “Apple Ice-Tea”, Lane 3- Unknown yeast 3 from 

“Coco pine dairy blend” and Lane 4- Unknown yeast 4 from “Jungle Yum 

cordial”. 

 

Yeasts were isolated from eight spoiled fruit juices each representing a different batch 

affected by spoilage. The yeast populations ranged from 2.80 × 103 to 2.23×107 CFU/ml 

which was within the same range isolated by Deak and Beuchat (1993) in fruit juice 

concentrates. The analytical methods used by the industry to evaluate yeasts present in 

foods and drinks are still yeast and mould count plates, making use of a general rich 

medium (Combina et al., 2008). Under these conditions, it not possible to distinguish 

between the diverse yeasts causing spoilage and their different characteristics. This 

makes it difficult to determine the preventative measures that must be taken in cases of 

high levels of contamination (Loureiro, 2000). 
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Following 5.8S-ITS rDNA amplification from the resulting yeast colonies, the PCR 

product lengths were between 500 and 900 bp and already showed that spoilage of the 

different juices were likely caused by the presence of different yeast species (Figure 

4.2). Even so, as was demonstrated in the Chapter 3, PCR product length alone is not 

enough for dependable identification. PCR products were digested with CfoI, HaeIII and 

HinfI. Figure 4.3 depicts the digestion profiles of unknown yeasts and control strains, 

which include yeasts identified from the diversity study as well as all the reference 

strains. Unknown yeasts which were isolated from spoiled fruit juice concentrates are 

represented in Lanes 13, 23, 26 and 30. The restriction profiles of the unknown spoilers 

were compared to that of the control panel and subsequently identified. The restriction 

profile of Unknown yeast 1 (Figure 4.3 Lane 13) was not identical to any of the isolates 

from the control panel but closely resembled that of Zygosaccharomyces bailii. 

Preliminary identification was not possible for this specific profile, since it did not have a 

match in the control panel. The isolate was sequenced (D1/D2 domain) and identified as 

Zygosaccharomyces bisporus. The restriction profile of Unknown yeast 2 (Figure 4.3 

Lane 23) was identified as Zygosaccharomyces bailii (Figure 4.3 lane 31). Similarly, the 

restriction profiles of Unknown yeast 3 (Figure 4.3 lane 26) was identical to that of 

Saccharomyces cerevisiae (Figure 4.3 lane 32) and the restriction profile of Unknown 

yeast 4 (Figure 4.3 lane 30) was identical to Zygoascus hellenicus (Figure 4.3 lane 33). 

The identities of Unknown yeasts 2, 3 and 4 were also verified by D1/D2 domain 

sequencing. 
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Figure 4.3 Composite RFLP panel of yeasts isolated from the factory environment (control panel), selected reference strains and Unknown yeasts 
isolated from spoiled fruit juice. The agarose gels (3%) show restriction profiles generated by digestion with CfoI (A), HaeIII (B) and HinfI (C) 
enzymes. Each lane represents the following in all gel sections A, B and C: M- GeneRuler™ 50 bp DNA ladder (Thermo Scientific), 1- 
Filobasidium capsuligenum, 2- Filobasidium uniguttulatum, 3- Candida intermedia, 4- Candida parapsilosis, 5- Candida tropicalis, 6- Candida 
sojae, 7- Candida quercitrusa, 8- Candida spandovensis, 9- Candida oleophila, 10- Saccharomyces ludwigii, 11- Lodderomyces elongisporus, 
12- Wickerhamomyces anomalus, 13- Unknown yeast 1, 14- Zygosaccharomyces rouxii, 15- Cryptococcus laurentii, 16- Cryptococcus saitoi, 
17- Millerozyma farinosa, 18- Pichia kudriavzevii, 19- Torulaspora delbrueckii, 20- Saccharomyces bayanus, 21- Yarrowia lipolytica, 22- 
Kluyveromyces marxianus, 23- Unknown yeast 2, 24- Hanseniaspora occidentalis, 25- Dekkera anomala, 26- Unknown yeast 3, 27- 
Rhodotorula dairenensis, 28- Cystobasidium slooffiae, 29- Trichosporon ovoides, 30- Unknown yeast 4, 31- Zygosaccharomyces bailii, 32- 
Saccharomyces cerevisiae 33- Zygoascus hellenicus. 
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Table 4.1 Yeast species isolated from spoiled fruit juices 

