
© Central University of Technology, Free State

PC BASED STORAGE AND PROCESSING OF
ELECTROCARDIOGRAM TRACINGS RECORDED WITH A HP4745A

P AGEWRITER II CARDIOGRAPH

JOHAN GEORGE WASSERMAN

Dissertation submitted in fulfilment of the requirements for the Degree

MAGISTER TECHNOLOGIAE:

INFORMATION TECHNOLOGY

in the

Faculty of Management
Department ofInformation Technology

at the

Technikon Free State

Supervisor: Mr DJ Kotze, B.Sc. (Pharm), M.Sc. (IT), HBA
Co-supervisor: Dr P Jordaan, MB.Ch B., ECFMG (USA), M Med Internal Medicine

BLOEMFONTEIN
January 1998

,....--- -
I '. ---' 00'" 'S ~ . ; <..-, , ~ ~ .. '" i

\

' --u' •. ' . , ~"" . .. ··:,..·'Ty
If-it:' t·· ;'l~J ~;..; . ~."

0"= THE
- 5 SEP 2001

TECHNI KON
FREE STATE

© Central University of Technology, Free State

DECLARATION OF INDEPENDENT WORK

I , JOHAN GEORGE WASSERMAN, do hereby declare that this research project submitted
for the degree MAGISTER TECHNOLOGlAE: INFORMATION TECHNOLOGY, is my
own independent work that has not been submitted before to any institution by me or anyone
else as part of any qualification.

\'ovn~ ~
Date

© Central University of Technology, Free State

To my parents, for their faith, love and support. Thank you.

ii

© Central University of Technology, Free State

Without the following persons this research would not have been possible:

• Mr Dana Kotze and Dr Pierre Jordaan, my supervisors, for their dedicated support, interest
and guidance.

• Dr Josef Jacobs, cardiologist and friend, for his help to get this research started as well as
for constant interest and support.

• Steve Weber and Craig Hamer (Hewlett Packard's McMinnville Division of Diagnostic
Cardiology) for actually arranging a copy of Hewlett Packard's digital transmission
protocol for me.

• Robert Vivrette for answering some questions about graphics programming and sending
me information via e-mail.

• Tienie van Schalkwyk for directing me towards Hewlett Packard's McMinnville Division,
as well as providing me with quotations and brochures.

• Dr AP Boezaart and Prof George Murray for their comments during the initial stages of
this research.

• Prof Theo McDonald and Prof Charles Herbst for their valuable input during the initial
stages of this research.

• Leona Ie Roux and Rika Pretorius, for helping with overseas telephone calls, making
arrangements with courier companies and preparing numerous photocopies of articles.

• Piet van der Merwe for his valuable comments.

• Huibre Lombaard, Este Louw and Tanya Rood for their friendly and efficient help to
locate articles and books.

• Dr Pieter van der Wal for locating difficult-to-find articles in a university library in
Amsterdam.

• Johan Pienaar for lending me his soldering iron and workshop and also for carrying PCs to
and from the Department of Cardiology.

• Alex Hundt, for listening to ideas and also encouragement.

• Dr Norma van Niekerk for helping with the proof-reading of Chapter 3, lending me some
of her medical text books as well as constant interest and support.

• Dr Sybrand Pretorius for lending me some of his medical text books.

• The ECG Ladies at the Department of Cardiology, Universitas Hospital, for testing and
using software for digital capturing of ECG data.

• Neliette de la Rey for proof-reading of the dissertation. Thanks for a mammoth task. You
have a very sharp eye and you are extremely thorough.

• Dr Linda Potgieter and Nel iette de la Rey for their input on the statistical analysis of the
data as described in Chapter 6.

• Cornea Venter for helping with some initial statistical analysis of the data in SAS.

• Jacques Venter for listening and answering a lot of questions about Delphi.

• Bernard van Niekerk for lending a hand with the graphics work.

iii

© Central University of Technology, Free State

• My friends 10han, Stoffel , Lukas, Bobby and Victor for bearing with me whilst I was
researching and writing this dissertation.

• The Department of Cardiology, University of the Orange Free State, Universitas Hospital
for the use of their computer network and electrocardiograph equipment whilst developing
and testing the Hearts 32 application.

• The Department of Pharmacology and the F ARMOVS Research Centre for Clinical
Pharmacology and Drug Development, University of the Orange Free State, for the use of
their computer network, laser printers and time off to see my supervisors.

iv

© Central University of Technology, Free State

Summary

Currently the Department of Cardiology, Universitas Hospital, keeps paper copies of ECGs filed

in large filing cabinets. Access to these files is tedious during office hours, and impossible after

hours, when the filing room is locked and no filing personnel are available.

Commercially available systems for computerised storage of ECG data are available from a

number of vendors. Some drawbacks of these systems include:

• Extremely expensive.

• Only a portion of the functions offered by these systems are really needed at the Department
of Cardiology, Universitas Hospital. These systems are thus not economically justifiable by
the Department of Cardiology, Universitas Hospital.

• Some require new/different ECG machines to be used.

• Some require an expensive computer system to be installed.

• Additional space is needed for additional equipment.

• Staff needs to be extensively trained to use the new equipment.

This dissertation describes the development of a dynamic link library (DLL) which is used to

acquire and decode data from a Hewlet Packard HP4745A Cardiograph II Page Writer

electrocardiograph. Furthermore, the database application using the HP4745A DLL can also be

expanded to accept data from other ECG machines. The acquisition and decoding DLL must be

developed to produce a decoded data file conforming to the format described in this dissertation.

By storing these decoded data in a database such as Hearts 32, the data can be reprocessed

(drawing of ECG traces on screen or on printer). Selected leads from different ECGs can also be

plotted on the same screen. Fast access to previous ECGs will help the cardiologists at the

Un iversitas Hospital in Bloemfontein to improve patient care. The cardiac patients of the Free

State community as well as the staff at the Department of Cardiology, Universitas Hospital,

Bloemfontein can benefit from the results of this research.

v

© Central University of Technology, Free State

Opsomming

Huidiglik berg die Departement Kardiologie, Universitas Hospitaal, papierkopiee van EKGs in groot

liasseerkabinette. Toegang na die leers in hierdie kabinette is binne kantoorure moeilik, en na ure

feitlik onmoontlik wanneer die liasseerkantoor gesluit en liasseerpersoneel weg is.

Daar is ' n verskeidenheid kommersieel-beskikbare stelsels vir die rekenaarmatige berging van EKG

data op die mark. Probleme met die gebruik van hierdie stelse ls sluit in:

• Uiters duur.

• Slegs ' n klein gedeelte van die funksionaliteit wat deur hierdie stelsels aangebied word sa l regtig
deur die Departement Kardiologie, Universitas Hospitaal gebruik word. Die aankoop van so ' n
stelsel kan dus nie ekonomies geregverdig word deur die Departement Kardiologie nie.

• Sommige van hierdie stelsels vereis dat nuwe/ander EKG masjiene gebruik moet word.

• Sommige van hierdie stelsels vereis dat duur rekenaartoerusting instal leer moet word.

• Addisionele ruimte word benodig vir addisionele toerusting.

• Werkers moet intensief opgelei word om die nuwe toerusting te kan gebruik.

Hierdie verhandeling beskryf die ontwikkeling van ' n "Dynamic Link Library (DLL)" wat gebrllik

kan word om data van ' n Hewlett Packard HP4745A Page Writer II Cardiograph EKG masjien te

ontvang en dekodeer. Verder word hierdie data in ' n databasis gestoor, vanwaar dit later opgeroep en

grafies vertoon kan word. Interaksie met EKG maak dit moontlik om sekere metings op die

rekenaarskerm te doen. Die databasi s toepass ing (Hearls 32) wat hierdie " DLL" gebrllik kan verder

uitgebrei word om data van ander EKG masj iene te aanvaar. Die uitruil en dekodering wat deur die

" DLL" gedoen word, moet voldoen aan die formaat wat in hierdie verhandeling beskryf is.

Verdere verwerking van die EKG data word moontlik gemaak deurdat hierdie gedekodeerde data in

'n databasis soos Hearts 32 gestoor word. Dit sluit in die stip van EKG grafieke op ' n rekenaarskerm

of drukker. Geselekteerde afleidings van verskeie EKGs kan ook vertoon word sodat mens dit langs

mekaar kan sien. Vinnige toegang na vorige EKGs sal die kardioloe van die Universitas Hospitaal in

Bloemfontein help om pasientsorg te verbeter. Die kardiologie-pasiente van die Vrystaatse

gemeenskap, sowel as die person eel van die Kardiologie Departement, Un iversitas Hospitaal,

Bloemfontein kan baat vind by die resultate van hierdie navorsing.

F
- . ~
:' .. , .. · .. ·TY T H..::. f" , '.' __ I ~ \

. ~ " -Itit: I 'v'f"' a.-

- 5 SEP ZOOl ,...,
vi i i;.\."nl .. i ~ E

FREE STAT
© Central University of Technology, Free State

TaOle 01 contents

Table of contents

TABLE OF CONTENTS ... vii

LIST OF TABLES xiii

LIST OF FIGURES xv

LIST OF CODE SNIPPETS xvii

Chapter 1 .. 1

I. BACKGROUND 2

2. THE RA TIONALE BEHIND A NEW SYSTEM 5

2.i HyPOTHESiS 5

3. PROBLEM DEFINITION ... 6

4. THE LAYOUT OF THIS THESIS ... 8

Chapter :! .. 5)

1. INTRODUCTION .. 9

2. RELATED SYSTEMS CURRENTLY IN USE ... 1 I

3. DIGITAL STORAGE OF ECG DATA .. 13

4. PROBLEM SOLUTION .. 16

5. RESEARCH METHOD 16

6. SUMMARy 17

Chapter 3 18

1. INTRODUCTION .. 18

i.i. BRIEF OYER VIEW OF THE ANATOMY OF THE HEART 20

i.2. POSITION OF THE HEART 22

i.3. A BRIEF DESCRIPTION OF THE PUMP ACTION OF THE HEART 23

2. THE ELECTROCARDIOGRAPH .. 24

2. i. HiSTORy 24
2.2. ELECTRODES 25

2.3.Lu~ 25

2.4. BI-POLAR LiMB LEADS. 26

2.5. EINTHOVEN'S LAW 28

2.6. UNI-POLAR CHEST LEADS (PRECORDIAL LEADS) 29
2.7. UNI-POLAR LiMB LEADS 30
2.8. THE ELECTRICAL AXIS OF THE HEART 30

3. THE ELECTROCARDIOGRAM .. 34

3 .i. P-WAVE.. 35
3.2. PR-SEGMENT 35

vii

© Central University of Technology, Free State

J aDie 01 contents

3 .3. QRS-COMPLEX 36
3.4. J-POINT AND THE ST-SEGMENT 37
3.5. T-WAVE 37
3.6. U-WAVE 37
3.7. TIME INTER V ALS IN THE ECG 38
3.8 . SUMMARY OF ECG COMPONENTS 38
3.9. INTERPRETATION OF THE ECG 39

4. THE HP4745A PAGEWRITER II CARDIOGRAPH 39

4.1. BASIC DESCRIPTION OF OPERATION 40
4.2. CONFIGURATION 40
4.3. SUMMARV OF CONFIGURABLE FUNCTIONS 41

4.4. THE ECG RECORDING MODE AND FORMAT USED FOR THIS STUDy ... 45

5. SUMMARY ... 47

c::11~Jltt!Jr " ••••••••••••.•••••.••••••.•••••••••••.•.•.•.•.•...•.......... ..••.••.•••••••••..•. ,,~

I . INTRODUCTION .. 49

2. DESIGN ISSUES .. 51

2.1. HARDWARE INDEPENDENCE... 51

2.2. CONFIGURABILITY 52

3. ADDRESSING THE ISSUES .. 52

3.1. HARDWARE INDEPENDENCE 52

3.1. 1. Dynamic Link Libraries 54
3.2. CONFIGURABILITY 63

3.3. DATAACQUISITION 67

4. SUMMARy ... 69

Chapter 5 .. 71

I. INTRODUCTION .. 71

2. CHOICE OF DATABASE MANAGEMENT SYSTEM .. 72

2.1. THE PARADOX
OO

DATABASE MANAGEMENT SYSTEM74
2.1.1. ValidilyChecks.. 74
2.1.2. Table lookup 75
2.1.3. Secondary indexes.. 75
2.1.4. Rejerenliallnlegrity 75
2.1.5. Password security.. . . 76
2.1.6. Table language driver.. 76
2.1.7. Paradox® field types.. 76

2.2. THE USE OF BLOB FIELDS 78

3. T ABLE CREATION .. 79

4. LOADING OF THE TEST DATABASE ... 84

5. SUMMARY ... 87

Chapter 6 .. 89

I. INTRODUCTION .. 89

viii

© Central University of Technology, Free State

Tallie or contents

2. DESCRIPTION OF THE DATA USED FOR ANALYS IS .. 89

2.1. INTRODUCTION 89
. 90 2.2. POPULATION

3. HP DIGITAL STORAGE FORMAT 92

4. STORAG E OF DECODED DATA IN INTEL BINARY FORMAT ... 94

5. STORAGE OF DECODED DATA IN ASCII FORMAT ... 96

6. SELECTIVE STORAG E OF DECO DED DATA IN ASCII FORMAT 102

7. RETRIEVAL TIME FOR COMPRESSED DATA .. 107

8. SUMMARy ... 109

Chapter 7 110

I. INTRODUCTION .. 110

2. DESCRIPTION OF THE BROWSER ... I 10

2.1. SELECTING ECGs IN HEARTS 32 110

2.2. VI EWING ECGs IN HEARTS 32 ... I II

2.3. BROWSER SPEEDBUTTONS 112

2.4. WINDOW MANAGEMENT & VIEWING OF MULTIPLE ECGs 11 3
2.5. SUPERIMPOSING OF SELECTED LEADS OF AN ECG 115

3. SUMMARy ... 116

Chapter 8 .. 117

I. INTRODUCTION .. 11 7

2. DEVELOPMENT ENVIRONMENT 117

3. DATA ACQUISITION MODULE .. 118

3. 1. GLOBAL VARIABLES 119
3.2. DATA COMMUNICATIONS 12 1

3.2.1. Function ReadDecodeCalcStoreECG 121
3.2.2. Procedure Get File 122
3.2.3. Function CRC 124
3.2.4. Function ReadLLPBlock. 124
3.2.5. Procedure WriteLLPBlock 125
3.2.6. Function CheckSum ..
3.2. 7. Function GelColint o.

3.2.B. Function CheckCount ...

. 125
. 125

. 126
3.2.9. Procedure CommitDataToMemOlY 127
3.2.10. Procedure ComPort I TriggerAvail 127

3.3. DECOMPRESSION (DECODING) 127

3.3.1. Procedure Decode 12 7
3.3.2. Procedure BinDulllp 130
3.3.3. Function ScanBits 131
3.3.4. Function MakeValue.. 131
3.3.5. Function ScanMem ..

3.4. CALCULATION

. 133
. 133

4. GRAPHIC DISPLA Y MODULE .. 136

ix

© Central University of Technology, Free State

lalJle 01 contents

4.1. THE MULTIPLE DOCUMENT 1NTERFACE.. 137

138 4. 1.1. Function DrawLeads..
4.1.2. Procedure TMainForm.FormCreare.. 140
4.1. 3. Procedure TMainF orm.ShowHint 140
4.1.4. Procedure TMainForm.CreateMDIChild ... 140
4.1.5. Procedure TMaillForm.FileCloseltemClick 140
4.1.6. Procedure TMaiIlForlll.File£titlteIllClick... 141
4.1.7. Procedure TMainForm. WindowCascadeltemClick ..
4.1.8. Procedure TMainForlll. WindowTileHltemClick.
4.1.9. Procedure TMainForm. WindowArrange/lemClick ..
4. /./0. Procedure TMainForm. WindowMinimizeltemClick ..

. 141
. 141
. 141

. 141
4.1.11. Procedure TMainForlll . UpdateMenultellls.. 141
4. 1. /2. Procedure TMainForm.FormDesrroy 142
4.1.13. Procedure TMainForlll.sbZooIllBullonClick 142
4.1.14. Procedure TMainForlll.sbCalliperBullonClick 142
4.1.15. Procedure TMainForlll.sbReji-eshBullonClick 142
4.1.16. Procedure TMainForlll .sbCloseClick.... 142
4.1.17. Procedure TMainForlll.sbGridBullonClick ... 142
4.1.18. Procedure TMainForlll.sbDrawSameLeadsClick 143
4.1.19. Procedure TMainForlll.sbFullSizeBullonClick 143
4.1.20. Procedure TMainForlll .Reji-esh IClick143
4.1.2 1. Procedure TMainForlll.GridIClick.. 143
4.1.22. Procedure TMainForlll.zoollllClick 143
4.1. 23. Procedure TMainF orlll. Window Tile VlteIllClick.. 143
4.1.24. Procedure TMainForlll.sbPrintClick 143
4.1.25. Procedure TMainForlll .StotusBarDbIClick 144
4. 1.26. Procedure TMainF 01'111. Open 1 Click 144
4.1.27. Procedure TMainForlll.sbOpenBullonClick 1«
4.1.28. Procedure TMainForm. Print IClick 1«
4.1.29. Procedure TMainForlll.SuperilllposeIClick 144
4.1.30. Procedure TMainForlll .HelplClick 145

4.2. MANAGING THE CONTENTS OF A CHILD WINDOW... 145

4.2.1. Procedure TMDIChiidForlllClose 145
4.2.2. Procedure TMDIChildRSClick 145
4.2.3. Procedure TMDIChild£titiClick
4.2.4. Procedure TMDIChildAjierDrawValues
4.2.5. Procedure TMDIChiidScanFile..

...... 145
146

. 146
4.2.6. Procedure TMDIChildRSMouseMove 146
4.2.7. Procedure TMDIChiid Fast UneSeries 1 OAjierDrawValues 147
4.2.8. Procedure IMDIChiidForlllCreate 147
4.2.9. Function TMDIChiidFindSubscript 148
4.2.10. Function TMDIChiidFindLeadOjJset 148

4.3. SUPERIM POSING OF SELECTED ECG LEA DS 148

Chapter 9 .. 149

I. INTRODUCTION .. 149

2. HIGHLIGHTS •••••••••••••••••••••••••• ••• •••••••••••.••.••••••••••••••••••••.••••••••••••.••••••••••••••••••••• ••••••••••••••••••••• .••••• .• 150

2. 1. FIRST COMMUNICATIONS (HP4745A TO HP4745A) 150

2.2. CONSTRUCTION OF THE RS-232 COMMUNICATIONS CABLE

2.3. FIRST DIGITAL CAPTURE OF A CONVERSATION BETWEEN TWO HP4745AS ..

.. 150

151

2.4. INITIAL ATTEMPTS AT ANALYSIS OF H IE DIGITAL ECG DATA .. 151

2.5. MANUAL DECOMPRESSION AND CALCULATION OF ECG DATA 152

2.6. INITIAL GRAPHING WITH MS-ExCEL OF THE DECODED DATA 152

2.7. THE FIRST RS-232 COMMUNICATIONS PROGRAM (BORLAND® C ++ 3. I) 153

2.8. CAPTURING DATA FOR STATISTICAL ANALYSIS.. . .. 154

x

© Central University of Technology, Free State

Table 01" contents

2 .9. DEVELOPMENT CROSS-ROADS.................. 154

2.10. THE FIRST RS-232 COMMUNICATIONS PROGRAM (DELPHI'" 1.0)................ 155

2 . 11. WINDOWS" 95 AND THE 32-BIT ENVIRONMENT (DELPHITM 2.0) 155

2.12. FOLLOWING UP ON DECODING AND CALCULATION 156

2 .1 3 . TEECHART AND D ELPHI™3.0.......... 157

2.14. CHOICE OF OPTIMAL STORAGE METHOD 158

2.15. INTERFACING WITH THE W INDOWS" REGISTRY.. 158

2.16. DEVELOPING A DYNAMIC LINK LIBRARy.... 158

2.17. THE LITERATURE RESEARCH ON THE ELECTRICAL ACTIVITY OF THE HEART 159

2.18. THE USE OF MS WORD 159

3. AREAS FOR FUTU RE RESEARCH ... 159

4. FUTURE OF THE SYSTEM 160

4.1. HARDWARE 160

4.2. SOFTWARE I~

5. EXTENSION OF THE SYSTEM 163

6. SUMMARy ... 164

Appendix A ... 165

I. INTRODUCTION .. 166

2. DIGITAL COMMUNICATIONS OVERVIEW ... 166

2.1. CABLE CONFIGURATION .. 167

2.2. CONNECTION ALGORlTHM 169

2.3. DIRECT CONNECT INITIATION 170

2.4. DIRECT CONNECT AUTO ANSWER 170

3. DIGITAL TRANSMISSION - COMMUNICATIONS PROTOCOL 170

4. LOWER LEVEL PROTOCOL .. 172

4.1. DESIGN 172
4.2. LOWER LEVEL PROTOCOL PROCESSES 172
4.3. DATA FORMATS 172
4.4. COMMUNICATIONS STRATEGy 172
4.5. KEY ISSUES 173

4.6. CONTROL CHARACTER SEQUENCES 174

4.7. OPERATING SCENARlO IM
4.7.1. The Count Block.. 176
4.7.2. The Data Block 178
4.7. 3. Line Turnaround. 179
4.7.4. Time-ollis 179
4.7.5. Link Termination 180
4. 7.6. Abnormal Termination 180
4.7.7. Cyclic Redundancy Checking Algorithm.. 181

4.8. LOWER LEVEL TERMINATION CODES 182

5. UPPER LEVEL PROTOCOL .. 183

5.1. DESIGN .. .

5.2 . UPPER LEVEL PROTOCOL PROCESSES

...... .. 183

. ... 183

5.3. SUPPORTED MODES 183

5.4. DATA FORMATS 183

5.5. OVERALL STRATEGy..... IM
5.6. BLOCKING.. 184

xi

© Central University of Technology, Free State

Table of contents

5.7. UL COMMANDS 185

5.8. LOG-ON 187

5.8.1. Abnormal Log-ons• 188
5 .9 . COMMAND INTERPRETER 188

5.9.!' Command interpreter Specifics 189
5 .1 0. ABNORMAL TERMINATIONS.. 189

5.10.!. Block Order 189
5. 10.2. Cart Reaction fa Error Conditions 190
5.10.3. Operator Induced Termination 190

5.11 . COMMAND INTERPRETER SUBSySTEMS 190

5. 12. THE " ECG-IN" SUBSYSTEM

5.12.1. Flow of subsystem "OOJ", "£CC- IN" ...
5. 13. HEADER DATA DESCRIPTION

5. 14 . LEAD DATA DESCRIPTION

5.14.1. Lead Identifiers ..
5.14.2. Position Bits

5.15. COMPRESSION

. 191

. 191
..... 194

.......... 198

. /W
............ 200

.201

5.15.1. Raw Data Manipulation ("Smoothing ") 20 I
5.15.2. Compression Algorithm.. 203
5.15.3. Compression Encoding. 205
5.15.4. The relationship between encoded differences and decimal values 205

5.16. DECOMPRESSION DETAIL................... 209

5. 16.!. Procedure Decode. 209
5.16.2. Function MakeValue 213

5.17. UPPER L EVEL TERMINATION CODES 217

Appendix B ... 218

I. INTRODUCTION .. 218

2. LEAD IDENTIFIERS .. 218

3. FILE STRUCTURE ... 219

4. DLL SPECIFICS AND RULES .. 222

Appendix C ... 225

Bibliography .. 1
BOOKS

PUBLICATIONS

PROCEEDINGS

PROTOCOLS

HARDWARE MANUALS

SOFfW ARE MANUALS

PRODUCT BROCHURES

REQUEST FOR COMM ENTS

xii

. I
.......... 11

. ... IV
. IV

....... IV
V

. V
.. V

© Central University of Technology, Free State

List of" tal>les

List of tables

Chapter 3 18
TABLE 3-1: DIFFERENT PARTS OF THE HEART21

. 26 TABLE 3-2: THE 12 DIFFERENT LEADS OF A STANDARD ECG ..

