Central University of
Technology, Free State

PC BASED STORAGE AND PROCESSING OF
i ;53/3! l\</ SN /"/JU‘S 1N \f\\j VIS : U '\-jl\ \1)‘ A
cLECTROCARDIOGRAM 1 W(U;\H(%l UECORDED Wt
& [P47450 PAGEWRITER] CARDIOGRAR!H

O

Central University of
Technology, Free State

PC BASED STORAGE AND PROCESSING OF
ELECTROCARDIOGRAM TRACINGS RECORDED WITH A HP4745A
PAGEWRITER II CARDIOGRAPH

JOHAN GEORGE WASSERMAN
Dissertation submitted in fulfilment of the requirements for the Degree

MAGISTER TECHNOLOGIAE:

INFORMATION TECHNOLOGY

n the

Faculty of Management
Department of Information Technology

at the

Technikon Free State

Supervisor: Mr DJ Kotzé, B.Sc. (Pharm), M.Sc. (IT), HBA
Co-supervisor: Dr P Jordaan, MB.Ch B., ECFMG (USA), M Med Internal Medicine

BLOEMFONTEIN ' : e oK '— .
January 1998 . sodein i
i T Er Y
| TECHNIKON

FREE STATE |

= — -

© Central University of Technology, Free State

o Central University of
Technology, Free State

DECLARATION OF INDEPENDENT WORK

I, JOHAN GEORGE WASSERMAN, do hereby declare that this research project submitted
for the degree MAGISTER TECHNOLOGIAE: INFORMATION TECHNOLOGY, is my
own independent work that has not been submitted before to any institution by me or anyone
else as part of any qualification.

Yo Nouchn PR
Signa@ﬁéof student Date

¢} K[‘ug ¥
e L?"-;f‘a
< STare)
“-u..‘lu’
© Central University of Technology, Free State

O

Central University of
Technology, Free State

To my parents, for their faith, love and support. Thank you.

ii

© Central University of Technology, Free State

O

Central University of
Technology, Free State

Without the following persons this research would not have been possible:

Mr Dana Kotzé and Dr Pierre Jordaan, my supervisors, for their dedicated support, interest
and guidance.

e Dr Josef Jacobs, cardiologist and friend, for his help to get this research started as well as
for constant interest and support.

Steve Weber and Craig Hamer (Hewlett Packard’s McMinnville Division of Diagnostic
Cardiology) for actually arranging a copy of Hewlett Packard’s digital transmission
protocol for me.

Robert Vivrette for answering some questions about graphics programming and sending
me information via e-mail.

Tienie van Schalkwyk for directing me towards Hewlett Packard’s McMinnville Division,
as well as providing me with quotations and brochures.

Dr AP Boezaart and Prof George Murray for their comments during the initial stages of
this research.

e Prof Theo McDonald and Prof Charles Herbst for their valuable input during the initial
stages of this research.

Leona le Roux and Rika Pretorius, for helping with overseas telephone calls, making
arrangements with courier companies and preparing numerous photocopies of articles.

Piet van der Merwe for his valuable comments.

Huibre Lombaard., Esté Louw and Tanya Rood for their friendly and efficient help to
locate articles and books.

Dr Pieter van der Wal for locating difficult-to-find articles in a university library in
Amsterdam.

e Johan Pienaar for lending me his soldering iron and workshop and also for carrying PCs to
and from the Department of Cardiology.

e Alex Hundt, for listening to ideas and also encouragement.

Dr Norma van Niekerk for helping with the proof-reading of Chapter 3, lending me some
of her medical text books as well as constant interest and support.

Dr Sybrand Pretorius for lending me some of his medical text books.

e The ECG Ladies at the Department of Cardiology, Universitas Hospital, for testing and
using software for digital capturing of ECG data.

Neliétte de la Rey for proof-reading of the dissertation. Thanks for a mammoth task. You
have a very sharp eye and you are extremely thorough.

Dr Linda Potgieter and Neliétte de la Rey for their input on the statistical analysis of the
data as described in Chapter 6.

Cornea Venter for helping with some initial statistical analysis of the data in SAS.
Jacques Venter for listening and answering a lot of questions about Delphi.

Bernard van Niekerk for lending a hand with the graphics work.

iii

© Central University of Technology, Free State

o Central University of
Technology, Free State

e My friends Johan, Stoffel. Lukas, Bobby and Victor for bearing with me whilst I was
researching and writing this dissertation.

e The Department of Cardiology, University of the Orange Free State, Universitas Hospital
for the use of their computer network and electrocardiograph equipment whilst developing
and testing the Hearts 32 application.

e The Department of Pharmacology and the FARMOVS Research Centre for Clinical
Pharmacology and Drug Development, University of the Orange Free State, for the use of
their computer network, laser printers and time off to see my supervisors.

v

© Central University of Technology, Free State

O

Central University of
Technology, Free State

Summary

Currently the Department of Cardiology, Universitas Hospital, keeps paper copies of ECGs filed
in large filing cabinets. Access to these files is tedious during office hours, and impossible after

hours, when the filing room is locked and no filing personnel are available.

Commercially available systems for computerised storage of ECG data are available from a
number of vendors. Some drawbacks of these systems include:

e Extremely expensive.

e Only a portion of the functions offered by these systems are really needed at the Department
of Cardiology, Universitas Hospital. These systems are thus not economically justifiable by
the Department of Cardiology, Universitas Hospital.

e Some require new/different ECG machines to be used.
e Some require an expensive computer system to be installed.
e Additional space is needed for additional equipment.

e Staff needs to be extensively trained to use the new equipment.

This dissertation describes the development of a dynamic link library (DLL) which is used to
acquire and decode data from a Hewlet Packard HP4745A Cardiograph II PageWriter
electrocardiograph. Furthermore, the database application using the HP4745A DLL can also be
expanded to accept data from other ECG machines. The acquisition and decoding DLL must be

developed to produce a decoded data file conforming to the format described in this dissertation.

By storing these decoded data in a database such as Hearts 32, the data can be reprocessed
(drawing of ECG traces on screen or on printer). Selected leads from different ECGs can also be
plotted on the same screen. Fast access to previous ECGs will help the cardiologists at the
Universitas Hospital in Bloemfontein to improve patient care. The cardiac patients of the Free
State community as well as the staff at the Department of Cardiology, Universitas Hospital,

Bloemfontein can benefit from the results of this research.

A4

© Central University of Technology, Free State

o Central University of
Technology, Free State

Opsomming

Huidiglik berg die Departement Kardiologie, Universitas Hospitaal, papierkopieé¢ van EKGs in groot
liasseerkabinette. Toegang na die l€ers in hierdie kabinette is binne kantoorure moeilik, en na ure

feitlik onmoontlik wanneer die liasseerkantoor gesluit en liasseerpersoneel weg is.

Daar is ‘n verskeidenheid kommersieel-beskikbare stelsels vir die rekenaarmatige berging van EKG
data op die mark. Probleme met die gebruik van hierdie stelsels sluit in:

e Uiters duur.

e Slegs ‘n klein gedeelte van die funksionaliteit wat deur hierdie stelsels aangebied word sal regtig
deur die Departement Kardiologie, Universitas Hospitaal gebruik word. Die aankoop van so ‘n
stelsel kan dus nie ekonomies geregverdig word deur die Departement Kardiologie nie.

e Sommige van hierdie stelsels vereis dat nuwe/ander EKG masjiene gebruik moet word.
e Sommige van hierdie stelsels vereis dat duur rekenaartoerusting installeer moet word.
e Addisionele ruimte word benodig vir addisionele toerusting.

e Werkers moet intensief opgelei word om die nuwe toerusting te kan gebruik.

Hierdie verhandeling beskryf die ontwikkeling van ‘n “Dynamic Link Library (DLL)” wat gebruik
kan word om data van ‘n Hewlett Packard HP4745A PageWriter 1l Cardiograph EKG masjien te
ontvang en dekodeer. Verder word hierdie data in “n databasis gestoor, vanwaar dit later opgeroep en
grafies vertoon kan word. Interaksie met EKG maak dit moontlik om sekere metings op die
rekenaarskerm te doen. Die databasis toepassing (Hearts 32) wat hierdie “DLL” gebruik kan verder
uitgebrei word om data van ander EKG masjiene te aanvaar. Die uvitruil en dekodering wat deur die

“DLL” gedoen word, moet voldoen aan die formaat wat in hierdie verhandeling beskryf is.

Verdere verwerking van die EKG data word moontlik gemaak deurdat hierdie gedekodeerde data in
‘n databasis soos Hearts 32 gestoor word. Dit sluit in die stip van EKG grafieke op ‘n rekenaarskerm
of drukker. Geselekteerde afleidings van verskeie EKGs kan ook vertoon word sodat mens dit langs
mekaar kan sien. Vinnige toegang na vorige EKGs sal die kardiolo€ van die Universitas Hospitaal in
Bloemfontein help om pasiéntsorg te verbeter. Die kardiologie-pasiénte van die Vrystaatse
gemeenskap, sowel as die personeel van die Kardiologie Departement, Universitas Hospitaal,

Bloemfontein kan baat vind by die resultate van hierdie navorsing.

_\;?T: ‘ ‘-N;i).TY‘

| oF IHE ‘

\ -5 SEP 2001 \
il CORNIKGH

FREE STATE J

© Central University of Technology,tﬁré'é"gﬁﬁé o

I'able ot contents Q

Central University of
Technology, Free State

Table of contents

TABLE QOF CONTENTS s m s oo st ooy s ooy s sav v s s miseasiisvsm vii
LIST OF TABLESoootriierertrrirssmemsss i esessnssesssss s sassesssssesassssssnss s sesasssessessssasssasassasssssusssessssses xiii
LIST OF FIGURES. vvsivesisssvasvio: o isssisnisviss v s iesiss v i royessissisassass ioscsssssspsssessemans b %
LIST OF CODE SNIPPET S sisssimmmnainmpinmissien s s i nnsiaras i xvii

Chapter 1 cusaaumemsamannmmsaammmasssimasas a1

L BAGCKGR O ovrsssscrmmmsscsnesesesnisommmmsnssanpesssnsistpmmansestsntrmsasss nissassnses sxbevs Eisns sess b ssnsans kst 2
2, THE RATIONALE BEHIND A NEW SY STEM sucasasimcnsiisesisesssnssosssss sissavais sty 5

21 TIIBOTHESIS. . i irms it i s st e i L e S S T A S P T e e ki 5
3. PROBLEM DEFINITIONcoiiiiicrienssnsnnsinsssiscisisssssssssssssssssasssessssssssssssasssnsssssssssssessssnsssasases 6
4. THE LAYOUT OF THIS THESIS ...coiuuomnmmsissnimnmsssiscnmnssnasinss o ssesasans s sosss i ssamasssssiniiss 8

CRAPLET 2 cccneerincnniiiiinricnsinscsnsssssisssssesssssssessssussessssssssssssssssssssss 9

1. INTRODUICTTON suceiisviesunniussmsassonsasssesssss vsatiaveansessesnsisin s as s s s s e seis s asisiiis 9
2. RELATED SYSTEMS CURRENTLY IN USEccicivimueiismssivsrisasinsassaninssssasinsssssssnisssssssasasininisn 11
3. DIGITAL STORAGE OF ECG DATA ...t sssssssssessssssssssssssassos 13
4, PROBLEM SOLVTTICIN s coussnssnsnssasssrsessnanasssransnansnsssasnanssasarsnssnssfussnasssssrnsssss sys s sins saes smssamesianes 16
5. RESEARCH METHOD........c..unmmmmmmminnminmimsiimnis s s 16
B: STTIVINVEATRY ioninsnnuninases sonssscasveansisivissiva v sess i cssai s s s e TP e v e s 17

ChapPLer 3 susavmsnsunmnisasnssssmmsansmsyssssassassimmssnas 1O

L; INTRODUECTION sinmanumimnsmnamaminmnmis o msansa i i 18
1.1. BRIEF OVERVIEW OF THE ANATOMY OF THE HEART <.ooovitii et e e e e e e saaeee s 20
1:2: POSITION OF TEETIE AR e s s ot reetoinge s sasses s a5 s 5 e vt e s s oo e i s s 22
1.3. A BRIEF DESCRIPTION OF THE PUMP ACTION OF THE HEART ...ouumiiiiiiiesieaase s e 23

2: THE ELECTROCARDIOGRAPH ..iciiiivssiimissivissassissmiisims s arnsmsssa i 24
2 L SO i e s s e s e o L R B TR e SO RS B 24
R P R Y TV G e T i B e TS T T s A S S e S R T o s e R S R D 25
DB BTG e et s i T s T S S B e A o R S D T S T T s 25
Al BEPOLAR TIVIB, BRI s e mmis s v s e ey o o Voo e s e s o o e S 26
2.5, EINTHOVENS LA W ittt ettt e e s ba b s b be s e e s e b s bbbt e s et sttt b s 28 s st m b e e e s e e ee e rmnneeeeeesenann 28
2.6. UNI-POLAR CHEST LEADS (PRECORDIAL LEADS)..cciiiiiiieiniireiieiiiesiesirnses e crnsssieesens e 29
2 LI POTIER L IKIE, L EIRIDIS o onvivessonivimonsesms s e e i osms s s G A e R A 30
2.8. THE ELECTRICAL AXIS OF THE HEART i uvs i cvsssoos ssvensasve v e ddty e s sivs dss 4 oo ssiobs s ovams v s inssss 30

3. THE ELECTROCARDIOGRAN .. cvovanismismomms i niasn 34
B L PERANIE. ..o cvamonsessonsnnssssnsmnrassy mss s snssasmsismms s e 5 AR 55 SES S8 5888 4 £ AR SRS L HF B4 4 T RS S RS 35
R P B G . S T L S T e o e e e e R e oo B R e 35

vii

© Central University of Technology, Free State

1 able of contents o

Central University of
Technology, Free State

T LR DIAPLIENG o ccommnnesssssesosaoneos st s 4 B ¥ Y B 43 oA R S AR 36
3. T-POINT AND THE ST = SEGVIBIT uwvsosvvreweeeer svssones oy o sv v 0008 e s s aes s son v emiva i s nnts 37
R L 37
A DTN AN R s B R e G R s 37
3.7. TIME INTERVALS IN THE ECG ..ottt ittt it e e e siina e s e s assssasssnasassessnsssassesessssssssnssesins 38
3.8. SUMMARY OF ECG COMPONENTS ..ecitiivitescteeineessteseistesaseesesssassessesssaassessssassssemsnsssssssssssssssresssesns 3
319, INTERPRETATION OF THE B syt it st e s e s s Sl s s o 39
4. THE HP4745A PAGEWRITER 11 CARDIOGRAPHuccoiiiiieieccicicninseasissnssesssssessesssenasssssanenns 39
4.1. BASIC DESCRIPTION OF OPERATIONuutuueunnuassusestsessnssssemssssssssssssssssssssssssssssnssssssssssssnnnnsssssnsnsnsssnss 40
4.2, CONFIGURATION .ottt ee et e et e e e et e e s e e et st e e s et e e et e e e e e e e e e e et e e e e amenaeeeas 40
4.3, SUMMARY OF CONFIGURABLE FUNCTIONS o ivistsssivvvrvntsissos i i v o s i isivs i 4]
4 4. THE ECG RECORDING MODE AND FORMAT USED FOR THIS STUDY ..ccoiviiiiiiiiiieeeieeeeeeereveaesernisnsaennes 45
5. SUMMARY st snasas s s 47

Chapler 4 csusisesissssemss i e smmsmsomieis 19

1. INTRODUCGCTION ..uccieiriererresenssssessssseserarasasesssasasasssasssasasssasasssssasasasssssasasasasassssrasasasavarasasararssasasasase 49
2. DESTIGIN ISSUES . itrtiticcisienritiessssnsssrsssesssasassessssesssntssasansessssssnssnsesessssssssnasesessssssnsnnssnsssasssssaes 51
2.1 HARDWARE INDEPENDENOE cvc o i i s v s s i evesas So s st ra dioetos v i f s i o bosons 51
2 CON BT RABIETTY corsusinssam s ot it i s s s S e B s o e s s s 52
3. ADDRESSING THE ISSUES ... iittiirienteetesisemssntesiesssssnssasassesssssasssssssssasssassnsssossasssssansnssssesssssnan 52
3.1, HARDWARE INDEPENDENCE. ... uuectttiustiseeeeeesteeeieeeeeeeemeeeeeeesasesasseeesssssesmsmassssssabeseseseessnsssnsesnsnmnnnnnees 52
ol DIPREIEC: LN, LD RO IO ccuvswnesonestonssss orasts o o0 o s o 50 A S PR RS TV B4 54
Fi C ONETGUIRIABIETTN s oustsse s ooy s o oo e o s S5 s o S i e O O P S O s 63

3 2 DIATA A CCIUITSTTIONR sy s s e s v oy U o RS 8 N e o S e b S e 67
4. SUNMMARY iovoucsoivnmsssenssimssnssemmssiasniis i ssoisiseesmissisesssse e 69

CHaPer S vamsmmssmsusssvmssssssssmmssspsmsymossrsossssasssos 1

T IN TR ODUCTTOMN icemsmsasisisss i e s s T e B ey v TR s 71
2. CHOICE OF DATABASE MANAGEMENT SYSTEM ...cociniiiiinircsninnssnnsrssreesssssressssssseasas 12
2.1. THE PAR/\DOX® DATABASE MANAGEMENT SYSTEM..cimmmsinssmsimmvisnesivasmss s s 74
Z L T I OIS oo svarvssvesemetmsroms s s 8 P R e S S e S T e 74
Do 2 BB I ORI s o e e e T e S R e S 75
2.1.3. SECONAATY IHACXES ..o ettt 73

2. 1.4, Referentict]l INEQEITY.......oocoiiiieeeeeee ettt ettt et e 75

Z L P S ROl BTN R ccomsmmerasniin oot g S B S WS S S e 76

2 G Bl G UaGE TIIVET vuvc oo svnemvim s s st et ssesi s s o S S s F A VS oD T v 76
2.1.7. Paradox® JRCTA TR oy e e R S S s 76
2:2: THEUSE OF BLOB BIELIIS o oo i oo o s i i o s s i i 78
3. TABLE CREATION woiiticiineenrunisressoniioresssssssssasssnssossnssssessssnsssasssssesssssssssessssss ssasssassssssssesnssssmnsssnsss 79
4. LOADING OF THE TEST DATABASE .cciiciiasisisssssisisessissssussiasssssssssssssssinsovesisasasissiniunissisiodisns 84
A U) T 87

Chapter Ouuasassssinmsssssmasmssmsnmmssisias s 0

L-ANTRODUCTITCNN, o oniirsmsenss sranommmme siesisnons s st s v Rasase s s TS IS o e SRR e 89

viii

© Central University of Technology, Free State

‘1T'able of contents Q

Central University of
Technology, Free State

2. DESCRIPTION OF THE DATA USED FOR ANALYSIScccicvrrsirurisusseeresivsrmeraseisassssssssasassassns 89
2t INTROR T IO csssrrrsrs e A EE 89
B 0)) 7N 0 90

3. HP DIGITAL STORAGE FORMATeeeiirireiissssnsissrnesessssesressassssssssssessersssasssssnssessssessesssassssases 92

4. STORAGE OF DECODED DATA IN INTEL BINARY FORMATcccccvnimiiiieresensnnnerneeseesnns 94

5. STORAGE OF DECODED DATA IN ASCIL FORMAT ...ooviiiiiinscienseossssnsssssssesssssssssssssssenssssases 96

6. SELECTIVE STORAGE OF DECODED DATA IN ASCII FORMAT ...ccoorcveereivcrinnrormmessssees 102

7. RETRIEVAL TIME FOR COMPRESSED DATAcocoonivirnriiisisserisirmsssmsssssrsssssssrssrassessases 107

8. SUMIMARY ..ceveeiriinreeersreneissssssissnsssssssssssssnsesssssassssansessassnssssssssesesanssesasansrassssnnnessssnsssssasanssssassnsssran 109

1. INTRODUCGTION ...coiericiieeemreninssssesesesisssssassassiessssssassssesssasassastsssssssssssassssssssassssssssnssassssessssssssnsans 110
2; DESCRIPTION OF THE BROWSER .cciciiiviisisssissnsiviivsssssaissssssusssssssonsssssssssviivasis tossissssinsiniy 110
2.1. SELECTING ECGS IN HEARTS 32 ..ottt iireeee oo ta e eeeetmnaaae e aeeaesansaeeaeseeeeeennnmesseeeessaannsrnnsses 110
2.2. VIEWING ECGS TN HEARTS 32 ... ooeeiciiicriieciirecresetiessessssessassssnsessssasssessssssssnsesesnsssnsesssnsesasesssssss 111
2.3. BROWSER SPEEDBUTTONS ..tiiitie et eieit et ee e e e e s s e e e e s e e e s e s s e s s e e eessam s s aeese e nsaneeas 112
2.4. WINDOW MANAGEMENT & VIEWING OF MULTIPLE ECGS. . casinns 113
2.5. SUPERIMPOSING OF SELECTED'LEADS OF AN ECG....coiiiinnninmminyiiamm s o 115
L L 1 . L T 116

G5 (F21 1) 11 i SO YT — 1 1 |

T; INT RIOD TC T IO s csusssassyonvns vunssnsonsessss s s s vsas s sass esisasss sy i issss st s o absesu s sy asasnans 117
2. DEVELOPMENT ENVIRONMENTccoievsireesrsnsesssssnssssssnassssansessmssnssssasansssssssnssssessnsssssnssssssans 117
3. DATA ACQUISITION MODULEc.ccoeevreerrsrnereeesssseessnessnsesssnssssssessasssssessssnssessasssasssssasssasssssnsens 118
3.1 BTOBAL VARTABEES wx e toonesmsesmrs it o s e s e s s e e e s i i e s v 119
32 DATA G OV I A T ONS bans v e s N S R s S e v i 121
3.2.1. Function ReadDecodeCaleStoreECG ... 121
3.2.2. PPOCEAUFE GEIF IR ...covvivecoiv e ev e r et et amb et aeae ettt 122
T2 3 AFURIBIEON TIRCE o miomsosmonssimons isscsssosssns syt 5 S5 5 i NG A A S 124
32 Bunetion BeailL PBIOBK owumumvsamsimasas oo s s o AN S e 124
3.2.5. Procadire WrHeLLPBIOEK . oo s o s 4 o5 s s 1o 000y 0w s it 125
F 6. TRREHon CRBEESTIN s v i vt e B s B S A VA 38 P s s s 125
3.2.7. FURCHON GEICOURE ... oo 125
32,8, FURCHOR CRECKTGRIL .1 cxwvers s ovinvemsrssmssssimmn tsseiss (6 as s dmssam s o s s st sy s sis sy s s st 0 126
3.2.9. Procedure CommitDataToMEMOTYc..ccociiiiiiiieeiiiis et 127
3:2:10: ‘Procedira ConmPortd TRIgEERAVAL .conensmmmmanmnmennms msmm s i i i 127
3.3: DECOMPRESSTON (DD ECODING) oo s isims v s sians v s s i s st v B s s 127
330 PrOcedure DECOAE ... 127
33 B O E BHITTITIIT coomase oressvansnsm s sut s st s s s A S5 s 0 M SN 35 AT 130
S8 IO ORI ot o s R e B R B P e sl 1317
334 Funiction MaREVOTe. . cnmovmmummmns s s s o s 5o s s v b s 131
33,9, FHRON SCHRMEBIT o cvrominsns sy e a1 e e e RS S50 03 55 5 o ot e s 133
314, CALCULATION. .t tttttttiissiaretsssisiesasussssessssssssssssssssssssassssssssesssssssbsssssssssssssssssmsmssseeseesossmsemnsesasesesmmne 133
4. GRAPHIC DISPLAY MODIULEcovvveerrrerssreersnessssnassasssssssssasssssasssasssessssssssessasessssassrssesssssssassns 136
ix

© Central University of Technology, Free State

1able ot contents

4.].. THE MULTIPLE DOCUMENT INTERFACE s i cxntssss soninnenssssnarssm s missiammi i 137
411, FURCHON DEAWLEAASc.oeoeeveeeeeeeeeesesesee e e e et e mim e et e et e et e s s e mseemnes 138
4.1.2. Procedure TMainForm FOrmCPealec.cooeeeeeieeeoeeeeeeeeeee e 140
41,3 Procedure TMamF orttSBOWHTNE . . .ouinvssaminmssaiamsssirosmimimsissemse iy 140
4.1.4. Procedure TMainForm.CreateMDICRIId...............cccccoveioiiiiiiieiiiiiiieieeieeciseinsienissvasiseses 140
4.1.5. Procedure TMainForm. FileCloseltemClckcooovovoeiiiiiiiiiice e, 140
4.1.6. Procedure TMainForm. File EXitltemClick..............ccoooooveeoeeeeieeeeeeee e, 141
4.1.7. Procedure TMainForm. WindowCascadeltemClick.................ccccoovoviiiiiiiiiieiiieieeeeaee, 141
4:1.8 Procedire TMainForm WindowTHeHRemOHoK. ... s vs s s 141
4.1.9. Procedure TMainForm. WindowArrangeltemClick ... 141
4.1.10. Procedure TMainForm. WindowMinimizeltemClick..........................c.ccccoiiviiiiiiiiiiiiiin, 141
4.1.11. Procedure TMainForm. Update Menultems.....................c.ooociiiiivciiieiiiiiiec e 141
4.1.12. Procedure TMainForm. FormDestroy...........c..c.ccccciiiiiioniiiiiiiiecieeccc e 142
4173, Provedure TMainFornisBZoomBuUttonCHek o casaimssiosmavissivisyesmsvimss e 142
4.1.14. Procedure TMainForm.sbCalliperButtonClickcoocovvoiiiiiiiiiociiiiiiicceeens 142
4.1.15. Procedure TMainForm.sbRefreshButtonClickcccccccoioiiiniiniiiiiiceiiin 142
4.1.16. Procedure TMainForm.sbClOSECTICKccceoeoeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 142
4.1.17. Procedure TMainForm.sbGridButtonClick...................cccoooiiioiiiieiiieeieee e 142
4.1.18. Procedure TMainForm.sbDrawSameLeadsClick................cccoccoiviviviiiiiiiiiiiiieeiiiieiiian 143
4.1.19. Procedure TMainForm.sbFullSizeButtonClickccooooooiiiieieeeeeeeeeee 143
4.1.20. Procedure TMaimForm:RefreshICHCE v st 143
4.1.21. Procediire TMainForm.GridlClick......saminmsmnimunssvansisssmmassnramaiasimess 143
4.1.22. Procedure TMainForm.ZoomIClICKc.coocvvvieiiiiiiiiiecetsiseecses s esiea s e saeeenaens 143
4.1.23. Procedure TMainForm WindowTileVItemClick...............cccoooooooeoeeieeeee e 143
4.1.24. Procedure TMainForm. sbPrintClck...............coccoooiiiiiieeeeeeeeeeeeeeeee e 143
4.1.23. Provedure TMainForm StamsBarDbICIIek. ... cuwiwresussenmsmsnsmimesis rsivsiriasinsis 144
#4.5:26 Proveduie TMainFEormiQpenTClHeR i....com i o smiamis s 144
4.1.27. Procedure TMainForm.sbOpenButtonClick...........c...oviiimiiimiiisiorins 144
4.1.28. Procediire TMainForm PrimtlCHEK o mocmimmmimmimmaaiset v b c v s 144
4.1.29. Procedure TMainForm.Superimposel Click.................c.c.cocooiiiiiiiiiiiiiiiiieeeeeeeiee e 144
4.1.30. Procedure TMainForm Help ICHCK.c.cccooiiiiiiiiiiiiiicceee e 145

4.2, MANAGING THE CONTENTS OF A CHILD WINDOWcveeiiieeieeeiieeeeeeeeeeeeseeesaeesnseessnnessseessnnaenses 145
4.2.1. Procedure TMDIChild FOrmCIOSE.cccooooooeeoeeoeeeeeeeeeeeeee e 145
4.2.2. Proceduye TMBDICHITERSCHEK .conaimsemisrsmmmivms s sssmamsm s s st st 145
4.2.3. Procedure TMBICEIA EXitlONGK v s oo vrsvision sores s bt i s 50 s b 0B 0005 145
4.2.4. Procedure TMDIChild AfterDrawValues ... 146
4:2.5. Procedie TMBDICHITE, SConFIlE: oo i i i 5 s s eeian s v s GRS SR 146
4.2.6. Procedure TMDIChild RSMOouSeMOVE..................oooieiiiieieeciee et 146
4.2.7. Procedure TMDIChild. FastLineSeries 1 0AfterDrawValuescccoocevvveiviiiiienaens 147
4.2.8. Procedure TMDIChIld FOFMUFEAIE ..o e 147
#4.2.9.. Fyvietion TADIC R IR UD ORI ecun v ovossmvommssossmosamosmisss torse s a0 e S5 92 2050003 148
4.2:10, Funeticn TMDIChd-FindLeadOEer v mimmssnsmmnnm i S A v s i Seasm 148

4.3, SUPERIMPOSING OF SELECTED'EC G LEADS G svisiesemsiisnsssmisssiisnmsisririsigabi i mis s 148

Chapter U .ouuusasmsonssmmssnissasmssamsmsssssosassssinsssass, 159

L INTRODUGCTION cssvmnmnmnnsnprmmmammsrainss s nisniias o sy 149
2. HIGHLIGHTS ..o ttvterecirereeesssssssersssersssssssssassssssasssns teteeseesssssssssrsrasssnrnrnrnerrns 150
2.1. FIRST COMMUNICATIONS (HP4745A TO HPAT4A5A) ..o ecvissciiisee s snsas s esssaesssassnees 150
2.2. CONSTRUCTION OF THE RS-232 COMMUNICATIONS CABLEveeeueeeeereteeessssesssnssssesssssnsasnseees 150
2.3. FIRST DIGITAL CAPTURE OF A CONVERSATION BETWEEN TWO HP4745AS...o.ovoveeeeeeseverrens 151
2.4. INITIAL ATTEMPTS AT ANALYSIS OF THE DIGITAL ECG DATA w..veveeeeeeeeeeeeee oo eresereeen 151
2.5. MANUAL DECOMPRESSION AND CALCULATION OF ECG DATA ...ccoouiuieieeeeeeiees oo 152
2.6. INITIAL GRAPHING WITH MS-EXCEL OF THE DECODED DATA.coousseeussamesoessoesensssnssssssenssesses 152
2.7. THE FIRST RS-232 COMMUNICATIONS PROGRAM (BORLAND® CH+ 3.1)ocvr v eeeneens 153
2.8. CAPTURING DATA FOR STATISTICAL ANALYSIS ... vvoveeee e oeeeesereseseeseveeemeeseesesesesesesesasasaneees 154
X

© Central University of Technology, Free State

Table of contents Q

Central University of
Technology, Free State

2:9. DEVELOPMENT CROBS=ROADS uovcsivssssssionsass ot s toi i s st s i it i is s o osh ssaonn 154
2.10. THE FIRST RS-232 COMMUNICATIONS PROGRAM (DELPHI™ 1.0)....ccciiiiiiiiniiiniiniieie e 155
2.11. WINDOWS® 95 AND THE 32-BIT ENVIRONMENT (DELPHI™ 2.0) . 155
2.12. FOLLOWING UP ON DECODING AND CALCULATION 111titieeeiessirinrieeeseeaseeasimrmssesassssmseaasssassnseanaeenss 156
2.13. TEECHART AND DELPHITM 3.0 ..ot e ee s e e e e e s e s e s e e st eeesasasa e e se s e s e e e s anananasasasanaean 157
2:14. CHOICE OF OPTIMAL STORAGE METHOD. ..ccccosmiismsi vt ronanis it s st svsa st 158
2.15. INTERFACING WITH THE WINDOWS® REGISTRY w.oovoeoeeeoeeeeeeeeee oo 158
2.16. DEVELOPING A DYNAMIC LINK LIBRARY ..eoiiiiiiiiiiicicee e ee e eeeeeee e ee e e e etaseeseeasneaeesaeeennnnsanean 158
2.17. THE LITERATURE RESEARCH ON THE ELECTRICAL ACTIVITY OF THE HEART....oooiiiiiiiiineeieiainns 159
218, THEUSE R NS WCTRTN ouiinorsisninun s o s s o e i s i TR ST G 159
3: AREAS FOR FUTURE RESEARCH ...cosivvnsmin v ssas s s vesisirse 159
4. FUTURE OF THE SYSTEM ...ccocierrnreetirereraressereesssessssssessesssaesesessssssasasesssssesssssasssssssransansssesassnne 160
ks Bl RN AT ocunsstassssscusaions vt 53 e R S A YR AR T 160
4.2 SOTTWIABE v it vsuvovumes v e o0 0 T e oy e P 4 R o D A T O A Vo S A S P NS 160
5: EXTENSION OF THE SYSTEM .. i s s ainnas 163
6. SUMIMARY .oceeeteiiiiiicreeeiniiiessssnssessssssssssnssesasesssssssssssesssssssssssnssssssssesssssssssssnsatsesssssassasassssssnsnsessasssnns 164

1. INTRODUCGTION ciiiiiircnnniiersssrsenissescssssssnnsarsssssasssssssssssesssesonsssassasss sasssossssssssaassssrassassssasssssasansonsrn 166
2. DIGITAL COMMUNICATIONS OVERVIEWiiciiiiniiiiiisisessssssssessssssssssssssssssssssssssanes 166
2] CABLE CONEIG R AT ION s e s s i s e i i s TR S b L s B e e s S s 167
2.2, CONNECTION ALGORITHM .uitiiiieiiieieitiiieies st s s eiavets s s eae e s eases s bsssasssesasssssnbseessnssbanssaseassbsssssesnns 169
2.3, DIRECT CONNECT INITIATION ...ttt e e e aeasaeeasasasesesasssssssssntesnresssessssssaesessseresensesses 170
2.4, DIRECT CONNECT AUTO ANSWERoovirmrueieerrerminsissessemrassesermrnasssssssnsnserssrsessesnmmassonsesseesnanssns 170
3. DIGITAL TRANSMISSION - COMMUNICATIONS PROTOCOL ...rireiecccecrecnrensseseeeenes 170
4; LOWER LEVEL PROTOCOL ;.civisviissisinivsrssivsissivsssissssissivanonsivivssisinissviniinaissssiersaesisvivssies 172
e T B N oo e e T R s A e e A R e T S E e B e e 172
4.2. LOWER LEVEL PROTOCOL PROCESSES ...coeeetieieeeeiiseereeessessaeessassesseesseseensssssnresesessnsssssssesmsssnssssssen 172
&3, DIATAFORMATS ... o v vremssrnsrnmmsrssnsssis ennsbsnsnsmsssiosissm st eaossmie sy ssi s sasie s oxsb e s o5 s sayem o s sonins 172
Ak NN T G A TN S S TR AT N e s o s e a0 A A A A S A i L2
I E e I e 173
4.:6. CONTROL CHARACTER SEQUENGCES ::5v5. ciauieema e sissenes s vasvsasiass o imayes s asi i iiems o3 s spasiaios 174
A O PR TN G SEENARID s e e S e e s S R s A s 176
G701 TRE COUIE BIOCK ... e e et 176

B 7.2 TREDAIG BIOCK ... cvvvsirmiswmmnsssssss samssesnssmssmsssn s s sy e s s s s 43150 58§ 4R MAMEF 4 S Stm ae w t 178
G.7.3. e TUPRHOPOUI. «.ovc i viinssisssvnvsssssis st st s s ssvs 8o e en s34k ok o o o 4 e T 179

BT A, TIRIBAOUES s s vvevrvmsassims s s s b e S i e s B s s e S e e s s s 179
75, il T ORI O st s s e e o i s R s R s s s 180
47,6, ABROFIMG T@FIMIRGIION. ... e 180
4.7.7. Cyclic Redundancy Checking AIGOFItAMccoooiiiiiiiiiiiiiiiiii e 181
4.8. LOWER LEVEL TERMINATION CODES.c.ciiiiiiiiiiiiiiiaieie ittt i esesssesssa st sesessss e mi s e 182
5. UPPER LEVEL PROTOCOL iisuivisssissiiisisssssivioivsvivesscssins iossssivissesisssivssiasisimssissss ivossiavismmdi 183
S L. IIESIGN, .. s ennnsnnssssmsnensssssnssssnnssssesssnssss bmmsssssssss sogss antss pssansssen b sss e oA oS A AL S8 450 4 S, 183
5.2. UPPER LEVEL PROTOCOL PROCESSESuveiiiiviiieiteeetiessnsiesesssmseesenssssssssssssssssiessssssssssssssssssssssssns 183

5 B SN PPOR TED IO DI S s iovsvuntmsinsens smessmnesess i s e s s s S i S St e 9 183
Bt IV ATA B ORNVIATS osimvmevsons s oo s s oy 0 05 0 e b i b4 e O S A e B S st 183
5.3 OVERATLL ST RAT BN woresissmassvoss s s 1o s G s o L s e e e e i T i 184

S B, BLIOICKING. . oo csneessmnansss nrss ssnsmssam systs sens pmstnpestss s snnnmndiss S S E0 HYdn e s AR RS R R S A e g 8 184

Xi

© Central University of Technology, Free State

Table of contents o

Central University of
Technology, Free State

T U 0 | N 185
e T 0 T 187
5.8 1. ABROFMAL LOZ0MS ..ot 188
5.9, COMMAND INTERPRETERuveitiiiitiieteietteessieessseesteeeseeesaseasssessnsesssse s b e eabbe s s eabeenaneeensaebeensnseannees 188
O O g T e B o o i) 63 L0 VSR 189
5.10. ABNORMAL TERMINATIONS suucsir s cveaovss s iia st 5ot s s s s st b st s s s 5o v asnanss 189
A T T s T — 189
5.10.2. Cart Reaction to Error COoRditiONScoooiiiiiieii e 190
5.10.3. Operator Induced TeFMIRAIION.cocoiiiiiiiiiii e, 190
5.11. COMMAND INTERPRETER SUBSYSTEMS .uvvuitiiiteesiesessesesessssmsmsassaemassmamaaseesssesamnaeaessessnnasees 190
512 THE BC G-I S U B Y SIBEM ccurvmsismsssss v s s s i s o s v o e 5o e S 191
3020 Flowof subsystem 001, “ECG=INT v s oo s i S s s 191
5.13. HEADER DATA DESCRIPTION ...ooutiiiiiiiitieiieieitieeitie st ses st e sssssssee s st a s s nas s e eesnssaninsesnseas 194
5.14. LEAD DATA DESCRIPTION.....tiittiueiterteireeietreasseassesssensssssessaeaseesaeessessseesssenessessssesssesneesnessneens 198
540 Le@d TAERIIFIE S ..ot 199
8 e s P OB LB TG s vvssssomoonimsnt usesi s o B A R e S S e S 200
51 5. COMPRESBION ouusm it i s e i s s s i e e sl vrs i oo v v s 201
5.15.1. Raw Data Manipulation (“"Smoothing ™)cccooiiiiiiiiiiii e 201
35.15.2. Compression AIGOFIAMccooiiiiiiiiiiiiiceie e, 203
5.13.3. Compression ENCOAINGcccooii ittt 205
5.15.4. The relationship between encoded differences and decimal valuesccccoooeevee 205
5.16. DECOMPRESSION IIETAIL st s sass s s s s s s 5o e s s sessmssss s ssvass s s onon 209
. J0 . Proceaiire DECHEE oo mmmmmm s s s i s i e B R S R B T B R A S 209
3762, Fanthiogh MOkEFEIHE. oo iniin s st s i s e 0 AR e e PR 213
5.17. UPPER LEVEL TERMINATION CODESc.uiitiitiiiiieiiiteeiestie et sbe st staessraesnne st assmasssssessnnee s 217

APpPendix B susssssssmmmmmsmmmssinsssmmmsansssssnssesessaeaisssnses 200

1: INTRODUCTION sosnmmamsesisism s e s a s 218
2. LEAD IDENTIFIERScociiiiiiitiiiniinniensississsissiisssissssstassiassssssssse sans sasssssssnnsssnsnsansasssnsssnsssssssasss 218
3. FILE:STRUGTURE osamnasmmimmsmssimssminsies ioesnssssms oo s 5 ess i ionsssssssse s svmysss cemmos v sisvsess 219
4: DLL/SPECTFICS: AND RULES <oy cooussoscossvonsmrosss o s 1o o 0 a0 e s i ssssnoiassasasss 222

ATPENITE L rummimasmme o S R DR)

BiblIographyieecciiricicnssnieiinsscnnneeccscsnnienccssssnncneerecssnenne

RN e ot A s N et g5 e n b N n St u e aPaSy N oS et e, 1, o |
PUBLICATIONS s s s s sy e 0y e ok B v b v v W S B e e S e e v 1l
PR EEIINGS s i Shsmasas v e as i Ehos s o S e e B R ey v
PROTOUILEL. crwronrrmsonssstsmmsrsssmsms s s s s s s nsts s i st A i KA S e 8%
HARDWARE MANUALSoittiiiiittiiiitieeseiatesesiresessssasesasasasssssesssssasnsesssssesssssesssosssssssassessesassssssiasssseersens v
SOPTWARE IFANTIALS o cvmsnsossimsas s vt s 5o s s s i o s i s s s e e s s i S o o4 st V
PROBUCT BROCHUIRIES oz o g s s sy i S A e s R B £ 0 S S S T e v
REQUEST FOR COMMENTS ;s sy cri o s o Sy 0o s B s B e s T o s s i i v
Xii