Fruit juice flavour Yeast species 

Apple Ice-Tea Zygosaccharomyces bailii 

Peach & Apricot Zygosaccharomyces bailii 

Jungle Yum Cordial 

Zygosaccharomyces bailii 

Zygosaccharomyces bisporus 

Zygoascus hellenicus 

Coco Pine Dairy Blend 
Zygosaccharomyces bailii 

Saccharomyces cerevisiae 

 

Distribution of the four different yeast species identified from spoiled fruit juices of 

different flavours is listed in Table 4.1. Zygosaccharomyces bailii was isolated from all 

the fruit juice flavours and was the only spoiler present in the Apple Ice-Tea and Peach 

& Apricot flavours. Zygoascus hellenicus was only isolated from the Jungle Yum Cordial 

and Saccharomyces cerevisiae was only isolated from Coco Pine Dairy Blend.  

The 5.8S-ITS region RFLP approach to identify yeast compared to control panel data 

proved useful for preliminary identification of unknown spoiler yeasts in fruit juices. The 

presence of Zygosaccharomyces bailii, Saccharomyces cerevisiae and Zygoascus 

hellenicus were easily confirmed and a fourth species that did not form part of the 

control panel (Zygosaccharomyces bisporus) was immediately noted. Furthermore, the 

RFLP approach was also able to indicate the presence of more than one yeast species 

in spoiled fruit juice and provided guidance toward deciding how many representative 

isolates to sequence for confirmation. 

All yeasts isolated from the spoiled fruit juices fall under Group 1 yeasts (Davenport, 

1996). These are described as spoilage organisms that adapted to growth in fruit juices 

and are able to cause spoilage from very low cell numbers (as few as one cell per 

container). The characteristics of Group 1 yeasts are osmotolerance, aggressive 

fermentation, resistance to preservatives (particularly weak organic acids) and a 
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requirement for vitamins. It is the high sugar concentrations in fruit juice concentrates 

that favour the growth of yeasts with a higher fermentative activity (Barata et al., 2012).  

The genus Zygosaccharomyces including both Z. bisporus and Z. bailii are some of the 

species that have evolved the ability to grow under difficult environmental conditions 

(Merico et al., 2003). Low pH, high sugar concentration and low water activities provided 

by the fruit juices, encourage proliferation of these species (Fleet, 1992). Another 

feature which may contribute to the spoilage capacity of yeasts belonging to this genus 

is their ability to vigorously ferment hexose sugars, such as glucose and fructose 

(Thomas and Davenport, 1985; Pitt and Hocking, 1997). High fermentation can 

contribute to spoilage by causing swelling in packaging which was observed in the 

plastic juice bottles in this study. 

Zygosaccharomyces bailii is a commonly encountered spoilage yeast and this species is 

responsible for considerable economic losses in the beverage industry (Thomas and 

Davenport, 1985; Loureiro, 1994; Rojo et al., 2014). Z. bailii was detected in all the 

spoiled fruit juice flavours studied and is not unexpected given its characteristic for 

extreme resistance to preservatives and ability to grow in excess of legally permitted 

concentrations of preservatives (Harrison et al., 2011; Stratford et al., 2013b). The low 

permeability of Z. bailii to weak acid preservatives at low pH values and its ability to 

metabolize acid compounds, even in the presence of glucose, are some of the 

physiological traits associated with its high tolerance to acidic environments (Sousa et 

al., 1996; Fernandes, 1997; Sousa, 1998). The factory from which the spoiled fruit juices 

were obtained for this study uses sodium benzoate and sodium metabisulphite 

preservatives, which are classified under weak acid preservatives, and are thus easily 

resisted by members of the genus Zygosaccharomyces. The frequency of 

Zygosaccharomyces bisporus isolation from foods is much lower than that of Z. bailii, 

but it has a similar ability to cause food spoilage and it is also preservative-resistant (Pitt 

and Hocking, 1999; Barata et al., 2008).  