TABLE 3-3: SUMMARY OFTHE NORMAL TIME SPAN AND AMPLITUDE OF THE DIFFERENT ECG

COMPONENTS. 38

TABLE 3-4 : FORMAT CONFIGURATION OPTIONS41

TABLE 3-5: GLOBAL PARAMETER OPTIONS 43

T ABLE 3-6: TRANSMISSION PARAMETER OPTIONS 44

TABLE 3-7: TIME AND DATE OPTIONS 45

TABLE 3-8 : REpORT FORMAT IN USE AT CARDIOLOGY, UNIVERSITAS HOSPITAL, BLOEMFONTEIN46

TABLE 3-9: ITEMS FOUND ON THE ECG REPORT (AUTOfRS MODE, FORMAT 2) 46

Chapter 4 .. 49
TABLE 4-1: ADVANTAGES OF USING DLLs 55

TABLE 4-2: DISADVANTAGES OF USING DLLS 56

TABLE 4-3: CONTRA-INDICATIONS FOR USE OF IMPLICIT DLL LOADING 60

Chapter 5 71
TABLE 5-1 : ADVANTAGES OF CLIENT/SERVER DATABASE TECHNOLOGy 72
TABLE 5-2: DISADVANTAGES OF CLIENT/SERVER DATABASE TECHNOLOGY 73
TABLE 5-3: PARADOX" VALIDITY CHECKS 74

TABLE 5-4: VALID PARADOX" FIELD TYPES AND SiZES........... 76

Chapter 6 .. 89
TABLE 6-1: D ESCRlPTIVE STATISTICS (HP DIGITAL STORAGE FORMAT) 90

TABLE 6-2: HP DIGITAL STORAGE FORMAT - ADVANTAGES & DISADVANTAGES 93

TABLE 6-3: STORAGE RESULTS FOR FILES STORED IN INTEL BINARY FORMAT 94

TABLE 6-4: INTEL BINARY STORAGE FORMAT - ADVANTAGES & DiSADVANTAGES 95

TABLE 6-5: DESCRlPTIVE STATISTICS (ASCII STORAGE FORMAT).. 96

TABLE 6-6: ASCII STORAGE FORMAT - ADVANTAGES & D ISADVANTAGES 97

TABLE 6-7: DESCRlPTIVE STA TlSTICS (COMPRESSED ASCII STORAGE FORMAT) 100

TABLE 6-8: COMPRESSED ASCII STORAGE FORMAT - ADVANTAGES & DISADVANTAGES 10 I

TABLE 6-9: LEADS PRESENT IN A HP4745A DIGITAL ECG FILE 102

TABLE 6-10 : DESCRIPTIVE STATISTICS (ASCII STORAGE FORMAT, SELECTIVE) 104

TABLE 6-11: DESCRlPTIVE STATISTICS (COMPRESSED ASCII STORAGE FORMAT, SELECTiVE) 105

TABLE 6-12: DESCRIPTIVE STATISTICS (RETRIEVAL TIME FOR COMPRESSED DATA) 108

Chapter 7 .. 110
TABLE 7-1: HEARTS 32 ECG BROWSER SPEEDBUTTONS 11 3
TABLE 7-2: H EARTS 32 ECG BROWSER WINDOW MANAGEMENT COMMANDS 114

TABLE 8-1: GLOBAL VARIABLES USED DURING DATA ACQUISITION 119

Chapter 8 .. 117
TABLE 8-2: OBJECT PASCAL UNITS FOUND IN THE HEARTS 32 ECG BROWSER 137

TABLE 8-3: MDi WINDowTYPES.. 138

Appendix A 165
TABLE A-I: PINOUTS 168

TABLE A-2: CONTROL CHARACTER SEQUENCES 174

TABLE A-3: LOWER LEVEL PROTOCOL TIME-OUTS 179

TABLE A-4: LOIVER LEVEL TERMINATION CODES 182

TABLE A-5: UL COMMAND CODES 185

xiii

© Central University of Technology, Free State

List of tables

TABLE A-6: UPPER LEVEL IDENTIFIER CODES

TABLE A-7: UL TERMINATOR CODES

TABLE A-8: THE LOG-ON IDENTIFIER

TABLE A-9: CI EXCHANGES FOR UNSUPPORTED SUBSYSTEM

TABLE A-I 0: SUPPORTED SUBSYSTEMS

.................................... 186

... 187

. .. 188

. 189

. ... 191

TABLE A- I I: FLOW OF SUBSYSTEM "001 ", "ECG- IN" 192

TABLE A-12: ECG TRANSMISSION EXAMPLE 193

TABLE A- 13: HEADER BLOCK FORMAT 1M
TABLE A- 14: PATIENT RELATED FIELD ENTRlES (HEADER DATA). 195

TABLE A- I S: AGE CODING (LAKS FORMAT)............ 196

TABLE A- 16: ECG RELATED FIELD ENTRIES (HEADER DATA) 196

TABLE A -1 7 : TYPICAL INSTO MAP FOUND IN DATAFILES 198

TABLEA-18: WAVEFORM BLOCK FORMAT 198

TABLE A-19 : LEAD IDENTIFIERS 199

TABLE A -20: LEAD IDENTIFIERS (POSITION BITS).. 200

TABLE A -21: POSITION B IT IDENTIFIERS PER LEAD GROUP AND CHANNEL.. 201

TABLE A-22: SMOOTHING FORMUliE 202

T ABLE A-23: MULTIPLE ZERO ENCODING................... 204

TABLE A -24: COMPRESSION ENCODING205

TABLE A-25: BRACKET CODE 0,206

T ABLE A -26: BRACKET CODE 100, 206

TABLEA-27: BRACKET CODE 101 , 207

TABLE A-28: BRACKET CODE 110, (CONDENSED) 208

TABLE A-29: LEAD IDENTIFIERS (BINARY AND DECODED DATA) 210

TABLE A-30: ASCII CONTROL SEQUENCES USED FOR DATA COMMUNICATION AND DECODING 212

TABLE A-31: COMMONLY USED NUMBERS AND CORRESPONDING BIT PATTERNS 217

TABLE A-32: UPPER LEVEL TERMINATION CODES 217

Appendix B ... 218
TABLE 8-1: LEADS PRESENT IN A BINARY ECG FILE 218

TABLE B-2: STRUCTURE OF A H EARTS 32 ECG DATA FILE 219

TABLE B-3: DATA ELEMENTS IN A HEARTS 32 ECG DATA FILE 220

TABLE 8-4: EXAMPLE OF HEADER (LEAD MAP) DATA IN A HEARTS 32 ECG DATA FILE. 221

TABLE B-5: EXAMPLE OF LEAD DATA IN A HEARTS 32 ECG DATA FILE.......... 222

TABLE B-6: FUNCTION CALL PARAMETERS 223

Appendix C ... 225
TABLE C-I : COMMONLY USED ABBREVIATIONS AND TERMS 225

xiv

© Central University of Technology, Free State

List of figures

List of figures

Chapter 1 1
FIGURE I-I: DATA COLLECTED FROM THE PATIENT AND STORED ON FILE I

Chapter ~ 5)
FIGURE 2-1: T HE OLD CHARACTER BASED USER INTERFACE OF HEARTS 10

FIGURE 2-2: THE NEW GRAPHIC USER INTERFACE OF H EARTS 32 II

Chapter 3 .. 18
FIGURE 3-1: SCHEMATIC REPRESENTATION OF THE HEART (FRONTAL ViEW) 2 1

F IGURE 3-2: THE POSITION OF THE HEART IN THE THORAX 22
FIGURE 3-3: ATRJ ALCONTRACTION 24

FIGURE 3-4: VENTRJCULAR CONTRACTION 24

F IGURE 3-5: EINTHOVEN'S TRJANGLE AND THE LIMB LEADS 27

FIGURE 3-6: EINTHOVEN'S EQUILATERAL TRJ ANGLE 28

FIGURE 3-7 : THE SIX CHEST LEADS 29

FIGURE 3-8: THE HORIZONTAL PLANE... 30

FIGURE 3-9: THE THREE DIMENSIONAL VECTOR CARDIOGRAM AND THE MEAN ELECTRICAL AXIS

OFTHE HEA RT... 3 1

FIGURE 3-10: 3 INTERSECTING LINES OF REFERENCE FOR LEADS I, \I AND \II. 32

FIGURE 3-1 1: 3 INTERSECTING LINES OF REFERENCE FOR LEADS A VR, A VL AND A VF 32

F IGURE 3-12: 6 INTERSECTING LINES OF REFERENCE (I, \I , \II , A V R, A VL AND A VF). 33

FIGURE 3-1 3: DIFFERENT VIEWS OF THE SAME CARDIAC ACTIVITy.. 33

FIGURE 3-14: A CONVENTIONAL ELECTROCARDIOGRAM 34

FIGURE 3-15: ATRIAL CONTRACTION AND THE P-WAVE................ 35

FIGURE 3-16: VENTRICULAR CONTRACTION AND THE QRS COMPLEX ... 36

FIGURE 3- 17 : T-WAVE INDICATES NO CARDIAC RESPONSE... 37

FIGURE 3-18: THE CARDIAC CYCLE............... 38

FIGURE 3-19: HP4745A BLOCK DIAGRAM... 40

FIGURE 3-20: A SAMPLE ECG .. 48

Chapter 4 49
FIGURE 4 -1 : SCHEMATIC REPRESENTATION OF DATA ACqUiSITION .. 49

FIGURE 4-2: Two MAJOR COMPONENTS OF DATA ACQUISITION 50

FIGURE 4-3: HEARTS 32 AND THE DATA ACQUISITION DLL.. 53

FIGURE 4-4: THE INCORRECT APPROACH (INTEGRATED DATA ACqUiSITION)..... 54

FIGURE 4-5: CODE SHARJNG WITH DYNAMIC LINK LIBRARJES....... 54

FIGURE 4-6: STATIC LINKING ... 57

FIGURE 4-7: DYNAMIC LINKING 58

FIGURE 4-8 DATA ACQUISITION MODULE CONFIGURATION DIALOGUE Box 64

FIGURE 4-9: THE WINDOWS@95 REGiSTRy...... 65

FIGURE 4-1 0: AN EXAMPLE OF THE REGISTRY ENTRIES FOR HEARTS 32 67

FIGURE 4-11: PATIENT SELECTION DIALOGUE BOX IN HEARTS 32 68

FIGURE 4-12: ECG DIALOGUE BOX IN HEARTS 32 69

Chapter 5 .. 71
FIGURE 5-1: TABLE CREATION WITH THE BORLAND® DATABASE D ESKTOP 79

FIGURE 5-2: DESIGN OF A DATA CONVERSION PROGRAM USING THE BATCHMoVE COM PONENT 85

Chapter 6 89
FIGURE 6-1: COMPONENTS OF DIGITALLY RECORDED ECG TRACES 90

FIGURE 6-2: FREQUENCY DISTRJBUTION OF FILE SIZE FOR THE HP DIGITAL STORAGE FORMAT 93

FIGURE 6-3: FREQUENCY DISTRIBUTION OF FILE SIZE FOR THE ASCII STORAGE FORMA T.. 98

xv

© Central University of Technology, Free State

List 01 ligures

FIGURE 6-4: AVERAGE STORAGE SPACE PER FORMAT 101

FIGURE 6-5: FREQUENCY DISTRIBUTION OF FILE SIZE FOR THE COMPRESSED ASCII STORAGE

FORMAT...102

FIGURE 6-6: FREQUENCY DISTRIBUTION OF FILE SIZE FOR THE ASCII STORAGE

FORMAT (SELECTIVE)......... 105

FIGURE 6-7: FREQUENCY DISTRIBUTION OF FILE SIZE FOR THE COMPRESSED ASCII STORAGE

FORMAT (SELECTIVE) 106

FIGURE 6-8: AVERAGE STORAGE SPACE PER FORMAT, WITH THE EFFECT OF COMPRESSION 106

Chapter 7 .. 110
FIGURE 7-1: HEARTS 32 ECG PAGE III
FIGURE 7 -2: HEARTS 32 ECG BROWSER INTERFACE 112
FIGURE 7-3: VERTICAL TILING OF MDl CHILD WINDOWS IN THE HEARTS 32 ECG BROWSER 114

FIGURE 7-4 : HORIZONTAL T ILING OF MDl CHILD WINDOWS IN THE HEARTS 32 ECG BROWSER 115

FIGURE 7-5: SUPERIMPOSING OF SELECTED LEADS OF AN ECG IN THE HEARTS 32 ECG BROWSER ... 116

Chapter 8 .. 117
FIGURE 8-1: GRAPHIC OVERVIEW OF THE DATA ACQUISITION PROCESS 119

FIGURE 8-2: GRAPHIC OVERVIEW OF THE HEARTS 32 ECG BROWSER .. 136

Appendix A ... 165
FIGURE A-I : HP04760-64 130 CABLE 168

FIGUREA-2: PROTOCOL LAYERS ... 171

xvi

© Central University of Technology, Free State

List of code snippets

List of code snippets

~1t~J1t~ .. " .. ,,~
CODE SNIPPET 4-1: IMPLICIT LOADING OF A PROCEDURE/FUNCTION FROM A DLL 59

CODE SNIPPET 4-2: DECLARING A GLOBAL PROCEDURE POINTER TYPE 61

CODE SNIPPET 4-3: VARIABLE DECLARATION FOR EXPLlCITDLL LOADING 61

CODE SNIPPET 4-4: EXPLICIT LOADING OF A DLL 61

CODE SNIPPET 4-5: LINKING WITH THE DLLS EXPORTED FUNCTIONS/PROCEDURES 62

CODE SNIPPET 4-6: INVOKING A FUNCTION VIA A POINTER............ 62

CODE SNIPPET 4-7: FREEING THE LIBRARY HANDLE 63

CODE SNIPPET 4-8: IMPORTING BY ORDINAL 63

CODE SNIPPET 4-9: IMPORTING BY NAME 63

CODE SNIPPET 4-10: COMPLETE REGISTRY KEY USED IN THE HEARTS 32 APPLICATION 66

Chapter 5 .. 71
CODE SNIPPET 5-1: T ABLE CREATION VIA THE TTABLE.CREATETABLE METHOD.. 81

CODE SNIPPET 5-2: TABLE CREATION USING PROCEDURES FROM THE SCANNER CODE 82

CODE SNIPPET 5-3: GLOBAL VARIABLES USED FOR BDE API CALLS TO CREATE TABLES AT RUNTIME. 83

CODE SNIPPET 5-4: THE DEFFIELD PROCEDURE FOUND IN THE SCANNER CODE 83

CODE SNIPPET 5-5: THE DEFTABLE PROCEDURE FOUND IN TI-IE SCANNER CODE 83

CODE SNIPPET 5-6: PSEUDO CODE FOR TABLE CONVERSION ... 84

CODE SNIPPET 5-7: PROPERTIES OF A FORM FOR DATA CONVERSION WITH BATCHMOVE.. 86

Chapter 8 .. 117
CODE SNIPPET 8-1: OUTLINE OF THE READDECODECALCSTOREECG FUNCTION 122

CODE SNIPPET 8-2: PSEUDO CODE FOR GETFILE PROCEDURE 123

CODE SNIPPET 8-3: THE BOOLEAN FREE UNION 128

CODE SNIPPET 8-4: A RECORD WITH TWO BYTE FIELDS ... 128

CODE SNIPPET 8-5: TYPE DECLARATIONS FOR DYNAMIC ARRAYS USED IN DECODING 130

CODE SNIPPET 8-6: POINTER TO DYNAMIC ARRAY. 130

CODE SNIPPET 8-7: DYNAMIC MEMORY ALLOCATION .. 130

CODE SNIPPET 8-8: USING THE DYNAMICALLY ALLOCATED ARRAy 130

CODE SNIPPET 8-9: RELEASING THE DYNAMICALLY ALLOCATED ARRAY... 130

CODE SNIPPET 8-10: FINAL UPDATE OF LEAD MAP INFORMATION........................... 135

CODE SNIPPET 8-11: DYNAMIC CREATION OF THE FRAME WINDOW .. 138

CODE SNIPPET 8-12: RECORD USED FOR PARAMETER PASSING BETWEEN HEARTS 32 AND THE

HEARTS 32 ECG BROWSER 139

CODE SNIPPET 8-13: ENABLING/DISABLING MENU ITEMS AND SPEED BUTTONS 141

Appendix B ... 218
CODE SNIPPET B-1: OBIECT PASCAL FUNCTION DECLARATION 223

CODE SNIPPET B-2: C/C++ FUNCTION DECLARA nON 224

CODE SNIPPET B-3: ALTERNATIVE C/C++ FUNCTION DECLARATION 224

xvii

© Central University of Technology, Free State

Chapter 1 Introduction

Chapter 1

Introduction

The Department of Cardiology, University of the Free State, Universitas Hospital in

Bloemfontein treats patients with cardiac problems. Due to the increase in the

incidence of cardiac disease, the Department of Cardiology has experienced

tremendous growth over the past few years. Roughly 13 ,000 patients are seen per

annum.

Patient Clinical Information Filing

'~~ (Examination, Test, Procedure) Cabinet Demographic Information
is Admission Paper L

examined Lipids copies

[~] ~ Ultrasound *
X-Ray' ,.r¥--, 1=
ECG ... '-'i~

~ Stress ECG Hearts
Thoracic Surgery Database IT Database = Pace Maker Implementation results
Pace Maker Testing C Patient Report (prepared by = = = cardiologist) = =

• only some information stored on paper I Hearts. Rest stored on fi lm I CD-ROM.

Figure 1 -1: Data collected from the patiell/alld Sloretl all file

As can be seen from Figure 1-1, data are collected from the patient as a result of

examinations, tests and/or procedures performed. These results were traditionally
1 recorded on paper.

In order to make information useful for the cardiologists, it has to be managed.

During November 1993, the Department of Cardiology actively started to work

towards computerised storage of patient data. The application developed was called

the Hearts database 2

1 Information such as the patient report (written by the cardiologist) was prepared using a word processor. These
word processor files were not tightly integrated with the rest of the patient information: a printed copy of the
report was placed on file. Some of the results arc stored on other media, such as X-Ray film (X-Ray
examination), magnetic tape (Holter ECG), photographic film and lately CD-ROM (Coronary Angiography).

2 Hearts was developed in Clipper 5.2 and is a MS-DOS® based application. It fuBy supports multi-user access
on a Nove!l® network.

1

;;m

© Central University of Technology, Free State

Chapter I Introduction

Goals for Hearts included:

• Better organisation of information.

• Fast and easy retrieval of information.

• Increased usefulness of information (for example, to easily create periodic
statistics) .

• Increased security (regular backups performed, only authorised personnel have
access to database).

During the development of the first version of Hearts it became clear that it would not

be possible to include all data in a digital form in the Hearts database (Figure 2-1 on

page 10). It was also apparent that the capabilities of the Hearts database would grow

(and change) with the needs of the Department of Cardiology.

The electrocardiogram is a report of one of the examinations routinely performed.

Roughly 20,000 electrocardiogram reports are produced per annum. Up to the time of

writing this thesis the Hearts database did not have the capability to capture and store

electrocardiogram data (Figure 2-2 on page II). Since electrocardiograms are

routinely produced (thus largely contrihuting to the clinical information gathered from

a patient) it makes good sense to have these data digitally available.

1. Background

The Department of Cardiology at the Universitas Hospital in Bloemfontein currently

(December 1997) has six HP4745A Page Writer II Cardiographs in operation. (A total

of 10 electrocardiographs are being used; three are HP4700A Cardiographs and one is

a Marquette MAC VU electrocardiograph3
) Each of the HP4745A Cardiographs is

equipped with a RS-232 communications port. These ports have, however, lip to the

present, not been used at all.

3 The HP4700A does not inherently have the capability to transmit ECG data. According to the Hewlett-Packard
Company (Hewlett-Packard Company, 1983 : 3) a specialised ECG transmitter module is needed. Such
transmitter modules have not been purchased for the three HP4700A ECG machines mentioned. Since this
study is aimed at the HP4745A Cardiograph II PageWriter electrocardiograph, any other ECG machines such as
the HP4700A and Marquette MAC VU are excluded from this research.

2

© Central University of Technology, Free State

Chapter 1 Introduction

The reasons for this are:

• The cost of a centralised management software package offered by the Hewlett­

Packard Company is too excessive (",RSOO,OOO.OO) to be economically viable.

• Additional expenses would have to be incurred to house such expensive equipment.

New cabling would have to be installed in the hospital. Additional staff would be

needed to operate the system. Expensive training would be needed to enable the

staff to handle the system efficiently.

The MAC VU is used in the Coronary Intensive Care Unit to monitor acute changes

in patient ECGs.4 ECGs recorded with the MAC VU in the Intensive Care Unit (ICU)

do not reflect long term changes (due to the condition of the patients in the ICU). It is

planned to place one of the six HP4745A Cardiographs in the ICU to allow the

recording of the patient's ECG at admission to the ICU. The HP4700A

electrocardiographs are extremely old and are currently being scrapped from normal

day to day use at the Department of Cardiology, Universitas Hospital. These

machines will be used in other wards where ad hoc ECGs are recorded (not by the

Department of Cardiology, Universitas Hospital) .

The envisaged system (that is, a version of the Hearts application, capable of digital

capturing and storing of electrocardiogram data), will be economically justifiable,

since Hewlett Packard made the HP Diagnostic Cardiology Digital Transmission

Protocol (see Appendix A) available under an agreement which does not permit the

use of the protocol in a commercial product. This means that the data acquisition

module developed for the Department of Cardiology (as a result of this research) will

be free of charge.

Staff will need to be trained in using the new Hearts software. The learning curve,

however, is expected to be less steep than with a commercial product, since the staff

4 The MAC VU can be used to continuously record rhythm strips in real time for as long as nceded, since the
machine uses continuous paper. The HP4745A does not have this functionality; paper needs to be loaded
manually.

3

© Central University of Technology, Free State

Chapter I Introduction

already have experience with the existing Hearts software. Since the development of

Hearts was a team effort, staff members also feel personally involved with the system.

The Department of Cardiology currently utilises a file server runnmg Novell®

Netware® 4.1 (50 user license). The Hearts database resides on this Novell®

Netware® 4.1 file server.

The need for digital storage of documents (ECG reports) was greatly increased by

three facts:

J. The Department of Cardiology consults approximately 13,000 patients per annum.

They produce roughly 20,000 electrocardiogram reports per year. Access to a

paper-based file system is highly inefficient, due to misfiling that leads to lost

documents. Since cardiologists have to request the retrieval of a document in

advance (and rely on a filing clerk for the retrieval), access to these patient files are

too tedious to be practical. Another danger is that files can be lost or misplaced

once they have been retrieved from the filing system. There is further no guarantee

that some documents will not be accidentally removed from a patient file!

2. The filing personnel only work normal office hours. It is impossible for a

cardiologist to retrieve a patient's file after hours or during an emergency.

3. Storage space for the large number of filing cabinets is no longer available. The

weight of the existing cabinets poses a threat to the safety of the building.

Since the inception of the Hearts database system, work flow has improved

tremendously and documents are retrieved with greater ease. The fact that

electrocardiogram information could, up to now, not be digitally stored shows a clear

place for improvement in the current system.

4

© Central University of Technology, Free State

Chapter j Introduction

2. The rationale behind a new system
Excellent systems for digital storage and manipulation of electrocardiogram data are

commercially available (as di scussed in Chapter 2). The biggest problem with these

systems is their economic viability. Although the Hewlett Packard and Marquette

Electrocardiogram Management Systems are the Rolls Royce of thi s type of system,

the purchase price of such a system is simply too high for the Department of

Cardiology, Universitas Hospital, Bloemfontein.

The Cardio Perfect system is compact and very easy to use and should ideally be

within the financial reach of every general practitioner. However, due to the relatively

high price involved, one cannot dispose of all existing electrocardiographs to have

them replaced by the Cardio Perfect equipment. Although some of the existing

Hewlett Packard electrocardiographs 111 use are quite old (about 10 years) the

machines still function well and cannot be di scarded at will.s

2.1 Hypothesis
The Department of Cardiology has a need for digital storage of electrocardiogram

tracings for easy retrieval and duplication. Having the electrocardiogram tracings

digitally available will also facilitate the superimposing (and easy comparison) of

selected leads for a specific electrocardiogram. Such recognition of trends will

improve patient care. (Some patients have cardiac ECG abnormalities due to previous

cardiac disease. It is of utmost importance that the cardiologist is aware of the fact

that these abnormalities are in actual fact "normal" for the specific patient. Having

the ECG data available in a central repository will provide a means to access these

historic ECG data in a timely manner.)

In the light of this, it makes sense to capture electrocardiogram tracings and store

them in the existing Hearts database used by the Department of Cardiology. If an

5 It is important to point out at this stage that the HP4745A Cardiograph II PageWriter electrocardiograph does
not support dates past 1999 (only the year digits are used, millennium and century digits are omitted, resulting
in years wi th only two digits).

5

© Central University of Technology, Free State

Chapter 1 Introduction

application could be developed (at low or no cost) to suit the needs of the Department,

a large amount of money could be saved.

3. Problem definition

This study forms part of the work currently being undertaken at the Department of

Cardiology, Universitas Hospital in Bloemfontein to computerise their patient records.

A new version of the Hearls database, which will be a 32-bit Windows® application,

is planned6

The addition of the electrocardiogram data to this database would be an additional

advantage as a large number of patients is seen daily by the Department of

Cardiology. The digital storage of as much patient information as possible would lead

to less dependence on clumsy paper-based filing systems and would allow access

from any personal computer connected to the local area network.

This study will lead to the development of the following applications:

• A data acquisition and decoding module for the HP4745A Page Writer II

Cardiograph.

• A method for database storage and retrieval of these digitally captured

electrocardiogram tracings.

• A set of specifications to allow other developers, creating data acquisition and

decoding modules for specific electrocardiograph equipment, to create data sets

compatible for inclusion in the Hearts 32 database.

• A graphic browser used for interactive examination of stored electrocardiograms.

Interactive tools will include callipers for quick and easy determination of voltation

6 This version of Hearts will be referred to as Hearts 32 for the remainder of this thesis.

6

© Central University of Technology, Free State

Chapter I Introduction

and lapsed time, as well as a zoom tool for more detailed insight into selected

tracings. The browser will allow:

• Simultaneous views of different electrocardiograms via the implementation of

a Multiple Document Interface (MDI)7

• Superimposing of selected leads of an electrocardiogram, on screen, allowing

the cardiologist to quickly and easily identifY trends when examining selected

leads of an electrocardiogram. Monitoring of electrocardiogram changes over

time, as therapy is adjusted , is an important aspect in improving patient care.

• Printing of the stored electrocardiogram tracing.

Specialised modules such as the data acquisition and graphic modules will be

implemented as Dynamic Link Libraries (DLLs), thus protecting the host application

(Hearts 32) from the complexities of data acquisition and decoding 8 This approach

will ensure that Hearts 32 is open ended; by the addition of a (specialised) data

acquisition module (delivering a data set conforming to the aforementioned

specifications), data from other ECG machines can be stored in the Hearts 32

database.

The successful implementation of the proposed Hearts 32 database will allow

immediate access to previously recorded electrocardiograms. In an emergency, this is

very important, as changes in the electrocardiogram tracing have important

therapeutic implications for the patient.

This study will not necessarily produce a brand new product in terms of digital

capturing, storage and manipulation of the electrocardiogram, but it should provide an

economic and cost effective solution to some of the existing information technology

7 Examples of such systems include Microsoft® WinWord and Microsoft® Excel , where the user is allowed to
have morc than onc word processor document or spreadsheet open simultaneously, each in a different window,
and then has the ability to switch between different windows.

8 The data acquisition and decoding process differs between manufacturers and models of ECG machines, and are
proprietary in nature.

7

© Central University of Technology, Free State

Chapter I Introduction

problems at the Department of Cardiology, Universitas Hospital in Bloemfontein, thus

improving patient care to the benefit of the Free State community.