© Central University of Technology, Free State

List of tables Q

Central University of
Technology, Free State

List of tables

e I T T oo s R S T R SRR B0s 0
TABLE 3-15 DIFRERENT PARTS OF THE HERRT v s s i e i s s B e b b e 21
TABLE 3-2: THE 12 DIFFERENT LEADS OF A STANDARD ECG ... 26
TABLE 3-3; SUMMARY OF THE NORMAL TIME SPAN AND AMPLITUDE OF THE DIFFERENT ECG

KT OV IEEIN S, e o i 4 B B4 A B A S 595 A VA A 38
TABLE 3-4: FORMAT CONFIGURATION OPTIONS 1 vxvuevi i siesivisves s st sl sose ol s s v sy 41
TABLE 3-8, GLOBAL PARAMETER Y P THOR S i cis iov it i oy sss 00 5 et 0 s i v a0 b mmn b mom e e mn e 43
TABLE 3-6; TRANSMISSION PARAMETER OPTIONS. ..ot eee e s e e e 44
TABLE 3-7: TIME AND DATE OPTIONS L..uvviiiitiitieeeiaeeeireecores st eesaessiesissasteesiee e e e e e e e e saa e e e s 45
TABLE 3-8: REPORT FORMAT IN USE AT CARDIOLOGY, UNIVERSITAS HOSPITAL, BLOEMFONTEIN........ 46
TABLE 3-9: ITEMS FOUND ON THE ECG REPORT (AUTO/RS MODE, FORMAT 2) ..o, 46

Chapter 4eicicreeecnnnnercnsnceeccssnenssssaessssssnsesssssasesssnssessssansases 49

TABEE4=1: ADVANTFAGES: OBUSING DLES:womrmmmanmimsnsme o i s v e i 55
TABLE4-2: DISADVANTAGES OF USING DILLS i covsrve s ammsnmm i s s s i i asees 56
TABLE 4-3: CONTRA-INDICATIONS FOR USE OF IMPLICIT DLL LOADINGovveeeeeeeeeeeeeeee e 60

B [T 0171 -] e TR — | |

TABLE 5-1: ADVANTAGES OF CLIENT/SERVER DATABASE TECHNOLOGY ..ooiviieiaieeeeeeeeeeeeeeeeeeeereeesaeenes 72
TABLE 5-2; DISADVANTAGES OF CLIENT/SERVER DATABASE TECHNOLOGYovvvieiiiiiee e 73
TABLE 5-3: PARADOX™ VALIDITY CHECKS ... e e eeoeeeeeeeseeeeeeo oo e e esees s es e eeee oo 74
TABLE 5-4; VALID PARADOX" FIELD TYPES AND SIZES.. ... ovo oo oo 76

Chapter b waasmsumassmsimnsnmsasmiissimmibisismsmes DD

TABLE 6-1: DESCRIPTIVE STATISTICS (HP DIGITAL STORAGE FORMAT) ... R 90
TABLE 6-2: HP DIGITAL STORAGE FORMAT - ADVANTAGES & DISADVANTAGESoovoiiiiiiiiieieen. 93
TABLE 6-3: STORAGE RESULTS FOR FILES STORED IN INTEL BINARY FORMAT.oiviiiieiiieaeieeceeeins 94
TABLE 6-4: INTEL BINARY STORAGE FORMAT - ADVANTAGES & DISADVANTAGES.......coooviiiiinenan.. 95
TABLIEG=S: IDESCRIPFIVESTATISTICS (ASTLL STORAGEFORNIAT Y x v remrs i s ittt 96
TABLE 6-6: ASCII STORAGE FORMAT - ADVANTAGES & DISADVANTAGES ©..ccvviieie e 97
TABLE 6-7: DESCRIPTIVE STATISTICS (COMPRESSED ASCII STORAGE FORMAT) ..o, 100
TABLE 6-8: COMPRESSED ASCII STORAGE FORMAT - ADVANTAGES & DISADVANTAGES 101
TABLE 6-9: LEADS PRESENT IN A HP4745A DIGITAL ECG FILE ...ocoooiiiviiiiiiioeeeeee e, 102
TABLE 6-10: DESCRIPTIVE STATISTICS (ASCII STORAGE FORMAT, SELECTIVE)......coocooiiiiiiieaianinn, 104
TABLE 6-11: DESCRIPTIVE STATISTICS (COMPRESSED ASCII STORAGE FORMAT, SELECTIVE)........... 105
TABLE 6-12: DESCRIPTIVE STATISTICS (RETRIEVAL TIME FOR COMPRESSED DATA).....ccoooiiiiiveine. 108

L T m—————— |y ||

TABLE 7-1: HEARTS 32 ECG BROWSER SPEEDBUTTONS......cuiieiiiittiieteeessseseeessetssssaeesssaeneesasaensesseanns 113
TABLE 7-2: HEARTS 32 ECG BROWSER WINDOW MANAGEMENT COMMANDSuiieiereeeeereeeeee e, 114
TABLE 8-1: GLOBAL VARIABLES USED DURING DATA ACQUISITIONvveeirvereeesreseseiesesessenseeesssseeseonns 119

ChADLer Baamamnsnsimminmoicusinsssmissssassisassssssmssio 11 T

TABLE 8-2: OBIJECT PASCAL UNITS FOUND IN THE HEARTS 32 ECG BROWSERcocuiviiiviiieeeesieeenen, 137
TABLE B3 MDD WINDOW TYPES 1o axnomsseswsmonnssssie s b i s o s i 0 s srss iy vs s et 138

APPENAIX A .uuconriiiiicrrennsecccseesssnssssesssesssanssssssssssosonssssssossasssss 103

TABUE =1 PINOTEDR: o osmmmesssismiinmtossme s i s o smms i i i s S e g G s o Sz s S i 168

‘TABPE A=2 'EONTROLCHARKGTER SEQUENGES s e omvesm sosas s s nie 174

TABLE A-3: LOWER LEVEL PROTOCOL TIME=OUTSvetiiiueeie et eee oot eee e e e eee e aeeeeeean 179

TABLE A-4: LOWER LEVEL TERMINATION CODES......ceteiteesteeeeeeeieernnesresieesesiee e e e eeeeeeee e e e e 182

TABLE A-5: UL COMMAND CODESvoeievieeieeeeeeeeemeeeeseeese e esseeaseessaseaeeeseeesoenesasesneasaseassensaaeeneenn 185
Xiii

© Central University of Technology, Free State

O

List of tables
Central University of
Technology, Free State

TABLE A-6: UPPER LEVEL IDENTIFIER CODESoiiiiiitieieeess oo e e eae s e enae e emae e e eae e 186
TABLE A-7: UL TERMINATOR CODES ..cuutttiuteititiiitieiee et eeeeees e ee et ae et esse e s anbe s enseamansesnneananas 187
TABLE A-8: THE LOG=ON IDENTIFIER0tveteiuiresiiiesasisseeeitieeesssaeesassssessssssssssssseesssssesssssesssssssesssnssens 188
TABLE A-9: CI EXCHANGES FOR UNSUPPORTED SUBSYSTEM ..ivivviiiimicasiiiesissressissmnsssssvossesssrasssssnsnss 189
TABLEA-10: SUPPORTED' SUBSYSTEMS . ivisrissussvurssssss st v s oo s ss soissisasisom sssvas s 191
TABLE A-11: FLOW OF SUBSYSTEM “0017, “ECG=INT ... oo ieeieeseereeesenesneeennessarasenneen 192
TABLE A-12: ECG TRANSMISSTION EXAMPLEoiiiiiiiiiiitieieieeeeeeee e eeeeeaeseae s eeaeanaeeeeeaesensesanessns 193
TABLE A-13: HEADER BLOCK FORMAToiiiiiiiiiiiceeee et 194
TABLE A-14: PATIENT RELATED FIELD ENTRIES (HEADER DATA)....cccciiiiiiaiinnniiiniiinsiiveiainanscisnins 195
TABEEA-15! AGE CODING (o AKS FORMAT oo vmmssssiosies s s sy vei s § s 1 sl s 196
TABLE A-16: ECG RELATED FIELD ENTRIES (HEADER DATA) 1.ociiiiieiiie s vne e 196
TABLE A-17: TYPICAL INSTO MAP FOUND IN DATAFILES ..ooeiiviiiiee et e e ee e 198
TABLE A-18: WAVEFORM BLOCK FORMATooiuiiiiiiiit et e e e erae e ennaan 198
TABLEAIS: LEAD IDENTIEIERS s vsnsans e st s oo s i sy oo syt avove 199
TABERA-20% LEAD IDENTIEIERS (POSITIONBITS) umsrasmseasinsysvevase s s s isomvn s i 200
TABLE A-21: POSITION BIT IDENTIFIERS PER LEAD GROUP AND CHANNEL.......ccooiiiiiiiiiaiiiiieae 201
TABLE A-22: SMOOTHING FORMULZEoiiiiiiiieiiie et e e e s esm e s asatea s s ssaessesnssaesssnnase s neas 202
TABLE A-23: MULTIPLE ZERO ENCODING ...ouviiitieeeeeitieeeeee e e eeaeseeeeeaeeeeae s e e s ae s e e eee e eae e 204
TABLE A-24: COMPRESSION ENCODING ...vvviiiiiiiiiiieiiice it ciiseste e aetseeenssestaeeenssassseessaseeasseanes 205
TABEEA=25% BRACKET CODE Ojgeoscs vinssimumusmmmssmmesvsss v mmss s oo s s i /s s ais: 206
TABLEA~267 BRACKETCODE 100 .imumivrvsvinsvnmmmso s it s iomasiss sk aes S sinsassd s st i dos 206
TABLEA-27" BRACEET COBE V0L s s o it r s AV s £v3 s fo b e 207
TABLE A-28: BRACKET CODE 1105 (CONDENSED) «.ciiuiiiiiitieiceiie et cne s are s anas s 208
TABLE A-29: LEAD IDENTIFIERS (BINARY AND DECODED DATA)c...iiieieecviieereesiee s ssiessvessiesenins e 210
TABLE A-30: ASCII CONTROL SEQUENCES USED FOR DATA COMMUNICATION AND DECODING 212
TABLE A-31: COMMONLY USED NUMBERS AND CORRESPONDING BIT PATTERNS...........oooocoiiiiiiiiiiannn. 217
TABLE A-32: UPPER LEVEL TERMINATION CODEScciiinmmiiininmisiminnioriiomssscossstes e ionsiveniinions 217

APPENdix B ..iiiiiiriininnincnncnenennsssssissssssssssssssssess 218

TABLE B-1: LEADS PRESENT IN A BINARY ECG FILEooiiiiiiiimiieimriiieeesecermnsossesssrsssnenssssssssmmanssssseis 218
TABLE B-2:: STRUCTURE OF A HEARTS 32 BCG DATA FILE ccosivivsivsromsvest svesstirms thostar st s i osss 219
TABLE B-3: DATA ELEMENTS IN A HEARTS 32 ECG DATA FILE L.ooiiiiiieiiiies s 220
TABLE B-4: EXAMPLE OF HEADER (LEAD MAP) DATA IN A HEARTS 32 ECG DATA FILE......coocoveeeneen, 221
TABLE B-5: EXAMPLE OF LEAD DATA IN A HEARTS 32 ECG DATA FILE iuvvviviiiiiiiieiieecieee e 222
TABLE B-6: FUNCTION CALL PARAMETERSoiiiueieiteeeae et e e eeae s e e ena s seeennn e 223

APPendix Coonamsmaasnmisasnmis s 2o

TABLE C-1:

COMMONLY USED ABBREVIATIONS AND TERMS

Xiv

© Central University of Technology, Free State

List of figures Q

Central University of
Technology, Free State

List of figures

Chapter 1 000000 OADODDOSTDOODOCODOSOOODOOOPOROOIVOIDODCOOOROODEDOOSGDSOOOOOSOOSORORBDORDDS 1
FIGURE 1-1: DATA COLLECTED FROM THE PATIENT AND STORED ON FILEooieiiiiiiiiiieeceeeereeeee e, 1

ChAPIer 2 scovmussnmss i s s v

FIGURE 2-1: THE OLD CHARACTER BASED USER INTERFACE OF HEARTS......coiiviiiiiiiiiiiiiiieiesescininnienens 10
FIGURE 2-2: THE NEW GRAPHIC USER INTERFACE OF HEARTS 32...iiiiiiiiiiiiieieiieeseciee s eiie e sisne s eiase s 11

CRAPLET 3 aceeeircricrninrnerssrssiessnnossnessassssssssensssessssssosssssnssssssssss 18

FIGURE 3-1: SCHEMATIC REPRESENTATION OF THE HEART (FRONTAL VIEW) . |
FIGURE 3-2: THE POSITION OF THE HEART IN THE THORAXvviiiseioesssssivasssreivsssenssrsnvvssissanssrsssnses ivisivss 22
FIGUEE 323" ATRIAL CON TR AT ION nieses e s s i s s o o vy oo Ve e S B e 24
FIGURE 3-4: VENTRICULAR CONTRACTION L1ttitrvreeisurreisnnersersessesssaeessnsansasmasesanssnsessssasssernnesssnsssesennses 24
FIGURE 3-5: EINTHOVEN’S TRIANGLE AND THE LIMB LEADS 27
FIGURE 3-6: EINTHOVEN’S EQUILATERAL TRIANGLE28
FIGURE 3=7: THESIXCHEST LEADS wovvocuovssvssimssorsasess s oo o s s s s s s s v b s s o swinses 29
FIGURE 3-8 THE HORIZONTAT PEARIE s v s o e e S e sy St s T i S ey e pe 30
FIGURE 3-9: THE THREE DIMENSIONAL VECTOR CARDIOGRAM AND THE MEAN ELECTRICAL AXIS

(0] B A 31 N - (RO 31
FIGURE 3-10: 3 INTERSECTING LINES OF REFERENCE FOR LEADS I, ILAND IIL...cccoiivriiieeee e 32
FIGURE 3-11: 3 INTERSECTING LINES OF REFERENCE FOR LEADS AVR, AVL ANDAVF ... 32
FIGURE 3-12: 6 INTERSECTING LINES OF REFERENCE (I, I, III, AVR, AVL ANDAVEF) ...ccocoiiiniiiiinnnn 33
FIGURE 3-13: DIFFERENT VIEWS OF THE SAME CARDIAC ACTIVITY 233
FIGURE 3-14; A CONVENTIONAL ELECTROCARDIOGRAM........iiiiiiimiiieiiiiieioiresinssesiensinssssieeseseesessosnesnses 34
FIGURE 3-15: ATRIAL CONTRACTION AND THE P-WAVEottt s e esnna e s e seennnee s 35
FIGURE 3-16: VENTRICULAR CONTRACTION AND THE QRS COMPLEXoitiiiiiieeeie e 36
FIGURE 3-17: T-WAVE INDICATES NO CARDIAC RESPONSE.....cceiiieiiitiieeieeeeeeierieeeeeeeeeesaeaeeesesesnnsaaee e 37
FIGURE 3-18: THE CARDIAC CYCLE.......cociieiiiercnireeeerenann,
FIGURE 3-19: HP4745A BLOCK DIAGRAM
FIGURE 3720: A SAMPLEE BOG coic vt viv s s sy es s i s s s s i e disesvavas

CHAPIEE .. e csemuimmseercesmmsnmmsmemmmessrsamssmssnonponpssencesyevcrsss B9

FIGURE 4-1: SCHEMATIC REPRESENTATION OF DATA ACQUISITION.uuniiiiericiieeesieeeeeeeee e ee e eeeeeeesee e s e 49
FIGURE 4-2: TWO MAJOR COMPONENTS OF DATA ACQUISITION ..coeiiiiiiiiiiiieisiiieescesrieeesiaiieessieseesessasenns 50
FIGURE 4-3: HEARTS 32 AND THE DATA ACQUISITION DLLi...ccooiiiiiiiiiiiiiiiiiiiiireveiasiessesienmeeseasesssmanes 53
FIGURE 4-4: THE INCORRECT APPROACH (INTEGRATED DATA ACQUISITION) ..e.evveiiiieeieeiiee e eeaeenes 54
FIGURE 4-5: CODE SHARING WITH DYNAMIC LINK LIBRARIES

FIGURE 4-67 STATIC LINKING ..ecnttiiiiieiaimtesisteiesoisseesbesesssessessessssesaasessasaasasseseassssssisssesesssnsesinssssessssesans

FIGURE =77 DY NAMIC TINEINIG cusens oo s tvesanaits e 535 ot a st v s i w5 s s 0

FIGURE 4-8 DATA ACQUISITION MODULE CONFIGURATION DIALOGUE BOXoooiiiiiiiiiiiicciiee 64
FIGURE 4-9: THE WINDOWS™ 95 REGISTRY ©.vco v oeoeveeeeeseseseesee st eeeeseeseessseseessesseessesesessssessees e ssessensenes 65
FIGURE 4-10: AN EXAMPLE OF THE REGISTRY ENTRIES FOR HEARTS 32.....ciiiiiiiiiiiiieieee e 67
FIGURE 4-11: PATIENT SELECTION DIALOGUE BOX IN HEARTS 32...iii i 68
FIGEREA:12: BECG DIALOGUE BOXIN HEARTS 32k ursmsrssrsrmatismm s s sns o s i s 69

CHAPIEE 3o mmmmsinsressmosssssonpmgssressmonssssesmmmesspospompeseses 11

FIGURE 5-1: TABLE CREATION WITH THE BORLAND® DATABASE DESKTOPvvooveoeeoeoeeeeoeeeeeeeres 79
FIGURE 5-2: DESIGN OF A DATA CONVERSION PROGRAM USING THE BATCHMOVE COMPONENT. 85

CRAPIET B vucspommrnminimassiomsiire s o s s s s a5 aemers O

FIGURE 6-1: COMPONENTS OF DIGITALLY RECORDED ECG TRACES. ..iciiiiiiiiiieiiiiiieee e 90

FIGURE 6-2: FREQUENCY DISTRIBUTION OF FILE SIZE FOR THE HP DIGITAL STORAGE FORMAT........... 93

FIGURE 6-3: FREQUENCY DISTRIBUTION OF FILE SIZE FOR THE ASCII STORAGE FORMATccovennenne. 98
XV

© Central University of Technology, Free State

List of igures o

Central University of
Technology, Free State

FIGURE 6-4: AVERAGE STORAGE SPACE PER FORMATooiiiiiiiiiiiiiiiiiiiie oot e e 101
FIGURE 6-5: FREQUENCY DISTRIBUTION OF FILE SIZE FOR THE COMPRESSED ASCII STORAGE

] A T T 102
FIGURE 6-6: FREQUENCY DISTRIBUTION OF FILE SIZE FOR THE ASCII STORAGE

FORMAT (SELECTIVE) ... ttiuttet et eeeeesteeseesaeasaeesseessaes e esbeesteeasesmaesesaesteeasaennaenssstnesensreesieas 105
FIGURE 6-7: FREQUENCY DISTRIBUTION OF FILE SIZE FOR THE COMPRESSED ASCII STORAGE

FORMAT (SELECTIVE) :isui oo susms s s s s s st v s 00854 i i oo ives sr e s s s 106
FIGURE 6-8: AVERAGE STORAGE SPACE PER FORMAT, WITH THE EFFECT OF COMPRESSION.............c... 106

B (1) 150 ol (RO —————————— g | |

FIGURE 7-1: HEARIS 32 ECG PAGE st s i i s s i i 111
FIGURE 7-2;: HEARTS 32 ECG BROWSER INTERFACE.ooiiieeiieeeeeiiie et s e 112
FIGURE 7-3: VERTICAL TILING OF MDI CHILD WINDOWS IN THE HEARTS 32 ECG BROWSER 114
FIGURE 7-4: HORIZONTAL TILING OF MDI CHILD WINDOWS IN THE HEARTS 32 ECG BROWSER 115
FIGURE 7-5: SUPERIMPOSING OF SELECTED LEADS OF AN ECG IN THE HEARTS 32 ECG BROWSER.... 116

Chapter 8 P0008000000OG0000000000000000000000000000000E0OROVDOSODOROOORRE0ROROR0O0R0ROD0RR0D 117
FIGURE 8-1: GRAPHIC OVERVIEW OF THE DATA ACQUISITION PROCESScviiviviiiinieiiiinmiesersenssnneeess 119
FIGURE 8-2: GRAPHIC OVERVIEW OF THE HEARTS 32 ECG BROWSERcooiiiiiiiiiieiiieee e 136
Appendix A------o--nt-t.oaonc.o.o..ol.o.oot.o.ooooolo.oooooooloooloooo.ooolouo00000-..- 165

FIGURE:A-1: HPO4AT60-641 30 CABLE somison s s vy s ivsass o B s s ssa tass ssn s 168
FIGURE:A=2) PROTOCOL AN RS oo oo s o s S e e es 0 s i e v s s s e e it 171

xvi

© Central University of Technology, Free State

List of code snippets Q

Central University of
Technology, Free State

List of code snippets

Chapter 4 S000000C00000SDO0NO0ONOORRUORSTOOROOPI0OONEDOROROERREREPREROORRORRERRROCRRIRRIEIRIITOS 49
CODE SNIPPET 4-1: IMPLICIT LOADING OF A PROCEDURE/FUNCTION FROM A DLL

CODE SNIPPET 4-2: DECLARING A GLOBAL PROCEDURE POINTER TYPEoovoiiiiiiiiiiiieiiieiiiineeneen,s

CODE SNIPPET 4-3: VARIABLE DECLARATION FOR EXPLICIT DLL LOADING....cccccoviiiiivivieiniinnecniiinnens
CODE SNIPPET 4-4: EXPLICIT LOADINGOE A DLL vicvvnammiswamnmmaimimvisassiea v
CODE SNIPPET 4-5: LINKING WITH THE DLLS EXPORTED FUNCTIONS/PROCEDURES :
CODE SNIPPET 4-6: INVOKING A FUNCTION VIA A POINTERooiiiiiiiiiieeee e 62
CODE SNIPPET 4-7: FREEING THE LIBRARY HANDLEcooiiiiiiiiiiiiiiioiiicte ettt 63
CODE SNIPPET4-8: IMPORTING BY ORDINAL wusiusvovurssseisuias sasvinkins st s siasossiesassss s v sass s s s oris s 63
CODE SNIPPET4-9: IMPORTING BY NAME: . crisueysns ivssvarsvivineis vassvsnsvosas o8 resd 54005 o8 ss i svsr i ssv vt 63
CODE SNIPPET 4-10: COMPLETE REGISTRY KEY USED IN THE HEARTS 32 APPLICATIONocoiiiiinniinnns 66

CRAPLET B sismnsmmmsmssisssssssnomsssrssssmssasshsseessspssommspasssissamvsssnssyssen 1 1

CODE SNIPPET 5-1: TABLE CREATION VIA THE TTABLE.CREATETABLE METHOD.....c.ccoiiiveiiiiieesiinnneenne 81
CODE SNIPPET 5-2: TABLE CREATION USING PROCEDURES FROM THE SCANNER CODEcooiveennes 82
CODE SNIPPET 5-3: GLOBAL VARIABLES USED FOR BDE API CALLS TO CREATE TABLES AT RUNTIME. 83
CODE SNIPPET 5-4: THE DEFFIELD PROCEDURE FOUND IN THE SCANNER CODE.....ccovvvrieivieeriiieienne 83
CODE SNIPPET 5-5: THE DEFTABLE PROCEDURE FOUND IN THE SCANNER CODEccocovviiiiiiiiinnens 83
CODE SNIPPET 5-6: PSEUDO CODE FOR TABLE CONVERSION ._.cooiiiiiiiiiiiiiiiiiiiciiiiniie e iinree e e e sabsnae s 84
CODE SNIPPET 5-7: PROPERTIES OF A FORM FOR DATA CONVERSION WITH BATCHMOVE..........ccccveie. 86

LB 11211100 i AR —————————————

CODE SNIPPET 8-1: OUTLINE OF THE READDECODECALCSTOREECG FUNCTION.....cooviiiiiieiiiecneeene 122
CODE SNIPPET 8-2: PSEUDO CODE FOR GETFILE PROCEDUREcccocimiiieiiieaiimiiiee e iniiiniesessesessssnsnenses 123
CODE SNIPPET 8-3: THE BOOLEAN FREE UNIONutiiiiiiiieiiiieeseesereesses s enaeesssnsesnrnasssnsnaaensnnneannnns 128
CODE SNIPPET 8-4: A RECORD WITH TWO BYTE FIELDS......oiuviiiiiiiieriniee e e e siree e e ssnresessrnreaeenens 128
CODE SNIPPET 8-3: TYPE DECLARATIONS FOR DYNAMIC ARRAYS USED IN DECODING..........ccocunnnn.... 130
CODE SNIPPET 8-6: POINTER TO DYNAMIC ARRAY ..coiiiiiiiiiiiiieieiee ettt e e e eeseiiaiae e e e e st a e e e ee e e nnnns 130
CODESNIPPET 8=7: - DYNAMIC MEMORY AL LOCATICT e wcmrorswwrsssmsmrm s s s simasi s v 130
CODE SNIPPET 8-8: USING THE DYNAMICALLY ALLOCATED ARRAYcimiiimiiininiinieesasesiamrsnsssinisins 130
CODE SNIPPET 8-9: RELEASING THE DYNAMICALLY ALLOCATED ARRAYcooveiiiireieinieeisiiinaeeeiniennn 130
CODE SNIPPET 8-10: FINAL UPDATE OF LEAD MAP INFORMATION. ...cooiiiiiiiiiiiieiiiiieeesianseeeinneeesenreaeaa 135
CODE SNIPPET 8-11: DYNAMIC CREATION OF THE FRAME WINDOWcvvveiiiieieeeiieensieiecesninaesnsieneeens 138
CODE SNIPPET 8-12: RECORD USED FOR PARAMETER PASSING BETWEEN HEARTS 32 AND THE

HEARTS 32 B G B ROMNISER v ussmnsssceawisesis' s siiesorssiestssiss s s s s ias s sisions ssounss 139
CODE SNIPPET 8-13: ENABLING/DISABLING MENU ITEMS AND SPEED BUTTONS......oooeiiiiieiiiieeeieieannns 141

Appendix B......coinvicnninnninnnininnicnnninnensnnninnenenssssnenseiesnnee 218

CODE SNIPPET B-1: OBJECT PASCAL FUNCTION DECLARATION ...ooiiiiiiiieiiiiieeiiieseeieeseseee e eine e
CODESNIPRET B22: G/ CH-- FUNETION DECLARKTION fomawm s s sy s s i s s sy
CODE SNIPPET B-3: ALTERNATIVE C/C++ FUNCTION DECLARATION

Xvii

© Central University of Technology, Free State

Chapter 1 Introduction

Central University of
Technology, Free State

Chapter 1

Introduction

The Department of Cardiology, University of the Free State, Universitas Hospital in
Bloemfontein treats patients with cardiac problems. Due to the increase in the
incidence of cardiac disease, the Department of Cardiology has experienced

tremendous growth over the past few years. Roughly 13,000 patients are seen per

annum.
Patient Clinical Information
(Examination, Test, Procedure)
Demographic Information
is Admission Paper

examined Lipids copies

——— Ultrasound *
X-Ray ™ .=
ECG = '35 I —
Stress ECG \ 2 4 Hearts i ‘
Thoracic Surgery Database | = | Database ‘ ‘
Pace Maker Implementation results =

Pace Maker Testing
Patient Report (prepared by
cardiologist)

* only some information stored on paper / Hearts. Rest stored on film / CD-ROM.

Figure 1-1: Data collected from the patient and stored on file
As can be seen from Figure 1-1, data are collected from the patient as a result of
examinations, tests and/or procedures performed. These results were traditionally

recorded on paper.!

In order to make information useful for the cardiologists, it has to be managed.
During November 1993, the Department of Cardiology actively started to work
towards computerised storage of patient data. The application developed was called

the Hearts database:.2

1 Information such as the patient report (written by the cardiologist) was prepared using a word processor. These
word processor files were not tightly integrated with the rest of the patient information: a printed copy of the
report was placed on file. Some of the results are stored on other media, such as X-Ray film (X-Ray
examination), magnetic tape (Holter ECG), photographic film and lately CD-ROM (Coronary Angiography).

2 Hearts was developed in Clipper 5.2 and is a MS-DOS® based application. It fully supports multi-user access
on a Novell® network.

1

© Central University of Technology, Free State

Chapter 1 Q Introduction

Central University of
Technology, Free State

Goals for Hearts included:

e Better organisation of information.
e Fast and easy retrieval of information.

e Increased usefulness of information (for example, to easily create periodic
statistics).

e Increased security (regular backups performed, only authorised personnel have
access to database).

During the development of the first version of Hearts it became clear that it would not
be possible to include all data in a digital form in the Hearts database (Figure 2-1 on
page 10). It was also apparent that the capabilities of the Hearts database would grow

(and change) with the needs of the Department of Cardiology.

The electrocardiogram is a report of one of the examinations routinely performed.
Roughly 20,000 electrocardiogram reports are produced per annum. Up to the time of
writing this thesis the Hearts database did not have the capability to capture and store
electrocardiogram data (Figure 2-2 on page 11). Since electrocardiograms are
routinely produced (thus largely contributing to the clinical information gathered from

a patient) it makes good sense to have these data digitally available.

1. Background

The Department of Cardiology at the Universitas Hospital in Bloemfontein currently
(December 1997) has six HP4745A PageWriter II Cardiographs in operation. (A total
of 10 electrocardiographs are being used; three are HP4700A Cardiographs and one is
a Marquette MAC VU electrocardiograph.3) Each of the HP4745A Cardiographs is
equipped with a RS-232 communications port. These ports have, however, up to the

present, not been used at all.

3 The HP4700A does not inherently have the capability to transmit ECG data. According to the Hewlett-Packard
Company (Hewlett-Packard Company, 1983 : 3) a specialised ECG transmitter module is needed. Such
transmitter modules have not been purchased for the three HP4700A ECG machines mentioned. Since this
study is aimed at the HP4743A Cardiograph Il PageWriter electrocardiograph, any other ECG machines such as
the HP4700A and Marquette MAC VU are excluded from this research.

2

© Central University of Technology, Free State

Chapter 1 Q Introduction

Central University of
Technology, Free State

The reasons for this are:

e The cost of a centralised management software package offered by the Hewlett-

Packard Company is too excessive (*xR500,000.00) to be economically viable.

e Additional expenses would have to be incurred to house such expensive equipment.
New cabling would have to be installed in the hospital. Additional staff would be
needed to operate the system. Expensive training would be needed to enable the

staff to handle the system efficiently.

The MAC VU is used in the Coronary Intensive Care Unit to monitor acute changes
in patient ECGs.' ECGs recorded with the MAC VU in the Intensive Care Unit (ICU)
do not reflect long term changes (due to the condition of the patients in the ICU). It is
planned to place one of the six HP4745A Cardiographs in the ICU to allow the
recording of the patient’'s ECG at admission to the ICU. The HP4700A
electrocardiographs are extremely old and are currently being scrapped from normal
day to day use at the Department of Cardiology, Universitas Hospital. These
machines will be used in other wards where ad hoc ECGs are recorded (not by the

Department of Cardiology, Universitas Hospital).

The envisaged system (that is, a version of the Hearts application, capable of digital
capturing and storing of electrocardiogram data), will be economically justifiable,
since Hewlett Packard made the HP Diagnostic Cardiology Digital Transmission
Protocol (see Appendix A) available under an agreement which does not permit the
use of the protocol in a commercial product. This means that the data acquisition
module developed for the Department of Cardiology (as a result of this research) will

be free of charge.

Staft will need to be trained in using the new Hearts software. The learning curve,

however, is expected to be less steep than with a commercial product, since the staff

4 The MAC VU can be used to continuously record rhythm strips in real time for as long as needed. since the
machine uses continuous paper. The HP4745A does not have this functionality; paper needs to be loaded
manually.

3

© Central University of Technology, Free State

o Introduction

o Central University of
Technology, Free State

already have experience with the existing Hearts software. Since the development of

Chapter 1

Hearts was a team effort, staff members also feel personally involved with the system.

The Department of Cardiology currently utilises a file server running Novell®
Netware" 4.1 (50 user license). The Hearts database resides on this Novell®

Netware” 4.1 file server.

The need for digital storage of documents (ECG reports) was greatly increased by

three facts:

1. The Department of Cardiology consults approximately 13,000 patients per annum.
They produce roughly 20,000 electrocardiogram reports per year. Access to a
paper-based file system is highly inefficient, due to misfiling that leads to lost
documents. Since cardiologists have to request the retrieval of a document in
advance (and rely on a filing clerk for the retrieval), access to these patient files are
too tedious to be practical. Another danger is that files can be lost or misplaced
once they have been retrieved from the filing system. There is further no guarantee

that some documents will not be accidentally removed from a patient file!

2. The filing personnel only work normal office hours. [t is impossible for a

cardiologist to retrieve a patient’s file after hours or during an emergency.

(8]

. Storage space for the large number of filing cabinets is no longer available. The

weight of the existing cabinets poses a threat to the safety of the building.

Since the inception of the Hearts database system, work flow has improved
tremendously and documents are retrieved with greater ease. The fact that
electrocardiogram information could, up to now, not be digitally stored shows a clear

place for improvement in the current system.

4

© Central University of Technology, Free State

Chapter 1

0 Introduction

Central University of
Technology, Free State

2. The rationale behind a new system

Excellent systems for digital storage and manipulation of electrocardiogram data are
commercially available (as discussed in Chapter 2). The biggest problem with these
systems is their economic viability. Although the Hewlett Packard and Marquette
Electrocardiogram Management Systems are the Rolls Royce of this type of system,
the purchase price of such a system is simply too high for the Department of

Cardiology, Universitas Hospital. Bloemfontein.

The Cardio Perfect system is compact and very easy to use and should ideally be
within the financial reach of every general practitioner. However, due to the relatively
high price involved, one cannot dispose of all existing electrocardiographs to have
them replaced by the Cardio Perfect equipment. Although some of the existing
Hewlett Packard electrocardiographs in use are quite old (about 10 years) the

machines still function well and cannot be discarded at will.’

2.1 Hypothesis

The Department of Cardiology has a need for digital storage of electrocardiogram
tracings for easy retrieval and duplication. Having the electrocardiogram tracings
digitally available will also facilitate the superimposing (and easy comparison) of
selected leads for a specific electrocardiogram. Such recognition of trends will
improve patient care. (Some patients have cardiac ECG abnormalities due to previous
cardiac disease. It is of utmost importance that the cardiologist is aware of the fact
that these abnormalities are in actual fact “normal” for the specific patient. Having
the ECG data available in a central repository will provide a means to access these

historic ECG data in a timely manner.)

In the light of this, it makes sense to capture electrocardiogram tracings and store

them in the existing Hearts database used by the Department of Cardiology. If an

5 It is important to point out at this stage that the HP4745A Cardiograph 11 PageWriter electrocardiograph does
not support dates past 1999 (only the year digits are used, millennium and century digits are omitted. resulting
in years with only two digits).

5

© Central University of Technology, Free State

0 Introduction

o Central University of
Technology, Free State

application could be developed (at low or no cost) to suit the needs of the Department,

Chapter 1

a large amount of money could be saved.

3. Problem definition

This study forms part of the work currently being undertaken at the Department of
Cardiology, Universitas Hospital in Bloemfontein to computerise their patient records.
A new version of the Hearts database, which will be a 32-bit Windows" application,

is planned.6

The addition of the electrocardiogram data to this database would be an additional
advantage as a large number of patients is seen daily by the Department of
Cardiology. The digital storage of as much patient information as possible would lead
to less dependence on clumsy paper-based filing systems and would allow access

from any personal computer connected to the local area network.

This study will lead to the development of the following applications:

A data acquisition and decoding module for the HP4745A PageWriter 11
Cardiograph.

e A method for database storage and retrieval of these digitally captured

electrocardiogram tracings.

e A set of specifications to allow other developers, creating data acquisition and
decoding modules for specific electrocardiograph equipment, to create data sets

compatible for inclusion in the Hearts 32 database.

e A graphic browser used for interactive examination of stored electrocardiograms.

Interactive tools will include callipers for quick and easy determination of voltation

6 This version of Hearts will be referred to as Hearts 32 for the remainder of this thesis.

6

© Central University of Technology, Free State

Chapter 1

0 Introduction

o Central University of
Technology, Free State

and lapsed time, as well as a zoom tool for more detailed insight into selected

tracings. The browser will allow:

e Simultaneous views of different electrocardiograms via the implementation of

a Multiple Document Interface (MDI).7

e Superimposing of selected leads of an electrocardiogram, on screen, allowing
the cardiologist to quickly and easily identify trends when examining selected
leads of an electrocardiogram. Monitoring of electrocardiogram changes over

time, as therapy is adjusted, is an important aspect in improving patient care.
e Printing of the stored electrocardiogram tracing.

Specialised modules such as the data acquisition and graphic modules will be
implemented as Dynamic Link Libraries (DLLs), thus protecting the host application
(Hearts 32) from the complexities of data acquisition and df:coding.8 This approach
will ensure that Hearts 32 is open ended; by the addition of a (specialised) data
acquisition module (delivering a data set conforming to the aforementioned
specifications), data from other ECG machines can be stored in the Hearts 32

database.

The successful implementation of the proposed Hearts 32 database will allow
immediate access to previously recorded electrocardiograms. In an emergency, this is
very important, as changes in the electrocardiogram tracing have important

therapeutic implications for the patient.

This study will not necessarily produce a brand new product in terms of digital
capturing, storage and manipulation of the electrocardiogram, but it should provide an

economic and cost effective solution to some of the existing information technology

7 Examples of such systems include Microsoft® WinWord and Microsoft® Excel, where the user is allowed to
have more than one word processor document or spreadsheet open simultaneously, each in a different window,
and then has the ability to switch between different windows.

8 The data acquisition and decoding process differs between manufacturers and models of ECG machines, and are
proprietary in nature.

Chapter 1

0 Introduction

o Central University of
Technology, Free State
problems at the Department of Cardiology, Universitas Hospital in Bloemfontein, thus

improving patient care to the benefit of the Free State community.

4. The layout of this thesis

Chapter 2 defines the problem in more detail. A solution to the problem is then
outlined. Chapter 3 formally introduces the electrocardiogram. A basic
understanding of the anatomy of the heart as well as the different components of the
electrocardiogram are discussed. The data acquisition process will be discussed in
Chapter 4, while some basic database concepts will be discussed in Chapter 5. The
reasons for choosing a specific storage method will be discussed in Chapter 6. A high
level discussion of the software developed for graphic reconstruction of an ECG can
be found in Chapter 7. Chapter 8 constitutes a technical discussion of the program
code developed for data acquisition and graphic reconstruction of an ECG. The

results of this research conclude in Chapter 9.

Appendix A serves as a technical reference where the portion of the Hewlett Packard
Diagnostic Cardiology Digital Transmission Protocol relevant to this study, is
discussed. Appendix B is aimed at developers who need to create an ECG data file in
a Hearts 32 compatible format, since the ECG data storage format used in Hearts 32
is described in detail here. A list of terms and abbreviations used throughout this

thesis can be found in Appendix C.

8

© Central University of Technology, Free State

Chapter 2 Q Problem Definition

Central University of
Technology, Free State

Chapter 2

Problem Definition

1. Introduction
The Department of Cardiology, Universitas Hospital, Bloemfontein had a need for
digital storage of ECG data (as outlined in Chapter 1). The current Hearts database

did not support this capability.l
Hearts had, in fact, a number of drawbacks that had to be addressed:

e The user interface was still character based (Figure 2-1), and did not keep up with
more modern user interface options such as the graphical user interface (GUI)
found in Windows" (Figure 2-2).

e The language of the user interface was Afrikaans (Figure 2-1). Since not all of the
doctors at the Department of Cardiology, Universitas Hospital, Bloemfontein can
read Afrikaans, this is a serious problem.

e [Hearts could not store the digital ECG data (Figure 2-1).

e Even if the digital ECG data could be stored, Hearts could not display these data
graphically (Figure 2-1).

e A weak connection between MS Word 5.0 for DOS® and Hearts existed.
Basically, documents were named with the computer number used to identify the
patient in Hearts. A myriad of small document files cluttered the hard disk of the

file server.

In order to solve the problems and satisfy the needs as identified above, a new version

of Hearts needed to be developed. This version of Hearts would:

[—

e ———_

! -‘_""‘H‘aq
| THIS Boow 1a

I This is not 100% true. An augmented version of Hearts was developed (és part gf‘thﬁ’é & Q;_, d1 ital
capture and storage of ECG data in DOS® files on the Novell® Nelwara@ 4.1 file vx:r ;[h in reasdns for
this step was to start the acquisition of ECG files, and also to have data available” fof: stat]s{ma.l anal) sis. {The
result of such analysis would help to determine the optimal storage formjat for the data sefs in thepdatabase.