Zygoascus hellenicus also has a high fermentative ability and the available literature 

extensively describes it as being associated with grape berries or must in the winery 

environment (Barata et al., 2008; Barata et al., 2012; Tristezza et al., 2009; Simões and 
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Gomes, 2015). The Jungle Yum fruit juice which is the only fruit juice type contaminated 

by Z. hellenicus consists of strawberry, cranberry and raspberry pulp. It is possible that 

this species originated from the pulp since it has been associated with contamination of 

berries. It has also been described as a contaminant often associated with damaged 

grapes (Barata et al., 2008) and some studies indicated that it has been isolated from 

fruit juices (Nyanga et al., 2007; Maciel et al., 2013).  

It was not unusual to isolate Saccharomyces cerevisiae since it is also a fermentative 

yeast which has been associated with microbial decomposition of fruit juices (Zook et al., 

1999; Turtoi, 2014). Saccharomyces cerevisiae is considered to be a predominant 

spoilage species in concentrates, juices and fruit beverages (Gardini and Guerzoni 

1986; Deak and Beuchat, 1993), and in that respect is considered to be the source of 

most problems associated with processed fruits (Maimer and Busse, 1992). It has been 

isolated from fruit juices and causes ethanoic spoilage, carbonation, production of 

hydrogen sulphide and other off- odours (Zook et al., 1999). This yeast can grow in a 

range of conditions and it is characterized for its optimal growth in high sugar content 

media. Saccharomyces cerevisiae has also been isolated from a variety of dairy 

products especially those containing sugar and fruit (Mayoral, 2005). Not surprisingly, 

the Coco-pine dairy blend which contains milk powder was contaminated by S. 

cerevisiae. In addition, S cerevisiae has a level of tolerance to benzoic acid and is able 

to degrade sorbic acid (Pitt, 1974; Stratford et al., 2007). 

In conclusion, the method of applying RFLP analysis of the 5.8S-ITS region was useful 

for preliminary identification of spoilage yeasts in fruit juice. The main spoilage yeasts 

were identified to species level and with this information, the contamination sources 

during fruit juice processing can be determined. This method was also effective in 

detecting mixed cultures in a spoiled product. These spoilage yeasts can now be 

specifically targeted when developing contamination control measures. 
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4.3.2 Origin of contamination 

From the yeast diversity data obtained in Chapter 3 it was noted that 

Zygosaccharomyces bailii and Zygoascus hellenicus were both isolated from the air in 

the refrigerator where the fruit pulp is stored (Figure 4.4), which may suggest the 

refrigerator as the likely source of contamination. Z. bailii is able to grow at refrigerator 

temperatures, and therefore capable of surviving in this particular setting (Steels et al., 

1999). Wickerhamomyces anomalus and Rhodotorula slooffiae were also isolated from 

the fridge, but was not present in the final product (Figure 4.4). Although W. anomalus is 

able to grow over a broad pH range and at high osmotic pressure, its growth can be 

inhibited by benzoic acids and its derivatives (Passoth et al., 2006; Koczoń, 2009). 

Sodium benzoate is one of the preservatives used in the fruit juices and could have 

prevented the growth of W. anomalus. Z. bailii is preservative resistant and would 

therefore be likely to thrive in the products. There is very limited information about 

Rhodotorula slooffiae isolation from food products and its sensitivity to preservatives.  

