

Development of a Hybrid Control and Monitoring

System within a Reconfigurable Assembly System

By:

JOHAN ADAM NIEMANN

Thesis submitted in fulfilment of the requirements for the degree:

DOCTOR OF ENGINEERING: ELECTRICAL ENGINEERING

in the

Department of Electrical, Electronic and Computer Engineering

of the

Faculty of Engineering and Information Technology

at the

Central University of Technology, Free State

Supervisor: Co-supervisor:
Prof. H.J. VERMAAK (Ph.D.) Dr. N.J. LUWES (D.TECH)

Bloemfontein

2016

© Central University of Technology, Free State

ii

Declaration

I, JOHAN NIEMANN, do hereby declare that this research project which has been

submitted to the Central University of Technology for the degree

DOCTOR OF ENGINEERING : ELECTRICAL ENGINEERING, is my own

independent work; and complies with the Code of Academic Integrity, as well as

other relevant policies, procedures, rules and regulations of the Central University

of Technology; and has not been submitted before by any person in fulfilment (or

partial fulfilment) of the requirements for the attainment of any qualification.

Student Signature: Date: 25/11/2016

© Central University of Technology, Free State

iii

Acknowledgements

I would like to sincerely and deeply thank the following individuals and institutes,

whom without the completion of this thesis would not have been possible:

 Firstly, to my creator The God Almighty, for giving me the determination,

perseverance and capability to complete this project and thesis.

 To my spouse Nicolette, for your patience, understanding and loving support.

 To my parents, for raising me to be the best I can be, for all the opportunities

you provided me and your unconditional love and support.

 To my study leaders, Prof. HJ Vermaak and Dr. NJ Luwes, for your guidance,

endless knowledge and wisdom, and your friendship during the course of my

studies.

 To CUT and RGEMS, for granting me the opportunity to undertake this

project, for the monetary assistance, and the knowledge and experience

gained during the course of the project.

 To my fellow research students within the RGEMS research group, I

appreciate it that I could be part of the team (furniture). Thanks for your

friendship, collaborations and knowledge sharing.

© Central University of Technology, Free State

iv

Abstract

Expanding global markets are constantly changing and unstable. South African

manufacturing companies need to develop similar levels of sophistication and

expertise in the automation industry as its international rivals, to compete for these

markets and meet rising consumer expectations. To remain competitive, these

manufacturing companies must manage their plants extremely efficiently to ensure

the quality of assembled products; allow for rapid product introduction and product

changes; achieve shortened throughput cycles; ensure more reliable delivery dates;

and effectively coordinate product demand while contending with decreased product

lifespans. To accomplish this, manufacturing companies in SA are progressively

engaging in the current trend in automation known as reconfigurable manufacturing.

Due to the extreme flexibility of these reconfigurable systems, the monitor and

control systems for these require the same levels of flexibility. The purpose of the

study is to develop a hybrid control and monitoring system, to supervise and control

reconfigurable assembly systems (RAS), and adapt to the flexibility of these

systems. To achieve this, a literature study was done in the research area to reveal

the prerequisites for such systems; the physical assembly devices were designed

and built; the separate software modules developed and ultimately integrated into

the intended system. The tests to validate the system were developed in such a way

that each subsection of the system is validated by using a different system software

function. This inevitably confirms the functionality of the fundamental components

and the system in entirety. The results indicated that devices are easily added to the

system; devices are successfully detected and identified; how the system plans

production, and how the system automatically configures itself. Further results

showed the capability of the system to generate and virtually wire system runtime

code; store and retrieve production data; as well as warn and alarm on unwanted

conditions. By obtaining these results, companies can configure their systems with

ease, in a shorter amount of time, and without any human error. Moreover, their

systems will be more flexible, allow easy addition of new products and assembly

devices, and with minimal downtime. This will enable SA manufacturing companies

to be more competitive, ensure increased productivity, achieve extreme system

flexibility, and decrease lead times – thus ensuring them an advantage over their

international competitors.

© Central University of Technology, Free State

v

Contents

Declaration .. ii

Acknowledgements ... iii

Abstract .. iv

List of Figures .. ix

List of Tables ... xi

Acronyms and Abbreviations .. xii

Chapter 1 Introduction to Study Environment ... 1

1.1 Introduction ... 1

1.2 Problem Statement .. 1

1.3 Research Goals and Objectives ... 2

1.3.1 Hypothesis ... 2

1.3.2 Specific Objectives ... 2

1.4 Research Methodology ... 2

1.5 Layout of Thesis .. 5

Chapter 2 Theoretic Perspectives of Reconfigurable Systems 6

2.1 Introduction ... 6

2.2 Reconfigurable Assembly Systems ... 6

2.2.1 Introduction .. 6

2.2.2 Reconfigurability and Flexibility .. 8

2.2.3 Definition and Characteristics of Reconfigurable Assembly Systems 9

2.2.4 Reconfigurable Machines ... 9

2.3 Supervisory Control and Data Acquisition ... 10

2.3.1 SCADA components architecture .. 10

2.3.2 SCADA functions ... 11

2.3.3 Access Security ... 13

2.3.4 Generations of SCADA .. 14

2.3.4.1 First Generation: Monolithic SCADA systems 14

2.3.4.2 Second Generation: Distributed SCADA systems 14

© Central University of Technology, Free State

vi

2.3.4.3 Third Generation: Networked SCADA systems 14

2.3.4.4 Fourth Generation: Internet of things technology 15

2.4 Advanced Manufacturing Planning and Scheduling 15

2.5 Graphical Design for Human Machine Interface Screens 16

2.5.1 Introduction .. 16

2.5.2 Considerations for Graphical User Interface Design 17

2.5.2.1 Screen Layout ... 17

2.5.2.2 Usage of Colour... 17

2.5.2.3 Data and Status Depiction ... 20

2.5.2.4 Navigation ... 24

2.5.3 Alarms and Events ... 24

2.5.4 Display Screen Hierarchy ... 26

2.5.4.1 Level 1 – Operation Overview ... 26

2.5.4.2 Level 2 – Unit Control .. 27

2.5.4.3 Level 3 – Unit Detail .. 27

2.5.4.4 Level 4 – Support and Diagnostic Displays 27

2.6 LabVIEW and DSC Module ... 27

Chapter 3 Methodology ... 30

3.1 Introduction ... 30

3.2 System (HCoMS) Architecture Overview... 30

3.3 System Hardware Components ... 31

3.3.1 OPC and NI OPC Server ... 32

3.3.1.1 OPC ... 32

3.3.1.2 NI OPC Server Setup .. 32

3.3.2 SMART Conveyors .. 34

3.3.3 Assembly Devices (Industrial Robots).. 36

3.3.4 Machine Vision Stations ... 38

3.3.5 Mobile Devices ... 39

3.4 HCoMS Software Architecture and Operation 41

3.4.1 System Design and Implementation Overview 41

3.4.2 HCoMS Device Installers ... 43

© Central University of Technology, Free State

vii

3.4.3 Software Modules .. 44

3.4.3.1 Detection and Identification Module (DIM) 44

3.4.3.2 Information Manager ... 47

3.4.3.3 Ordering System.. 51

3.4.3.4 Production Planner .. 52

3.4.3.5 System Configurator .. 54

3.4.3.6 Production Handler .. 58

3.4.4 Software Functional Operation and Configuration Modes 60

3.4.4.1 Software Functional Overview ... 60

3.4.4.2 Manual Configuration .. 62

3.4.4.3 Configure by Product ... 65

3.4.4.4 Save Configuration .. 67

3.4.4.5 Load Configuration .. 68

Chapter 4 Testing Methodology .. 70

4.1 Introduction - Overview of System Testing... 70

4.2 Test 1: Preliminary Testing... 71

4.3 Test 2: System Configurability ... 74

4.4 Test 3: Information Manager .. 78

Chapter 5 Results and Analysis .. 80

5.1 Introduction ... 80

5.2 Test 1: Preliminary Testing... 80

5.3 Test 2: System Configurability ... 84

5.4 Test 3: Information Manager .. 87

5.5 Analysis and Summary of Results ... 92

Chapter 6 Contributions and Conclusion .. 94

6.1 Introduction ... 94

6.2 Summary .. 94

6.3 Research Goals and Objectives ... 94

6.4 Contributions ... 95

© Central University of Technology, Free State

viii

6.4.1 HCoMS System ... 95

6.4.2 Device Installers ... 95

6.4.3 Detection and Identification Module (DIM) ... 96

6.4.4 Ordering System .. 96

6.4.5 Production Planner and Scheduler .. 96

6.4.6 System Configurator .. 97

6.4.7 Production Handler .. 97

6.4.8 Information Manager .. 97

6.4.9 System Assembly SMART Devices ... 98

6.5 Future Work ... 98

6.5.1 Device Installers ... 98

6.5.2 Ordering System and Production Planner .. 98

6.5.3 Front Panel Rendering ... 99

6.5.4 Runtime Code Scripting ... 99

6.6 Conclusion ... 99

References ...101

List of Publications ...107

Appendices ..108

© Central University of Technology, Free State

ix

List of Figures

Figure 1.1 Proposed system layout overview .. 4

Figure 2.1 Assembly areas of utilization [11, 13] ... 7

Figure 2.2 Typical SCADA system ... 11

Figure 2.3 Example of text and background colour contrast [46] 20

Figure 2.4 Analogue depiction of information [49, 50] .. 22

Figure 2.5 Vessel levels [49, 50] .. 23

Figure 2.6 Status depiction with redundant coding [49, 50] 24

Figure 2.7 Depiction of alarms [49, 50] .. 25

Figure 2.8 Example of a level 1 screen [50, 52] ... 26

Figure 2.9 LabVIEW front panel and block diagram .. 28

Figure 3.1 HCoMS architecture ... 31

Figure 3.2 Importing OPC tags from .CSV file ... 33

Figure 3.3 Completed server setup .. 33

Figure 3.4 SMART conveyor systems.. 34

Figure 3.5 Change in SMART conveyor ability by change in program 35

Figure 3.6 PLC program for SMART conveyors .. 36

Figure 3.7 KUKA articulated robot arms .. 37

Figure 3.8 KUKA PLC Routine ... 38

Figure 3.9 Cameras mounted as auxiliary tools ... 39

Figure 3.10 Machine vision stations routine ... 40

Figure 3.11 Data Dashboard example screen ... 41

Figure 3.12 Overview of HCoMS software architecture 43

Figure 3.13 Files included with device installers .. 44

Figure 3.14 Detection and identification module showing connected devices 45

Figure 3.15 Example of heartbeat communication code 46

Figure 3.16 OPC signal quality check .. 47

Figure 3.17 Alarms on front panel .. 48

Figure 3.18 Device detailed view ... 49

Figure 3.19 Alarms summary detailed view ... 49

Figure 3.20 Historical trend detailed view .. 50

Figure 3.21 Ordering screen during manual mode .. 52

Figure 3.22 Ordering screen during configure by product mode 52

© Central University of Technology, Free State

x

Figure 3.23 Functionality of the production planner ... 53

Figure 3.24 Creating processes and shared variables ... 55

Figure 3.25 Mapping shared variables to OPC server ... 56

Figure 3.26 Mapping shared variables to front panel objects............................... 56

Figure 3.27 Dynamic virtual wiring front panel ... 58

Figure 3.28 Example of block diagram code .. 58

Figure 3.29 Front panel rendered .. 59

Figure 3.30 HCoMS functional operation overview .. 61

Figure 3.31 Main menu screen .. 62

Figure 3.32 Detailed operation of the manual configuration mode 64

Figure 3.33 Grid position and orientation selection .. 65

Figure 3.34 Detailed operation of the configure by product mode 66

Figure 3.35 Detailed operation of the save configuration mode 67

Figure 3.36 Detailed operation of the load configuration mode 68

Figure 4.1 Flow diagram for verification testing ... 70

Figure 4.2 Front panels of devices ... 75

Figure 4.3 Device VIs used in block diagram code .. 75

Figure 5.1 Devices detected on the system network ... 80

Figure 5.2 Desired batch order result... 83

Figure 5.3 Code corrected ... 83

Figure 5.4 Front panel during initial setup configuration 86

Figure 5.5 Front panel during final setup configuration 87

Figure 5.6 Runtime code during each configuration test 87

Figure 5.7 IO attributes modification screen .. 90

Figure 5.8 Instructions prompted to user ... 90

Figure 5.9 Real time device data displayed on front panel 91

Figure 5.10 Data retrieved using Historical Trend .. 91

Figure 5.11 Raw data in Citadel database ... 92

© Central University of Technology, Free State

xi

List of Tables

Table 2.1 Data that is given context [47] .. 20

Table 4.1 Test 1 sequence and expected result summary 73

Table 4.2 Desired batch order.. 73

Table 4.3 Ordering sequence... 74

Table 4.4 Initial front panel setup ... 76

Table 4.5 Position of devices during each test configuration 76

Table 4.6 Test 2 sequence and expected result summary 77

Table 4.7 Test 3 sequence and expected result summary 79

Table 5.1 Test 1 sequence of actions and summary of results 81

Table 5.2 Test 2 sequence of actions and summary of results 85

Table 5.3 Test 3 sequence of actions and summary of results 88

© Central University of Technology, Free State

xii

Acronyms and Abbreviations

APS Advanced Planning and Scheduling
CSV Comma Separated Value
CUT Central University of Technology
DIM Detection and Identification Module
DMS Dedicated Manufacturing System
DSC Data Logging and Supervisory Control
ERP Enterprise Resource Planning
FMS Flexible Manufacturing System
GUI Graphical User Interface
HCoMS Hybrid Control and Monitoring System
HMI Human Machine Interface
ID Identification
IDE Integrated Development Environment
IED Intelligent Electronic Device
IO Input/output
IP Internet Protocol
LabVIEW Laboratory Virtual Instrument Engineering Workbench
LAN Local Area Network
LCD Liquid Cristal Display
LED Light Emitting Diode
MES Manufacturing Execution System
MMI Man Machine Interface
MRP Material Requirements Planning
MRP II Manufacturing Resource Planning
NI National Instruments
OPC OLE (Object Linking and Embedding) for Process Control
PAC Process Automation Controller
PC Personal Computer
PCN Process Control Network
PDF Portable Document Format
PLC Programmable Logic Controller
PSP Publish-Subscribe Protocol
RAS Reconfigurable Assembly System
RFID Radio Frequency Identification
RGEMS Research Group in Evolvable Manufacturing Systems

© Central University of Technology, Free State

xiii

RMS Reconfigurable Manufacturing System
RTU Remote Terminal Unit
SA South Africa
SCADA Supervisory Control and Data Acquisition
SV Shared Variable
SVE Shared Variable Engine
UI User Interface
USB Universal Serial Bus
VI Virtual Instrument
WAN Wide Area Network

© Central University of Technology, Free State

1

Chapter 1 Introduction to Study Environment

1.1 Introduction

Manufacturing companies today need to be highly sophisticated to compete for

global markets and keep up with current worldwide manufacturing trends.

Manufacturing companies are compelled to adopt and implement new methods in

manufacturing to adapt to frequently and unpredictably changing markets to remain

competitive. These market changes include frequent introduction of new products,

changes in the product demand and fluctuations in batch orders [1]. As global

markets demand a wider variety of products with consistent high quality, at a

competitively low price, and delivered in the shortest possible time manufacturers

are required to ensure top quality of their products and increase production

throughput to meet these market demands [2]. In this regard, the systems that

manufacturers utilize must be capable of high-volume production throughput, rapid

change-over between products and quick ramp-up to full production potential. Such

systems are required to be extremely flexible in both system structure and system

capabilities.

This gives rise to the concept of reconfigurable assembly systems (RAS). However,

these systems must be expertly monitored and controlled; and have reconfiguration

abilities. In this respect, an intelligent supervisory control and monitoring system will

ensure the successful control of such systems, improve production efficiency,

increase system capabilities and, most importantly, increase product quality.

Various sources in the literature show that extensive research has been done in the

RAS field of study [3-6]; however, research regarding the monitor and control

systems of RAS is limited and/or lacking. With this in mind, this research study

focuses on the development of a Hybrid Control and Monitoring System (HCoMS),

which must be as flexible and easily adaptable as the RASs it must monitor and

control.

1.2 Problem Statement

Reconfigurable assembly systems need to be extremely flexible to function

competitively in unstable global markets; due to this flexibility, the monitoring and

control systems for these are not easily implemented.

© Central University of Technology, Free State

2

1.3 Research Goals and Objectives

1.3.1 Hypothesis

South African manufacturing companies can be more competitive; increase

productivity and product variety; decrease lead times; and provide product

production information by utilizing hybrid control and monitoring systems developed

for reconfigurable assembly systems.

1.3.2 Specific Objectives

The monitoring and control of RAS are not easily implemented due to the

complexities of such systems. These complexities accumulate due to the

extraordinarily flexibility of RAS; the nature of the hardware and software used in

these systems; the infinite possibilities of distinct product designs; and the

requirement to ensure the quality of these assembled products. In addition to these

complexities, unpredictable markets require these systems to rapidly change and

adapt to remain competitive. To accomplish this, the objectives of this study are to:

 Design and develop a hybrid control and monitoring system (HCoMS) for

reconfigurable assembly systems.

 Design and develop the hardware to test the system concept.

 The system must be able to adapt automatically, depending on the

requirements of a specific product to be assembled.

 The system must allow a user to manually configure the system as desired.

 The system must be able to provide product production information.

 The system must be able to ensure the quality of assembled products.

 Design and develop the user interface to be intuitive and conform to high

internationally practised graphical user interface (GUI) standards.

 Design and develop the visual interface to be compatible with touch panels,
tablets and smart phones.

1.4 Research Methodology

Reconfigurable assembly systems are highly flexible and complex systems, as are

the monitoring and control systems that supervise and control it. Therefore, a Hybrid

Control and Monitoring System (HCoMS) will be developed to supervise and control

a reconfigurable assembly system that comprises various assembly processes. The

© Central University of Technology, Free State

3

software platform of choice on which the HCoMS will be developed will be LabVIEW

(Laboratory Virtual Instrument Engineering Workbench) from National Instruments

(NI). LabVIEW is a powerful environment wherein visual front panel user interfaces

(UI) can be created and complex background processing to control instruments can

be implemented. LabVIEW allows for easy integration with various hardware

systems and devices. In addition, a physical system will be constructed to validate

the HCoMS.

The physical structure and design of the HCoMS will be implemented as shown in

Figure 1.1. A high specifications panel computer with LabVIEW installed on it will

have the main HCoMS application residing on it and execute the runtime processes

of the system. It will be connected to a database server, OPC server, multiple

machine vision stations and various modular assembly devices through an Ethernet

or Wi-Fi network. An HCoMS must perform supervisory control over assembly

devices and utilize the machine vision stations to ensure the precision of the

assembly processes and the quality of the assembled products. Furthermore, the

HCoMS will communicate with the database server to store the acquired production

data and request required information from memory for control and reporting

purposes.

To improve production control capabilities, a production planner will be implemented

in the HCoMS. The production planner must access product-assembly recipes,

compare recipes with the parts inventory, determine the required processes,

allocate resources to these processes and schedule when these processes must

occur. In addition, capabilities to extend the visual interface, by providing the ability

to add human machine interfaces (HMI) and touch screen panels to the system, as

well as providing the option to monitor the system using mobile devices such as

smart phones and tablets, will be implemented. The UI running on the system will

be developed with users in mind, must be easily comprehended, and meet high UI

design standards. Furthermore, physical modular assembly devices will be

constructed as sections of a possible system. These assembly devices will be

added, removed and reorganized in different arrangements to change the system

structure and test the capability of the HCoMS to adapt to these changes.