{ el IR C i

! *‘ﬁ;ﬁmiyo,
| ol b :
s HEE N

9 T —— e

M -

© Central University of Technology, Free State

0 Problem Definition

Chapter 2

" Central University of
Technology, Free State

e Have a graphical user interface (GUI) (Figure 2-2).

e Interact with users in English (Figure 2-2).

e Be capable of storing binary data streams of an arbitrary length. (Used for storing
ECG data as well as word processor documents.)

e Allow a connection to MS Word for Windows" via Object Linking and
Embedding (OLE).

e —————————— +
i Hearts Datum: Son 28 Des 1997 Tyds 23:34:17 |
\ Weer. 2.01 Verander pasiént/opname/prosedure detail. <Esc> om te stop. '
H]
; '
! Rekenaar Nr [P400 1 Hospitaal Nr [401207]

! Ras [S] (Blank/Swart/Kleurling/Indier/Chinees/Taiwanees/Ander)

! Van [PALT] Naam [LN]

| Titel [MR 1 Geslag M] (M/V)

| Familiele Hipercholesterolomie Status []

[Woonadres Posadres

| Regl 1 [18650 Re&l 1 [1650] |

]
H 2 [BOTSHABELQ] 2 [BOTSHABELO +———=———————————— g il
! 3 [BFN] 3 [BFN 1A. Lipiede !
| Poskode [9301]1* Poskode {B. Opnames I
H {C. Pasaangeérs | |
| Telefoon Tuis [] Telefoon Werk [|D. Sonars i
! {E. Toets Pasaan| |
! Mediese fonds [1* M/F Nr ['F. Toraks Chir |
} 1G. Trapmeul EKG, |
i |H. X-Strale]
: 1X. Klaar .
I R + !
e AP U e e e e e e e e e e i Druk F1l vir Hulp |----+

Figure 2-1: The old character based user interfuce of Hearts

In all fairness, it must be mentioned at this point that the character based interface of
Hearts is not quite as appalling in real life as it is portrayed in Figure 2-1 above. The
character based interface allows colour display, as well as inverse and blinking
display. Line and box drawing capabilities also exist. The translation between the
extended ASCII characters in DOS® and Windows" does not seem to work 100%,

hence the poor replica in Figure 2-1.

10

© Central University of Technology, Free State

Chapter 2 Q Problem Definition

Central University of
Technology, Free State

EdHeEARTS [_ o] x];

File Search Setup Help

Pacemaker] Test Pacemaker Cardiotharacic Surgery } *-Ray [
Patient 15dmlssicm 1 Lipids l ECG i Stress ECG ; Echocardiography !

Computer Number Ttle MName/nitials Sumame
[P400 MR fin [PaLl

Haspital Number Population Group Sex e
]40120? 1B|ack v! % Mele C Female

Postal Address Residential Address

1650 e {1650

[BOTSHABELO 2] |[BoTSHABELD

[BFN ' 5] |prN

3301 =l B s |
Telephone Home Telephone Work

! l

Medical Aid FH Gen e
| ¥ l

Medical Aid Number

Browsing

Figure 2-2: The new graphic user interface of Hearts 32

Since this research specifically addresses the issue of digital acquisition of ECG data
for the HP4745A, (together with digital storage of ECG data and the graphic
reconstruction of these data) the main focus of the remainder of the thesis will be this

topic.

2. Related systems currently in use

Cardio Control BV (Cardio Control BV) has developed a product called
Cardio Perfect. This innovative system uses a small, portable electrocardiograph that
can directly interface with any IBM compatible PC equipped with a serial port. It is
an extremely user friendly system, allowing for real-time display (of the
electrocardiogram being recorded) on screen, as well as browsing, storing,
comparison, printing and analysis of the electrocardiogram tracing. The high price of

thermal paper versus normal paper is discussed in the introduction of Chapter 3.

11

© Central University of Technology, Free State

Chapter 2 Q Problem Definition

e
Since reports can be printed using laser, ink jet or dot matrix printers, the price per
printed electrocardiogram tracing is cheaper than with the thermal transfer process.
Electrocardiogram data files are small, a minimal electrocardiogram (that is a
recording of only three leads for 2.5 seconds) will need only 10 KB, an important
issue for transmitting data by modem. (Cardio Control BV). The Cardio Perfect kit
includes the hardware (electrocardiograph and leads) as well as the software needed
for viewing ECGs on a PC. Since the software only works with the Cardio Perfect
electrocardiograph, this option becomes less viable for a user who already has a

number of existing, non-Cardio Perfect cardiographs in use. In order to use the

Cardio Perfect system, the existing electrocardiograph machines need to be replaced.

Marquette Electronics (Marquette Electronics, 1992) offers the MAC VU
(Microprocessor Augmented Cardiograph, Virtually Unmatched), a system combining
an electrocardiograph and a computer, mounted on a portable trolley. The high
quality Cathode Ray Tube (CRT) unit allows for superior electrocardiogram wave
form display, allowing the cardiologist to view the electrocardiogram in real time, as
it is recorded. The CRT unit is also used to display instructions and on-line help
information to the user. The printer provides electrocardiogram reports that are hard
copies of the information displayed on the CRT, at a very high resolution of 1000
lines per inch. These hard copies are identified by bar-codes, for easy retrieval when
using Marquette’s MUSE® Network System. Roughly 200 electrocardiogram tracings
can be stored on a normal 1.44 MB stiffy disk which can be read by an IBM
compatible computer. (The data contained in the files do not make sense on their own
- one would need specialised software to interpret them.) The system has extensive
communication capabilities, allowing transmission of ECGs to and from other
Marquette electrocardiographs and electrocardiogram management systems via the
built-in RS-232 communications port. Computer analysis of electrocardiograms is
performed based on a still-growing database of over 5 million clinically correlated

electrocardiograms (Marquette electronics, 1992).

The HP4745A cardiograph has the capability to store ECGs in main memory and

allows transmission to other HP cardiographs as well as to HP’s electrocardiogram

12

© Central University of Technology, Free State

Chapter 2 Q Problem Definition

Central University of
Technology, Free State

Management System via a serial interface (RS-232 port). (Hewlett-Packard Company,

1988 : 5.1 - 5.14, 6.1 - 6.19). The electrocardiogram Management System aims to
automate filing, retrieval and transcription of HP PageWriter electrocardiogram
tracings, which are easily identifiable using bar-codes. The system provides for high
speed on-line storage of electrocardiogram tracings which allows rapid retrieval and
computer analysis for comparison of analysis statements with previous
electrocardiograms. Electrocardiogram morphology changes can also be viewed
easily with superimposed electrocardiogram tracings. Electrocardiogram tracings are
printed onto normal printer paper that does not fade (laser printouts), whilst costing
less per page than a page printed with the thermal transfer method. The system is
already integrated with Novell® Netware”, making it easy to connect with a large
installed base of Local Area Networks. Unattended backup to Digital Audio Tape is
an integral part of the system, enhancing data integrity and relieving the user of the

burden of daily backup duties. (Hewlett-Packard Company, 1995).

These solutions are not economically viable, as already discussed in section 2, page 5

in Chapter 1.

3. Digital Storage of ECG Data

The electrocardiogram is an instrument that receives its input in the form of voltages.
This means that the instrument is by its very nature an analogue device. Since we are
interested in digital capture of the ECG data, this poses an interesting problem: how
will the analogue information be converted into digital information? Most modern

ECG machines perform this conversion internally.

According to Kennedy (Kennedy, Ratcliff, 1987 : 186), ambulatory (Holter)
electrocardiograph instrumentation and computer technology coexisted for more than
two decades before integration allowed practical advantages in both clinical practice
and clinical research. (Ambulatory electrocardiography is performed when a special
electrocardiogram recording device is connected to a patient for an extended period of

time, typically 24 hours.)

13

© Central University of Technology, Free State

Chapter 2 Q Problem Definition

Central University of

Technology, Free State
“A 24-hour ambulatory electrocardiogram examination usually results i the
identification and classification of more than 100,000 cardiac cycles. Because of
diverse changes and forms of cardiac rhythm occurring throughout a 24-hour diurnal
cvcle, computer data formatting and presentation techniques greatly aid and facilitate
the clinical understanding of the ambulatory electrocardiographic data in a practical

sense.” (Kennedy, Ratcliff, 1987 : 187). The sheer volume of such a data set makes it

impractical to evaluate by hand!

Other important issues include storage and retrieval of ambulatory electrocardiogram
data, prompt access to patient records, duplication of reports, computer aided analysis
and comparison of previous ambulatory electrocardiogram records. These issues do
not only apply to ambulatory electrocardiogram tracings, but also to normal, resting

electrocardiogram tracings.

In an article by Mustard (Mustard ef al, 1990 : 65) it is mentioned that most
researchers measure physiological variables using analogue devices, and record results
manually. These results are then fed into computers for storage and analysis. One
would be able to enhance the quality of the data and speed up work flow by directly

storing the data on a computer system.

Quite a few researchers experimented with analogue to digital conversion of signals
obtained from various physiological measurements: Axenborg (Axenborg, 1989 : 75 -
85), Brodie (Brodie, Mann, 1982), Farrell (Farrell, 1987 : 151 - 159), Herbst (Herbst
et al, 1991 : 407 - 415), Jossinet (Jossinet ef al, 1990 : 253 - 260), Mustard (Mustard
et al, 1990 : 65 - 74), Piper (Piper ef al, 1987 : 279 - 291), Van Vliet (Van Vliet, West,
Road, 1987 : 143 - 150). Although not all these authors investigated the capturing of
electrocardiogram data, it is interesting to take note of their work, as this aids in

understanding the concept of converting and capturing results.

The amount of ECG data that is recorded tends to become quite large very quickly, as
a sample rate of between 100 Hz and 1000 Hz is used. Due to the finite size of the

memory found on electrocardiographs, data cannot be stored as is. Different

14

© Central University of Technology, Free State

0 Problem Definition

o Central University of
Technology, Free State

compression schemes have been developed to overcome this problem. The schemes

Chapter 2

used are lossy compression schemes (in contrast with lossless compression schemes).
With lossy compression, compressed data cannot be reconstructed to exactly match
the input data. Normally, this type of compression is used for audio and video signals,
where it does not matter too much if slight distortion occurs. The human organs of
sense can normally not detect these changes. With information like the
electrocardiogram, however, care has to be taken that a clinically acceptable level of
distortion is maintained. It would serve no purpose to have the data reduced by 80%,

but to have the compression resulting in inaccurate presentation and interpretation.

It is therefore necessary to use a lossy compression technique which provides a good
compression ratio whilst maintaining a clinically acceptable level of distortion.
Examples of such lossy compression schemes used for compressing electrocardiogram
tracings include CORTES (Coordinate-Reduction-Time-Encoding System algorithm)
(Abenstein, Tompkins, 1982 : 46 - 47, Jalaleddine et al, 1990 : 334), TP (Turning
Point algorithm) (Abenstein, Tompkins, 1982 : 44, Jalaleddine er al, 1990 : 334),
AZTEC (Amplitude-Zone-Time-Epoch-Coding algorithm) (Abenstein, Tompkins,
1982 : 44 - 46, Jalaleddine et al, 1990 : 333 - 334), SLOPE (Tai, 1991 : 176 - 179),
CORNER (Tai, 1992 : 585 - 589) and AZTDIS (Tai, 1993 : 511 - 515).

Hewlett Packard uses their own data smoothing routines and data compression scheme
in the HP4745A. If the data of certain leads are smoothed before compression, the
compression process yields better results. These algorithms are documented in HP’s

digital communications protocol. (Hewlett-Packard Company, 1985).

Another factor which will influence the size of the data set (the captured
electrocardiogram tracing) is the number of bits that is used to represent each value in
the tracing. There is a direct relationship between the number of bits and the size of
the data set. Berson (Berson, Wojick, Pipberger, 1977 : 382) found that although the
American Heart Association suggested a precision level of 9 bits, 8-bit data are
sufficient for representing electrocardiogram data. This has important implications for

storage, digital data transmission and use of microcomputers with a typical word size

15

© Central University of Technology, Free State

0 Problem Definition

o Central University of
Technology, Free State

of 8 or 16 bits (Berson, Wojick, Pipberger, 1977 : 382), as a smaller number of bits

Chapter 2

will result in smaller data sets and faster transmission over telephone lines and

computer networks.

4. Problem solution
To solve the problem as outlined in the hypothesis in Chapter 1 (page 5). the

following sub-problems will need to be solved successfully:

e Extracting stored electrocardiogram tracings from a HP4745A PageWriter Il
Cardiograph.

e Selecting the optimal storage method available for storage of electrocardiogram
tracings in a database on a Personal Computer.

e Successful integration of the digital electrocardiogram tracing information with the
Hearts database in use at the Department of Cardiology, Universitas Hospital,
Bloemfontein.

e Recreating a complete electrocardiogram tracing from a PC-based database on a
computer screen or on paper. This includes superimposing of electrocardiograms
for recognition of trends as therapy progresses.

e Creating callipers to allow easy measurement of the different components of an
electrocardiogram tracing on screen.

e Implementing all of the above in a layered manner when developing the software
product, to protect the software product from changes introduced when new

electrocardiograph equipment is used.

5. Research method

The research was to be carried out in five phases:

1. Obtain technical documentation on the HP4745A PageWriter II Cardiograph from
the Hewlett-Packard Company.
2. Develop an interface between the HP4745A PageWriter II Cardiograph and a

Personal Computer in order to establish communication for data transfer.

16

© Central University of Technology, Free State

0 Problem Definition

o Central University of
Technology, Free State

3. Select the most optimal storage method available for storage of electrocardiogram

Chapter 2

tracings from a HP4745A PageWriter II Cardiograph on the hard disk of a Personal
Computer.

4. Develop a graphical interface to reconstruct the saved electrocardiogram on a
computer screen as well as on any Windows"-compatible printer.

5. Integrate the electrocardiogram into the existing Hearts database in use at the

Department of Cardiology.

6. Summary

The existing Hearts database has some serious shortcomings. Some additional
functionality is needed to solve the problems. A new version of the Hearts database
needs to be developed. If ECG data are to be stored in the Hearts database,

cognisance of digital storage of ECG data needs to be taken.

A system that will allow handling of digital ECG data will need to acquire, decode,

store, manage. retrieve and manipulate these data to succeed.

17

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

Chapter 3

The Electrocardiogram

1. Introduction
With every heartbeat blood is pumped through the body, helping to sustain life.

Without this organ we cannot survive. Cardiac disease has become common, killing
large numbers of people every day. Doctors are continuously trying to gather more

information about this condition, in order to save lives.

Every heartbeat is caused by the contraction of the myocardial cells (muscle cells of
the heart). The electrical stimulus originating in the SA node and conducted to the
ventricles via the AV node causes depolarisation of the myocardial cells which leads
to their contraction. During their resting stage, the myocardial cells are polarised (in
this case polarisation means that the inside of the cells become negatively charged).
(Dubin, 1989 : 7). As the wave of depolarisation spreads through the myocardium

(heart muscle), it contracts.

The electrocardiograph machine is a medical diagnostic tool which is used to record
the electrical activity of the heart. It produces a permanent record (the
electrocardiogram, or ECG') of the heart’s electrical activity. The ECG is interpreted

by a cardiologist in order to diagnose the condition of the heart.

Although initial experiments and observations started round about 1855, the
“electrokardiogram” evolved only around 1901, thanks to work done by Einthoven.

(Dubin, 1989 : 4).

The electric activity that passes through the heart causes electrical potentials, which
can be detected on the skin. Electrodes that are connected to the body at specific

points are sensitive enough to detect the skin potentials which are recorded as the

ECG.

1 Please refer to Figure 3-20 (page 48) for an example of an ECG.

18

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State
What makes the ECG so useful, is that it is a non-invasive diagnostic technique,

enabling a cardiologist to examine cardiac conditions without exposing the heart.

Put into simple terms, the various compcments2 of an electrocardiograph have to

perform the following tasks:

Amplification of signals. “In order to detect body potentials, electrodes must
convert the ionic currents in the body into electron current in the wire.”

(Tompkins, Webster, 1981 : 6).

Screening of the electrocardiograph from high voltages induced by electro-surgical

and defibrillation units. (Tompkins, Webster, 1981 : 11).

The amplifier should selectively amplify the electrocardiogram signal and reject

electrical interference. (Tompkins, Webster, 1981 : 11).

Bandpass filtering is needed to allow for high gain of the electrocardiogram
(Tompkins, Webster, 1981 : 11). Interference should be reduced as much as
possible. Electrical power lines are a major source of interference as they radiate
electrical and magnetic fields which can have an adverse influence on the

electrocardiogram machine.

e Analogue to digital conversion. The measured quantities are of an analogue nature.
In order to present the values on a computer, a specialised piece of hardware is

needed to convert these analogue signals into their digital equivalents.

e Display and recording. Different ways of communicating the electrocardiogram
tracing include paper copies, cathode-ray-tube display and digital storage. Paper
copies of electrocardiograms can be produced using a pen recorder. A moving pen
1s used to record the data on graph paper. Another method uses a heated stylus on

thermal paper. These thermal transfer systems have a high running cost, since

2 Please refer to Figure 3-19 (page 40) for a schematic representation of these components.

19

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

thermal transfer paper costs more than normal paper. When using plotter pens with

flowing ink and a ball inside the tip of the pen, clogging can occur as the ink dries
out. Some systems rely on pressurised-ink systems to overcome clogged ink pens.
(Tompkins, Webster, 1981 : 21). Many systems in use employ a dot matrix
printing system. Such a printing mechanism is not well suited to the application,
since the resolution of the dot matrix printer does not allow for a continuous graph.

This makes detailed reading of the graph difficult for the cardiologist.

e It is also possible to display an electrocardiogram on a cathode-ray-tube display
(CRT). Examining complete physiological wave forms using a CRT can be very
difficult. Non-fade displays address this problem by holding and displaying
complete wave forms. (Tompkins, Webster, 1981 : 21). The CRT display does not

provide a permanent copy of the electrocardiogram as in the case of a printed copy.

e Distribution. Electrocardiogram data can be distributed over computer networks,
telephone links and by radio telemetry (wireless links). (Tompkins, Webster,
1981 : 22).

Before understanding the functioning of the electrocardiograph and the resulting
electrocardiogram, it is necessary to have a basic understanding of the anatomy of the

heart.

1.1. Brief overview of the anatomy of the heart

Put into simple terms, the heart consists of two pumps, a left and a right side pump
that cause blood to circulate through the lungs and the rest of the body. (Meyer ef al,
1988 : 30.1).

20

© Central University of Technology, Free State

o The Electrocardiogram

Chapter 3
Central University of
Technology, Free State
Figure 3-1: Schematic representation of the heart (frontal view)
(Meyer et al, 1988 : 30.5)
Table 3-1: Different parts of the heart
Number | Item Description

1 Right Atrium According to Guyton (Guyton, 1966 : 234)
blood flows from the great veins into the atria.
About 70% of this flows directly into the
ventricles before atrial contraction. Atrial
contraction is responsible for the remaining
30% filling of the ventricles. The right atrium
transfers blood from the superior and inferior
vena cava to the right ventricle.

2 Left Atrium The left atrium transfers blood from the
pulmonary veins to the left ventricle.

3 Right Ventricle The right ventricle circulates blood to the
pulmonary circulation.

4 Left Ventricle The left ventricle transfers blood to the
systemic circulation.

5 SA Node The Sinoatrial Node is located in the upper part

of the wall of the Right Atrium and consists of
a concentration of P-cells which are
responsible for the rate of heart contraction.
Impulses which cause the heart to contract
normally, start here. Contractions are rhythmic
and spontaneous in a normal, resting person
and occur at an average rate of 70/minute.
Thus the SA Node is the primary pacemaker of
the heart. (Meyer ef al, 1988 : 30.4 - 30.5).

6 AV Node The AV Node is located in the lower part of
the wall of the Right Atrium. The cellular
structure resembles that of the SA Node.
(Meyer et al, 1988 : 30.5).

21

© Central University of Technology, Free State

0 The Electrocardiogram

Chapter 3
Central University of
Technology, Free State
Table 3-1: Different parts of the heart (continued)
Number | Item Description
7 His Bundle The AV Node forms the head of an elongated
fibre bundle of conduction tissue which
extends to the ventricles. This is called the His
Bundle and consists of Purkinje cells. Purkinje
cells conduct electrical impulses at an
accelerated rate. (Meyer et al, 1988 : 30.5 -
30.6).
8 Right and Left | The His Bundle forks into a left and right
Bundle Branches branch. Each of these branches forms smaller
branches in the sub-endocardial tissue. This
forms the Purkinje Network. (Meyer et al,
1988 : 30.5 - 30.6).

Although the cells of the SA Node, AV Node, His Bundle, Bundle Branches and
Purkinje fibres differ anatomically and physiologically, they form an integrated
pacemaker conducting system (Figure 3-1, page 21). The AV Node is the only
electrical connection switch between the atria and the ventricles. It is not possible for
impulses generated in the atria to reach the ventricles if the AV Node is damaged.
Such a condition is called “heart block™ and can either be total heart block or partial
heart block. (Meyer ef al, 1988 : 30.6).

1.2. Position of the heart
As indicated by Figure 3-2, the position of the heart within the thorax is that of an
upside down cone. (Meyer et al, 1988 : 30.1).

—

!

§g, ~

Lnd
)
/%
~

Wiz

P

Figure 3-2: The position of the heart in the thorax

(Meyer et al, 1988 : 32.4)

22

© Central University of Technology, Free State

0 The Electrocardiogram

Central University of
Technology, Free State

1.3. A brief description of the pump action of the heart

Chapter 3

The function of the heart, as already stated, is to circulate blood through the body.
Oxygen (O,) rich blood must be transported from the lungs to the rest of the body.
Blood containing carbon dioxide (CO,) needs to be pumped to the lungs, where the

CO, is removed and O, is added again.

The pump action of the heart is caused by the contraction of the heart muscle
(myocardium). This is illustrated in Figures 3-1, 3-3 and 3-4. Such contractions are
the result of electrical activity in the myocardium. In 1858 Kollicker and Miiller
proved that contraction of the myocardium is accompanied by electrical activity

(Figures 3-15, 3-16, 3-17 and 3-18). (Meyer et al, 1988 : 32.2).

During the resting state of the heart, muscle cells (myocardial cells) are polarised.
This means that the inside of the cells is negatively charged. (Dubin, 1989 : 7).
Myocardial cells are stimulated to contract as the charge within each cell changes to
positive. This process is called depolarisation and is illustrated in Figures 3-15 and 3-
16. (Dubin, 1989 : 8). Progressive contraction is achieved as the wave of positive

charges advances through the myocardial cells.

During repolarisation, the negative charge within the myocardial cells is restored. As
can be seen from Figure 3-17, myocardial cells do not respond to repolarisation.

(Dubin, 1989 : 9).

The electric impulse for cardiac stimulation is initiated in the Sinus Node. This wave
of depolarisation proceeds outward from the Sinus node and causes both atria to
contract (Figure 3-3). (Dubin, 1989 : 13). When the AV Node receives the impulse, a
brief pause occurs. This allows the blood contained in the atria to enter the ventricles.
The electrical stimulus passes rapidly down the His Bundle, Left and Right Bundle
Branches and finally through the terminal Purkinje fibres, causing the distribution of
depolarisation to the ventricular myocardial cells. (Dubin, 1989 : 18). The result of
this is ventricular contraction, which causes the blood to be expelled from the

ventricles (Figure 3-4).

23

© Central University of Technology, Free State

Chapter 3

0 The Electrocardiogram

Central University of
Technology, Free State

Figure 3-3: Atrial contraction

(Dubin, 1989 : 14)

Figure 3-4: Ventricular contraction

(Dubin, 1989 : 18)

2. The Electrocardiograph

2.1. History

Ludwig and Waller showed in 1887 that the electrical activity of the myocardium
could be monitored from a person’s skin. (Meyer ef a/, 1988 : 32.2, Dubin, 1989 : 2).
Their “capillary electrometer” was interesting, but of little use since it did not allow

for permanent recording of the findings. (Dubin, 1989 : 2).

It was only in 1903 that Einthoven (now seen as the father of electrocardiography)
managed to produce a permanent record of the heart’s electrical activity by projecting
a light beam across a moving silvered wire which was suspended through two holes
drilled in a large permanent magnet. Two skin sensors were placed on a man’s body
and attached to this silvered wire. The movements of the wire represented the man’s
heartbeat. These movements were recorded on a scroll of moving photographic paper.

(Dubin, 1989 : 3 - 4).

24

© Central University of Technology, Free State

Chapter 3

0 The Electrocardiogram

Central University of
Technology, Free State

The electrocardiograph is the instrument used to record the electrical activity of the

heart. The result of such a recording is called an electrocardiogram (ECG). An

example of an ECG can be seen in Figure 3-20 on page 48.

2.2. Electrodes
In order to measure electrical potential, a complete circuit must exist between the
tissue acting as the conducting medium and the measuring device. In simple terms,

two electrodes are needed to measure an electrical potential (Figure 3-5). (Meyer et

al, 1988 : 32.2).

Electrodes are made of corrosion proof metal. Since the skin is a relatively poor

conductor of electricity, some preparation is needed:

e Electrodes must be clean (free of corrosion).

e The skin should be briskly rubbed with the edge of the electrode until it is slightly

red.

e An electrolyte cream (such as Redux® cream) should be applied to the prepared

areas of the skin.

Electrodes are kept in place by fastening them with rubber straps (wrist and ankles).
Rubber suction cups are used for applying electrodes to the chest area. A modern
technique employs the use of disposable electrodes, which are kept in place by an

adhesive substance.

2.3. Leads

The relative positions of the two electrodes connected to the body (for measuring
electrical activity of the heart) are called leads. The standard ECG consists of 12
separate leads. (Dubin, 1989 : 30, Meyer er al, 1988 : 32.3). This means that
electrodes are placed in 12 different ways on the body. These 12 leads consists of 6
limb leads and 6 chest leads. An enumeration of these leads can be found in Table 3-2

below.

25

© Central University of Technology, Free State

0 The Electrocardiogram

Central University of
Technology, Free State

Table 3-2: The 12 different leads of a standard ECG

Chapter 3

Limb Leads | Chest Leads
I V1
I1 V2
111 V3
aVR V4
aVL V5
aVF Vé

The limb leads reflect electrical activity in the vertical axis, whereas the precordial

leads (V1 - V6) reflect the electrical activity in the horizontal axis.

(Dubin, 1989 : 30). The 12 leads produce 12 different “views” of the simultaneous
electrical activity of the heart at a given time. An example of these 12 leads can be

found in Figure 3-20 (page 48), where the leads are identified by items B, C, D and E.

Three of these 12 leads are bi-polar (this means that both electrodes are connected to
an electrical potential). One of the electrodes is always positive, and the other is
always negative. The remaining 9 leads are strictly speaking also bi-polar, since two
electrodes are used per lead. Since only one of the electrodes in each lead is
connected to an electrical potential, these leads are termed uni-polar leads. (The other
electrode is artificially kept at a constant potential.) The uni-polar leads thus register
changes in electrical potential in respect of a constant electrical potential at another

point. (Meyer et al, 1988 : 32.3).

2.4. Bi-polar Limb Leads

Einthoven used the 3 bi-polar limb leads for the first time, forming Einthoven’s
triangle. In this scheme, electrodes are connected to the right and left arm, as well as
to the left leg. These electrodes form the limb leads and the placement of these
electrodes forms a triangle, as shown in Figure 3-5. Leads I, II and II are also known

as the standard leads.

26

© Central University of Technology, Free State

Chapter 3

0 The Electrocardiogram

Central University of
Technology, Free State

Right Arm e

Figure 3-5: Einthoven’s triangle and the limb leads

(Dubin, 1989 : 31)

In this model it is assumed that the heart is contained within an imaginary equilateral
triangle, the corners of which are formed by the basis of the right and left arm as well
as that of the left leg (Figure 3-6). The limbs thus act as electrodes conducting
electricity away from the heart. This enables us to measure the electrical activity of
the heart by using electrodes connected to the left and right wrist, as well as to the left

ankle. The standard leads are named I, II and III, respectively.

In Lead I the negative electrode is connected to the right wrist. The positive electrode
is connected to the left wrist. In Lead II the negative electrode is connected to the
right wrist and the positive electrode is connected to the left ankle. In Lead III the
negative electrode is connected to the left wrist, while the positive electrode is

connected to the left ankle (Figure 3-6).

Lead 1 measures the electrical potential between the right and left arm. Lead II
measures the electrical potential between the left leg and the right arm, while Lead III
measures the electrical potential between the left leg and the left arm. (Meyer et al.

1988 : 32.3).

Since there is a close correlation between the standard leads, it does not really matter
which lead is used for the identification of the heart’s rhythm. When identifying the
type, location and extent of lesions, it is particularly important to choose the correct

lead since the different leads are affected in different ways.

27

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

Left Arm
+

Right Arm
3 Lead I

< A,
® ~
%’ s}

5
‘a \?

Figure 3-6: Einthoven’s equilateral triangle

(Dubin, 1989 : 32)

The standard leads fall short on the following points:

1. Both electrodes are connected at roughly the same distance from the heart, on the

limbs.

2. Both electrodes are subjected to an electrical potential and the tracing only
represents the difference between the two electrical potentials at two points (Lead I
= Left Arm - Right Arm, Lead II = Left Leg - Right Arm, Lead III = Left Leg -

Left Arm). The electrical potential cannot be measured at any given point.

3. The electrodes in the standard leads are located on the same horizontal plane of the

body.

2.5. Einthoven’s Law
According to Einthoven, the electrical potentials (height and depth) recorded in
Lead II equal the sum of the electrical potentials of Lead I and III. Thus:

Lead Il = Lead I + Lead 111

From this law it can be seen that the potential of a complex in a third lead can be
calculated if the potential of the same complex in the other two leads are known.

(Meyer et al, 1988 : 32.3 - 4).

28

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

2.6. Uni-polar Chest Leads (Precordial Leads)

The six chest leads are obtained by placing six positive electrodes (one electrode per

lead) at six progressively different positions around the chest, as illustrated in
Figure 3-7. The second “electrode™ is formed by the connection of three electrodes
(left arm, right arm and left leg). This central terminal is connected to the
electrocardiograph and the potential is kept at 0 through the use of a resistor. The
second electrode is called a neutral electrode, since it is not subjected to an electrical
potential. (Meyer ef al, 1988 : 32.3 - 4). The chest leads are numbered from V1 to V6

and move successively from the person’s right to left side.

The names of these leads are formed by numbering the anatomical positions where
each lead is placed. (See Figure 3-7.) Each number is prefixed by the letter V. This

is short for Vector.

Since the electrode sensor for the chest leads is positive, a depolarisation wave
moving towards a skin sensor produces a positive (or upward) deflection on the ECG.
The positive wave of ventricular depolarisation moves progressively towards the

positive electrode of Lead V6.

-

Figure 3-7: The six chest leads

(Meyer et al, 1988 : 32.4)

“If leads V1 through V6 are assumed to be the spokes of a wheel, the centre of the
wheel is the AV Node.” (Dubin, 1989 : 42). As can be seen from Figure 3-8, the body
is cut into top and bottom halves by the plane of the chest leads. This is called the

horizontal plane.

29

© Central University of Technology, Free State

Q The Electrocardiogram

Central University of
Technology, Free State

Chapter 3

T 3
vt vz V3

Figure 3-8: The horizontal plane
(Dubin, 1989 : 42)

From Figure 3-8 it can be seen that Leads V1 and V2 provide more information about
the electrical activity in the right ventricle, while Leads V5 and V6 mainly provide

information about the electrical activity in the left ventricle.

2.7. Uni-polar Limb Leads

The electrodes used for the chest leads are connected nearly directly over the heart.
After these leads proved to be clinically useful, the uni-polar limb leads were
introduced using the same design. The electrode is placed on each of the three limbs,
and these leads are called VR (right arm), VL (left arm) and VF (left foot),
respectively (Figures 3-11 and 3-13).

The electrical activity registered in these leads is small, due to the small electrical
potential in the limbs. It was empirically determined that the omission of the resistor
and the inclusion of the potential of the other two limb leads (together with their
resistors) produced larger potentials. This is the reason why the leads are called

augmented uni-polar limb leads.

Using augmented leads also changes the name of the leads as follows: aVR, aVL and

aVF. (Meyer ef al, 1988 : 32.3 - 4).

2.8. The electrical axis of the heart

By convention, a vector is represented by an arrow. A vector consists of both size and
direction. The length of the arrow indicates the size of the vector, while the direction

of the arrow indicates the direction of the vector.

30

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

The depolarisation of the normal heart progresses in an orderly fashion, and follows a
fixed pattern. Quite a few vectors are simultaneously present, since different parts of
the heart (which are not necessarily in close proximity of each other) depolarise
simultaneously. The sum of these vectors can be seen as one vector, called the
immediate electrical vector. The size and direction of this vector change continuously
as depolarisation progresses. This changing in direction corresponds with a three
dimensional rotation movement around a central point. The size of the immediate
vector starts at zero (start of depolarisation), increases up to a maximum and then

gradually recedes back to zero.

If the arrows of immediate electrical vectors are connected, the resulting line (loop)
represents a spatial vector cardiogram. The longest arrow in the figure represents the
dominant heart vector and the direction represents the mean electrical axis of the

heart, as depicted in Figure 3-9.

Figure 3-9: The three dimensional vector cardiogram and the mean electrical axis of the heart

(Meyer et al, 1988 : 32.8)

The electrical axis of the heart is of clinical relevance, since the position of the heart is
not exactly the same in all people. Heart lesions (such as myocardial infarction)
influence the direction of the axis. It is not sufficient to observe that the axis has been
displaced. The displacement can be expressed in terms of degrees, and the polarity

can be expressed in terms of a negative or positive polarity.

31

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

The hypothetical line connecting the two electrodes of a given lead is called the lead

axis. In this way, the horizontal line connecting the left arm and right arm forms the
axis of Lead I. The axes of 2, 3 or all 6 of the limb leads can be used to numerically

calculate the mean electrical axis.

In order to create 6 intersecting lines of reference, the sides of Einthoven’s triangle are
rearranged so that they cross one another at an angle of 60° at a central point. The
lines may have been moved, but they still remain at the same angle as can be seen

from Figure 3-10.

First start by rearranging the 3 standard leads, I, IT and III.

Figure 3-10: 3 Intersecting lines of reference for Leads I, IT and II1.
(Dubin, 1989 : 33)

Now proceed by following the same procedure for Leads aVR, aVL and aVF. Note
that these limb leads will intersect at different angles to produce three other lines of

reference.

>

AVF

Figure 3-11: 3 Intersecting lines of reference for Leads aVR, aVL and aVF

(Dubin, 1989 : 36)

32

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

The 6 intersecting limb leads are spaced 30° from one another. These limb leads may

be visualised as lying in a flat plane over the person’s chest. This is referred to as the

frontal plane (Figure 3-12, Figure 3-13).

2
N\
I Y|
Sy + L
S
- z

Figure 3-12: 6 Intersecting lines of reference (I, I, 111, aVR, aVL and aV'F)

(Dubin, 1989 : 37)

The same cardiac activity is recorded in each of the leads. Since the electrical activity
is monitored from a different angle for each lead (Figure 3-13), the waves in the

various leads differ.

Figure 3-13: Different views of the same cardiac activity

(Dubin, 1989 : 38)

The precordial leads are placed in the it interspace on the right side of the sternum
(V1), on the left side (V2), over the apex of the heart (V4), and in the 5™ interspace in
the anterior axiallary line and in the midaxiallary line. V3 is located between V2 and
V4. These leads start predominantly negative as they point towards the cavity of the
heart (V1), and become progressively positive towards leads V5 and V2. These leads

reflect electrical activity in the frontal plane of the heart.

33

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

3. The Electrocardiogram

Dubin (Dubin, 1989 : 5) states that the electrocardiogram provides a valuable,
permanent record of the heart’s function. It is important to note that the
electrocardiogram reflects electrical activity in the heart, not contractile or pump
functions. (There may even be complete dissociation between these functions in some
clinical conditions, for example electromechanical dissociation.) The electrical
changes that occur during a cardiac cycle normally cause 5 to 6 deviations, which are
identified from left to right by the letters P, Q, R, S, T and U (if present). The periods
where an isoelectric condition exists in the heart are called segments. These segments
normally occur between P and Q (PQ-segment) and between S and T (ST-segment).
In normal electrocardiograms, recorded on standard electrocardiograph equipment, P,
R, T and U are normally positive (upward deflection). Q and S are negative

(downward deflection). (Meyer et al, 1988 : 32.3 - 4).

1mV

i'ﬂ v
£
|

— -

T
-PR Segment{Q S- ! —— -
QRS Complex !
< >t :[! ST Segment|
I 1 1 1 1 T T

0.2s

Figure 3-14: A conventional Electrocardiogram

(Meyer et al, 1988 : 32.5)

The electrocardiogram is inscribed on ruled paper. Such a page of graph paper is
divided into squares. This design permits direct determination of the electrical
activity, duration of different components of the ECG, as well as the heart rate. The
smallest divisions measure one millimetre in height and one millimetre in width. For

every five small divisions (blocks) a heavy line is drawn (Figure 3-14).

Deflections in the wave (both upwards and downwards) are measured in millimetres
and represent a measure of voltage. Each millimetre represents a potential of 0.1 mV.

A potential of 0.5 mV is represented by each heavy horizontal line. This voltage is

34

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

present as a result of the electrical activity of the heart. Upward deflections are also

called positive deflections. Likewise, downward deflections are called negative
deflections. (Dubin, 1989 : 27). By measuring along the vertical axis, we can find a

measure of the electrical activity of any part of the cardiac cycle.

The horizontal axis represents time. FEach of the small divisions represents 0.04
seconds. Since there are five of these divisions for every heavy line, the distance
between heavy lines represents 0.2 seconds. The duration of any part of the cardiac

cycle can be found by measuring along the horizontal axis. (Dubin, 1989 : 29).

3.1. P-wave

The P-wave represents atrial depolarisation and the accompanying atrial contraction
(both atria) (Figures 3-14, 3-15 and 3-18). It is worth noting that contraction and
depolarisation do not occur simultaneously, but for the purpose of this discussion,

these events are deemed to occur simultaneously.

o Y
]I‘ \ ‘ \\l
|

\

\

N

P-wave

Figure 3-15: Atrial contraction and the P-Wave

(Dubin, 1989 : 14)

The pause that 1s present towards the right of the P wave 1s caused by the fact that the
stimulus of depolarisation slows down as it enters the AV node. (This is necessary to

allow blood from the atria to pass through the AV valves.)

3.2. PR-Segment
The PR-segment is represented by the distance between the beginning of the P-wave

and the first deflection of the QRS-wave (Figure 3-14). It would be more correct to

35

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

talk about the PQ-segment, but since the Q-wave is often absent, it is common

practice to talk of the PR-segment. Depolarisation of a part of the AV-Node, the His
Bundle as well as the Bundle Branches, occurs during the PR-segment. The electrical
activity caused by these tissues is very small. This is reflected by the flat
PR-segment. Atrial repolarisation does not produce any visual deflections, since
ventricular depolarisation and atrial repolarisation coincide, obscuring any deflections

caused by atrial repolarisation. (Meyer ef al, 1988 : 32.3 - 6).

3.3. QRS-Complex
The depolarisation of the myocardial cells produces the QRS-complex. The QRS-

complex, in turn, represents the initiation of ventricular contraction. Although
mechanical contraction extends beyond the QRS-complex, we will consider the QRS-

complex to represent ventricular contraction.

The downward Q-wave (when present) indicates the start of the QRS-complex
(Figures 3-14, 3-16 and 3-18). A Q-wave is not present in all tracings. A positive R-
wave follows the Q-wave. By definition, the first negative wave of the QRS-complex
is the Q-wave. Any upward (positive) deflection in a QRS-complex appearing before
a “Q7-wave is NOT a Q-wave. It is actually the R-wave! The upward R-wave is
followed by a downward S-wave. Thus, a negative deflection preceded by a positive

deflection is a S-wave. (Dubin, 1989 : 20).

QRS

Figure 3-16: Ventricular contraction and the QRS Complex

(Dubin, 1989 : 18)

36

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

3.4. J-Point and the ST-Segment
The point where the QRS-complex ends and the ST-segment starts is called the

J-point. The ST-segment starts at the J-point and continues up to the start of the
T-wave. Normally the ST-segment is a flat piece of baseline. This indicates that no
electrical activity takes place for the duration of the ST-segment (Figure 3-14).
(Meyer et al, 1988 : 32.3 - 7).

3.5. T-Wave

The T-wave follows the ST-segment and is caused by the repolarisation of the
ventricles. It is also known as the second ventricular complex (Figures 3-14, 3-17, 3-
18). The ventricles have no physical response to repolarisation. The T-wave is

strictly an electrical phenomenon recorded on the ECG. (Meyer et al, 1988 : 32.3 - 7).