4. The layout of this thesis

Chapter 2 defines the problem in more detail. A solution to the problem is then

outlined. Chapter 3 formally introduces the electrocardiogram. A basic

understanding of the anatomy of the heart as well as the different components of the

electrocardiogram are discussed. The data acquisition process will be discussed in

Chapter 4, while some basic database concepts will be discussed in Chapter 5. The

reasons for choosing a specific storage method will be discussed in Chapter 6. A high

level discussion of the software developed for graphic reconstruction of an ECG can

be found in Chapter 7. Chapter 8 constitutes a technical discussion of the program

code developed for data acquisition and graphic reconstruction of an ECG. The

results of this research conclude in Chapter 9.

Appendix A serves as a technical reference where the portion of the Hew/ett Packard

Diagnu'tic Cardiulugy Digital Transmission Protocol relevant to this study, is

di scussed. Appendix B is aimed at developers who need to create an ECG data file in

a Hearls 32 compatible format, since the ECG data storage format used in Hearts 32

is described in detail here. A li st of terms and abbreviations used throughout this

thesis can be found in Appendix C.

8

© Central University of Technology, Free State

Chapter 2 Problem Definition

Chapter 2

Problem Definition

1. Introduction

The Department of Cardiology, Universitas Hospital, Bloemfontein had a need for

digital storage of ECG data (as outlined in Chapter I). The current Hearls database

did not support this capability.l

Hearts had, in fact, a number of drawbacks that had to be addressed:

• The user interface was still character based (Figure 2-1), and did not keep up with

more modern user interface options such as the graphical user interface (GUI)

found in Windows® (Figure 2-2).

• The language of the user interface was Afrikaans (Figure 2-1). Since not all of the

doctors at the Department of Cardiology, Universitas Hospital, Bloemfontein can

read Afrikaans, this is a serious problem.

• Hearts could not store the digital ECG data (Figure 2-1).

• Even if the digital ECG data could be stored, Hearts could not display these data

graphically (Figure 2-1).

• A weak connection between MS Word 5.0 for DOS® and Hearts existed.

Basically, documents were named with the computer number used to identify the

patient in Hearts. A myriad of small document files cluttered the hard disk of the

file server.

In order to solve the problems and satisfy the needs as identified above, a new version

of Hearts needed to be developed. This version of Hearts would:

.THIS BeOK ISd
I This is not 100% true . An augmented version of Hearts was developed (s7pJrJ ~ thn F<f~i~~. pJJ~' di ital

capture and storage of ECG data in DOS® files on the Novell® Net\Var~ 4.1 file . v. r. ht nhiti'teftsYn for
th is step was to start the acquisition of ECG files, and al so to have d

t
ava ilablet.;1rsta iJi iEanalysis. The

result of such analysis would help to determine the optimal storage for at for the- data s.'eGRn t.p85!atabase.

P::CHNIKON
9

© Central University of Technology, Free State

Chapter 2 Problem Definition

• Have a graphical user interface (GUI) (Figure 2-2).

• Interact with users in English (Figure 2-2).

• Be capable of storing binary data streams of an arbitrary length. (Used for storing

ECG data as well as word processor documents.)

• Allow a connection to MS Word for Windows® via Object Linking and

Embedding (OLE).

+-------------- -- --- - -- ------------------+
: Hearts Datum : Son 28 Des 1997 Tyd : 23 : 34 : 17 :
: Weer . 2 . 01 Ve rander pasi~nt/opname/prosedure detail . <Esc> om te stop .
:--------------------------------- ---:

Rekenaar Nr [P400 Hospitaal Nr [401207]
Ras [S1 (Blank /Swart/Kleu r l ing/l ndier/Chinees / Taiwane es/Ander)
Van [PAL! 1 Naam (LN 1
Ti tel [MR Geslag [M] (M/V)
Famili~le Hipe r c ho l esterolomie Status [

Woonadres Posadres

ReiH 1
2
3

Poskode

[1650
[BOTSHABELO
(BFN

Telefoon Tuis

Mediese fonds

J
J
J

[93011 ""

I'

Re~l 1 [1650
2 [BOTSHABELO
3 [BFN

Poskode

Telefoon Wer k

M/F Nr

+----------- -- - -+
:A . Lip iede
: B . Opnames
:C . pasaangee r s :
: D . Sonars
: E. Toets Pas aan :
: F . Toraks Chi r . .
:G . Trapmeul EKG:
: H. X- Strale
:X . Klaar
+---------------+

+- --Caps-Num---- -------------------- - ------------------: Druk Fl vir Hulp : --- -+

Figure 2-/: The old character btlset/user illterface of Hearts

In all fairness, it must be mentioned at this point that the character based interface of

Hearts is not quite as appalling in real life as it is portrayed in Figure 2-1 above. The

character based interface allows colour display, as well as inverse and blinking

display. Line and box drawing capabilities also exist. The translation between the

extended ASCII characters in DOS® and Windows® does not seem to work 100%,

hence the poor replica in Figure 2-1.

10

© Central University of Technology, Free State

Chapter 2 Problem Definition

tlHEARTS !I~E3
Eile ~eBrch Setyp t!elp

2acemaker I Te~tPacemoke r I CordiothorocicSurgery 1 X-8oy

Eolien! I 6dmission I Lipids I ECQ. I Stress ECG I EchQ.cordiography

Qom uter Number Iitle Nomel!nirials Surname

P400 [MR ILN IPALI

HQs itol Number Population Group -Sex
r Femole I 401107 IBIOCk iJ r. Male

Postal Address Residential Address

11650

IBOTSHABELO IBOTSHABELO

IBFN IBFN

19301 19301

Telephone Home Telephone ~ork

1 1

Medical Aid FH Genotype

Medicol Aid Number

8ro'WSing

Figure 2-2: Tile I/ew grapllic user il/terface of Hearts 32

Since this research specifically addresses the issue of digital acquisition of ECG data

for the HP4745A, (together with digital storage of ECG data and the graphic

reconstruction of these data) the main focus of the remainder of the thesis will be this

topic.

2. Related systems currently in use

Cardio Control BV (Cardio Control BV) has developed a product called

Cardio Perfect. This innovative system uses a small, portable electrocardiograph that

can directly interface with any IBM compatible PC equipped with a serial port. It is

an extremely user friendly system, allowing for real-time display (of the

electrocardiogram being recorded) on screen, as well as browsing, storing,

comparison, printing and analysis of the electrocardiogram tracing. The high price of

thermal paper versus normal paper is discussed in the introduction of Chapter 3.

11

© Central University of Technology, Free State

Chapter 2 Problem Definition

Since reports can be printed using laser, ink jet or dot matrix printers, the price per

printed electrocardiogram tracing is cheaper than with the thermal transfer process.

Electrocardiogram data files are small; a minimal electrocardiogram (that is a

recording of only three leads for 2.5 seconds) will need only 10 KB, an important

issue for transmitting data by modem. (Cardio Control BV). The Cardio Perfect kit

includes the hardware (electrocardiograph and leads) as well as the software needed

for viewing ECGs on a Pc. Since the software only works with the Cardio Perfect

electrocardiograph, this option becomes less viable for a user who already has a

number of existing, non-Cardio Perfect cardiographs in use. In order to use the

Cardio Perfect system, the existing electrocardiograph machines need to be replaced.

Marquette Electronics (Marquette Electronics, 1992) offers the MAC VU

(Microprocessor Augmented Cardiograph, Virtually Unmatched), a system combining

an electrocardiograph and a computer, mounted on a portable trolley. The high

quality Cathode Ray Tube (CRT) unit allows for superior electrocardiogram wave

form display, allowing the cardiologist to view the electrocardiogram in real time, as

it is recorded. The CRT unit is also used to display instructions and on-line help

information to the user. The printer provides electrocardiogram reports that are hard

copies of the information displayed on the CRT, at a very high resolution of 1000

lines per inch. These hard copies are identified by bar-codes, for easy retrieval when

using Marquette's MUSE® Network System. Roughly 200 electrocardiogram tracings

can be stored on a normal 1.44 MB stiffy disk which can be read by an IBM

compatible computer. (The data contained in the files do not make sense on their own

- one would need specialised software to interpret them.) The system has extensive

communication capabilities, allowing transmission of ECGs to and from other

Marquette electrocardiographs and electrocardiogram management systems via the

built-in RS-232 communications port. Computer analysis of electrocardiograms is

performed based on a still-growing database of over 5 million clinically correlated

electrocardiograms (Marquette electronics, 1992).

The HP4745A cardiograph has the capability to store ECGs in main memory and

allows transmission to other HP cardiographs as well as to HP's electrocardiogram

12

© Central University of Technology, Free State

Chapter 2 Problem Definition

Management System via a serial interface (RS-232 port). (Hewlett-Packard Company,

1988 : 5.1 - 5.14, 6.1 - 6.19). The electrocardiogram Management System aims to

automate filing, retrieval and transcription of HP Page Writer electrocardiogram

tracings, which are easily identifiable using bar-codes. The system provides for high

speed on-line storage of electrocardiogram tracings which allows rapid retrieval and

computer analysis for comparIson of analysis statements with prevIOus

electrocardiograms. Electrocardiogram morphology changes can also be viewed

easily with superimposed electrocardiogram tracings. Electrocardiogram tracings are

printed onto normal printer paper that does not fade (laser printouts), whilst costing

less per page than a page printed with the thermal transfer method. The system is

already integrated with Novell® Netware®, making it easy to connect with a large

installed base of Local Area Networks. Unattended backup to Digital Audio Tape is

an integral part of the system, enhancing data integrity and relieving the user of the

burden of daily backup duties. (Hewlett-Packard Company, 1995).

These solutions are not economically viable, as already discussed in section 2, page 5

in Chapter I.

3. Digital Storage of ECG Data

The electrocardiogram is an instrument that receives its input in the fonn of voltages.

This means that the instrument is by its very nature an analogue device. Since we are

interested in digital capture of the ECG data, this poses an interesting problem: how

will the analogue information be converted into digital information? Most modern

ECG machines perform this conversion internally.

According to Kennedy (Kennedy, Ratcliff, 1987 : 186), ambulatory (Holter)

electrocardiograph instrumentation and computer technology coexisted for more than

two decades before integration allowed practical advantages in both clinical practice

and clinical research. (Ambulatory electrocardiography is performed when a special

electrocardiogram recording device is connected to a patient for an extended period of

time, typically 24 hours.)

13

© Central University of Technology, Free State

Chapter 2 Problem Definition

"A 24-hour ambulatory electrocardiogram examination usually results in the

identification and classification of more than 100,000 cardiac cycles. Because of

diverse changes and forms of cardiac rhythm occurring throughout a 24-hour diurnal

cycle, computer data formatting and presentation techniques greatly aid and facilitate

the clinical understanding of the ambulatory electrocardiographic data in a practical

sense." (Kennedy, Ratcliff, 1987 : 187). The sheer volume of such a data set makes it

impractical to evaluate by hand!

Other important issues include storage and retrieval of ambulatory electrocardiogram

data, prompt access to patient records, duplication of reports, computer aided analysis

and comparison of previous ambulatory electrocardiogram records. These issues do

not only apply to ambulatory electrocardiogram tracings, but also to normal, resting

electrocardiogram tracings.

In an article by Mustard (Mustard et ai, 1990 : 65) it is mentioned that most

researchers measure physiological variables using analogue devices, and record results

manually. These results are then fed into computers for storage and analysis. One

would be able to enhance the quality of the data and speed up work flow by directly

storing the data on a computer system.

Quite a few researchers experimented with analogue to digital conversion of signals

obtained from various physiological measurements: Axenborg (Axenborg, 1989 : 75 -

85), Brodie (Brodie, Mann, 1982), Farrell (Farrell, 1987: 151 - 159), Herbst (Herbst

et ai, 1991 : 407 - 415), Jossinet (Jossinet et ai, 1990 : 253 - 260), Mustard (Mustard

el ai, 1990 : 65 - 74), Piper (Piper el ai, 1987 : 279 - 291), Van Vliet (Van Vliet, West,

Road, 1987 : 143 - 150). Although not all these authors investigated the capturing of

electrocardiogram data, it is interesting to take note of their work, as this aids m

understanding the concept of converting and capturing results.

The amount of ECG data that is recorded tends to become quite large very quickly, as

a sample rate of between 100 Hz and 1000 Hz is used. Due to the finite size of the

memory found on electrocardiographs, data cannot be stored as is. Different

14

© Central University of Technology, Free State

Chapter 2 Problem Definition

compression schemes have been developed to overcome this problem. The schemes

used are lossy compression schemes (in contrast with lossless compression schemes).

With lossy compression, compressed data cannot be reconstructed to exactly match

the input data. Normally, this type of compression is used for audio and video signals,

where it does not matter too much if slight distortion occurs. The human organs of

sense can normally not detect these changes. With information like the

electrocardiogram, however, care has to be taken that a clinically acceptable level of

distortion is maintained. It would serve no purpose to have the data reduced by 80%,

but to have the compression resulting in inaccurate presentation and interpretation.

It is therefore necessary to use a lossy compression technique which provides a good

compression ratio whilst maintaining a clinically acceptable level of distortion.

Examples of such lossy compression schemes used for compressing electrocardiogram

tracings include CORTES (Coordinate-Reduction-Time-Encoding System algorithm)

(Abenstein, Tompkins, 1982 : 46 - 47, lalaleddine el ai, 1990 : 334), TP (Turning

Point algorithm) (Abenstein, Tompkins, 1982 : 44, lalaleddine el ai, 1990 : 334),

AZTEC (Amplitude-Zone-Time-Epoch-Coding algorithm) (Abenstein, Tompkins,

1982 : 44 - 46, lalaleddine et ai, 1990 : 333 - 334), SLOPE (Tai , 1991 176 - 179),

CORNER (Tai, 1992 : 585 - 589) and AZTDlS (Tai, 1993 : 511 - 515).

Hewlett Packard uses their own data smoothing routines and data compression scheme

in the HP4745A. If the data of certain leads are smoothed before compression, the

compression process yields better results. These algorithms are documented in HP's

digital communications protocol. (Hewlett-Packard Company, 1985).

Another factor which will influence the sIze of the data set (the captured

electrocardiogram tracing) is the number of bits that is used to represent each value in

the tracing. There is a direct relationship between the number of bits and the size of

the data set. Berson (Berson, Wojick, Pipberger, 1977 : 382) found that although the

American Heart Association suggested a precision level of 9 bits, 8-bit data are

sufficient for representing electrocardiogram data. This has important implications for

storage, digital data transmission and use of microcomputers with a typical word size

15

© Central University of Technology, Free State

Chapter 2 Problem Definition

of 8 or 16 bits (Berson, Wojick, Pip berger, 1977 : 382), as a smaller number of bits

will result in smaller data sets and faster transmission over telephone lines and

computer networks.

4. Problem solution

To solve the problem as outlined In the hypothesis in Chapter I (page 5), the

following sub-problems will need to be solved successfully:

• Extracting stored electrocardiogram tracings from a HP4745A Page Writer 11

Cardiograph.

• Selecting the optimal storage method available for storage of electrocardiogram

tracings in a database on a Personal Computer.

• Successful integration of the digital electrocardiogram tracing information with the

Hearts database in use at the Department of Cardiology, Universitas Hospital,

Bloemfontein.

• Recreating a complete electrocardiogram tracing from a PC-based database on a

computer screen or on paper. This inc1uut:s superimposing of electrocardiograms

for recognition of trends as therapy progresses.

• Creating callipers to allow easy measurement of the different components of an

electrocardiogram tracing on screen.

• Implementing all of the above in a layered manner when developing the software

product, to protect the software product from changes introduced when new

electrocardiograph equipment is used.

5. Research method

The research was to be carried out in five phases:

I . Obtain technical documentation on the HP4745A Page Writer 11 Cardiograph from

the Hewlett-Packard Company.

2. Develop an interface between the HP4745A Page Writer II Cardiograph and a

Personal Computer in order to establish communication for data transfer.

16

© Central University of Technology, Free State

Chapter 2 Problem Definition

3. Select the most optimal storage method available for storage of electrocardiogram

tracings from a HP4745A Page Writer II Cardiograph on the hard disk ofa Personal

Computer.

4. Develop a graphical interface to reconstruct the saved electrocardiogram on a

computer screen as well as on any Windows® -compatible printer.

5. Integrate the electrocardiogram into the existing Hearts database In use at the

Department of Cardiology.

6. Summary
The existing Hearts database has some senous shortcomings. Some additional

functionality is needed to solve the problems. A new version of the Hearts database

needs to be developed. If ECG data are to be stored in the Hearts database,

cognisance of digital storage of ECG data needs to be taken.

A system that will allow handling of digital ECG data will need to acquire, decode,

store, manage, retrieve and manipulate these data to succeed.

17

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Chapter 3

The Electrocardiogram

1. Introduction

With every heartbeat blood is pumped through the body, helping to sustain life.

Without this organ we cannot survive. Cardiac disease has become common, killing

large numbers of people every day. Doctors are continuously trying to gather more

information about this condition, in order to save lives.

Every heartbeat is caused by the contraction of the myocardial cells (muscle cells of

the heart). The electrical stimulus originating in the SA node and conducted to the

ventricles via the A V node causes depolarisation of the myocardial cells which leads

to their contraction. During their resting stage, the myocardial cells are polarised (in

this case polarisation means that the inside of the cells become negatively charged).

(Dubin, 1989 : 7). As the wave of depolarisation spreads through the myocardium

(heart muscle), it contracts.

The electrocardiograph machine is a medical diagnostic tool which is used to record

the electrical activity of the heart. It produces a permanent record (the

electrocardiogram, or ECG 1
) of the heart's electrical activity. The ECG is interpreted

by a cardiologist in order to diagnose the condition of the heart.

Although initial experiments and observations started round about 1855, the

"electrokardiogram" evolved only around 190 I, thanks to work done by Einthoven.

(Dubin, 1989 : 4).

The electric activity that passes through the heart causes electrical potentials, which

can be detected on the skin. Electrodes that are connected to the body at specific

points are sensitive enough to detect the skin potentials which are recorded as the

ECG.

1 Please refer to Figure 3-20 (page 48) for an example of an ECG.

18

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

What makes the ECG so useful, is that it is a non-invasive diagnostic technique,

enabling a cardiologist to examine cardiac conditions without exposing the heart.

Put into simple terms, the vanous components2 of an electrocardiograph have to

perform the following tasks :

• Amplification of signals. "In order to detect body potentials, electrodes must

convert the ionic currents in the body into electron current in the wire."

(Tompkins, Webster, 1981 : 6).

• Screening of the electrocardiograph from high voltages induced by electro-surgical

and defibrillation units. (Tompkins, Webster, 1981 : II).

• The amplifier should selectively amplify the electrocardiogram signal and reject

electrical interference. (Tompkins, Webster, 1981 : 11).

• Bandpass filtering is needed to allow for high gam of the electrocardiogram

(Tompkins, Webster, 1981 : 11). Interference should be reduced as much as

possible. Electrical power lines are a major source of interference as they radiate

electrical and magnetic fields which can have an adverse influence on the

electrocardiogram machine.

• Analogue to digital conversion. The measured quantities are of an analogue nature.

In order to present the values on a computer, a specialised piece of hardware is

needed to convert these analogue signals into their digital equivalents.

• Display and recording. Different ways of communicating the electrocardiogram

tracing include paper copies, cathode-ray-tube display and digital storage. Paper

copies of electrocardiograms can be produced using a pen recorder. A moving pen

is used to record the data on graph paper. Another method uses a heated stylus on

thermal paper. These thermal transfer systems have a high running cost, since

2 Please refer to Figure 3-19 (page 40) for a schematic representation of these components.

19

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

thermal transfer paper costs more than normal paper. When using plotter pens with

flowing ink and a ball inside the tip of the pen, clogging can occur as the ink dries

out. Some systems rely on pressurised-ink systems to overcome clogged ink pens.

(Tompkins, Webster, 1981 : 21). Many systems in use employ a dot matrix

printing system. Such a printing mechanism is not well suited to the application,

since the resolution of the dot matrix printer does not allow for a continuous graph.

This makes detailed reading of the graph difficult for the cardiologist.

• It is also possible to display an electrocardiogram on a cathode-ray-tube display

(CRT). Examining complete physiological wave forms using a CRT can be very

difficult. Non-fade displays address this problem by holding and displaying

complete wave forms. (Tompkins, Webster, 1981 : 21). The CRT display does not

provide a permanent copy of the electrocardiogram as in the case of a printed copy.

• Distribution. Electrocardiogram data can be distributed over computer networks,

telephone links and by radio telemetry (wireless links). (Tompkins, Webster,

1981 : 22).

Before understanding the functioning of the electrocardiograph and the resulting

electrocardiogram, it is necessary to have a basic understanding of the anatomy of the

heart.

1.1. Brief overview of the anatomy of the heart

Put into simple terms, the heart consists of two pumps, a left and a right side pump

that cause blood to circulate through the lungs and the rest of the body. (Meyer et ai,

1988: 30.1).

20

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Figure 3-/: Schematic representation of the heart (frontal view)

Nwnber Item

1 Right Atrium

2 Left Atriwn

(Meyer el ai, 1988 : 30.5)

Table 3-1: Different parIS oflile ilearl

Description

According to Guyton (Guyton, 1966 : 234)
blood flows from the great veins into the atria.
About 70% of this flows directly into the
ventricles before atrial contraction. Atrial
contraction is responsible for the remaining
30% filling of the ventricles. The right atrium
transfers blood from the superior and inferior
vena cava to the right ventricle.

The left atrium transfers blood from the
pulmonary veins to the left ventricle.

3 Right Ventricle The right ventricle circulates blood to the
pulmonary circulation.

4 Left Ventricle

5 SA Node

6 AVNode

The left ventricle transfers blood to the
systemic circulation.

The Sinoatrial Node is located in the upper part
of the wall of the Right Atrium and consists of
a concentration of P-cells which are
responsible for the rate of heart contraction.
Impulses which cause the heart to contract
normally, start here. Contractions are rhythmic
and spontaneous in a normal, resting person
and occur at an average rate of 70/minute.
Thus the SA Node is the primary pacemaker of
the heart. (Meyer el ai, 1988 : 30.4 - 30.5).

The A V Node is located in the lower part of
the wall of the Right Atrium. The cellular
structure resembles that of the SA Node.
(Meyer et ai, 1988 : 30.5).

21

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Table 3-1: Differelll parIs oflhe hearl (colllilllled)

Number Item Description

7 His Bundle The A V Node forms the head of an elongated
fibre bundle of conduction tissue which
extends to the ventricles. This is called the His
Bundle and consists of Purkinje cells. Purkinje
cells conduct electrical impulses at an
accelerated rate. (Meyer el ai, 1988 : 30.5 -
30.6).

8 Right and Left The His Bundle forks into a left and right
Bundle Branches branch. Each of these branches forms smaller

branches in the sub-endocardial tissue. This
forms the Purkinje Network. (Meyer et ai,
1988 : 30.5 - 30.6).

Although the cells of the SA Node, A V Node, His Bundle, Bundle Branches and

Purkinje fibres differ anatomically and physiologically, they form an integrated

pacemaker conducting system (Figure 3-1 , page 21). The AV Node is the only

electrical connection switch between the atria and the ventricles. It is not possible for

impulses generated in the atria to reach the ventricles if the A V Node is damaged.

Such a condition is called "heart block" and can either be total heart block or partial

heart block. (Meyer et ai, 1988 : 30.6).

1.2. Position of the heart

As indicated by Figure 3-2, the position of the heart within the thorax is that of an

upside down cone. (Meyer et ai, 1988: 30.1).

Figure 3-2: rhe position o/tlte heart in the thorax

(Meyer et ai, 1988 : 32.4)

22

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

1.3. A brief description of the pump action of the heart

The function of the heart, as already stated, is to circulate blood through the body.

Oxygen (02) rich blood must be transported from the lungs to the rest of the body.

Blood containing carbon dioxide (C02) needs to be pumped to the lungs, where the

CO2 is removed and O2 is added again.

The pump action of the heart is caused by the contraction of the heart muscle

(myocardium). This is illustrated in Figures 3-1, 3-3 and 3-4. Such contractions are

the result of electrical activity in the myocardium. In 1858 Kollicker and MUlier

proved that contraction of the myocardium is accompanied by electrical activity

(Figures 3-15, 3-16, 3-17 and 3-18). (Meyer el ai, 1988 : 32.2).

During the resting state of the heart, muscle cells (myocardial cells) are polarised.

This means that the inside of the cells is negatively charged. (Dubin, 1989 : 7).

Myocardial cells are stimulated to contract as the charge within each cell changes to

positive. This process is called depolarisation and is illustrated in Figures 3-15 and 3-

16. (Dubin, 1989 : 8). Progressive contraction is achieved as the wave of positive

charges advances through the myocardial cells.

During repolarisation, the negative charge within the myocardial cells is restored. As

can be seen from Figure 3-17, myocardial cells do not respond to repolarisation.

(Dubin, 1989 : 9).

The electric impulse for cardiac stimulation is initiated in the Sinus Node. This wave

of depolarisation proceeds outward from the Sinus node and causes both atria to

contract (Figure 3-3). (Dubin, 1989 : 13). When the A V Node receives the impulse, a

brief pause occurs. This allows the blood contained in the atria to enter the ventricles.

The electrical stimulus passes rapidly down the His Bundle, Left and Right Bundle

Branches and finally through the terminal Purkinje fibres, causing the distribution of

depolarisation to the ventricular myocardial cells. (Dubin, 1989 : 18). The result of

this is ventricular contraction, which causes the blood to be expelled from the

ventricles (Figure 3-4).

23

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Figure 3-3: Atrial contraction

(Dubin, 1989 : 14)

Figure 3-4: Ventricular contraction

(Dubin, 1989 : 18)

2. The Electrocardiograph

2.1. History

Ludwig and Waller showed in 1887 that the electrical activity of the myocardium

could be monitored from a person 's skin. (Meyer el ai, 1988 : 32.2, Dubin, 1989 : 2).

Their "capillary electrometer" was interesting, but of little use since it did not allow

for permanent recording of the findings. (Dubin, 1989 : 2).