© Central University of Technology, Free State

4

Ethernet

Computer
Running
LabVIEW

Database
Server

Touch
Panels

Operators
and

Managers

HMIs
Mobile
Devices

Machine
Vision

Articulated
Robot Arm

Actuators

Manual
Assembly
Process

PLC

OPC
Server

Sensors

Figure 1.1 Proposed system layout overview

© Central University of Technology, Free State

5

1.5 Layout of Thesis

Chapter 1: This chapter gives an introduction of the research problem; contains the

problem statement and hypothesis; and highlights the objectives and research

methodology of the project.

Chapter 2: This is a literature study dedicated to acquiring knowledge in the relevant

field of study.

Chapter 3: This chapter reveals the methodologies undertaken to develop the

system under study. These methodologies include identifying the system hardware

and software components; a description of how to implement these components;

and how these components integrate. All considered, this chapter provides the

methods to develop the system in entirety.

Chapter 4: This chapter identifies the tests that need to be performed to verify the

system. It also identifies the setup of each test, the procedures to perform each test

and what results to expect.

Chapter 5: This chapter is a discussion on the results obtained from the tests done.

It provides analysis on each test by comparing expected to obtained results;

identifies corrections and improvements in each case; and includes additional

results obtained during the project that were not part of the testing procedures.

Chapter 6: A concluding chapter to discuss the achievements of the project;

contributions to industry; and future work to be completed.

© Central University of Technology, Free State

6

Chapter 2 Theoretic Perspectives of Reconfigurable Systems

2.1 Introduction

This chapter consist of a literature review of the field of study. The literature study

illuminate areas like reconfigurable assembly systems; supervisory control and data

acquisition; HMI screen design; and manufacturing planning and scheduling

systems. In addition, the study also includes an explanation on utilizing the

LabVIEW development environment, as well as the LabVIEW DSC Module. In brief,

this chapter provides current knowledge in the field of study and includes current

practices utilized in industry.

2.2 Reconfigurable Assembly Systems

2.2.1 Introduction

Traditional systems utilized by the manufacturing industries in the product assembly

environment include manual assembly systems, dedicated manufacturing systems

(DMS) and flexible manufacturing systems (FMS). Manual assembly is mostly

utilized in cases where products are of a complex nature; have multiple dimensional

variations within a product family; require added manipulation for these variations;

and are easily justifiable in countries where wages are low and unemployment high.

DMS are special-purpose lines that are mainly justified when production volumes

are high; the products do not have any variations; and the markets are stable. On

the contrary, FMS are utilized when production volumes are relatively lower

compared to DMS; more than one variation in product exist; or multiple variations of

products are assembled simultaneously on the same line [7, 8].

Choosing the most suitable assembly system for a given manufacturing process can

be a difficult and daunting decision, since there are several requirements to

consider. Considerations regarding the product include product lifetime,

dimensions, geometry, number of parts and number of variants. In addition, the

management of manufacturing facilities expects high through-put at reasonable, low

cost. Furthermore, the chosen type of assembly system also influences the

productivity, quantity, flexibility and the diversity of variants. However, there are a

variety of concepts to meet these requirements and assembly systems can

generally be divided into one of three areas of utilization. These utilization areas are

© Central University of Technology, Free State

7

manual assembly, hybrid assembly and automated assembly. By referring to

Figure 2.1, manual assembly proves to have higher diversity of products and

flexibility in assembly processes; while production rates and quantities are low. In

contrast, this is the inverse for fully automated systems. It then becomes evident

that by compromising on high quantities and production rates, the implementation

of hybrid assembly provides higher flexibility and diversity, and still accomplish

moderate productivity and quantities [9-12].

Figure 2.1 Assembly areas of utilization [11, 13]

To remain competitive, manufacturing companies use these assembly strategies to

remain relevant in a market that is prone to frequent, unpredictable change. These

market changes include the frequent introduction of new products, changes in the

product and fluctuations in product demand and batch orders [14]. As the world

market demands a wider variety of products at constant high quality, at competitively

low prices and in the shortest time possible, manufacturers must ensure the quality

of their products, and up productivity to compete for these markets [15]. To assist

manufacturers in being more competitive, the systems utilized must be capable of

high-volume production, rapid part change-over and rapid ramp-up to full

production. Such a system must show a certain degree of flexibility with respect to

© Central University of Technology, Free State

8

the system structure and the system capabilities. This gives rise to the concept of

reconfigurable assembly systems.

2.2.2 Reconfigurability and Flexibility

Reconfigurability is defined as the operative ability to repeatedly change and

rearrange the components of a system in a cost-effective way, through the addition

or removal of functional elements with minimal effort and delay [16, 17]. In contrast,

flexibility is the tactical ability of a production and logistics area to switch to a new,

though similar, family of products by changing manufacturing processes, material

flows and logistical functions within reasonably little time and effort. Furthermore,

the key difference between reconfigurability and flexibility can be explained by the

following:

 Firstly, the diversity of work pieces handled: reconfigurable systems may

switch between different families of products, while flexible systems switch

between similar products.

 Secondly, the extent of change that the manufacturing system has to

undergo: reconfigurable systems may add or remove machine components,

while flexible systems change the process or material flow.

Moreover, there are two types of reconfiguration that can occur in manufacturing

systems, namely basic (or classic) and dynamic reconfiguration. Basic

reconfiguration can be achieved by stopping the system, applying the necessary

hardware or software changes, and then restarting the system. This is also known

as “cold starting” the system. Dynamic reconfiguration is reconfiguration achieved

during real-time operation of the system, without requiring to stop the system [18].

In addition to reconfigurability, the flexibility of manufacturing systems can be

identified in different areas and are as follows [17, 19]:

 Machine: Various operations can be performed without set-up change.

 Material handling: Paths available for transfer of materials between

machines.

 Operation: Various operation plans are available for part processing.

 Process: Different sets of part types can be produced without setup changes.

 Product: Ease of introducing products into an existing product range.

© Central University of Technology, Free State

9

 Routing: The ratio of the number of feasible routes to the number of part

types.

 Volume: The ability to vary production volume within production capacity.

 Expansion: Ease of increasing capacity through physical changes to the

system.

 Control Program: The ability of a system to run virtually uninterruptedly due

to the availability of intelligent machines and system control software.

 Production: The number of all part types that can be produced without adding

major capital equipment.

2.2.3 Definition and Characteristics of Reconfigurable Assembly Systems

The concept of reconfigurable manufacturing systems are defined by Koren et

al. [14, 20] as: “a manufacturing system are designed at the outset for rapid change

in structure, as well as in hardware and software components, in order to quickly

adjust production capacity and functionality within a part family in response to

sudden changes in market or regulatory requirements.” For a RMS to conform to

the aforementioned, it must adhere to the following characteristics [19, 20]:

 Modularity: of both hardware and software components.

 Integrability: of both ready integration and future introduction of new

technology.

 Convertibility: to allow quick changeover between products and adaptability

for future products.

 Diagnosability: to quickly identify the sources of quality and reliability

problems.

 Customization: to match designed system capability and flexibility to

applications.

 Scalability: to incrementally change capacity rapidly and economically.

2.2.4 Reconfigurable Machines

Reconfigurable machines are designed to allow customized flexibility in a

cost-effective manner. The machines are specially designed to handle variations

within a specific product family. The degree of flexibility of a reconfigurable machine

depends largely on its modularity. A modular design simplifies the changeover

© Central University of Technology, Free State

10

procedure and provide the possibility of “plug and produce”. To design

reconfigurable machines to conform to the characteristics above, the following

design principles must be applied [21]:

 Design around a specific part family.

 Design for customized flexibility.

 Design for easy and rapid convertibility.

 Design for scalability; allow for addition or removal of elements that increase

productivity or efficiency.

 Design so that the machine may operate at several locations along a

production line to performing different tasks using the same basic structure.

 Should be designed using a modularity approach for common hardware and

interfaces.

2.3 Supervisory Control and Data Acquisition

Supervisory Control and Data Acquisition (SCADA) systems are widely used to

monitor and control operations in various industries, networks and processes. These

include: electrical power distribution, oil and gas pipelines, water distribution,

sewage treatment plants, manufacturing and the list continues. SCADA systems are

intended to facilitate the work of a centrally located operator in charge of a widely

distributed process by monitoring and gathering measurement information; locating,

identifying and reporting faults; sending control commands and changing set points

in distant controllers [22-25]. Based on the process information, status and alarms,

the operator can make the necessary decisions to control the system equipment

and keep a process on the right heading. It eliminates the need for technical staff to

be present at, or travel to remote sites if the system is operating normally. It is

evident that SCADA improves control capability over processes and conveniently

saves time and effort by eliminating unnecessary travel and maintenance checks to

remote sites.

2.3.1 SCADA components architecture

Essentially, SCADA systems consist of similar selections of components. Firstly,

process controllers which can be either supervisory or device level (remote station)

controllers. Supervisory controllers can be in the form of a Programmable Logic

© Central University of Technology, Free State

11

Controller (PLC) or a networked computer. In contrast, device level or a remote

station controller can be equipment like remote terminal units (RTU), intelligent

electronic devices (IED) or PLCs – connected to the system sensors and actuators.

Secondly, an HMI represents the window into a system. It is used to monitor the

status of processes and enables an operator to input controlling commands into the

system. An HMI can be a touch screen or panel, or a panel computer. In some

cases, it can be a normal monitor with alternative methods of data input. In addition,

SCADA systems also comprise database servers (historians). Its usage is to store

measured system data and retrieve it again when reports are required. Furthermore,

all SCADA components are integrated via a communication network or

fieldbus [23-26]. A typical example would be Ethernet. To add reliability, a redundant

network can be used in parallel with the main network in case of network failure.

Lastly, a software platform on which the SCADA runs must be implemented. It must

consist of functions to easily monitor and control the processes of the system. These

functions will be discussed subsequently. Figure 2.2 shows the layout of a typical

SCADA system.

Operators

Communications

Link

Database Server

Printer

HMI

Control Server

Engineering

Workstations

PLC/RTU

Field Devices

Figure 2.2 Typical SCADA system

2.3.2 SCADA functions

All SCADA software generally offers similar essential functionality. The capability to

monitor and control a process by means of a graphical interface – which allows a

user to view information and control the real-life process. In addition, SCADA also

comprise the following functionalities: data acquisition and processing, alarms and

© Central University of Technology, Free State

12

events handling, logging and archiving, trending and analysis, and historical data

report generation [24, 26-28]. These are summarized as follows:

 Control: Users who typically have read/write access privileges to a system

can access a subsection at a selected location and immediately issue

commands (or control) to this subsection of a system. Users are usually

allocated to different groups, which each has explicit control access to

various sections of the system (see subsequently).

 Human Machine Interfaces: HMI screens are the windows into a system.

These can support multiple screens at a time, which consist of various

system diagrams and text. These screens typically are populated with

graphical objects to represent process variables and display the status,

min/max ranges, alarms etc. HMI screens also facilitate typical window

editing like zooming, re-sizing, scrolling and navigating.

 Data Acquisition and Processing: Data acquisition is the collection of data

and presenting it as process data back to the user. Data is acquired by

scanning sensors and additional variable conditions during the system

runtime processes. Data is then processed to display a conversion or

manipulation of the data back to the user. This manipulated data includes

data quality checks, analogue processing, limit checks, integrity checks, zero

suppressions and calculated derived variables.

 Trending: Trending is an extension function on data acquisition. It plots

process measurements on a selected scale to give information in the form of

an ongoing graph. A trend typically shows the history of process data for a

specified period of time (one minute, one hour etc.). It displays the

progression of the data over a period of time.

 Alarms and Event Handling: Alarms typically alert a user to unplanned

undesirable operating conditions. These alarms occur based on limit and

status checks performed in the data acquisition section. The alarms are

normally arranged by multi-level priorities, based on the severity and

criticality of these alarms. User-defined alarms can be developed using

arithmetic or logical expressions to alert users based on derived conditions.

© Central University of Technology, Free State

13

Occurring alarms are usually handled centrally, where the true source of

information exists. This ensures that all users see the same status of

acknowledged alarms.

 Logging and Archiving: Logging and archiving can be understood as the

ability to store process data. Logging can be seen as short- to medium-term

storage of data, whereas archiving is long-term storage of data on disk.

Logging typically stores data on a cyclic basis or when initiated by a data

value change. Eventually, logged data can be transferred to an archive after

an expired period of time or once a log is full. Logged and archived data can

again be retrieved and viewed in the future.

 Historical Reporting: Historical reporting is simply retrieved logged and

archived data that are formatted for reporting purposes. This retrieved

historical data can be filtered and manipulated to show graphs, charts and

figures. Afterwards, this data can be compiled into a report, then either be

printed or saved as Excel, Word or PDF documents.

2.3.3 Access Security

As seen from the previous section, a SCADA system must implement access control

as a security measure to avoid unauthorized access to the system. A user can gain

access to the system by choosing a level of privilege, then either entering a user

name and password or presenting a user ID tag (RFID). A user must be granted

permissions to access the system with a respective level of privilege. These access

privileges are developed into four different levels, namely [29, 30]:

 Level 1: Monitor access – a user can view processes on the screen, retrieve

and view historical and real-time trends.

 Level 2: Operator access – a user has monitor access with additional

privilege to change the state of equipment (on/off), and change the set points

for control values.

 Level 3: Supervisor/engineer access – a user has operator access with

additional rights to change process control parameters and system alarm

settings.

© Central University of Technology, Free State

14

 Level 4: Administrator access – a user has supervisor access and additional

maintenance privileges. Here the user can modify settings in the system

operating software.

By default, the system will operate in access level 1, unless a user logs in with a

different privilege level. During this time, the current privilege level and the user

name should display in the alarms and events window at the bottom of the screen.

After a period of inactivity, the system will automatically return to the default access

level.

2.3.4 Generations of SCADA

There are four generations of SCADA; these are declared as follows:

2.3.4.1 First Generation: Monolithic SCADA systems

For first-generation SCADA systems, computing was done by minicomputers.

Ordinary network systems were not yet available at the time, thus SCADA had no

connectivity to other systems and used strictly propriety communication protocols.

The architecture consisted of a single mainframe system connected to remote sites

via RTU [31, 32].

2.3.4.2 Second Generation: Distributed SCADA systems

In second-generation SCADA, information and control functions were shared across

multiple operator stations connected through a Local Area Network (LAN), hence a

distributed system. Individual stations were responsible for performing particular

tasks. This reduced the overall size and cost compared to first generation systems.

However, network protocols were not yet standardized, thus propriety protocols

were used. This resulted in a situation that security of the SCADA installations were

generally ignored [31, 32].

2.3.4.3 Third Generation: Networked SCADA systems

Networked SCADA systems are generally connected through a Wide Area Network

(WAN) system, also known as a Process Control Network (PCN); and

communicates using either Ethernet or fibre optic connections for data transmission

between SCADA nodes. In addition, several parallel working distributed SCADA

systems operate under a single supervisory controller in the network architecture.

© Central University of Technology, Free State

15

This generation of SCADA uses PLCs at remote nodes for monitoring and control;

and occasionally flags an operator in cases of major decision requirements [31, 32].

2.3.4.4 Fourth Generation: Internet of things technology

With the availability of cloud computing, fourth generation SCADA systems have

adopted the “Internet of Things” technology, also known as “Industrial Internet of

Things”. It significantly reduces infrastructure costs and increase ease of

maintenance and integration compared to the earlier SCADA systems. As a result,

SCADA systems can report using cloud environments and implement complex

control algorithms. Furthermore, the use of open network protocols provides a more

comprehensible and manageable security boundary than that of mixed proprietary

network protocols used in decentralized SCADA systems [33, 34].

2.4 Advanced Manufacturing Planning and Scheduling

Manufacturing companies face the challenge of increasing competition for global

markets and have to manage all functions of the company impeccably. To

accomplish this, manufacturing companies must progress towards adopting

advanced systems for planning and management. Solutions for planning and

scheduling systems include, but are not limited to, enterprise resource planning

(ERP), advanced planning and scheduling (APS) and supply chain management

software systems [35-39]. Traditionally, manufacturing companies would turn to

ERP systems. These have evolved over the years from the initial material

requirements planning (MRP) systems to manufacturing resource planning (MRP II)

[40, 41] to the early versions of ERP systems. ERP systems allow seamless

integration between application programs used across all the different

functions/departments (human resources, finance, sales, marketing, development,

production planning) of the company. In addition, an ERP system is largely utilized

for its planning capabilities, as well as its abilities to support decisions regarding the

planning and execution (managing) of the business. On the contrary, current ERP

systems are somewhat lacking in decision support and planning in a dynamic

environment. This is, however, resolved by integrating an ERP system with

supporting APS systems and manufacturing execution systems (MES).

© Central University of Technology, Free State

16

APS systems are flexible strategic planning software/modules that utilize

information like labour, material and equipment to determine the best supply chain

schedule with multiple given constraints. APS systems allow for real-time

adjustments in case of unplanned events and while ensuring optimal supply chain

throughput. Together as a complete integrated planning and scheduling system,

these perform the managerial process by which materials (parts in inventory),

resources and production processes are optimally assigned to achieve a desired

manufacturing demand before an allotted time. The integrated system considers

due dates, availability of required raw materials to complete products; cycle time of

manufacturing processes (sequences); and the required resources (staff and

equipment) to complete processes to develop a reasonable and attainable

schedule. The result is a fully integrated facility-wide solution to plan, manage and

execute manufacturing processes and, at the same time increase productivity,

reduce operational costs and provide the ability to promise.

2.5 Graphical Design for Human Machine Interface Screens

2.5.1 Introduction

HMIs, also known as Man Machine Interfaces (MMIs), can be either an assortment

of LED indicators and mechanical switches, capacitive touch panels, or industrial

control panels with LCD displays that are used to monitor and interact with SCADA

systems. This section concentrates on the proper and effective usage of graphics

to design the interface screens for these HMIs.

HMI screens are the primary method to relay important operational information to a

user. These HMI screens has to be designed very efficiently to relay the maximum

amount of information to users, without overwhelming them. How clear and effective

these displays are designed, determine how well a facility is operated. In addition,

the design of effective HMI screens plays a critical role in a user’s ability to effectively

manage a process or operation, especially in the case of abnormal situations. With

this in mind, two major factors should be taken into consideration when designing

HMI screens; the screen must be able to hold the attention of a user with maximum

display clarity; and the design must allow users with little or no training to be able to

successfully operate a system intuitively [42].

© Central University of Technology, Free State

17

2.5.2 Considerations for Graphical User Interface Design

There are important considerations regarding the design of effective high

performance HMI screens that determine how HMI objects are displayed and

positioned on the screen. These considerations include the layout of the screen; the

use of colour for text, objects and backgrounds; the way process information and

status are depicted; as well as the use of alarms and animations. These

considerations are discussed subsequently.

2.5.2.1 Screen Layout

A major aspect in designing effective graphics for high performance HMI screens,

is the layout of a screen. The layout of controls, indicators and other important

information on the screen must be arranged in such a way as to make sense

logically and keep screen clutter to a minimum (what belongs together, must be

placed together). Failure to avoid screen clutter will result in data getting lost on the

screen. Before HMI screens can be designed, it is useful to identify how a user will

perceive it. Typically, a user will scan an HMI screen in a similar manner as a page

from a book [42, 43]. This means starting at the top left corner, proceeding to the

right and then continuing down the screen. Since an HMI screen has no lines to

guide the user’s eyes, a user will generally perform a few incomplete scans of the

screen. With this in mind, advantage should be taken of placing important

information and objects in the areas within the screen where attention is easily

drawn to. It is therefore recommended that the summary of alarms should be placed

across the top of the screen [42, 43]. Furthermore, any graphical images should be

placed to the centre and left of the screen, with supporting key information to the

centre and right of the screen. It is recommended that control and navigation

buttons, along with any supporting graphics and company logos, be placed in the

lower section of the screen.