T wave

Figure 3-17: T-wave indicates no cardiac response

(Dubin, 1989 : 23)

3.6. U-Wave
This deflection closely follows the T-Wave and is normally positive (Figure 3-14).

According to Meyer (Meyer ef al, 1988 : 32.7) the exact origin of this wave is not
known, but Meyer speculates that slowed and uneven repolarisation could be a likely

cause.

37

© Central University of Technology, Free State

0 The Electrocardiogram

Central University of
Technology, Free State

Chapter 3

Atrial Depolarisation Ventricular Depolarisation Ventricular Repolarisation

Figure 3-18: The cardiac cycle

(Dubin, 1989 : 24)

3.7. Time intervals in the ECG

The PR (or PQ) time is the elapsed time from the start of the P-wave up to the start of
the QRS-complex (Figure 3-14). The PR-time represents the time needed for the
electrical impulse to pass from the SA Node through the atria, AV-Node, His Bundle,
Bundle Branches and Purkinje fibres (Figure 3-1).

The QT-time starts at the first deflection of the QRS-complex and continues to the end
of the T-wave (Figure 3-14). QT-time represents the duration of ventricular systoly

and diastoly.

Table 3-3 summarises the normal time span and amplitude of the different ECG

components.

3.8. Summary of ECG components

Table 3-3: Summary of the normal time span and amplitude of the different ECG components

ECG Component | Normal duration Normal Relevant cardiac activityr Fa
(seconds) amplitude (mV)
P-Wave 0.11 0.3 Atrial depolarisation
PR-Segment 0.14
PR-Time 0.12-0.20 Depolarisation of atria,
AV-Node, His Bundle and
Bundle Branches

38

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

Table 3-3: Summary of the normal time span and amplitude of the different ECG components

(continued)
ECG Component | Normal duration Normal Relevant cardiac activity
(seconds) amplitude (mV)
Q-Wave <0.04 Start of ventricular
depolarisation
QRS-Complex 0.08-0.11 0.5-3.0 Ventricular depolarisation
QT-Time 0.35-0.45 Ventricular depolarisation
plus ventricular
repolarisation
T-Wave 0.10-0.25 0.4 Ventricular repolarisation
U-Wave 0.10 0.1

(Meyer et al, 1988 : 32.3 - 7). Please refer to Figure 3-14 as well.

3.9. Interpretation of the ECG

In the actual reading of the ECG, the following 5 general areas are checked:

1. Rate
2. Rhythm

3. Axis

o3

. Hypertrophy

5. Infarction

Text books dedicated to the reading and interpretation of ECGs are available. Suffice
it to mention these areas. Interpretation of the ECG is normally done by a

cardiologist.

4. The HP4745A PageWriter |l Cardiograph
Since the Department of Cardiology, Universitas Hospital, Bloemfontein uses the
HP4745A PageWriter II Cardiograph machines extensively, this equipment was used

for this research.

39

© Central University of Technology, Free State

o The Electrocardiogram

Central University of
Technology, Free State

4.1. Basic description of operation
The operation of the HP4745A ECG machine can be summarised as follows:

Chapter 3

ANALOGUE ECG
SIGNAL OUTPUT

CHART PAPER

— FRONT-END MEMORY/CONTROL RECORDER —— WITH
PLOTTED ECG

POWER SUPPLY

Figure 3-19: HP4745A Block Diagram
(Hewlett-Packard Company, 1989 : 3-14)

The Front End connects the patient to the HP4745A. It isolates and protects the
patient whilst acquiring the ECG. The ECG data are applied from the Front End to
the Memory/Control Board for buffering, after which the data are applied to the
Recorder Assembly where ECG signals are drawn on chart paper. A modem can be
connected to the Memory/Control Board for transmission of ECG data. AC power is
applied to the Power Supply Board, which, in turn, supplies the DC voltages required
for cardiograph operation. (Hewlett-Packard Company, 1989 : 3-1 to 3-2). A

summary of the configuration settings can be found in Tables 3-4, 3-5, 3-6 and 3-7.

4.2. Configuration

The Department of Cardiology, Universitas Hospital, Bloemfontein, has a
standardised setting that is used for the recording of all ECGs. These settings were
taken into account for the purpose of creating of the data acquisition and graphics
modules described in Chapters 4, 7 and 8, as well as the design of the ECG storage
format described in Chapter 6. The information presented next serves to illuminate

the choices available to the user.

Certain cardiograph responses can be preset on the HP4745A. These include:

40

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

e ECG Formats

e Characteristics of the printed record

e Patient ID and administrative information
e Filter and frequency settings

e Transmission guidelines
e Time and date

It is thus possible to determine which ECG format will be used by default. One can
further determine which fields are mandatory and require input, and which fields can
be ignored. Once a parameter has been configured, the setting is stored until changed

again.

4.3. Summary of configurable functions

Displayed in the following 4 tables is a summary of configurable functions. Values
entered in the column ‘User Selections’ indicate the actual configuration settings as
found on the HP4745A ECG machines for the purpose of this study. (The ECG
rhythm speed setting for the standard ECG programme is 25 mm/sec and the
calibration 10 mm =1 mV. Lead V1 is selected for the rhythm strip.)

Table 3-4: Format Configuration Options

Function Parameter .‘ User Selections
1.0 Record type? Auto, Auto/RS, Manual,
Rhythm
2.0 Auto speed? 25, 50 mm/sec
2.1 Auto sensitivity? 0.5 ecm/mV, 0.5 (2 V),

1.0 cm/mV, 1.0 (% V)
2.0 cm/mV, 2.0 (4 V)

2.2 Auto lead length? 2.5,5.0sec
2.3 /RS speed? 2.5,5.0,10.0, 12.5, 25.0,
50.0, 100.0 mm/sec
2.4 /RS sensitivity? 0.25, 0.50, 1.00, 2.00
cm/mV

® Figure 3-20 (page 48), Table 3-9 (page 46).

41

© Central University of Technology, Free State

Chapter 3 o The Electrocardiogram

Central University of
Technology, Free State

Table 3-4: Format Configuration Options (continued)

2.5 /RS lead?
aVR, aVL, aVF
V1,V2, V3
V4,V5, V6
II(SP1), aVF(SP2),
V5(SP3)
3.0 Manual speed?3 25, 50, 100, 200 mm/sec
3.1 Manual sensitivity? 0.25, 0.50, 1.00, 2.00
cm/mV
3.2 Manual lead group? L IL, IIT
aVR, aVL, aVF
V1, V2, V3
V4, V5,Ve6
SP1, SP2, SP3
3.3 Manual placement? Whole page, Upper page,
Lower page
4.0 Rhythm speed?4 2.0,5.0,10.0,12.5, 25.0,
50.0 mm/sec
4.1 Rhythm sensitivity? 0.25, 0.50, 1.00, 2.00
cm/mV
4.2 Rhythm lead? I I, I
aVR, aVL, aVF
V1,V2,V3
V4, V5, V6
SP1, SP2, SP3
4.3 Rhythm Save data? 1 chan /3 chan
4.4 Rhythm Save length? 1.5, 5.0, 10.0 sec _
5.04 Frequency response? 0.05 - 40 Hz, 0.05 - 100 Hz
(Auto only)
5.0p Frequency response? 0.05 - 40 Hz, 0.05 - 100 Hz
(Manual and Rhythm) 0.5-40Hz, 0.5-100 Hz

3 Items 3.0 - 3.3 and 5.0p are only used for the MANUAL recording mode, Formats 5 & 6. The user settings are
listed here for the sake of completeness. The MANUAL recording mode, however, was not used for this
research.

4 Items 4.0 - 4.4 and 5.0}, are only used for the RHY THM recording mode, Formats 7 - 9. The user settings are
listed here for the sake of completeness. The RHYTHM recording mode, however, was not used for this
research.

42

© Central University of Technology, Free State

O

Chapter 3 The Electrocardiogram
Central University of
Technology, Free State
Table 3-4: Format Configuration Options (continued)
Function Parameter

5.2 Record header width?

User Selections

Wide, Narrow

5.4 Patient ID required?

Yes, No

5.6 1D Header type?

Full, Minimum i

(Hewlett-Packard Company, 1988 :7-8

Table 3-5: Global parameter Options

Function Maximum Characters User Selections
Accepted ‘
6.0 Location code? 5
6.1 Cart ID? 4
Function Parameter
6.6 Automatic ECG Yes, No, Choice
Storage?

6.7 Language?

English, French, German,
Dutch, Spanish, Italian

7.0 Power-on Format?

Enter value 0-9

7.3 Power line frequency?

50 Hz, 60 Hz

7.4 Power on artifact
filter?

Off, On

7.7 1D field units?

English, Metric

7.9 Age ID field enabled? Yes, No

7.10 Sex ID field enabled? Yes, No

7.11 Height ID field Yes, No
enabled?

7.12 Weight ID field Yes, No
enabled?

7.13 BP fields enabled? Yes, No

7.14 Race ID fields Yes, No
enabled?

7.15 Medication ID fields Yes, No
enabled?

43

© Central University of Technology, Free State

Chapter 3 0 The Electrocardiogram

Central University of
Technology, Free State

Table 3-5: Global parameter Options (continued)

Function Parameter User Selections

7.16 Diagnosis ID fields Yes, No
enabled?

7.17 Criteria 1D fields Yes, No
enabled?

7.18 Operator ID fields Yes, No
enabled?

7.19 Department ID field Yes, No
enabled?

7.20 Room 1D field Yes, No
enabled?

7.21 Requested by ID field Yes, No
enabled?

7.22 User A 1D field Yes, No
enabled?

7.23 User B ID field Yes, No
enabled?

7.24 Stat ECG ID Field Yes, No
enabled?

(Hewlett-Packard Company, 1988 : 7-15)

Table 3-6: Transmission Parameter Options

Function Maximum Characters User Selections
Accepted i i
8.0 Phone #15 22
8.1 Phone #2 22
8.2 Phone #3 22
8.3 Phone #4 22

5 Fields 8.0 - 8.3 are blank since the HP4745A is not connected to any modem and thus not used for dialling into
other systems.

44

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

Table 3-6: Transmission Parameter Options (continued)

Function Parameter i User Selections
8.4 Printback enabled? Yes, No
8.5 Autodial after transmit, Yes, No
selection?
8.6 Dialing type? Pulse, Tone
8.7 Dial pause length? 2,4,6,8, 10 sec
8.8 Phone baud rate? 300, 600, 1200, 2400, 4800,
9600, 19200
8.9 System baud rate? 300, 600, 1200, 2400, 4800,
9600, 19200

(Hewlett-Packard Company, 1988 : 7-20)

Table 3-7: Time and Date Options

: Function - Parameter 1 User Selections
9.0 Clock Mode (12/24) 12, 24

9.1 Date (dd/mm/yy)6 dd/mm/yy

9.2 Time (hh:mm)7 hh:mm

(Hewlett-Packard Company, 1988 : 7-22)

4.4. The ECG recording mode and format used for this study

The HP4745A is very versatile and allows for 9 preset, factory configured, recording
modes (as well as user-defined recording mode) to be used. (These choices are
summarised in Table 3-4.) A format is a preset combination of leads, recorded at a
given speed and sensitivity. Since nearly all ECGs taken at the Department of
Cardiology, Universitas Hospital are recorded using the same (standard) format, only

the following recording mode was used:

6 The current date in the memory of the HP47435A is displayed by default when the user is prompted for a new
value for the date field.

7 The current time in the memory of the HP4745A is displayed by default when the user is prompted for a new
value for the time field.

45

© Central University of Technology, Free State

Chapter 3 Q The Electrocardiogram

Central University of
Technology, Free State

Table 3-8: Report format in use at Cardiology, Universitas Hospital, Bloemfontein

Recording Mode | Format | Factory Setting

AUTO/RS 2 12-Lead + Rhythm Strip (10 seconds). The rhythm
strip represents 10 seconds of acquired data. Speed for

the rhythm strip is 25 mm/sec.

Please refer to Table 3-9 and Figure 3-20 for an example of an ECG recorded using

the recording format described above.

Table 3-9: Items found on the ECG report (AUTO/RS Mode, Format 2)

Item | Description

A Patient ID and demographic information.®

B, C,D | Auto ECGs contain three channels of data. Each channel consists of four
leads.

E Auto/RS ECGs add a fourth channel as a rhythm strip. These data are
acquired immediately after the 12-lead data are obtained.

F A 1 mV calibration pulse is printed.

G Identification is printed above each lead.

H A split vertical line indicates when the recording switched to the next lead.

I Lead, speed and sensitivity for the thythm strip are printed directly above

1.

J Location code (CART ID).

Frequency response (Front end filter) defaults to 40 Hz.

L Unique sequence number assigned to ECG by cardiograph.

8 Depending on the configuration of the HP47435A Cardiograph. different information is printed. Information
includes Patient ID Number, Age and Sex. Height and Weight, Systolic and Diastolic Blood Pressure, Race,
Medications, Diagnoses, two User Fields, ECG Requested By, Operator and Room Number as well as a
Department Identifier. (Hewlett-Packard Company, 1988 : 4-6).

46

© Central University of Technology, Free State

0 The Electrocardiogram

Central University of
Technology, Free State

Chapter 3

5. Summary

Myocardial activity is initiated by electrical stimulus. An electrocardiograph produces
‘a permanent record of such myocardial electrical activity, and not of the contraction,
as is often assumed. In order to perform this task, the ECG machine needs to amplify,
filter and convert electric signals. It also needs to display and distribute recorded

signals.

Electrodes connected to the skin provides information on the electrical activity of the
various chambers of the heart. Twelve standard leads provide a simultaneous view of
the myocardial electrical activity from different perspectives (angles). The resulting

traces consist of various waves and segments.

A standard configuration for the HP4745A PageWriter II Cardiographs used at the
Department of Cardiology, University of the Orange Free State, Bloemfontein, has
been set up. These settings are needed to enable proper interpretation of the digitally

acquired ECG Data.

47

© Central University of Technology, Free State

i !
A
3
4.
v
§
7
ot

The Electrocardiogram

> Central University of _ G6

eVl V2

avr v3

Figure 3-20: A Sampie ECG

e
—
b

i LAy
= [F R I/ ..}:‘f]

V]

' | ; P

! Fii o | { =

e i P JI= =LA
§ Y i =N

£

48

© Central University of Technology, Free State

0 Data Acquisition

Chapter 4

Central University of
Technology, Free State

Chapter 4

Data Acquisition

1. Introduction

The ultimate goal of this study was to develop (amongst others) a software product
that would allow digital storage of electrocardiogram data captured from a HP4745A
PageWriter II Cardiograph. Before data can be stored, however, it needs to exist.
Data were captured from the source (HP4745A) by means of some data capture

procedure, and stored in the Hearts 32 database.

When contemplating the data capture mechanism, it is often easier to model such a
mechanism as a “black box” (Figure 4-1 below). Such an approach is not unique to
data capture between the HP4745A PageWriter II Cardiograph and a PC, but can also
be applied to other situations where data are exchanged between any other instrument

and a PC.

If an interface between the instrument and the outside world is provided by the
manufacturer of the instrument, it is possible to develop an interface between the PC
and the instrument (connecting to the provided instrument-interface). The “black
box” mentioned in the previous paragraph can thus be seen as the interface between
the PC and the instrument, connecting to the interface of the instrument, as shown in

Figure 4-1 below.

| Interface Interface Interface
«— > > S———rS — s =

Data Capture PC Hearts 32
(Black Box) Database

ECG Machine
Data Source

Figure 4-1: Schematic representation of data acquisition

49

© Central University of Technology, Free State

Q Data Acquisition

Central University of
Technology, Free State

Chapter 4

The data acquisition module can only succeed to interface the instrument and the PC
when it interfaces at both a hardware and software level, as depicted in Figure 4-2

below.

Hardware Layer

Software Layer

Figure 4-2: Two major components of data acquisition
The hardware level is responsible for providing the electrical connection between the
interfaced equipment (instrument and PC). It is this connection that constitutes the
communications link (in terms of voltages, as defined by the RS-232 serial
communications protocol) between the interfaced equipment. Data transfer utilising
said link is in part controlled by the processes running in the software level. (A
discussion of the details of the RS-232 protocol is outside the scope of this thesis.
Suffice it to mention that RS-232 communications is utilised for hardware
communications. The settings of the RS-232 communications port parameters are

discussed in Appendix A.)

The software level utilises the services provided by the hardware level in order to
move data between the interfaced equipment, and also to manage the link. The
communications protocol developed by the vendor of the instrument is implemented
in the software layer as well. A detailed discussion of the Hewlett Packard

Diagnostic Cardiology Digital Transmission Protocol can be found in Appendix A.

Such a data acquisition module as mentioned above will only become truly useful
when integrated with a software product such as Hearts 32. This chapter provides a
high level discussion on the design issues of the data acquisition module developed to

download and decode data from a HP4745A PageWriter 11 Cardiograph.

50

© Central University of Technology, Free State

Chapter 4

0 Data Acquisition

o Central University of
Technology, Free State

2. Design issues
During the conceptualisation of the data acquisition module, the effects of each of the

following components had to be taken into account:

e RS-232 communications settings (baud rate, data bits, stop bits, parity)
e Digital transmission protocol used for downloading of data

e Internal data storage format

Although roughly the same, the communications settings used for RS-232 data
communications differ for different models and makes of ECG machines. The digital
transmission protocols contain proprietary information and are closely guarded by
each manufacturer of ECG machines. Internal data storage formats also differ for

different models and makes of ECG machines.

If a database, capable of storing digitally captured ECG data from different ECG
machines is to be developed, great care should be taken to ensure that the interface

between the database and the ECG machine is open ended.

In the case of the Hearts 32 database and the HP4745A, prov1sion]ﬁﬁ$fw{o -

‘-

enable the Hearts 32 database to cope with a changing enVJrOllrhgﬂtE §répamhg1hé TYI

‘ r
HP4745A data acquisition module in such an open ended manm#r will: 5 St D H = "
2001
L HNIKON
e Allow data acquisition from the HP4745A. F R 33 STATE u

e Immediately enable Hearts 32 to communicate with future data acquisition

modules that conform to the specifications developed during this research.

2.1. Hardware independence

In a dynamic environment, it cannot be expected that the systems in use will stay
static. Systems become outdated and are replaced with others. Database applications
such as Hearts 32 should be designed in such a way that they are robust enough to

handle different sources of ECG data.

51
© Central University of Tecﬁnoldgyﬂ:rbe State| » —~_ \

0 Data Acquisition

Central University of
Technology, Free State

It should not be necessary to change the Hearts 32 application itself each time a

Chapter 4

different ECG machine is introduced into the system. Configuring Hearts 32 for data
acquisition from different ECG machines should be as easy as selecting the desired

machine from a list.

2.2. Configurability

Just as the ECG machines that are used to acquire data are subject to change, different
models of ECG machines will use different communications configuration settings.
The Hearts 32 application must make provision for setting the communications

configuration of the data acquisition module.

3. Addressing the issues

The issues mentioned above have been addressed during the development of the data
acquisition module. No attempt was made to recreate Hewlett Packard’s Digital
Transmission Protocol. Instead, a program was written to handle data from the
HP4745A, supplying the correct responses (as defined by the protocol) at the correct
time during a transfer. A detailed discussion of this program can be found in

Chapter 8.

3.1. Hardware Independence

It is unrealistic to expect that a database application such as Hearts 32 should
inherently be capable of acquiring data from any ECG machine on the market. For
this research, a data acquisition module for the HP4745A was developed. To plan for
hardware independence, the data acquisition module is implemented as a Dynamic

Link Library (DLL). This idea can graphically be illustrated as in Figure 4-3:

52

© Central University of Technology, Free State

Chapter 4 Q Data Acquisition

Central University of
Technology, Free State

HP4745A Hearts 32
Cardiograph II Database
Page Writer Application

ECG Machine X &

ECG Machine Y £ HP4745A.DLL

DOW—HD—~+ T —

Data Acquisition
Maodules
implemented
as Dynamic
Link Libraries

Electrardiograph
machines

Figure 4-3: Hearts 32 and the Data Acquisition DLL
The rationale behind using DLL technology is that the data acquisition module should
not be a fixed part of the Hearts 32 database (as in Figure 4-4). The situation depicted

in Figure 4-4 will lead to the following problems:

e With every new ECG machine used for digital data acquisition, the Hearts 32
application code itself will have to be updated.

e Since it is possible that data acquisition modules for different ECG machines may
be developed by parties other than the original creators of the Hearts 32
application, this is a severely limiting factor.

e The Hearts 32 application will become unnecessarily large (wasting critical
resources such as RAM, and time to load the application) when it has to contain
code for data acquisition of a variety of ECG machines (some of which may no

longer be in use).

If and when another ECG machine is connected to Hearts 32, an appropriate data
acquisition DLL for the ECG machine must be provided. The data acquisition DLL
then acts as a driver for the application program (Figure 4-3). This does not differ
from any other Windows” program, where the complexities of driving peripherals, for

example, have been abstracted from the application programs using the peripherals.

53

© Central University of Technology, Free State

Chapter 4 Q Data Acquisition

Central University of
Technology, Free State

Hearts 32
HPA745A Database
Data Acquisition| ~Application

Module

Figure 4-4: The incorrect approach (integrated data acquisition)
The function of such a data acquisition DLL would be to deliver a data set in a
standard, pre-defined format' for inclusion in the Hearts 32 database (Figure 4-3).
This is needed because Hearts 32 (or any other application) needs to be able to

interpret the data for processing.

3.1.1.Dynamic Link Libraries
According to Pacheco & Teixeira (Pacheco & Teixeira, 1996 : 656) a dynamic link

library is a program module that contains code, data or resources that can be shared
among Windows® applications, as shown in Figure 4-5 below. Dynamic link libraries

can also share code, data or resources among one another.

Application A Application B Application C Application D

\ /
\

N Dynamic
Link Library |2

Figure 4-5: Code sharing with Dynamic Link Libraries

1 Besides a Data Acquisition Module for the HP4745A Cardiograph 11 PageWriter electrocardiograph, a set of
specifications enabling data acquisition from other electrocardiograph machines into the Hearts 32 database
also resulted from this study. Details of the proposed format can be found in Appendix B.

54

© Central University of Technology, Free State

Chapter 4 Q Data Acquisition

Central University of
Technology, Free State

Some very real advantages can be found from implementing dynamic link libraries.

These are summarised in Table 4-1:

Table 4-1: Advantages of using DLLs

1 Applications can load code to be executed at runtime, rather than having code

statically linked into the executable file.

2 Multiple applications can use the same code, provided by the DLL,

simultaneously.2
3 Because of re-use of DLLs, the programs using them require less disk space.

4 Applications become modular, allowing maintenance to be performed on sections
(the DLLs) of the project without affecting the rest of the project. For example,
when new peripherals are created, a set of drivers is supplied. In the case of
Windows®, these are normally .DRYV files (device drivers). These .DRV files are

nothing else than dynamic link libraries.

5 Hiding of implementation details. To the user (application program) of the
exported functions of a DLL, only the function name is visible. Exactly how the

results are achieved is of no importance when using the function.

(Pacheco & Teixeira, 1996 : 656).
As with all good things, there is a downside and the disadvantages of using dynamic link

libraries can be summarised as follows:

2 An example of this is Win32%®, which, according to Pacheco & Teixeira (Pacheco & Teixeira, 1996: 656), relies
heavily on the files KERNEL32.DLL, USER32.DLL and GDI32.DLL. Services supplied by these dynamic
link libraries include memory, process and thread management as well as graphics and user interface functions
in Windows 95®,

53

© Central University of Technology, Free State

Chapter 4 Q Data Acquisition

Central University of
Technology, Free State

Table 4-2: Disadvantages of using DLLs

1 If the DLL file is not available, the application using it will fail since it cannot

provide the necessary services without the DLL.

2 Distribution of the application is somewhat more complicated, since supplying
the executable file alone is not enough to ensure that the application will function

correctly.

3 Repetitive loading of the DLL might have an impact on the application’s

performance.

3.1.1.1.Static linking versus dynamic linking

When writing program code, the programmer uses the keywords and operators of the
programming language, together with the procedures and functions provided by the
vendor of the programming language in run time library (RTL) files. Normally, the
programmer also creates his/her own procedures and functions in order to augment the

procedures and functions found in the RTL.

A list of references to the procedures and functions used in the program is built by the

compiler during the compilation phase.

The linker has to resolve the procedures and functions used in the program, as
identified during the compilation phase. Resolving means that the linker must ensure
that the executable code for each procedure/function is available when the program

executes.

In the case of static linking, the linker places a copy of each procedure/function into
the executable program file. For example, suppose that a user-defined procedure
Power has been created to raise x to the power of y, and placed in an Object Pascal
unit file called PowerlU. Every Object Pascal program using the Power procedure will
contain a copy of the Power procedure code, statically linked into the executable file,

as illustrated in Figure 4-6 below.

56

© Central University of Technology, Free State

Chapter 4

O

Data Acquisition

Central University of
Technology, Free State

Object Pascal Unit (.DCU file)

Executable file

Application A

Procedure Power;
begin

code
end.

Unit Power U: Executable file
Application B
Procedure Power; o
begin >_Ero<_:edure Power,;
egin
d code
code end.
end.
Executable file
Application C
Procedure Power,;
begin
code
end.

Figure 4-6: Static linking

Some problems that can be foreseen with static linking include:

e [fthe code contained in the procedure/function changes, all programs containing a

copy of the code need to be re-compiled and re-linked. This makes maintenance

more difficult. In some cases this represents a serious problem, especially if a

large number of users use the product, and the executable programs are large.

Imagine what would have happened if the entire Windows" software were

developed as one big executable file (if this could be done!). Every time a new

piece of hardware came on the market, the entire Windows® software package

would need to be updated, and re-distributed!

e Bloating of the executable file (increased file size) by including a copy of the code

in each and every program. This could waste a lot of disk space and load time if a

57

© Central University of Technology, Free State

Chapter 4 Q Data Acquisition

Central University of
Technology, Free State

large number of programs using the same procedures and functions reside on the

same computer system and are very dynamically loaded and un-loaded.

With dynamic linking, the link between a call to the procedure Power (in our
example) and the Power procedure itself would be resolved at runtime by using an
external reference to the Power procedure resident in the relevant DLL. This can be

illustrated as in Figure 4-7 below:

Executable file

Application A

 External reference to
~| Power Procedure

Dynamic Link Library (.DLL file)~

Library UserProcs; Executable file

Application B
Procedure Power; < —
i —__| External reference to
code Power Procedure
end.

Executable file

Application C

| External reference to
Power Procedure

Figure 4-7: Dynamic linking

3.1.1.2.Implicit Loading versus Explicit Loading

When some of the functions and procedures required by the application reside in a
DLL, the DLL is automatically loaded. This process is called Implicit Loading and it

is implemented in Object Pascal in the following manner:

In the interface part of the unit, the procedure/function declaration is made in the

normal manner. The use of the StdCall reserved word is necessitated to ensure that

58

© Central University of Technology, Free State

Chapter 4 Q Data Acquisition

Central University of
Technology, Free State

parameters are passed from right to left, enabling the Object Pascal program to
interface with DLLs written in other languages such as C.> Since Windows" is

written in C, this also enables interfacing with the Windows® DLLs.

In the implementation part of the unit, the procedure/function declaration is given, but
without reference to parameters and/or return values. The External keyword indicates

that the procedure/function is imported from an external source.

Consider the code example shown below:

Code Snippet 4-1: Implicit loading of a procedure/function from a DLL
unit HeartsMain;

interface
function ReadDecodeCalcStoreECG(ComputerNumber : PChar)} : Integer; StdCall;

implementation
function ReadDecodeCalcStoreECG; external 'HP4745A.DLL' name 'ReadDecodeCalcStoreECG';

end.

The fact that the function name (ReadDecodeCalcStoreECG) is entered in the
program code as a string constant does not pose a serious problem, since it can be
documented in the data acquisition module specification documentation. However,
the hard coding of the DLL name (HP4745A.DLL) poses a serious problem for the
application program using the DLL, when the application program needs to invoke
functions from different (even unknown, as in the case of Hearts 32) DLLs. How can
Hearts 32 be informed about the existence of other data acquisition DLLs, and how

will it load and execute such DLLs?

It is not always desirable to use implicit loading of a DLL. The following reasons

illustrate the problems:

3 1t is extremely important to note that the default parameter passing convention of Object Pascal and that of C
does not correspond to each other. The register and pascal conventions found in Object Pascal pass parameters
from left to right, that is the leftmost parameter is evaluated and passed first and the rightmost parameter is
evaluated and passed last. The cdecl. stdcall and safecall conventions pass parameters from right to left.

59

© Central University of Technology, Free State

Chapter 4

0 Data Acquisition

o Central University of
Technology, Free State

Table 4-3: Contra-indications for use of implicit DLL loading

1 Ifa DLL is implicitly loaded but never used during a particular execution of the

application, time and memory is be wasted.

2 A DLL with a large number of routines can be quite large, occupying a lot of

memory. In this instance it is better to load the DLL on demand.

3 An application loading multiple DLLs possibly does not need access to all the
DLLs simultaneously. It would be better to load these DLLs as needed, thus
conserving memory requirements whilst improving performance through

reducing the initial load time.

4 The existence of DLLs may not be known to the application at the time of

creating the application.

Sharing of the resources contained in the DLL is achieved, but implicit loading of the
DLL still means that there is a strong static coupling between the calling application
and the DLL itself. What is needed for the Hearts 32 application to succeed in its
quest for data acquisition, is DLL technology, but with a loose coupling between

Hearts 32 and the data acquisition DLL.

Explicit Loading refers to the loading of a specific DLL (as identified by the
application) on request of that application. Such “loading on demand™ offers more
freedom, but also necessitates greater care. The application must test that the desired
DLL exists (is accessible), has been loaded, and once loaded, determine whether the

desired function or procedure can be located in the DLL.

Since explicit DLL loading does not access the DLL or the procedures and functions

that the DLL contain, using literal identifiers (such as literal text strings in the

r-—--un i A ‘.:-- :.:m‘-ww.--‘.
THIS BOOK IS

| THE PROPERTY
DF THE
- 5 SEP 2001
TECHNIKON
60 FREE STATE |

© Central University of Technology, Free State

Chapter 4 Q Data Acquisition

Central University of
Technology, Free State

program code), extra work has to be performed. A global procedure pointer4 is

declared as follows:

Code Snippet 4-2: Declaring a global procedure pointer type

TReadECGFunc = Function(hAppHandle : THandle; sDescription : PChar; nComPort :
Integer; nBaudRate : Integer; sBinaryFile : PChar; sASCIIFile : PChar; sECGTime :
TAr20; sECGDate : TAr20) : Integer : StdCall;

The global procedure pointer allows access to a procedure or function residing in the

DLL, but from the calling module.

A variable of type TReadECGFunc (declared in Code Snippet 4-2 above) now needs
to be created. This variable will store the address of the ReadDecodeCalcStore ECG
function. Another variable that will access the DLL (by obtaining a handle to the
DLL) needs to be declared. The declaration of these variables can be illustrated as

follows:

Code Snippet 4-3: Variable Declaration for explicit DLL Loading

var
ReadECGFunc : TReadECGFunc;
LibHandle : Thandle;
LoadThisDLL : String;

The next step is to load the DLL. The name of the DLL in this example is contained
in a string variable called LoadThisDLL, and the value of this variable is assumed to
be assigned previously. A handle into the loaded DLL is returned, through which the

contents (code and resources) of the DLL can be accessed.

Code Snippet 4-4: Explicit Loading of a DLL

LibHandle := LoadLibrary(LoadThisDLL);

4 The Borland® Object Pascal Language Guide describes global procedure pointers as follows: “A procedural
type declared without the of object clause is called a global procedure pointer. A global procedure pointer can
reference a global procedure or function. and is encoded as a pointer that stores the address of a global
procedure or function.” (Borland, 1997 : 4-18).

61

© Central University of Technology, Free State

Chapter 4 Data Acquisition

. Central University of
Technology, Free State

After successful loading of the DLL, the address of the desired procedure/function
residing in the DLL must be determined. This address will be assigned to the global
procedure pointer variable declared in Code Snippet 4-3, and can be illustrated as

follows:

Code Snippet 4-5: Linking with the DLLs Exported functions/procedures

@ReadECGFunc := GetProcAddress(LibHandle, 'ReadDecodeCalcStoreECG'):

The GetProcAddress Windows® API function takes as parameters a handle to the
DLL and a string containing the name of the function/procedure of which the address
must be determined. It returns this address. Since we do not want the variable
ReadECGFunc to contain the address, but rather to point to the address, we need the

@ operator.’

The ReadDecodeCalcStore ECG function is indirectly invoked via the ReadECGFunc

pointer as follows:

Code Snippet 4-6: Invoking a Function via a Pointer

ResValue := ReadECGFunc(Application.Handle, PChar(DLLDescription),
ComPort, BaudRate, PChar{ FileNameE),
PChar(FileNamelA), TimeECGTaken, DateECGTaken);

The library handle (assigned in Code Snippet 4-4 above) needs to be freed before the

code module in the main program terminates. This is done as follows:

5 The Borland® Object Pascal Language Guide describes procedural types and the use of the @ operator as
follows: “The (@ operator is often used when assigning an untyped pointer value to a procedural variable. For
example, the GetProcAddress function defined by Windows (in the WinProcs unit) returns the address of an
exported function in a DLL as an untyped pointer value. Using the (@ operator. the result of a call to
GetProcAddress can be assigned to a procedural variable.” (Borland, 1997 : 6-13).

62

© Central University of Technology, Free State

Chapter 4 Q Data Acquisition

Central University of
Technology, Free State

Code Snippet 4-7: Freeing the Library Handle

FreeLibrary(LibHandle);

3.1.1.3.Making the connection

For an application to use the functions or procedures contained in a DLL, the DLL
must export (make available) the names of these modules. This is accomplished by
using the exports clause in Object Pascal. Exports entries can include the name of the
module to be exported (Code Snippet 4-4), or it can include the word index followed
by an integer constant (Code Snippet 4-3). “This method is called importing by
ordinal”. (Pacheco & Teixeira, 1996 : 663).

Code Snippet 4-8: Importing by ordinal

function ReadDecodeCalcStoreECG; external 'HP4745A.DLL' index 1;

Code Snippet 4-9: Importing by name

function ReadDecodeCalcStoreECG; external 'HP4745A.DLL' name 'ReadDecodeCalcStoreECG';

The user (application) of the DLL can invoke the desired module by using the
exported name or the index entry. It is interesting to note that when using the name,
there is a slight performance penalty to be paid, since the module’s name has to be
looked up in the DLL’s name table. Pacheco & Teixeira (Pacheco & Teixeira, 1996 :
664) suggest that the “importing by name” method be used, since the “importing by

ordinal method” is too cumbersome to work with.

The “importing by name” method has been chosen for the Hearts 32 application.

3.2. Configurability

It is all good and well to have the main application (Hearts 32 in this case) on the one
side, and the different, separate data acquisition modules implemented as dynamic
link libraries on the other side, but some mechanism is needed in order to connect

these different pieces of software.

63

© Central University of Technology, Free State

Chapter 4

0 Data Acquisition

Central University of
Technology, Free State

Simply placing the DLL files in a certain location and having the application search

for them, is in itself not enough. The reason for this is that different ECG machines

may have different communications port settings.

The following basic items (as found in Figure 4-8) are recorded for each data

acquisition module:

e DLL Name.

e DLL Description.

e Whether this DLL is to be used as default or not.

e Communications port where ECG machine is connected to the PC.

e Baud rate at which the link between the ECG machine and the PC operates.

uDataAcquisilinn Module Options !mn

Pamaie Link Libreye s = e oM Bl ey
| | |
HP4700 & Com1 C Com3 1
|
|

HP4745 Cardiograph Il Fage

eviriter Data Acquisition M
C Com2 C Com4

1 ~Baud Rates———— o
. €300 @ 9600 |
£ i
| ke CHSZ0
DLL Name DLL Description 1200 38400
[HP4745A DL E’J [HP4745 Cardiograph Il Pa ‘
2400 " 57600 \

¥ Use this DLL as default | ' 4800 C 115200

| Edt | Delete | ok | Cloge

Cancel |

Figure 4-8 Data Acquisition Module Configuration Dialogue Box

The idea behind this kind of link is that the Hearts 32 application can easily be
informed of available data acquisition modules.® It is also possible to make some very

basic (but critical) changes to the communications settings via this interface. Other

6 By simply clicking with the mouse on the folder speed button (located next to the edit dialogue box for
DLL Name), the user may navigate the hard disk in order to easily locate the dynamic link library searched for.

64

© Central University of Technology, Free State

Chapter 4

0 Data Acquisition

Central University of
Technology, Free State

communications settings (such as buffer sizes and flow control options) should be set

in the data acquisition module itself and not be exposed to tampering by operators.

The question now arises: Where is this information stored? In the Registry. Cantu
describes the Registry as “a hierarchical database of information about the computer
and software configuration, and the user preferences.” (Cantu, 1997 : 1173). Thurrot
et al describes the Registry in much the same way. (Thurrot ef al, 1997 : 57). Thurrot
et al also mentions that the function of the Registry has previously haphazardly been
performed by INI files in earlier versions of Windows”. The Registry is more
sophisticated than INI files due to its organisational structure. (Thurrot et al, 1997 :

57).

The Windows" 95 Registry is based on six top-level keys, as shown in Figure 4-9:

Registy Edit Yiew Help

= =) My Computer Name : Deta =~
&l 1] HKEY_CLASSES_ROOT _ﬂ(Daf&ull} {(value not set)
-] HKEY_CURRENT_USER
ERER |- E’ LOCAL MACHINE
% 1 HKEY_USERS
+ 1 HKEY_CURRENT_CONFIG
&) HKEY_DYN_DATA

Jl 5 5 il 3

My Computer\HKEY_LOCAL_MACHINE

Figure 4-9: The Windows® 95 Registry
It is possible to examine (view and modify!) the Registry by using a program such as
RegEdit.EXE, or other custom designed software. An important word of warning at
this point: Be extremely careful. According to Canti, “The importance of the registry

should not be underestimated. The Registry holds crucial information about the

65

© Central University of Technology, Free State

Chapter 4 0 Data Acquisition
. Central University of
Technology, Free State

system hardware configuration, Control Panel settings, OLE servers, and even
statistics about the machine.” (Cantu, 1997 : 1174). If the Registry is damaged, a

complete reload of Windows" 95 might be needed.

Windows" provides a set of API functions allowing interaction with the Registry. In
order to use the Registry, the correct Key (folder) has to be opened. The correct
Subkey (subfolder) then has to be opened, allowing access to values (items).
Delphi™ supplies an interface to the Registry through the two Visual Component
Library (VCL) classes TRegistry and TReglniFile. This facilitates working with the
Registry dramatically.

When adding entries to the Registry, it is recommended that the items be placed under
the Software subkey, and even under a company name, software product and version
number (Cantu, 1997 : 1175). This is the default behaviour of the InstallShield
Express software installation program which is supplied with Delphi’”‘".7 In the
Hearts 32 application the complete key for application information is defined as

follows:

Code Snippet 4-10: Complete Registry Key used in the Hearts 32 application

\HKEY LOCAL_MACHINE\SOFTWARE\Double Precision Computing Services CC\Hearts 32\1.0\Data
Acquisition Modules

This is graphically illustrated in Figure 4-10:*

From Figure 4-10 it can be seen that the individual items as listed in Figure 4-8 (page

64) are stored as values under the Data Acquisition Module subkey. The item

7 The InstallShield Express installation software is a product in its own right, and seems to have become the de
Jacto standard for installing of programs in the Windows® environment. A cut down version of InstallShield
Express is supplied with Borland® Delphi™.

8 Although Figure 4-10 displays the key as starting with “My Computer”, this part is not supplied when gaining
programmatic access to the Registry. The root of the key. therefore, is shown as \.

66

© Central University of Technology, Free State

Chapter 4 o Data Acquisition

Central University of
Technology, Free State

DLL Description serves as the value name, while the value itself is comprised of the

rest of the data as shown in the dialogue box in Figure 4-8.”

A detailed discussion of the programming needed for access to the Registry, can be

found in Chapter 8.

t.':' Registry Editor BEIB
Registry Edit View Help
+__] HKEY_CLASSES_ROOT allNeme = lDsm
] HKEY_CURRENT_USER !_i‘!';](DElauIl) (value not set)
= 1 HKEY_LOCAL_MACHINE [aB)HP4745 Cardiagraph | Pa_. "HP4745A DLLY0YS/Y"
+ 1 Conlig ab] Testing HP4700 "HP4700. DLLy0YSYN"
* _ 1 Enum
= 1 hardware
%] Network
% 1 Security
=1 SOFTWARE

1 Description

- 1 Double Precision Computing Services CC
i =1 Heerts 32

: =110

i BB | Lot Acquis tan Modyles
i :J InstallShield

© T INTEL

e :_] lomega Carporation

e =1l | N

My Computer\HKE'Y_LOCAL_MACHINE\SOFTWARE\Double Pracision Computing Senices CCiHearts 321 0\Data Acq

Figure 4-10: An example of the Registry entries for Hearts 32

3.3. Data acquisition

The data acquisition process can be outlined as follows:

1. The correct patient record is identified and selected in the Hearts 32 database
(Figure 4-11).

2. The ECG tab is selected, opening the dialogue box for ECG data acquisition
(Figure 4-12).

9 The value for each of the communications configuration items has been concatenated into one long string in
order to case the management of these items in the Registry. Each value in the string has been separated from
the other by using ASCII 255 (represented as a ¥ in Figure 4-10). This makes tokenising of the string possible
when the individual values need to be retrieved again.