It was only in 1903 that Einthoven (now seen as the father of electrocardiography)

managed to produce a permanent record of the heart's electrical activity by projecting

a light beam across a moving silvered wire which was suspended through two holes

drilled in a large permanent magnet. Two skin sensors were placed on a man ' s body

and attached to this silvered wire. The movements of the wire represented the man ' s

heartbeat. These movements were recorded on a scroll of moving photographic paper.

(Dubin, 1989 : 3 - 4).

____________ ~2~4------~~~i~cC~
© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

The electrocardiograph is the instrument used to record the electrical activity of the

heart. The result of such a recording is called an electrocardiogram (ECG). An

example of an ECG can be seen in Figure 3-20 on page 48.

2.2. Electrodes

In order to measure electrical potential , a complete circuit must exist between the

tissue acting as the conducting medium and the measuring device. In simple terms,

two electrodes are needed to measure an electrical potential (Figure 3-5). (Meyer el

ai, 1988 : 32.2).

Electrodes are made of corrosion proof metal. Since the skin is a relatively poor

conductor of electricity, some preparation is needed:

• Electrodes must be clean (free of corrosion).

• The skin should be briskly rubbed with the edge of the electrode until it is slightly

red.

• An electrolyte cream (such as Redux® cream) should be applied to the prepared

areas of the skin.

Electrodes are kept in place by fastening them with rubber straps (wrist and ankles).

Rubber suction cups are used for applying electrodes to the chest area. A modem

technique employs the use of disposable electrodes, which are kept in place by an

adhesive substance.

2.3. Leads

The relative positions of the two electrodes connected to the body (for measuring

electrical activity of the heart) are called leads. The standard ECG consists of 12

separate leads. (Dubin, 1989 : 30, Meyer el ai, 1988 : 32.3). This means that

electrodes are placed in 12 different ways on the body. These 12 leads consists of 6

limb leads and 6 chest leads. An enumeration of these leads can be found in Table 3-2

below.

25

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Table 3-2: Tile 12 different leads of {/ sltlndard ECG

Limb Leads Chest Leads

I VI

II V2

III V3

aVR V4

aVL V5

aVF V6

The limb leads reflect electrical activity in the vertical axis, whereas the precordial

leads (VI - V6) reflect the electrical activity in the horizontal axis.

(Dubin, 1989: 30). The 12 leads produce 12 different "views" of the simultaneous

electrical activity of the heart at a given time. An example of these 12 leads can be

found in Figure 3-20 (page 48), where the leads are identified by items B, C, D and E.

Three of these 12 leads are bi-polar (this means that both electrodes are connected to

an electrical potential). One of the electrodes is always positive, and the other is

always negative. The remaining 9 leads are strictly speaking also bi-polar, since two

electrodes are used per lead. Since only one of the electrodes in each lead is

connected to an electrical potential, these leads are termed uni-polar leads. (The other

electrode is artificially kept at a constant potential.) The uni-polar leads thus register

changes in electrical potential in respect of a constant electrical potential at another

point. (Meyer el ai, 1988 : 32.3).

2.4. Bi-polar Limb Leads

Einthoven used the 3 bi-polar limb leads for the first time, forming Einthoven' s

triangle. In this scheme, electrodes are connected to the right and left arm, as well as

to the left leg. These electrodes form the limb leads and the placement of these

electrodes forms a triangle, as shown in Figure 3-5. Leads I, II and II are also known

as the standard leads.

26

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Right Arm
Left Ann

Figure 3-5: Einllroven's triangle and the limb leatls

(Dubin, 1989 : 31)

In this model it is assumed that the heart is contained within an imaginary equilateral

triangle, the corners of which are formed by the basis of the right and left arm as well

as that of the left leg (Figure 3-6). The limbs thus act as electrodes conducting

electricity away from the heart. This enables us to measure the electrical activity of

the heart by using electrodes connected to the left and right wrist, as well as to the left

ankle. The standard leads are named I , II and III, respectively.

In Lead I the negative electrode is connected to the right wrist. The positive electrode

is connected to the left wrist. In Lead II the negative electrode is connected to the

right wrist and the positive electrode is connected to the left ankle. In Lead III the

negative electrode is connected to the left wrist, while the positive electrode is

connected to the left ankle (Figure 3-6).

Lead I measures the electrical potential between the right and left arm. Lead II

measures the electrical potential between the left leg and the right arm, while Lead III

measures the electrical potential between the left leg and the left arm. (Meyer el ai,

1988 : 32.3).

Since there is a close correlation between the standard leads, it does not really matter

which lead is used for the identification of the heart's rhythm. When identifying the

type, location and extent of lesions, it is particularly important to choose the correct

lead since the different leads are affected in different ways.

27

© Central University of Technology, Free State

Chapter 3

Right Arm
Lead I

+ +
Left Leg

Left Arm
+

Figure 3-6: Einthoven's equilateral triangle

(Dubin, 1989 : 32)

The standard leads fall short on the following points:

The Electrocardiogram

I. Both electrodes are connected at roughly the same distance from the heart, on the

limbs.

2. Both electrodes are subjected to an electrical potential and the tracing only

represents the difference between the two electrical potentials at two points (Lead I

= Left Arm - Right Arm, Lead II = Left Leg - Right Arm, Lead III = Left Leg -

Left Arm). The electrical potential cannot be measured at any given point.

3. The electrodes in the standard leads are located on the same horizontal plane of the

body.

2.5. Einthoven's Law

According to Einthoven, the electrical potentials (height and depth) recorded III

Lead II equal the sum of the electrical potentials of Lead I and III. Thus:

Lead II = Lead I + Lead III

From this law it can be seen that the potential of a complex in a third lead can be

calculated if the potential of the same complex in the other two leads are known.

(Meyer et ai, 1988 : 32.3 - 4).

28

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

2.6. Uni-polar Chest Leads (Precordial Leads)

The six chest leads are obtained by placing six positive electrodes (one electrode per

lead) at six progressively different positions around the chest, as illustrated in

Figure 3-7. The second "electrode" is formed by the connection of three electrodes

(left arm, right arm and left leg). This central terminal is connected to the

electrocardiograph and the potential is kept at 0 through the use of a resistor. The

second electrode is called a neutral electrode, since it is not subjected to an electrical

potential. (Meyer el ai, 1988 : 32.3 - 4). The chest leads are numbered from VI to V6

and move successively from the person's right to left side.

The names of these leads are formed by numbering the anatomical positions where

each lead is placed. (See Figure 3-7.) Each number is prefixed by the letter V. This

is short for Vector.

Since the electrode sensor for the chest leads is positive, a depolarisation wave

moving towards a skin sensor produces a positive (or upward) deflection on the ECG.

The positive wave of ventricular depolarisation moves progressively towards the

positive electrode of Lead V6.

Figure 3-7: Tire six chest leads

(Meyer el ai, 1988 : 32.4)

"If leads VI through V6 are assumed to be the spokes of a wheel, the centre of the

wheel is the AV Node." (Dubin, 1989 : 42). As can be seen from Figure 3-8, the body

is cut into top and bottom halves by the plane of the chest leads. This is called the

horizontal plane.

29

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

V6

V1 V2 V3

Figure 3-8: Tire horizontal plane

(Dubin, 1989 : 42)

From Figure 3-8 it can be seen that Leads V 1 and V2 provide more information about

the electrical activity in the right ventricle, while Leads V5 and V6 mainly provide

information about the electrical activity in the left ventricle.

2.7. Uni-polar Limb Leads

The electrodes used for the chest leads are connected nearly directly over the heart.

After these leads proved to be clinically useful, the uni-polar limb leads were

introduced using the same design. The electrode is placed on each of the three limbs,

and these leads are called VR (right arm), VL (left arm) and VF (left foot),

respectively (Figures 3-11 and 3-13).

The electrical activity registered in these leads is small, due to the small electrical

potential in the limbs. It was empirically determined that the omission of the resistor

and the inclusion of the potential of the other two limb leads (together with their

resistors) produced larger potentials. This is the reason why the leads are called

augmented uni-polar limb leads.

Using augmented leads also changes the name of the leads as follows: a VR, a VL and

aVF. (Meyer et ai, 1988 : 32.3 - 4).

2.8. The electrical axis of the heart

By convention, a vector is represented by an arrow. A vector consists of both size and

direction. The length of the arrow indicates the size of the vector, while the direction

of the arrow indicates the direction of the vector.

30

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

The depolarisation of the normal heart progresses in an orderly fashion, and follows a

fixed pattern. Quite a few vectors are simultaneously present, since different parts of

the heart (which are not necessarily in close proximity of each other) depolarise

simultaneously. The sum of these vectors can be seen as one vector, called the

immediate electrical vector. The size and direction of this vector change continuously

as depolarisation progresses. This changing in direction corresponds with a three

dimensional rotation movement around a central point. The size of the immediate

vector starts at zero (start of depolarisation), increases up to a maximum and then

gradually recedes back to zero.

If the arrows of immediate electrical vectors are connected, the resulting line (loop)

represents a spatial vector cardiogram. The longest arrow in the figure represents the

dominant heart vector and the direction represents the mean electrical axis of the

heart, as depicted in Figure 3-9.

__ .08

Figure 3-9: The three dimensional vector cardiogram and fhe mean electrical axis o/Ilte hearl

(Meyer et ai, 1988 : 32.8)

The electrical axis of the heart is of clinical relevance, since the position of the heart is

not exactly the same in all people. Heart lesions (such as myocardial infarction)

influence the direction of the axis. It is not sufficient to observe that the axis has been

displaced. The displacement can be expressed in terms of degrees, and the polarity

can be expressed in terms of a negative or positive polarity.

31

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

The hypothetical line connecting the two electrodes of a given lead is called the lead

axis. In this way, the horizontal line connecting the left arm and right ann fonns the

axis of Lead 1. The axes of 2, 3 or all 6 of the limb leads can be used to numerically

calculate the mean electrical axis.

In order to create 6 intersecting lines of reference, the sides of Einthoven's triangle are

rearranged so that they cross one another at an angle of 60° at a central point. The

lines may have been moved, but they still remain at the same angle as can be seen

from Figure 3-10.

First start by rearranging the 3 standard leads, I, II and III.

III

Figure 3-10: 3 Intersecting lines o/reference/or Leads I, II and III.

(Dubin, 1989 : 33)

Now proceed by following the same procedure for Leads aVR, aVL and aVF. Note

that these limb leads will intersect at different angles to produce three other lines of

reference.

u..
>
.;(

+ +

•
u..
>
<t

Figure 3-11: 3 Intersecting lines o/reference/or Leads aVR, aVL and a VF

(Dubin, 1989: 36)

32

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

The 6 intersecting limb leads are spaced 30° from one another. These limb leads may

be visualised as lying in a flat plane over the person ' s chest. This is referred to as the

frontal plane (Figure 3-12, Figure 3-13).

·90'

*
-.? :'1~'i' ~'v15;;J~~

+ = ±180"--3!~-'-
~ 1:$ ~ +150' .$' +30'

<{ +120
+90'

Figure 3-12: 6 Intersecting lines of reference (1, II, III, aVR, aVL and aVF)

(Dubin, 1989 : 37)

The same cardiac activity is recorded in each of the leads. Since the electrical activity

is monitored from a different angle for each lead (Figure 3-13), the waves in the

various leads differ.

Figure 3-13: Different views of the same cardiac activity

(Dubin, 1989 : 38)

The precordial leads are placed in the 2nd interspace on the right side of the sternum

(VI), on the left side (V2), over the apex of the heart (V4), and in the 5th interspace in

the anterior axiallary line and in the midaxiallary line. V3 is located between V2 and

V 4. These leads start predominantly negative as they point towards the cavity of the

heart (VI), and become progressively positive towards leads V5 and V2. These leads

reflect electrical activity in the frontal plane of the heart.

33

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

3. The Electrocardiogram

Dubin (Dubin, 1989 : 5) states that the electrocardiogram provides a valuable,

permanent record of the heart's function. It is important to note that the

electrocardiogram reflects electrical activity in the heart, not contractile or pump

functions. (There may even be complete dissociation between these functions in some

clinical conditions, for example electromechanical dissociation.) The electrical

changes that occur during a cardiac cycle normally cause 5 to 6 deviations, which are

identified from left to right by the letters P, Q, R, S, T and U (if present). The periods

where an isoelectric condition exists in the heart are called segments. These segments

normally occur between P and Q (PQ-segment) and between S and T (ST-segment).

In normal electrocardiograms, recorded on standard electrocardiograph equipment, P,

R, T and U are normally positive (upward deflection). Q and S are negative

(downward deflection). (Meyer et ai, 1988 : 32.3 - 4).

R

T

p
u

p

• I
0.2 s

Figure 3-14: A conventional Electrocardiogram

(Meyer et ai, 1988 : 32.5)

The electrocardiogram is inscribed on ruled paper. Such a page of graph paper is

divided into squares. This design permits direct determination of the electrical

activity, duration of different components of the ECG, as well as the heart rate. The

smallest divisions measure one millimetre in height and one millimetre in width. For

every five small divisions (blocks) a heavy line is drawn (Figure 3-14).

Deflections in the wave (both upwards and downwards) are measured in millimetres

and represent a measure of voltage. Each millimetre represents a potential of 0.1 m V.

A potential of 0.5 m V is represented by each heavy horizontal line. This voltage is

34

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

present as a result of the electrical activity of the heart. Upward deflections are also

called positive deflections. Likewise, downward deflections are called negative

deflections. (Dubin, 1989 : 27). By measuring along the vertical axis, we can find a

measure of the electrical activity of any part of the cardiac cycle.

The horizontal aXIs represents time. Each of the small divisions represents 0.04

seconds. Since there are five of these divisions for every heavy line, the distance

between heavy lines represents 0.2 seconds. The duration of any part of the cardiac

cycle can be found by measuring along the horizontal axis. (Dubin, 1989 : 29).

3.1. P-wave

The P-wave represents atrial depolarisation and the accompanying atrial contraction

(both atria) (Figures 3-14, 3-15 and 3-18). It is worth noting that contraction and

depolarisation do not occur simultaneously, but for the purpose of this discussion,

these events are deemed to occur simultaneously.

P-wave

Figure 3-15: Atrial contraction and the P-Wave

(Dubin, 1989 : 14)

The pause that is present towards the right of the P wave is caused by the fact that the

stimulus of depolarisation slows down as it enters the A V node. (This is necessary to

allow blood from the atria to pass through the A V valves.)

3.2. PR-Segment

The PR-segment is represented by the distance between the beginning of the P-wave

and the first deflection of the QRS-wave (Figure 3-14). It would be more correct to

35

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

talk about the PQ-segment, but since the Q-wave is often absent, it is common

practice to talk of the PR-segment. Depolarisation of a part of the A V -Node, the His

Bundle as well as the Bundle Branches, occurs during the PR-segment. The electrical

activity caused by these tissues is very small. This is reflected by the flat

PR-segment. Atrial repolarisation does not produce any visual deflections, since

ventricular depolarisation and atrial repolarisation coincide, obscuring any deflections

caused by atrial repolarisation. (Meyer et ai, 1988 : 32.3 - 6).

3.3. QRS-Complex

The depolarisation of the myocardial cells produces the QRS-complex. The QRS­

complex, in turn, represents the initiation of ventricular contraction. Although

mechanical contraction extends beyond the QRS-complex, we will consider the QRS­

complex to represent ventricular contraction.

The downward Q-wave (when present) indicates the start of the QRS-complex

(Figures 3-14, 3-16 and 3-18). A Q-wave is not present in all tracings. A positive R­

wave follows the Q-wave. By definition, the first negative wave of the QRS-complex

is the Q-wave. Any upward (positive) deflection in a QRS-complex appearing before

a "Q"-wave is NOT a Q-wave. It is actually the R-wave! The upward R-wave is

followed by a downward S-wave. Thus, a negative deflection preceded by a positive

deflection is a S-wave. (Dubin, 1989 : 20).

\ I
,~ '-'
" t./ --

I
/

QRS

Figure 3-16: Ventricular contraction alld the QRS Complex

(Dubin, 1989 : 18)

36

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

3.4. J-Point and the ST-Segment

The point where the QRS-complex ends and the ST -segment starts is called the

J-point. The ST-segment starts at the J-point and continues up to the start of the

T -wave. Normally the ST -segment is a flat piece of baseline. This indicates that no

electrical activity takes place for the duration of the ST -segment (Figure 3-14).

(Meyer et ai, 1988 : 32.3 - 7).

3.5. T-Wave

The T -wave follows the ST -segment and is caused by the repolarisation of the

ventricles. It is also known as the second ventricular complex (Figures 3-14, 3-17, 3-

18). The ventricles have no physical response to repolarisation. The T -wave is

strictly an electrical phenomenon recorded on the ECG. (Meyer et ai, 1988 : 32.3 - 7).

Twave

Figure 3-17: T-wave indicates 110 cardiac response

(Dubin, 1989 : 23)

3.6. U-Wave

This deflection closely follows the T-Wave and is normally positive (Figure 3-14).

According to Meyer (Meyer et ai, 1988 : 32.7) the exact origin of this wave is not

known, but Meyer speculates that slowed and uneven repolarisation could be a likely

cause.

37

© Central University of Technology, Free State

Chapter 3

,
I
I
I

I

The Electrocardiogram

T

'-! • /~
Atrial D1Ipolarilalion Ventrlcula;:O;';-olarisation Ventricular Repolaritation

Figure 3-/8: rhe cart/iac cycle

(Dubin, 1989 : 24)

3.7. Time intervals in the ECG

The PR (or PQ) time is the elapsed time from the start of the P-wave up to the start of

the QRS-complex (Figure 3-14). The PR-time represents the time needed for the

electrical impulse to pass from the SA Node through the atria, AV-Node, His Bundle,

Bundle Branches and Purkinje fibres (Figure 3-1).

The QT -time starts at the first deflection of the QRS-complex and continues to the end

of the T -wave (Figure 3-14). QT -time represents the duration of ventricular systoly

and diastoly.

Table 3-3 summarises the normal time span and amplitude of the different ECG

components.

3.8. Summary of ECG components

Table 3-3: Summary of the normal time span and amplitude of the different ECG components

ECG Component Normal duration Normal Relevant cardiac activity
(seconds) amplitude (mV)

P-Wave 0.11 0.3 Atrial depolarisation

PR-Segment 0.14

PR-Time 0.12 - 0.20 Depolarisation of atria,
AV-Node, His Bundle and
Bundle Branches

38

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Table 3-3: Summary o/Ilte normal time span and amplitude of the different ECG components
(continued)

ECG Component Normal duration Normal Relevant cardiac activity
(seconds) amplitude (mV)

Q-Wave < 0.04 Start of ventricular
depolarisation

QRS-Complex 0.08 - 0.11 0.5 - 3.0 Ventricular depolarisation

QT-Time 0.35-0.45 Ventricular depolarisation
plus ventricular
repolarisation

T-Wave 0.10 - 0.25 0.4 Ventricular repolarisation

U-Wave 0.10 0.1
- -
(Meyer et ai, 1988 : 32.3 - 7). Please refer to FIgure 3-14 as well.

3.9. Interpretation of the ECG

In the actual reading of the ECG, the following 5 general areas are checked:

1. Rate

2. Rhythm

3. Axis

4. Hypertrophy

5. Infarction

Text books dedicated to the reading and interpretation ofECGs are available. Suffice

it to mention these areas. Interpretation of the ECG is normally done by a

cardiologist.

4. The HP4745A PageWriter II Cardiograph

Since the Department of Cardiology, Universitas Hospital, Bloemfontein uses the

HP4745A Page Writer II Cardiograph machines extensively, this equipment was used

for this research.

39

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

4.1. Basic description of operation
The operation ofthe HP4745A ECG machine can be summarised as follows:

I\) FRONT·ENO -

ANALOGUE ECC
SIGNAL OUTPUT

MEMORY/CONTROL

POWER SUPPLY

I"- RECORDER

Figure 3-19: HP4745A Block Diagram

(Hewlett-Packard Company, 1989: 3-14)

CHART PAPER
WITH

PLOTTED ECG

The Front End connects the patient to the HP4745A. It isolates and protects the

patient whilst acquiring the ECG. The ECG data are applied from the Front End to

the Memory/Control Board for buffering, after which the data are applied to the

Recorder Assembly where ECG signals are drawn on chart paper. A modem can be

connected to the Memory/Control Board for transmission of ECG data. AC power is

applied to the Power Supply Board, which, in turn, supplies the DC voltages required

for cardiograph operation. (Hewlett-Packard Company, 1989 : 3-1 to 3-2). A

summary ofthe configuration settings can be found in Tables 3-4, 3-5, 3-6 and 3-7.

4.2. Configuration
The Department of Cardiology, Universitas Hospital, Bloemfontein, has a

standardised setting that is used for the recording of all ECGs. These settings were

taken into account for the purpose of creating of the data acquisition and graphics

modules described in Chapters 4, 7 and 8, as well as the design of the ECG storage

format described in Chapter 6. The information presented next serves to illuminate

the choices available to the user.

Certain cardiograph responses can be preset on the HP4745A. These include:

40

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

• ECG Formats

• Characteristics of the printed record

• Patient ID and administrative information

• Filter and frequency settings

• Transmission guidelines

• Time and date

It is thus possible to determine which ECG format will be used by default. One can

further determine which fields are mandatory and require input, and which fields can

be ignored. Once a parameter has been configured, the setting is stored until changed

agam.

4.3. Summary of configurab/e functions
Displayed in the following 4 tables is a summary of configurable functions. Values

entered in the column 'User Selections' indicate the actual configuration settings as

found on the HP4745A ECG machines for the purpose of this study. (The ECG

rhythm speed setting for the standard ECG programme is 25 mm/sec and the

calibration 10 mm = I mV. Lead VI is selected for the rhythm strip.)

Table 3-4: Format COl/figuratiol/ Optiol/s

Function Parameter User Selections

1.0 Record type? Auto, Auto/RS, Manual, AutolRS·
Rhythm

2.0 Auto speed? 25, 50 mm/sec 2S mm/sec

2.1 Auto sensitivity? 0.5 cm/m Y, 0.5 (V, V), 1.0cmlmV
1.0 em/mY, 1.0 (V, Y) (lOmm/mV)
2.0 em/mY, 2.0 (y, Y)

2.2 Auto lead length? 2.5,5.0 sec 2.5 sec

2.3 /RS speed? 2.5, 5.0, 10.0, 12.5, 25.0, 2S mmlsec·
50.0, 100.0 mm/sec

2.4 /RS sensitivity? 0.25, 0.50, 1.00, 2.00 1.00 em/mY·
cm/mV

• Figure 3-20 (page 48). Table 3-9 (page 46).

41

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Table 3-4: Format Configuratio1l Options (cofllinued)

Function Parameter User Selections

2.5 IRS lead? I, II, III VI·
aVR, aVL, aVF

VI , V2, V3
V4, VS, V6

II(SP I), a VF(SP2),
VS(SP3)

3.0 Manual speed?3 25, 50, 100, 200 mm/sec 25 mmlsec

3.1 Manual sensitivity? 0.25, 0.50, 1.00, 2.00 I.OOcmlmV
cm/mV

3.2 Manual lead group? I, II, III SPI, SP2, SP3
aVR, aVL, aVF

VI, V2, V3
V4, VS, V6

SPl , SP2,SP3

3.3 Manual placement? Whole page, Upper page, Whole page·
Lower page

4.0 Rhythm speed?4 2.0, 5.0,10.0, 12.5, 25.0, 12.5 mmlsec
50.0 mm/sec

4.1 Rhythm sensitivity? 0.25, 0.50, 1.00, 2.00 O.ScmlmV
cm/m V

4.2 Rhythm lead? I, JI, IlJ SPI
aVR, aVL, aVF

VI, V2, V3
V4, VS, V6

SP I, SP2, SP3

4.3 Rhythm Save data? I chan I 3 chan I chan

4.4 Rhythm Save length? 1.5, 5.0, 10.0 sec 5.0 sec

S.Oa Frequency response? 0.05 - 40 Hz, 0.05 - 100 Hz 0.05 -40 Hz·
(Auto only)

5 .Ob Frequency response? 0.05 - 40 Hz, 0.05 - 100 Hz 0.5 - 40 Hz
(Manual and Rhythm) 0.5 - 40 Hz, 0.5 - 100 Hz

3 Items 3.0 - 3.3 and 5.0b are only used for the MANUAL recording mode, Formats 5 & 6. The user settings are
listed here [or the sake of completeness. The MANUAL recording mode, however, was not used for this
research.

4 Items 4.0 - 4.4 and 5.0b are only used for the RHYTHM recording mode, Formats 7 - 9. The user settings are
listed here for the sake of completeness. The RHYTHM recording mode, however, was not used for this
research.

42
© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Table 3-4: Format COl/figllratiol/ Optiol/s (col/ til/lied)

Function Parameter User Selections

5.2 Record header width? Wide, Narrow NarroW-

5.4 Patient ID required? Yes, No No

5.6 ID Header type? Fu ll , Minimum Full-

(Hewlett-Packard Company, 1988: 7-8)

Table 3-5: Global parameter OptiOI/S

Function Maximum Characters User Selections
Accepted

6.0 Location code? 5 00000-

6. 1 Cart ID? 4 0001-

Function Parameter User Selections

6.6 Automatic ECG Yes, No, Choice No
Storage?

6.7 Language? Engl ish, French, German, English
Dutch, Spanish, Italian

7.0 Power-on Format? Enter va lue 0-9 2

7.3 Power line frequency? 50 Hz, 60 Hz 60Hz

7.4 Power on artifact Off, On OtT
filter?

7.7 ID field units? English, Metric English

7.9 Age 10 field enabled? Yes, No Yes

7.10 Sex ID field enabled? Yes, No Yes

7.1 I Height ID field Yes, No Yes
enabled?

7.12 Weight ID field Yes, No Yes
enabled?

7.13 BP fields enabled? Yes, No Yes

7.1 4 Race ID fields Yes, No Yes
enabled?

7. 15 Med ication ID fields Yes, No Yes
enabled?