2.5.2.2 Usage of Colour

Colour is a powerful tool to enhance the visual presentation of key information on

the screen. In contrast, if colour is wrongly used, it can be misleading, overwhelming

and even dangerous. This means that it is important to use colour smartly and

carefully. The use of colour is discussed below.

© Central University of Technology, Free State

18

 Usage of Colour to Display Screen Objects

It is evident that bright vivid colours draw the attention of the human eye. With this

in mind, bright colours must be reserved to be used for alarms and abnormal

situations, not for regular conditions. For example, regular running status should not

be displayed in vivid saturated colours, such as red or green (primary colours), but

rather reserved for alarms and events. In addition, graphical objects containing large

groupings of primary colours should be avoided, because these will cause

complementary colour image retention on the retina – also known as after

images [43, 44].

Essentially, it is important to predefine a colour convention to be used and use it

consistently. Safety colours that are meant for alarm purposes should not be

overused for other purposes such as status depiction and ordinary graphics. If a

colour is wrongly and inconsistently used, it ceases to have impact and can lead to

misinterpretation or confusion. The preferred colour convention used as a standard

is well defined by literature and is as follows [45]:

 Red: Danger, Prohibition, Emergency

 Yellow: Warning, Caution, Risk of Danger

 Green: Safe Condition

 Blue: Mandatory or Compulsory Operation

 Background Colours

By referring to the preceding section, primary colours should certainly not be used

as background colours in an HMI screen (after images). On the contrary, blue is the

only primary colour that can be used as a background and makes a good one (blue

cones in the retina). Black and white deliver good colour contrast for text; however,

black and white produce too much screen glare in bad lighting situations and are

therefore strongly discouraged. In fact, it is recommended to rather use muted tones

or pastel shades like light grey, light brown and blues as background colour. These

colours provide great contrast for brighter colours used to display miscellaneous

information as well as vivid colours used to display alarms and events. In addition

to choosing the perfect background colour, using slight variations in shading can

create an illusion of raised and lowered sections, which will make it easy to

© Central University of Technology, Free State

19

distinguish between areas of a screen (grey scale). This will ensure that a user will

immediately be able to identify between different sections of the HMI screen.

 Displaying Text

Text is the most versatile method to convey important information to a user. Due to

this fact, text should not be difficult to read because of type of font, size and colour

contrast. To ensure the best possible contrast, text should generally be black in

colour, unless there is a good reason to use another colour and the best possible

contrast with background is achieved. Examples of good and bad contrast between

the text and the background can be seen in Figure 2.3.

In addition to text colour, it is necessary to choose the right font to avoid

misperceptions. It comes highly recommended to select a font that is common and

exists on most computers. Examples of these include Arial, Times New Roman,

Helvetica and Courier. This will ensure that text will display the same even if the

HMI application is transferred to another computer. If unusual fonts were used in the

HMI application, it might be found that the fonts are re-mapped to an unexpected

gothic script, which is undesired and can be difficult to read. Due to the low

resolution of most HMI screens, it is better to use a San-Serif font such as Arial,

because the screen resolution might not be high enough to clearly render the detail

of a Serif font. In addition, the size of text should be such that a user can read

information on a screen from some distance away without any difficulty (from across

the room, for instance). A good starting point is Arial at 16pt and up to two larger

sizes for headings and labels. It should be avoided to have more than three different

sizes of text in the application. Too much variation in text size might make the HMI

screen seem cluttered and become confusing. Furthermore, the usage of upper-

case letters and underlining should be limited and reserved for headings to prevent

eye strain. Text should generally appear in lower-case with the first letter of the

leading word capitalized. While this is recommended practice, common conventions

include capitalization of each word. Whatever the convention chosen, it should be

used consistently.

© Central University of Technology, Free State

20

ABC ABC ABC ABC ABC ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC ABC ABC ABC

Figure 2.3 Example of text and background colour contrast [46]

2.5.2.3 Data and Status Depiction

What is displayed on an HMI screen; data or information? What is the difference

between data or information? To ensure that HMI screens are most effective, the

difference between data and information should be clarified. Information is data that

is given context. For example, refer to Table 2.1 and cover the “Range” column.

Scrutinize the data and determine if the person with these vitals are healthy. Unless

explicitly trained as a medical professional, how can it be observed that this person

is healthy or not? It should now be evident that data requires context.

Table 2.1 Data that is given context [47]

© Central University of Technology, Free State

21

 Presenting Data Values

As seen from the previous subsection, the way information is displayed to a user is

of high importance. Data should always be given context to become information.

Data values that are randomly placed around a screen are often hard to perceive.

In essence, values that belong together, should be grouped together. It is also best

practice to place values that need to be compared in a table next to each other. If

these values have multiple data types (temperature, pressure, speed), then the

order in which these are displayed must be the same in each following table. In

addition, if these data values have different units, then the units should be declared

and properly labelled. On the contrary, if the units for these data types are apparent,

then it is better to leave them out to avoid unnecessary screen clutter. Furthermore,

it is preferable to display data in a graphical manner like an analogue meter, trend

or graph. Humans understand and respond much quicker to data that is presented

graphically than numerically [48]. For example, the process to compare each data

reading to a memorized translation of what a good value should be can be a

demanding cognitive procedure. As the number of values displayed on the screen

increases, then the process of translating this mental map becomes slower and

rather distracts a user. However, if these values were represented as a group of

analogue indicators (see Figure 2.4), then a user will intuitively understand the value

depictions because humans are internally hard-wired for pattern recognition. At a

single glance, a user will be able to tell whether a reading is outside the normal

ranges, by how much and how far from an alarm occurring. Thus, in a series of short

scans, the user will be fully aware of the overall system performance. Additionally,

if a user requires to know the exact value of a reading, then it is recommended that

a numerical value be presented along with the analogue depiction. In this case, the

appropriate data resolution should be used and unnecessary decimal places should

be avoided.

Another method typically used to display levels in a tank/container involves vessels.

Referring to Figure 2.5, it comes recommended that vessel levels should never be

displayed as large blobs of saturated colour. This can cause after images and also

wastes unnecessary space on the screen. A simple bar or strip depiction that

indicates the desired operating ranges represents a better utilization of screen

space. An even better usage of screen space would be vessels that display a

© Central University of Technology, Free State

22

combination of trend data and analogue indicator depictions (See Figure 2.5). The

latter capture the knowledge of what is normally embedded into the vessel display.

It clearly shows the operating ranges, the current value, where alarms would occur

and a period of operating history (trend), which is highly desirable.

Figure 2.4 Analogue depiction of information [49, 50]

 Status Depiction and Animation

Recalling from Section 2.5.2.2, colour conventions should be maintained

consistently. This gives rise to common paradigm that bright green depicts “on” and

bright red depicts “off”, or vice versa, depending on the industry. The reasoning

behind these conventions is that green is to indicate a running plant process and

red for stopped. On the contrary, alarm logic would suggest that red is dangerous

(running) and green is safe (stopped). To avoid confusion, it is a better practice to

adopt a convention that does not use red and green. Figure 2.6 shows the use of a

colour brighter than the background for on, and a colour darker than the background

for off. Imagine that the displayed object has a light source inside it – dark equals

© Central University of Technology, Free State

23

off and light equals on. Additionally, it is recommended to add redundant coding to

display the status as descriptive text next to the object.

Figure 2.5 Vessel levels [49, 50]

Process status is frequently depicted by colourful animations of physical equipment.

In fact, HMI graphics should not contain any bright-coloured, three-dimensional

drawings of equipment, nor spectacular animations of flashing lights, spinning

pumps and fans, or moving conveyors. In general, exact representations of a facility

should be avoided as a rule. In some cases, a well-done depiction of a system can

often beneficially aid a user in immediately visualising the facility and the location of

the measurements (used for detailed views), but using too much detail can clutter a

screen and cause important information such as alarms to be unnoticed. It is a good

idea to design HMI graphics in shades of grey (grey scale). Adding indicators for the

3D equipment can make the display more identifiable, but redundant 3D images of

pipes, pumps, valves, etc. should be avoided to keep the display uncluttered. As a

rule, realism is best avoided.

© Central University of Technology, Free State

24

Figure 2.6 Status depiction with redundant coding [49, 50]

2.5.2.4 Navigation

It is typical in multi-screen HMI applications that a user requires to navigate between

system screens. This must happen quickly, easily and intuitively. HMI designers

typically use either of two approaches to achieve this; navigation buttons or a picture

with embedded “hot spots.” For the first approach, navigation buttons are used that

should be clearly labelled and large enough to be pressed regardless of the pointing

device used in the application (fingers or mouse-cursor). These are typically placed

near the bottom section of the screen. In addition, these navigation buttons should

be grouped together and placed at the same location on each screen. This will limit

traveling hands and make it easy to locate the buttons. The second approach used

by HMI designers is to embed a “hot spot” in a schematic representation of the entire

system layout. A user can quickly and easily navigate to a detailed subsection view,

by simply clicking on the desired area where the subsection is displayed in the

system overview. Furthermore, a well-designed HMI should have a return to

overview or main button on each screen, to navigate back to the top level screen of

the application (similar to a “Home” button used in websites).

2.5.3 Alarms and Events

Alarms and events should preferably be organized into a banner or summary, be

visible on each HMI screen and preferably located at the top of the screen. It must

be easy to navigate to a detailed screen with additional information about the

© Central University of Technology, Free State

25

alarms. In addition, the colour conventions for alarms and events must be well

defined and should not be used for any other purposes. Furthermore, it is important

to mention that 1 in 12 men have some degree of colour-blindness [51], which will

affect their perception of red and green. With this in mind, colour should not be the

only differentiator when it comes to alarm depictions. To clarify, it is good practice

that all alarms should also be redundantly coded to display a pictorial change, text,

animations, or even have audible tones. Proper alarm depictions are redundantly

coded to display in different colours with a supplementary pictorial change and

descriptive accompanying text that are based upon the priority of alarms (different

colour, shape and text for each priority) (see Figure 2.7). Additionally, it is a good

idea to display alarms with separate alarm indicators next to the objects that are in

alarm. These indicators should flash while unacknowledged and cease to do so after

acknowledgement, but still remain while the alarm condition is true. This is the only

proper usage of animations in HMI screens. Audible tones can be used to intensify

alarms, but must provide a user the option to silence it by acknowledging the alarm.

Whichever convention is used for alarm depictions; alarms should be located where

it can easily be seen and accessed to be serviced/acknowledged.

Figure 2.7 Depiction of alarms [49, 50]

© Central University of Technology, Free State

26

2.5.4 Display Screen Hierarchy

Since SCADA systems comprise a multiple number of HMI screens, importance

should be placed on the optimal hierarchical arrangement of it. Top level screens

must be an overview of a system which displays overall process operations at a

given time, while more detailed information must be revealed as an operator moves

deeper into the display hierarchy in a logical manner. Referring to literature, it is

desirable that a system display hierarchy consists of four levels, and each level can

be distinguished as follows [50, 52, 53]:

2.5.4.1 Level 1 – Operation Overview

A level one screen gives, at a single glance, a complete overview of the operations

and status of the entire system at a facility. This screen provides a clear indication

of all the current processes and is essentially a summary of all the key performance

indicators of all subsystems combined onto one screen (see Figure 2.8). Moreover,

this screen is intended to be used as an overhead screen, but is, however, not used

to perform control interactions. Furthermore, important information that is typically

displayed on this screen will include: top priority alarms and events, major

equipment status, important trends and process parameters, along with other key

performance indicators.

Figure 2.8 Example of a level 1 screen [50, 52]

© Central University of Technology, Free State

27

2.5.4.2 Level 2 – Unit Control

An entire system can always be divided into smaller sectional operations and

subsystems. Due to this, a level two screen exists for each unique subsystem

present in the system. This level screen shows all the information and controls

required to perform most of the operational tasks related to the subsystem in focus

on the screen. These screens are primarily for monitoring and control, and are

where operators will perform the majority of device tasks. In addition, these screens

provide an overview of controllers, actuators, trends, alarms and the status of each

subsystem.

2.5.4.3 Level 3 – Unit Detail

A level three screen provides a more detailed view of a single device or piece of

equipment compared to a level two screen. These typically have a schematic type

layout and are utilized to perform diagnostic operations and troubleshooting. In

addition, the items displayed on a level three screen may typically include: all

instruments, interlock status, troubleshooting displays, control loops and

schematics.

2.5.4.4 Level 4 – Support and Diagnostic Displays

Level four screens present the most possible detail of a subsystem and subsystem

components. These screens will display individual sensors and actuators,

subcomponents and detailed diagnostic information. In complex systems, a level

four screen is normally utilized to support documents and information. Moreover,

these documents and information will include operating procedures, alarm

documentation and guidance.

2.6 LabVIEW and DSC Module

 LabVIEW

LabVIEW, which stands for Laboratory Virtual Instrument Engineering Workbench,

is National Instruments’ graphical programming (G programming) development

environment. LabVIEW is a powerful tool used in various industries to integrate

software with a wide range of hardware, in order to perform tasks like data

acquisition and processing, analysis, logical operations, process control, report

generation, as well as other areas of research and development. G programming

© Central University of Technology, Free State

28

functions on a “dataflow” principle where an output value can only be obtained once

all the inputs connected to it are provided with values. The code is developed in

what is called virtual instruments (VIs), and can be seen as modular programs or

subroutines. These VIs each consists of a front panel (Figure 2.9 at top) and a block

diagram (Figure 2.9 at bottom). The front panel is essentially the graphical user

interface (GUI) of a VI, and consists of controls (switches, knobs, numeric inputs,

etc.) and indicators (LEDs, graphs, numeric outputs, etc.). These controls and

indicators each obtain its behaviour based on how the functions on the block

diagram is wired (connected). The block diagram which is the background code

contains the functions and variables (Boolean and arithmetic functions,

programming loops and structures, etc.), and also specify how these are

interconnected to realise the required behaviour on the front panel [54-56].

Figure 2.9 LabVIEW front panel and block diagram

© Central University of Technology, Free State

29

 NI DSC Module

LabVIEW comprises multiple native tool pallets as well as additional industry

specific tool pallets. The Data-logging and Supervisory Control (DSC) module is a

workbench (tool pallet) that are specific to the development of SCADA applications.

The DSC module utilizes a shared variable engine (SVE) to host and manage

network published shared variables (SV), through the use of proprietary technology

called NI Publish-Subscribe Protocol (NI-PSP). This is accomplished by creating

libraries, also known as processes, in which the SVs resides. These libraries are

then deployed to the SVE to host the SVs. In addition, these libraries can be utilized

to create OPC (OLE for Process Control) bound variables, which enables the

system to communicate with a wide variety of software and hardware devices.

Furthermore, the DSC module provides functions set up and control SCADA

features like alarms, events and logging. All considered, the DSC module delivers

a complete package to successfully develop and implement SCADA

applications [57-59].

© Central University of Technology, Free State

30

Chapter 3 Methodology

3.1 Introduction

 The research problem at hand clearly indicate that a reconfigurable assembly

system, and its monitoring and control, need to be extremely flexible to compete for

global markets. This chapter discloses the methodologies undertaken to develop

such a system, along with a system to monitor and control it. These methodologies

include the following: identifying the architecture of the entire system (that would

ultimately be tested); selecting the hardware to construct the system and to

assemble the physical system devices to be used (build up SMART conveyors); a

means of interconnecting system devices; specifying the software architecture of

the system and the development of the required software modules. All considered,

this chapter provides the methods to develop the system under study in entirety.

3.2 System (HCoMS) Architecture Overview

The characteristics of reconfigurable assembly systems were discussed in

Chapter 2, where it is evident that these systems must be modular in design. Since

any compliant device can be connected to the HCoMS controller, only some devices

will be handled as part of a case study. To clarify, the devices used in this study

were chosen for explanation purposes, but can be replaced by any other device

which meets the requirements to be compatible with the HCoMS controller (has an

HCoMS compliant device installer developed for it, and are modular in design).

The system architecture of how the physical system components interconnect can

be seen in Figure 3.1. Firstly, the system uses OPC as a common communication

protocol via Ethernet to resolve incompatibility issues between various devices from

different vendors. At the heart of the system is the main controller with the HCoMS

main application running on it. The main controller is a high specifications panel

computer with LabVIEW, an OPC server, as well as a database server installed on

it. In addition, all of the system components are connected to the main controller

through an Ethernet network. Among the required devices needed to assemble

products are industrial robots, machine vision stations, and modular conveyor cells

called SMART conveyors. These devices are all similar in structure. Each has an

OPC complaint PLC with intelligence, which is wired to sensors and actuators, to

© Central University of Technology, Free State

31

control the operations of the device. This means that each device has intelligence

and the main controller only supervises and instructs what each device must

perform. Furthermore, users can control, monitor and interact with the system by

making use of monitors, peripherals and touch screens linked to the main controller.

The system provides users with the option of interfacing with the system through

tablets and smart phones.

HCoMS
Main

Controller

Database
Server

Touch
Panels

Users

Mobile
Devices

Machine
Vision

Stations

OPC
Server

Industrial
Robots

SMART
Conveyor 1

SMART
Conveyor 2

SMART
Conveyor 3

WiFi

Figure 3.1 HCoMS architecture

3.3 System Hardware Components

The subsequent sections deal with the system hardware components that are

chosen to be utilized in an HCoMS. All of the components used require a device

installers developed for each in order to operate within the HCoMS, with the

exception of the OPC server. In addition, the subsequent sections also discuss the

physical structure along with the functional behaviour of each device used in the

system.

© Central University of Technology, Free State

32

3.3.1 OPC and NI OPC Server

3.3.1.1 OPC

OPC is a communication platform widely used in industry to interface between a

variety of incompatible hardware and software devices. In addition, OPC is a

standards specification which compels that devices must transfer data in a

standardized and usable format. Moreover, each application must implement at

least one OPC compliant driver to access data from an OPC server. These OPC

servers provide the platform for software clients to access and control production

data from process control devices (like PACs and PLCs), provided that these

devices are OPC compliant and are connected to the same Ethernet network [60].

3.3.1.2 NI OPC Server Setup

LabVIEW offers a solution, namely NI OPC server. NI OPC server is natively

installed with National Instruments’ DSC (data logging and supervisory control)

module and is also widely known in industry as KEPserver from KEPware, which

have support drivers for numerous hardware devices from multiple vendors. The

setup for NI OPC server will now be discussed briefly.

Firstly, an NI OPC server must either be installed on the same computer as the main

control application or on a separate server computer, as long as it is networked with

all the system devices. At this point, a new server configuration can be configured;

a previously saved configuration can be loaded; or an existing server configuration

can be altered to suit the system requirements. However, the core intention of an

HCoMS is that the system setup, changeover and calibration must be done easily

and intuitively with minimal effort in a minimal amount of time. To explain the server

setup thoroughly, a new server configuration will be dealt with.

After the initial setup, a new server configuration can be opened, and a new

communication channel can be added and renamed as the device to be set up. The

channel is then set up by choosing the type of communication (Ethernet, serial, etc.)

and which network adapter in the computer will be used. Next, a device can be

specified under the newly added channel, by selecting the model of the device to be

used, and by specifying the device IP address. After the channel and device are

fully defined, the OPC tags can either each be manually created, or simply imported

© Central University of Technology, Free State

33

from a CSV file. Informatively, the manual creation of tags entail that the tags are

each individually added to a device, given a user-definable name, specifying each

tag address and modifying the tag properties. This is thoroughly explained by the

author in [60].