67

© Central University of Technology, Free State

Chapter 4 Q Data Acquisition

Central University of
Technology, Free State

3. When the user activates the data acquisition procedure, Hearts 32 scans through

the Registry entries, searching for the data acquisition DLL that has been set as the
default DLL.

3. Hearts 32 now proceeds by attempting to load the default data acquisition DLL,
and invoking the data acquisition function located in the DLL.

4. The name of the temporary file in which the data are stored during processing is
supplied by Hearts 32, and is based on the computer number (an internal identifier
which is used at the Department of Cardiology, Universitas Hospital, and uniquely
identifies a patient).

5. Once the data have been acquired from the ECG machine, the data acquisition
DLL will decode and calculate (reconstruct) the numeric values.

6. As soon as control has been returned to Hearts 32, the reconstructed ASCII file

will be compressed and entered into the ECG table of the Hearts 32 database.

| Select a Patient u
Search E_ieid:iCamputerNumber _:_]
Search Text [P400 Gol
14 I - I > 1 2] i
Computer Number%Surname _‘-_i
| |P39 PRINSLOO
P4 PARRY
| |P40 POPE
M| P400 PALI
P2 PROKOPIOU
| |P43 PRETORIUS o
| |P44 PETERSEN
-
Ki :I—J
0K Cancel]

Figure 4-11: Patient selection dialogue box in Hearts 32

e
e S

TM;S P?OC'K [C‘ -
Tl;{‘ Q?)’)p? F?T“

i OF THE
*‘; sJ VE o ,,‘f“:'
68 L wT& |

%

© Central University of Technology, Free State

Chapter 4

0 pata Acquisition

Central University of
Technology, Free State

EdHEARTS _ O] x|

File Search Setup Help

Pacemaker] TestPacemeker | Cardiothoracic Surgery 1 X-Ray
Petient | Admission | Lipids &E-cfﬁ;il Stress ECG | Echgcardiography |

MR LN PALI

Date Recorded Time Recarded
i[l?—Dec—B? |1 1:34:33 PM

&0 Record " View !

ComputerNumber ! Date J Time &
p{P400 07-Dec-97 11:3433 Pt
| {P400 08-Dec-97 12:04713 Al—
P400 08-Dec-97 12:06:30 Al
— -
e L]
Browsing

Figure 4-12: ECG dialogue box in Hearts 32

Details of the programming involved to enable these steps can be found in Chapter 7.

4. Summary

Data acquisition can be modelled as a “black box”, consisting of a hardware and
software layer. In the case of Hearts 32, the software layer of the data acquisition
module will contain the functionality that will allow it to communicate with a

HP4745A ECG machine and also to decode and calculate the ECG data set.

In order to keep Hearts 32 flexible and responsive to a changing environment, data
acquisition modules are implemented as dynamic link libraries (DLLs). DLLs have
some distinct advantages over static linking of code. These include run-time loading
of code, (simultaneous) code sharing, modular design and hiding of implementation

details.

69

© Central University of Technology, Free State

0 Lata Acquisition

o Central University of
Technology, Free State

Implicitly loaded DLLs are connected with the main application at design time. Since

Chapter 4

data acquisition modules for Hearts 32 can (and will) be developed after the creation
of Hearts 32, implicit DLL loading will not suffice. Explicit DLL loading on request
of the application (Hearts 32) allows loading of specified DLL files. This is exactly

what is needed for Hearts 32.

The Windows" 95 Registry performs an important task in keeping track of the system
configuration. Storing configuration information for data acquisition modules in the

registry allows well organised, secure storage of these settings.

70

© Central University of Technology, Free State

Chapter 5> Q Jatabase systems: a briet overview

Central University of
Technology, Free State

Chapter 5

Database systems: a brief overview

1. Introduction
According to Brookes (Brookes ef al, 1982 : 185-186), the following drawbacks are

associated with file based systems:

e Difficulties accessing data collected for a particular application, to satisfy the
needs of a different application or ad hoc requests. This is caused by
inconsistencies in data-storage formats, early aggregation of data with resulting
loss of detail and poor data collection timing.

e Problems with the association of data which relate to the same entity, but are
stored in different files. This is caused by inconsistent coding systems,
incompatibility of storage media and most significantly, the inability of the system
to access data without knowing the key to the desired record.

e Duplication of data in different files (to enable processing by multiple applications
that cannot be integrated) leads to excessive costs in terms of storage and
maintenance of code. An example is the storage of the same address information
for the same person in more than one file.

e Changes made to the files of installed systems tend to be high, due to the
inflexibility generated by conventional file structures. The tight coupling between
the application programs and the file structures also contributes to these high
costs.

e Management and control over data resources while safeguarding data integrity,
together with fast, secure access to data, is a difficult task.

(Brookes et al, 1982 : 185 - 186)

These difficulties can largely be overcome by storing data in a database rather than in

files. Accordingly, a database will be used to store the data of Hearts 32.

71

© Central University of Technology, Free State

Chapter 5 Q database systems: a briet overview

Central University of
Technology, Free State

2. Choice of database management system

The database management systems available for the desktop PC (such as dBASE®,
FoxPro and even Paradox®) have, up to recently, been nothing more than glorified file
systems. Possibly the most important reason for this was the fact that the computers
themselves were not powerful enough to support complex database operations. This
situation has changed drastically with the advent of powerful desktop PCs which are

in use today.

A first choice would have been to implement the database using Client/Server
technology, and a database management system such as Oracle or InterBase. These

DBMSs offer industrial strength solutions to database problems.

Table 5-1: Advantages of Client/Server database technology

1 Provides a cost-effective solution for many companies as an alternative to
mainframe solutions.

2 Allow departmental access to data, allowing departments to process only the part
of the business for which they are responsible.

Enforce data integrity rules for the entire database.

(]

4 Provide better division of labour between the client and the server (each
performs tasks for which it is best suited).

5 Provide the ability to use the advanced data integrity capabilities provided by
most database servers.

6 Lower network traffic as subsets of data are returned to the client, as opposed to
entire tables, as is the case with desktop databases.

7 Provides backup and recovery capabilities, while the database is on-line.

(Pacheco & Teixeira, 1996 : 838 - 839, Jensen ef al, 1996 : 344).

According to Jensen et al, the client/server solution is not the correct solution for every

application.

72

© Central University of Technology, Free State

Chapter > o Jatabase systems: a briet overview
= Central University of
Technology, Free State

Table 5-2: Disadvantages of Client/Server database technology

1 Administering an SQL database server typically requires more time and effort
than does a file server database. A database administrator is required for SQL
servers. The administrator grants access privileges and performs system
maintenance, among other duties.

2 Database servers require a hardware investment beyond what is required for file
server system. The additional expense of adding a database server to a system
can be very high.

3 The technology investment required to implement a database server is greater
than that for a file server. For example, developers trained in delivering
client/server systems often command higher salaries than do those building file
server systems.

4 When you move between SQL servers, the different dialects can create
migration problems.

5 Changing table structures, validation rules, and indexes can be a substantial
undertaking in a client/server environment. Similar changes in a file server-
based system are often less complex.

6 Data refreshing on client screens is not automatic in a client/server environment.
In some file server-based systems, this refresh can be set up to occur
automatically.

7 Table and record locking differs between the various servers. Some applications
need record-level locking whereas high transaction-oriented applications do not.
If record-level locking is necessary, programmatic schemes have to be
implemented in some servers.

(Jensen et al, 1996 : 344 - 345).

The biggest problem, once again, is the price of these Relational Database
Management Systems (RDBMSs). (Oracle Workgroup currently costs around
R 2,000.00 per seat, academically priced. At 15 users, this represents an initial
investment of nearly R 30,000.00. This figure does not take into account the upgrade
to the existing file server that might be necessary. It also does not take into account
the yearly licensing fee for the Oracle RDBMS software.) The Department of
Cardiology, Universitas Hospital, Bloemfontein, cannot currently afford to spend
money on the purchase of such a piece of software. Instead it has been decided that

(at least for the initial phase) a desktop RDBMS included with Delphi™, will be used.

Table level 7 of the Paradox” driver supports validity checking, table lookup,

referential integrity, extended field types and more. The lack of these features in the

73

© Central University of Technology, Free State

Chapter 5 Q Jatabase systems: a briet overview

Central University of
Technology, Free State

dBASE™ 111 driver has necessitated the database change. Implementing the Hearts 32
database using the functionality of the Paradox” driver, will ease migration to a true

SQL database management system in future.

2.1. The Paradox® database management system
The Paradox” driver supplied with Borland” Delphi™ Professional Edition version 3

supports the following:

2.1.1. Validity Checks

In Paradox” tables, validity checks are rules imposed on a field to ensure that the data
entered in the field meet certain requirements. The way in which a validity check is
defined determines what can be entered in a field. Database Desktop provides five

kinds of validity checks:

Table 5-3: Paradox” Validity Checks

Validity check Meaning

Required Field Every record in the table must have a value in this field.

Minimum Value | The values entered in this field must be equal to or greater than
the specified minimum.

Maximum Value | The values entered in this field must be less than or equal to the
specified maximum.

Default Value This value will be entered into the field automatically, if no other
value is entered.

Picture A character string that acts as a template for the values that can be
entered into the field.

Validity checks for a Paradox” table are saved in a file with the table's name and a

.VAL file extension.

74

© Central University of Technology, Free State

Chapter 5 Q Database systems: a brief overview

Central University of
Technology, Free State

2.1.2. Table lookup

The table lookup feature makes it possible to refer to another table to look up
acceptable values for a field. Valid values are then automatically copied from the

lookup table into the primary table.

Table lookup is primarily a data entry tool. It is provided to help enter data that
already exist in another table. To establish a more powerful tie between two tables, a
referential integrity relationship should be defined. While table lookup ensures that
data are copied accurately from one table to another, referential integrity ensures that

the ties between like data in separate tables cannot be broken.

2.1.3. Secondary indexes

A secondary index is a field or group of fields that defines an alternate sort order for
the table. Paradox” tables can have more than one secondary index. It is also

possible to create composite secondary indexes by combining two or more fields.

Fields of type memo, formatted memo, binary (BLOB), OLE, graphic, logical or bytes

fields cannot be used to create primary or secondary indexes.

Paradox” tables have these options for secondary indexes: Composite, Unique, Case-

sensitive, Maintained, and Ascending/Descending.

Secondary indexes are used to link Paradox” tables and also to speed up search and

locate operations.

2.1.4. Referential Integrity
Referential integrity means that a field or group of fields in one table (the “child”

table) must refer to the key of another table (the “parent” table). Only values that exist
in the “parent” table’s key are valid values for the specified field(s) of the “child”

table.

75

© Central University of Technology, Free State

Q atabase systems: a brief overview

Central University of
Technology, Free State

Chapter 5

2.1.5. Password security

To ensure that a Paradox” table is protected from access by unauthorised users, a
password can be provided. This is especially important in a multi-user environment.
Not only can a password be established for the table as a whole, but specific rights to

the table or individual fields can be assigned.

The master password controls access to an entire file. Auxiliary passwords provide

different levels of access privileges for different users in a group.

2.1.6. Table language driver

A table’s language driver determines the table’s sort order and available character set.

2.1.7. Paradox” field types

Table 5-4: Valid Paradox” field types and sizes

Symbol Size Type Comments

A 1-255 Alpha Store string values.

N Number 10 to 10°® with 15 significant
digits.

Money

S Short Integers in the range -32,767 to
32,767.

I Long Integer 32-bit signed integers in the range

-2147483648 to 2147483647 (plus or
minus 2 to the 31st).

0-32" BCD Binary Coded Decimal.

D Date Valid dates from January 1, 9999 BC
to December 31, 9999 AD. Database
Desktop correctly handles leap years
and leap centuries and checks all
dates for validity.

8 Time Time of day, stored in milliseconds
since midnight, limited to 24 hours.

* Number of digits after the decimal point.

76

© Central University of Technology, Free State

Chapter 5

o itabase systems: a brief overview

o Central University of
Technology, Free State

Table 5-4: Valid Paradox® field types and sizes (continued)

Symbol Size Type Comments

@ Timestamp Timestamp fields contain both time
and date values.

M 1-240" Memo Use memo fields for text strings that
are too long to store in an alpha field.

Memo fields can be virtually any
length. The size value assigned refers
to the amount of the memo Database
Desktop stores in the table. This can
be from 1 to 240 characters. The rest
of the memo is stored in a .MB file.
The amount of data a memo field
contains is limited only by the disk
space available on the system.

F 0-240" Formatted Memo | Same as Memo fields, except that
text can be formatted.

G 0-240" Graphic Can store graphics files, such as
scanned images (.BMP, .GIF, .TIF,
PCX and .EPS files for example)

0 0-240"" OLE Use the OLE field to store different
kinds of data, such as images, sound
and documents.

L Logical Contains values that represent “True”
or “False”.

+ Auto-increment | Paradox” auto-increment fields
contain long integer, read-only
values. Database Desktop begins
with the number 1 and adds one
number for each record in the table.
Deleting a record does not change the
field values of other records.

** Memo and formarted memo fields can be virtually any length. The value you specify in the Create Table dialog
box refers to the amount of the memo DataBase Desktop stores in the table (1 to 240 characters for memos and
0 to 240 characters for formatted memos). The entire memo is stored outside the table. For example. if you
assign a size value of 45 to the field, DataBase Desktop stores the first 43 characters in the table. It stores the
whole memo field in another file (with the extension .MB) and retrieves it as you scroll through the records of
the table.

rx Optional.

77

© Central University of Technology, Free State

0 itabase systems: a briet overview

Lhapter >
Central University of
Technology, Free State
Table 5-4: Valid Paradox® field types and sizes (continued)
Symbol Size Type Comments

B 0-240"" Binary Binary fields should be used only by
advanced users who need to work
with data that Database Desktop
cannot interpret. Database Desktop
cannot display or interpret binary
fields.

Y 1-255 Bytes Bytes fields should be used only by
advanced users who need to work
with data that Database Desktop
cannot interpret. A common use of a
bytes field is to store bar codes or
magnetic strips.

2.2. The use of BLOB fields

A BLOB field is a field in a table that holds a reference to a binary large object
(BLOB). BLOB fields can also be described as database fields that contain data of
arbitrary length. Unlike binary fields (in Paradox®), BLOB fields do not store the
binary data directly in the database table. Instead, the field in the physical database
table contains a reference to a separate file that contains the individual BLOB value
for the field. In Paradox”, BLOB fields are stored outside of the primary table file
(.DB file) in a .MB file.

The use of a BLOB field is perfect for storing ECG data, since the size of the ECG
data set is not known in advance. An average size for these data sets has been
determined (Table 6-11 on page 105 in Chapter 6) for the HP4745A PageWriter II
Cardiograph.

From previous experience with the storing of a large number of small files on the file
server at the Department of Cardiology, Universitas Hospital, it is known that these
files cause problems on the Novell® Netware” 4.1 file server. These problems surface
when the contents of the hard disks is backed up using the Arcserve 6.0 backup

software from Cheyenne. It appears that the backing up of one large file happens

78

© Central University of Technology, Free State

Chapter 5 Q atabase systems: a briet overview

Central University of
Technology, Free State

much faster than the backing up of a number of smaller files with the same total file
size as that of said large file. This problem was confirmed with the support personnel

at the computer centre of the University of the Orange Free State.

Another problem with the storage of these small files was identified when the existing
Novell” Netware” 4.1 file server hardware was upgraded. The migration of the data
contained on the hard disk of the server took nearly two days to complete, while the
software used for migration predicted a migration time of about 3 hours. The problem
can once again be attributed to the large number of small files stored on the file

1
SEIver.

3. Table creation
The DataBase Desktop software that is supplied with Delphi™ is a useful tool for

creating and manipulating database tables interactively (Figure 5-1). While this is fine
for just creating tables, it does, not however, solve the problem of documenting the
structure of the database. DataBase Desktop does not even offer the choice of printing

the structure of a table!

Restructure Paradox 7 Table: Ecg DB . . m
Field roster: Table properies:
Field Name Type Size |[Key [\watidity Checks =l
- cmoutert e A g i
2 Date D Pe il el
3 Time il * :
4 ECG B # 1 Required Field
5 ECGCounter S 2. Mimmum value:
3 Maxamum value:
4 Detaultvalue:
Enter a field name up to 25 characters long. § Picture:
™ Pack Table Assist.. l
Save Save As. l Cancs! ! Help I

Figure 5-1: Table creation with the Borland” DataBase Desktop

1 These files include roughly 12.000 patient report files (MS Word® files), as well as digitally captured ECG data
files. The plan is to store all these files in BLOB fields in future.

79

© Central University of Technology, Free State

Chapter 5 Q atabase systems: a brief overview

Central University of
Technology, Free State

Jensen et al describes the use of the CreateTable method of the TTable? object in
order to create tables and indexes at runtime. (Jensen ef al, 1996 : 224 - 231).
Basically all that is needed is that the field names, their data types and sizes as well as
a flag to indicate whether the field is required or not, be specified. If indexes are to be
created, the name of the index, the field name which is indexed as well as index
options such as case sensitivity and uniqueness are specified. All that remains is to

call the CreateTable method.

Pacheco & Teixeira (Pacheco & Teixeira, 1996 : 813 - 814) summarise the process as

follows:

1. Create an instance of a T7able.
Set the DatabaseName property of the table to a directory or existing alias.

Give the table a unique name in the TableName property.

o b

Set the TableType property to indicate what type of table you want to create

(Paradox® or dBASE®),

5. Use TTable.FieldDefs’ Add method to add fields to the table. Parameters include
field name, field type, size of the field and a boolean parameter indicating whether or
not the field is required.

6. If needed, use the Add method of TTable.IndexDefs to add indexes. Parameters

include a string identifying the index, a string that matches the field name to be

indexed and a set of TIndexOptions that determines the index-type.

“The following code creates a table with integer, string, and float fields with an index on
the integer field. The table is called FOO.DB, and it will live in the CATEMP directory.”
(Pacheco & Teixeira, 1996 : 814).

2 TTable is used to access data in a single database table using the Borland® Database Engine (BDE). T7Table
provides direct access to every record and field in an underlying database table, whether it is from Paradox®,
dBASE®, Access, FoxPro, an ODBC-compliant database, or an SQL database on a remote server, such as
InterBase, Oracle, Sybase, MS-SQL Server, Informix, or DB2.

80

© Central University of Technology, Free State

Chapter 5 Q latabase systems: a brief overview

Central University of
Technology, Free State

Code Snippet 5-1: Table creation via the TTable.CreateTable method

begin
with TTable.Create(Self) do begin // Create TTable object
DatabaseName := 'c:\temp'; // Point to directory or alias
TableName := 'F0OO'; // Give table a name
TableType := ttParadox:; // Make a Paradox table
with FieldDefs do begin
2dd{ 'Age', ftInteger, 0, True); // Add an integer field
Add('Name', ftString, 25, False }); // Add a string field
Add('Weight', ftFloat, 0, False); // Add a floating-peint field
end;
{ Create a primary index on the Age field... }
IndexDefs.Add({ '', 'Age', [ixPrimary, ixUnique]);
CreateTable; // Create the table
end;
end;

At a first glance this technique seems to solve the problem of programmatic table
creation. For simple tables it will suffice. However, when using advanced features
found in, for example, the Paradox” and InterBase drivers, this method of table

creation 1s not sufficient.

Pacheco & Teixeira (Pacheco & Teixeira, 1996 : 888 - 900) describe the problem

13

identified in the previous paragraph as follows: “...there are a number of capabilities

provided by the Borland Database Engine (BDE) that are not surfaced by Delphi’s data-
access components. Because Delphi tries to maintain an interface that is database-
independent, database-specific features provided by the BDE are generally the types of
things for which Delphi doesn’t provide.” (Pacheco & Teixeira, 1996 : 888).

Fortunately Borland® supplied a set of API functions with which a program can
interface directly (on a low level) with the Borland® Database Engine (BDE). It is
through this mechanism that the programmatic creation of Paradox” tables, complete

with validity checks and referential integrity constraints, is made possible.

It fairly quickly became apparent that the use of these low-level API functions would
not be too easy. The descriptions and code examples found in the Delphi™ help files
were not really helping either. A search on the Internet for the topic of low level table
creation via the BDE API yielded only one positive result. This was in the form of a
program that can analyse an existing table structure (created with a tool such as the
DataBase Desktop) and generate an Object Pascal program which could, in turn,

create the table. From the documentation it is apparent that the initial idea behind the

81

© Central University of Technology, Free State

0)atabase systems: a brief overview

b Central University of
Technology, Free State

SCANNER® software was to create an Object Pascal unit which could be included in a

Chapter 5

software product, to programmatically create the necessary tables the first time that

the program was run. This would eliminate the need for table distribution.

The output of the SCANNER software (a valid Object Pascal source code file) was
adapted for use as part of Hearts 32. The code defines procedures for the creation of
fields, indexes, validity checks, referential integrity constraints as well as table
creation. Creating the tables is as easy as listing the information for each item (fields,
indexes, validity checks, referential integrity constraints) in array format and calling
the table creation procedure. The SCANNER software already prepares such a listing,

saving a lot of work. This is illustrated as follows:

Code Snippet 5-2: Table creation using procedures from the SCANNER code

ECG:
begin

dbDatabase.Params.Add{ 'PATH=D:\HEARTS.32\DATABASE\');
dbDatabase.Connected := True;
Check (DbiGetDirectory(dbDatabase.Handle, False, szDirectory)):

DefField('ComputerNumber', fldPDXCHAR, B Qp Be B)z
DefField('Date', f1dPDXDATE, Q: Le 1e Q)2
DefField('Time’', f1dPDXTIME, i, 25 1, 09z
DefField({ 'ECG', f1dPDXBINARYBLOB, 0, 3, 0, 0);
DefField('ECGCounter', f1dINT16, 0x. 4z 1z Q-3
DefIndex('*', "', "! e Wt LS B 0B 1

r ’
o, 0, 3, 16, 0, 2048, 1, True, True, False, True,
False, False, False, False);

DefValCheck(0, 1, [0], [01, [O 1,
True, False, False, False, '', '', 1lkupNONE);

DefvalCheck(1, 2, [O, 0, O, 128], [O, O, O, 128], [O, O, O, 128],
True, False, False, False, '', '', 1lkupNONE);

DefRefInt(O, 1, 1, [11, [1 1, 'refECGPatient’, 'Patient.DB',
rintDEPENDENT, rintCASCADE, rintRESTRICT);

DefTable('ECG.DB', 'PARADOX', '', 5, 1, 5, 1 };
Check (DBICreateTable(dbDatabase.Handle, True, TableDesc));

end;

Admittedly, the heavy use of parameters in the procedure calls tends to clutter the
code and makes it difficult to understand the meaning of each parameter. Some study

of the procedures used is necessary before the parameters can easily be understood.

3 All attempts to contact the author of the SCANNER software in order to pass credit failed. Only an out-dated e-
mail address for the author is supplied with the software!

82

© Central University of Technology, Free State

Chapter > Jatabase sysiems: a briel overview

Central University of
Technology, Free State

A code example of some of the procedures that perform the actual work is shown

below:

The data types mentioned below are all defined by the BDE API.

Code Snippet 5-3: Global variables used for BDE API calls to create tables at runtime

var
szDirectory : DBIPATH;
TableDesc : CRTblDesc:
FieldsDesc : array[0..80] of FLDDesc:
RefIntegOp : array(0..20] of CROpType;
RefInteg : array[0..20] of RINTDesc;
ValCheckOp : array[0..20] of CROpType:
ValCheckDesc : array[0..20] of VCHKDesc;
IndexesOp : array[0..20] of CROpType;
IndexesDesc : array[0..20] of IDXDesc:

Code Snippet 5-4: The DefField procedure found in the SCANNER code

procedure DefField (const sName: string:
const iAFldType,iASubType, iAFldNum,
iAUnitsl, iAUnits2: integer);

begin
with FieldsDesc|[iAFldNum] do
begin
iFldNum := iAFldNum;
StrPCopy(szName, sName)};
iFldType := iAFldType;
iSubType := iASubType:;
iUnitsl = iAUnitsl;
iUnits2 := iAUnits2;
end;
end;

Code Snippet 5-5: The DefTable procedure found in the SCANNER code

Procedure DefTable (const sName, sType, sPassword : string;
const iAFldCount, iAIDXCount, iAValChkCount, iARintCount : integer);
begin
FillChar(TableDesc, SizeOf(CRTblDesc), #0);
with TableDesc do
begin
StrPCopy(szTblName, sName);
StrPCopy(szTblType, sType);

bProtected := (sPassword <> '');
if bProtected then
begin

StrPCopy(szPassword, sPassword);
Session.AddPassword(sPassword);
end;
bPack := true;
iFldCount := iAFldCount;
pFldDesc := @FieldsDesc;
iRintCount := iARintCount;
pecrRintOp := QRefInteqOp;
PRINTDesc := BReflIntegq;
iValChkCount := iAvValChkCount;
pecrValChkOp := @valCheckOp:

pvchkDesc := @ValCheckDesc;
iIDXCount := iAIDXCount;
Code Snippet 5-5: The DefTable procedure found in the SCANNER code (continued)
pecrIDXOp := @IndexesOp; THIS BO("-K IS
engr}ifDXDesc := @IndexesDesc; T?‘f:‘:‘_ PROPERTY
’ OF THE

-5 SEP 2001
TECHNIKON
FREE STATE

83

© Central University of Technology, Free State

Lhnaprer >

0 Jatabase systems: a briet overview

Central University of
Technology, Free State

The bulk of the code shown in Code Snippets 5-2 through 5-5 represents manipulation

of the supplied information (specifically changing strings from Pascal-style to ASCIIZ
strings) and copying of the information into data structures required by the BDE API.
The code lines marked in bold in Code Snippet 5-2 contain the actual BDE API calls

used to create the database table.

4. Loading of the test database

Creating a test database for an application such as Hearts 32 is a large and complex
undertaking. Instead of creating imaginary data for each table, a conversion program
was written to convert some of the existing data found in the Hearts database files

(dBASE® 111 Plus format) to the new Paradox” database files.

Traditional tools would require code along the following lines:

Code Snippet 5-6: Pseudo code for table conversion

Open source database

Open target database

While not end of source database
Create a blank record in the target database
Copy the values of all fields from the source record to the target record
Read the next source record

While end

Delphi™ provides a very useful component in the Visual Component Library (VCL),
namely the BatchMove component. Canti summarises the action of the BatchMove
component as follows: “A third useful component for database manipulation is
BatchMove, which allows a program to copy, append, or delete groups of records or

an entire table from two different databases.” (Cantu, 1997 : 835).

By using BatchMove, code such as shown above is not needed. Basically, a Delphi™
form must be created containing two 77able components and a BatchMove
component. The first table is connected with the original table file. The second table
is connected with the target table file. The Source and Destination properties of the
BatchMove component is set to reflect the names of these two TTable components.

An example of this can be seen in Figure 5-2.

84

© Central University of Technology, Free State

Chapter 5 Q Database systems: a brief overview

Central University of
Technology, Free State

BatchMove can create the destination table, but for this research the destination table
was previously created. The main reason for this is the fact that some structural
changes were made to the original dBASE® 1II Plus database file structures. The
Mappings property of BatchMove is used to specify the correspondence between

fields in the source and destination tables when field names do not correspond.

In a very basic scenario, the conversion process can be completed without even
compiling the program! Simply right click with the mouse on the BatchMove

component on the form and select Execute.

Figure 5-2: Design of a data conversion program using the BatchMove component

The objects and their corresponding properties (for the example found in Figure 5-2)

were as follows:

85

© Central University of Technology, Free State

Chapter 5

Database systems:

a briet overview

. Central University of
Technology, Free State

Code Snippet 5-7: Properties of a form for data conversion with BatchMove

object Forml: TForml
Left = 200

Top = 121

Width = 234

Height = 167
Caption = 'Forml'

Font.Charset = DEFAULT_ CHARSET

Font.Color =
Font.Height =
Font.Name =
Font.Style = []
PixelsPerInch =
TextHeight = 16

-13

object DataSourcel:

DataSet = Tablel
Left = 48
Top = 24

end

object DataSource2:

DataSet = Table2
Left = 160
Top = 24

end

120

clWindowText

'MS Sans Serif'

TDataSource

TDataSource

object Tablel: TTable

DatabaseName =

TableName =

Left = 48

Top = 72
end

'D:\HEARTS.32\DATABASE\DBASE'
'dokter.dbf’

object Table2: TTable

DatabaseName =

TablelName =

Left = 160

Top = 72
end

'"Hearts32"
Yagetor..db”

object BatchMovel: TBatchMove

AbortOnKeyViocl =
ChangedTableName

False

'ChangTab’'

Destination = Table2

KeyViolTableName =

ProblemTableName
Source = Tablel
Left = 104
Top = 48
end
end

'KeyViol'
'ProbTabl’

BatchMove works very easy and efficiently as described above. Normally only one

table is translated to another. The situation tends to become more complex when the

database consists of a number of tables, such as in the case of Hearts 32. What is then

needed is a program that will convert the tables one after the other. This automates

the process which would otherwise be quite labour intensive (if a programmer had to

interactively change the properties of the T7able and BatchMove components for each

table to be converted!).

It is worth mentioning that the complexity of the conversion is further increased by

the referential integrity rules defined between the tables in the Hearts 32 database. As

a trivial example, consider the following referential integrity rule:

86

© Central University of Technology, Free State

Chapter 5

Q)atabase systems: a briet overview

Central University of
Technology, Free State

For each record in the ECG table, a master record containing the computer number

for the patient must exist in the Patient table.

If the data conversion process attempts to convert data from the dBASE" 1II Plus
ECG table before the data for the Paradox” Patient table have been converted, the
conversion process will abort with a key violation error, since the primary keys
needed to satisfy the referential integrity rule in the abovementioned example do not

exist in the master (Patient) table.

It is important to point out that the loading of existing ECG data that were captured
and stored in files on the departmental file server at the Department of Cardiology,
Universitas Hospital, could not be managed by using the BatchMove component. The
main reason for this was that the data had to be decoded, calculated, reformatted and

compressed before they could be stored in the Hearts 32 database.

5. Summary

Flat file storage systems have some serious drawbacks that can be overcome by the
use of a database management system. Client/Server database management systems
can provide good solutions, such as cost-effectiveness, enforcing of data integrity
rules, division of labour between server and client, lowering of network traffic and
backup and recovery utilities. Client/Server technology is not suited to all situations,
and generally require a bigger investment than a file server database in terms of effort,

skill and finances.

Table level 7 of the Paradox” driver supports enhanced features which makes
Paradox” a good choice for a desktop database. The Paradox” support for BLOB
fields are of particular interest for the digital storage of ECG data in the Hearts 32
database, since the exact length of each ECG data set (in bytes) is not known at

design-time (of the database).

The DataBase Desktop allows for interactive table creation (definition and population

of tables). No provision for documenting these tables is made by the DataBase

87

© Central University of Technology, Free State

0 database systems: a brief overview

Chapter 5

o Central University of
Technology, Free State

Desktop. To overcome this problem, tables can be created using the 77able

component. While 77able allows programmatic table creation, it does not support

advanced features found in the Paradox” and InterBase drivers.

Low level access to advanced Paradox" features is facilitated via the BDE API. This
allows the programmatic creation of a Paradox” table with validation rules, primary

and secondary indexes, referential integrity rules and password protection.

The BatchMove VCL component is extremely easy to use and very useful for

duplicating data from one table to another, even across tables of different types (such

as dBASE" and Paradox™).

88

© Central University of Technology, Free State

Chapter 6 Q Database Storage Format

Central University of
Technology, Free State

Chapter 6

Database Storage Format

1. Introduction
In order to make the captured digital ECG data really useful, the data have to be stored

on a computer system. The following considerations are important:

1. The size of each file must be kept as small as possible (since we anticipate a large
number of files to be stored for the particular application).

2. Retrieval of the stored data must be performed within a reasonable time (less than 5
seconds).

3. The stored data should not be encoded (in other words, the use of special decoding
modules should not be required).

It should be stressed at this point, that this chapter is not a study in compression
technology. An optimal method for database storage of digitally acquired ECG data

in a hardware independent manner will be identified."

2. Description of the data used for analysis

2.1. Introduction

An additional module was created for the existing Hearts database to capture digital
ECG data sets whilst awaiting the completion of this research.” The rationale behind
this step was that these digital data sets could later be converted and stored in an

appropriate format (as determined by the results of this research).

I Hardware independence in this case refers to the format of the data as determined by the ECG machine. It does
not refer to storage in the computer system.

2 A special version of the communications program was prepared in Clipper 5.2. The CA Clipper Tools library
version 3.0 (by Computer Associates, the manufacturer of Clipper) was used to implement the RS-232
communications routines.

89

© Central University of Technology, Free State

Lnapter o Q Latabase dtorage Format

Central University of
Technology, Free State

2.2. Population

One thousand and twelve (1012) ECG data files (HP4745A format) were collected
between 20 December 1996 and 8 May 1997. These data files contain digital copies
of recorded ECG tracings. In order to better understand the composition of these files,
an analysis was done. From the Hewlett Packard Diagnostic Cardiology Digital
Transmission Protocol (as discussed in Appendix A) it is known that the data file

consists of two major sections:

1. Header Data (further discussed under 5.13 Header Data Description on page 194 in
Appendix A). Header Data includes information on patient, CART settings and

meta information on the Lead Data, which follows in the section “Lead Data”.

2. Lead Data (also referred to as Waveform data in this thesis), are further discussed
under 5.14 Lead Data Description on page 198 in Appendix A. Lead Data include
lead identifier information as well as the actual lead data which represent the bulk

of the data file.

Hewlett Packard ECG (HP4745A)

g Waveform Data e @ Header Data
95.95% 4.05%

Figure 6-1: Components of digitally recorded ECG fraces.
A basic descriptive statistical analysis of the data files yielded the following
information:

Table 6-1: Descriptive Statistics (HP Digital Storage Format)

Parameter | Total file | Header | Waveform, | Patient | Cart Wave-
size Settings | form,

Min 8766.00 397 8366 1 91 274

Max 15003.00 411 14603 46 91 274

Mean 9878.42 400 9478.38 | 35.04| 91.00| 274.00

SD 639.06 0.79 639.07 0.79 0.00 0.00

CV% 6.47 0.20 6.74 2.26 0.00 0.00

90

© Central University of Technology, Free State

Cndpler o

0 Database Storage Format

Central University of
Technology, Free State

In Table 6-1 above, the column descriptions have the following meaning: Parameter

identifies the statistical parameter, Total file size shows the total size of the ECG data
file in bytes, Header shows the total size of the header information contained in each
file, Waveform| shows the total size of the waveform information in bytes. Patient
shows the portion of the header information which is dedicated to patient information.
Cart settings shows the portion of the header information dedicated to the settings of
the electrocardiograph. Waveform? indicates the number of bytes needed to describe
the actual waveform data (which follows in the Lead Data block directly after the
Header Data block). The value for the Header column is thus the sum of the Patient,

Cart Settings and Waveform? columns.

The following deductions can be made from the descriptive statistics:

e Not all digital ECG files are of the same size (this is indicated by the difference

between the minimum and maximum values for Tortal file size).

e The relatively small CV% (6.47%) for the total file size indicates that there is little

overall variation from the mean Total file size of 9878.42 bytes.

e The extremely small CV% (0.20%) for Header information indicates that the
Header portion of each data set has nearly the same size (400 bytes) and that the
Header portion of the data set does not contribute significantly to the variation in

Total file size.

e The portion of the header information responsible for the variation in size (of the
header information) is the patient information section. (This can be attributed to
the fact that patient identification numbers are represented as ASCII strings of

variable length.)

e The CV% of 6.74% for waveform information (Waveform) shows that the biggest
variation in 7otal file size is caused by the size of the waveform information

(Waveform]).

91

© Central University of Technology, Free State

o Database Storage Format

Central University of
Technology, Free State

Chapter 6

e The sum of the storage space needed for the 1012 data files theoretically equals
9.53 MB. (This figure was calculated by summation of all file sizes and does not
account for hardware implementation details such as the block size of the fixed
disk on which the data are stored, which will allocate more storage space than the
size of the file, given that the block size is larger than the average file size. This is
typically the case with large hard disk drives. Fortunately, modern operating
systems are starting to overcome this problem by implementing block sub-

allocation.)

One should keep in mind that for this specific application, not all data fields in the
patient section of the digital ECG are present, due to the way in which the
electrocardiographs were set up. If all of the patient fields (as defined in Table A-14
on page 195 of Appendix A) were to be entered, the size of the patient section would

be 183 bytes (99 bytes for all data, and 4 x 21 (84) bytes for identification purposes).

The reason why the portions of the header data needed for cart settings and waveform
information (Waveform?) stay constant is that only one ECG configuration is used as
standard. If different recording formats were used, these values would also have

varied.

The digital ECG files do not only contain recorded ECG data, but also meta-data.
These meta-data are used for the identification and description of fields. (The
sequence GS Code RS is used to identify data fields in the header part of the record.
The header part also contains meta-data which detail the waveform data following the
header data. Please refer to Table A-13 on page 194 of Appendix A for a complete

description of the header block format.)

3. HP Digital Storage Format

The first storage option considered was that of utilising the existing digital storage
format as developed by Hewlett Packard. Digital ECG files extracted from HP4745A
PageWriter Il Cardiograph machines were used for analysis and testing. (A

discussion of the extraction procedure can be found in Chapters 4, 8, 9 and Appendix

92

© Central University of Technology, Free State

Chapter 6 Q Database Storage Format

Central University of
Technology, Free State
A.) Please refer to the description of the data used for analysis on page 89 for more

information on the characteristics of these files.

With an average Total file size of 9878.42 bytes, one cannot help but be tempted to
implement HPs native file format. Although these files are extremely compact, the
biggest drawback associated with them is the relatively high degree of complexity
needed to decode and calculate the actual values from these files, compared to a list
(file) with all the relevant data points readily available. The fact that hardware

independence is lost, makes such an implementation less attractive.

Another interesting possibility is that of transmitting the file stored on computer back
to the ECG machine, thus re-creating the ECG on the ECG machine itself. The

biggest drawback of this option is that it is too restrictive in terms of hardware used.

These digital files will be used as a baseline value (at least when comparing file sizes),

against which comparisons with other storage options will be made.

Table 6-2: HP Digital Storage Format - Advantages & Disadvantages

Advantages Disadvantages

e Very small files. e Proprietary coding format.

e (Can be transmitted back to ECG machine.

HP Digital Storage Format

600

%56 | 484
=
g 4004 338
@
=
g 300
L

200 4 137

100 | 45

1 8 1 0 1 0
0
< 8766 (8766,9546] (9546:10326] (10326;11106] (11106:11886] (11886,12666] (12666,13446] (13446,14226] (14226,15008] = 150086
File size (bytes)

Figure 6-2: Frequency Distribution of file size for the HP Digital Storage Format

93

© Central University of Technology, Free State

Lhapter o

0 LdldDdsC d5L0rage rormadt

Central University of
Technology, Free State

4. Storage of decoded data in INTEL binary format

With this storage method the aim is to decode and calculate encoded data. The result

of this step (decoded values) is then stored as INTEL formatted binary integers. By
this is meant that each integer will be represented by a two-byte word. The binary
representation of a number should in most cases occupy less storage space than the
ASCII representation for the same number. As an example, consider the number

40960 (A000,). Inits ASCII format, this number requires 5 bytes of storage:

As an INTEL word, it only requires 2 bytes:

00 | AO

No extraneous header information was stored. Only header information describing
the waveform along with the waveform itself was stored. Data such as patient
number, age and sex were omitted from the INTEL binary file (also for subsequent

storage formats).

Table 6-3: Storage results for files stored in INTEL binary format.

Size Header | Waveform

31791 63 31728

Since the electrocardiogram data files collected at the Department of Cardiology were
all recorded with the same parameter settings on the electrocardiograph machines, the
length of recorded leads stayed the same (2.5 seconds of recorded data per lead). This
caused the different electrocardiogram data files to each have the same number of
decoded data points per lead. The number of bytes needed to describe the lead

information also stayed static across all data files.

94

© Central University of Technology, Free State

Chapter 6

0 Database dtorage Format

Central University of
Technology, Free State

Using a binary representation where each value has a fixed length (one word in this

case) leads to data files which all have exactly the same length (as can be seen from
Table 6-3). The effect of this storage method is that the entropy” of the data is in
essence ignored. The result is that files are now nearly 300% larger than with the HP

Digital Storage Format.