43

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Table 3-5: Global parameter Optiol/s (contil/lled)

Function Parameter User Selections

7.16 Diagnosis ID fields Yes, No Yes
enabled?

7.1 7 Criteria ID fields Yes, No Yes
enabled?

7.1 8 Operator ID fields Yes, No Yes
enabled?

7.19 Department ID field Yes, No Yes
enabled?

7.20 Room ID field Yes, No Yes
enabled?

7.21 Requested by ID field Yes, No Yes
enabled?

7.22 User A ID field Yes, No Yes
enabled?

7.23 User B ID field Yes, No Yes
enabled?

7.24 Stat ECG ID Field Yes, No Yes
enabled?

(Hewlett-Packard Company, 1988 : 7-15)

Table 3-6: Transmission Purameter Options

Function Maximum Characters User Selections
Accepted

8.0 Phone #15 22

8.1 Phone #2 22

8.2 Phone #3 22

8.3 Phone #4 22

5 Fields 8.0 - 8.3 are blank since the I-IP4745A is not connected to any modem and thus not used for dialling into
other systems.

44

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Ttlble 3-6: Transmissioll Parameter Optiolls (continued)

Function Parameter User Selections

8.4 Printback enabled? Yes, No No

8.5 Autodial after transmit, Yes, No Yes
selection?

8.6 Dialing type? Pulse, Tone Tone

8.7 Dial pause length? 2,4,6,8,10 sec 2 sec

8.8 Phone baud rate? 300,600, 1200, 2400, 4800, 1200
9600, 19200

8.9 System baud rate? 300,600,1200, 2400, 4800, 19200
9600, 19200

(Hewlett-Packard Company, 1988 : 7-20)

Table 3-7: Time alld Date Optiolls

Function Parameter User Selections

9.0 Clock Mode (12/24) 12,24 24

9.1 Date (dd/mm/yy)6 dd/mm/yy

9.2 Time (hh:mm) 7 hh:mm

(Hewlett-Packard Company, 1988: 7-22)

4.4. The ECG recording mode and format used for this study

The HP4745A is very versatile and allows for 9 preset, factory configured, recording

modes (as well as user-defined recording mode) to be used. (These choices are

summarised in Table 3-4.) A format is a preset combination of leads, recorded at a

given speed and sensitivity. Since nearly all ECGs taken at the Department of

Cardiology, Universitas Hospital are recorded using the same (standard) format, only

the following recording mode was used:

6 The current date in the memory of the HP4745A is di splayed by default when the user is prompted for a new
value for the date field.

7 The current time in the memory of the HP4745A is displayed by default when the user is prompted for a new
value for the time field.

45
© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

Table 3-8: RepoTtformat ill use at Cardiology, Ulliversitas Hospital, Bloem/ontein

Recording Mode Format Factory Setting

AUTO/RS 2 12-Lead + Rhythm Strip (l0 seconds). The rhythm

strip represents 10 seconds of acquired data. Speed for

the rhythm strip is 25 rnmIsec.

Please refer to Table 3-9 and Figure 3-20 for an example of an ECG recorded using

the recording format described above.

Table 3-9: Items found on the ECG report (AUTOIRS Mode, Format 2)

Item Description

A Patient ID and demographic information8

B, C, D Auto ECGs contain three channels of data. Each channel consists of four
leads.

E AutolRS ECGs add a fourth channel as a rhythm strip. These data are
acquired immediately after the 12-lead data are obtained.

F A I m V calibration pulse is printed.

G Identification is printed above each lead.

H A split vertical line indicates when the recording switched to the next lead.

I Lead, speed and sensitivity for the rhythm strip are printed directly above
it.

J Location code (CART ID).

K Frequency response (Front end filter) defaults to 40 Hz.

L Unique sequence number assigned to ECG by cardiograph.

8 Depending on the configuration of the HP4745A Cardiograph, different information is printed. Information
includes Patient 10 Number, Age and Sex, Height and Weight, Systolic and Diastolic Blood Pressure, Race,
Medications, Diagnoses, two User Fields, ECG Requested By, Operator and Room Number as well as a
Department Identifier. (Hewlett-Packard Company, 1988 : 4-6).

46

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

5. Summary

Myocardial activity is initiated by electrical stimulus. An electrocardiograph produces

a permanent record of such myocardial electrical activity, and not of the contraction,

as is often assumed. In order to perform this task, the ECG machine needs to amplifY,

filter and convert electric signals. It also needs to display and distribute recorded

signals.

Electrodes connected to the skin provides information on the electrical activity of the

various chambers of the heart. Twelve standard leads provide a simultaneous view of

the myocardial electrical activity from different perspectives (angles). The resulting

traces consist of various waves and segments.

A standard configuration for the HP474SA Page Writer II Cardiographs used at the

Department of Cardiology, University of the Orange Free State, Bloemfontein, has

been set up. These settings are needed to enable proper interpretation of the digitally

acquired ECG Data.

47

© Central University of Technology, Free State

Chapter 3 The Electrocardiogram

A
2(, 'f~onii ?
So 11:; tS6 I I'

22 .JU!.. 96 16 : 30 :4 8 i 2"3.!;;:.r:

sWlJ
I 11 I J o'vL V2 V5

i j I ' I I I ; . " ~ C ,~iA-~v ,~~~ LJ(-~)\.fJVl-tc,1-t'W~L.

10
I II aVF V3 V6

--,---:L~ __ J~AJr!\~AJ(~J,J~·f1
I RHYT HM STRIP: VI

25 ml7l/Gec : ! cm/mV

E ("'_ 1 .• " I I I I I I J A ~t./" ... " I till
J ~'/'----1 ./'.......J.,..A..,....j r"\..-J1 I I !. A . j /~,'--p /' _.I (' ~ '! ----1ir--,--,,"\J./-JJ" - ..

f If if , ~~~('---.r-J! "r--,'Y '! i ,I

1"- COOO" '\'01 J K L _ v u-- d.i 02239

Figure 3·20: A Sample ECG

48

© Central University of Technology, Free State

Chapter 4 Data Acquisition

Chapter 4

Data Acquisition

1. Introduction
The ultimate goal of this study was to develop (amongst others) a software product

that would allow digital storage of electrocardiogram data captured from a HP4745A

Page Writer II Cardiograph. Before data can be stored, however, it needs to exist.

Data were captured from the source (HP4745A) by means of some data capture

procedure, and stored in the Hearts 32 database.

When contemplating the data capture mechanism, it is often easier to model such a

mechanism as a "black box" (Figure 4-1 below). Such an approach is not unique to

data capture between the HP4745A Page Writer II Cardiograph and a PC, but can also

be applied to other situations where data are exchanged between any other instrument

and a Pc.

If an interface between the instrument and the outside world is provided by the

manufacturer of the instrument, it is possible to develop an interface between the PC

and the instrument (connecting to the provided instrument-interface). The "black

box" mentioned in the previous paragraph can thus be seen as the interface between

the PC and the instrument, connecting to the interface of the instrument, as shown in

Figure 4-1 below.

ECG Machine
Data Source

Data Capture
(Black Box)

Interface 01 Interface ~ 01
' .~' .~~

PC Hearts 32
Database

Figure 4-/: Schematic represell1atioll of data acquisition

49
© Central University of Technology, Free State

Chapter 4 Data Acquisition

The data acquisition module can only succeed to interface the instrument and the PC

when it interfaces at both a hardware and software level , as depicted in Figure 4-2

below.

Hardware Layer

Software Layer

Figure 4-2: Two major compOllellts of dala acquisitioll

The hardware level is responsible for providing the electrical connection between the

interfaced equipment (instrument and PC). It is this connection that constitutes the

communications link (in terms of voltages, as defined by the RS-232 serial

communications protocol) between the interfaced equipment. Data transfer utilising

said link is in part controlled by the processes running in the software level. (A

discussion of the details of the RS-232 protocol is outside the scope of this thesis.

Suffice it to mention that RS-232 communications is utilised for hardware

communications. The settings of the RS-232 communications port parameters are

discussed in Appendix A.)

The software level utili ses the services provided by the hardware level in order to

move data between the interfaced equipment, and also to manage the link. The

communications protocol developed by the vendor of the instrument is implemented

in the software layer as well. A detailed discussion of the Hewlett Packard

Diagnostic Cardiology Digital Transmission Protocol can be found in Appendix A.

Such a data acquisition module as mentioned above will only become truly useful

when integrated with a software product such as Hearts 32. This chapter provides a

high level discussion on the design issues of the data acquisition module developed to

download and decode data from a HP4745A Page Writer II Cardiograph.

50
© Central University of Technology, Free State

Chapter 4 Data Acquisition

2. Design issues
During the conceptualisation of the data acquisition module, the effects of each of the

following components had to be taken into account:

• RS-232 communications settings (baud rate, data bits, stop bits, parity)

• Digital transmission protocol used for downloading of data

• Internal data storage format

Although roughly the same, the communications settings used for RS-232 data

communications differ for different models and makes of ECG machines. The digital

transmission protocols contain proprietary information and are closely guarded by

each manufacturer of ECG machines. Internal data storage formats also differ for

different models and makes of ECG machines.

If a database, capable of storing digitally captured ECG data from different ECG

machines is to be developed, great care should be taken to ensure that the interface

between the database and the ECG machine is open ended.

In the case of the Hearts 32 database and the HP4745A, provis onl!i,!lf/S lBea ~ol::'

enable the Hearts 32 database to cope with a changing enviro ;r;~~ Rij . '~nTY
HP4745A data acquisition module in such an open ended mann r wilL ?~E~~~l

TECHNIKON
• Allow data acquisition from the HP4745A. FR EE STATE

• Immediately enable Hearts 32 to communicate with future data acquisition

modules that conform to the specifications developed during this research.

2.1. Hardware independence

In a dynamic environment, it cannot be expected that the systems in use will stay

static. Systems become outdated and are replaced with others. Database applications

such as Hearts 32 should be designed in such a way that they are robust enough to

handle different sources ofECG data.

S1
{ .c::- 1 f,r ____

Tft::HNIKON
VllYSTAATIfREE STATE

2 IUN 199.
PRIVAATSAK X2«M'
Pf'IVAn BAG

BLOEII1fONTEJN

© Central University of Technology, Free State

Chapter 4 Data Acquisition

It should not be necessary to change the Hearts 32 application itself each time a

different ECG machine is introduced into the system. Configuring Hearts 32 for data

acquisition from different ECG machines should be as easy as selecting the desired

machine from a list.

2.2. Configurability
Just as the ECG machines that are used to acquire data are subject to change, different

models of ECG machines will use different communications configuration settings.

The Hearts 32 application must make provision for setting the communications

configuration of the data acquisition module.

3. Addressing the issues
The issues mentioned above have been addressed during the development of the data

acquisition module. No attempt was made to recreate Hewlett Packard ' s Digital

Transmission Protocol. Instead, a program was written to handle data from the

HP4745A, supplying the correct responses (as defined by the protocol) at the correct

time during a transfer. A detailed discussion of this program can be found in

Chapter 8.

3.1. Hardware Independence
It is unrealistic to expect that a database application such as Hearts 32 should

inherently be capable of acquiring data from any ECG machine on the market. For

this research, a data acquisition module for the HP4745A was developed. To plan for

hardware independence, the data acquisition module is implemented as a Dynamic

Link Library (DLL). This idea can graphically be illustrated as in Figure 4-3:

S2

© Central University of Technology, Free State

Chapter 4

HP4745A
Cardiograph II

Page Writer

ECG Machine X

ECG Machine Y

Electrocardiograph
machines

I YDLL

I XDLL

HP4 745A.DLL

ata Acquisition
Modules

implemented
as Dynamic

Link Libraries

Data Acquisition

Hearts 32
Database

Application

I
n
t
e

I- r
f

I- a
c
e

Figure 4-3: Hearts 32 and the Data Acquisition DLL

The rationale behind using DLL technology is that the data acquisition module should

not be a fixed part of the Hearts 32 database (as in Figure 4-4). The situation depicted

in Figure 4-4 will lead to the following problems:

• With every new ECG machine used for digital data acquisition, the Hearts 32

application code itself will have to be updated.

• Since it is possible that data acquisition modules for different ECG machines may

be developed by parties other than the original creators of the Hearts 32

application, this is a severely limiting factor.

• The Hearts 32 application will become unnecessarily large (wasting critical

resources such as RAM, and time to load the application) when it has to contain

code for data acquisition of a variety of ECG machines (some of which may no

longer be in use).

If and when another ECG machine is connected to Hearts 32, an appropriate data

acquisition DLL for the ECG machine must be provided. The data acquisition DLL

then acts as a driver for the application program (Figure 4-3). This does not differ

from any other Windows® program, where the complexities of driving peripherals, for

example, have been abstracted from the application programs using the peripherals.

53

© Central University of Technology, Free State

Chapter 4 Data Acquisition

Hearts 32

HP4745A Database
Data Acquisition Application

Module

Figure 4-4: The incorrect approach (integrated data acquisition)

The function of such a data acquisition DLL would be to deliver a data set In a

standard, pre-defined format l for inclusion in the Hearts 32 database (Figure 4-3).

This is needed because Hearts 32 (or any other application) needs to be able to

interpret the data for processing.

3. 1. 1. Dynamic Link Libraries
According to Pacheco & Teixeira (Pacheco & Teixeira, 1996 : 656) a dynamic link

library is a program module that contains code, data or resources that can be shared

among Windows® applications, as shown in Figure 4-5 below. Dynamic link libraries

can also share code, data or resources among one another.

Application D

Dynamic
Link Library 2

1

Figure 4-5: Code sharing with Dynamic Link Libraries

1 Besides a Data Acquisition Module for the HP4745A Cardiograph II PageWriter electrocardiograph, a set of
specifications enabling data acquisition from other electrocardiograph machines into the Hearts 32 database
also resulted from this study. Details of the proposed format can be found in Appendix B.

54

© Central University of Technology, Free State

Chapter 4 Data Acquisition

Some very real advantages can be found from implementing dynamic link libraries.

These are summarised in Table 4-1:

Table 4-1: Advalltages o/usillg DLLs

Applications can load code to be executed at runtime, rather than having code

statically linked into the executable file .

2 Multiple applications can use the same code, provided by the DLL,

simultaneously2

3 Because of re-use of DLLs, the programs using them require less disk space.

4 Applications become modular, allowing maintenance to be performed on sections

(the DLLs) of the project without affecting the rest of the project. For example,

when new peripherals are created, a set of drivers is supplied. In the case of

Windows®, these are normally .DRV files (device drivers). These .DRV files are

nothing else than dynamic link libraries.

5 Hiding of implementation details. To the user (application program) of the

exported functions of a DLL, only the function name is visible. Exactly how the

results are achieved is of no importance when using the function.

(Pacheco & Teixeira, 1996 : 656).

As with all good things, there is a downside and the disadvantages of using dynamic link

libraries can be summarised as follows :

2 An example of this is Win32@, which, according to Pacheco & Teixeira (Pacheco & Teixeira, 1996: 656), relies
heavily on the files KERNEL32.DLL, USER32.DLL and GDI32.DLL. Services supplied by these dynamic
link li braries include memot)', process and thread management as well as graphics and user interface functions
in Windows 95®.

55

© Central University of Technology, Free State

Chapter 4 Data Acquisition

Table 4-2: Disadvalllages o/usillg DLLs

If the DLL file is not available, the application using it will fail since it cannot

provide the necessary services without the DLL.

2 Distribution of the application is somewhat more complicated, since supplying

the executable file alone is not enough to ensure that the application will function

correctly.

3 Repetitive loading of the DLL might have an impact on the application' s

performance.

3.1.1. 1.Static linking versus dynamic linking
When writing program code, the programmer uses the keywords and operators of the

programming language, together with the procedures and functions provided by the

vendor of the programming language in run time library (RTL) files. Normally, the

programmer also creates hislher own procedures and functions in order to augment the

procedures and functions found in the RTL.

A list of references to the procedures and functions used in the program is built by the

compiler during the compilation phase.

The linker has to resolve the procedures and functions used in the program, as

identified during the compilation phase. Resolving means that the linker must ensure

that the executable code for each procedure/function is available when the program

executes.

In the case of static linking, the linker places a copy of each procedure/function into

the executable program file. For example, suppose that a user-defined procedure

Power has been created to raise x to the power of y , and placed in an Object Pascal

unit file called Poweru' Every Object Pascal program using the Power procedure will

contain a copy of the Power procedure code, statically linked into the executable file ,

as illustrated in Figure 4-6 below.

56

© Central University of Technology, Free State

Chapter 4 Data Acquisition

Executable file

Application A

Procedure Power;
begin

code
end.

Object Pascal Unit (.DCU file)

Unit Power U;
Executable file

Application B
Procedure Power; Procedure Power;
begin begin

code
code

end.

end.

Executable file

Application C

Procedure Power;
begin

code
end.

Figure 4-6: Static Iillkillg

Some problems that can be foreseen with static linking include:

• If the code contained in the procedure/function changes, all programs containing a

copy of the code need to be re-compiled and re-linked. This makes maintenance

more difficult. In some cases this represents a serious problem, especially if a

large number of users use the product, and the executable programs are large.

Imagine what would have happened if the entire Windows® software were

developed as one big executable file (if this could be done!). Every time a new

piece of hardware came on the market, the entire Windows® software package

would need to be updated, and re-distributed!

• Bloating of the executable file (increased file size) by including a copy of the code

in each and every program. This could waste a lot of disk space and load time if a

57

© Central University of Technology, Free State

Chapter 4 Data Acquisition

large number of programs using the same procedures and functions reside on the

same computer system and are very dynamically loaded and un-loaded.

With dynamic linking, the link between a call to the procedure Power (in our

example) and the Power procedure itself would be resolved at runtime by using an

external reference to the Power procedure resident in the relevant DLL. This can be

illustrated as in Figure 4-7 below:

Executable file

Application A

D . L· k L·b (DLL fil

. External reference to

/ Pow" P<ored,,,

ynamlc In I rary . u~;

Library userprocs;/ Executable file

Application B
Procedure Power; <

begin -~ I------- External reference to

" " ·Power Procedure
code ~

end.
.~.

,

Executable file

Application C

External reference to .
Power Procedure

Figure 4-7: Dyl/amic lil/kil/g

3.1.1.2.1mplicit Loading versus Explicit Loading
When some of the functions and procedures required by the application reside in a

DLL, the DLL is automatically loaded. This process is called Implicit Loading and it

is implemented in Object Pascal in the following manner:

In the interface part of the unit, the procedure/function declaration is made in the

normal manner. The use of the StdCall reserved word is necessitated to ensure that

58

© Central University of Technology, Free State

Chapter 4 Data Acquisition

parameters are passed from right to left, enabling the Object Pascal program to

interface with DLLs written in other languages such as C3 Since Windows® is

written in C, this also enables interfacing with the Windows® DLLs.

In the implementation part of the unit, the procedure/function declaration is given, but

without reference to parameters and/or return values. The External keyword indicates

that the procedure/function is imported from an external source.

Consider the code example shown below:

Code Snippet 4-1: Implicit loading 0/ a procedure/Junction/rom a DLL

unit He artsMain;

inte r fa ce
fu nct i on ReadDecodeCalcStoreECG(ComputerNumber : PChar) : Integer ; StdCall;

implementation
function ReadDecodeCalcStoreECG; external 'HP4745A.DLL' name 'ReadDecodeCalcStoreECG';

end .

The fact that the function name (ReadDecodeCalcStoreECG) is entered in the

program code as a string constant does not pose a serious problem, since it can be

documented in the data acquisition module specification documentation. However,

the hard coding of the DLL name (HP4745A.DLL) poses a serious problem for the

application program using the DLL, when the application program needs to invoke

functions from different (even unknown, as in the case of Hearts 32) DLLs. How can

Hearts 32 be informed about the existence of other data acquisition DLLs, and how

will it load and execute such DLLs?

It is not always desirable to use implicit loading of a DLL. The following reasons

illustrate the problems:

3 It is extremely important to note that the default parameter passing convention of Object Pascal and that of C
does not correspond to each other. The register and pascal conventions found in Object Pascal pass parameters
from left to right, that is the leftmost parameter is evaluated and passed first and the rightmost parameter is
evaluated and passed last. The cdecl, stdcall and saJecafl conventions pass parameters from right to left.

S9

© Central University of Technology, Free State

Chapter 4 Uata AcqUIsItIon

Table 4-3: COl1tra-il1dimtiol1s/or use o/implicit DLL loadil1g

If a OLL is implicitly loaded but never used during a particular execution of the

application, time and memory is be wasted.

2 A OLL with a large number of routines can be quite large, occupying a lot of

memory. In this instance it is better to load the OLL on demand.

3 An application loading multiple OLLs possibly does not need access to all the

OLLs simultaneously. It would be better to load these OLLs as needed, thus

conserving memory requirements whilst improving performance through

reducing the initial load time.

4 The existence of OLLs may not be known to the application at the time of

creating the application.

Sharing of the resources contained in the OLL is achieved, but implicit loading of the

OLL still means that there is a strong static coupling between the calling application

and the OLL itself. What is needed for the Hearts 32 application to succeed in its

quest for data acquisition, is OLL technology, but with a loose coupling between

Hearts 32 and the data acquisition OLL.

Explicit Loading refers to the loading of a specific OLL (as identified by the

application) on request of that application. Such "loading on demand" offers more

freedom, but also necessitates greater care. The application must test that the desired

OLL exists (is accessible), has been loaded, and once loaded, determine whether the

desired function or procedure can be located in the OLL.

Since explicit OLL loading does not access the OLL or the procedures and functions

that the OLL contain, using literal identifiers (such as literal text strings in the

60

THIS BOOK IS
THE PROPERTY

OF THE
- 5 SEP 2001

TECH~ON

© Central University of Technology, Free State

Chapter 4 Data AcqUIsition

program code), extra work has to be performed. A global procedure pointer4 is

declared as follows:

Code Snippet 4-2: Dec/aring a global procedure poilller type

TReadECGFunc = Function (hAppHandle : THandle: sDescription PChar i nComPort :
Integer ; nBauctRate : Integer ; sBinaryFile : PChar ; sASCIIFile : PChar; sECGTime
TAr20 ; sECGDate : TAr20) : Integer: StdCall;

The global procedure pointer allows access to a procedure or function residing in the

DLL, but from the calling module.

A variable of type TReadECGFunc (declared in Code Snippet 4-2 above) now needs

to be created. This variable will store the address of the ReadDecodeCalcStoreECG

function. Another variable that will access the DLL (by obtaining a handle to the

DLL) needs to be declared. The declaration of these variables can be illustrated as

follows:

Code Snippet 4-3: Variable Dec/aration/or explicit DLL Loading

var
ReadECGFunc TReadECGFunc ;
LibHandle Thandle ;
LoadThisDLL String;

The next step is to load the DLL. The name of the DLL in this example is contained

in a string variable called LoadThisDLL, and the value of this variable is assumed to

be assigned previously. A handle into the loaded DLL is returned, through which the

contents (code and resources) of the DLL can be accessed.

Code Snippet 4-4: Explicit Lotlding 0/ a DLL

LibHandle : = LoadLibrary (LoadThisDLL) i

4 The Borland® Object Pascal Language Guide describes global procedure pointers as follows: "A procedural
type declared without the of object clause is called a global procedure pointer. A global procedure pointer can
reference a global procedure or function, and is encoded as a pointer that stores the address of a global
procedure or function. " (Borland, 1997 ; 4-18).

61

© Central University of Technology, Free State

Chapter 4 uata AcqUlsIlIon

After successful loading of the DLL, the address of the desired procedure/function

residing in the DLL must be determined. This address will be assigned to the global

procedure pointer variable declared in Code Snippet 4-3, and can be illustrated as

follows:

Code Snippet 4-5: Linking witll tile DLLs Exported/unctions/procedures

@ReadECGFunc : = GetProcAddress(LibHandle, ' ReadDecodeCalcStoreECG ') ;

The GetProcAddress Windows® API function takes as parameters a handle to the

DLL and a string containing the name of the function/procedure of which the address

must be determined. It returns this address. Since we do not want the variable

ReadECGFunc to contain the address, but rather to point to the address, we need the

@ operatorS

The ReadDecodeCalcStoreECG function is indirectly invoked via the ReadECGFunc

pointer as follows :

COlle Snippet 4-6: Invoking a Function via a Pointer

ResValue := ReadECGFunc(Application . Handle, ?Char(DLLDescription),
ComPort , BaudRate , PChar (FileNameE) ,
PChar(Fi leNameA) , TirneECGTaken , DateECGTaken);

The library handle (assigned in Code Snippet 4-4 above) needs to be freed before the

code module in the main program terminates. This is done as follows:

5 The Borland® Object Pascal Language Guide describes procedural types and the use of the @ operator as
fo llows: "'The @ operator is often used when assigning an untyped pointer va lue {o a procedural vari able. For
example, the GetProcAddress function defin ed by Windows (in the l-VinProcs unit) returns the address of an
exported functi on in a DLL as an untyped pointer value. Us ing the @ operator, the result of a call to
GelProcAddress can be ass igned to a procedural variable." (Borland, 1997: 6-1 3).

62

© Central University of Technology, Free State

Chapter 4 uata AcqUlSItlOn

Code Snippet 4-7: Freeing tile Library Hamlle

FreeLibrary (LibHandle) ;

3. 1. 1. 3. Making the connection
For an application to use the functions or procedures contained in a DLL, the DLL

must export (make available) the names of these modules. This is accomplished by

using the exports clause in Object Pascal. Exports entries can include the name of the

module to be exported (Code Snippet 4-4), or it can include the word index followed

by an integer constant (Code Snippet 4-3). "This method is called importing by

ordinal". (Pacheco & Teixeira, 1996 : 663).

Code Snippet 4-8: Importing by ordinal

fu nction ReadDecodeCalcStoreECG ; exte rnal 'H P4745A . DLL ' i ndex 1 ;

Code Snippet 4-9: Importing by name

function Re adDecocteCalcStoreECG ; e xternal ' HP4745A . DLL ' name ' ReadDecodeCalcStoreECG ';

The user (application) of the DLL can invoke the desired module by usmg the

exported name or the index entry. It is interesting to note that when using the name,

there is a slight performance penalty to be paid, since the module's name has to be

looked up in the DLL's name table. Pacheco & Teixeira (Pacheco & Teixeira, 1996 :

664) suggest that the "importing by name" method be used, since the "importing by

ordinal method" is too cumbersome to work with.