On the contrary, an easier route can be taken. The user can right-click on the desired

device and select import CSV (Figure 3.2). The user will be prompted to select a file

to import from. Here the user can choose the CSV file included with the driver for

the device. After the import is complete, the device will be populated with the tags

specified in the device driver (Refer to Figure 3.3). These easy steps need to be

done only once for every device that gets added to the system. Once all the required

devices are configured, the server setup is complete and can be used. An example

of this setup procedure is provided as a support video that is attached in Appendix A.

Figure 3.2 Importing OPC tags from .CSV file

Figure 3.3 Completed server setup

© Central University of Technology, Free State

34

3.3.2 SMART Conveyors

Products as well as the parts needed to assemble products are transported within

the system using the SMART conveyors. The SMART conveyors are fundamentally

combined sections of modular conveyors that are wired to controllers (PLC),

sensors and actuators (stop gates and motors) which collectively form the

construction of a cell of conveyors with intelligence. The modular conveyor sections

used in the SMART conveyors are the TS1 system from Rexroth and are selected

based on a prior study done within the RGEMS research group [60]. The Rexroth

conveyors are chosen mainly for the modularity of it, which makes it possible to

easily expand, change or rearrange the conveyor sections. An example of the

different SMART conveyors that are used in the system are depicted in Figure 3.4.

All SMART conveyors are related in structure. As mentioned in section 3.2, each

has an OPC compliant PLC with programmed functionality inside which connects to

the HCoMS Ethernet network. However, each SMART conveyor differs in the

number and size of the conveyor sections; the arrangement direction and orientation

of these; as well as the number and location of the sensors and actuators that each

has.

Figure 3.4 SMART conveyor systems

In addition to physical structure, the SMART conveyors are also comparable in

terms of software structure. As a result of variations in physical structure, each

© Central University of Technology, Free State

35

SMART conveyor has different distinctive capabilities that it can perform. An

example of the different capabilities that one of the SMART conveyors can perform

are shown by Figure 3.5. A SMART conveyor adapts the capability of it based on

the information provided from the HCoMS controller. Figure 3.5 (at 1) shows an

example of what the SMART conveyor executes with a particular program number

provided to it. In addition, it can clearly be seen that the SMART conveyor changes

behaviour as the program number changes (see Figure 3.5 at 2 and 3).

Figure 3.5 Change in SMART conveyor ability by change in program

Furthermore, the operation of the SMART conveyor software can be better

explained by referring to Figure 3.6, which shows the general program structure of

each SMART conveyor. Once a SMART conveyor is powered and connected to the

HCoMS network, the PLC initializes and establishes communication with the

HCoMS controller, and acknowledges that it is ready to operate. Here the SMART

conveyor remains idle until the HCoMS controller issues a program number to it.

After the PLC receives a program number, it adjusts the behaviour accordingly.

Additionally, the HCoMS controller directly accesses sensor data from the SMART

conveyor via OPC to control the overall process. The SMART conveyor PLC will

continually execute the current behaviour until the HCoMS controller provides it with

a different program number.

As a result, SMART conveyors are modular standalone devices with intelligence

that connect to the HCoMS main controller that performs the supervisory monitoring

and control.

© Central University of Technology, Free State

36

Acknowledge
Device Ready

Idle: Wait for
Program Number

from HCoMS

CALL
PROGRAM_n

(CASE Statement)

Waiting

PROGRAM_n

Return

Received

Execute
Behaviour for
PROGRAM_n

(See Figure 3.5)

Smart Conveyor

Initialize

Power ON

Figure 3.6 PLC program for SMART conveyors

3.3.3 Assembly Devices (Industrial Robots)

In addition to SMART conveyors that transport parts and products through the

system, the function of the assembly devices depends on what it is needed for. In

this case, the robots are either used to pick and place parts to assemble products

or to transfer product pallets between different locations on conveyors. Figure 3.7

shows the KUKA industrial robots that are used as assembly devices in the system.

These are chosen based on the modularity, speed, flexibility and agility, and high

accuracy in repeating tasks that the robots can perform, which is needed for

reconfigurable assembly systems, as explained earlier.

Like the SMART conveyors, the IOs of the KUKA robots are directly wired to an

OPC complaint PLC, which connects to the HCoMS controller via Ethernet. The

PLC is programmed to directly control the KUKA by providing it with instructions and

receiving feedback from the surrounding sensors. It is worth mentioning that an OPC

server can be directly installed on the KUKA robot, which would mean that the

intelligence of the assembly device would reside inside the robot. However, this will

require additional cost, licensing and extra protocols; and will not be included in this

project.

© Central University of Technology, Free State

37

The operation of a KUKA robot can be explained by referring to Figure 3.8. Firstly,

once the KUKA is powered, it must be initialized manually due to safety reasons

(which is common practice in robot automation industry). After initialization, the

KUKA is switched to automatic run mode (PLC in control), where it acknowledges

to the PLC that it is ready to operate. At this stage, the assembly devices as a whole

(KUKA with the PLC) is ready to function. Here the KUKA remains idle until the

HCoMS controller provides the PLC with a program number to execute. After a

program number is issued, the KUKA uses the number to determine which

subroutine case to execute and implements that behaviour. Figure 3.8 also shows

an example of one of the subroutines that is executed when a product is quality

tested. When a visual inspection is completed on a product, the HCoMS controller

receives the test result from the vision station, and determines which operation it

requires the KUKA to perform. Firstly, the HCoMS controller provides a program

number for the KUKA to execute, then it provides the pass or fail information from

the test results. Based on this information, the KUKA either remains idle if the

product passed inspection or replaces the faulty product with another flawless

product. On completion, the KUKA acknowledges to the HCoMS controller that the

process is complete.

Figure 3.7 KUKA articulated robot arms

© Central University of Technology, Free State

38

KUKA MAIN

Manual
Initialize

Acknowledge
KUKA Ready

Idle: Wait for
Program Number

from HCoMS

CALL PROGRAM_n
(CASE Statement)

Acknowledge
Done

Waiting

PROGRAM_n

Return

Received

Power ON

Remove Product from
Conveyor and Place

in Rework Bay

Pass or Fail? Remain Idle

FAIL

PASS

Receive Inspection
Information from HCoMS

Return

Pick up a Reworked
Product and Place on

Conveyor

Figure 3.8 KUKA PLC Routine

3.3.4 Machine Vision Stations

The machine vision stations are used in the system to ensure the quality of the

assembled products. These are modular stations with identical build, and are

mounted at strategic locations in the system. This can be statically mounted at

certain intersection points above conveyors, or mounted to a robot flange as an

auxiliary tool (Figure 3.9) for flexible inspections in cases where either the robot will

obstruct the camera view or there is a risk that the robot will be in collision with the

camera. Figure 3.10 shows the generic routine of the machine vision stations. As

the HCoMS controller handles a process for a product to be built, it will detect that

the product is in place at an inspection point. The HCoMS controller will now provide

parameters (information about what to test for) to the vision station and initiate a

© Central University of Technology, Free State

39

start trigger. When the vision system receives the trigger, it visually inspects the

product by capturing an image with a camera, and processing and comparing it to

a reference image in memory that is selected based on the information provided by

the HCoMS controller. After the visual inspection is complete, the vision system

returns acknowledgement to the HCoMS about whether the inspection was passed

or failed. If the inspection is passed, the HCoMS controller allows the product to

proceed to the next process on the conveyor line. On the contrary, if the inspection

was failed, the HCoMS controller signals a nearby KUKA to remove the product from

the conveyor and place it on a conveyor that feeds the rework bay. Afterwards, the

KUKA replaces the removed product with a repaired product from the rework bay

(repaired product that passes inspection).

Figure 3.9 Cameras mounted as auxiliary tools

3.3.5 Mobile Devices

The HCoMS provides users with the option to interface with the system through the

use of tablets and smart devices. This is achieved by using a software application

developed for mobile devices, namely National Instruments (NI) Data Dashboard

© Central University of Technology, Free State

40

for LabVIEW [61, 62]. NI Data Dashboard is an application that enables mobile

devices to communicate with other computer-based applications that are developed

using LabVIEW. It provides a user with the possibility to monitor network published

variables, and view trends, historical data and alarms in a system. In addition, it

facilitates returning control signals back to the LabVIEW developed applications.

This, however, is not recommended for security reasons.

Machine
Vision

Trigger from
HCoMS

Capture Image &
Compare to Reference

Pass Inspection? Acknowledge Fail
to HCoMS

Acknowledge Pass
to HCoMS

YES

YES

NO

NO

Figure 3.10 Machine vision stations routine

Data Dashboard allows users to build customised dashboard applications to monitor

and control remote systems. First of all, a computer-based system must be

developed using LabVIEW, where the variables used in this system are network

published shared variables (shared variables represent type of global variable).

Secondly, an application to monitor the system must be developed on a mobile

device using Data Dashboard. At this stage, the Data Dashboard application

© Central University of Technology, Free State

41

connects to the published variables and provides a portable view of the system

developed in LabVIEW. An example of a mobile Data Dashboard application can be

seen in Figure 3.11.

Figure 3.11 Data Dashboard example screen

3.4 HCoMS Software Architecture and Operation

This section provides an overview of how all the system software components are

integrated as well as the preliminary once-off software. In addition, the ways in which

all the software modules used in the system function separately and together are

also explained.

3.4.1 System Design and Implementation Overview

An HCoMS is comprised of multiple software modules and functions along with

various hardware components. The hardware components used in the system were

discussed in detail in section 3.3. The architectural design of the system software

however, can be better explained by referring to Figure 3.12. Firstly, Figure 3.12

shows a depiction of the main HCoMS Machine (physical PC) containing all the

software, which is networked with all the external hardware components.

Furthermore, it can be seen that the HCoMS main controller (application), the

© Central University of Technology, Free State

42

shared variable engine (SVE) and the OPC server are the main software

components that are integrated together within the HCoMS Machine. Next, focusing

only on the HCoMS main controller, it can be seen how multiple software modules

(which will each be explained subsequently), are integrated. The device installers

are incorporated with the HCoMS main controller to perform various once-off

auxiliary functions to aid in the operation of the system as a whole. These will be

explained below.

It can be seen that external sales and purchase (can be from a remote PC)

information are provided to the HCoMS controller to update the inventory (to keep

stock of parts). Moreover, the main functional software modules in the HCoMS

controller are the production planner, the production handler, the system

configurator and the information manager. The production planner utilizes

information from the detection and identification module (DIM); product recipe and

device capability databases; as well as the inventory and ordering system to plan

and schedule production runs. Furthermore, the function of the system configurator

is to gather information from a user and perform automated configuring on the

system based on this information. Additionally, the function of the production handler

is to render the runtime front panel interface. It instructs the connected hardware

devices to adapt its functional behaviour, as well as handle the real-time monitoring

and control of each production run.

On the contrary, the information manager directly utilizes the SVE to perform its

function. The information manager concurrently uses the Citadel database to log

and retrieve production data from production runs, as well as incorporates the

alarms server (DSC module) to send warnings and alarms about variables that are

outside operating ranges. Additionally, the information manager also acts as the

interface to communicate this alarm and log information between the system and

the user. In addition, Figure 3.12 shows how the shared variable engine (SVE) is

integrated with the HCoMS main controller and the OPC server. The function of the

shared variable engine is to host the network published OPC-bound variables used

by the HCoMS main controller and communicate these variables to the OPC server

via an internal OPC client. This is achieved by creating and deploying runtime

processes (also known as libraries) to map and host the shared variables. These

© Central University of Technology, Free State

43

processes are essential for the information manager to operate. Collectively, all the

software modules and functions integrated on the HCoMS machine allow for

effective communication; monitoring and control between system components; and

in entirety constitutes the HCoMS as a whole.

HCoMS Machine (PC)

 HCoMS Main Controller

Shared Variable

Engine

Device PLCs

Monitors &
Pheripharals

Machine
Vision

Stations

Mobile
DevicesWiFi

Device
Installers

Product
Recipe

Database

Inventory

Ordering
System

Deployed

Process

Sales &
Purchase

Device
Capabilities
Database

Information Manager

Citadel
Database

Network
Switch HMIs

Sensors &
ActuatorsIO Server

(OPC Client)

Shared
Variables

Alarms
Server

Detection &
Identification
Module(DIM)

Production

Planner

Production

Handler

OPC Server

System

Configurator

Figure 3.12 Overview of HCoMS software architecture

3.4.2 HCoMS Device Installers

An HCoMS has the ability to monitor and control any device that complies with a

certain set of requirements. Referring to sections 3.2 and 3.3, all devices that can

be controlled and monitored by an HCoMS must be modular and stand-alone in

design; be able to connect to the system Ethernet network via an OPC compliant

PLC; and have an HCoMS device installer developed for each distinctive device.

These device installers are essentially software scripting programs that are similar

to “patch” or “updating” software installers, and must be run once before the

corresponding device can be used. After successful installation, an HCoMS will be

able to recognise the relevant device (like an USB driver), have information about

its functional capabilities (operations) and how to use it, as well as device setup (IO

and server setup) and support files. An example of these files can be seen in

Figure 3.13. When the device installer is run, the following process occurs: Firstly,

the installer copies the function block used at runtime (device VI) and the “.csv” file

for the OPC server setup to the correct file paths (locations). Next, the installer

opens the system configuration file (.ini file), adds the device to the list of system

© Central University of Technology, Free State

44

devices, updates the IO attributes, device address (IP address) and lists all the

abilities and functions that the device is capable of performing. In addition, the

installer also opens the system help file and appends the help information for the

device to the file. Lastly, the installer opens certain sections of the system source

code (VIs) and modifies it to accommodate the newly added device during runtime

(create software references to the respective device).

Figure 3.13 Files included with device installers

3.4.3 Software Modules

This section handles the software modules used in the HCoMS controller and how

these operate as standalone software components. In addition, some of these

modules are dynamic in nature, and will adapt their behaviour based on the chosen

mode of configuration, which will be discussed subsequently.

3.4.3.1 Detection and Identification Module (DIM)

As the name implies, the functions of the detection and identification module (DIM)

are to detect a network connection with a device and to identify the specific device

that is connected. The DIM is a software module that runs continuously inside the

HCoMS controller that detects which devices are connected to the HCoMS Ethernet

network, as well as which devices have lost network connection. The devices which

are connected and available on the network are listed and displayed in the DIM

© Central University of Technology, Free State

45

interface. This can be seen in Figure 3.14 (Displayed in manual configure. Hidden

in configure by product). In order for the DIM to function, the HCoMS device

installers must first be run at least once for each of the devices that are to be used.

This will ensure that the DIM will have the necessary information about the network

address (IP address) and the device name (identity) of each device. If this step is

completed, the DIM will successfully detect and identify each installed device

connected to the network.

Figure 3.14 Detection and identification module showing connected devices

After all the desired devices are added and installed to the system, the system is

ready to be utilized and operates as explained next. Initially, the DIM “pings” each

device to check if a connection can be established between the device and the

HCoMS controller. This is initially the quickest method to obtain all the devices

connected to the network, whereafter these devices are relayed to the production

planner to determine a production plan and schedule. This information is used to

initially configure the system.

On the other hand, the DIM redundantly uses two concurrent methods to keep

checking network communications during runtime. The first method that the DIM

incorporates is what is known in industry as a “heartbeat” connection. This is a

simple but effective method for both the HCoMS controller and devices to detect

© Central University of Technology, Free State

46

that the connection is uninterrupted and enables each to react to the interruption.

Fundamentally, the DIM sends a signal to each device by altering a variable (e.g.

setting a bit). Afterwards, if the respective device realizes this change, it will

acknowledge communication by altering the same variable. Both entities, will keep

monitoring for a change within a certain period of time. If a timeout occurs (like a

watchdog timer), both entities will realize a connection lost with the other. An

example of the code can be seen in Figure 3.15.

For the second method, the DIM performs cyclical reads from a variable in each

device (similar to the heartbeat connection) to inspect the signal quality of the

variable in the OPC server. This is achieved by opening a connection, waiting for

the connection to be made (delay), performing a read from an OPC variable in each

device to check the signal quality, and then closing the connection. This is shown in

Figure 3.16. From the viewpoint of the HCoMS controller, this will establish whether

communication is lost for a single device or multiple devices. Thus, this method will

provide a good indication of where the connection error occurred (device, HCoMS

controller or OPC server). In addition, this method allows the DIM to communicate

these failures to the information manager and inform the user by causing “bad signal

quality” alarms if the signal quality is weak or bad. Although the DIM uses redundant

concurrent methods to detect and identify devices connected to the network, it

ensures that communication lost is successfully detected and mistakenly detected

communication lost, is eliminated. Furthermore, this redundancy does not affect the

performance of the system regarding processor overhead or increased latency on

the communication network.

Figure 3.15 Example of heartbeat communication code

© Central University of Technology, Free State

47

Figure 3.16 OPC signal quality check

3.4.3.2 Information Manager

The information manager is a software module that performs functions like handling

runtime data (updating the front panel), system alarms and data logging (and

retrieval). To achieve this, the system utilizes a shared variable engine (SVE), which

is inherently installed with LabVIEW, to run deployed processes also known as

libraries. These deployed processes are required to host the network published

shared variables that are created for each system device, where these variables are

communicated to the OPC server via an internal OPC client to control the system

devices.

With this in mind, the information manager acts as a software client to enable users

to access and manage system variable information from the SVE. Excluding the fact

that the information manager updates runtime information on the front panel, it also

acts as an interface for users to retrieve and view logged information as well as

manage system alarms on the SVE. Essentially, the information manager

encapsulates methods to access the alarms server (from the DSC module) and the

Citadel database, to provide users with this interface to retrieve and manage the

information on the SVE. The information manger updates variables shown on the

front panel and allows users to launch detailed views of system devices, system

alarms and historical data (trends), which will now be discussed.

Figure 3.17 shows an example of the client front panel during runtime as it updates

the current state of IOs for all the devices. When device alarms occur during runtime,

the grid positions containing the respective devices that are in alarm, will be

highlighted (and flashing) red, as seen in the figure. In addition, a summary of all the

devices in alarm are displayed in a banner just below the positions grid (Figure 3.17).

© Central University of Technology, Free State

48

Notice that each alarm has an icon (pictogram) with a different shape and colour to

indicate the priority of the alarm. Furthermore, the text colour in which each alarm

in the list is displayed differs, depending on their acknowledged states.

Figure 3.17 Alarms on front panel

To manage these alarms, a user can either launch a detailed view of the respective

device in alarm or launch the alarms summary detailed view, which contains a list

of all the alarms of all the devices in alarm. To launch a device detailed view, the

user simply has to click on one of the respective devices shown on the front panel.

The device detailed view opens in a separate window, which contains the current

state of the IOs for the selected device and a summary of the alarm conditions. At

this time, the user can acknowledge any alarm that occurred by selecting it in the

list and clicking the “Acknowledge” button. Instead, the user can simultaneously

acknowledge all the device alarms by clicking the “All” button. Afterwards, the user

can close the device detailed view by either clicking the “Exit” button or simply exiting

the window. An example of a device detailed view can be seen in Figure 3.18.

© Central University of Technology, Free State

49

Alternative to launching a device detailed view, the user can also manage alarms

by opening the alarms summary detailed view window. This window can be

accessed by either clicking on the alarms summary at the bottom of the front panel

(banner below the grid), or simply clicking on the “Alarms” button. The alarms

summary detailed view contains a list of all the alarms for all the devices in the

system and can be seen in Figure 3.19. At this point, the user can acknowledge any

of the occurring alarms in the same manner that was used for the device detailed

views.

Figure 3.18 Device detailed view

Figure 3.19 Alarms summary detailed view

© Central University of Technology, Free State

50

In contrast to displaying runtime data and managing device alarms, users can

retrieve and view historical data by launching a detailed view of the historical trends.