Although this method appears to be better than the HP Digital Storage Format (at least
from a decoding point of view) it is not ideal. The storage method should make
provision for floating point numbers, as well as be more flexible when it comes to

number representation.

No frequency distribution was represented for this storage format, since all files have

the same size.

Table 6-4: INTEL Binary Storage Format - Advantages & Disadvantages

Advantages Disadvantages

e Data already decoded (no|e Massive (300%) increase in file size,
proprietary decoding to be compared to the HP Digital Storage

performed). Format files.

e Data are easy to write in this [e Entropy ignored, thus all files in this
format. application will have the same size.

e Data can easily be read by a e Data set cannot easily be migrated to
program. another computing environment (other

than the PC), due to the fact that this
method actually stores values in their
internal representation.

e This method only allows storage of short
integer (word) values. If the decoded
values were real numbers, this method
would not suffice.

3 Nelson (1991 : 15) defines entropy as a measure of the information contained in a message. In this sense, the
term message refers to any stream of characters. "The entropy of a symbol is defined as the negative logarithm
of its probability. To determine the information content of a message in bits. we express the entropy using the
base 2 logarithm:

Number of bits = -log,(probability)

The entropy of an entire message is simply the sum of the entropy of all individual symbols." (Nelson, 1991 : 16).

95

© Central University of Technology, Free State

Chapter 6

o Database dtorage ormat

Central University of
Technology, Free State

5. Storage of decoded data in ASCII format
Storing data in an ASCII format should protect the data set from different

implementations of internal representation used for integers. (For example, on a PC,
an integer is stored as a word (two bytes) using 16-bit compilers. Modern 32-bit
compilers use 32 bits to represent an integer. Another issue is that of swapping of the
most significant byte and the least significant byte, as found with the implementation

on the PC.)

The file sizes of ASCII files are expected to generally be larger than their binary
counterparts, the reason for this being that one byte is used to represent each digit of
each value. Where the value 40960 only needs 2 bytes for its binary representation,

five bytes are needed for the ASCII representation.

Another problem is that, since data units are not of a pre-defined, fixed length, each
unit will have to be separated from the other by using a token. This token character is
typically a space. Said token character also adds to the total file size, without really

contributing to the data itself.

In contrast with the data stored in INTEL binary format, data files with ASCII data are
expected to differ in size, since values are encoded using different lengths. The reason
for this is simply that larger numbers are represented using more digits, and thus need

more storage space than smaller (shorter) numbers.

Table 6-5: Descriptive statistics (ASCII Storage Format)

Parameter | File Size | Header| Waveform
Min 47313.00 381.00 46932.00
Max 65647.00 | 381.00 65266.00
Mean 54636.33 | 381.00 54255.28
SD 2934.02 0.00 2933.97
CV% 5.37 0.00 541

The following deductions can be made from the descriptive statistics:

e The size of the header stays constant at 381 bytes for all ASCII files.

96

© Central University of Technology, Free State

0 Database Storage Format

Chapter 6

Central University of
Technology, Free State

e The header size (381 bytes) has increased by just more than six times that of the

INTEL binary storage method (63 bytes) as described in Table 6-3.
e The average file size is 1.72 times the size of a file stored in INTEL binary format.
e [t is interesting to note that the CV% (5.37%) for the ASCII files is nearly the same
as the CV% (6.47%) for the digital storage method developed by Hewlett Packard.
Since the bulk of the data is contained in the waveform portion of each file, the

variation is caused by variation in the waveform data.

Table 6-6: ASCII Storage Format - Advantages & Disadvantages

Advantages Disadvantages

e Data already decoded (no|e Files are 1.72 times bigger than INTEL
proprietary decoding to be binary files (and nearly 550% bigger than

performed). a HP ECG file).

e File sizes are no longer static. e Space wasted since characters to separate
Larger values lead to larger files. values are needed.

e Data sets can easily be migrated to | ¢ More complex to read data. Object
other computers which implement Pascal does not allow movement of file
the ASCII coding system. pointer for text files. Special routine

needed to read values.

e [f data originating from other ECG
machines are stored in floating
point format, these data can easily
be stored without any change.

Considering all points mentioned above, it would appear that the ASCII Storage
Format should be the format of choice if one would like to keep the storage format
straightforward and simple and also protect the data from differences in different
hardware and software. Something needs to be done, however, to decrease the
average size of the ASCII data set. The HP Digital Storage Format requires on
average 9878.42 bytes per file. The ASCII Storage Format requires on average
54636.33 bytes per file, an increase of 550%!

97

© Central University of Technology, Free State

0 Database Storage Format

Chapter 6
Central University of
Technology, Free State
ASCI| Storage Format
300 . 282
268
250
183

g 04 171
@
=
@ 150 |
L

100

62
504 22
15 8
1 0
0 !) .
<47313 (47313:49605] (49605.51897) (51897.54189) (54189.56481] (56461:56773] (SB77361065] (51065,63357) (63357:65648] > 65648
File size (bytes)

Figure 6-3: Frequency Distribution of file size for the ASCII Storage Format

One way to reduce the size of the ASCII data file is to apply a lossless data
compression technique to the data, such as LZ77, LZ78, LZSS or LSW.

The idea is that the module responsible for data acquisition and decoding will produce
a data set in a standard ASCII format (as prescribed by the host application, Hearts 32
in this case). The host application will then store the standard ASCII file in a
database. It is up to the host application to perform the compression of the ASCII

files before entering them into the database as Binary Large Objects (BLOBs).

An Object Pascal implementation of ZLIB 1.0.4 is included with the Delphi™
Professional Edition version 3. ZLIB 1.0.4 is a general purpose data compression
library. The data format used by the ZLIB library is described by Request for
comments (RFCs) 1950 to 1952 (ftp://ds.internic.net/rfc/rfc1950.txt, 1951.txt and
rfc1952.1xt). ZLIB is copyrighted by Jean-loup Gailly & Mark Adler, 1995 - 1996.
Permission to use the library is granted, on condition that the original copyright be

honoured.

According to Deutsch (Deutsch, 1996b : 4), the DEFLATE compression method used

by ZLIB is a lossless data compression method combining the LZ77 compression

98

© Central University of Technology, Free State

Chapter 6

o Database Storage Format

Central University of
Technology, Free State

technique with Huffman coding, with efficiency comparable to the best general-

purpose compression methods currently available.

The LZ77 compression algorithm is the genesis of modern dictionary-based
compression methods. It is described in the paper “A Universal Algorithm for
Sequential Data Compression” by Ziv & Lempel in IEEE Transactions on Information

Theory, 1977. (Nelson, 1991 : 233).

“LZ77 compression uses previously seen text as a dictionary. It replaces phrases in
the input text with pointers into the dictionary to achieve compression. The amount of
compression depends on how long the dictionary phrases are, how large the window
into previously seen text is, and the entropy of the source text with respect to the

LZ77 model.” (Nelson, 1991 : 233).

Dictionary-based compression algorithms such as LZ77 represent the most popular
lossless compression methods. LZ77 does, however, have some problems, most
notably the performance bottleneck caused by string comparisons against the look-
ahead buffer for every position in the text window. In order to improve compression
performance, the size of the window (and thus the size of the dictionary) can be
increased. This leads to a worsening of the mentioned performance bottleneck.
Another performance problem is found in the way that the sliding window is
managed. Since phrases may span across windows, normal string comparison
functions such as strnemp()# can no longer be used. Modulo indexes rather than
normal indexes into the window should be used. One major efficiency problem
associated with LZ77 is that of no matching phrases in the dictionary. Three tokens
are used to identify phrases. When a dictionary entry is found, the length of the
phrase plus the tokens is less than the original phrase. When no dictionary entry is
found, the three tokens are still output, which leads to an increase in the length of the

new phrase! (Nelson, 1991 : 238 - 240).

4 According to Barkakati (Barkakati, 1989 : 289 - 290), the strnemp() function is used "to compare a specified
number of characters of two strings to one another. The comparison is case sensitive."

929

© Central University of Technology, Free State

0 Database Storage Format

Chapter 6

Central University of
Technology, Free State

Huffman coding creates variable-length codes that consist of an integral number of

bits. “Symbols with higher probabilities get shorter codes. Huffman codes have the
unique prefix attribute, which means that they can be correctly decoded despite being

variable length.” (Nelson, 1991 : 34).
Important properties of the DEFLATE compression method include:

e Independence of CPU type, operating system, file system and character set, thus
allowing interchange between different machine types.

e No patent rights, therefore the algorithm can freely be used in programs.

e DEFLATE defines a data format that can produce or consume data for an
arbitrarily long, sequentially presented input data stream, using only an a priori
bounded amount of intermediate storage, and hence can be used in data
communications or similar structures such as UNIX filters. (Deutsch, 1996a : 2).

e “Is compatible with the file format produced by the current widely used gzip utility,
in that conforming decompressors will be able to read data produced by the

existing gzip compressor.” (Deutsch, 1996b : 3).

The compression methods found in the ZLIB library were applied to the ASCII data

files. The results are presented in Table 6-7 below:

Table 6-7: Descriptive statistics (Compressed ASCII Storage Format)

Parameter ASCII Compressed HP Digital
File Size ASCII File Size | Storage Format

Min 47313.00 8553.00 8766.00

Max 65647.00 20963.00 15003.00

Mean 54636.33 11716.39 0878.42

SD 2934.02 1549.92 639.06

CV% 537 13.23 6.47

100

© Central University of Technology, Free State

Chapter 6 Q Database Storage Format

Central University of
Technology, Free State

Average Storage Space per Format

Number of Bytes
(2]
(=]
=]
L=
|°

ASCII

Compressed
Packard

Storage Format

Figure 6-4: Average storage space per format

The following can be seen from the descriptive statistics in Table 6-7:

e Compression of the ASCII files yielded on average a 78.56% reduction of the
original ASCII file size.

e The average increase in file size compared to the original HP Digital Storage

Format is 18.61%.

Table 6-8: Compressed ASCII Storage Format - Advantages & Disadvantages

Advantages Disadvantages
e File size dramatically smaller than | ¢ Format more complex than simple ASCII
with plain ASCII storage format. files, since decompression has to be
performed in order to access the ASCII
data files.

e Underlying format of the ASCII
file is not influenced by the
compression method chosen.

101

© Central University of Technology, Free State

Chapter 6 Q Database Storage Format

Central University of
Technology, Free State

Compressed ASCII Storage Format
500 -
439
450 |
400 |
50
2 . 299
§ 300
3
8 250
L
200 |
150 - 109 124
100 -
31
504 7 1 1 0
0 .|
< 8553 (8553;10105] (10105;11657] (11657;13209] (13209;14761] (14751:15313].(16313;17555]‘(17865,19417]'(19417;20969] > 20089
File size (bytes)

Figure 6-5: Frequency Distribution of file size for the Compressed ASCII Storage Format

6. Selective storage of decoded data in ASCII format
The data acquired from a HP4745A actually contain 21 leads (excluding the position

bit leads).

Table 6-9: Leads present in a HP4745A digital ECG file

Number | ID | Lead description

1 1 I

2 2 II

3 3 III
4 4 aVR
5 5 aVL
6 6 aVF
7 7 Vi
8 8 V2
9 9 V3
10 10 V4

102

© Central University of Technology, Free State

Chapter 6 o Database Storage Format

Central University of
Technology, Free State

Table 6-9: Leads present in a HP4745A digital ECG file (continued)

Number | ID | Lead description

11 11 V5
12 12 Vé

13 101 ACAL 1

However, not all of these leads are needed for recreating the ECG; of the 21 leads the
data for only 14 leads are needed. Leads that could be discarded are marked in grey in
Table 6-9. Remember that the height of the calibration pulse is equal to a voltage of
one millivolt (this is the standard format in use at the Department of Cardiology.
Universitas Hospital, Bloemfontein). The calibration pulse is thus used for measuring

the height of the waves present on the ECG.

A large saving in the total file size could be expected if two of the three rhythm leads
are omitted (items 17 & 18 in Table 6-9 on page 102). Rhythm lead data are collected
for a 10 second period. A sample is recorded every 0.004 seconds, resulting in 2500
samples collected for the 10 second period. Theoretically, the storage space required
to store 5000 values could be saved by omitting the data for two leads. An
examination of the actual ECG data files showed that the rhythm leads only contain

2488 samples. This means that the actual saving is the storage space required to store

5 Note that the lead IDs 101, 102, 103, 104, 105 and 106 do not match IDs from Hewlett Packard. There are no
IDs prescribed for ACAL 1, ACAL 2, RCAL 1 and RCAL 2 in the Hewlett Packard Diagnostic Cardiology
Digital Transmission Protocol. The ID for ACAL 3 is 39, and 42 for RCAL 3 (according to the
documentation). For the sake of simplicity the IDs for the ACAL and RCAL leads are kept uniform.

103

© Central University of Technology, Free State

O

Central University of
Technology, Free State

The actual saving in bytes (length of the values) cannot easily be

Chapter 6 Database Storage Format

4976 wvalues.

calculated, since the length of each value is not fixed.

Furthermore, the storage space required to save another 530 values can be omitted
from the file by omitting five of the six calibration pulse leads (items 14, 15 and 19 -
21 in Table 6-9 on page 102). Each of these calibration pulse leads represents 106

samples.

Except for discarding the extraneous lead information, this new ASCII file is in all
respects identical to the original ASCII files as described in section 5 on page 96. The

savings achieved are significant, as can be seen from the following results:

Table 6-10: Descriptive statistics (ASCII Storage Format, Selective)

Parameter | File Size| Header| Waveform
Min 29932.00 | 255.00| 29677.00
Max 40902.00 | 255.00| 40647.00
Mean 34552.65| 255.00| 34297.65
SD 1780.63 0.00 1780.63
CV% a3 0.00 519

The following deductions can be made from the descriptive statistics in Table 6-10:

o The size of the header stays constant at 255 bytes for all ASCII files which

selectively store data.

e There is an average saving of 20083.68 bytes (54636.33 - 34552.65).

The saving illustrated above is not significant enough to justify storage of the data set

in ASCII form.

104

© Central University of Technology, Free State

O

Chapter 6 Database Storage Format
Central University of
Technology, Free State
ASCII Storage Format (Selective)
300 . 282
254
250 J
217
> 200
e
g
g 150 138
1 5
100 74
50 - - 25
1 —l;l 0
0 I I }
< 29932 (29932,31304] (31304,32676] (32676,24048] (34048,35420] (35420;36792] (36792;38164] (38164,39536] (39536:40908] > 40808
File size (bytes)

Figure 6-6: Frequency Distribution of file size for the ASCII Storage Format (Selective)

Once again the data were subjected to the same compression process described in

section 5 page 96. The results are presented below:

Table 6-11: Descriptive statistics (Compressed ASCII Storage Format, Selective)

Parameter | ASCII File Size | Compressed ASCII HP Digital
(Selective) File Size (Selective) | Storage Format
Min 29932.00 5252.00 8766.00
Max 40902.00 13784.00 15003.00
Mean 34552.65 7435.40 9878.42
SD 1780.63 1000.81 639.06
CV% 5.15 13.46 6.47

The following deductions can be made from the descriptive statistics in Table 6-11:

original ASCII file size.

Format is 24.73%.

Compression of the ASCII files yielded on average a 78.48% reduction of the

The average decrease in file size compared to the original HP Digital Storage

105

© Central University of Technology, Free State

’Q Database Storage Format

Chapter 6
~ Central University of
Technology, Free State
Com prest?oed ASCII Storage Format (Selective)

500 - 4

450 |

400 |

350
2 296
S 300
3
8 2501
w

200

150 | 112

100 o

3
B4 3 6 1 1 0
0 |
< 5252 (5252,6319] (§319;7386] (7386;8453] (B453;9520] (9520;10587] ‘(10587;11554]‘(11554;12721].(12721;13738}’ >13788
File size (bytes)

Figure 6-7: Ffequency Distribution of file size for the Compressed ASCIH Storage Format
(Selective)

Average Storage Space per Format

ASCII

ASCII (Selective)

Number of Bytes

Compressed

Figure 6-8: Average storage space per format, with the effect of compression
It can clearly be seen from Figure 6-8 above that the selective storage of data in a
compressed ASCII format will result in the most compact utilisation of storage space,

without any loss of detail in the ECG itself.

106

© Central University of Technology, Free State

Chapter 6 Q Database Storage Format

Central University of
Technology, Free State

7. Retrieval time for compressed data

Even though the selective ASCII data could be stored in a limited amount of space by
using the ZLIB compression software, care had to be taken regarding the amount of

time needed for retrieval.

There were three distinct phases involved in the access to ECG data stored in the

Hearts 32 database:

1. Extraction of the contents (the compressed ECG data set) from the BLOB field in
the Hearts 32 database, with the result saved to a temporary disk file.

2. Decompression of the contents of the temporary disk file into another temporary
disk file, containing the reconstructed ASCII data set.

3. Loading of the reconstructed ASCII data set by the Hearts 32 ECG Browser

software for graphical display and interaction.

The user’s perception is, of course, that there is only one phase; that being the

retrieval of the ECG data set with the result graphically displayed.

A program was written to analyse the amount of time needed for access to the stored
ECG data sets. The population contained 627° ECG data sets in the Hearts 32
database. The program measured the amount of time needed for each one of the
phases as outlined above. All results are in milliseconds (ms), and are summarised in

Table 6-12 below:

6 Although the rest of the analysis was performed using 1012 ECG data sets, only 627 ECG data sets were
physically present in the Hearts 32 test database. The reason for this was that many of the existing patient
records did not migrate from the existing Hearts database into the new Hearts 32 database, due to conflicts with
the new referential integrity rules defined in the Hearts 32 database.

107

© Central University of Technology, Free State

Chapter 6 Q Database Storage Format

Central University of
Technology, Free State

Table 6-12: Descriptive statistics (Retrieval time for Compressed Data)

Parameter | Time to Extract | Time to Decompress | Time to Load Total Time
(ms) (ms) (ms) (ms)

Min 15.00 41.00 4189.00 4285.00

Max 513.00 1036.00 8336.00 8459.00

Mean 5931 74.06 4658.35 4791.71

SD 32.85 58.60 422.31 429.45

CV% 5539 79.13 9.07 8.96

From the means in Table 6-12 it can clearly be seen that the average time to extract
the ECG data set from the database, as well as the decompression time, represent only
a small portion (2.783%) of the total time needed to display the ECG. The lion share
of the time is used by the I/0O routines in the Hearts 32 ECG Browser.

An initial thought was that a correlation between the file size and the time needed for
extraction and decompression might exist. Since other factors’ also influence the
extraction and decompression time, it was decided not to perform further statistical
analysis. If such a statistical analysis was performed without the effect of these

factors, the result would be skewed.

The main purpose of this exercise is to supply a ballpark figure for the amount of time

needed for retrieval of ECG data.®

A complete discussion on the actual decoding (decompression) of a digital ECG file

(HP4745A format) can be found in Chapter 8, and also in Appendix A.

7 These factors are difficult to quantify, and include items such as the number of processes running in
Windows® 95 at a given point in time, the CPU intensity of these processes. the size of the disk cache in
memory, the size of the virtual memory swap file and also the priority of the tast being executed.

8 The results were generated on a 486 DX4 100 MHz IBM compatible PC with 32 MB RAM and 2 x 1.3 GB hard
disk drives,

108

© Central University of Technology, Free State

Chapter 6 Q LDatabase dtorage Format

Central University of
Technology, Free State

8. Summary

Since the amount of ECG data to be stored is expected to be large, care must be taken
to choose a storage format that allows for relatively small data files whilst allowing
standardised access to these data, thus conserving storage space. In this chapter these
concerns were identified, gathered data were analysed and a storage format specified.
ECG data will be stored in the Hearts 32 database in a compressed ASCII format,
using only selected leads. The ZLIB compression library will be used to compress the

ASCII ECG data files.

109

© Central University of Technology, Free State

Chapter 7

0 Hearts 32 ECG Browser

Central University of
Technology, Free State

Chapter 7

Hearts 32 ECG Browser

1. Introduction

A graphic display module is needed to present the digitally captured ECG data stored
in Hearts 32. Besides display and printing capabilities, some additional functionality,
such as simultaneous display of multiple ECGs, measurement, zoom and

superimposing, is needed.

2. Description of the browser
The browser also supports zoom functions, callipers] for measuring of interval
duration and voltation, as well as superimposing of selected leads in the same ECG

and also printing of the ECG.

2.1. Selecting ECGs in Hearts 32

It is assumed that the £CG tab of Hearts 32 has been selected and that the ECG page
is active. Before ECGs can be selected, the correct patient record needs to be
identified. This can be done by clicking on the Search speedbutton.z A dialogue box
such as Figure 4-11 (Chapter 4, page 68) will be displayed. (This dialogue box can
also be activated by using the Search command located in the main menu at the top of

the window.) As soon as the patient record has been retrieved, a list of available

ECGs will be displayed (as in Figure 7-1).

Selecting an ECG for viewing is easy: simply click on the desired record with the
mouse. Multiple ECGs can be selected by holding down the Ctr/ key and clicking on

the desired records. Note that the Shift-Click method of Windows" (selecting a

1 A calliper is a measuring instrument.

2 The Search speedbutton is located to the top of the screen, right of the print speedbutton and left of the Save
Edits button. and contains a bitmap of a flashlight.

110

© Central University of Technology, Free State

Chapter 7 Q Hearts 32 ECG Browser

Central University of
Technology, Free State

range) is not implemented in the browser. This appears to be the default behaviour for

Delphi™,

Figure 7-1 illustrates the selection of the three ECG records available for the selected

patient.

EdHEARTS [_1a] x]

File Search Setyp Help
Bacemeker | TestPacemaker | Cardiothorscic Surgery | X-Rey
Patient] Admission | Lipids ECG ! Siress ECG] Echocardiography

alEmelsl - AN EaE e

MR LN PALI
Date Recorded Tirme Recorded
lﬂE—Dec-B? 12:06:30 AM

& Becord] _de Vew |

| Browsing

Figure 7-1: Hearts 32 ECG page

2.2. Viewing ECGs in Hearts 32
To view the selected ECGs, click on the Fiew button.” The Hearts 32 ECG Browser

will load. Initially, no ECG will be displayed. To start the display, click on the Draw
speedbutton.” The selected ECGs will be displayed within a few seconds, as

illustrated in Figure 7-2.

3 The View button is located underneath the Time Recorded edit box, and contains a bitmap of a pair of glasses
next to the word Fiew.

4 The Draw speedbutton is located directly underneath the File item of the main menu, at the top left hand of the
window.

111

© Central University of Technology, Free State

o Hearts 32 ECG Browser

Chapter 7

Central University of
Technology, Free State

E Hearts 32 ECG Browser

EMR LN PALI 57 yrs. male. ECG taken on 08-12-1937 at 12.06:30 AM (3)
| avR

et A R i

Lead'|, 0271 mV. 1448 sec

Figure 7-2: Hearts 32 ECG Browser Interface

2.3. Browser Speedbuttons

The nine speedbuttons used to interact with the Browser are located at the top of the

window, directly underneath the main menu. These speedbuttons include:

112

© Central University of Technology, Free State

o Hearts 32 ECG Browser

Chapter 7
Central University of
Technology, Free State
Table 7-1: Hearts 32 ECG Browser Speedbuttons
No | Name Description
1 | Draw Draws ECGs selected in ECG page of Hearts 32.
2 | Full size | Enlarges the currently active MDI child window to its full size
(978 pixels wide by 610 pixels high.
3 | Toggle Enables/Disables drawing of a grid in the background of the
Grid current active MDI child window.
4 | Refresh | Refreshes the contents of the currently active MDI child window.
ECG This is sometimes needed when the crosshair leaves marks on the
graph.
5 | Toggle Enables/Disables zooming of the currently active MDI child
Zoom window. Zooming-in is performed by clicking, holding and
dragging the mouse down to the right. Zooming-out is performed
by clicking, holding and dragging the mouse up left.
6 | Toggle Enables/Disables the use of a calliper in the currently active MDI
Calliper | child window. To measure the interval duration and voltage
between two points, click on the first point. (The word Measuring
is displayed in the status bar of the main window, bottom right.)
Click on the second point. The result of the measurement is
displayed in the status bar of the main window, bottom centre.
7 | Print Prints the ECG to the printer designated as the default printer in
ECG Windows® 95.
8 | Super- Draws more than one lead of the currently active MDI child
impose window on the same graph (in a new window).
9 | Exit Terminates the Browser and return control to Hearts 32.

2.4. Window management & viewing of multiple ECGs

Window management commands are used in the Browser to allow manipulation of the

placement of MDI child windows within the application frame. There are currently

no speedbuttons available in the Browser for these window management functions.

These functions are accessed from the Window item in the main menu (located at the

top of the Browser window). They include:

113

© Central University of Technology, Free State

0 Hearts 32 ECG Browser

Chapter 7
o Central University of
Technology, Free State
Table 7-2: Hearts 32 ECG Browser Window Management Commands
No | Name Description
1 | Cascade Stack the MDI child windows on top of each other, as in
Figure 7-2.
2 | Tile Use this for simultaneous viewing of long horizontal items,

Horizontal such as the Rhythm Lead (shown in Figure 7-4).

3 | Tile Vertical | Enables comparison of the same lead groups across different
ECGs, as displayed in Figure 7-3.

4 | Arrange Move all minimised MDI child windows to the bottom left
Icons side of the screen.

5 | Minimise All | Minimise all MDI child windows. A minimised MDI child
window can be restored by clicking on the restore button of
the window (located at the top right side of the window, two
small intersecting boxes).

A s 32 ECG
Hearts 32 ECG Browser

File View ‘indaw Help

ole) ulglaol alsl A

3%
|
|

" 1] | 1]

S Y Y | i | o

Lead | 0271 mV. 144Bsec

Figure 7-3: Vertical Tiling of MDI Child Windows in the Hearts 32 ECG Browser

114

© Central University of Technology, Free State

Chapter / Hearts 32 ECG Browser

. Central University of
Technology, Free State

g!lnﬁns 32 ECG Browser

File View Window Help 4

wl#lalo] &fel fl

¥R LN PALL 67 yrs, male. ECG raken on 03171337 at

RHYTHM STRIP: V1 ACAL1

-

RHYTHM STRIP: Vi ACALT

M MR LN PALI 57 yrs. male. ECG taken on 07-12-1997 at 11:34:33 PM (N

i T T B -

RHYTHM STRIP: V1 ACAL1

e v

Lead RHYTHM STRIP- VI, 0064mY. 4219 sec

Figure 7-4: Horizontal Tiling of MDI Child Windows in the Hearts 32 ECG Browser

2.5. Superimposing of selected leads of an ECG

To superimpose leads from the same ECG, click on the Superimpose speedbutton. A
dialogue box, such as in Figure 7-5, will be displayed. Follow the steps outlined on
the top right side of the window by selecting the desired leads on the left side of the
screen. The Crri-Click and Shifi-Click methods of Windows" 95, used for multiple
selection (separate items and list selection), apply. When the leads have been
selected, click on the OK button. The Clear button is used to clear the graph area.

The Close button will close this window and return to the Hearts 32 ECG Browser.

The result of the superimposing of leads for one ECG cannot be printed. Furthermore,
the crosshair, calliper and grid tools are not supported. The purpose of the

superimpose tool is to provide the cardiologist with a quick view of the selected leads.

While leads can be freely selected for superimposing, it does not make sense to select

leads at random. The following groupings should be used: II + II + aVF (inferior

115

© Central University of Technology, Free State

’Q Hearts 32 ECG Browser

~ Central University of
Technology, Free State

aspect), I + aVL + V5 + V6 (lateral aspect) and V1 + V2 + V3 + V4 (anteroseptal

Chapter 7

aspect). aVR represents a mirror image of I and is not used.

II {earts 32 ECG Browser

o Mow me e e

-~ li _{_2_{:_ i To superimpose leads, perform the following steps:
g. Claar i 1. Selectone ar mare leads by using Click. Shift-Click ar Ctrl-Click.
2. Click on the OK button,
£ cose |
;'_' :

Figure 7-5: Superimposing of selected leads of an ECG in the Hearts 32 ECG Browser

3. Summary

The ECG browser software developed for Hearts 32 allows the user to view, interact
and print ECGs stored in the Hearts 32 database. The Multiple Document Interface
(MDI) architecture of the browser ensures that simultaneous views of different ECGs

can easily be displayed.

116

© Central University of Technology, Free State

Lnapier 8 Lecnnical Q Acquisition and GUraphics Modules

= Central University of
Technology, Free State

Chapter 8

Technical reference of Data Acquisition and Graphics
Modules

1. Introduction
This chapter discusses the technical detail of the data acquisition module as well as

the graphical display module developed as a result of this research.

2. Development environment

The Hearts 32 database application (as well as other programs described in this thesis)
was developed on a 486 DX4 100 MHz computer with 32 MB RAM and two 1.3 GB
hard disk drives. A 2 MB PCI VGA card running at a resolution of 1024 x 768 pixels
with a colour depth of 256 colours was connected to a GoldStar StudioWorks 78i 17”

super VGA monitor.

The operating system used on the development machine (including workstations) was
Windows" 95 build 4.00.950. The following software development tools and libraries

were used during the research:

e Borland® Delphi” Professional Edition version 3.0
e Async Professional” 2.11 for Delphi™ 3.0

e InstallShield Express Delphi™ Edition version 1.11
e Borland® C++ version 3.01

e (/Math Toolchest version 1.0

e The SemWare" Editor pre-release version 1.00A

e Microsoft Office Professional version 4.3

The Novell” Netware” 4.1 file server at the Cardiology Department was connected via
a 10BaseT Ethernet segment with 20 workstations. The IBM file server was equipped
with a 3COM PCI 10/100 Mbit network interface card, 64 MB RAM, a 4 GB SCSI

117

© Central University of Technology, Free State

o Acquisition ana uraphics Modules

o Central University of
Technology, Free State

hard disk and a 4 GB SCSI DAl drive. lhe Arcserve 6.0 backup software from

CLldpler o Lecnnical

Cheyenne was used for preparing backups.

The basic configuration details of the workstations were as follows:

e 486 DX4 100 MHz

e 16 MBRAM

e 1 GB hard disk

e 1 MB VGA card

e SMC Ultra 10 Mbit network interface card

e Mouse

Connected to one of these workstations was a HP4745A PageWriter II Cardiograph.
The configuration details of the RS-232 communications port can be found on page

167 of Appendix A.

3. Data Acquisition Module

The Data Acquisition Module can be divided into three major sections, namely Data
Communications (transmission), Decompression (decoding) and Calculation. This is
illustrated in Figure 8-1 below. During data communications, data acquired from the
HP4745A are buffered in main memory, where they await further processing
performed by the decoding and calculation steps. The end result is the decoded ECG

data set.

NOTE: Since the information contained in the HP Diagnostic Cardiology Digital
Transmission Protocol was made available to the researcher by the Hewlett-Packard
Company under a confidential disclosure agreement, a detailed discussion of the

program code needed to decode the digital ECG data set can be found in Appendix A.

118

© Central University of Technology, Free State

LldpLer o

HP4745A

electrocardiograph

Compression and storage
of ECG data is not performedi g o Hearts
by the DLL. Data are stored! =

under control of Hearts 32 :

3.1. Global Variables

Lecnnicdl Q ACQUISIION dnd Jrapnics viodules

Central University of
Technology, Free State

Digital Data Transmission
results in copy of
ECG data in RAM

l

Decompression (decoding)
of digital ECG data in RAM

l

Calculation of lead data
(using smoothed values)
stored on disk

= 2= S l _______ -

I
I
I Compression of
|
I
|

calculated ECG data

1
1

]

]

]

]

| l 1
1

Database :

]

1

1

1

Figure 8-1: Graphic overview of the data acquisition process

Table 8-1: Global variables used during data acquisition

Variable Type Short description

Forml TForml Object instantiated from the TForm1 class.
This represents the window which is the
actual user interface.

BlockIn BUFFER Temporary buffer used for reading blocks
of data from the HP4745A.

BlockOut BUFFER Temporary buffer used for creating
responses which are sent to the HP4745A.

Countln Integer Numeric value of the number of bytes in
the following data block.

Ack Integer Counter used to determine the value of the

next sequence indicator for the
Acknowledgement block. The value of the
counter continuously increases. The
sequence indicator is determined by
dividing the value of the counter modulo 2.

119

© Central University of Technology, Free State

0 Acquisition and uraphics Modules

= Central University of
Technology, Free State

Table 8-1: Global variavbies used auring data acquisition (continued)

chdper o lLecnnical

Variable Type Short description

CountBlockReceived | Boolean If a count block has been received, the
acknowledgement block does not contain
any sequence indicators (0 or 1). Other
blocks are followed by an
acknowledgement plus an additional
sequence byte (0 or 1). This mechanism
attempts to prevent the loss of a count

block.

Status FSM The Status variable indicates the status of
the Finite State Machine used to control the
download.

ReadIndex Integer Specifies the position of the input buffer

where the next character is stored from the
COM port. Also used to determine whether
all the characters which are expected for a
given block type have been read.

Quit Boolean The main data communications loop is
controlled by this variable. As soon as Quit
has been set to true, the loop terminates.

MemArea PChar Pointer to character buffer where ECG data
will temporarily be stored. This buffer is
32 KB large.

ByteCountMA Integer Keeps track of the total number of bytes
stored in main memory. Indicates length of
data stream.

Data Byte Byte value containing the data pointed to
by the pointer MemArea + Offset.

ShiftCount Byte Keeps a tally of the number of bits
extracted per byte. As soon as a byte has
been scanned, the next byte has to be set up
for bit scanning.

Index Integer Used to index the digital ECG data stream
when dereferencing sequential byte values.

OffSet Integer Offset into the digital ECG data stream
(from the start of the Lead data).

DynamicArray ADynArr Pointer to dynamically allocated two
dimensional array. Values for each of the
three leads in each lead group will be stored
here, one lead group at a time.

120

© Central University of Technology, Free State

Chapter 8 Technical 0 Acquisition and Graphics Modules

= Central University of
Technology, Free State

3.2. Data Communications
Data Communications group together the activities responsible for the actual
downloading of the digital data from the HP4745A ECG machine. The following

procedures and functions work together to this end:

3.2.1.Function ReadDecodeCalcStoreECG

This procedure 1s the only exported module contained in the DLL. Its only purpose is
to serve as an interface between the application program (such as Hearts 32) and the
procedure/function in the DLL that is responsible for data communications. If a DLL
is developed for another ECG machine, it should contain an exported procedure called

ReadDecodeCalcStore ECG.

A description of the parameters passed to the ReadDecodeCalcStore ECG function can
be found in Table B-6 on page 223 of Appendix B. The possible return values for the
ReadDecodeCalcStore ECG function are also documented in Appendix B.

When implementing a Delphi™ form as a DLL, care must be taken not to have any of
the forms automatically created. This means that all forms in the DLL must be
removed from the application’s form auto create list. When a form needs to be
displayed, the form’s ShowModal method must be used. Displaying forms in a DLL
using the Show method can cause problems, since the Show method is used to display

modeless forms.

In the ReadDecodeCalcStoreECG function of the HP4745A DLL, the parameter
values passed to ReadDecodeCalcStoreECG are assigned to global variables. This
eases access to these values by the different procedures and functions contained in the
DLL, since multiple parameters do not have to be passed to each and every

function/procedure.

121

© Central University of Technology, Free State

0 Acquisition and Uraphics Modules

o Central University of
Technology, Free State

Code Snippet 8-1: Outline of the ReadDecodeCaicstoreECG function

Cudapler o Lecnnica

var
Forml : TForml;

begin
ReturnValue := -1;
Application.Handle := hAppHandle;
Forml := TForml.Create(Application);
try
with Forml do
begin
ShowModal;
end;
finally
Forml.Free
end;
Result := ReturnValue;
end;

In Code Snippet 8-1 above, the assignment of the parent application’s handle to the
instance variable of the DLL is made. Manual form creation, invoked via the
ShowModal method, and destruction of the form are also illustrated. The value of the
global variable ReturnValue is assigned to the ReadDecodeCalcStoreStoreECG

.
function.

3.2.2.Procedure GetFile
GetFile is responsible for the acquisition of the ECG data from the HP4745A. This

procedure contains the main program loop and invokes other functions as needed. In
order to speed up processing, a buffer is set up in main memory for storage of digital
ECG data. From the analysis of 1012 digital ECG files it was found that the average
size of these files is 9878 bytes. To be safe, however, a buffer of 32 KB is reserved.

Since the HP Diagnostic Cardiology Digital Transmission Protocol was not
redeveloped in software, some way was needed to control the flow of execution. To
this end a primitive form of a finite state machine was used. The download process

can only be in one given state at any time. The following states were identified:

FSM INITIAL, FSM _ATTENTION, FSM LINE BID, FSM SYS READY,
FSM_ID TEST, FSM_RUN TEST, FSM _ECGIN, FSM_HEADER, FSM LEAD,
FSM_MESSAGE. FSM_QUIT.

I Assigning a value to the name of a function is the method used by Object Pascal for returning a value from a
function. A new method is to assign the return value to the Resu/r variable.

122

© Central University of Technology, Free State

LndpLer o Lecnnical 0 Acquisition and Graphics Modules

Central University of
Technology, Free State

GetFile opens the COM port, and enters the main loop. During the main program

loop, GetFile attempts to read a block of data from the HP4745A. If a block has been
read, it is interpreted in order to determine what action should be taken. This action is
of course guided by the current state of the download process, that being one of the

states indicated above.

As soon as the digital ECG information has been transferred, the program loop is
terminated and the COM port closed. The buffer containing the digital ECG data is
NOT cleared, since it will be used during the decoding step to produce the decoded

data set.

A time-out feature was built into the main loop to ensure that the data acquisition
module can escape from situations where no data are received, or a communications
lock up occurs. This was managed by using the Windows” API function
GetTickCount?, recording the start and end times during different cycles of the loop.
A period of five seconds of inactivity terminates the loop and signals an error

condition, resulting in a return value of -1.

Code Snippet 8-2: Pseudo code for GetFile procedure

Setup buffer in memory
Open communications port
Record a start and end time
Repeat
If a low level data block has been read
Record new start time
Handle each type of data block
Else
Record new end time
If (End time - Start time) > 5 seconds
Abort procedure
End if
End if
Until finished
Close communications port

3.2.3.Function CRC
The CRC function is used to calculate a Cyclic Redundancy Checksum for a block of

data. Since the digital ECG data are compressed, an error of even 1 bit can be

disastrous. For this reason, CRC checking is implemented. The CRC calculation

2 The Win32® API function GerTickCount retrieves the number of milliseconds that have elapsed since
Windows® was started.

123

© Central University of Technology, Free State

Chapter 8 lechnical Q Acquisition and Uraphics Modules

Central University of
Technology, Free State

routine implemented in the data acquisition module differs from that described in the
Hewlett Packard Diagnostic Cardiology Digital Transmission Protocol. 1t does,
however, produce CRCs which are identical to the CRCs produced by the method
described in the Hewlett Packard Diagnostic Cardiology Digital Transmission
Protocol. The latter method calculates CRCs on a bit-by-bit basis. The algorithm
implemented here performs CRC calculation on a byte basis, which speeds up the
calculation. The CRC calculation routine implemented for this research is strongly

based on the work of Campbell. (Campbell, 1987 : 539 - 542).

A 16-bit coefficient table was built using a program. The output of the program (i.e.

the coefficient table) was then imported into the Object Pascal unit.

Note that the initial value of the CRC has to be set to FFFF, in order to stay
compatible with the HP4745A CRC values.

An additional discussion on the subject of CRCs can be found in section 4.7.7 Cyclic

Redundancy Checking Algorithm on page 181 of Appendix A.

3.2.4.Function ReadLLPBlock
The ReadLLPBlock function is responsible for reading characters from the ECG

machine and constructing a low level protocol block that the GetFile procedure can
use. ReadLLPBlock is aware of the length of each low level protocol block (in bytes),
based on the type of the block. Tt will gather the bytes needed per block. before
passing the block on. The use of the ProcessMessages method of the Application
object (Application. ProcessMessages) ensures that Windows” is able to service other
events when a routine is busy in a tight loop, such as found in the ReadLLPBlock

00
function.

3 In Windows 95® the effect of Application. ProcessMessages will be local to the running application. In 16-bit
versions of Windows® (such as Windows 3. l®), all the programs being multi-tasked suffered if one application
contained a processor-intensive loop which did not occasionally vield control to Windows 3.1® itself to allow
multi-tasking.

124

© Central University of Technology, Free State

0 Acquisition and Graphics Modules

Central University of
Technology, Free State

3.2.5.Procedure WriteLLPBlock

The WriteLLPBlock procedure accepts a string parameter which has to be sent

(written) to the HP4745A. WriteLLPBlock builds the count block, sends it to the

Chapter 8 ‘Technical

HP4745A and handles the response. The next step is to construct the low level
protocol data block. This includes calculating the CRC for the low level protocol data
block. Note that the sequence of the two bytes making up the CRC value (a word) has
to be swapped for the HP4745A. On the HP4745A the Most Significant Byte (MSB)
is written first, followed by the Least Significant Byte (LSB).