The "importing by name" method has been chosen for the Hearts 32 application.

3.2. Configurability
It is all good and well to have the main application (Hearts 32 in this case) on the one

side, and the different, separate data acquisition modules implemented as dynamic

link libraries on the other side, but some mechanism is needed in order to connect

these different pieces of software.

63

© Central University of Technology, Free State

Chapter 4 Uata AcquIsItIOn

Simply placing the DLL files in a certain location and having the application search

for them, is in itself not enough. The reason for this is that different ECG machines

may have different communications port settings.

The following basic items (as found In Figure 4-8) are recorded for each data

acquisition module:

• DLL Name.

• DLL Description.

• Whether this DLL is to be used as default or not.

• Communications port where ECG machine is connected to the PC.

• Baud rate at which the link between the ECG machine and the PC operates.

C D ata A c qUi sition Module OptIOns I!lIiJI3
D)lnamic Link Library------------, Com Eorts

•. II r. Com 1 r Com 3
HF"~7.:l1) CordloL pj h 11 Fa. eWtlfer O."'\t.:; ,A.cqUl~,ltlon HI

r Com 2 r Com 4

I~-r 300 r. 9600

r 600 r 19200

r 1200 r 38400

r 2400 r 57600
IHP4745ADLL .§::j IHP4745 Cardiograph II Pa

Oll Qescription DLLtlame

P Use this OLL 6S .defoult r 4800 r 115200

~dit Oele!e QK Close

,C;ancel

Figure 4-8 Dalu Acquisitiol/ Module COl/jiguratiol/ Dialogue Box

The idea behind this kind of link is that the H earts 32 application can easily be

informed of available data acquisition modules6 It is also possible to make some very

basic (but critical) changes to the communications settings via thi s interface. Other

6 By simply clicking with the mouse on the folder speed button (located next to the edit dialogue box for
DLL Name), the user may navigate the hard disk in order to easily locate the dynamic link library searched for .

64

© Central University of Technology, Free State

Chapter 4 Vata AcqUlslllon

communications settings (such as buffer sizes and flow control options) should be set

in the data acquisition module itself and not be exposed to tampering by operators.

The question now arises: Where is this information stored? In the Registry. Cantu

describes the Registry as "a hierarchical database of information about the computer

and software configuration, and the user preferences." (Cantu, 1997 : 1173). Thurrot

et al describes the Registry in much the same way. (Thurrot et ai, 1997 : 57). Thurrot

et al also mentions that the function of the Registry has previously haphazardly been

performed by INI files in earlier versions of Windows®. The Registry is more

sophisticated than INI files due to its organisational structure. (Thurrot el ai, 1997 :

57).

The Windows® 95 Registry is based on six top-level keys, as shown in Figure 4-9:

d' Reg,shy Ed,to' I!I~EI
Begistry ~djt Y'iew tielp

El • My Computer

Iii D HKEY_CLASSES_ROOT

ifi Ll HKEY_CURRENT_USER

Ejl- '~
If J D HKEY_USERS

Eti D HKEY_CURRENT_CONFIG
. D HKEY_DYN_DATA

No.me I Dolo

~(Defou l t) (vBlue not set)

Figure 4-9: Tile Willdows" 95 Registry

It is possible to examine (view and modify!) the Registry by using a program such as

RegEdit.EXE, or other custom designed software. An important word of warning at

this point: Be extremely careful. According to Cantu, "The importance of the registry

should not be underestimated. The Registry holds crucial information about the

65

© Central University of Technology, Free State

Chapter 4 Data Acquisition

system hardware configuration, Control Panel settings, OLE servers, and even

statistics about the machine." (Cantu, 1997 : 1174). If the Registry is damaged, a

complete reload of Windows® 95 might be needed.

Windows® provides a set of API functions allowing interaction with the Registry. In

order to use the Registry, the correct Key (folder) has to be opened. The correct

Subkey (subfolder) then has to be opened, allowing access to values (items).

DelphiTM supplies an interface to the Registry through the two Visual Component

Library (VCL) classes TRegistry and TReglniFile. This facilitates working with the

Registry dramatically.

When adding entries to the Registry, it is recommended that the items be placed under

the Software subkey, and even under a company name, software product and version

number (Cantu, 1997 : 1175). This is the default behaviour of the InstallShield

Express software installation program which is supplied with Deiphi™7 In the

Hearts 32 application the complete key for application information is defined as

follows:

Code SIIippet4-10: Complete Registry Key used ill tile Ilearts 32 applicatioll

\HKEY LOCAL MACHINE\SOFTWARE\Double Precision Computing Services CC\Hearts 32\1.0\Data
Acquisition- Modules

This is graphically illustrated in Figure 4_10:8

From Figure 4-10 it can be seen that the individual items as listed in Figure 4-8 (page

64) are stored as values under the Data Acquisition Module subkey. The item

7 The InstaliShield Express installation software is a product in its own right, and seems to have become the de
faCI O standard for installing of programs in the Windows® environment. A cut down vers ion of instaliShield
Express is supplied with Borland® Dclphi™.

8 Although Figure 4-10 displays the key as starting with HMy Computer", this part is not supplied when gaining
programmatic access to the Registry. The root of the key, therefore, is shown as \ .

66

© Central University of Technology, Free State

Chapter 4 Data Acquisition

DLL Description serves as the value name, while the value itself is comprised of the

rest of the data as shown in the dialogue box in Figure 4_8 9

A detailed discussion of the programming needed for access to the Registry, can be

found in Chapter 8.

it ' Reqlstry Editor Illila
BeglStry !;;dlt y\ew tjelp

~tJ · .-J HKEY_CLASSES_ROOT
~:e CJ HKEY_OJRRENT_USER

f~ · CJ HKEY_LOCAL_MACHINE
ffi--CJ Gonlig
£i:! ::. Enum
ffi-,D hardware

g;- :J Network

ffi :J Security

8-'::' SOFTWARE

:t CJ Apple
[f :J Borland

tt: ::a aasses
[+ -[] Olents

[f D Oescripbon

~: CJ Double Pfeosion Computmg SeMces CC

5' C.J Hearts J2'

[3 D 1.0 'lIIIl1l1l1l11mlllllll 'C:lII
If' CJ InstatiShleld
, { j INTEL

L± ::. Iomega Corporation

[£ D McAfee
1 r

• Ne~m~.~ __________ "o~~~.~ ______ __
~ (Datault) (value nol seQ

[~HP4745 Cardiograph II Pia- "HP47~SADlLYOYSyY'"
~Testing HP4700 "HP470D.DLl~"

..:J .
IMy Computer\HKEY lOCAI...J.1ACHINE\SOF'T'NAAE\Double PreCIsion CcmpWng SeM ces CC\Hecrts 32\ I 0\0010 AcQ ,(,

Figure 4-10: An example o/Ille Regislry enlries/or Hearls 31

3.3. Data acquisition

The data acquisition process can be outlined as follows:

1. The correct patient record IS identified and selected In the Hearts 32 database

(Figure 4-11).

2. The ECG tab IS selected, opening the dialogue box for ECG data acquisition

(Figure 4-12).

9 The value for each of the communications configu ration items has been concatenated into one long string in
order to ease the management of these items in the Registry. Each value in the string has been separated from
the other by using ASCII 255 (represented as a y in Figure 4- 10). This makes tokenising of the string possible
when the individual values need to be retri eved aga in.

67

© Central University of Technology, Free State

Chapter 4 Uata AcqulSltlOn

3. When the user activates the data acquisition procedure, Hearts 32 scans through

the Registry entries, searching for the data acquisition DLL that has been set as the

default DLL.

3. Hearts 32 now proceeds by attempting to load the default data acquisition DLL,

and invoking the data acquisition function located in the DLL.

4. The name of the temporary file in which the data are stored during processing is

supplied by Hearts 32, and is based on the computer number (an internal identifier

which is used at the Department of Cardiology, Universitas Hospital, and uniquely

identifies a patient).

5. Once the data have been acquired from the ECG machine, the data acquisition

DLL will decode and calculate (reconstruct) the numeric values.

6. As soon as control has been returned to Hearts 32, the reconstructed ASCII file

will be compressed and entered into the ECG table of the Hearts 32 database.

Select Il Patient EI

Search Eield: I ComputerNumber -.:J
Search 1ext: Ip400 Qo!1

.. I .. 1 ~ 1 ~, 1

Computer Number Surname

P39 PRINSLOO

P4 PARRY

P40 POPE

• P400 PAll

P41 PRETORIUS

P42 PROKOPIOU

P43 PRETORIUS --'
P44 PETERSEN

~ •
QK ,Cancel I

Figure 4-11: Patient selectioll dialogue box ill Hearts 32

68

THIS BOOK IS
THE PROPERTY

OF THF r. , .~

-J.triOOI

IEf!jNIKON
-c:sr TE I

-© Central University of Technology, Free State

Chapter 4 uata AcqUlS1l10n

o HEARTS I!II!JEI
Eire .search Setyp t1elp

Eacemaker I Tail Pacemaker I Cardiothoradc SurgeI)' I X-Bay I
eatienl I Mmission I Lipids [1~-:=J1 Stress fCG I Ech.Qctudiography I

MR LN PAll
Date Recorded
107-o8c-97

ComputerNumber

• P400

P400

P400

hlJ

Browsing

I

Time R.ecorded

I" :34:33 PM

&<i'l(iew I

Date I Time .
07-Dec-97 11 :34:33 PI

Oa-Dec-97 12:04:13 AJ-

08-08C-97 1 206 :3~

Figure 4-12: ECG dialogue box ill Hearls 32

Details of the programming involved to enable these steps can be found in Chapter 7.

4. Summary
Data acquisition can be modelled as a "black box", consisting of a hardware and

software layer. In the case of Hearts 32, the software layer of the data acquisition

module will contain the functionality that will allow it to communicate with a

HP4745A ECG machine and also to decode and calculate the ECG data set.

In order to keep Hearts 32 flexible and responsive to a changing environment, data

acquisition modules are implemented as dynamic link libraries (DLLs). DLLs have

some distinct advantages over static linking of code. These include run-time loading

of code, (simultaneous) code sharing, modular design and hiding of implementation

details.

69

© Central University of Technology, Free State

Chapter 4 uata AcqUlslllon

Implicitly loaded DLLs are connected with the main application at design time. Since

data acquisition modules for Hearts 32 can (and will) be developed after the creation

of Hearts 32, implicit DLL loading will not suffice. Explicit DLL loading on request

of the application (Hearts 32) allows loading of specified DLL files. This is exactly

what is needed for Hearts 32.

The Windows® 95 Registry performs an important task in keeping track of the system

configuration. Storing configuration information for data acquisition modules in the

registry allows well organised, secure storage of these settings.

70

© Central University of Technology, Free State

Chapter) lJatabase systems: a bnet overView

Chapter 5

Database systems: a brief overview

1. Introduction

According to Brookes (Brookes et ai, 1982 : 185-186), the following drawbacks are

associated with file based systems:

• Difficulties accessmg data collected for a particular application, to satisfy the

needs of a different application or ad hoc requests. This is caused by

inconsistencies in data-storage formats, early aggregation of data with resulting

loss of detail and poor data collection timing.

• Problems with the association of data which relate to the same entity, but are

stored in different files. This is caused by inconsistent coding systems,

incompatibility of storage media and most significantly, the inability of the system

to access data without knowing the key to the desired record.

• Duplication of data in different files (to enable processing by multiple applications

that cannot be integrated) leads to excessive costs in terms of storage and

maintenance of code. An example is the storage of the same address information

for the same person in more than one file .

• Changes made to the files of installed systems tend to be high, due to the

inflexibility generated by conventional file structures. The tight coupling between

the application programs and the file structures also contributes to these high

costs.

• Management and control over data resources while safeguarding data integrity,

together with fast, secure access to data, is a difficult task.

(Brookes e/ ai, 1982 : 185 - 186)

These difficulties can largely be overcome by storing data in a database rather than in

files . Accordingly, a database will be used to store the data of Hearts 32.

71

© Central University of Technology, Free State

Chapter 5 Database systems: a bnet overview

2. Choice of database management system

The database management systems available for the desktop PC (such as dBASE®,

FoxPro and even Paradox®) have, up to recently, been nothing more than glorified file

systems. Possibly the most important reason for this was the fact that the computers

themselves were not powerful enough to support complex database operations. This

situation has changed drastically with the advent of powerful desktop PCs which are

in use today.

A first choice would have been to implement the database usmg Client/Server

technology, and a database management system such as Oracle or InterBase. These

DBMSs offer industrial strength solutions to database problems.

Table 5-1: Advantages of ClienllServer database technology

Provides a cost-effective solution for many companies as an alternative to
mainframe solutions.

2 Allow departmental access to data, allowing departments to process only the part
of the business for which they are responsible.

3 Enforce data integrity rules [ur the entire database.

4 Provide better division of labour between the client and the server (each
performs tasks for which it is best suited).

5 Provide the ability to use the advanced data integrity capabilities provided by
most database servers.

6 Lower network traffic as subsets of data are returned to the client, as opposed to
entire tables, as is the case with desktop databases.

7 Provides backup and recovery capabilities, while the database is on-line.

(Pacheco & Teixeira, 1996 : 838 - 839, Jensen et aI, 1996 : 344).

According to Jensen et ai, the client/server solution is not the correct solution for every

application.

72

© Central University of Technology, Free State

Chapter) Database systems: a brief overview

Table 5-2: Disadvalltages o/ClielltlServer database tecllllology

Administering an SQL database server typically requires more time and effort
than does a file server database. A database administrator is required for SQL
servers. The administrator grants access privileges and performs system
maintenance, among other duties.

2 Database servers require a hardware investment beyond what is required for file
server system. The additional expense of adding a database server to a system
can be very high.

3 The technology investment required to implement a database server is greater
than that for a file server. For example, developers trained in delivering
client/server systems often command higher salaries than do those building file
server systems.

4 When you move between SQL servers, the different dialects can create
migration problems.

5 Changing table structures, validation rules, and indexes can be a substantial
undertaking in a client/server environment. Similar changes in a file server­
based system are often less complex.

6 Data refreshing on client screens is not automatic in a client/server environment.
In some file server-based systems, this refresh can be set up to occur
automatically.

7 Table and record locking differs between the various servers. Some applications
need record-level locking whereas high transaction-oriented applications do not.
If record-level locking is necessary, programmatic schemes have to be
implemented in some servers.

(Jensen et ai, 1996 : 344 - 345).

The biggest problem, once again, IS the price of these Relational Database

Management Systems (RDBMSs). (Oracle Workgroup curt'ently costs around

R 2,000.00 per seat, academically priced. At 15 users, this represents an initial

investment of nearly R 30,000.00. This figure does not take into account the upgrade

to the existing file server that might be necessary. It also does not take into account

the yearly licensing fee for the Oracle RDBMS software.) The Department of

Cardiology, Universitas Hospital , Bloemfontein, cannot curt'ently afford to spend

money on the purchase of such a piece of software. Instead it has been decided that

(at least for the initial phase) a desktop RDBMS included with DelphiTM, will be used.

Table level 7 of the Paradox® driver supports validity checking, table lookup,

referential integrity, extended field types and more. The lack of these features in the

73

© Central University of Technology, Free State

Chapter 5 Uatabase systems: a bnet overVlew

dBASE® III driver has necessitated the database change. Implementing the Hearts 32

database using the functionality of the Paradox® driver, will ease migration to a true

SQL database management system in future.

2.1. The Paradox® database management system
The Paradox® driver supplied with Borland® Delphi™ Professional Edition version 3

supports the following:

2.1.1. Validity Checks

In Paradox® tables, validity checks are rules imposed on a field to ensure that the data

entered in the field meet certain requirements. The way in which a validity check is

defined determines what can be entered in a field. Database Desktop provides five

kinds of validity checks:

Table 5-3: Paradox® Validity Checks

Validity check Meaning

Required Field Every record in the table must have a value in this field.

Minimum Value The values entered in this field must be equal to or greater than
the specified minimum.

Maximum Value The val ues entered in this field must be less than or equal to the
specified maximum.

Default Value This value will be entered into the field automatically, if no other
value is entered.

Picture A character string that acts as a template for the values that can be
entered into the field.

Validity checks for a Paradox® table are saved in a file with the table's name and a

.V AL file extension.

74

© Central University of Technology, Free State

Chapter 5 Database systems: a brief overview

2.1.2. Table lookup

The table lookup feature makes it possible to refer to another table to look up

acceptable values for a field. Valid values are then automatically copied from the

lookup table into the primary table.

Table lookup is primarily a data entry tool. It is provided to help enter data that

already exist in another table. To establish a more powerful tie between two tables, a

referential integrity relationship should be defined. While table lookup ensures that

data are copied accurately from one table to another, referential integrity ensures that

the ties between like data in separate tables cannot be broken.

2.1.3. Secondary indexes

A secondary index is a field or group of fields that defines an alternate sort order for

the table. Paradox® tables can have more than one secondary index. It is also

possible to create composite secondary indexes by combining two or more fields.

Fields of type memo, formatted memo, binary (BLOB), OLE, graphic, logical or bytes

fields cannot be used to create primary or secondary indexes.

Paradox® tables have these options for secondary indexes: Composite, Unique, Case­

sensitive, Maintained, and AscendinglDescending.

Secondary indexes are used to link Paradox® tables and also to speed up search and

locate operations.

2.1.4. Referentiallntegrity

Referential integrity means that a field or group of fields in one table (the "child"

table) must refer to the key of another table (the "parent" table). Only values that exist

in the "parent" table's key are valid values for the specified field(s) of the "child"

table .

75

© Central University of Technology, Free State

Chapter 5 Database systems: a brief overview

2.1.5. Password security

To ensure that a Paradox® table is protected from access by unauthorised users, a

password can be provided. This is especially important in a multi-user environment.

Not only can a password be establ ished for the table as a whole, but specific rights to

the table or individual fields can be assigned.

The master password controls access to an entire file. Auxiliary passwords provide

different levels of access privileges for different users in a group.

2.1.6. Table language driver

A table's language driver determines the table's sort order and available character set.

2.1. 7. Paradox® field types

Table 5-4: VlIlid PlIrlldox" field types IIl1d sizes

Symbol

A

N

$

S

I

D

T

Size

1 - 255

0-32 •

Type

Alpha

Number

Money

Short

Long [nteger

BCD

Date

Time

* Number of digits after the decimal point.

76

Comments

Store string values.

_10307 to 10308 with 15 significant
digits.

Integers In the range -32,767 to
32,767.

32-bit signed integers III the range
-2147483648 to 2147483647 (plus or
minus 2 to the 31 st) .

Binary Coded Decimal.

Valid dates from January 1, 9999 BC
to December 31, 9999 AD. Database
Desktop correctl y handles leap years
and leap centuries and checks all
dates for validity.

Time of day, stored in mi lliseconds
since midnight, limited to 24 hours.

© Central University of Technology, Free State

Chapter 5

Symbol

@

M

F

G

o

L

+

Database systems: a brief overview

Table 5-4: Valid Paradox'" field types alld sizes (c0111illlled)

Size

I - 240"

0-240"

0-240'"

0-240'"

Type

Timestamp

Memo

Comments

Timestamp fields contain both time
and date values.

Use memo fields for text strings that
are too long to store in an alpha field.

Memo fields can be virtually any
length. The size value assigned refers
to the amount of the memo Database
Desktop stores in the table. This can
be from I to 240 characters. The rest
of the memo is stored in a .MB file.
The amount of data a memo field
contains is limited only by the disk
space available on the system.

Formatted Memo Same as Memo fields, except that
text can be formatted.

Graphic

OLE

Logical

Auto-increment

Can store graphics files, such as
scanned images (.BMP, .GIF, .TIF,
.PCX and .EPS files for example)

Use the OLE field to store different
kinds of data, such as images, suund
and documents.

Contains values that represent "True"
or "False",

Paradox® auto-increment fields
contain long integer, read-only
values. Database Desktop begins
with the number 1 and adds one
number for each record in the table.
Deleting a record does not change the
field values of other records.

** Memo and formatted memo fields can be virtually any length. The value you specify in the Crcmc Table dialog
box refers to the amount of the memo DataBase Desktop stores in the tab le (I to 240 characters for memos and
o to 240 characters for formatted memos). The entire memo is stored outside the tab le. For example. if you
assign a size value of 45 to the field, DataBase Desktop stores the fi rst 45 characters in the table. h stores the
whole memo fi eld in another file (with the extension .MB) and retrieves it as you scroll through the records of
the table.

*** Optional.

77

© Central University of Technology, Free State

L-napler) Vatabase syslems: a bnet overview

Table 5-4: Valid Paradox® field types and sizes (coll/illlled)

Symbol Size Type Comments

B 0-240'" Binary Binary fields should be used only by
advanced users who need to work
with data that Database Desktop
cannot interpret. Database Desktop
cannot display or interpret binary
fields.

y I - 255 Bytes Bytes fields should be used only by
advanced users who need to work
with data that Database Desktop
cannot interpret. A common use of a
bytes field is to store bar codes or
magnetic strips.

2.2. The use of BLOB fields

A BLOB field is a field in a table that holds a reference to a binary large object

(BLOB). BLOB fields can also be described as database fields that contain data of

arbitrary length. Unlike binary fields (in Paradox®), BLOB field s do not store the

binary data directly in the database table. Instead, the field in the physical database

table contains a reference to a separate file that contains the individual BLOB value

for the field. In Paradox®, BLOB fields are stored outside of the primary table file

(.DB file) in a .MB file.

The use of a BLOB field is perfect for storing ECG data, since the size of the ECG

data set is not known in advance. An average size for these data sets has been

determined (Table 6-11 on page 105 in Chapter 6) for the HP4745A Page Writer II

Cardiograph.

From previous experience with the storing of a large number of small files on the file

server at the Department of Cardiology, Universitas Hospital, it is known that these

files cause problems on the Novell® Netware® 4.1 file server. These problems surface

when the contents of the hard disks is backed up using the Arcserve 6.0 backup

software from Cheyenne. It appears that the backing up of one large fil e happens

78

© Central University of Technology, Free State

Chapter 5 Database systems: a bnef overview

much faster than the backing up of a number of smaller files with the same total file

size as that of said large file . This problem was con finned with the support personnel

at the computer centre ofthe University of the Orange Free State.

Another problem with the storage of these small files was identified when the existing

Novell® Netware® 4.1 file server hardware was upgraded. The migration of the data

contained on the hard disk of the server took nearly two days to complete, while the

software used for migration predicted a migration time of about 3 hours. The problem

can once again be attributed to the large number of small files stored on the file
I server.

3. Table creation

The DataBase Desktop software that is supplied with DelphiTM is a useful tool for

creating and manipulating database tables interactively (Figure 5-1). While this is fine

for just creating tables, it does, not however, solve the problem of documenting the

structure of the database. DataBase Desktop does not even offer the choice of printing

the structure of a table!

Restructure Pomdox 7 Tobie Ecg DB £I
field roster;

2 Daie
3 Time
4 ECG

Field Name

5 ECGCounrer

. Type, Size Key
A 8
o
T
B
S

I IVohdity Checks

P~''l6 I
I P 1. Requhed Field

, . Minimum value:

1 Oelaultvelue:

.~ I

I_E"_,,_,"_,_.'d_"_,m_,_"_, t_O_25_"'_~_'_""_"_'O_"9_. _______ ---"1 i ~aufe'

r Pac.ll,Table Assis.\..

Seve6s ... Cancel Help

Figure 5-1: TlIble erelltioll with the Borlllm!" DlItllBlIse Desktop

I These files include rough ly 12,000 patient report files (MS Word® files) , as well as digitally captured ECG data
files. The plan is to store all these files in BLOB fi elds in future.

79

© Central University of Technology, Free State

Chapter 5 Database systems: a brief overview

Jensen et al describes the use of the Create Table method of the TTable2 object in

order to create tables and indexes at runtime. (Jensen et ai, 1996 : 224 - 231).

Basically all that is needed is that the fie ld names, their data types and sizes as well as

a flag to indicate whether the field is required or not, be specified. If indexes are to be

created, the name of the index, the field name which is indexed as well as index

options such as case sensitivity and uniqueness are specified. All that remains is to

call the Create Table method.

Pacheco & Teixeira (Pacheco & Teixeira, 1996: 813 - 814) summarise the process as

fo llows:

I. Create an instance of a TTable.

2. Set the DatabaseName property of the table to a directory or existing alias.

3. Give the table a unique name in the TableName property.

4. Set the TableType property to indicate what type of table you want to create

(Paradox® or dBASE®).

5. Use TTable.FieldDefs' Add method to add fields to the table. Parameters include

field name, field type, size of the field and a boolean parameter indicating whether or

not the field is required.

6. If needed, use the Add method of TTable.IndexDefs to add indexes. Parameters

include a string identifying the index, a string that matches the field name to be

indexed and a set of TIndexOptions that determines the index-type.

"The following code creates a table with integer, string, and float fields with an index on

the integer field. The table is called FOO.DB, and it will live in the C:\TEMP directory."

(Pacheco & Teixeira, 1996 : 814).

2 TTable is used to access data in a sing le database table using the Borland® Database Engine (80E). Trable
provides direct access to every record and field in an underlying database table, whether it is from Paradox®,
dBASE@. Access, FoxPro, an ODBe-compliant database, or an SQL database on a remote server, such as
InterBase, Oracle, Sybase, MS-SQL Server, Informix, or 082.