The user can launch the historical trend detailed view by clicking on the “Historical

Trend” button and then filtering the information by device and time logged (date and

time). An example of the historical trend detailed view can be seen in Figure 3.20.

To retrieve and filter data from the Citadel database, users can start by selecting a

desired device from the dropdown menu, which will contain all the devices added to

and present in the system. The historical trend detailed view will update to display

the information for the chosen device. In addition, users can also browse through

the device information by defining the date and time that the specific process ran

(was logged). This can be done by either scrolling through the time by using the

scroll bar, selecting a start and end timestamp (by timestamp), or by using the graph

tools to zoom to the required date and time selection of the desired information. In

addition, the displayed information can further be modified by hiding unwanted

device variables by selecting or deselecting it on the legend that shows all the

available IOs for the selected device. After users acquired the desired information,

either another device can be selected or the detailed view can be closed.

Figure 3.20 Historical trend detailed view

© Central University of Technology, Free State

51

3.4.3.3 Ordering System

In attempting to build or assemble products, product orders must be placed using

the ordering system. The ordering system is a standalone software module that is

integrated with the production planner and system configurator. The behaviour of

the ordering system depends on which configuration mode was selected from the

main menu (Figure 3.31) and presents the user with a different front panel interface

for each. This can be seen in Figure 3.21 and Figure 3.22 which shows the ordering

screens for “manual configuration” and “configure by product” modes respectively.

The reason for this difference is that the HCoMS automatically determines the

system configuration in “configure by product” mode (user only needs to choose a

product), where in contrast, the user can specify a system configuration to

accommodate numerous products using the “manual configuration” mode. When

the user is presented with an ordering screen (don’t matter which mode), the user

can select from products to build along with the required quantities for each in the

box at the top of the screen. Notice that the “configure by product” ordering screen

does not display scheduling information or allow the user to rearrange orders. In

contrast to the “configure by product” ordering screen, the user can repeatedly add

orders to the production queue in “manual configuration” mode. The ordering system

will now send the new order data to the production planner, where it will determine

a production plan and schedule and return whether the updated order can be

performed. In addition, the user can select an existing order in the order screen and

choose to remove it from the queue. Furthermore, orders can be moved up or down

the queue, by selecting it, and clicking the “Move Up” or “Move Down” buttons.

Notice in Figure 3.21 that the additional information also provided to the operator

include the duration of time the order will take to complete; the starting time and the

estimated time of completion; the date of completion as well as the current status of

the order. Worth mentioning, the ordering system utilizes globally network published

shared variables which allows it to run either on the same PC as an HCoMS, or on

an external PC if required.

© Central University of Technology, Free State

52

Figure 3.21 Ordering screen during manual mode

Figure 3.22 Ordering screen during configure by product mode

3.4.3.4 Production Planner

The production planner is a software module that performs system functions similar

to the ERP and APS systems that were discussed in Chapter 2. Fundamentally, the

production planner is a “brute force” solver that determines if an order that is placed

can be executed, when this will happen, and with which resources it will be

performed. It uses a set of rules and conditions, along with the information received

from the software modules integrated with it, to solve a “best fit” production plan.

The functionality of the production planner can better be explained by referring to

Figure 3.23. Once a user places an order in the ordering system, the ordering

system will format the information entered by the user and send it to the production

planner. The ordering information will contain which products and how many of

these to assemble. Next, the production planner acquires information from the

inventory, product recipe and device capabilities databases. Afterwards, it obtains

which devices are connected to the system and uses the previously attained

© Central University of Technology, Free State

53

information to start the planning procedure. Firstly, it inspects each product recipe

to realise which parts are needed to assemble the product and which processes

must be followed to do so. It then compares the required parts to assemble the

products with the amount of parts available in the inventory. If the available parts

are enough, the production planner will compare the processes to assemble a

product with the capabilities of each device that are connected to the system. At this

point, the production planner will “brute force” solve whether a production run can

be made. If possible, the production planner will schedule the sequence in which

the products will be assembled based on the time requirements for each from the

product recipe and send this information back to the ordering system.

Production
Planner

Receive Data from
Ordering System

Scheduler

Get Product
Recipes

Check
Inventory

Assign
Devices

Get Device
Capabilities

Update
Inventory

Render
Information

Send Information to
Ordering System

Generate dialog
to inform user
that system is

unable to
execute order

Figure 3.23 Functionality of the production planner

© Central University of Technology, Free State

54

In contrast, if a production plan cannot be solved, the production planner will send

back this information to inform the ordering system that it is not currently possible to

perform the production run. At this point, the user has an opportunity to adjust

product orders or resolve the factors that prohibits production (e.g. add parts to the

inventory or connect the required devices). Afterwards, the production planner will

again determine whether a production run is possible and send this information to

the ordering system.

3.4.3.5 System Configurator

3.4.3.5.1 Overview

The system configurator is a software module that performs multiple subtasks and

functions based on which system configuration mode is chosen. Firstly, it gathers

configuration information from the user and utilizes it to manage and oversee the

system configuration process. The system configurator accomplishes this by

launching the automated configuration routine, which will be discussed in the next

section. Furthermore, it is also responsible for generating the sections of source

code that specify how system hardware are interconnected and used during runtime

in production runs. The behaviour of the system configurator largely depends on

which configuration mode was selected from the main menu when the application

was started. The main executions in each mode selection are mainly the same, but

have minor deviations that will be discussed in detail in subsequent sections.

The first task that the system configurator performs after product orders have been

placed and the production planner determined a production run, is to configure the

system. At this point, the system configurator will prompt the user about desired

configurations and if modification should be made to the recommended IO attributes

of the system (for alarm and logging etc.). The system configurator will first prompt

the user to decide which of the detected connected devices to include in the system

configuration. Next, the user is prompted to choose how and where these devices

are displayed on the runtime front panel by specifying grid positions and orientations

for each. In addition, the user can choose to alter the IO attributes for each device

connected to the system. The IO attributes that can be configured for each device

include whether alarming conditions are enabled or not, as well as specifying the

© Central University of Technology, Free State

55

data logging requirements for each device. In addition, the set points (values) for

alarm conditions can be specified, and also if these conditions should be logged.

After all the required configuration information from the user is captured, the system

configurator starts the system configuration process by performing the automated

configuration routine, which will be explained thoroughly below.

3.4.3.5.2 Automated Configuration Routine

The automated configuration routine utilizes the information acquired from the user

to perform the system configuration automatically (automated). The routine

performs a series of tasks (subroutines) to set up preliminary elements that are

required to run the system, and also to create and set up the variables for each

device connected to the system. The first task that the automated configuration

routine performs is to set up the Citadel database. The routine searches for an

existing database and appends newly added information or creates a new database

if it does not exist.

After the database is set up, the automated configuration routine creates the

processes on the SVE to host the shared variables of each device. After the

processes are created, the network published shared variables for each device are

created, and then deployed to the SVE (Figure 3.24). Next, the alarm and data

logging information for each device are updated in the Citadel database.

Figure 3.24 Creating processes and shared variables

At this stage, all the shared variables for each device are created, hosted and

configured. The next task that the automated configuration routine executes is

mapping (binding) the shared variables of each device to the specific physical

device IOs (PLC IOs) on the OPC server (Figure 3.25). This ensures that the

© Central University of Technology, Free State

56

physical devices can be controlled directly from the real-time LabVIEW application.

For the last task, the automated configuration routine opens the front panels of each

device and maps (binds) the same shared variables (device shared variables) to the

respective front panel control and indicator objects (Figure 3.26). This results in, if

any device IO changes, that the corresponding front panel object will change

accordingly. This is the key that enables the information manager to relay

information to the user.

Figure 3.25 Mapping shared variables to OPC server

Figure 3.26 Mapping shared variables to front panel objects

After all this, the automated configuration routine is complete and the bulk of the

system is configured. At this point, the system configurator must generate the code

in the background that defines how the system devices are interconnected. This will

be discussed in the subsequent section.

3.4.3.5.3 Code Scripting and Virtual Wiring

As stated in the previous subsection, the next task that the system configurator must

complete is to generate the background code used during runtime that specifies how

the system devices are interrelated. The system configurator generates this runtime

code by making use of VI scripting [63-65] and applying the concept of virtual wiring.

© Central University of Technology, Free State

57

The virtual wiring interconnects the system devices together in the software.

Therefore, the user does not need to physically wire to the system devices together.

To clarify, the system utilizes a block diagram (VI back panel) in the LabVIEW IDE

as the coding environment to develop (write) the runtime code. This is equivalent to

how a software developer would write LabVIEW code (firmware), but the code

development is managed by the system itself instead of the developer. With this in

mind, the system virtually connects the IOs of devices by wiring the respective VIs

of each device together in the block diagram. Since these IOs are also mapped to

OPC, this makes a connection similar to physically wiring devices together.

How the runtime code is scripted depends on which configuration mode the user

has selected. If the user selected the “configure by product” mode, the system

configurator will open a block diagram template, populate the block diagram with the

VIs of each device in the configuration, and automatically wire the VI connections

together. After this, the system configurator will save the block diagram as runtime

code in the required file location and close it. On the contrary, if the user has chosen

the “manual configuration” mode, the system configurator will open a block diagram

template, only populate the block diagram with the VIs of the configured devices

and present the user with the window shown in Figure 3.27. At this stage, the system

allows the user to open the block diagram of the presented window, arrange or

rearrange the VIs, and wire together the VI connections as desired. On completion,

the user simply has to exit the window, and afterwards, the system configurator will

save the block diagram as runtime code in the vital file location. An example of the

runtime code can be seen in Figure 3.28. At this point in time, the system is fully

configured and ready to perform a production run, which will be discussed in the

subsequent section.

If it is found that the runtime process (production run) operates erroneously due to

the possibility that the system devices are virtually wired wrong, the runtime process

can be stopped and the connect devices window (same window as in in Figure 3.27)

can be launched. At this time, the mistakes can be rectified by correcting the wiring

between the device VIs. On completion, the connect devices window can be saved

and closed; and the runtime process can be run again. This procedure can be

repeated as many times as required.

© Central University of Technology, Free State

58

Figure 3.27 Dynamic virtual wiring front panel

Figure 3.28 Example of block diagram code

3.4.3.6 Production Handler

The functions of the production handler in the system is to render the front panel

display during runtime and to manage the monitoring and control of production runs.

When the system configuration is done, the user can open the front panel of the

runtime client and perform a production run.

Upon opening the runtime client, the production handler utilizes the information that

the system configurator acquired from the user to render the front panel. Depending

on the mode selected, the production handler displays each configured device in a

grid position as well as orientation that was specified by the user (manual

configuration). An example of this can be seen in Figure 3.29. On the contrary, if the

configure by product mode was chosen, the production handler will automatically

decide what the grid positions and orientations should be and render the front panel

as such. At this stage, the front panel shows an overview of the entire configured

system (top view) and where each device is placed within the system. In addition,

© Central University of Technology, Free State

59

the front panel shows how each respective device is functioning in real-time (current

state of device IOs) and allows the user to open a detailed view of it by clicking on

it on the front panel. To clarify, the information that is displayed on the front panel

and in the detailed views are obtained from the information manager discussed

previously.

At the same time that the front panel is initially rendered, the production handler

informs the hardware devices connected to the network to adapt its functional

behaviour. Since the devices can have multiple behaviours, it adapts its behaviour

based on program numbers that are allocated to it from the production handler. In

addition to device behaviour, the production handler also manages the production

run background processes. This includes supervising the assembly process, and

keeping track of product quantities that have been made, as well as how many must

still be made.

Figure 3.29 Front panel rendered

© Central University of Technology, Free State

60

3.4.4 Software Functional Operation and Configuration Modes

3.4.4.1 Software Functional Overview

The HCoMS main application is developed to assist a user by configuring the

system automatically (automated), and monitor and control the system during

runtime. The software modules discussed in the previous sections collectively form

an HCoMS as a whole, and how the system (HCoMS) functions are discussed next.

The overview of the system functional operation can be better explained by referring

to Figure 3.30. Firstly, notice that Figure 3.30 includes differently coloured legends

that depict the different functional paths that the software can execute. In addition,

notice that some of the different paths use the same functional blocks. These

functional blocks are dynamic routines that adapt its specific behaviour based on

the path chosen by the user (changes behaviour bases on mode it is used in).

At start up, the HCoMS main application presents the user with the main menu

screen shown in Figure 3.31 and waits for initial instructions from the user. At this

time, the user can choose from the various methods (modes) to configure the

system. These modes include “manual configure”, “configure by product”, “load

configuration” and “save configuration”. When a method is chosen, the software will

execute that specific configuration mode by capturing the required information from

the user, performing the required configurations, prompting the user with

instructions (if any), and then running the production process.

After production runs are finished, the system can either run another production

batch with the same configuration, or reconfigure the system with another desired

configuration mode. If the system does not require reconfiguring, the system will

check the product order information, if the system configuration is still valid (are

devices still connected?), and then run the production process. Otherwise, the

system requires to be reconfigured by utilizing one of the configuration methods

(modes). Each configuration method (mode) functions differently and are used with

certain aims in mind. How each mode available in the system functions will be

explained in detail in the following sections.

© Central University of Technology, Free State

61

Production Not Done
& System needs

to Change

Production
Done

Production
Not Done

System don’t
need to Change

System
needs to
Change

Load other
Configuration

Manual
Configure

Configure by
Product

Test Devices Connected
Capture Data

Record Orders

Start

HCoMS

Menu

Auto
Configure

Run

Done
Change?

Load
Configuration

Exit

Instruct User

Check System

Check Order

Retrieve Data

Save
Configuration

Store Data

Legend

Manual Configure
Configure by Product

Load Configuration
Save Configuration
System

Figure 3.30 HCoMS functional operation overview

© Central University of Technology, Free State

62

Figure 3.31 Main menu screen

3.4.4.2 Manual Configuration

The intention of the “manual configuration” mode is to allow a user full control

regarding the system configuration. This mode is used when a user has knowledge

of what the desired physical configuration should be. In addition, this mode assists

the user in the system configuration by performing automated configuring routines,

but still allows the user to make the final decisions about how to configure the

system.

The detailed operation of the “manual configuration” mode can be better explained

by referring to Figure 3.32. During system runtime (when the HCoMS application is

started) the user can initiate this configuration mode by clicking the “Manual

Configure” button from the main menu (Figure 3.31). At this stage, the HCoMS will

scan which devices are currently connected to the system network (detect devices);

present the user with a list of these available devices (Figure 3.14); and allow the

user to select which of these devices to include in the system configuration (some

or all of them). After the devices are selected, the user is presented with a window

shown in Figure 3.33 to select where on the runtime front panel the corresponding

device must appear and in which orientation the device must appear (grid position

© Central University of Technology, Free State

63

and orientation). Furthermore, the user can click the “Help” button to launch a PDF

help file to assist in deciding these orientations and grid positions. This will represent

the physical layout of the system devices during production runs. At this stage, the

HCoMS concurrently launches the ordering system and the production planner. The

user can now utilize the ordering system screen to place product orders.

While the product orders are placed, the ordering system relays this ordering

information to the production planner. The production planner now determines

whether it is possible to perform the order with the available resources, schedule it

as such and reply to the ordering system. After the user is satisfied with the product

orders, the production batch order can be placed by clicking the “Order” button in

the ordering screen (Figure 3.21). At this time, the HCoMS provides the user with

an opportunity to modify the IO attributes of each device. After this, the HCoMS has

captured all the data required for configuring the system and starts the automated

configuration routine.

The sequence in which functions are performed during the automated configuration,

is as follows: creating or updating the Citadel database; creating processes

(libraries) for each connected device; creating shared variables for each device;

mapping these shared variables to the OPC server; mapping these shared variables

to device front panels; and deploying the device processes to the SVE. After the

automated configuration is completed, the HCoMS generates the runtime code for

the user to wire together the system devices. When the user is done, the runtime

code (VI block diagram) can be saved, closed and then be used during runtime. At

this point, the system is fully configured – and the user can then launch the runtime

front panel to monitor and control the production run. After a production run is

complete, the HCoMS will check if the entire production batch are finished. If not,

the HCoMS will determine whether the current configuration is still valid (devices

still connected) and perform the next production run.

On the contrary, if the configuration must change, the HCoMS will prompt the user

again to acquire the new configuration information and repeat the automated

configuring process. If the entire production batch is completed, then the user can

decide to either exit the HCoMS application or return to the main menu to perform

other production runs with other system configurations.

© Central University of Technology, Free State

64

 Automated
 Configuration

Manual

Configure

Choose
Manually Configure

from Menu

Create Shared
Variables

Bind Shared
Variables to OPC

Map Shared
Variables to Front

Panel Objects

System Ready:
All required

information captured

Production
Complete?

Launch
Ordering
System

Exit

Product
Recipes

Test Devices
Connected

Inventory

Render Front Panel &
Run Production Handler

Exit?

Configuration
Change?

Yes

Yes

Yes

No

Test Devices
Connected

No

No

Select from Available
Resources (Devices)

Select Grid Position
& Orientation

Run Generate VI
Script

Launch
Production

Planer

Scheduler

Figure 3.32 Detailed operation of the manual configuration mode

© Central University of Technology, Free State

65

Figure 3.33 Grid position and orientation selection

3.4.4.3 Configure by Product

The objective behind the “configure by product” mode is to automate the configuring

process as much as possible, with minimal input from the user. This mode is used

when only one product type is assembled; the user is uncertain about how to

configure the system; or the user do not want to restrain the system to a precise

physical layout. The system will configure with the system-recommended attributes

and instruct the user about the physical layout. This method requires less

information from a user and performs the configuration process quicker, but the user

has less control over the actual configuration and physical layout. The detailed

operation of the “configure by product” mode can be explained by referring to

Figure 3.34.

The user can initiate this configuration mode by selecting it from the main menu

screen. Similarly to the “manual configuration” mode, the HCoMS launches the

ordering system and the production planner. Here the user has to specify only which

product to assemble and the quantity thereof. The production planner will then

determine if it is possible to perform the current order with the available resources

and then initiate the configuration process if it is. At this point, the HCoMS will

determine the best configuration for the system and select the front panel positions

and device orientations automatically.

© Central University of Technology, Free State

66

 Automated
 Configuration

Configure by

Product

Choose
Configure by Product

from Menu

Create Shared
Variables

Bind Shared
Variables to OPC

Map Shared
Variables to Front

Panel Objects

System Ready:
All required

information captured

Production
Complete?

Instructions to Operator
Wait for Acknowledge

Waiting

Acknowledged

Launch
Ordering
System

Exit

Launch
Production

Planner

Scheduler

Product
Recipes

Test Devices
Connected

Inventory

Run Generate &
Route VI Script

Render Front Panel &
Run Production Handler

Exit?

Configuration
Change?

Yes

Yes

Yes

No

Test Devices
Connected

No

No

Figure 3.34 Detailed operation of the configure by product mode

© Central University of Technology, Free State

67

After this, the HCoMS uses the acquired information and performs the automated

configuration in the same way as it did for the “manual configuration” mode. After

the automated configuration is completed, the HCoMS generates the runtime code,

but in contrast to the “manual configuration” mode, it automatically routes the system

devices together, and then saves and closes the runtime code (VI block diagram).

The HCoMS then conveys instructions to the user about the physical layout of the

system and waits for acknowledgement that it is complete. From this point onward,

the system will operate exactly the same as in the “manual configuration” mode. The

user can launch the runtime front panel and perform the production run; and after

the production run, decide whether to reconfigure the system, return to the main

menu to choose another configuration mode or exit the HCoMS application.