3.2.6.Function CheckSum

The CheckSum function calculates a checksum value for the count block. Details of
this function is privileged and can be found in section 4.7.1 The Count Block on page

176 of Appendix A.

3.2.7.Function GetCount

The count block is basically just a text string, containing digits from 0 to 9, and letters
from A to F (valid tokens for a hexadecimal number). No numeric value is
automatically associated with the string. A hex to decimal conversion has to be

performed before the value of the count block is obtained.

The C/C++ runtime libraries contain the scanff) family of functions which will,
amongst others, read a text string containing a valid hexadecimal number, and return
it as a numeric value. (Barkakati, 1989 : 459 - 462). The Object Pascal runtime

libraries do not supply such a function by default.

In order to avoid having to raise numbers to certain powers, the calculations were
performed and the values stored in an array.4 (This approach worked here, since we

knew beforehand exactly how many digits can be present in the input string.) The

array is populated with 1 (16°), 16 (16"), 256 (16%) and 4096 (16°).

4 The Object Pascal Run Time Library contains a procedure IntPower, that will raise x to the power of y. In order
to avoid the overhead of repetitively calling IntPower, the result of raising x to y can be calculated beforehand.
This can easily be done. since the number of y’s are small and known beforehand.

125

© Central University of Technology, Free State

Chapter 8 Technical 0 Acquisition and Graphics Modules

o Central University of

Technology, Free State

A small loop is used to convert the hexadecimal string to a numeric value. The
numeric value of each (hexadecimal) digit is determined by subtracting the ASCII
code of the digit from the ASCII code for 0. If the digit is in the range A - F, the
ASCII code of the digit is subtracted from the ASCII code for A. 10 is then added,
since A, represents 104. Once the numeric value of the digit has been established, the
digit is multiplied by the corresponding value in the array of numbers (1, 16, 256,
4096).

The sum of these values represents the converted numeric value, in decimal.

3.2.8.Function CheckCount
CheckCount determines the validity of the count block by:

e Checking the value of the count block (valid values lie between 0 and 255,

inclusive).

e Calculating a check digit for the checksum, extracting the check digit from the

checksum and comparing the two check digits.

If the count block value is invalid, or the check digits do not match, CheckCount

returns false.

126
© Central University of Technology, Free State

0 Acquisition and Graphics Modules

Central University of
Technology, Free State

Chapter 8 ‘Technical

3.2.9.Procedure CommitDataToMemory
CommitDataToMemory copies the bytes just received from the HP4745A ECG

machine from the input buffer into the memory which has dynamically been allocated
for this purpose. At the end of a successful transmission procedure, this buffer will

contain a complete copy of a digital ECG, ready for further processing.

3.2.10.Procedure ComPort1TriggerAvail
The ComPortiTriggerAvail function is an event handler invoked by the TComPort

VCL component whenever data have arrived at the COM port and are ready to be
dispatched. This function reads the characters from the COM port buffer and places
these characters into the buffer declared by the application. The
ComPort1TriggerAvail function ensures that the buffer full and buffer resume
properties of the 7ComPort VCL component are set up correctly. This can be done by
either setting the values in the Object Inspector, or assigning the desired values to the
properties of the 7ComPort object at runtime. In the case of the

ComPortlTriggerAvail function, the properties were set in the Object Inspector.

3.3. Decompression (Decoding)
The digital ECG data have to be decoded and manipulated before it can be used at all

by other applications. The decoding and calculation that have to be performed will
now, in part, be described. Please refer to section 5.16 Decompression Detail on page

209 of Appendix A for more information.

3.3.1.Procedure Decode
Technical details of the Decode procedure is documented in section 5.16.1 on page

209 of Appendix A. Two problems encountered during the coding of the Decode

procedure deserve further discussion here.

127

© Central University of Technology, Free State

Lnapier 8 Lecnnical Q ACQUISITION dNd UTdpilcs vIoaules

Central University of
Technology, Free State

Consider the case where access to the two individual bytes forming a word is needed.’
This can be facilitated through the use of a variant record. Object Pascal typically

requires a variable (tag field) used to specify which variation is used.

Swan describes a free union as a case variant record without a tag field. The case part
of the record declares an unidentified type, a nameless entity that occupies no space.
(Swan, 1991 : 130). In this way the different bytes that constitute a word can be
accessed, as well as the actual word value. This technique works well where the

individual bytes of a word value have to be manipulated to form the word value.

The boolean free union used in the Decode function has been declared as follows:

Code Snippet 8-3: The Boolean Free Union

Integers = record
CASE Boolean of
True : (sInteger : Smalllnt);
False: (uInteger : Bytes);
end;

‘The record type Byfes has been declared as follows:

Code Snippet 8-4: A Record with two Byfe Fields

Bytes = record
1lsb : Byte;
msb : Byte;

end;

The second problem that deserves attention is that of dynamic array allocation, since
such dynamic allocation lies at the heart of the Decode procedure. According to Swan
(Swan, 1991 : 208) a common complaint about the Pascal language is the nability to
dynamically resize an array during runtime. Index ranges must be constants, and
therefore array sizes are fixed when the program is compiled. This limitation is also

present in Object Pascal, the Pascal implementation used in Borland” Delphi™ 3.0.

5 Swan (Swan, 1991 : 875, 898 - 899) describes the use of the Hi function to return the MSB of a word, and the
use of the Lo function to return the LSB of a word. The result of Hi and Lo is always a byte in the range 0 to
255.

128

© Central University of Technology, Free State

Chapter & lechnical Q Acquisition and Uraphics Modules

Central University of
Technology, Free State

What is basically needed in the Decode procedure is a two dimensional array with x
number of rows (where x can only be determined at runtime) and 3 columns.
(Remember that there are 3 leads which are simultaneously used (in some cases) for

calculating of actual lead data.)

Swan describes a very interesting technique (Swan, 1991 : 208 - 210) that can be used

to dynamically allocate a one dimensional array. The steps are surprisingly easy:

1. Declare the data type. Also declare an array of this data type, but be sure to declare
the indices as [0..0]. (Although this appears to be a typographical error, it is not.)
Such a declaration results in an array with only one index entry, [0]. With range
checking off (default state of the compiler) it is possible to reference indices
outside of the declared boundaries. It is up to the programmer to ensure that the

variable referenced at the specified location exists.
2. Declare a pointer of the array type.

3. Use the GetMem procedure to allocate a specific number of bytes on the heap and
assign the address of the first byte to the pointer declared in the previous step.

(The SizeOf function returns the number of bytes occupied by the data type.)

4. Deallocate the space on the heap by using the FreeMem procedure with the same

arguments as the GetMem procedure.

This idea is expanded somewhat in the Decode procedure. In order to create a two
dimensional array, the data type declared in step 1 is a one dimensional array with

three rows. Here follows a brief example of what is used in the Decode procedure:

1. Declare the new data types. Since a standard data type is used in Decode, no new
type declaration is needed. We will, however, declare types for the arrays so that
these types can later be used for pointer variable declarations. Note the

declaration of the array, which has indices that are both set to 0.

129

© Central University of Technology, Free State

Chapter 8 lechnical Q Acquisition and Graphics Modules

Central University of
Technology, Free State

Code Snippet 8-5: Type Declarations for Dynamic Arrays used in Decoding

type
DynRow
DynArr

array[0..2] of smallint;
array[0..0] of DynRow;

2. Declare a pointer of the array type.

Code Snippet 8-6: Pointer to Dynamic Array

var
DynamicArray : "“DynArr;

3. Dynamically allocate memory using the GetMem procedure.

Code Snippet 8-7: Dynamic Memory Allocation

GetMem(DynamicArray, SizeOf(DynRow)} * SamplesInChannel);

(Note that in the Decode procedure such a dynamic memory allocation is only
performed once per lead group. Each of the three leads in the same group has the
same number of samples.) The array can now be used simply by dereferencing the

pointer DynamicArray. An example of this could look as follows:

Code Snippet 8-8: Using the Dynamically Allocated Array

DynamicArray”[Row, Column] := Value;

4. Deallocating the array using the FreeMem procedure.

Code Snippet 8-9: Releasing the Dynamically Allocated Array

FreeMem(DynamicArray, SizeOf(DynRow) * SamplesInChannel);

3.3.2.Procedure BinDump
BinDump is used primarily for debugging purposes. The binary equivalent of each

byte is constructed by ANDing the value of the byte with the value 80, (1000000,)
and writing either 1 or 0 to a string, depending on the result. The value is shifted left

8 times in order to determine the values of the 8 bits contained in the byte.

130

© Central University of Technology, Free State

Chapter 8 lechnical Q Acquisiuon and GUraphics Modules

Central University of
Technology, Free State

3.3.3.Function ScanBits

The compressed data found in the digital ECG data stream represent a variable length
stream of bits. This poses some difficulty, as the smallest unit easily dealt with is
normally one byte. ScanBits determines the value of the bit being dealt with and
returns the value as a byte so that it can easily be used by the rest of the program.
Examination is done by ANDing the value of each byte with the value 80, (1000000,,).
(This has the effect of only returning the value of the most significant bit.) After the
comparison, the value is shifted left once, effectively moving the next bit into bit 8
and inserting a 0 at the right end of the value. The function furthermore keeps count
of the number of bits examined and advances to the next byte in memory for every 8
bits used. This relieves higher level modules of keeping track of the bit stream.

ScanBits feeds MakeValue with bits for decompression (decoding).

3.3.4.Function MakeValue

MakeValue lies at the heart of the reconstruction of the compressed data. The
technical detail of the MakeValue function is documented in section 5.16.2 on page

213 of Appendix A.

One of the obstacles which had to be overcome in the MakeValue function was the
correct reconstruction of compressed data into two’s complement form, since numeric

variables are stored in two’s complement form in the memory of the PC.

The MakeValue function takes as parameters two byte values (containing the scanned
bits from the compressed data stream) as well as the bracket code preceding the bits.

MakeValue returns a signed 16-bit integer value, which is the decoded value.

In order to better understand the techniques implemented in the Make Value function, a

brief discussion of the internal representation of numeric values is in order.

On the PC, a short integer (also known as a small integer or word) is made up of two

bytes. Each byte consists of 8 bits. This allows 16 bits of information to be stored.

131

© Central University of Technology, Free State

Chapter 8 I'echnical Q Acqusition and Graphics Modules

Central University of
Technology, Free State

According to Morse (Morse, 1982 : 14), the 80x86 family of microprocessors stores

the least significant byte (LSB) first, and the most significant byte (MSB) second.

This is illustrated as follows:

Short Integer
| LSB | MSB |

As an example, consider the value 7F30,. This is stored as follows:

Short Integer
LSB | MSB
30 TF

As mentioned, each byte consists of 8 bits. Bit numbering starts at 0 (the least

significant bit) from the right. This can graphically be represented as follows:

msb Isb
b7 b6 b5 b4 b3 b2 bl b0

Positive numbers and zero can easily be described using binary notation. Negative
numbers introduce more complexity: an additional mechanism is needed to indicate
the sign of the number. Using the leftmost (most significant bit for the sign is called
sign-magnitude representation (Morse, 1982 : 5). Special arithmetic rules are needed!

Consider the following example:

Subtract +1 from 0 (expecting a result of -1).

0000 0000, 0
- 0000 0001, +1
1111 1111,]

(Morse, 1982 : 5)

We find that with the sign-magnitude representation the answer is actually -127!

A signed-number system is needed that can perform the same binary arithmetic on
signed as well as unsigned numbers. In such a number-system 1111 1111, should

represent -1 and not -127. Subtracting +1 from -1 should yield -2.

132

© Central University of Technology, Free State

napler o Lecnnical

0 Acquisiiion ana urapnics viodules

Central University of
Technology, Free State

1111 1111, -1

- 0000 0001, +1

1111 1110, 2
(Morse, 1982 : 5)

This representation is called two’s complement representation. Tanenbaum
(Tanenbaum, 1984 : 445 - 446) suggests that a negative number can be expressed in
its two’s complement form by following a two step process. All ones are replaced by
zeroes, and zeroes are replaced by ones. One is then added to the result. If any carry
bit is generated during the addition operation, the additional bit (left most carry bit) is

ignored.

Properties of the two’s complement form

e Binary additions and subtractions will yield the correct two’s complement result.
e The most significant bit of a positive number is 0.
e The most significant bit of a negative number is 1. (The msb serves as a sign bit.)

e The sign of a two’s complement number can be changed by negating the value of

each bit, and adding 1.

e When an 8-bit two’s complement number is extended to 16 bits (or more) the bits
on the left side of the 8-bit number will have the same value as the original sign bit.

This is called sign extending.

(Morse, 1982 :5 - 6).

3.3.5.Function ScanMem

ScanMem receives as input a character pointer and the number of characters to
process. It proceeds by copying the required number of characters from memory into

a string and converting this string into an integer value, which is returned.

3.4. Calculation
As soon as all three columns (leads) for each lead group have been decoded, the

calculations needed to produce the actual lead data are performed. A second two

133

© Central University of Technology, Free State

Chapter 8 Lechnical 0 Acquisition and Graphics Modules

o Central University of
Technology, Free State

dimensional dynamic array is declared tor this purpose. The reason for this step is to

facilitate the calculation. While some leads are already correct and can directly be
written to file, others need to be calculated. In some cases only one of the three leads

1s known and the other two leads need to be calculated.

The formule for calculating the actual lead values are described in Table A-22:
Smoothing Formula on page 202 of Appendix A. At the end of the calculation of the

actual lead values, the results are written to a disk file.

The structure of such a data file is important and deserves discussion. One of the aims
of this research is to provide a graphics tool that can re-create an ECG on screen or on
paper. Such a tool should provide the capability to draw the same leads of different
ECGs on a screen/page for recognition of trends by a cardiologist. To allow random
access to lead data in the file, the decoded data file was structured containing header
and lead portions (as illustrated by Table B-2: Structure of a Hearts 32 ECG data file
on page 219 of Appendix B).

Although this organisation seems to work well, there were some implementation
difficulties associated with the creation of such a data file. When declaring a file of
type Text in Object Pascal it is not possible to use the Seek procedure. The Seek
procedure is used to position the internal file pointer within a file. In this research, the

Seek procedure was used mainly for two reasons:

1. When the data file is created, the lead map needs to be written to the new data file
before any lead data can be written. Since the data contained in the lead map are
only calculated as the processing of the digital ECG data stream progresses, it is
impossible to write the correct values for the lead map with one pass to the new
data file. During calculation of leads, the lead map information is gathered and
stored in an array. At the end of the process, the internal file pointer is reset back
to the beginning of the file and the lead map is overwritten, this time with the

correct values. Note that the lead data stay intact.

134

© Central University of Technology, Free State

0 Acquisition and Graphics Modules

Central University of
Technology, Free State

2. The graph unit has to gain direct access to user-specified leads. By reading the

chapter 8 Lechnical

initial lead map this is a trivial exercise. (Such direct access speeds up processing,
since it is not necessary to read all values even if they are not needed.) In this case
the Seek procedure is used to move the internal file pointer to the starting value of

the desired lead.

Swan (Swan, 1991 : 957) suggests that a file of Char must be declared to use Seek in
text files. The Read and Write procedures can only be used with files of type text. To
write to any other file (such as Char), the BlockRead and BlockWrite procedures must
be used. Please refer to Chapter 6 for a complete discussion on why an ASCII data

format was chosen.

The data elements stored in a decoded data set (Hearts 32 format) are documented in
Table B-3 (page 220) of Appendix B, with examples in Table B-4 (page 221) and
Table B-5 (page 222).

The offset information in the lead map array can only be updated after the data have
actually been written to disk. The reason for this is (as has already been mentioned)
that the individual data values are not of the same length. The following method is

used to update the offset information:

Code Snippet 8-10: Final Update of Lead Map Information

ASCIILeadMap|[1].0Offset := MapSize + 3;
for i := 2 to Leads do
begin
ASCIILeadMap[i].0Offset := ASCIILeadMap[i - 1].LeadLength +

— ASCIILeadMap([i - 1].O0ffset;

The offset for the first lead can very easily be calculated: it directly follows the lead
map and is calculated by summation of the size of the number of leads field and the
size of the lead map. We do not need to add one to the sum, since all offsets are zero-
based. For subsequent leads, the offset is calculated as the sum of the lead length of

the previous lead and the offset of the previous lead.

135

© Central University of Technology, Free State

0 Acqusition and Graphics Modules

Central University of
Technology, Free State

4. Graphic Display Module

chnapier & lechnical

It has been found that the font size setting in Windows"” 95 (small/large fonts) has a
profound effect on the way that the forms in a Delphi™ application are presented. It
seems that the font size setting tends to influence the size of the form when auto
scaling is enabled. Hearts 32 (and the Hearts 32 ECG Browser) was developed for

high resolution use; 1024 x 768 pixels, using large fonts.

The Hearts32 ECG Browser has been developed as DLL, in order to allow
enhancements to be made to the browser, but at the same time protecting the Hearts
32 database against such changes.6 The second reason for this design was the fact that
the Multiple Document Interface architecture (section 4.1 on page 137) is best suited
to the browser (rather than the Single Document Interface (SDI) used for the Hearts

32 application).

Access to a Hearts 32 ECG data set is realised by Hearts 32 itself; the browser does
not directly interact with the Hearts 32 database. This is illustrated in Figure 8-2

below:

Hearts

@ Database access and decompression
0O | Database
=
=

performed by Hearts 32. Decompressed
ECG data files are then made available
to the graphic display module.

Decompression of

ECG data iyl Graphic-display Madule

e mm e e mm o e Em Em = e = = e

Figure 8-2: Graphic overview of the Hearts 32 ECG Browser

6 This means that it will not be necessary to re-compile the complete Hearts 32 application, since updates are
localised to the browser sofiware only.

136

© Central University of Technology, Free State

Chapier & lLecnnical Q Acquisition and Uraphics vodules

Central University of
Technology, Free State

The Hearts 32 ECG Browser comprises ot tour Object Pascal unit files:

Table 8-2: Object Pascal units found in the Hearts 32 ECG Browser

Unit Short overview
EKGI10P Responsible for frame management.
ChildWin Responsible for actual display of an ECG, together with tools such

as crosshairs, callipers, gridlines and zooming.
DrawLLD10 Responsible for superimposing of different leads of the same ECG.
About Responsible for the Help|About dialogue box.

Although the ECG graphic display screen appears to be one graph, the graphic display
actually consists of 14 different 7Chart components, which, in turn, each contain one
TFastLineSeries component. The individual 7Chart components are placed next to

each other, forming what appears to be one graph.

This configuration meant that items such as crosshairs, callipers, gridlines and

zooming had to be copied for 14 different charts.

4.1. The Multiple Document Interface

The browser must be capable of displaying » ECGs simultaneously, in order to allow
the cardiologist to compare different ECGs for the same patient. The MDI approach
delivers a solution that is already familiar to most users of word processing packages.

MDI allows more than one document to be opened simultaneously.

Cantu (Cantu, 1997 : 736) describes MDI applications as follows: “MDI applications

are made up of a number of forms that appear inside a single main form.”

The different windows involved in an MDI application can be summarised as follows:

137

© Central University of Technology, Free State

Chapter 3 lechnical Q Acquisition and Graphics Modules

Central University of
Technology, Free State

Table 8-3: MDI Window Types

Window type Description

Frame window The application’s main window. It has a caption, menu bar, and
system menu. Minimize, Maximize and Close buttons appear in
its upper-right corner. The blank space inside the frame window
1s known as its client area and is actually the client window.

Client window The manager for MDI applications. The client window handles
all MDI-specific commands and manages the child windows that
reside on its surface - including the drawing of MDI child
windows. The client window is created automatically by VCL
when a frame window is created.

Child window(s) | MDI child windows are the actual documents - text files,
spreadsheets, bitmaps and other document types. Child windows,
like frame windows, have a caption, system menu, Minimize,
Maximize, and Close buttons, and possibly a menu. It’s possible
to place a help button on a child window. A child window’s
menu is combined with the frame window’s menu. Child
windows never move outside the client area.

(Pacheco & Teixeira, 1996 : 312 - 313).
The functions and procedures found in the EKG10P unit work together to form the

frame window of the Hearts 32 ECG Browser. These include:

4.1.1.Function DrawlLeads
The DrawLeads function is the only exported function in the DRAWECG.DLL file

It serves as the hook between Hearts 32 and the Hearts 32 ECG Browser. Drawleads
is responsible for the assignment of the parameters passed from Hearts 32 to global
variables, and also for the instantiation of the main form of the browser. This can be

illustrated as follows:

Code Snippet 8-11: Dynamic Creation of the Frame Window

NewParmList := ParmList;
Application.Initialize;
Application.CreateForm(TMainForm, MainForm);
Application.Run;

The parameter list passed to the Hearts 32 ECG Browser is s whal,‘c,omplicamd.‘_.

THIS BQOK IS
and deserves a short discussion. Put in English, the patient’s nfa.mg:,, sex @ndﬁ Q -

V1

5

L ! .:,. [| ‘-. |
| 51
| =5 SEF
! T ¢ P - v I
a ‘71:-”‘HN§:-
L EE STAT

MM

138

© Central University of Technology, Free State

wnapler o Lecnnicdal

0 Acquisition and uraphics Modules

o Central University of
Technology, Free State

birth, together with a list of the ECG data tile names (and the date and time of

recording of each ECG) need to be sent to the browser (from Hearts 32).

Since there is no way of determining the number of data file names before they are
passed as parameters, a different parameter passing technique is needed. Cantu
(Cantu, 1997 : 170) notes that “Unlike C, a Pascal function or procedure always has a
fixed number of parameters. However, there is a way to pass a varying number of
parameters to a routine using an open array. The basic definition of an open array
parameter is that of a typed open array. This means you indicate the type of the
parameter but do not know how many elements of that type the array is going to

have.”

An open array parameter would have been perfect if an array with file names were to
be passed. Since other information is also needed, this method has been abandoned in
favour of passing one complex (record) variable. The structure of this variable is

defined in a few steps as follows:

Code Snippet 8-12: Record used for Parameter Passing between Hearts 32 and the Hearts 32 ECG
Browser

type
TAr20 = Array[0 .. 20] of Char;
TAr80 = Array[0 .. 80] of Char:

TEDFArray = Record
FileName : TAr80;

Date i % o0
Time : TAr20;
end;
EDF = Array [0 .. 0] of TEDFArray;

TParmList = Record
PatientName : TArso;
DateOfBirth : TAr20;

Sex : Char;

FileCount : Integer;

ECGDataFiles: “EDF;
end;

Types TAr80 and TAr20 were created as zero-based character arrays, so that
parameters of this type can be compatible with ASCIIZ strings. The use of the Object

Pascal type String causes problems when writing DLLs.” The same approach for
pp

7 Important note about DLL memory management: ShareMem must be the first unit in your library's USES clause
AND your project's (select View-Project Source) USES clause if your DLL exports any procedures or functions
that pass strings as parameters or function results. This applies to all strings passed to and from your DLL;

139

© Central University of Technology, Free State

Chapter ¥ Lechnical 0 Acqusition and Graphics Modules

Central University of
Technology, Free State

dynamic array allocation as described in section 3.3.1 on page 127 has been used to

dynamically allocate the space needed for the ECG files.

4.1.2.Procedure TMainForm.FormCreate
Additional processing during the form creation includes enabling of hints during the

program execution, and also the updating of menu items (enabling/disabling items,

managing tick marks etc.).

4.1.3.Procedure TMainForm.ShowHint

ShowHint passes hint strings to the status bar at the bottom of the window. Note that
the Hint property of a form can contain both short and long hints. The different hints

are separated from each other by a pipe (|) character.

4.1.4.Procedure TMainForm.CreateMDIChild
CreateMDIChild creates a new MDI child window in which a new document (ECG in

this case) will be managed.

4.1.5.Procedure TMainForm.FileCloseltemClick
The currently active MDI child window is closed using the Close method of the MDI

child window. A check is performed to determine whether MDI child windows are
present before Close is called. This is done by using the ActiveMDIChild procedure.
If no MDI child windows are available, Active MDIChild returns nil, otherwise the

active MDI window is returned.

4.1.6.Procedure TMainForm.FileExitltemClick
The frame window is closed by calling the Close method of the Application object.

even those that are nested in records and classes. ShareMem is the interface unit to the DELPHIMM.DLL
shared memory manager, which must be deployed along with your DLL. To avoid using DELPHIMM.DLL,
pass string information using PChar or ShortString parameters. (Pacheco & Teixeira, 1996 : 676).

140

© Central University of Technology, Free State

Lnapier s lechnical Q Acquisition and uraphics vodules

Central University of
Technology, Free State

4.1.7.Procedure TMainForm.WindowCascadeltemClick
MDI child windows are cascaded by calling the Cascade method of the frame form

(window).

4.1.8.Procedure TMainForm.WindowTileHItemClick
MDI child windows are horizontally tiled by setting the 7ileMode property of the

frame form (window) to thHorizontal, and calling the Tile method of the frame form.

4.1.9.Procedure TMainForm.WindowArrangeltemClick
Minimised MDI child windows are arranged by calling the Arrangelcons method of

the frame form.

4.1.10.Procedure TMainForm.WindowMinimizeltemClick
All MDI child windows are minimised by looping through the list of MDI child

windows, and setting the WindowState property of each MDI child window to
wsMinimized. The number of MDI child windows can be determined by querying the

MDIChildCount property of the frame form.

4.1.11.Procedure TMainForm.UpdateMenultems

Menu items as well as speed buttons are enabled or disabled, depending on the
availability of a MDI child window. It does not make sense, for example, to allow the
user to close a file if no file was opened to begin with! This can be illustrated as

follows:

Code Snippet 8-13: Enabling/disabling menu items and speed buttons

FileCloseltem.Enabled := MDIChildCount > 0;

4.1.12.Procedure TMainForm.FormDestroy
Care must be taken that, before the frame form is destroyed, the link to the ShowHint

procedure is disabled. If this is not done, the frame form will be destroyed, resulting

in a dangling pointer which will cause a program crash.

141

© Central University of Technology, Free State

Chapier 8 Lecnnical Q AcCquisilion anda urapnics vioaules

Central University of
Technology, Free State

4.1.13.Procedure TMainForm.sbZoomButtonClick

To enable the zoom feature, the AllowZoom property of each TChart object needs to
be set to True. sbZoomButtonClick makes use of the Run-Time Type Information
(RTTI) operator as to ensure a safe type cast. Cantu elaborates on the use of the as
cast as follows: “The difference between the traditional cast and the use of the as cast
is that the second one raises an exception if the type of the object is not compatible

with the type you are trying to cast to.” (Cantu, 1997 : 233).

4.1.14.Procedure TMainForm.sbCalliperButtonClick
When the calliper tool has been enabled, the OnClick event handler of the 7Chart

object points to the RSClick procedure. Disabling the calliper tool sets the OnClick

event handler to nil.

4.1.15.Procedure TMainForm.sbRefreshButtonClick
The ECG display is refreshed by calling the Repaint method for each TFastLineSeries

object.

4.1.16.Procedure TMainForm.sbCloseClick

Clicking on the Close speedbutton closes the frame form by calling the

FileExitltemClick procedure.

4.1.17.Procedure TMainForm.sbGridButtonClick
The status of the Grid menu item is updated, depending on the status of the

GridButton. This is accomplished by setting the value of the Checked property of the

Grid menu item. The Draw method of each T7Chart object is then called.

4.1.18.Procedure TMainForm.sbDrawSameleadsClick

Before leads can be superimposed, a new MDI child form needs to be created. After

creation of this form, control is passed to the form.

142

© Central University of Technology, Free State

wiapier o lLecnnical Q ACJUISILOI dIId UTapnics iviodaules

Central University of
Technology, Free State

4.1.19.Procedure TMainForm.sbFuliSizeButtonClick

Setting the MDI child window to its maximum size can be achieved by setting the

values of the top, left, height and width properties of the MDI child form.

4.1.20.Procedure TMainForm.Refresh1Click
Selecting the Refresh menu item will call the shRefreshButtonClick procedure to

complete the refresh task.

4.1.21.Procedure TMainForm.Grid1Click
Selecting the Draw Grid menu item will call the sbGridButtonClick procedure to

complete the drawing of the grid.

4.1.22.Procedure TMainForm.Zoom1Click

Selecting the Zoom menu item will call the sbZoomButtonClick procedure to complete

selection/deselection of the zoom tool.

4.1.23.Procedure TMainForm.WindowTileVitemClick
MDI child windows are vertically tiled by setting the TileMode property of the frame

form (window) to thVertical, and calling the Tile method of the frame form.

4.1.24.Procedure TMainForm.sbPrintClick
The sbPrintClick procedure starts by forcing the page orientation to polLandscape.

The shape of the cursor is set to an hourglass (crHourGlass). Printer.BeginDoc
prepares the print job. The PrintPartial method of the TChart object is used to allow
individual placing of TChart objects on the printed page, at program-supplied co-
ordinates. Printer. EndDoc finalises printing. At the end of the print job, the printer

orientation as well as the cursor are restored to their old values.

4.1.25.Procedure TMainForm.StatusBarDbIClick
Double clicking on the status bar will hide or display the toolbar, depending on the

current setting of the toolbar visibility.

143

© Central University of Technology, Free State

wnapter s 1 ecnnical Q ACJUISITION and uTdpnics ivioaules

Central University of
Technology, Free State

4.1.26.Procedure TMainForm.Open1Click
The OpenlClick procedure loads the ECG data sets as listed in the parameter list

(Code Snippet 8-12 on page 139), each into each its own MDI child window. During
loading of the data set, the name of each data set is displayed in the status bar at the
bottom of the screen. The caption of each MDI child window is set to the patient
name, age in years and sex, as well as the date and time on which the ECG was
recorded. The patient age is determined by subtracting the birth date from the ECG
recording date, and dividing the answer by 365.25.° Only the integer portion of the

calculation is displayed.

4.1.27.Procedure TMainForm.sbOpenButtonClick

Selecting the Opern menu item will call the shOpenButtonClick procedure to complete

the loading of the ECG data sets.

4.1.28.Procedure TMainForm.Print1Click

Selecting the Print menu item will call the sbPrintClick procedure to complete the

printing of the active MDI child window.

4.1.29.Procedure TMainForm.Superimpose1Click

Selecting the Superimpose menu item will call the sbDrawSamelLeadsClick procedure

to facilitate superimposing of leads for the same ECG.

4.1.30.Procedure TMainForm.Help1Click
The Help|About dialogue box is displayed as soon as the AboutBox has been

instantiated.

4.2. Managing the contents of a child window
The procedures and functions contained in the ChildWin Object Pascal unit concern

themselves with the management of the contents of the MDI child window. This

8 The HP4745A Cardiograph does not support dates past 31 December 1999. This means that the age calculation
will have to be revised, if the HP4745A Cardiograph is used past 31/12/1999.

144

© Central University of Technology, Free State

udaper o LeCiucdl

o ACquisinon ana urapnics vioaules

Central University of
Technology, Free State

includes items such as loading ECU aata sets and displaying the ECG graphs, as well

as drawing crosshairs.

As mentioned previously, a total of 14 7Chart objects are present in the unit. Due to
this fact, some functions had to duplicated. Since the contents of these functions stay
the same, save for a change in an array subscript, only one of these functions will be

listed and discussed.

4.2.1.Procedure TMDIChild.FormClose

FormClose closes the MDI child window by setting the Action parameter of the
OnClose event to caFree. The default closing behaviour for MDI child windows is to
minimise, rather than close. This is controlled by a parameter of the OnClose event
called Action. By default, Action has the value caMinimize. By setting Action to
caFree, the application is forced to destroy the window and free its resources on

closing.

4.2.2.Procedure TMDIChild.RSClick

RSClick implements the calliper functionality by recording the time and voltation on
an initial mouse click, waiting for a second mouse click, recording the time and

voltation and then calculating the difference between these values.

4.2.3.Procedure TMDIChild.Exit1Click
Exit1Click closes the MDI child window by calling its Close method.

4.2.4.Procedure TMDIChild.AfterDrawValues

AfterDrawValues is responsible for drawing the gridlines after the 7Chart object has

drawn itself.

4.2.5.Procedure TMDIChild.ScanFile

The ScanFile procedure is used to read items such as lists of numbers from an ASCII
data file. Each value is separated from the others by a space. ScanFile reads the

contents of the data file a character at a time, terminating as soon as a delimiting

145

© Central University of Technology, Free State

Chapter ¥ lechnical o Acquisition and Graphics Modules

= Central University of
Technology, Free State

character (such as a space, comma or tab) has been read. Although character

operations sound painfully slow, the file I/O buffering techniques provided by the
operating system, as well as the increased access speeds of modern hard disks speed

up processing considerably.

4.2.6.Procedure TMDIChild.RSMouseMove

RSMouseMove is responsible for crosshair management. The DrawCross procedure
(which is local to RSMouseMove) performs the actual drawing of the crosshair. The
crosshair is managed by determining whether a crosshair was already drawn or not. If
this is true, the previously drawn crosshair is effectively erased by drawing it in its
previous position. This is achieved by setting the pen mode to pmXor. Drawing the
crosshair in a new position with a pen mode set to pmXor will display the crosshair in

a different colour.

The GetCursorValues method of the T7Chart object enables the determination of the
actual values under the mouse cursor (X,Y coordinates) at any given point. If the
result of the GetCursorValues was to be used directly, it would make no sense. The
numeric values read from the Hearts 32 ECG data set do not represent values in
millivolts or time directly. It is known that the total time per lead is 2.5 seconds. We
have roughly 630 data points per lead. 2.5/ 630 = 0.004 seconds per data point. This
means that for every X value, the associated elapsed time can be expressed as X

multiplied by 0.004.

An analysis of 740 calibration pulses showed that the average numeric representation
of 1 mV is 199.56 (with a CV% of 0.56%). In order to ease the calculation, this figure
has been rounded to 200. To determine the value of each Y in millivolts, the value of
Y has to be multiplied by 0.005. An example of the calibration pulse can be found in
Figure 3-20 on page 48 of Chapter 3 (Item F). Please refer to Table 3-9 on page 46 on

Chapter 3 as well.

The result of these calculations is displayed in the status bar at the bottom of the

window, as found in Figure 7-3 and Figure 7-4 on page 115 of Chapter 7.

146

© Central University of Technology, Free State

Clapiel o Lecnnicdl

Q AcCquisIliOn ana uraphics Modules

Central University of
Technology, Free State

4.2.7.Procedure TMDIChild.FastLineSeries10AfterDrawValues

The FasrLineSeriesNAﬁ‘erDrmfValues9 functions are needed to facilitate correct

handling of the crosshairs found in each TChart object. These functions set a flag to

allow a new set of readings to be taken, as needed.

4.2.8.Procedure TMDIChild.FormCreate
The FormCreate procedure starts by reading the ECG data set from the ASCII file

supplied as a string parameter. The first step is to determine the size of the lead map.
dynamically allocate enough memory to store such a lead map, and to read the lead
map from the ECG data set. Subsequently, lead data are read by looking up the offset
of each lead in the lead map, moving to the correct offset in the data file and reading
the data. Data points are added directly to the correct TFastLineSeries object as they

are read.

The determination of the maximum and minimum values follows next. This ensures
that all graphs are scaled equally. The ASCII data file is now closed and memory

dynamically allocated for the lead map, is freed.

4.2.9.Function TMDIChild.FindSubscript
FindSubscript returns the subscript of the item in the MouseStuff array by searching

the entries in the MouseStuff array for the title of the chart.

4.2.10.Function TMDIChild.FindLeadOffset
FindLeadOffset allows access to the lead offset in the header data of the Hearts 32

ECG data set by searching the lead map for the supplied lead identification, and

returning the subscript where the ID is found.

4.3. Superimposing of selected ECG leads
The DrawLD10 Object Pascal unit declares a new form that is used to select and

display a selection of leads on the same graph. The selection process is facilitated

9 The range for N is between 1 and 14. inclusive.

147

© Central University of Technology, Free State

LLdpLer o Lecnnical 0 Acquisition and Graphics Modules

o Central University of
Technology, Free State

through the use of a 7ListBox component. The 7Chart object contains 12

TFastLineSeries objects. i

The initial value of the Active properties of these TFastLineSeries objects are set to
False, effectively hiding the series. Each selected lead is copied from its
corresponding 7Series and TChart objects contained in the EKG/0P Object Pascal
unit. This saves time and effort to re-load the information from the ECG data set.

The series Title and Active properties are updated, and the series are displayed.

In order to ensure that the selected leads are drawn according to the same scale, the
LeftAxis. AutomaticMaximum and LeftAxis. AutomaticMinimum properties of the
TChart object are set to False. The LefiAxis. Maximum and LefiAxis. Minimum

properties are set to the calculated maximum and minimum values.

The colours used are of type TColor, and include c/Red, clGreen, clBlue, clBlack,

clTeal, clOlive, clFuchsia, clYellow, cINavy, cIMaroon, clLime and clGray.

10 There are 12 leads in the ECG data set eligible for superimposing.

148

© Central University of Technology, Free State

Chapter Y

0 Conclusion

Central University of
Technology, Free State

Chapter 9

Conclusion

1. Introduction

The hypothesis of this study as outlined in Chapter 1 can be summarised as follows:

To facilitate the digital availability of electrocardiogram tracings recorded with a

HP4745A PageWriter II Cardiograph.

The milestones needed in order to reach this goal were listed in the Research Method in
Chapter 2. Obtaining the technical documentation from the Hewlett-Packard Company
took a few months.] The Hewlett Packard Diagnostic Cardiology Digital Transmission
Protocol covered the information needed for digital transmission. Nothing was handed to

the reader on a plate.

Parts of the document necessitated further research using other information technology
textbooks. The CRC calculation routine, as well as the modulo-16 calculation of
checksums were not clearly documented in the protocol text. Another grey area (which
incidentally could not be solved) is that of the position bits2 found in the digital ECG
data. Even without these position bits and their effect on the data, the resulting ECG data

appeared to be fine.

The transmission protocol discussed the smoothing and compression methods used to
create the digital data set, but no hint was given as to how to decompress these data.
These procedures had to be devised from scratch. Since the compression and
decompression methods perform their tasks on the bit level, some reading had to be

performed in order to get acquainted with the internal representation of numbers in the

80x86 chips.

1 Negotiations for acquisition of the document started around 20 March 1996. The document was received on the
18th of June 1996.

2 Discussed in section 5.14.2 Position Bits on page 198 in Appendix A.

149

© Central University of Technology, Free State

Chapter 9

o Conclusion

Central University of
Technology, Free State

2. Highlights
Some of the most important highlights experienced during the life of the research project

include:

2.1. First communications (HP4745A to HP4745A)

The very first attempt at communications was performed by connecting two HP4745As
to each other, and to transmit an ECG from one machine to the other.3 In the beginning
this was rather difficult, since the menu structure and controls of the HP4745As were still
virgin territory. These tests were carried out using the original cables from Hewlett-

Packard.

2.2. Construction of the RS-232 communications cable

The original cables# supplied with the HP4745A PageWriter 11 Cardiograph are intended
to either connect the HP4745A to a modem or to another HP4745A. On enquiry,
Hewlett-Packard in Cape Town, South Africa, confirmed that a cable to connect the

HP4745A to a PC would cost =R 1,900.00.

The cable diagrams supplied in the transmission protocol document did not illuminate the
structure of the planned cable either. After careful examination of the two cables
mentioned in the previous paragraph, a wiring diagram for a single cable was

constructed.

Great was the excitement when a fully functional cable, connecting the HP4745A to a
PC, was completed for around R 25.00.5 Even some soldering skills were acquired, and

the burnt fingers could not dampen the excitement.

3 The first successful transmission was performed on the 20th of June 1996.
4 Details of these cables can be found in the section “Cable Configuration™ in Appendix A.

3 This milestone was reached on the 22nd of July 1996.

150

© Central University of Technology, Free State

0 Conclusion

Chapter 9

Central University of
Technology, Free State

2.3. First digital capture of a conversation between two
HP4745As

At this point in time the text of the transmission protocol did not make much sense.6 It

was deemed best to try and determine the exact contents of the digital conversation
between the two HP4745As. To facilitate this step, a RS-232 communications monitor
was needed. The Computer Centre of the University of the Orange Free State had such a
device, and access to it could be arranged. The biggest problem was the fact that the
results of the probe could not be stored in a way which would facilitate later examination

and experimentation.

For this reason, an inexpensive PC-based RS-232 communications monitor was needed.
A search on the Internet yielded RS232 Version 1.01.7 RS232 VI1.01 basically
eavesdrops on the conversation between two communicating devices. All that is needed
is the RS232 VI1.01 software, and a simple RS-232 cable as specified in the

documentation.