80

© Central University of Technology, Free State

Chapter 5 Database systems: a brief overview

Code Snippel 5-/: Tuble crealion via Ihe TTable.CrealeT"ble mel/lOll

begin
wi th TTab l e. Create(Se l f) do begin

Da tabaseName : = ' c : \temp ';
Tabl eName : = ' FOO ';
Tabl eType : = ttPa radox;
with Fi eldDef s do begin

Add(' Age', ft l nteger , 0 , True) ;
Add(' Name ', ft Stri ng , 25 , False) ;
Add(' Weight ', ftFloat , 0 , Fal s e) ;

end;

/1 Create TTabl e object
1/ Point to directory or a l ias
/1 Give table a name
II Make a Paradox table

II Add an intege r field
/1 Add a st ring fi e ld
/1 Add a floating-poin t field

{ Create a primary index on the Age fi e ld ... }
IndexDe f s .Add(", ' Age ', [i x pr imary, i xUnique 1) ;
Crea t eTable ; II Crea t e the tabl e

e nd;
end ;

At a first glance this technique seems to solve the problem of programmatic table

creation. For simple tables it will suffice. However, when using advanced features

found in, for example, the Paradox® and InterBase drivers, this method of table

creation is not sufficient.

Pacheco & Teixeira (Pacheco & Teixeira, 1996 : 888 - 900) describe the problem

identified in the previous paragraph as follows: " ... there are a number of capabilities

provided by the Borland Database Engine (BOE) that are not surfaced by Delphi's data­

access components. Because Delphi tries to maintain an interface that is database­

independent, database-specific features provided by the BDE are generally the types of

things for which Delphi doesn't provide." (Pacheco & Teixeira, 1996 : 888).

Fortunately Borland® supplied a set of API functions with which a program can

interface directly (on a low level) with the Borland® Database Engine (BDE). It is

through this mechanism that the programmatic creation of Paradox® tables, complete

with validity checks and referential integrity constraints, is made possible.

It fairly quickly became apparent that the use of these low-level API functions would

not be too easy. The descriptions and code examples found in the Delphi™ help files

were not really helping either. A search on the Internet for the topic of low level table

creation via the BDE API yielded only one positive result. This was in the form of a

program that can analyse an existing table structure (created with a tool such as the

DataBase Desktop) and generate an Object Pascal program which could, in tum,

create the table. From the documentation it is apparent that the initial idea behind the

81

© Central University of Technology, Free State

Chapter 5 Database systems: a brief overview

SCANNER) software was to create an Object Pascal unit which could be included in a

software product, to programmatically create the necessary tables the first time that

the program was run. This would eliminate the need for table distribution.

The output of the SCANNER software (a valid Object Pascal source code file) was

adapted for use as part of Hearts 32. The code defines procedures for the creation of

fields , indexes, validity checks, referential integrity constraints as well as table

creation. Creating the tables is as easy as listing the information for each item (fields,

indexes, validity checks, referential integrity constraints) in array format and calling

the table creation procedure. The SCANNER software already prepares such a listing,

saving a lot of work. This is illustrated as follows:

Code SI/ippet 5-2: Table creatiol/usil/g procedures from tile SCANNER code

end;

ECG :
begin

dbDatabase. Params.Add(' PATH=D : \HEARTS . 32\DATABASE\ ') i
dbDatabase . Connected : - True ;
Check (DbiGetDirectory(dbDatabase.Handle , False, szDirectory

DefE"ield{ ' ComputerNumber ' , fldPDXCHAR, 0 , 0, B, 0) ;
DefE"ield(• Date', fldPDXDATE, 0 , 1, 1, 0) ;
LJefl:'ield('Time' , tldPDXTIME:, 0 , 2, 1, 0) ;

DefE'ield(' ECG ' , fldPDXBINARYBLOB, 0, 3, 0, 0) ;
DefField ('ECGCounter ' , fldINT16, 0 , 4 , 1, 0) ;

Deflndex(, , , , ", [1 , 2 , 3 L
0 , 0, 3 , 16 , 0 , 2048 , 1 , True , True , Fa l se , True,
False, False, False , False) ;

DefValCheck(0 , 1, [0], { 0], (0),
True, False, False, False , lkupNONE) ;

)) ;

DefValCheck(1, 2, (0 , 0 , 0, 128), [0, 0, 0, 128], { 0, 0, 0 , 128],
True, False, False, False, " , " , 1kupNONE) ;

DefRefInt(0 , I , 1, [1 1 , { 1 1 , ' refECGPatient ', ' Patient . DB' ,
r i ntDEPENDENT , rintCASCADE , rintRESTRICT) :

DefTable(' ECG . DB ' , ' PARADOX ', ", 5 ,1, 5,1) :

Check(DBICreateTable(dbDatabase.Handle , True , TableDesc)) ;

Admittedly, the heavy use of parameters in the procedure calls tends to clutter the

code and makes it difficult to understand the meaning of each parameter. Some study

of the procedures used is necessary before the parameters can easily be understood.

3 A ll attempts to contact the author of the SCANNER software in order to pass credit fail ed. Only an out-dated e­
mail address for the author is supplied with the software!

82

© Central University of Technology, Free State

cnapter) Vataoase syslems: a one! overvIew

A code example of some of the procedures that perform the actual work is shown

below:

The data types mentioned below are all defined by the BDE API.

Code SlIippet 5-3: Global variables used/or BDE API calls to create tables at fIIntime

var
szDirectory
TableDesc
FieldsDesc
RefIntegOp
RefInteg
valCheckOp
ValCheclcDesc
IndexesOp
IndexesDesc

DBIPATH i
CRTblDesCi
array [o .. 80
arra y [O .. 20
a r ray[O .. 20
array[O .. 20
array[O .. 20
array[O .. 20
array[O . . 20

of FLDDesc ;
of CROpTypei
of RINTDesc;
of CROpType ;
of VCHKDesci
of CROpTypei
of IDXDesc;

Code SlIippet 5-4: Tile De/Field procedllre/olllld ill tile SCANNER code

procedure DefField (canst sName : string;

begin

canst iAFldType , iASubType , iAFldNum,
iAUnitsl,iAUnits2 : integer) ;

with FieldsDesc[iAFldNum 1 do
begin

iFldNum := iAFldNum;
StrPCopy(szName , sName) ;
iFldType := iAFldType ;
iSubType : = iASubType ;
iUnitsl := iAUnitsl ;
iUnits2 : = iAUni ts 2 ;

end ;
end ;

Code SlIippet 5-5: Tile DefTable procedure/o/llld ill tile SCA NNER code

Procedure DefTable (canst sName, sType , sPassword : string;
const iAFldCount , iAIDXCount, iAValChkCount, iARintCount

begin
FillChar{ TableDesc, SizeOf(CRTblDesc) , #0) i
with TableDesc do
begin

StrPCopy{ szTblName, sName) i

StrPCoPY{ szTblType , sType) ;
bProtected := (sPassword <> ") :
if bProtected the n
begin

StrpCopy (szPassword , sPassword) ;
Session . AddPassword(sPas sword) ;

end ;
bPack : = true ;
iFldCount : = iAFldCount;
pFldDesc : = @FieldsDesc;
iRintCount := iARintCount ;
pecrRintOp : = @ReflntegOp ;
pRINTDesc : = @Reflnteg;
iValChkCount : = iAValChkCount;
pecrValChkOp : = @valCheckOp;
pvchkDesc : = @ValCheckDesc ;
iIDXCount : = iAIDXCount;

Colle SlIippet 5-5: Tlte DefTable procedllre/oulld ill lite SCA NNER colle (Colltillllell)

integer) :

pecrIDXOp : = @I ndexesOp ;
pIDXDesc .- @IndexesDesc;

end ;
end ;

THIS BOOK IS
THE PROPERTY

OF THE

83

- 5 SEP 2001
TECHNIKON
FREE STATE

© Central University of Technology, Free State

Uatabase systems: a bnet overview

The bulk of the code shown in Code Snippets 5-2 through 5-5 represents manipulation

of the supplied infonnation (specifically changing strings from Pascal-style to ASCIIZ

strings) and copying of the information into data structures required by the BDE API.

The code lines marked in bold in Code Snippet 5-2 contain the actual BDE API calls

used to create the database table.

4. Loading of the test database

Creating a test database for an application such as Hearts 32 is a large and complex

undertaking. Instead of creating imaginary data for each table, a conversion program

was written to convert some of the existing data found in the Hearts database files

(dBASE® III Plus format) to the new Paradox® database files.

Traditional tools would require code along the following lines:

Code SlIippet 5-6: Pseudo code for table cOllversioll

Open source database

Open target database

While lloL enu or !juun..:~ dCltabase

Create a blank record in the target database

Copy the values of all fields from the source record t o t he target record

Read the next source r ecord

Whi le end

DeiphiTM provides a very useful component in the Visual Component Library (VCL),

namely the BalchMove component. CantU summarises the action of the BatchMove

component as follows: "A third useful component for database manipulation is

BatchMove, which allows a program to copy, append, or delete groups of records or

an entire table from two different databases." (CantU, 1997 : 835).

By using BatchMove, code such as shown above is not needed. Basically, a DelphiTM

form must be created containing two TTabie components and a BatchMove

component. The first table is connected with the original table file. The second table

is connected with the target table file. The Source and Destination properties of the

BatchMove component is set to reflect the names of these two TTabie components.

An example of this can be seen in Figure 5-2.

84

© Central University of Technology, Free State

Chapter 5 Database systems: a brief overview

BatchMove can create the destination table, but for this research the destination table

was previously created. The main reason for this is the fact that some structural

changes were made to the original dBASE@ III Plus database file structures. The

Mappings property of BatchMove is used to specify the correspondence between

fields in the source and destination tables when field names do not correspond.

In a very basic scenano, the conversIOn process can be completed without even

compiling the program! Simply right click with the mouse on the BatchMove

component on the form and select Execute.

roll Forml I!lIilI3

•• 9~19~1
. ~

••• ~ •.•....••. ~ ..

Figure 5-2: Design of a data conversion program using the BatchMove componellt

The objects and their corresponding properties (for the example found in Figure 5-2)

were as follows:

85

© Central University of Technology, Free State

Chapter 5 Database systems: a brief overview

Code SlIippet 5-7: Properties 0/ a/orm/or dattl cOl/versiol/ witlr BatclrMove

object form! : TForml
Left'" 200
Top = 121
Width = 234
Height = 167
Caption = ' Forml '
Font . Charset = DEFAULT CHARSET
Font . Color = clWindowText
Font . Height = - 13
Font . Name '" ' MS Sans Serif '
Font . Style = [}

Pixels Perlnch = 120
Text Heigh t = 16
object DataSour cel : TDataSource

DataSet = Tablel
Left "" 48
Top = 24

end
object DataSource2 : TDataSource

DataSet = Table2
Left = 160
Top '"" 24

end
object Tablel : TTable

DatabaseName = ' D: \HEARTS .32\DATABASE\DBASE '
TableName = ' dokter . dbf '
Left = 48
TOp = 72

end
object Table2 : TTable

DatabaseName = ' Hearts32 '
TableName = 'doctor . db '
Left'" 1 60
Top = 72

end
object BatchMovel : TBatchMove

AbortOnKeyViol = False
ChangedTableName = ' ChangTab'
Destination = Table2
KeyViolTableName ' KeyViol '
ProblemTableName = ' ProbTabl '
Source = Table1
Left = 104
Top = 48

end
end

BatchMove works very easy and efficiently as described above. Normally only one

table is translated to another. The situation tends to become more complex when the

database consists of a number of tables, such as in the case of Hearts 32. What is then

needed is a program that will convert the tables one after the other. This automates

the process which would otherwise be quite labour intensive (if a programmer had to

interactively change the properties of the TTable and BatchMove components for each

table to be converted!).

It is worth mentioning that the complexity of the conversion is further increased by

the referential integrity rules defined between the tables in the Hearts 32 database. As

a trivial example, consider the following referential integrity rule:

86

© Central University of Technology, Free State

Chapter 5 Database systems: a bnet overvIew

For each record in the ECG table, a master record containing the computer number

for the patient must exist in the Patient table.

If the data conversion process attempts to convert data from the dBASE® III Plus

ECG table before the data for the Paradox® Patient table have been converted, the

conversion process will abort with a key violation error, since the primary keys

needed to satisfy the referential integrity rule in the abovementioned example do not

exist in the master (Patient) table.

It is important to point out that the loading of existing ECG data that were captured

and stored in files on the departmental file server at the Department of Cardiology,

Universitas Hospital, could not be managed by using the BatchMove component. The

main reason for this was that the data had to be decoded, calculated, reformatted and

compressed before they could be stored in the Hearts 32 database.

5. Summary
Flat file storage systems have some serious drawbacks that can be overcome hy the

use of a database management system. Client/Server database management systems

can provide good solutions, such as cost-effectiveness, enforcing of data integrity

rules, division of labour between server and client, lowering of network traffic and

backup and recovery utilities. Client/Server technology is not suited to all situations,

and generally require a bigger investment than a file server database in terms of effort,

skill and finances.

Table level 7 of the Paradox® driver supports enhanced features which makes

Paradox® a good choice for a desktop database. The Paradox® support for BLOB

fields are of particular interest for the digital storage of ECG data in the Hearts 32

database, since the exact length of each ECG data set (in bytes) is not known at

design-time (of the database).

The DataBase Desktop allows for interactive table creation (definition and popUlation

of tables) . No provision for documenting these tables is made by the DataBase

87

© Central University of Technology, Free State

Chapter 5 Database systems: a brief overview

Desktop. To overcome this problem, tables can be created using the TTable

component. While TTable allows programmatic table creation, it does not support

advanced features found in the Paradox® and InterBase drivers.

Low level access to advanced Paradox® features is facilitated via the BDE API. This

allows the programmatic creation of a Paradox® table with validation rules, primary

and secondary indexes, referential integrity rules and password protection.

The BatchMove VCL component is extremely easy to use and very useful for

duplicating data from one table to another, even across tables of different types (such

as dBASE® and Paradox®).

88

© Central University of Technology, Free State

Chapter 6 Database Storage Format

Chapter 6

Database Storage Format

1. Introduction

In order to make the captured digital ECG data really useful, the data have to be stored

on a computer system. The following considerations are important:

1. The size of each file must be kept as small as possible (since we anticipate a large
number of files to be stored for the particular application).

2. Retrieval of the stored data must be performed within a reasonable time (less than 5
seconds).

3. The stored data should not be encoded (in other words, the use of special decoding
modules should not be required).

It should be stressed at this point, that this chapter is not a study in compression

technology. An optimal method for database storage of digitally acquired ECG data

in a hardware independent manner will be identified. 1

2. Description of the data used for analysis

2.1. Introduction

An additional module was created for the existing Hearts database to capture digital

ECG data sets whilst awaiting the completion of this research 2 The rationale behind

this step was that these digital data sets could later be converted and stored in an

appropriate format (as determined by the results of this research).

I Hardware independence in this case refers to the format of the data as determined by the ECG machine. It does
not refer to storage in the computer system.

2 A specia l version of the communications program was prepared in Clipper 5.2. The CA Clipper Tools libra!)'
version 3.0 (by Computer Associates, the manufacturer of Clipper) was used to implement the RS-232
communications routines.

89

© Central University of Technology, Free State

Lnapter () Uatabase :storage tonnat

2.2. Population

One thousand and twelve (l012) ECG data files (HP4745A format) were collected

between 20 December 1996 and 8 May 1997. These data files contain digital copies

of recorded ECG tracings. In order to better understand the composition of these files ,

an analysis was done. From the Hewlell Packard Diagnostic Cardiology Digital

Transmission Protocol (as discussed in Appendix A) it is known that the data file

consists of two major sections:

I. Header Data (further discussed under 5.13 Header Data Description on page 194 in

Appendix A). Header Data includes infonnation on patient, CART settings and

meta infonnation on the Lead Data, which follows in the section "Lead Data".

2. Lead Data (also referred to as Wavefonn data in this thesis), are further discussed

under 5.14 Lead Data Description on page 198 in Appendix A. Lead Data include

lead identifier information as well as the actual lead data which represent the bulk

of the data file.

o Waveform Data
95.95%

Hewlett Packard ECG (HP4745A)

• Header Data
4.05%

Figure 6-1: Compo1lellfs of digitally recorded ECG traces.

A basic descriptive statistical analysis of the data files yielded the following

information:

Table 6-1: Descriptive Statistics (HP Digital Storage Format)

Parameter Total file Header WavefonnJ Patient Cart Wave-
Size Settings fonn2

Min 8766.00 397 8366 32 91 274

Max 15003.00 411 14603 46 91 274

Mean 9878.42 400 9478.38 35.04 91.00 274.00

SD 639.06 0.79 639.07 0.79 0.00 0.00

CV% 6.47 0.20 6.74 2.26 0.00 0.00

90

© Central University of Technology, Free State

LnapLer 0 Uatabase Storage Format

In Table 6-1 above, the column descriptions have the following meaning: Parameter

identifies the statistical parameter, Total file size shows the total size of the ECG data

file in bytes, Header shows the total size of the header information contained in each

file , Waveform j shows the total size of the waveform information in bytes. Patient

shows the portion of the header information which is dedicated to patient information.

Cart sellings shows the portion of the header information dedicated to the settings of

the electrocardiograph. Waveform 2 indicates the number of bytes needed to describe

the actual waveform data (which follows in the Lead Data block directly after the

Header Data block). The value for the Header column is thus the sum of the Patienr,

Cart Sel/ings and Waveform2 columns.

The following deductions can be made from the descriptive statistics:

• Not all digital ECG files are of the same size (this is indicated by the difference

between the minimum and maximum values for Total file size).

• The relatively small CV% (6.47%) for the total file size indicates that there is little

overall variation from the mean Total file size of 9878.42 bytes.

• The extremely small CV% (0.20%) for Header information indicates that the

Header portion of each data set has nearly the same size (400 bytes) and that the

Header portion of the data set does not contribute significantly to the variation in

Totalfile size.

• The portion of the header information responsible for the variation in size (of the

header information) is the patient information section. (This can be attributed to

the fact that patient identification numbers are represented as ASCII strings of

variable length.)

• The CV% of 6.74% for waveform information (Waveformj) shows that the biggest

variation in Total file size is caused by the size of the waveform information

(Waveformj).

91

© Central University of Technology, Free State

Chapter 6 Database Storage Format

• The sum of the storage space needed for the 1012 data files theoretically equals

9.53 MB. (This figure was calculated by summation of all file sizes and does not

account for hardware implementation details such as the block size of the fixed

disk on which the data are stored, which will allocate more storage space than the

size of the file, given that the block size is larger than the average file size. This is

typically the case with large hard disk drives. Fortunately, modern operating

systems are starting to overcome this problem by implementing block sub­

allocation.)

One should keep in mind that for this specific application, not all data fields in the

patient section of the digital ECG are present, due to the way in which the

electrocardiographs were set up. If all of the patient fields (as defined in Table A-14

on page 195 of Appendix A) were to be entered, the size of the patient section would

be 183 bytes (99 bytes for all data, and 4 x 21 (84) bytes for identification purposes).

The reason why the portions of the header data needed for cart settings and waveform

information (Waveform2) stay constant is that only one ECG configuration is used as

standard. If different recording formats were used, these values would also have

varied.

The digital ECG files do not only contain recorded ECG data, but also meta-data.

These meta-data are used for the identification and description of fields. (The

sequence GS Code RS is used to identify data fields in the header part of the record.

The header part also contains meta-data which detail the waveform data following the

header data. Please refer to Table A- \3 on page 194 of Appendix A for a complete

description of the header block format.)

3. HP Digital Storage Format

The first storage option considered was that of utilising the existing digital storage

format as developed by Hewlett Packard. Digital ECG files extracted from HP4745A

Page Writer II Cardiograph machines were used for analysis and testing. (A

discussion of the extraction procedure can be found in Chapters 4, 8, 9 and Appendix

92
© Central University of Technology, Free State

Chapter 6 Database Storage Fonnat

A.) Please refer to the description of the data used for analysis on page 89 for more

information on the characteristics of these files.

With an average Tolal file size of 9878.42 bytes, one cannot help but be tempted to

implement HPs native file fonnat. Although these files are extremely compact, the

biggest drawback associated with them is the relatively high degree of complexity

needed to decode and calculate the actual values from these files, compared to a list

(file) with all the relevant data points readily available. The fact that hardware

independence is lost, makes such an implementation less attractive.

Another interesting possibility is that of transmitting the file stored on computer back

to the ECG machine, thus re-creating the ECG on the ECG machine itself. The

biggest drawback of this option is that it is too restrictive in tenns of hardware used.

These digital files will be used as a baseline value (at least when comparing file sizes),

against which comparisons with other storage options will be made.

Table 6-2: HP Digital Storage Format- Advantages & Disadvantages

Advantages Disadvantages

• Very small files. • Proprietary coding fonnat.

• Can be transmitted back to ECG machine .

HP Digital Storage Forrmt
600

soo 484

~ 400
338 0 • ,

c- 300 e
u.

200
137

100
42

1 8 1 0 1 0
0

< 8766 (8766;9546) (9546;10326) (10326:111061 (11106:118861 (11866:1Ui66) (12666;13"6J (13U6;142261 (14226;15006) > 15006

File size (bytes)

Figure 6-2: Frequellcy Distributioll a/file size/or tile HP Digital Storage Format

93

© Central University of Technology, Free State

Lnapter 0 uataoast: .::>lorage rurmal

4. Storage of decoded data in INTEL binary format

With this storage method the aim is to decode and calculate encoded data. The result

of this step (decoded values) is then stored as INTEL formatted binary integers. By

this is meant that each integer will be represented by a two-byte word. The binary

representation of a number should in most cases occupy less storage space than the

ASCII representation for the same number. As an example, consider the number

40960 (AOOOh) . In its ASCII format, this number requires 5 bytes of storage:

4 0 9 6 0

As an INTEL word, it only requires 2 bytes:

00 AO

No extraneous header information was stored. Only header information describing

the waveform along with the waveform itself was stored. Data such as patient

number, age and sex were omitted from the INTEL binary file (also for subsequent

storage formats).

Table 6-3: Storage resllits for files stored ill INTEL biliary format.

Size Header Waveform

31791 63 31728

Since the electrocardiogram data files collected at the Department of Cardiology were

all recorded with the same parameter settings on the electrocardiograph machines, the

length of recorded leads stayed the same (2.5 seconds of recorded data per lead). This

caused the different electrocardiogram data files to each have the same number of

decoded data points per lead. The number of bytes needed to describe the lead

information also stayed static across all data files.

94

© Central University of Technology, Free State

Chapter b uataoase ::>tOrage r ormat

Using a binary representation where each value has a fixed length (one word in this

case) leads to data files which all have exactly the same length (as can be seen from

Table 6-3). The effect of this storage method is that the entrop/ of the data is in

essence ignored. The result is that files are now nearly 300% larger than with the HP

Digital Storage Fonnat.

Although this method appears to be better than the HP Digital Storage Format (at least

from a decoding point of view) it is not ideal. The storage method should make

provision for floating point numbers, as well as be more flexible when it comes to

number representation.

No frequency distribution was represented for this storage format , since all files have

the same size.

Table 6-4: INTEL Biliary SIorage Formal- Advalllages & Disadvalllages

Advantages Disadvantages

• Data already decoded (no • Massive (300%) Increase In fi le size,
proprietary decoding to be compared to the HP Digital Storage
perfonned). Fonnat files.

• Data are easy to write In this • Entropy ignored, thus all files in this
format. application will have the same size.

• Data can easily be read by a • Data set cannot easily be migrated to
program. another computing environment (other

than the PC), due to the fact that this
method actually stores values in their
internal representation.

• This method only allows storage of short
integer (word) values. If the decoded
values were real numbers, this method
would not suffice.

3 Nelson (1991: 15) defines entropy as a measure of the information contained in a message. In this sense, the
term message refers to any stream of characters. "The entropy of a symbol is defined as the negative logarithm
of its probability. To determine the information content of a message in bits. we express the entropy using the
base 2 logarithm:

Number of bits ~ -log2(probability)

The entropy of an entire message is simply the sum of the en tropy of all individual symbols," (Nelson, 1991 : 16).

95

© Central University of Technology, Free State

Chapter 6 uataoase ::>lOrage t onnat

5. Storage of decoded data in ASCII format

Storing data in an ASCII format should protect the data set from different

implementations of internal representation used for integers. (For example, on a PC,

an integer is stored as a word (two bytes) using 16-bit compilers. Modern 32-bit

compilers use 32 bits to represent an integer. Another issue is that of swapping of the

most significant byte and the least significant byte, as found with the implementation

on the PC.)

The file sizes of ASCII files are expected to generally be larger than their binary

counterparts, the reason for this being that one byte is used to represent each digit of

each value. Where the value 40960 only needs 2 bytes for its binary representation,

five bytes are needed for the ASCII representation.

Another problem is that, since data units are not of a pre-defined, fixed length, each

unit will have to be separated from the other by using a token. This token character is

typically a space. Said token character also adds to the total file size, without really

contributing to the data itself.

In contrast with the data stored in INTEL binary format, data files with ASCII data are

expected to differ in size, since values are encoded using different lengths. The reason

for this is simply that larger numbers are represented using more digits, and thus need

more storage space than smaller (shorter) numbers.

Table 6-5: Descriptive statistics (ASCII Storage Format)

Parameter File Size Header Wavefonn

Min 47313.00 381.00 46932.00

Max 65647.00 381.00 65266.00

Mean 54636.33 381.00 54255.28

SD 2934.02 0.00 2933.97

CV% 5.37 0.00 5.41

The following deductions can be made from the descriptive statistics:

• The size of the header stays constant at 381 bytes for all ASCII files.

96

© Central University of Technology, Free State

Chapter b Database Storage Fonnat

• The header size (381 bytes) has increased by just more than six times that of the

INTEL binary storage method (63 bytes) as described in Table 6-3.

• The average file size is 1.72 times the size of a file stored in INTEL binary format.

• It is interesting to note that the CV% (5.37%) for the ASCII files is nearly the same

as the CV% (6.47%) for the digital storage method developed by Hewlett Packard.

Since the bulk of the data is contained in the waveform portion of each file, the

variation is caused by variation in the waveform data.

Table 6-6: ASCll Slorage Formal- Advalllages & Disat/wllIlages

Advantages Disadvantages

• Data already decoded (no • Files are 1.72 times bigger than INTEL
proprietary decoding to be binary files (and nearly 550% bigger than
performed). a HP ECG file).