3.4.4.4 Save Configuration

At any stage after a system configuration or production run, the user can decide to

save the current system configuration (if it is a commonly used configuration) so that

it might be used again later (Figure 3.35).

Save
Configuration

Choose
Save Configuration

from Menu

Prompt User to
Select Name for

Saved Configuration

Write System
Configuration Data to

File and Save

Save Template of
Current Runtime

Code

Configuration Saved

Figure 3.35 Detailed operation of the save configuration mode

© Central University of Technology, Free State

68

The user can initiate the “save configuration” mode by selecting it from the main

menu. Afterwards, the user will be prompted to provide a name for the saved

configuration. The HCoMS will then write the current system configuration and IO

attributes to a configuration file and save it. In addition, the HCoMS will also save a

copy of the current runtime code (VI block diagram). When it is done, the HCoMS

will return to the main menu and wait for further instructions from the user.

3.4.4.5 Load Configuration

The “load” configuration essentially complements the “save” configuration. The

intention of this mode is to load a previously saved configuration and determine if

the configuration can be achieved with the connected devices (Figure 3.36).

Load
Configuration

Choose
Load Configuration

from Menu

Create Shared
Variables

Bind Shared
Variables to OPC

Map Shared
Variables to Front

Panel Objects

Prompt User to
Select a Saved
Configuration

Open Template Code
for Configuration

Read Data from
Saved Configuration

Test Devices
Connected

Instructions to User

System Configured

Figure 3.36 Detailed operation of the load configuration mode

© Central University of Technology, Free State

69

Referring to Figure 3.36, the user can load a configuration by selecting this mode

from the main menu. The HCoMS will them prompt the user to select a previously

saved configuration. At this time, the HCoMS reads the saved configuration file and

performs the automated configuration on the system. After this, the HCoMS

overwrites the current runtime code location with the saved version of the runtime

code. In addition, the HCoMS then instructs the user about the physical structure of

the system and waits for acknowledgement from the user. At this stage, the system

is successfully restored to the previously saved configuration. The user can now

initiate a production run by launching the ordering system and placing product

orders.

© Central University of Technology, Free State

70

Chapter 4 Testing Methodology

4.1 Introduction - Overview of System Testing

This chapter is dedicated to the developed tests that need to be performed on the

system to verify the system operation and subcomponents. The testing procedure

is compiled in such a way that the fundamental components and functions are

validated first, and then ultimately used in subsequent testing to validate the

complete system in entirety. The sequence in which tests will be conducted can be

better explained by referring to Figure 4.1. In Figure 4.1, notice that the dark grey

coloured blocks represent the sections of the system that require verification in each

test. In addition, the light grey coloured blocks denote general sections of the system

that are required for the system to operate, and lastly, the white coloured blocks

represent the sections of the system that have already been verified by prior testing.

Ordering
System

Production
Planner

Product
Recipes

Detection &
Identification

Module

Inventory

Test 1:

Preliminary

Testing

Add
Components

to System

Remove
Components
from System

Rearrange
System

Components

Test 3:

Configure by

Product

Production
Planner
Verified

+

Production
Planner

Ordering
System

Configure by
Product

Data Logging
& Alarm Setup

Configure by
Product
Verified

+

Execute
Production

Test 2:

Manual

Configure

Production
Planner

Ordering
System

Manual
Configure

Manual
Configure
Verified

+

Execute
Production

+

Reconfigurability
Verified

+

Complete

System

Verified

Sections to Verify

Required Sections

Verified Sections

Data Logging
& Display
Verified

Alarm Handling &
Display Verified

+

+

Figure 4.1 Flow diagram for verification testing

© Central University of Technology, Free State

71

Initially, the first test is developed to verify all of the fundamental functions (the

ordering system in conjunction with the production planner). Additionally, the

detection and identification module is integrated with the production planner, where

the production planner will access product recipes and the parts inventory from the

database during the test. Subsequently, the second test will demonstrate the

reconfigurability of the system. The “manual configure” mode will be utilized to

initially configure the system and will demonstrate the virtual wiring ability that the

system possess. During this test, it will be revealed how the system handles the

adding, removal and rearranging of system hardware components. Afterwards, in

contrast with the second test, the third test will utilize the “configure by product”

mode of the system and verify the alarms and data logging capabilities of the system

(SCADA capabilities). This test will reveal how alarm and data logging are set up;

and eventually retrieved and handled by the user. Ultimately, the results from all the

tests will verify the system as a whole.

4.2 Test 1: Preliminary Testing

This test is intended to validate all of the fundamental functions of the system, where

all the validated components are going to be used in subsequent testing. The

intention is to test only the functionality of the preliminary software components and

to exclude the hardware components (as hardware devices will be verified in the

subsequent sections). The preliminary testing is required to illustrate how the

ordering system and auxiliary software components integrate with the production

planner. The auxiliary software components under test include the detection and

identification module, scheduler module (part of production planner) and the system

configurator (generated system code). In addition to the auxiliary software, this test

requires to validate access reads and writes to the parts inventory, as well as the

product recipes and device capabilities databases.

Before the test can be performed, the following must be done beforehand. First of

all, the products that the system will be able to build (products can be added to and

removed from the system) must be specified and the respective product recipes

must be included in the system database. In addition to product recipes, the

inventory must contain all the parts that are needed to build the products as well as

the adequate quantities of these. Furthermore, the device installers that enable the

© Central University of Technology, Free State

72

system to identify each device and inform it about the capabilities of each device,

must be included and run at least once. Additionally, the OPC server must already

be set up to enable communication between the production planner and the required

hardware devices (see support video in Appendix A). While only the software

functionality of the system is verified during this test, it is still required to connect the

hardware devices to the system network in order to test the software operation

(testing the DIM).

With this in mind, the sequence in which the test will be performed, along with a

summary of the expected results, can be seen in Table 4.1. The test is initiated by

opening the ordering system to show the front panel, opening the DIM to monitor

which devices are detected, and running the software. To clarify, the production

planner is designed to run as a background process and thus do not need to be

opened and will not show its front panel. After the software is started, it is expected

that no devices should be shown in the devices connected window (DIM front panel)

(no devices connected yet) and there should be an empty ordering screen that

requires the user to place product orders. Next, the devices are powered and

plugged into the system Ethernet network. At this stage, it is assumed that the

devices plugged into the network will be detected and displayed in the DIM as it

establishes connection with the OPC server (it should also update if the devices are

removed from the network).

For the next step in the procedure, the user must place the desired batch order

shown in Table 4.2. This is done by selecting a product from the drop-down menu,

specifying a quantity and clicking add. It is assumed that the system will calculate if

enough parts are available in the inventory; if the required devices needed to build

the product are connected; and then update the schedule for the assembly process.

After this, the user can repeatedly add, remove or rearrange orders to achieve the

desired batch. For the purpose of this test, the procedure to order the desired batch

will be done in the sequence given by Table 4.3. Each order will be placed in this

sequence and then manipulated to achieve the final desired batch order. It is

expected that the production planner will each time (after each order placement)

compute if the updated orders can still be accomplished and also update the

schedule in the desired sequence on the order screen. The last action to perform

© Central University of Technology, Free State

73

will be that the user clicks “Order” to order the batch. The expected result is that the

ordering system sends a message to the system configurator to initiate the

configuration process.

Table 4.1 Test 1 sequence and expected result summary

 Action Expected Result

1 Open ordering system Shows ordering system front panel with no orders placed

2 Open DIM front panel Shows DIM front panel with the devices currently connected
to the network

3 Power and connect devices
(PLCs) to the network Identify devices as connected to system network

4 Place a blank order (no
product and zero quantity) Prompt to user that this is not allowed

5 Place an order with zero
quantity Prompt to user that this is not allowed

6 Place rest of product orders
as shown in Table 4.3

HCoMS uses recipe to calculate if enough parts are
available to build current product order and test if required
devices are connected. Queues orders as it is added to the
order screen, calculate and update production schedule on

every order placed.

7
User rearrange and remove
orders to obtain the desired

batch order

Production planner determines if orders are still valid and
order screen updates order queue and schedule

8 User orders batch by
clicking “Order”

Ordering screen closes and sends instruction to HCoMS
controller to start configuration

Table 4.2 Desired batch order

Product Quantity

Product A 1

Product B 2

Product C 3

© Central University of Technology, Free State

74

Table 4.3 Ordering sequence

Product Quantity

Blank/Empty 0

Product C 0

Product C 3

Product B 2

Product A 2

Product A 1

4.3 Test 2: System Configurability

The objectives of this test is to demonstrate the ease in configuring the system using

the “manual configure” function of the system, as well as demonstrate the

reconfigurability of the system overall. Furthermore, the test must verify the “virtual

wiring” ability of the system and the ability to generate (script) the code for the user

to wire up. In addition, the test is intended to reveal how the system will automatically

configure itself, based on information captured from the user during system prompts.

The test must show how the system renders the front panel (user interface) based

on the configuration. Furthermore, the test must reveal how the software handles

change in the system when adding, removing and rearranging hardware

components.

Prior to performing this test, the following must first be prepared. Firstly, the

hardware devices to be used in this test must be confirmed. This is achieved by

programming each device PLC with functional behaviour and developing device

installers for each (and installing it). This test will be executed with three different

hardware devices. To simplify explanation, each of these hardware devices will be

given the functional behaviour of well-known components, namely multiplexers and

de-multiplexers. To be more specific, one PLC (PLC 1) will have the functionality of

a multiplexer, another the functionality of a de-multiplexer (PLC 2), and the last PLC

will have the combined functionality of both and be able to dynamically change

between it (PLC 3). To finalize the device installers for each, the VIs used in the

block diagram (in the code) must be developed. An example of these can be seen

© Central University of Technology, Free State

75

in Figure 4.2 (front panel) and Figure 4.3 (block diagram VI). Figure 4.3 shows the

block diagram VIs for the multiplexer (at 1), de-multiplexer (at 2), and both instances

of the dynamic polymorphic VI (at 3).

In addition, it is required that the CSV files for each device are created for setup on

the OPC server, whereafter these devices are added to the OPC server (see support

video in Appendix A). For the purpose of this test, the ordering system is hard coded

(temporarily changed) to place a mock order using a mock product, to perform a

process using the devices with its currently programmed behaviour (a mock process

using multiplexers and de-multiplexers). In addition, the IO attributes for each device

is also disabled (disable alarm and logging).

Figure 4.2 Front panels of devices

Figure 4.3 Device VIs used in block diagram code

© Central University of Technology, Free State

76

At this point, the preliminary setup for the test is completed and it is required that

the user resolve the system layout before starting the configuration process. The

user can utilize the included (built in) help files to aid in this decision-making. For

the purpose of this test, the chosen positions on the front panel for each device

during each configuration is specified as shown in Table 4.4. In addition, the system

will be repeatedly reconfigured during this test and the device positions in each case

is shown in Table 4.5. With this in mind, the test can be commenced.

Table 4.4 Initial front panel setup

Device Grid Positions Orientation

Device 1 4 1

Device 2 5 1

Table 4.5 Position of devices during each test configuration

Testing Position 4 Position 5

Initial Setup PLC 1 PLC 2

Add and Remove PLC 1 PLC 3

Rearrange and change polymorphic VI PLC 3 PLC 2

Rearrange PLC 2 PLC 3

For the procedure followed during this test along with a summary of the expected

results, refer to Table 4.6. To initiate the test, the hardware devices must be powered

and connected to the system Ethernet network. Next, the user can run the main

application and choose the “manual configure” function from the main menu. At this

stage it is assumed that the HCoMS controller will open the devices connected

window (DIM front panel), detect the devices connected to the network and wait for

user to select the devices to be used.

After this, the HCoMS controller will prompt the user about the orientation of each

device. The user can now respond to these prompts by using the information

provided in Table 4.4. At this time, it is expected that the system will guide the user

through the whole configuration process like an install wizard (One prompt at a time

in a required sequence). After all the information are acquired from the user and

confirmed, it is expected that the HCoMS will configure the system devices

© Central University of Technology, Free State

77

automatically. After the devices are configured, it is expected that the user will be

presented with a popup window that contains system generated code (scripted) that

is based on the current configuration. Here it is required that the user wires (virtual

wiring) the VIs on the block diagram together to specify how the system devices

interconnect with each other. After the device VIs are wired together, the user can

save and close the runtime code and start the runtime process. At this stage, it is

expected that the front panel will be rendered to reflect the current configuration,

and that the system will operate according to how the system is virtually wired in the

runtime code. Afterwards, the user can exit the runtime process to conclude the

initial part of the test.

Table 4.6 Test 2 sequence and expected result summary

 Action Expected Result

1 Power and connect devices (PLCs) to
the network

User powers and connects devices to the
network

2 Open and run HCoMS software Show HCoMS main menu and allow user
to choose from menu

3 User choose “Manual Configure” from
menu

HCoMS opens DIM, detects devices and
allow user to choose which to use

4 User selects devices to use HCoMS prompts user about orientation
and grid position of devices

5 User specified grid and orientation
position as shown in Table 4.3

System starts automated configuration,
configures devices, script runtime code

and presents it to user

6
User connect and modify how devices

are wired together, saves and exit
runtime code

System configured, allow user to either
choose and reconfigure system using
other options (modes) or run current
configuration (open runtime client)

7 User opens runtime client
HCoMS opens front panel and renders

graphics based on user’s input from
system prompts

8 User tests operation of devices
displayed on front panel

Devices operate according to how the
runtime code is wired

9

User stops the runtime client and
repeatedly changes the configuration
as shown in Table 4.3 by repeating

steps 4 to 8

System updates the runtime front panel,
and devices operate according to user

modified runtime code

10 User exits HCoMS application Application performs garbage collection
and closes

© Central University of Technology, Free State

78

At this stage, the user can repeatedly reconfigure the system by using the preceding

steps to achieve each configuration shown in Table 4.5. Here it is expected that the

user will perform each configuration; the system will render the updated front panel

for each; and that the system operates according to the virtually wired runtime code

in each case. After all the configurations are demonstrated, the test is concluded.

4.4 Test 3: Information Manager

The main aims of this test are to reveal how the system handles data logging and

alarming, as well as how it retrieves and displays this data. In addition, the test must

demonstrate how the system utilizes the “configure by product” function of the

system to configure itself automatically, based on a chosen product. Before the test

can commence, the following must be done beforehand to set up the test. Firstly, a

mock product that requires the hardware devices to be monitored and logged, is

created and added to the system. Thus, the system will configure itself, based on

the mock product. In addition, the steps from Test 1 regarding product recipes,

inventory and device capabilities must be updated and the configuration file with the

recommended IO attributes (for alarming and logging) must be included. After the

preliminary setup is completed, the test can get underway. The sequence in which

the test will be performed, along with a summary of the expected results, can be

seen in Table 4.7.

To commence the test, the required hardware devices must be powered and

connected to the system network. In addition, the user can start the main application

and choose “configure by product” from the main menu. At this stage, it is expected

that the software will open the ordering system and wait for a response from the

user. Here it is expected that the user places an order using the mock product that

was added to the system. After ordering the specified mock product, it is anticipated

that the system will configure itself, based on the product specifications

automatically, which includes that it will generate and wire (script) the required

internal code (VIs and connections). At this stage, the system will prompt the user

with instructions, whereafter the user is required to arrange the physical layout of

the system and acknowledge back to the system on completion. Because a mock

product was used, the user can simply acknowledge without arranging the physical

equipment. At this stage, the system is fully configured and the runtime process can

© Central University of Technology, Free State

79

be executed. Furthermore, during the runtime process the following are expected:

Firstly, the front panel is rendered identical to what was presented to the user.

Secondly, real-time data changes and alarms are occurring on the front panel.

Thirdly, the user can at any time enter either the historical trend or alarm windows,

and retrieve historical data recorded during the runtime and service the system

alarms that occurred. Once the prior activities are demonstrated, the test is finished.

Table 4.7 Test 3 sequence and expected result summary

 Action Expected Result

1 Power and connect devices
(PLCs) to the network User powers and connects devices to the network

2 Open and run HCoMS
software

Show HCoMS main menu and allows user to choose from
menu

3 User choose “Configure by
Product” from menu

HCoMS opens ordering system and waits for user to place
order.

4 User places order by
selecting a mock product

HCoMS opens the IO attributes, and allows the user to
change them if desired

5 User saves IO attributes
System starts automated configuration, configures

devices, scripts runtime code and prompts the user about
the physical layout of devices

6 User acknowledges that
placement is complete

HCoMS allows the user to either choose and reconfigure
system using other options (modes) or run current

configuration (open runtime client)

7 User opens runtime client HCoMS determines the placement of the devices, open
and renders front panel graphics as such

8
User observes the

operation of devices
displayed on front panel

Devices operate according to recommended
configurations

9 Any time that device alarms
occur

User is able to acknowledge alarms using alarms detailed
view window

10 Any time during operation User is able to access and retrieve logged device data
using the historical trend

© Central University of Technology, Free State

80

Chapter 5 Results and Analysis

5.1 Introduction

This chapter scrutinizes the results obtained from the tests performed in Chapter 4.

It discusses outcomes that were expected; where the outcomes differed; how these

were mended; as well as what is lacking in the system.

5.2 Test 1: Preliminary Testing

The purpose of the test done in section 4.2 was to test the functionality of the

fundamental software components. This includes how the DIM, ordering system and

production planner function together. The procedure of how the test was done along

with both the expected and obtained results are compiled and can be seen in

Table 5.1.

The software components (DIM and ordering system) were opened and the test

commenced. The success of the DIM (Table 5.1 at 2) is shown in Figure 5.1. As

expected, the DIM detects devices as the devices are being connected to the

system network. In addition, the DIM also removed devices from the display when

devices were disconnected from the network. How the software detects and

identifies devices and displays them on the screen can be seen in the supporting

video evidence in Appendix B1.

Figure 5.1 Devices detected on the system network

© Central University of Technology, Free State

81

Table 5.1 Test 1 sequence of actions and summary of results

 Action Expected Result Obtained Result

1 Open ordering
system

Shows ordering system front
panel with no orders placed As expected

2 Open DIM front
panel

Shows DIM front panel with the
devices currently connected to

the network
As expected

3
Power and connect
devices (PLCs) to

the network

Identify devices as connected to
system network As expected

4
Place a blank order

(no product and
zero quantity)

Prompt to user that this is not
allowed As expected

5 Place an order with
zero quantity

Prompt to user that this is not
allowed As expected

6
Place rest of product
orders as shown in

Table 4.3

HCoMS uses recipe to calculate
if enough parts are available to
build current product order and

tests if required devices are
connected. Queues orders as it

is added to the order screen,
calculate and update production
schedule on every order placed.

HCoMS uses recipe to calculate
if enough parts are available to
build product order and tests if

required devices are connected.

Queues each new order at the
front of the production queue as
it is added to the order screen,

calculates and updates
production schedule on every

order placed.

7

User rearrange and
remove orders to
obtain the desired

batch order

Production planner determines if
orders are still valid and order

screen updates order queue and
schedule

As expected

8 User orders batch by
clicking “Order”

Ordering screen closes and
sends instruction to HCoMS

controller to start configuration
As expected

Furthermore, the ordering system and the production planner also delivered

satisfactory results. The sequence in which the product orders were placed is given

in Table 4.3 in Chapter 4. Afterwards, these orders were manipulated to achieve the

desired batch order as shown in Figure 5.2 (see Table 4.2). The results obtained

from this part of the test are also shown in the supporting video evidence in

Appendix B2 and are as follows: The first product order that was placed was a blank

order (order with no product or quantity specified) and as expected, the system

© Central University of Technology, Free State

82

prompted the user that it is not allowed. The second attempt was an order with a

product specified, but with zero quantity, and as expected, the system again

prompted that the order is not allowed.