Zygoascus hellenicus was also isolated in the blending tanks while Zygosaccharomyces 

bailii was isolated in the powder blenders (Figure 4.4). Saccharomyces cerevisiae and 

Zygosaccharomyces bisporus were not isolated in the factory environment during the 

diversity study which shows that spoilage yeasts do not necessarily originate from the 

factory environment. Although it is unlikely that these micro-organisms were missed 

during sampling it cannot be excluded as a possibility. It is, however, more reasonable to 

assume that they originate from an external source; presumably the concentrated pulps. 
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Chapter 5  

Concluding remarks 

5.1 Diversity and source of contamination 

A total of 201 yeasts belonging to ten different genera (Candida, Lodderomyces, 

Wickerhamomyces, Yarrowia, Zygosaccharomyces, Zygoascus, Cryptococcus, 

Filobasidium, Rhodotorula/Cystobasidium and Trichosporon) were isolated and 

identified from the production environment and processing equipment of a fruit juice 

bottling facility. Ascomycetous yeasts were dominating and included Candida 

intermedia, Candida oleophila, Candida parapsilosis, Candida quercitrusa, Candida 

spandovensis, Candida sojae, Lodderomyces elongisporus, Wickerhamomyces 

anomalus, Yarrowia lipolytica, Zygoascus hellenicus and Zygosaccharomyces bailii. 

Basidiomycetous yeasts were represented by Cryptococcus laurentii, Cryptococcus 

saitoi, Filobasidium capsuligenum, Filobasidium uniguttulatum, Rhodotorula dairenensis, 

Cystobasidium slooffiae/Rhodotorula slooffiae and Trichosporon ovoides. 

Factories producing fruit products can be at risk of yeast contamination due to its high 

sugar, low water activity and low pH (Ridawati et al., 2010). In such factories, care must 

be taken to ensure that equipment such as storage chillers, blending tanks, pipes, 

powder blenders, fillers and other product contact surfaces are adequately sanitised. 

The overall yeast distribution shows that Candida parapsilosis and Lodderomyces 

elongisporus were widely distributed in the factory. C parapsilosis is not only a yeast that 

contaminates fruit juices, but also an opportunistic human pathogen which can cause 

infections in immuno-compromised patients (Maciel et al., 2013). Therefore, proper food 

handler hygiene practices should be established. Although not isolated from the fruit 

juices, both these yeasts may potentially contaminate the product (Chang et al., 2012).  

Yeasts from ten different genera were isolated from the factory environment but only four 

species from three genera caused spoilage of the fruit juices. These yeasts were 

identified as Zygosaccharomyces bailii, Zygosaccharomyces bisporus, Zygoascus 
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hellenicus and Saccharomyces cerevisiae. Yeasts which were causing spoilage of the 

fruit juices were not isolated on the majority of the equipment from the factory 

environment. However, it only requires very low levels of particular spoilage yeasts to 

create major spoilage problems in these products. The yeast counts ranged from 

2.80 × 103 to 2.23 × 107 CFU/ml in the spoiled fruit juices. Zygosaccharomyces bailii was 

isolated from all the spoiled fruit juice types making this particular yeast the factory’s 

main problem.  

Hygiene indicators such as Trichosporon spp. and Candida spp. were detected and all 

yeasts from the processing equipment were isolated after Cleaning in place (CIP). This 

suggests that disinfectant efficacy and yeast tolerance or resistance requires further 

investigation.  

 

5.2 Preliminary identification using RFLP 

Application of RFLP analysis of the 5.8S-ITS region proved to be a useful tool in 

detecting genetic variability among yeast species, which is valuable for taxonomic 

identification to species level. This study established a RFLP profile database for yeast 

species isolated from this particular fruit juice factory. All the yeast species isolated from 

the factory environment serves as a control panel with which unknown spoilers are 

compared. Once the database of species has been expanded; rapid, reliable and cost 

effective identification of yeast species from fruit juice will be possible. This method not 

only enables quick identification, but also provides insight into whether the spoiler can 

be attributed to the factory environment or an external source.  