First attempts at recording the digital conversation failed, since the structure of the
RS232 V1.01 cable interfered with the initial communications tests of the HP4745A. As
soon as this was identified and the problem corrected (by simply cutting through two

cables!), the recording was completed.8

2.4. |Initial attempts at analysis of the digital ECG data

Initially the hexadecimal dump of the RS232 V1.01 program was manually interpreted
and examined in an attempt to better understand the text of the communications protocol.
It soon became apparent that this would be a mammoth undertaking, something at which

a computer would excel.

The first attempts at programmatic analysis of the recorded digital conversation were
extremely cumbersome, since the data were not in native format. For a start each byte

was represented by its hexadecimal ASCII code! Another problem was that all the

6 The transmission protocol had. in fact, to be studied several times in detail before the different parts fell into
place.

7 By Michael Ring, Ring Development, 10750 108th Ave. N.. Maple Grove. Minnesota. 55469, USA.

8 The first recording of such a digital conversation was successfully performed on the 26th of July 1996.

151

© Central University of Technology, Free State

o Conclusion

Central University of
Technology, Free State

control characters used by the protocol to facilitate the transfer of information were still

Chapter Y

present in the file.

These extraneous characters did. however, play an important part in better understanding

the text of the transmission protocol.

2.5. Manual decompression and calculation of ECG data

The transmission protocol described the transmission process in a fair amount of detail.
The decompression of the data was not mentioned at all. In the light of this it was
decided to start off with test runs at data decompression. There would be no point in

transmitting data that could not be decompressed and interpreted.

For lack of a complete understanding of the decompression process, an initial manual

decompression was performed.?

These results were entered into an MS-Excel 5.0 spreadsheet and the resulting graph held
great promise. A close resemblance between the test ECG and the graph could easily be

s€en.

2.6. Initial graphing with MS-Excel of the decoded data

The sheer volume of the data that had to be decoded, made it impossible to attempt
such an operation by hand. The knowledge acquired during the manual decode step
was sufficient to write a Borland” C++ 3.1 program that could read a binary ECG file

(HP4745A format) and return a file with a set of numbers representing the data.

These data were entered into MS-Excel 5.0 for graphing. Some calculations still had
to be performed, and MS-Excel was used for this."” By manually comparing the MS-

Excel graphs with the test ECG, an error was discovered in the decoding process.

9 Started towards the end of July 1996, and ended on the 29th of August 1996. A meticulous task which would
have driven anyone blind and insane. provided that they were mad enough to stick to it!

10 The first correct set of graphs were produced on the 18th of September 1996.

152

© Central University of Technology, Free State

Chapter 9 Q Conclusion

Central University of
Technology, Free State

2.7. The first RS-232 communications program (Borland®
C++ 3.1)

Between the creation of the decoding program mentioned in the previous section and the
writing of the communications program, some important decisions had to be made about
the way in which the RS-232 communications were to be implemented. Enough
textbooks and experience were at hand for coding the RS-232 communications functions

from scratch.

This did not seem like a viable option, since the point of the exercise was not to write yet
another RS-232 communications library. A suitable RS-232 communications library

(completely written in ANSI C) was located. 1! The immediate problem was solved.

Work on the RS-232 communications program lasted nearly three weeks.12 Initial
communications attempts failed. After days of debugging, the reason for the failure was
attributed to the fact that the buffer of the communications port overflowed due to the
inability of the RS-232 communications library to operate at such high baud rates (19,200
baud). The conclusion was made that the fact that the communications library was
written entirely in C slowed down the servicing of interrupts (due to high overheads
associated with parameter passing using the stack with function calls). Should the library

be rewritten in Assembler, higher throughput was to be expected.

Nevertheless, a satisfactory answer was obtained and the baud rate was simply lowered to

9600 baud, resulting in success.

2.8. Capturing data for statistical analysis

In order to determine the optimal storage method, some data had to be captured. This
activity took place in parallel with the rest of the research. To realise this, a special
version of the communications program was prepared in Clipper 5.2. The CA Clipper
Tools library version 3.0 (by Computer Associates, the manufacturer of Clipper) was

used to implement the RS-232 communications routines.

11 Another product called RS232, by Chris A. Karcher, 9537 Evanston Ave. N.. Seattle, Washington,
98103-3131, USA. ©1992.

12 Started on the 8th of November 1996, with the first successful run on the 15t of December 1996.

153

© Central University of Technology, Free State

Q Conclusion

Central University of
Technology, Free State

The result of this was that the existing fHearts application could digitally acquire ECG

Chapter Y

Data. These data could not, however, be stored in the database. Instead. the ECG
data were stored in files on the file server, awaiting database storage in the new

Hearts 32 database.

One thousand and twelve ECG data files were digitally captured between

20 December 1996 and 8 May 1997.

2.9. Development cross-roads

Although the C language seemed like a good choice for such low level work, the
character based interface did not appeal. The new trend was Windows” and Graphical
User Interfaces (GUI), and it did not make sense to develop a new product using an

outdated interface.

At that point in time, Borland had brought their new Rapid Application Development
(RAD) tool, Delphi™, to the market. The choice was largely between Microsoft Visual

C (from previous experience not an attractive idea) and Delphi™.

Although the researcher was not versed in the Pascal language!3, a decision was made to
move to Delphi™. This meant not only that another computer language had to be learnt,
but also that a paradigm shift had to be made. Rather than traditional procedural program

development, object oriented, event driven programming was to be performed.

2.10. The first RS-232 communications program (Delphi™ 1.0)
Once again, the biggest obstacle to overcome was the RS-232 communications
component. It was quickly discovered that the low-level knowledge of serial

communications programming in DOS would not suffice in a multi-tasking environment

I3 The development language used in Borland® Delphi™. Microsoft Visual C uses the C programming
language.

154

© Central University of Technology, Free State

0 Conclusion

Central University of
Technology, Free State

such as Windows®. The Internet provided a solution in the form of the MSComm VCL

Chapter 9

component. 14

As a first program in Delphi™ 1.0, the communications program came into being,
downloading data in the Windows® environment at speeds of 19,200 baud.!5 This was
quite surprising, when the overheads of multi-tasking and messaging in Windows® are
considered. It was found that higher transmission rates do not dramatically reduce the

time needed for complete data transfer.

The most probable reason for this phenomenon is the fact that half-duplex
communications are used. Every packet of data that is sent to the PC must be confirmed.
If a large stream of data was continuously sent, an increased transmission rate would
have had a greater influence on the transmission time. In the realm of the research

problem, the largest packet is limited to 256 bytes by the transmission protocol.

2.11. Windows® 95 and the 32-bit environment (Delphi™ 2.0)

Windows” 95 had by then positioned itself in the market and Borland released
Delphi™ 2.0, a 32-bit version of their best selling compiler. Since no shattering progress
had been made developing with the 16-bit version of Delphi™ (for this research), and
also because of the claimed benefits of the new compiler, it was decided to move to the

32-bit environment.

A brief spell with a beta version of Borland’s C++ Builder led to the decision to stick
with Delphi™. The most important reasons for this included that the product was not
ready for release yet (no documentation was supplied), and also that it was extremely
slow in compiling, when compared with Delphi™. C++ Builder also needed roughly

10 MB of disk space for scratch files when writing a “Hello World™ program.

While the bulk of the code for the communications program could be ported to

Delphi™ 2.0, the same old problem arose once more: The 16-bit version of the RS-232

14 MSComm V1.10 by Jeff Atwood. The MSComm VCL component duplicates the functionality of the
MSCOMM Visual Basic VBX component. All attempts to contact Jeff for acquiring of personal details in
order to pass credit for his work failed.

15 Work started on the 7th of December 1996, with the first successful run on the 29th of December 1996.

155

© Central University of Technology, Free State

Chapter Y

0 Conclusion

Central University of
Technology, Free State

communications component (MSComm) no longer functioned with Delphi™ 2.0. One of

the most important reasons for this was the fact (discovered after many hours of toil) that
Microsoft had, in their infinite wisdom, renamed and removed some of the API functions
found in the Windows" kernel. The search for a new RS-232 communications

component alas started anew.

This time the Internet did not deliver the goods. Countless searches resulted in failure or
unsatisfactory solutions. The answer came in the form of AsyncPro™, a professional
communications library for DOS®, Windows®, Windows® 95 and Windows® NT. A
trial edition of the software was found on the CD bundled together with the book
“Delphi™ 2 Developer’s Guide” by Pacheco & Teixeira. The license for the library cost
R 1,000.00.

The new communications component naturally did not use the same methods and
properties as the 16-bit component. This meant a re-write of the communications portion

of the program.16

2.12. Following up on decoding and calculation

In the meanwhile, work on integrated decoding and calculation proceeded, using
Borland® C++, since the researcher could work faster developing initial code in C.
Some technical problems were soon experienced, as the limitations of DOS® (most
notably the 640 KB barrier and the segmented memory architecture) were reached.
Large data sets such as those found in the ECG files could simply not be handled with
case in DOS®. As an interim solution, a statistical/mathematical package17 was used

to temporary overcome some of these problems.

The answer to these architectural problems was, of course, to use Delphi™ 2.0 in the
32-bit environment, where each program theoretically has a 2GB memory space that it

can use. No more memory model nightmares!

16 Work on this re-write started on the 25th of January 1997, and was successfully completed on the 15t of
February 1997.

17 ¢/Math Toolchest by Mix Software Inc., 1132 Commerce Drive, Richardson. Texas, 75081, USA. ©1991.

156

© Central University of Technology, Free State

Chapter 9 Q Conclusion

Central University of
Technology, Free State

2.13. TeeChart and Delphi™ 3.0
As the research progressed, and more milestones were reached, the choice of a graphing
tool became inevitable. Drawing the graphs with MS Excel 5.0 no longer sufficed. An

integrated solution was needed.

An investigation into writing the routines needed from scratch, soon showed that this idea
was not viable. There is no point in re-inventing the wheel! A good “wheel” was found

in the form of TeeChart, a professional graphics library for Delphi™.18

The issue of money arose once again. The purchase price of TeeChart would mean an
additional expenditure of R 1,000.00. Roughly one month later, Borland released version
3 of Delphi™, which promised even more improvements on version 2. Interestingly
enough, Borland chose to bundle the TeeChart software with Delphi™ version 3. The
choice was clear: purchase the upgrade to Delphi™ at a cost of R1,250.00, with
TeeChart bundled in the package.

TeeChart made it possible to reach yet another milestone, namely graphic re-creation of
digitally stored ECG data.19 TeeChart also permitted interesting options such as zoom

functions and the creation of callipers to be implemented with relative ease.

2.14. Choice of optimal storage method

Statistical analysis of the digitally acquired ECG data files yielded good information on
the composition of these files. Different options were considered, and a storage format
was proposed in Chapter 6.20 The researcher gained experience with the use of

statistical functions in MS-Excel 5.0 during this part of the research work.

18 TeeChart V3.0, runtime version, ©1995 - 1997, David Berneda, TeeMach SL, Barcelona, Catalonia, SPAIN,

19 Research on the graphic display tool started on the 9th of June 1997, and continued through to the 13th of
October 1997.

20 Research on this topic started on the 13th of May 1997, and continued on and off until roughly the 27th of
September 1997.

157

© Central University of Technology, Free State

Chapter 9

0 Conclusion

Central University of
Technology, Free State

2.15. Interfacing with the Windows” Registry

With the Hearts 32 application on the one hand, and the data acquisition DLLs on the
other hand, some “glue” was needed to ensure a connection. The connection was
realised by utilising the Windows" Registry. Chapter 4 discusses the design issues
behind this decision. Appendix B contains more detailed programmatic information
on this topic. Creating an interface with the Windows"” Registry represented another

step towards the final solution.”

2.16. Developing a Dynamic Link Library

Chapter 4 discusses the rationale for implementing the data acquisition module as a
dynamic link library. Initial work on testing the descriptions for DLL writing, as found
in the literature, succeeded instantly. However, when trying to put this knowledge into
practice with a real life application, something was missing. Appendix B throws more
light on this matter. Suffice it to say that the problems with DLL implementation have
been sorted out and the conceptual model has been put into practice - yet another

milestone reached.22

2.17. The literature research on the electrical activity of the
heart

The researcher deemed it necessary to perform a literature research on the basic
anatomy and physiology of the heart, as well as the electrical activity of the heart in
order to place the ECG in context. This part of the research was extremely interesting

and satisfying.23

2.18. The use of MS Word
During the course of the writing of this thesis, a lot was learnt about the functionality

of MS Word.” The writing of a document as complex as a research report would be

21 Research work on the Registry started on the 15t of September 1997 and continued until the 3rd of December
1997.

22 Research on DLL creation started on the 18th of August 1997 and continued on and off until the 7th of
December 1997.

23 The writing of this chapter. together with the graphics work. lasted nearly 6 weeks.

24 Many of these skills were learnt by reading the help text and trying until the desired effect was achieved.

158

© Central University of Technology, Free State

Q Conclusion

Chapter Y

Central University of
Technology, Free State

much more difficult without features such as styles, templates, captions, auto

numbering, cross referencing and spell checking found in MS Word.

3. Areas for future research

Future research areas include the following:

o Computer-aided interpretation of ECG data, comparing newly acquired ECGs
with previous data. This can typically be performed using an expert system.

e Lead to lead, and ECG to ECG QT, comparison, as an indication of subtle
pathological changes in the patient’s ECG.

e Annotation of the ECG stored in the Hearts 32 database, so that the cardiologist
can mark and store areas of interest on the ECG directly in the Hearts 32 database.

e A web-enabled version of the Hearts 32 database. This should make the data

more accessible to distant users.

4. Future of the system

4.1. Hardware

The HP4745A PageWriter Il Cardiograph is rapidly ageing. It was initially
introduced during 1987. One cannot help but wonder how long the Hewlett-Packard
Company will continue to provide service and support for these machines. The
Department of Cardiology, Universitas Hospital, Bloemfontein has access to the
professional services of a team of highly skilled bio-engineers, who can service the
HP4745A ECG machines. This of course, depends on the availability of spare

components, in case of component malfunction.

It is reasonable to foresee that these instruments will be in use for at least another two
years, during which time the use of the software system resulting from this research

can make a big impact on the work performed by the Department of Cardiology.

It is important to note that the HP4745A does not support the year 2000, the reason

for this being that dates are only 6 digits long.

159

© Central University of Technology, Free State

0 Conclusion

o Central University of
Technology, Free State

Chapter ¥

4.2. Software

A vast array of software development tools is currently available on the market. The
new generation of software development tools aims at increasing programmer
productivity by reducing or eliminating as many of the mundane tasks as possible.
These Rapid Application Development tools enable the fast creation of a prototype

that can easily be turned into a fully functional system.

The time span between major releases of existing software development tools also

seems to shorten continuously.

These factors had a big influence on the choice of software development tool used for
development of the Hearts 32 application. The main considerations for the choice of

software development tool (application development environment) included:

e Does the manufacturer of the product have a history of developing quality
products?

e Does the manufacturer have a sound financial position? (Will the manufacturer be
around in years to come in order to support the product?)

e Does the manufacturer have a sound commitment to the product?

e [s this a brand new product, or something new based on tried and trusted
technology?

e How is the product received by the market?

It is believed that the choice of Borland” Delphi™ was solid and responsible.
Borland has been in the compiler-business in excess of 10 years, producing top quality
professional compilers for Pascal, C, Basic, Prolog and Lisp. Borland was also
responsible for database products such as Paradox” and Reflex, and through

acquisitions, dBASE".

Admittedly, Borland has experienced some financial difficulties before the release of
Delphi™, but Delphi™ (together with C++ Builder) has become Borland’s flagship

product, solving these financial problems.

160

© Central University of Technology, Free State

Chapter 9

0 Conclusion

Central University of
Technology, Free State

Delphi™ uses the Object Pascal language. Borland has, as mentioned, been writing

Pascal compilers for roughly 10 years. Delphi™ was also written in Borland” Pascal.
The resulting programs are true executable 32-bit Windows" programs. No pseudo-

code or run-time modules for program interpretation are needed.

Within a short time after the release of Delphi™, a large part of advertisements for
programmer positions, required skills in Delphi™. The bewildering number of
newsgroups and Internet sites on Delphi™ also proves that the industry has embraced

Delphi™ completely.

One point which does raise a few questions is the following: Since Object Pascal is
deemed a high level language, it should be portable. For the largest part, this is true.
However, the experience with the different RS-232 communications modules which
did not function correctly with different versions of the Delphi™ compiler (even
different 32-bit versions) was frustrating, to say the least. Suffice it to say that the
blame cannot completely be laid on Delphi™ or Object Pascal. As already
mentioned, Microsoft modified the API functions in the Windows" kernel.
TurboPower, the manufacturers of AsyncPro™, also reworked the code of their

product in order to make it compatible with Delphi™ 3.0.

Another point which deserves attention is that of the ZLIB 1.0.4 general purpose data
compression library which was used for the storage of ECG data in the database
(Chapter 6). The source code for this compression library was written in ANSI C, to
allow compilation on different platforms. For the PC, the code was compiled using
the Borland® C++ 5.0 compiler. An Object Pascal interface to these object files was

then developed by the authors of ZLIB.”

It is possible that the interface to the ZLIB compression library will not automatically
function with future releases of Delphi™. (There always seem to be some or other
“minor” change between different releases of the compilers which normally has an

influence on topics such as mixed language programming.)

25 Jean-loup Gaily & Mark Adler. ZLIB ©1995-1996.

161

© Central University of Technology, Free State

Chapter 9

0 Conclusion

Central University of
Technology, Free State

ZLIB was chosen for the following reasons:

e [t is a general purpose compression library.

e [t is available, for free.

e The source code is available and the standards on which it is based are
documented well in request for comments (RFCs).

e [tis available on different platforms.

In the light of these facts, it is sincerely believed that, should the existing ZLIB library
not function easily with future releases of Delphi™, there will be some support to

overcome the problem.

The Paradox” RDBMS supports the year 2000. This means that the Hearts 32

application is in no immediate danger of the year 2000 problem.

The experience gained with RAD tools and visual development environments does
raise one important point: since a large portion of the program is hidden in the values
of the properties of the objects used, it is no longer possible to read the source code
listing alone to understand the working of a particular piece of code. The programmer
must always refer to the visual components as well. This can be impractical at times,

and must be kept in mind when preparing printed copies of source code.

5. Extension of the system
The data acquisition module developed for the HP4745A PageWriter Il Cardiograph can
be used as long as the HP4745A is in use (provided that the Hearts 32 application is

used).

The Hearts 32 application was developed in such a way that new data acquisition
modules for other ECG machines can be created as dynamic link libraries. All that is
needed is that these data acquisition modules deliver their data sets in the format outlined

in Appendix B.

162

© Central University of Technology, Free State

Chapter Y

0 Conclusion

Central University of
Technology, Free State

This safeguards Hearts 32 against changes in ECG equipment, and also protects the

investment of the Department of Cardiology, Universitas Hospital, Bloemfontein, in the

Hearts 32 application.

163

© Central University of Technology, Free State

Chapter Y

0 Conclusion

Central University of
Technology, Free State

The objectives as defined in Chapter 1 can be summarised as follows:

Objective Result

Data acquisition and decoding module for HP4745A | Success.
PageWriter II Cardiograph.

A method for database storage and retrieval of | Success.
digitally captured ECG Data.

Develop specifications to allow other developers to | Success.
create data acquisition modules for Hearts 32.

Develop a graphic browser for recreating of stored

ECGs.
Simultaneous views of different ECGs Success.
Superimposing of selected leads Success.
Printing of ECGs Success.

From the summary above it can be seen that the aims of the study has successfully been

reached.

6. Summary
Although many problems were encountered during the course of this study, and many
questions had to be answered through reading and own interpretation, the hypothesis

as outlined in Chapter 1 could be proved.

The hypothesis was proved in a test environment. This means that a limited version
of the new Hearts 32 database was developed to act as the host application and also to
illustrate the interface between the data acquisition and graphics modules. Conversion
of the contents of the current Hearts database has been programmed, and this work

will ease the migration of the Hearts database to the Hearts 32 database considerably.

164

© Central University of Technology, Free State

0 ology Digital Transmission Protocol

Central University of
Technology, Free State

Appendix A H

Appendix A

HP Diagnostic Cardiology Digital Transmission
Protocol

Rev. 3.0, September 25, 1985.

WARNING: The information contained in this appendix contains
confidential information of a proprietary nature which
has been made available to the researcher by
Hewlett Packard under a confidential disclosure
agreement. No part of this appendix may be made
public or used without proper prior written approval
from the Hewlett Packard Company.

Pages 166 - 217 left blank intentionally.

165

© Central University of Technology, Free State

0 Hearts 32 ECG Storage Format

Central University of
Technology, Free State

Appendix B

Appendix B

Hearts 32 ECG Storage Format

1. Introduction
While it is recognised that different electrocardiographs store data in their individual
proprietary format, one of the goals of this research was to find a common storage

format that would enable the storage of ECG data in the Hearts 32 database.’

Should it be required that any electrocardiograph other than a HP4745A PageWriter 11
Cardiograph be connected to the Hearts 32 database application, a Data Acquisition
Module must be developed for said electrocardiograph. The Data Acquisition Module
will be in the form of a Dynamic Link Library (DLL) (as discussed in Chapter 4,
section 3.1). In order to be compatible with the Hearts 32 database application, the
data files produced by such a DLL must conform to the format described in this

appendix.

The storage format described in this appendix is intended to allow other developers to

create ECG data sets that will be compatible with the Hearts 32 database.

2. Lead ldentifiers
The 14 leads present in a Hearts 32 ECG data file are summarised in Table B-1
below:

Table B-1: Leads present in a binary ECG file

Number | ID Lead description
1 1 |
2 2 I1
3 3 111
4 4 aVR

1 A device (hardware) independent storage format for digitally acquired ECG data.

2 The storage format resulted from the research described in Chapters 4, 6 and Appendix A.

218

© Central University of Technology, Free State

0 Hearts 32 ECG Storage Format

Appendix B

o Central University of
Technology, Free State

Table B-1: Leads present in a binary ECG file (continued)

Number | ID Lead description

5 5 aVL

6 6 aVF

7 7 V1

8 8 V2

9 9 V3

10 10 V4

11 11 V5

12 12 Vé

13 99 (Calibration Pulse)
14 24 Rhythm Strip (V1))

3. File Structure

In order to allow random access to lead data, it was decided that the ECG data file will

consist of two parts, as described in Table B-2 below:

Table B-2: Structure of a Hearts 32 ECG data file

[tem Description

Header Contains lead data characteristics. Items include number of leads in the
file, Lead ID, number of samples per lead and also the offset of the first

value of the lead in the data file.

Lead data | Contains the actual lead data.

Table B-3 describes each part as identified in Table B-2 in more detail. Item 1 (Lead
count) will occur only once in the decoded file, at the very beginning. Item 2 will
occur once in the file. Note that item 2 consists of a set of items 2.1 to 2.6 inclusive,
where the number of repetitions is equal to the number of leads as indicated by item 1
(Lead count). A total of 14 leads is present, as showed in Table B-1. Item 2 is
followed by item 3, which occurs once in the file. As with item 2, item 3 consists of a
set of items 3.1 to 3.2 inclusive, where the number of repetitions is equal to the

number of leads as indicated by item 1 (Lead count).

219

© Central University of Technology, Free State

0 Hearts 32 ECG Storage Format

Appendix B
o Central University of
Technology, Free State
Table B-3: Data elements in a Hearts 32 ECG data file
Number Item Data Type Length (bytes)
1 Lead count Integer 3
2 Lead map
information
2.1 Space 1
2.2 Lead ID Integer 3
23 Space 1
24 Samples in lead Integer 5
2.3 Space 1
2.6 Offset in file Long integer 7
3 Lead Data
3.1 Space 1
32 Lead Data Integer value for N/A
the HP4745A.
(Could also be real
value for other
ECG machines.
Does not matter.s)

In order to identify the different values in the file, they need to be separated from each
other, normally with a space (ASCII 32, indicated with the letter “b” in this appendix).
This is also the case with the decoded data sets, as indicated in Table B-3. Proper
placement of these spaces (please refer to items 2.1 and 3.1 in Table B-3) ensures that
no unnecessary spaces are written at the end of the file. Should the first space have
been written directly following the lead count (item 1), as well as items 2.6 and 3.2, an

unnecessary space would be present at the end of the file.

The width of items 1 to 2.6 inclusive has been fixed, to ease manipulation of the
header information. Since the header is relatively small (representing only 0.738% of
the average total file size), the additional spaces do not incur too much of a storage

overhead.

3 Stored data are read as ASCII strings from the data file. Tests showed that using the Si-Tolnt and StrToFloat
functions in Object Pascal yielded the same results for integer values.

4 Mean Header Size / Mean Total File Size * 100 = (255 / 34552.65) * 100 = 0.738%. Please refer to Table 6-10:
Descriptive statistics (ASCII Storage Format, Selective) in Chapter 6.

220

© Central University of Technology, Free State

O

Appendix B Hearts 32 ECG Storage Format

Central University of
Technology, Free State

An example of such data can be seen in Table B-4 below. The example shows the

lead count (item 1), header data (lead map items 2.1 - 2.6) for leads I, II and V1,
Table B-5 shows the lead data (lead data items 3.1 & 3.2) with the first few data

points for lead I.

Tuble B-4: Example of header (lead map) data in a Hearts 32 ECG data file

Lead [tem Item Description | Data Type Actual Data Length
ID Number (bytes)
Header | data
1 Lead count Integer bl4 3
Lead- | data
map
I 2.1 Padding Character b 1
2.2 Lead ID Integer bbl 3
2.3 Padding Character b 1
24 Samples in lead | Integer bb633 5
2.5 Padding Character b 1
2.6 Offset in file Long integer bbbb255 T
I1 2.1 Padding Character b 1
2.2 Lead ID Integer bb2 3
3 Padding Character b 1
24 Samples in lead | Integer bb633 5
2.5 Padding Character b 1
2.6 Offset in file Long integer bbb2313 7
V1, 2.1 Padding Character b 1
2.2 Lead ID Integer b24 3
2.3 Padding Character b 1
24 Samples in lead | Integer b2488 5
20 Padding Character b 1
2.6 Offset in file Long integer bb27712 7

221

© Central University of Technology, Free State

Q Hearts 32 ECG Storage Format

Appendix B
T,
Table B-5: Example of lead data in a Hearts 32 ECG data file
Lead Item [tem Description | Data Type Actual Data Length
1D Number (bytes)
Lead | data
I 3.1 Padding Character b 1
3.2 Lead data Inte:gm/ﬂoat5 -15 N/A
3.1 Padding Character b 1
3.2 Lead data Integer/float - N/A
3.1 Padding Character b 1
3.2 Lead data Integer/float 0 N/A
3.1 Padding Character b 1
32 Lead data Integer/float 3 N/A
3.1 Padding Character b 1
3.2 Lead data Integer/float 4 N/A

Since the different data values are not of the same length, some character is needed to
separate the values from one another. A space is written between adjacent values.
Note the technique of writing a space before writing the actual value. This
circumvents the problem of an unnecessary trailing space being written at the end of
the file. (This, of course, only works due to the structure of the lead map itself. If

there was no lead map, an unnecessary leading space would be present in the file.)

Items 2.1 to 2.6 are repeated for every lead (up to the number of leads specified in
Item 1). Items 3.1 and 3.2 are repeated for every value in each lead, up to the number

or samples per lead (Item 2.4).

4. DLL Specifics and Rules

[t is suggested that a mnemonic name for the data acquisition be given, such as

HP4745A.DLL in the case of the HP4745A PageWriter I Cardiograph, for example.

The exported function contained in the DLL file must be declared as follows:*

5 Data acquired from the HP4745A are in integer format. Using the proposed storage format, it does not matter
whether data are represented as integers or as real numbers. Because of this, no pre-allocated length is
associated with each data item.

222

© Central University of Technology, Free State

Appendix B

0 Hearts 32 ECG Storage Format

Central University of
Technology, Free State

Code Snippet B-1: Object Pascal function declaration

function ReadDecodeCalcStoreECG(hAppHandle: THandle; sDescription: PChar; nComPort:
Integer; nBaudRate : Integer; sBinaryFile : PChar; sASCIIFile : PChar; var sECGTime:
TAr20; var sECGDate: TArZ0) : Integer; StdCall;

The ReadDecodeCalcStoreECG function accepts eight parameters, and returns an
integer result. Successful downloading of the ECG data set from the cardiograph will
result in a return value of 0. If any problems were encountered, the return value of the

function is set to -1. A brief description of the parameters and their data types

follows:
Table B-6: Function call parameters
No | Name Object | Generic Data type Comments
Pascal
Data Type
1 | hAppHandle THandle | 32 bit signed integer | Parent Application
Handle’.
2 | sDescription PChar ASCIIZ string Description of DLL.
nComPort Integer | 32 bit signed integer | RS-232 COM Port to
which ECG machine is
connected.
4 | nBaudRate Integer | 32 bit signed integer | Baud rate at which ECG
machine communicates.
5 | sBinaryFile PChar ASCIIZ string Name of disk file to
receive a copy of the
binary ECG data.
6 | sASCIIFile PChar ASCIIZ string Name of temporary disk

file to receive decoded
ASCII ECG data.

7 | sECGTime var TAr20 | Zero-based array of | Time ECG was taken.
20 characters

8 | sECGDate var TAr20 | Zero-based array of | Date ECG was taken.
20 characters

The main application handle is used to associate the data acquisition with the main
application (Hearts 32). This ensures that the windows belonging to the DLL are

closed together with the main application.

6 In other languages such as C. the corresponding data type must be used instead. The name of the function must,
however, be kept intact. Care must be taken with C++ compilers to avoid mangling of the function name.

7 In the HP4745A.DLL file. the application’s instance was assigned the value of the parent application handle as
follows: Application.Handle := hAppHandle.

223

© Central University of Technology, Free State

Appendix B

0 Hearts 32 ECG Storage Format

o Central University of
Technology, Free State

The values of the binary and ASCII file names are determined and supplied by

Hearts 32. The contents is made up of the path name of the Windows" 95 directory,
followed by TEMP. Appended to this is the eight digit computer number that
uniquely identifies each patient in Hearts 32. The file extension is .Enn for binary
files, and .Ann for ASCII files, where nn is the number of the ECG in the Hearts 32
database.” An example of such a file name is as follows:

CAWIN9S\TEMP\123456789.E01.

Items 7 and 8 in Table B-6 need additional attention. Note that these variable
parameters have assignments made by the data acquisition module. The format of the
time parameter is hh:mm:ss. The format of the data parameter is yy-mm-dd, but

yyyy-mm-dd is also acceptable.

Code Snippet B-2: C/C++ function declaration

int ReadDecodeCalcStoreECG(HINSTANCE hAppHandle, char * sDescription, int nComPort,
int nBaudRate, char * sBinaryFile, char * sASCIIFile, char * sECGTime, char * sECGDate
)i

Depending on the coding style used, the function ReadDecodeCalcStoreECG could be

defined as follows:

Code Snippet B-3: Alternative C/C++ function declaration

int ReadDecodeCalcStoreECG(HINSTANCE, char*, int, int, char*, char*, char*, char*);

8 The range of this number is 1 to 99.

224

© Central University of Technology, Free State

Appendix L

0 nly used abbreviations and terms

Central University of
Technology, Free State

Appendix C

Commonly used abbreviations and terms

Table C-1: Commonly used abbreviations and terms

Abbreviation/Term Description

API Application Program Interface.

BDE Borland Database Engine.

Cart A trolley with an electrocardiograph machine.

CV% Coefficient of variation.

BLL Dynamic Link Library.

ECG Electrocardiogram.

ECG machine Electrocardiograph.

ICU Intensive Care Unit.

LSB Least Significant Byte.

Isb least significant bit.

MSB Most Signifcant Byte.

msb most significant bit.

mV Millivolt.

OLE Object Linking and Embedding.

RS-232 Recommended Standard Number 232, Revision C from the
Engineering Department of the Electronic Industries
association.

RTL Run Time Library.

VL Visual Component Library

QTc Corrected QT time.

225

© Central University of Technology, Free State

o Central University of
Technology, Free State

Bibliography

Books

Abel, P. 1991. IBM PC Assembly Language and Programming. Second Edition.
Englewood Cliffs, N.J. Prentice-Hall International.

Barkakati, N. 1989. The Waite Group's Turbo C© Bible. First Edition.
Indianapolis, Indiana. Howard W. Sams & Company, A Division of

Macmillan Inc.

Brookes, C.H.P., Grouse, P.J., Jeffery, D.R., Lawrence, M.J. 1982. Information
Systems Design. Sydney, Australia. Prentice-Hall of Australia Pty Ltd.

Campbell, J. 1987. C Programmer’s Guide to Serial Communications. First Edition.

Carmel, Indiana. SAMS, A Division of Macmillan Computer Publishing.

Campbell, J. 1984. The RS-232 Solution: How To Use Your Serial Port. Second
Edition. Alameda, California. SYBEX.

Cantu, M. 1997. Mastering™ Delphi™ 3. Second Edition. Alameda, California.
SYBEX.

Cardenas, A.F. 1985. Data Base Management Systems. Second Edition. Newton,

Massachusetts. Allyn and Bacon, Inc.

Date, C.J. 1990. An Introduction to Database Systems. Fifth Edition. Reading,
Massachusetts. Addison-Wesley Publishing Company, Inc.

Dubin, D. 1989. Rapid Interpretation of EKG’s... a programmed course. Fourth
Edition. Tampa, Florida. COVER Publishing Company.

Guyton, A.C. 1966. Textbook of Medical Physiology. Third Edition, illustrated.
Philadelphia and London. W. B. Saunders Company.

Jensen, C., Anderson, L., Fung, J., Lynnworth, A., Ostroff, M., Rudy, M., Vivrette, R.
1996. Delphi in depth. Berkeley, California. Osborne McGraw-Hill.

© Central University of Technology, Free State

o Central University of
Technology, Free State

McFadden, F.R., Hoffer, JA. 1991. Database Management. Third Edition.
Redwood City, California. The Benjamin/Cummings Publishing Company,

Inc.

Meyer, B.J., Meij, H.S., Labuschagne, C.J.J., Theron, I.J., Grey, S.V., Stewart, R.1.,
Pitout, M.J., Van Papendorp, D.H., Brown, J.M.M., Smit, Z.M., Seegers, J.C.,
Meyer, A.C., Haag, M. 1988. Die Fisiologiese Basis van Geneeskunde.

Vierde hersiene uitgawe. Pretoria. HAUM Uitgewery.

Monk, T.S. 1992. Windows™ Programmer’s Guide to Serial Communications. First

Edition. Carmel, Indiana. Sams Publishing.

Morse, S.P. 1982. The 8086 8088 Primer. Second Edition. Hasbrouck Heights, NJ.
Hayden Book Company Inc.

Nelson, M. 1991. The data compression book. Redwood City, California. M & T
Publishing, Inc.

Pacheco, X., Teixeira, S. 1996. Delphi 2 Developer’'s Guide. Second Edition.

Indianapolis, Indiana. Sams Publishing.

Swan, T. 1991. Mastering Turbo Pascal® 6. Fourth Edition. Carmel, Indiana.

Hayden Books.

Tanenbaum, A. S. 1984. Structured Computer Organization. Second Edition.

Englewood Cliffs, N.J. Prentice-Hall, Inc.
Thurrott, P., Brent, G., Bagdazian, R., Tendon, S. 1997. Delphi 3 SuperBible. Corte
Madera, California. Waite Group Press™, A Division of Sams Publishing.

Tompkins, W.J., Webster, J.G., Eds. 1981. Design of Microcomputer-Based Medical

Instrumentation. Englewood Cliffs, NJ : Prentice-Hall.

Publications

Abenstein, J.P., Tompkins, W.J. 1982. 4 New Data-Reduction Algorithm for Real-

Time Electrocardiogram Analysis. IEEE Transactions on Biomedical

Engineering, vol. BME-29, pp.43-48.

I

© Central University of Technology, Free State

o Central University of
Technology, Free State

Axenborg, J.E. 1989. BIOLAB - a computerized on-line system for physiological

measurements in experimental animals. Computer Methods and Programs in

Biomedicine. vol. 28, pp. 75-85.

Berson, A.S., Wojick, J.M., Pipberger, H.V. 1977. Precision Requirements for
Electrocardiographic Measurements Computed Automatically. IEEE

Transactions on Biomedical Engineering, vol. BME-24., no. 4, pp. 382-385.

Farrell, A.P., Bruce, F. 1987. Data Acquisition and Analysis of Pulsatile Signals
Using a Personal Computer: An Application in Cardiovascular Physiology.

Computers in Biology and Medicine, vol. 17, no. 3, pp. 151-159.

Herbst, C.P., Diedericks, J., Uys, N.J., Brummer, J., Lotter, M.G. 1991. Use of a
Personal Computer for Fast Acquisition of Cardiovascular Data Over an

Extended Period. Computers in Biology and Medicine, vol. 21, no. 6,
pp. 407 - 415.

Jalaleddine, S.M.S., Hutchens, C.G., Strattan, R.D., Coberly, W.A. 1990.
Electrocardiogram Data Compression Techniques - A Unified Approach.

IEEE Transactions on Biomedical Engineering, vol. 37, no. 4, pp. 329-340.

Jossinet, J., Leftheriotis, G., Vernier, F., Saumet, J.L. 1990. A4 Computerized
Bioelectrical Cardiac Monitor. Computers in Biology and Medicine, vol. 20,

no. 4, pp. 253-260.

Kennedy, H.L., Ratcliff, J.W. 1987. Ambulatory electrocardiography and computer
technology - practical advantages. Americal Heart Journal, vol. 113, no. 1,

pp. 186-193.

Mustard, R.A., Cosolo, A., Fisher, J., Pike, T., Schouten, B.D., Swanson, H.T. 1990.
PC-Based System for Collection and Analysis of Physiological Data.
Computers in Biology and Medicine, vol. 20, no. 2, pp. 65-74.

Perez, A. 1983. Byte-wise CRC Calculations. 1EEE Micro, June, pp. 40-49.

© Central University of Technology, Free State

o Central University of
Technology, Free State

Piper, 1., Guha, A., Tator, C.H., Genues, w. 198/. A Microcomputer System for On-
Line Collection of Blood Flow and Related Physiological Data. Computers in
Biology and Medicine, vol. 17, no. 4, pp. 279-291.

Tai, S.C. 1991. SLOPE - a real-time electrocardiogram data compressor. Medical

& Biological Engineering & Computing, vol. 29, pp. 175-179.

Tai, S.C. 1992. ECG data compression by corner detection. Medical & Biological

Engineering & Computing, vol. 30, pp. 584-590.

Tai, S.C. 1993. AZTDIS - a two-phase real-time electrocardiogram data compressor.

Journal of Biomedical Engineering, vol. 15, pp. 510-515.

Van Vliet, B.N., West, N.H., Road, 1.D. 1987. Measurement of Signal Period on a
Personal Microcomputer and its Application to the Analysis of Cardiac

Interval and Blood Pressure. Computers in Biology and Medicine, vol. 17,

no. 3, pp. 143-150.

Proceedings

Brodie, D.A., Mann, B. 1982. A low-cost data acquisition and display system for

physiological measures. Proceedings of the Physiological Society. Leeds

meeting. p. 1.

Protocols

Hewlett-Packard Company. 1985. HP DIAGNOSTIC CARDIOLOGY DIGITAL
COMMUNICATIONS OVERVIEW for the 47504 Option A50 and A60, and
47604 Cardiographs, and the 5600C electrocardiogram Management System.
McMinnville, Oregon. Rev. 3.0.

Hardware Manuals

Hewlett-Packard Company. 1983. Hewlett Packard HP47004 Cardiograph
Formatting Guide. Andover, Massachusetts. Part Number 04700-91997.

v

© Central University of Technology, Free State

o Central University of
Technology, Free State

Hewlett-Packard Company. 198s. rir 47404 rageWriter Il Cardiograph Operating
Guide. USA. Part Number 04745-91908.

Hewlett-Packard Company. 1989. Model 47454/4755A Cardiograph Service
Manual. USA. Part Number 04755-91909.

Software Manuals

Borland”. 1997. Object Pascal Language Guide. Borland International, Inc. Scotts

Valley, California.

Product Brochures

Cardio Control BV. [s.a.]. Cardio Perfect. PC Based electrocardiogram. Rijswijk,
The Netherlands.

Hewlett-Packard Company. 1995. HP MI1730B TraceMaster electrocardiogram

System, United States of America.

Marquette electronics. 1992. MAC VU. Milwaukee, Wisconsin.

Request for Comments

Deutsch, L. P., Gaily, J-L. 1996a. ZLIB Compressed Data Format Specification

version 3.3. Network Working Group, Request for Comments: 1950.

ftp://ds.internic.net/rfc/rfc1950.txt.

Deutsch, L. P. 1996b. DEFLATE Compressed Data Format Specification version
1.3. Network Working Group, Request for Comments: 1951.

ftp://ds.internic.net/rfc/rfc1951 .txt.

Deutsch, L. P. 1996c. GZIP File Format Specification version 4.3. Network
Working Group, Request for Comments: 1952.

ftp://ds.internic.net/rfc/rfc1952.txt.

© Central University of Technology, Free State