The remainder of the orders shown in Table 4.3 met the requirements for valid

orders and was placed one at a time. The first valid order (third attempt) was placed

and the results show that an order is added in the order screen. This shows that the

production planner executing in the background has successfully accessed

information from the parts inventory, product recipes and device capability

databases respectively, and determined if the order can be placed. Here the system

will access the product recipe to obtain information about the parts required to

assemble the product. Next, this information is compared to the parts inventory to

determine if the required parts are available and if sufficient quantities thereof are in

stock. If this is met, the production planner will test which devices are connected to

the system network, access the device capabilities for each one that is connected,

and compare it to the information from the product recipe to determine if the required

devices to assemble the product are available. If all these requirements are met, the

order is valid, and can be scheduled and added to the order queue in the ordering

system. The production planner schedules the start time for the batch order, to

commence ten minutes from the current system time.

The ordering system displays which product is going to be build, the quantity thereof,

the estimated duration of the process, and the estimated date and time of

completion. Furthermore, the results show how the ordering screen updates when

new orders are added or if orders are removed or moved up or down the order

queue. The production planner each time determines if all the current orders are

valid to be placed, and sends this information to the ordering system to refresh the

ordering screen with the updated schedule. After all the orders are placed and

manipulated to reflect the desired batch order (Figure 5.2 and Table 4.2), the user

submits the order by clicking “Order”, and the system responds by starting to

configure itself automatically (by sending the instruction message in the

background). This can also be seen in the supporting video evidence in

Appendix B2.

© Central University of Technology, Free State

83

Figure 5.2 Desired batch order result

The system successfully acquired the desired batch order shown in Figure 5.2

(Table 4.2) from the user’s input. However, the way that the system scheduled and

queued the orders were undesired (unexpected results, see Table 5.1 at 6). Each

new order that was placed enters at the front of the order queue, thus delaying the

existing orders to a later start time (the last order is first in the queue). This was

investigated and it was found that incorrect priority was assigned during the

programming stages (Figure 5.3). As the ordering system gathered information to

send to the production planner, the information was provided with the new order

appended at the front (of the array) of the list of orders. This was rectified by

correcting the source code from what is seen in Figure 5.3 at (1) to what is shown

in Figure 5.3 at (2). After the program was updated, the test was repeated and the

desired result was obtained, where the ordering system added new orders to the

back of the order queue. This can be seen in the supporting video evidence in

Appendix B3.

Figure 5.3 Code corrected

© Central University of Technology, Free State

84

5.3 Test 2: System Configurability

The purpose of Test 2 (as was stated in section 4.3) was to demonstrate the ease

in configuring the system using the “manual configure” function. In addition, the test

had to show the ability of the system to automatically generate functional code

(using scripting) and how the system uses the concept of virtual wiring to allow a

user to interconnect the system hardware components together. Furthermore, the

test had to show how the system will guide a user through the configuration process

by using sequential system prompts and automatically configure itself once it

acquired all the required information from the user. The test also had to illustrate

how the runtime front panel is rendered based on user input, as well as how the

system handles change when the system is reconfigured by adding, removing or

rearranging system components. The procedure of how Test 2 was done along with

the comparison between the expected and obtained results are compiled and shown

in Table 5.2.

The results obtained from Test 2 can be better explained by also referring to the

support video in Appendix C. The test was initiated and the user was able to select

the “manual configure” function of the system. This resulted in the DIM opening and

prompting the user to choose from the available PLCs connected to the system

network. This means that the DIM successfully detected, identified and presented

the devices connected to the network. Next the user was prompted to choose (from

only the selected devices) in which orientations and grid positions the devices must

be displayed in on the front panel. How the user selects the initial setup is shown in

Table 4.5. The results show how the system starts to automatically configure once

all the information required from the user are captured. This shows how the system

(in the background) creates the required variables, maps them to the items on the

OPC server, and maps it to their respective front panel objects.

© Central University of Technology, Free State

85

Table 5.2 Test 2 sequence of actions and summary of results

 Action Expected Result Obtained Result

1
Power and connect

devices (PLCs) to the
network

User powers and connects
devices to the network As expected

2 Open and run HCoMS
software

Show HCoMS main menu and
allow user to choose from

menu
As expected

3 User chooses “Manual
Configure” from menu

HCoMS opens DIM, detects
devices and allows user to

choose which to use
As expected

4 User selects devices to
use

HCoMS prompts user about
orientation and grid position of

devices
As expected

5
User specified grid and
orientation position as

shown in Table 4.3

System starts automated
configuration, configures

devices, script runtime code
and presents it to user

As expected

6

User connects and
modifies how devices are

wired together, saves
and exits runtime code

System configured, allows
user to either choose and
reconfigure system using

other options (modes) or run
current configuration (open

runtime client)

As expected

7 User opens runtime client

HCoMS opens front panel and
renders graphics based on
user’s input from system

prompts

As expected

8
User tests operation of
devices displayed on

front panel

Devices operate according to
how the runtime code is wired As expected

9

User stops the runtime
client and repeatedly

change the configuration
as shown in Table 4.3 by

repeating steps 4 to 8

System updates the runtime
front panel, and devices

operate according to user
modified runtime code

Results were as expected,
system successfully

reconfigured each time,
updated runtime front panel
and operated according to
user modified runtime code

10 User exits HCoMS
application

Application performs garbage
collection and closes As expected

Directly after the automatic configuration had been completed, the system opens

the runtime code and allows the user to virtually wire the devices as desired. The

supporting video evidence in Appendix C shows how “generated code” is present in

the screen and how the user can move the elements around and connect them.

© Central University of Technology, Free State

86

When the wiring is done, the user saves and exits the runtime code window. The

next result shows the user running the client front panel. The result is that the front

panel is rendered with the devices in the positions as given by Table 4.5. Examples

of the rendered front panels is shown in Figure 5.4 and Figure 5.5. Here the user

operates the system, revealing that the components used are “virtually connected”

and operates satisfactory. After this, it is shown how the user exits the runtime front

panel and reconfigures the system with the next configuration shown in Table 4.5

by repeating the procedure followed during the initial setup. Additionally, the video

clip in Appendix C shows how the user changes the functionality of the dynamic

module (PLC 3) during the test. This proves that a dynamic module can perform the

functions of multiple single function modules. At this stage of the test, the user

repeatedly stops the runtime process, follows the system prompts to setup the next

configuration in Table 4.5, modifies the current runtime code, and restarts the

runtime process. This result shows that the user is able to add, remove and

rearrange the modules (VIs) and rewire as required. Examples of the user modified

code during each test configuration are shown in Figure 5.6. Most importantly, this

test demonstrates the reconfigurability of the system and the ease of system setup.

Figure 5.4 Front panel during initial setup configuration

© Central University of Technology, Free State

87

Figure 5.5 Front panel during final setup configuration

Figure 5.6 Runtime code during each configuration test

5.4 Test 3: Information Manager

The purpose of Test 3 (as was stated in section 4.4) was to establish how the system

automatically configures without user input based on product requirements by using

the “configure by product” function. In addition, the test had to show the capability

of the system to reveal real time data to the user (on the front panel), warn and alarm

about undesired and/or unsafe conditions, and how these warnings and alarms are

© Central University of Technology, Free State

88

treated (handled). Furthermore, the test had to reveal how a user would retrieve

logged information using the (built-in) historical trend, manipulate it and display it on

the screen. For the procedure of how Test 3 was done and the comparison between

the expected and obtained results, refer to Table 5.3. In addition, also refer to the

support video in Appendix D to aid in the discussion of the results following below.

Table 5.3 Test 3 sequence of actions and summary of results

 Action Expected Result Obtained Result

1
Power and connect
devices (PLCs) to

the network

User powers and connects
devices to the network As expected

2 Open and run
HCoMS software

Show HCoMS main menu and
allow user to choose from menu As expected

3
User choose
“Configure by

Product” from menu

HCoMS opens ordering system
and waits for user to place

order.
As expected

4
User places order by

selecting a mock
product

HCoMS opens the IO attributes,
and allows the user to change

them if desired
As expected

5 User saves IO
attributes

System starts automated
configuration, configures

devices, scripts runtime code
and prompts the user about the

physical layout of devices

As expected

6
User acknowledges

that placement is
complete

HCoMS allows the user to either
choose and reconfigure system
using other options (modes) or
run current configuration (open

runtime client)

As expected

7 User opens runtime
client

HCoMS determines the
placement of the devices, open
and render front panel graphics

as such

As expected

8

User observes the
operation of devices
displayed on front

panel

Devices operate according to
recommended configurations As expected

9 Any time that device
alarms occur

User is able to acknowledge
alarms using alarms detailed

view window
As expected

10 Any time during
operation

User is able to access and
retrieve logged device data

using the historical trend
As expected

© Central University of Technology, Free State

89

The results from Appendix D show the user choosing the “configure by product”

function and then being presented with an ordering screen. Notice that this ordering

screen is different from to the ordering screen from Test 1; the reason being that for

this method the user only has to provide a product and its quantity. The user places

the mock order (order tailored for this test) and is then presented with a popup

window to modify the IO attributes of the connected devices. This shows that the

system successfully detected that devices that are able to assemble the selected

(mock) product are connected to the network; and the system successfully

determined that enough parts are available in stock to assemble the product. The

user can now perform the desired changes to the IO attributes of the devices

connected to the network and afterwards continue with “Save” (Figure 5.7).

Otherwise, if the default settings are desired, the user can just continue with “Save”.

This shows how the system allows the user to change IO attributes, and enables

the alarm and logging properties of the devices. After the user is done, the system

starts to automatically configure. Note that no wiring screen was presented to the

user. This shows that the system generated the functional code and wired it based

on the product requirements (in the background). Next, the system prompts

instructions to the user about the mandatory physical placement of the system

devices by presenting the screen shown in Figure 5.8. Since a mock product was

used, the user acknowledges with done. Now the user only has to start the runtime

process by opening the runtime front panel. After the user opens the runtime front

panel, the front panel screen is rendered with the devices in the same grid positions

as stipulated by the instructions given to the user. This shows that the system

automatically determined where the devices should be placed without requiring

input from the user.

In addition, further results show how the system displays ongoing value changes in

each device and also alarming on undesired values. This reveals that the system is

able is to display real-time device data to the user. An example of this is shown in

Figure 5.9. It is shown that alarms can be handled and acknowledged during any

time of the runtime process. This shows that the system allows the user to “silence”

and acknowledge alarms, as well as interact with the system based on these alarms.

© Central University of Technology, Free State

90

The next result revealed during Test 3 was how a user can retrieve logged data

using the system’s historical trend window. An example of the historical trend data

is shown in Figure 5.10. This shows that the system provides a function to specify

and retrieve desired information, without “mining” or filtering through raw data in the

database.

Figure 5.7 IO attributes modification screen

Figure 5.8 Instructions prompted to user

© Central University of Technology, Free State

91

Figure 5.9 Real time device data displayed on front panel

Figure 5.10 Data retrieved using Historical Trend

© Central University of Technology, Free State

92

Additionally, also revealed from this test, is how a user would natively retrieve “raw”

data from the Citadel database shown in Figure 5.11. Though it is undesired to

retrieve data in this manner, it is still done during the test to compare the real-time

data to historical trend data to raw database data. This can be seen in the supporting

video evidence in Appendix D.

Figure 5.11 Raw data in Citadel database

5.5 Analysis and Summary of Results

This chapter revealed the results that were obtained during testing to validate all the

capabilities and operations of the system. It discussed the expected outcomes,

where these differed from what was obtained, and how these were mended.

The intention of the first test was to validate the functionality of the preliminary

software components which included the DIM, ordering system and the production

planner. The intention of the second test was to demonstrate the reconfigurability of

the system by utilizing its “manual configure” mode. This test had to validate the

“virtual wiring” ability of the system; the ability to generate runtime code; how the

© Central University of Technology, Free State

93

system automatically configures based on user input; and how the system renders

the front panel based on this configuration. The aim of the third test was to reveal

how the system handles data logging and alarming, and how the system displays

and retrieves this data. In addition, this test had to be done by utilizing the “configure

by product” mode of the system.

To summarize, the results from the testing revealed that the system functions in

accordance with the project objectives. The DIM, ordering system and production

planner functioned successfully during all the phases of testing. This proves that,

together, the fundamental software functioned satisfactory and shows that the

system can execute planning and scheduling capabilities. In addition, the use of the

DIM in conjunction with the device installers showed the ability of the system to add

any new compliant device to the system.

Furthermore, the results show the satisfactory operation of each configuration mode

where the user either has the final decision in configuring the system (manual

configure), or allowing the system to configure itself and then following the

instructions from the system prompts (configure by product). Moreover, the flexibility

of the system is demonstrated by its ability to automatically generate runtime code.

Depending on the configuration mode that was used, the system either generated

the code (already wired), or only populated the base code and allowed a user to

interconnect system devices as desired using the “virtual wiring” ability of the

system. The “virtual wiring” ability of the system allows a user to initially interconnect

system devices and correct existing code by changing connections between

devices. Furthermore, the results have shown the success of the automated

configuration routine. The automated configuration saves much time during the

configuration stage when compared to a user setting up the system, and avoids the

errors that could have been made by a user (human errors).

Finally, the results have also shown how the system rendered the front panel based

on a configuration, how real-time process and alarm information was displayed on

the front panel, and how this information was retrieved and displayed if/when it was

logged. Overall, the results obtained were desirable. It is evident from the results

that the development of the system successfully accomplished all that was specified

in the project objectives.

© Central University of Technology, Free State

94

Chapter 6 Contributions and Conclusion

6.1 Introduction

This is a closing chapter that recapitulates the project, revisits the research goals

and objectives, expresses the contributions made, identifies future work to be done,

and ultimately draws a conclusion to the research.

6.2 Summary

Chapter 1 introduced the project and placed it in perspective by stating the research

problem at hand, identifying the hypothesis, articulating the research methodology

and finally listing the objectives of the project. Chapter 2 contains a literature review

of the field of study which included various aspects of reconfigurable assembly

systems, control and monitoring issues of these, GUI design considerations, and

planning and scheduling systems. Later, Chapter 3 documented the methodologies

undertaken to develop the system. It specified the system hardware and software

components utilized, how these function, and how these components are integrated.

Next, Chapter 4 identified the tests and procedures that were developed to validate

the system. And ultimately, Chapter 5 provided an analysis and discussion on the

findings from the tests performed.

6.3 Research Goals and Objectives

The main objective of the study was to develop a hybrid control and monitoring

system to be utilized with reconfigurable assembly systems. The monitor and control

system had to either adapt the system configuration based on product specifications

or allow a user to manually configure it as desired. In addition, the system also had

to ensure the quality of the products assembled and provide this production

information back to the user. Furthermore, the user interface of the system had to

conform to high, internationally practised standards and be compatible with touch

panels, tablets and smart phones.

These objectives were accomplished by firstly building the hardware devices to be

used in the system; and then developing the software modules that are collectively

required to construct the entire system, by using the methods which were discussed

in Chapter 3. In addition, Chapter 3 also discussed the intended operation of the

© Central University of Technology, Free State

95

complete system. Afterwards, tests were established in Chapter 4 and were set up

in such a way as to verify each separate function (mode) of the system, as well as

verify the major components of the system. After the tests were completed and

results were obtained, these results were analysed and discussed in Chapter 5. This

chapter revealed satisfactory results regarding the operation of the system and

highlighted areas that can be looked at in future research. Most importantly, the

results in Chapter 5 verified the operation of the system and ultimately prove the

concept concerning a hybrid control and monitoring system developed for

reconfigurable assembly systems.

6.4 Contributions

The project delivered a hybrid control and monitoring system with the following new

implementations, configurations and contributions:

6.4.1 HCoMS System

The HCoMS system overall mainly consists of two parts, namely the graphical user

interface and the background control software and integrated software modules.

The HCoMS controller application was developed to be a multi-window application

with multi-treaded concurrent processes in the background. The GUI screens used

are designed to be intuitive and self-explanatory. The various integrated software

modules are implemented in the system to add to the reconfigurability of the system

and contribute towards easy system configuration and real-time operation. The

HCoMS controller was developed to be compatible with devices from various

different vendors through the use of OPC and to easily introduce and integrate new

devices. This provides the foundation for the flexibility of the monitor and control

system.

6.4.2 Device Installers

The device installers represent a vital component of the system that makes the

system extremely integrable and were implemented to enable the HCoMS to utilize

various compliant devices. These device installers were developed to automatically

copy the files required for respective devices to the vital file locations in the system,

and amend configuration files currently used in the system. As part of the project,

various of these device installers have been developed for the assembly devices

© Central University of Technology, Free State

96

used in the RGEMS laboratory, as well as the devices used during the testing phase

of the project. In addition, code templates were included with the project files to

enable current or future students to develop their own device installers for devices

to be added to the system. These templates consist of the fundamental code

structure and contain comments at strategic locations in the code that provide the

developer with clear instructions on how to modify these code sections.

Furthermore, the code comments are written in such a way that a student/developer

can use the search text function to find all the locations in the code that require

modification. As a result, current or future developers are able to easily add

assembly devices to the system with minimal effort and error.

6.4.3 Detection and Identification Module (DIM)

The detection and identification module was developed and implemented in the

HCoMS. By utilizing device installers, the DIM enables the HCoMS to scan the

network and identify each device connected to it. In addition, the DIM was developed

to continuously test if a connection is still present during runtime and convey this

connection status back to the HCoMS controller.

6.4.4 Ordering System

An ordering system was developed to enable a user to place production orders

during runtime. The ordering system is developed as a dynamic stand-alone module

and is able to adapt based on system requirements. In addition, it integrates with

the production planner to deliver a production schedule back to the user.

Furthermore, it is designed with the ability to be used either on the same machine

as an HCoMS, or another remote machine.

6.4.5 Production Planner and Scheduler

A production planner and scheduler was developed to provide the system with

functions similar to the ERP and APS systems discussed in Chapter 2. The

production planner consists of multiple compare and decide routines to enable it to

plan and schedule product orders received from the ordering system. The

production planner is developed to be a dynamic module that can easily be adapted

through the use of device installers (from planning point of view). Essentially, the

© Central University of Technology, Free State

97

production planner is designed to determine “what” is built “where,” “in which order,”

and “with which resources”.

6.4.6 System Configurator

To aid with system configuration, the system configurator was developed and

utilized in the HCoMS. The system configurator utilizes a dynamic state machine

that can adapt its behaviour, an automated configuration routine and a code

scripting algorithm which generates the runtime system code. Essentially, the

system configurator utilizes the developed dynamic state machine to capture

information from a user through a series of system prompts. In addition, the

automated configuration routine was developed to perform repetitive setup actions

for each of the devices connected to the system. These setup actions would take a

user a few hours to days to perform on a large system (20 devices or more), where

this routine will perform the same work in seconds to minutes with a guarantee that

no human errors occurred. After the system is configured, it is required that the

system runtime code is generated. To achieve this, a dynamic algorithm was

developed to generate the runtime code by using VI scripting. As a whole, the

system configurator was intended to guide a user through the entire configuration

process.

6.4.7 Production Handler

The production handler was developed to manage the background control

processes during runtime. Its intention was to instruct assembly devices to adapt

their behaviour based on the requirements of the production run, and keep track of

the status of the production process. In addition, the production handler was

developed to render the runtime front panel based on configuration information

obtained from the user. This was to provide the user with a geographical overview

of the complete system.