In general, the results demonstrate good reliability of the 5.8S-ITS analysis as a routine 

technique for identification of fruit juice yeast isolates. This method allows preliminary 

identification within 72h which can be less if single colonies are provided from the 

factory’s routine testing. Restriction digest profiles for Zygosaccharomyces bisporus 

were not present in the control panel database and could not be identified using this 

technique. In this case, species assignment was based on partial sequence of the 26S 

rDNA gene. Isolation of a yeast species from fruit juice which did not have a match in the 
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existing database highlighted the necessity of updating the control panel database on a 

regular basis. 

The preliminary identification method applied in this study, also provides useful 

information on spoiler diversity and guides on the number of colonies to sequence for 

confirmation. In so doing, sequencing costs may be reduced. Furthermore, testing the 

concept of using an RFLP profile database was aided by the inclusion of reference yeast 

strains in addition to isolates. The construction of a database including reference and 

local strains proved to be very important to assure speed of identification.  

 

5.3 Recommendations 

Osmotolerant yeasts such as Zygosaccharomyces bailii are ideally suited to the 

environmental niches in these production environments, hence the need for good 

hygiene in these areas. In view of their resistance to preservatives and low tolerance to 

cleaning agents, Z. bailii and Zygosaccharomyces bisporus may be better prevented by 

the use of biocidal cleaning agents, rather than treating the food with preservatives 

(Martorell et al., 2007; Hayes et al., 2012). This may be effective since Martorell et al. 

(2007) found that Z. bailii isolates were not exceptionally resistant to biocides such as 

peracetic acid or hypochlorite. 

Dimethyldicarbonate (DMDC) is an antimicrobial agent that has recently been approved 

for the control of spoilage yeasts in wines (Martorell at al., 2007; OIV, 2013). This 

chemical compound may be used as a preservative in fruit juice. In a synthetic medium, 

the inhibitory activity of DMDC was yeast species and dose dependent, where 0.112 mM 

of DMDC were necessary to reach the complete inhibition of Z. bailii (Delfini et al., 

2002). Moreover, a combination of DMDC (0.07 mM) and natamycin (0.015 mM) is also 

recommended. Vanillin, a naturally derived inhibiting additive can also be used to inhibit 

the growth of yeasts in fruit juice. Cerrutti and Alzamora (1996) showed that growth of 

Saccharomyces cerevisiae, Zygosaccharomyces rouxii, Z. bailii and Debaryomyces 

hansenii was inhibited in culture media and apple purée containing 13 mM of vanillin. 

Additionally, vanillin was inhibitory to Z. rouxii and other yeasts at concentrations of 
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20 mM, but lower concentrations were also effective when combined with other harsher 

conditions such as lower temperatures and low pH (Fitzgerald et al., 2003). 

The present study has demonstrated that the processing equipment of fruit juice 

factories potentially contains a wide diversity of yeast species both during production 

and after cleaning and disinfection. The contamination of equipment by yeasts is usually 

attributed to poor hygienic practices; however, the resistance of yeasts to commercial 

sanitizers and cleaning compounds has been reported (Laubcher and Viljoen, 1999). 

Hygiene indicators such as Trichosporon spp. and Candida spp. were detected from all 

the processing equipment after CIP. This suggests that disinfectant efficacy and yeast 

tolerance or resistance requires further investigation.  

A variety of yeasts were isolated from the packaging material which confirms the 

importance of proper hygiene, sanitation and good household practices, not only of the 

product and production equipment, but also of any containers and packing materials. 

These too can be a source of spoilage yeasts. The proper storage of such containers 

and closures before use is also important because yeast numbers may increase 

substantially during storage. Insulating the second floor area from which the caps and 

bottles are dispensed should assist with limiting yeast contamination of packaging 

materials. 

 

5.4 Future Research 

For successful application of the preliminary identification method, ongoing monitoring of 

yeast diversity is recommended. This will enable the control panel database to be 

continuously updated. Furthermore, evaluating the efficacy of the disinfectants, 

sanitizers and preservatives which are currently used in the factory, on the yeasts 

isolated from this study is the logical next step. Investigating food handlers and other 

factory personnel as sources of yeast-related contamination, linked with particular 

behaviours, should also be of considerable benefit to the industry. 
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