6.4.8 Information Manager

The information manager was developed to display real-time production data on the

system front panel and also display and handle system alarm conditions. Historical

data are normally accessed natively through the Citadel database and/or the

distribution manager. The information manager was developed to access, retrieve

© Central University of Technology, Free State

98

and display this data. Furthermore, the information manager was developed to make

it easy for a user to filter and browse through database data (in that it hides any

irrelevant data from the user). To clarify the need for the information manager, the

native methods to retrieve data from the Citadel database will also include data from

other LabVIEW projects not related to the system.

6.4.9 System Assembly SMART Devices

An introductory physical version of an HCoMS has been built in the RGEMS

research laboratory. This is an introductory version because new devices can be

integrated and added in future. Each assembly device was assembled with an

identical architecture from various subcomponents. Currently, these devices are

used for the project, and due to their flexibility and modularity, are simultaneously

used in other separate projects as well. This demonstrates the fact that the

assembly devices are reconfigurable and easily interchangeable. As a result,

current and future RGEMS students can benefit from having a range of readily

available assembly devices to complete their projects, and if desired, also integrate

newly built projects with an HCoMS.

6.5 Future Work

This subsection identifies what is worth investigating in the future. It states some

recommendations and possible enhancements for future use.

6.5.1 Device Installers

The way that device installers are structured and implemented in the current system

functions satisfactorily for the existing system. However, it is worth investigating

different methods to improve these device installers. For example, these device

installers might be developed to reside on each assembly device itself and install on

an HCoMS when it is connected to the device network, similarly to how USB devices

identify and install drivers. This will ensure that the initial running of the device

installers is automated and not the responsibility of the user. In addition, this will

make using an HCoMS easier with even less user intervention.

6.5.2 Ordering System and Production Planner

The ordering system and production planner together currently perform an excellent

job in the system. However, the system can presently schedule only one series of

© Central University of Technology, Free State

99

product orders and not parallel concurrent product orders. An improvement would

be if the ordering system could handle multiple concurrent orders and if the

production planner were able to schedule multiple resources to assemble these

products concurrently. This recommended improvement will enable the system to

schedule concomitant product orders, making the system run more efficiently by

increasing productivity and reducing assembly device idle times.

6.5.3 Front Panel Rendering

At present, if a user encounters that the runtime front panel is erroneously setup or

rendered, the user must exit the front panel and repeat the setup prompts to rectify

this. An improvement would be if the user can simply change the position of the

devices on the front panel during runtime, without repeating the setup steps. A

recommendation is that the user can utilize a dropdown menu to select each device,

or maybe drag and drop capabilities.

6.5.4 Runtime Code Scripting

The operation of the code scripting algorithm to generate runtime system code

exceeds expectations. Currently, when the system has to determine the runtime

code, it selects the first number of assembly devices available to be used and

generates the runtime code accordingly. An improvement to this algorithm would be

if a user can still have the final decision on which devices to use. For example, if the

system selects to use devices 1 and 2 for a specific product, the user would be able

to choose devices 3 and 4 to assemble the same product. This will aid in situations

where certain devices require maintenance or are needed for other usage.

6.6 Conclusion

Reconfigurable assembly systems have ascended in the SA manufacturing

environment due to the uncertainty of global markets. The majority of SA

manufacturing exports are aimed at niche markets, which involves high varieties of

products in small quantities. Due to this, SA manufacturing companies pursue the

utilization of RAS to deliver a flexible platform that accommodates the required

diversity in product manufacturing. RASs are complex flexible systems and need to

be expertly monitored and controlled to operate at high efficiency. The systems that

supervise and control RASs, must be just as flexible as the RAS itself. With this in

© Central University of Technology, Free State

100

mind, this research study contributes towards the development of an HCoMS that

intelligently integrates with and supervises RASs.

The utilization of a system such as an HCoMS enhances the overall functionality of

a RAS. In essence, the HCoMS ensures that any compliant assembly device can

be added to a RAS with ease. In addition, the HCoMS guides a user to configure a

RAS, and performs automated configuration procedures on demand. Moreover, an

HCoMS implements a “virtual wiring” concept that simplifies the interconnection of

devices in software, with the effect that the RAS does not require any physical wiring

to connect devices together. Furthermore, the HCoMS possesses advanced

planning and scheduling capabilities to streamline production processes and aids in

overall supply chain management. By implementing an HCoMS within a RAS will

result in the SA manufacturing industry having reconfigurable systems that can

handle the rapid introduction of new products, change-over between configurations

with minimal effort, and achieving flexible manufacturing capacity without concern

regarding fluctuating markets and market demands. These systems are more

flexible in functionality; easier to configure; and are expertly monitored and

controlled.

The long-term benefits of utilizing these novel systems include that production

quantities and quality of products manufactured in SA will increase, while the price

of manufactured products will decrease and the overall revenue increase. This will

result in an increase of SA’s gross domestic product; restore the trust of foreign

companies in SA; eventually draw investors and so increase the economic security

in SA. In addition, these novel systems will require skilled personnel to develop,

operate and maintain. This will create job opportunities for skilled professionals,

which will further increase economic stability in SA.

Fundamentally, the implementation of RASs that utilizes an HCoMS will immensely

benefit SA manufacturing companies by enabling them to successfully compete in

global markets and meet the standards required by these markets. This finally raises

the ultimate question. How can South African manufacturing industries not be more

competitive, increase productivity, increase product variety, decrease lead times

and ultimately show increased profits if they utilize a hybrid control and monitoring

system developed for reconfigurable assembly systems?

© Central University of Technology, Free State

101

References

[1] Y. Koren, "Reconfigurable Manufacturing Systems," COMA annals, vol. 1,

pp. 69-79, 2004.

[2] N. F. Edmondson and A. H. Redford, "Generic Flexible Assembly System

Design," Assembly Automation, vol. 22, pp. 139-152, 2002.

[3] W. Wang and Y. Koren, "Design Principles of Scalable Reconfigurable

Manufacturing Systems," IFAC Proceedings Volumes, vol. 46,

pp. 1411-1416, 2013.

[4] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren, "Reconfigurable Manufacturing

Systems: Key to Future Manufacturing," Journal of Intelligent Manufacturing,

vol. 11, pp. 403-419, 2000.

[5] A. L. Andersen, C. Rösiö, J. Bruch, and M. Jackson, "Reconfigurable

Manufacturing–An Enabler for a Production System Portfolio Approach,"

Procedia CIRP, vol. 52, pp. 139-144, 2016.

[6] K. K. Goyal, P. K. Jain, and M. Jain, "A Novel Methodology to Measure the

Responsiveness of RMTs in Reconfigurable Manufacturing System," Journal

of Manufacturing Systems, vol. 32, pp. 724-730, 2013.

[7] Y. Koren, "General RMS Characteristics. Comparison with Dedicated and

Flexible Systems," in Reconfigurable Manufacturing Systems and

Transformable Factories, ed Berlin, Heidelberg: Springer, 2006, pp. 27-45.

[8] Y. Koren, The Global Manufacturing Revolution: Product-Process-Business

Integration and Reconfigurable Systems vol. 80: John Wiley & Sons, 2010.

[9] T. Lien and F. Rasch, "Hybrid Automatic-Manual Assembly Systems," CIRP

Annals-Manufacturing Technology, vol. 50, pp. 21-24, 2001.

[10] J. Krüger, T. K. Lien, and A. Verl, "Cooperation of Human and Machines in

Assembly Lines," CIRP Annals - Manufacturing Technology, vol. 58,

pp. 628-646, 2009.

[11] D. Gyulai, Z. Vén, A. Pfeiffer, J. Váncza, and L. Monostori, "Matching

Demand and System Structure in Reconfigurable Assembly Systems,"

Procedia CIRP, vol. 3, pp. 579-584, 2012.

[12] S. Takata and T. Hirano, "Human and Robot Allocation Method for Hybrid

Assembly Systems," CIRP Annals - Manufacturing Technology, vol. 60,

pp. 9-12, 2011.

© Central University of Technology, Free State

102

[13] B. Lotter and H. P. Wiendahl, "Changeable and Reconfigurable Assembly

Systems," in Changeable and Reconfigurable Manufacturing Systems, ed:

Springer, 2009, pp. 127-142.

[14] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki, G. Pritschow, G. Ulsoy, et al.,

"Reconfigurable Manufacturing Systems," CIRP Annals-Manufacturing

Technology, vol. 48, pp. 527-540, 1999.

[15] D. Minnich and F. Maier, Supply Chain Responsiveness and Efficiency:

Complementing or Contradicting Each Other?: School of Business

Administration, 2006.

[16] R.M. Setchi and N. Lagos, "Reconfigurability and Reconfigurable

Manufacturing Systems - State of the Art Review," in 2nd IEEE International

Conference of Industrial Informatics: Collaborative automation - One Key for

Industrial Environments, Berlin, 2004.

[17] H. P. Wiendahl, H. A. ElMaraghy, P. Nyhuis, M. F. Zäh, H. H. Wiendahl, N.

Duffie, et al., "Changeable Manufacturing-Classification, Design and

Operation," CIRP Annals-Manufacturing Technology, vol. 56, pp. 783-809,

2007.

[18] M. N. Rooker, C. Sunder, A. Zoiltl, O. Hummer, and G. Ebenhofer, "Zero

Downtime Reconfiguration of Distributed Automation Systems," in

Proceeding of the 3rd International Conference on Industrial Applications of

Holonic and Multi-Agent Systems, Regensburg, 2007, pp. 326 - 337.

[19] H. ElMaraghy, "Flexible and Reconfigurable Manufacturing Systems

Paradigms," International Journal of Flexible Manufacturing Systems, vol. 17,

pp. 1-13, 2006.

[20] Y. Koren and M. Shpitalni, "Design of Reconfigurable Manufacturing

Systems," Journal of Manufacturing Systems, vol. 29, pp. 130-141, 2010.

[21] R. Katz, "Design Principles of Reconfigurable Machines," The International

Journal of Advanced Manufacturing Technology, vol. 34, pp. 430-439, 2007.

[22] M. Hentea, "Improving Security for SCADA Control Systems,"

Interdisciplinary Journal of Information, Knowledge, and Management, vol. 3,

pp. 73-86, 2008.

[23] K. Stouffer, J. Falco, and K. Scarfone, "Guide to Industrial Control Systems

(ICS) Security," NIST Special Publication 800-82 Rev. 1, 2013.

© Central University of Technology, Free State

103

[24] A. Daneels and W. Salter, "What is SCADA?," in International Conference on

Accelerator and Large Experimental Physics Control Systems, Trieste, Italy,

1999, pp. 339-343.

[25] R. M. van der Knijff, "Control Systems/SCADA Forensics, what's the

Difference?," Digital Investigation, vol. 11, pp. 160-174, 2014.

[26] R. Kumar, "Recent Advances in SCADA Alarm System," International Journal

of Smart Home, vol. 4, 2010.

[27] S. K. Shalini, B. Teshome, S. Muluneh, and B. Aragaw, "Working Phases of

SCADA System for Power Distribution Networks," International Journal of

Advanced Research in Electrical, Electronics and Instrumentation

Engineering, vol. 2, pp. 2037-2043, 2013.

[28] P. Zhang, A Handbook for Engineers and Researchers: William Andrew:

William Andrew, 2008.

[29] W. T. Shaw, Cybersecurity for SCADA Systems: Pennwell Books, 2006.

[30] R. Radvanovsky and J. Brodsky, Handbook of SCADA/Control Systems

Security, 2nd ed.: CRC Press, 2016.

[31] B. Hamed, "Implementation of Fully Automated Electricity for Large Building

Using SCADA Tool like LabVIEW," Current Trends in Technology and

Sciences, vol. 1, 2012.

[32] S. Karnouskos and A. W. Colombo, "Architecting the Next Generation of

Service-Based SCADA/DCS System of Systems," in IECON 2011-37th

Annual Conference on IEEE Industrial Electronics Society, 2011,

pp. 359-364.

[33] C. Alcaraz, R. Roman, P. Najera, and J. Lopez, "Security of Industrial Sensor

Network-Based Remote Substations in the Context of the Internet of Things,"

Ad Hoc Networks, vol. 11, pp. 1091-1104, 2013.

[34] R. Roman, P. Najera, and J. Lopez, "Securing the Internet of Things," IEEE

Computer, vol. 44, pp. 51-58, 2011.

[35] L. K. Ivert, "Advanced Planning and Scheduling Systems in Manufacturing

Planning Processes," Department of Technology Management and

Economics, Chalmers University of Technology, Sweden, 2009.

[36] H. Stadtler and C. Kilger, "Supply Chain Management and Advanced

Planning - Concepts, Models, Software and Case Studies," 3rd ed: Springer,

2005.

© Central University of Technology, Free State

104

[37] H. Stadtler, "Supply Chain Management and Advanced Planning––Basics,

Overview and Challenges," European Journal of Operational Research, vol.

163, pp. 575-588, 2005.

[38] L. K. Ivert, Use of Advanced Planning and Scheduling (APS) Systems to

Support Manufacturing Planning and Control Processes, ed.: Chalmers

University of Technology, 2012.

[39] A. Tenhiälä and P. Helkiö, "Performance Effects of Using an ERP System for

Manufacturing Planning and Control under Dynamic Market Requirements,"

Journal of Operations Management, vol. 36, pp. 147-164, 2015.

[40] K. Li, X. Zhang, J. Y.-T. Leung, and S.-L. Yang, "Parallel Machine Scheduling

Problems in Green Manufacturing Industry," Journal of Manufacturing

Systems, vol. 38, pp. 98-106, 2016.

[41] N. Pandhi, K. Singh, and S. Singh, "A Contrast: VSM, JIT, and MRP-II,"

International Journal of Current Engineering and Technology, vol. 5, pp. 385-

396, 2015.

[42] A. Hossain and T. Zaman, "HMI design: An Analysis of a Good Display for

Seamless Integration between User Understanding and Automatic Controls,"

in 2012 ASEE Annual Conference & Exposition, 2012.

[43] Hexatec. (2010). How to Design a Good HMI Display [White Paper].

Available: http://www.hexatec.co.uk/Consultancy/hmi_display_design_guide

lines.aspx

[44] D. Gersztenkorn and A. G. Lee, "Palinopsia Revamped: a Systematic Review

of the Literature," Survey of Ophthalmology, vol. 60, pp. 1-35, 2015.

[45] S. Deodhar, P. Agrawal, and A. Helekar, "Effective Use of Colors in HMI

Design," Internasional Journal of Engineering Research and Applications,

vol. 4, pp. 384-387, 2014.

[46] D. Roessler and L. Garrison. (2013). Five Practical Elements of Effective

SCADA Graphics [White paper]. Available:

https://pgjonline.com/2013/02/19/five-practical-elements-of-effective-scada-

graphics/

[47] OPTO 22. (2014). Building an HMI that Works: New Best Practices for

Operator Interface Design [White paper]. Available: http://www.opto22.com/

site/documents/doc_drilldown.aspx?aid=4351

© Central University of Technology, Free State

http://www.opto22.com/site/documents/doc_drilldown.aspx?aid=4351
http://www.opto22.com/site/documents/doc_drilldown.aspx?aid=4351

105

[48] P. Gruhn, "Human Machine Interface (HMI) Design: The Good the Bad and

the Ugly (and what makes them so)," 66th Annual Instrumentation

Symposium for the Process Industries, 27-29 Jan 2011.

[49] B. Hollifield, "High Performance HMI–Proof Testing in Real-World Trials," in

2013 ISA Water/Wastewater and Automatic Controls Symposium, Orlando,

Florida, USA, 2013.

[50] B. Hollifield, D. Oliver, I. Nimmo, and E. Habibi, The High Performance HMI

Handbook: A Comprehensive Guide to Designing, Implementing and

Maintaining Effective HMIs for Industrial Plant Operations, 1st ed., 2008.

[51] I. A. Mughal, L. Ali, N. Aziz, K. Mehmood, and N. Afzal, "Colour Vision

Deficiency (CVD) in Medical Students," Pak J Physiol, vol. 9, pp. 9-1, 2013.

[52] B. Hollifield, "The High Performance HMI: Better Graphics for Operations

Effectiveness," in 2012 Water/Wastewater and Automation Controls

Symposium, Orlando, Florida, USA, 2012.

[53] J. Krajewski, "Situational Awareness–The Next Leap in Industrial Human

Machine Interface Design," White paper, Invensys Systems, Houston, USA,

2014.

[54] B. Pokharel, "Machine Vision and Object Sorting: PLC Communication with

LabVIEW using OPC," Bachelor's Thesis, Department in Automation

Engineering, HAMK University of Applied Sciences, 2013.

[55] J. Travis and J. Kring, "LabVIEW for Everyone: Graphical Programming

Made Easy and Fun. 3rd," ed: New Jersey, Prentice Hall.

[56] R. H. Bishop, LabVIEW 8 Student Edition. Austin, Texas: Pearson Prentice

Hall, 2007.

[57] H. M. Sabu, V. Aravind, A. Sullerey, and V. Binson, "Online Monitoring of

PLC Based Pressure Control System," International Journal of Research and

Innovations in Science and Technology, vol. 2, 2015.

[58] M. A. Muftah, A. M. Albagul, and A. M. Faraj, "Automatic Paint Mixing

Process using LabVIEW," Mathematics and Computers in Science and

Industry, pp. 233-238, 2014.

[59] J. Tomić, M. Kušljević, M. Vidaković, and V. Rajs, "Smart SCADA System for

Urban Air Pollution Monitoring," Measurement, vol. 58, pp. 138-146, 2014.

© Central University of Technology, Free State

106

[60] J. Niemann, "Development of a reconfigurable assembly system with

enhanced control capabilities and virtual commissioning," Master

Dissertation, Faculty of Engineering and Information Technology, Central

University of Technology, Free State, 2013.

[61] C. Hayes, "Smartening up the Factory Floor [With Sensors]," Engineering &

Technology, vol. 10, pp. 43-43, 2015.

[62] A. Gurhan, "Design and Development of Windows Store Application for

Measurements and Monitoring," Master Thesis, Telemark University College,

Faculty of Technology, Norway, 2013.

[63] V. Andreev, M. Malyutin, A. Karimov, and T. Karimov, "The Toolkit for

Automation Design of Digital Systems with Parallel Architecture," in Control

and Communications (SIBCON), 2015 International Siberian Conference on,

2015, pp. 1-3.

[64] Y. Shen and C. Lu, "Implementation of Fault Information Standardized

Description and Network Transmission Based on LabVIEW," in Proceedings

of the Fourth International Conference on Information Science and Cloud

Computing (ISCC2015). Guangzhou, China, 2015.

[65] E. Vavilina and G. Gaigals, "Improved LabVIEW code generation," in 2015

IEEE 3rd Workshop on Advances in Information, Electronic and Electrical

Engineering (AIEEE), Riga, Latvia, 2015, pp. 1-4.

© Central University of Technology, Free State

107

List of Publications

H. Vermaak and J. Niemann, “Validating a Reconfigurable Assembly System

utilizing Virtual Commissioning,” in proceeding of the Pattern Recognition

Association of South Africa and the Robotics and Mechatronics International

Conference, 2015, Port Elizabeth. South Africa: ISBN: 978-1-4673-7449-1,

pp 258 – 262.

H. Vermaak and J. Niemann, “Virtual Commissioning: A Tool to Ensure Effective

System Integration,” to be presented in May 2017 at the 2017 IEEE International

Workshop of Electronics, Control, Measurement, Signals and their application to

Mechatronics (ECMSM) in San Sebastian, Spain.

© Central University of Technology, Free State

108

Appendices

The following supporting video evidence can be acquired from the attached CD:

Appendix A: OPC Setup from CSV file

Appendix B1: Detection & Identification Module

Appendix B2: Order System Initial Test

Appendix B3: Order System Code Corrected

Appendix C: Test 2

Appendix D: Test 3

© Central University of Technology, Free State