• File sizes are no longer static. • Space wasted since characters to separate
Larger values lead to larger files. values are needed.

• Data sets can easily be migrated to • More complex to read data. Object
other computers which implement Pascal does not allow movement of file
the ASCII coding system. pointer for text files. Special routine

needed to read val ucs.

• If data originating from other ECG
machines are stored in floating
point fonnat, these data can easily
be stored without any change.

Considering all points mentioned above, it would appear that the ASCII Storage

Format should be the format of choice if one would like to keep the storage format

straightforward and simple and also protect the data from differences in different

hardware and software. Something needs to be done, however, to decrease the

average size of the ASCII data set. The HP Digital Storage Format requires on

average 9878.42 bytes per file. The ASCII Storage Fonnat requires on average

54636.33 bytes per file, an increase of 550%1

97

© Central University of Technology, Free State

Chapter b Database Storage Format

ASCII Storage Format
300 282

268

250

>. 200 183
u 171 0
~
~
C" 150 ~
u.

100
62

50
22 15 8 1

I 0
0

< 47313 ("7313;"9605] <49605;51897] (51897,5011891 (501189,56481) (564111 :5877J1 (SSn 3;61c:x>5j (6100s;63357] (63351:65&(9)
> "'"

File size (bytes)

Figllre 6-3: Freqllellcy Dislriblllioll 0/ file size/or lite ASCII Slorage FOrmtl1

One way to reduce the size of the ASCII data file is to apply a lossless data

compression technique to the data, such as LZ77, LZ78, LZSS or LSW.

The idea is that the module responsible for data acquisition and decoding will produce

a data set in a standard ASCII format (as prescribed by the host application, Hearts 32

in this case). The host application will then store the standard ASCII file in a

database. It is up to the host application to perform the compression of the ASCII

files before entering them into the database as Binary Large Objects (BLOBs).

An Object Pascal implementation of ZLIB 1.0.4 is included with the DelphiTM

Professional Edition version 3. ZLIB 1.0.4 is a general purpose data compression

library. The data format used by the ZLIB library is described by Request for

comments (RFCs) 1950 to 1952 (ftp ://ds.internic.net/rfc/rfcI950.txt, 1951.txt and

rfc 1952.txt). ZLIB is copyrighted by Jean-Ioup Gailly & Mark Adler, 1995 - 1996.

Permission to use the library is granted, on condition that the original copyright be

honoured.

According to Deutsch (Deutsch, 1996b : 4), the DEFLATE compression method used

by ZLIB is a lossless data compression method combining the LZ77 compression

98

© Central University of Technology, Free State

Chapter 6 Database Storage Format

technique with Huffman coding, with efficiency comparable to the best general­

purpose compression methods currently available.

The LZ77 compressIOn algorithm is the genesIs of modern dictionary-based

compression methods. It is described in the paper "A Universal Algorithm for

Sequential Data Compression" by Ziv & Lempel in IEEE Transactions on Information

Theory, 1977. (Nelson, 1991 : 233).

"LZ77 compression uses previously seen text as a dictionary. It replaces phrases in

the input text with pointers into the dictionary to achieve compression. The amount of

compression depends on how long the dictionary phrases are, how large the window

into previously seen text is, and the entropy of the source text with respect to the

LZ77 model." (Nelson, 1991 : 233).

Dictionary-based compression algorithms such as LZ77 represent the most popular

loss less compression methods. LZ77 does, however, have some problems, most

notably the performance bottleneck caused by string comparisons against the look­

ahead buffer for every position in the text window. In order to improve compression

performance, the size of the window (and thus the size of the dictionary) can be

increased. This leads to a worsening of the mentioned performance bottleneck.

Another performance problem is found in the way that the sliding window is

managed. Since phrases may span across windows, normal string comparison

functions such as strncmp04 can no longer be used. Modulo indexes rather than

normal indexes into the window should be used. One major efficiency problem

associated with LZ77 is that of no matching phrases in the dictionary. Three tokens

are used to identify phrases. When a dictionary entry is found, the length of the

phrase plus the tokens is less than the original phrase. When no dictionary entry is

found, the three tokens are still output, which leads to an increase in the length of the

new phrase! (Nelson, 1991 : 238 - 240).

4 According to Barkakati (Barkakati , 1989 : 289 . 290), the strncmpO function is used "to compare a specified
number of characters of two strings to onc anoth er. The comparison is case sensitive."

99

© Central University of Technology, Free State

Chapter 6 Database Storage Fonnat

Huffman coding creates variable-length codes that consist of an integral number of

bits. "Symbols with higher probabilities get shorter codes. Huffman codes have the

unique prefix attribute, which means that they can be correctly decoded despite being

variable length." (Nelson, 1991 : 34).

Important properties of the DEFLATE compression method include:

• Independence of CPU type, operating system, file system and character set, thus

allowing interchange between different machine types.

• No patent rights, therefore the algorithm can freely be used in programs.

• DEFLATE defines a data fonnat that can produce or consume data for an

arbitrarily long, sequentially presented input data stream, using only an a priori

bounded amount of intennediate storage, and hence can be used in data

conm1Unications or similar structures such as UNIX filters. (Deutsch, 1996a : 2).

• "Is compatible with the file format produced by the current widely used gzip utility,

in that conforming decompressors will be able to read data produced by the

existing gzip compressor." (Deutsch, 1996b : 3).

The compression methods found in the ZLIB library were applied to the ASCII data

files. The results are presented in Table 6-7 below:

Tllble 6-7: Descriptive stlltisties (Compressed ASCII Storage FOTIIlllt)

Parameter ASCII Compressed HP Digital
File Size ASCII File Size Storage Fonnat

Min 47313.00 8553 .00 8766.00

Max 65647.00 20963.00 15003.00

Mean 54636.33 11716.3 9 9878.42

SD 2934.02 1549.92 639.06

CVO/O 5.37 13.23 6.47

100

© Central University of Technology, Free State

Chapter 6 Database Storage Format

Average Storage Space per Format

Compressed
ASCII

Storage Format

t-lewlett
Packard

Figure 6-4: Average storage space per format

The following can be seen from the descriptive statistics in Table 6-7:

• Compression of the ASCII files yielded on average a 78.56% reduction of the

original ASCII file size.

• The average increase in file sIze compared to the original HP Digital Storage

Format is 18.61%.

Table 6-8: Compressed ASCII Storage Format - Advalllages & Disadvalllages

Advantages Disadvantages

• File size dramatically smaller than • Format more complex than simple ASCII
with plain ASCII storage format. files, Slllce decompression has to be

performed in order to access the ASCII
data files.

• Underlying format of the ASCII
file is not influenced by the
compression method chosen.

101

© Central University of Technology, Free State

Chapter 6 Database Storage Format

Compressed ASCII Storage Format
500

439
450

400

350 ,.,
u 299
0 300 ~
~ .,

250 E
u..

200

150 109 124

100

50 31
1 7 1 1 0

0
< 8553 (8553;10105) (1 0105;11657] (11657:13209) (13209:1476 1] (1 4761:16313] (16313; 17865] (17865:19417] (19417:20969) > 20969

File size (bytes)

Figure 6-5: Frequency Distribution a/file size/or t"e Compressed ASCII Storage Format

6. Selective storage of decoded data in ASCII format

The data acquired from a HP4745A actually contain 21 leads (excluding the position

bit leads).

Table 6-9: Leads present in a HP4745A digital ECG file

Number ID Lead description

1 1 I

2 2 II

" 3 III ~

4 4 aVR

5 5 aVL

6 6 aVF

7 7 VI

8 8 V2

9 9 V3

10 10 V4

102
© Central University of Technology, Free State

Chapter 6 Database Storage Format

Table 6-9: Leads presellt ilia HP4745A digital ECG file (colllilllled)

Number ID Lead description

11 11 V5

12 12 V6

13 101 ACAL 1

14 102 ACAL2

IS 103 ACAL3

16 24 VI,

17 25 V2,

18 26 V3,

19 104 RCALI

20 lOS RCAL2

21 106' RCAL3

However, not all of these leads are needed for recreating the ECG; of the 21 leads the

data for only 14 leads are needed. Leads that could be discarded are marked in grey in

Table 6-9. Remember that the height of the calibration pulse is equal to a voltage of

one millivolt (this is the standard format in use at the Department of Cardiology,

Universitas Hospital, Bloemfontein). The calibration pulse is thus used for measuring

the height of the waves present on the ECG.

A large saving in the total file size could be expected if two of the three rhythm leads

are omitted (items 17 & 18 in Table 6-9 on page 102). Rhythm lead data are collected

for a 10 second period. A sample is recorded every 0.004 seconds, resulting in 2500

samples collected for the 10 second period. Theoretically, the storage space required

to store 5000 values could be saved by omitting the data for two leads. An

examination of the actual ECG data files showed that the rhythm leads only contain

2488 samples. This means that the actual saving is the storage space required to store

5 Note that the lead IDs 101 , 102, 103 , 104, 105 and 106 do not match 105 from Hewlett Packard , There are no
IDs prescribed for ACAL t, ACAL 2. ReAL 1 and ReAL 2 in the Hew/err Packard Diagnostic Cardiology
Digital Transmission Protocol. The 10 for ACAL 3 is 39, and 42 for ReAL 3 (according to the
documentation). For the sake of simplicity the IDs for the ACAL and ReAL leads are kept uniform .

103

© Central University of Technology, Free State

Chapter 6 Database Storage Format

4976 values. The actual savmg in bytes (length of the values) cannot easily be

calculated, since the length of each value is not fixed.

Furthermore, the storage space required to save another 530 values can be omitted

from the file by omitting five of the six calibration pulse leads (items 14, 15 and 19 -

21 in Table 6-9 on page 102). Each of these calibration pulse leads represents 106

samples.

Except for discarding the extraneous lead information, this new ASCII file is in all

respects identical to the original ASCII files as described in section 5 on page 96. The

savings achieved are significant, as can be seen from the following results:

Tuble 6-10: Descriptive statistics (ASCII Storage Format, Selective)

Parameter File Size Header Waveform

Min 29932.00 255.00 29677.00

Max 40902.00 255.00 40647.00

Mean 34552.65 255.00 34297.65

SD 1780.63 0.00 1780.63

CVO/O 5.15 0.00 5.19

The following deductions can be made from the descriptive statistics in Table 6-10:

• The size of the header stays constant at 255 bytes for all ASCII files which

selectively store data .

• There is an average saving of20083.68 bytes (54636.33 - 34552.65).

The saving illustrated above is not significant enough to justify storage of the data set

in ASCII form.

104

© Central University of Technology, Free State

Chapter 6 Uatabase Storage Fonnat

ASCII Storage Format (Selective)
300 282

254
250

217

,.,
u 200
0
~
:>

138 .,.
150 ~

"-

100 74

50 25
14 7 1 0

0
< 29932 (29932;31304) (31304;32676) (3 2676;340461 (34048:35420) (35 420;36792) (36792;3816 4) (38164:39536) (39536;40908) > 40908

File size (bytes)

Figure 6-6: Frequeflcy Distributiofl o/file size/or tile ASCII Storage Format (Selective)

Once again the data were subjected to the same compression process described In

section 5 page 96. The results are presented below:

Tuble 6-11: Descriptive statistics (Compressed ASCII Storage Format, Selective)

Parameter ASCII File Size Compressed ASCII HP Digital
(Selective) File Size (Selective) Storage Fonnat

Min 29932.00 5252.00 8766.00

Max 40902.00 13784.00 15003.00

Mean 34552.65 7435.40 9878.42

SD 1780.63 1000.81 639.06

CV% 5.15 13.46 6.47

The following deductions can be made from the descriptive statistics in Table 6-11:

• Compression of the ASCII files yielded on average a 78.48% reduction of the

original ASCII file size.

• The average decrease In file size compared to the original HP Digital Storage

Format is 24.73%.

105

© Central University of Technology, Free State

Chapter 6 Database Storage Format

Compressed ASCII Storage Format (Selective)
500 480

450

400

350 ,., 296 u
c 300 " ~
" 250 e
u.

200

150 112

100
84

50 31
1 6 1 1 0

0
< 5252 (5252;6319] (631 9:7386] (7386;8453J (8453:9520) (9520 ,10567] (1 05B1;1165<11 (11 6$4:12721 1 (12721 ;13788] > 13788

File size {bytes}

Figure 6-7: Frequellcy Distributioll offile sizefor tire Compressed ASCII Storage Format
(Selective)

Average Storage Space per Format

Compressed

Figure 6-8: A verage storage space per format, witlr tire effect of compressioll

It can clearly be seen from Figure 6-8 above that the selective storage of data In a

compressed ASCII format will result in the most compact utili sation of storage space,

without any loss of detail in the ECG itself.

106

© Central University of Technology, Free State

Chapter 6 Uatabase Storage Format

7. Retrieval time for compressed data

Even though the selective ASCII data could be stored in a limited amount of space by

using the ZLIB compression software, care had to be taken regarding the amount of

time needed for retrieval.

There were three distinct phases involved in the access to ECG data stored in the

Hearts 32 database:

I. Extraction of the contents (the compressed ECG data set) from the BLOB field in

the Hearts 32 database, with the result saved to a temporary disk file.

2. Decompression of the contents of the temporary disk file into another temporary

disk file, containing the reconstructed ASCII data set.

3. Loading of the reconstructed ASCII data set by the Hearts 32 ECG Browser

software for graphical display and interaction.

The user's perception IS, of course, that there is only one phase; that being the

retrieval of the ECG data set with the result graphically displayed.

A program was written to analyse the amount of time needed for access to the stored

ECG data sets. The population contained 6276 ECG data sets in the Hearts 32

database. The program measured the amount of time needed for each one of the

phases as outlined above. All results are in milliseconds (ms), and are summarised in

Table 6-12 below:

6 Although the rest of the analysis was performed using 1012 ECG data sets, only 627 ECG data sets were
physically present in the Hearts 32 test database. The reason for this was that many of the existing patient
records did not migrate from the existing Hearts database into the new Hearts 32 database, due to conflicts with
the new referential integrity rules defined in the Hearts 32 database.

107

© Central University of Technology, Free State

Chapter 6 Database Storage Format

Table 6-12: Descriptive stlltistics (Retrievaltimejor Compressed Data)

Parameter Time to Extract Time to Decompress Time to Load Total Time
(ms) (ms) (ms) (ms)

Min 15.00 41.00 4189.00 4285.00

Max 513.00 1036.00 8336.00 8459.00

Mean 59.31 74.06 4658.35 4791.71

SD 32.85 58.60 422.31 429.45

CV% 55.39 79.13 9.07 8.96

From the means in Table 6-12 it can clearly be seen that the average time to extract

the ECG data set from the database, as well as the decompression time, represent only

a small portion (2.783%) of the total time needed to display the ECG. The lion share

of the time is used by the 110 routines in the Hearts 32 ECG Browser.

An initial thought was that a correlation between the file size and the time needed for

extraction and decompression might exist. Since other factors 7 also influence the

extraction and decompression time, it was decided not to perform further statistical

analysis. If such a statistical analysis was performed without the effect of these

factors, the result would be skewed.

The main purpose of this exercise is to supply a ballpark figure for the amount of time

needed for retrieval ofECG data8

A complete discussion on the actual decoding (decompression) of a digital ECG file

(HP4745A format) can be found in Chapter 8, and also in Appendix A.

7 These factors are difficult to quant ify, and include items such as the number of processes running in
Windows® 95 at a given point in time, the CPU intensity of these processes, the size of the disk cache in
memory, the size of the virtual memory swap file and also the priority of the tast being executed.

8 The results were generated on a 486 DX4 100 MHz IBM compatible PC with 32 MB RAM and 2 x 1.3 GB hard
disk drives.

108

© Central University of Technology, Free State

Chapter 0 Database Storage rormat

8. Summary

Since the amount of ECG data to be stored is expected to be large, care must be taken

to choose a storage fornlat that allows for relatively small data files whilst allowing

standardised access to these data, thus conserving storage space. In this chapter these

concerns were identified, gathered data were analysed and a storage format specified.

ECG data will be stored in the Hearts 32 database in a compressed ASCII format,

using only selected leads. The ZLIB compression library will be used to compress the

ASCII ECG data files.

109

© Central University of Technology, Free State

Chapter 7 Hearts 32 ECG Browser

Chapter 7

Hearts 32 ECG Browser

1. Introduction
A graphic display module is needed to present the digitally captured ECG data stored

in Hearts 32. Besides display and printing capabilities, some additional functionality ,

such as simultaneous display of multiple ECGs, measurement, zoom and

superimposing, is needed.

2. Description of the browser
The browser also supports zoom functions, callipers' for meaSUrIng of interval

duration and voltation, as well as superimposing of selected leads in the same ECG

and also printing of the ECG.

2.1. Selecting ECGs in Hearts 32

I t is assumed that the ECG tab of Hearts 32 has been selected and that the ECG page

is active. Before ECGs can be selected, the correct patient record needs to be

identified. This can be done by clicking on the Search speedbutton2 A dialogue box

such as Figure 4-11 (Chapter 4, page 68) will be displayed. (This dialogue box can

also be activated by using the §earch command located in the main menu at the top of

the window.) As soon as the patient record has been retrieved, a list of available

ECGs will be displayed (as in Figure 7-1).

Selecting an ECG for viewing is easy: simply click on the desired record with the

mouse. Multiple ECGs can be selected by holding down the Ctrl key and clicking on

the desired records. Note that the Shift-Click method of Windows® (selecting a

I A calliper is a measuring inst rument.

2 The Search speed button is located to the top of the screen, right of the print speedbutton and left of the Save
Edits button, and contains a bitmap of a fl ashlight.

110

© Central University of Technology, Free State

Chapter 7 Hearts 32 ECG Browser

range) is not implemented in the browser. This appears to be the default behaviour for

DelphiTM

Figure 7-1 illustrates the selection of the three ECG records available for the selected

patient.

~HEARTS 1I~E3
Ble See.rch Setyp tjelp

Eocemoker I Te~t Pacemaker

Eatient I 8dmission I l.ipids EC~

MR LN PAll

Co.rdiotnoracic Surgery I X-Boy
Stress ~CG I Ech,Qcardiography

Date Recorded

108-D80-97

Time Recorded

11 20630 AM

til Becord I &d'View

B'rowsing

Figure 7-/: Hearts 32 ECG page

2.2. Viewing ECGs in Hearts 32
To view the selected ECGs, click on the View button.3 The Hearts 32 ECG Browser

will load. Initially, no ECG will be displayed. To start the display, click on the Draw

speedbutton4 The selected ECGs will be displayed within a few seconds, as

illustrated in Figure 7-2.

3 The View button is located underneath the Time Recorded ed it box. and contains a bitmap of a pair of glasses
next to the word View.

4 The Draw speed button is located directly underneath the file item of the main menu, at the top left hand of the
window.

111

© Central University of Technology, Free State

Chapter 7 Hearts 32 ECG Browser

!!He6!1s 32 ECG Browser I!I~EJ

!!MRlNPAU 5lyrs mala ECGtakenon081219971l11206JOAM (3) I!ImEJ

Lead:l 0271 mV. 1.448sec

Figure 7-2: Hearls 32 ECG Browser IlIlerface

2.3. Browser Speedbuttons
The nine speedbuttons used to interact with the Browser are located at the top of the

window, directly underneath the main menu. These speedbuttons include:

112

© Central University of Technology, Free State

Chapter 7

No Name

I Draw

2 Full size

0 Toggle ~

Grid

4 Refresh
ECG

5 Toggle
Zoom

6 Toggle
Calliper

7 Print
ECG

8 Super-
impose

9 Exit

Hearts J1 t.CU tlrowser

Table 7-1: Hearts 32 ECG Browser Speedbllttol/s

Description

Draws ECGs selected in ECG page of Hearts 32.

Enlarges the currently active MDI child window to its full sIze
(978 pixels wide by 610 pixels high.

EnableslDisables drawing of a grid m the background of the
current active MDI child window.

Refreshes the contents of the currently active MDI child window.
This is sometimes needed when the crosshair leaves marks on the
graph.

Enables/Disables zooming of the currently active MDI child
window. Zooming-in is performed by clicking, holding and
dragging the mouse down to the right. Zooming-out is performed
by clicking, holding and dragging the mouse up left.

Enables/Disables the use of a calliper in the currently active MDI
child window. To measure the interval duration and voltage
between two points, click on the first point. (The word Measuring
is displayed in the status bar of the main window, bottom right.)
Click on the second point. The result of the measurement is
displayed in the status bar of the main window, bottom centre.

Prints the ECG to the printer designated as the default printer in
Windows® 95.

Draws more than one lead of the currently active MDI child
window on the same graph (in a new window).

Terminates the Browser and return control to Hearts 32.

2.4. Window management & viewing of multiple ECGs
Window management commands are used in the Browser to allow manipulation of the

placement of MDI child windows within the application frame. There are currently

no speedbuttons available in the Browser for these window management functions.

These functions are accessed from the Window item in the main menu (located at the

top of the Browser window). They include:

113

© Central University of Technology, Free State

Chapter 7 Hearts 32 beG Browser

Table 7-2: Hearls 32 ECG Browser Willdow Mallagement Commands

No Name Description

I Cascade Stack the MDI child windows on top of each other, as In

Figure 7-2.

2 Tile Use this for simultaneous viewing of long horizontal items,
Horizontal such as the Rhythm Lead (shown in Figure 7-4).

3 Tile Vertical Enables comparison of the same lead groups across different
ECGs, as displayed in Figure 7-3.

4 Arrange Move all minimised MDI child windows to the bottom left
Icons side of the screen.

S Minimise All Minimise all MDI child windows. A minimised MDI child
window can be restored by clicking on the restore button of
the window (located at the top right side of the window, two
small intersecting boxes).

!! IIolu15 J? [eG Arowser I!!I~EI
[lIe y_ ~ I::ielp

i '" 1<>1 .. I orl <>..1 01 3.llJ .lLI
'!!J.4RLNPAII "'yr" mille ECG .~EI l/df··i,:'p"pa,"!.i.'Mi*+ _lol xl

le~ l 0271mV. 1448 sec

Figure 7-3: Vertical Tilillg of MDI Cllild Willdows ill Ille Hearls 32 ECG Browser

114

© Central University of Technology, Free State

Chapter / Hearts 32 ECG Browser

!!H£!IHt5 32 ["eG Browser BraD
!:ite 'i_ ~ndO'lo t!elp

Figllre 7-4: Horizol/lai Tilillg of MDI Ciliid Willdows ill tile Hearts 32 ECG Browser

2.5. Superimposing of selected leads of an ECG
To superimpose leads from the same ECG, click on the Superimpose speedbutton. A

dialogue box, such as in Figure 7-5, will be displayed. Follow the steps outlined on

the top right side of the window by selecting the desired leads on the left side of the

screen. The Or/-Click and Shij1-Click methods of Windows® 95, used for multiple

selection (separate items and list selection), apply. When the leads have been

selected, click on the OK button. The Clf!.ar button is used to clear the graph area.

The Close button will close this window and return to the Hearts 32 ECG Browser.

The result of the superimposing of leads for one ECG cannot be printed. Furthermore,

the crosshair, calliper and grid tools are not supported. The purpose of the

superimpose tool is to provide the cardiologist with a quick view of the selected leads.

While leads can be freely selected for superimposing, it does not make sense to select

leads at random. The following groupings should be used: II + II + a VF (inferior

115

© Central University of Technology, Free State

Chapter 7 Hearts 32 ECG Browser

aspect), I + aVL + V5 + V6 (lateral aspect) and VI + V2 + V3 + V4 (anteroseptal

aspect) . a VR represents a mirror image of II and is not used.

!!lImuts 32 EeG Browsnf I!I§EI

IiIIii MR LN PALl 57 ,>,rs male EeG ttlken on 08 12 1991 lit 12 06 JO AM (J) Superimpose IlIiI EI

It2Q,lS __ i To superimpose leads, perform the following steps

ri Cli.t!of I ,. Selee! one or more leads by using aicl<. Shill-Click or Orl-Click
2. Oick on the OK buMn

~ I·~~===~~~=~="=I ==~======~========

t [~
·f l

I- II -III - aVF

Figure 7-5: Superimposing of selected leads of an ECG in the HetlTts 32 ECG Browser

3. Summary

The ECG browser software developed for Hearts 32 allows the user to view, interact

and print ECGs stored in the Hearts 32 database. The Multiple Document Interface

(MDI) architecture of the browser ensures that simultaneous views of different ECGs

can easily be displayed.

© Central University of Technology, Free State

L-napler 1\ I ecnmcal rererence or Uata AcqUisIlIon ana urapnlcs MoOules

Chapter 8

Technical reference of Data Acquisition and Graphics
Modules

1. Introduction
This chapter discusses the technical detail of the data acquisition module as well as

the graphical display module developed as a result of this research.

2. Development environment
The Hearts 32 database application (as well as other programs described in this thesis)

was developed on a 486 DX4 100 MHz computer with 32 MB RAM and two 1.3 GB

hard disk drives. A 2 MB PCl VGA card running at a resolution of 1024 x 768 pixels

with a colour depth of 256 colours was connected to a GoldStar Studio Works 78i IT'

super VGA monitor.

The operating system used on the development machine (including workstations) was

Windows® 95 build 4.00.950. The following software development tools and libraries

were used during the research:

• Borland® Delphi'" Professional Edition version 3.0

• Async Professional'" 2.11 for DelphiTM 3.0

• InstallShield Express DelphiTM Edition version 1.11

• Borland® C++ version 3.0 I

• ClMath Toolchest version 1.0

• The Sem Ware® Editor pre-release version 1.00A

• Microsoft Office Professional version 4.3

The Novell® Netware® 4.1 file server at the Cardiology Department was connected via

a 1 OBaseT Ethernet segment with 20 workstations. The IBM file server was equipped

with a 3COM PCI 101100 Mbit network interface card, 64 MB RAM, a 4 GB SCSI

117

© Central University of Technology, Free State

\....uapu::r 0 1 ecnlllcal rererence or uata AcqUlSltlOn ana vrapmcs Modules

hard disk and a 4 GB SCSI OAT drive. The Arcserve 6.0 backup software from

Cheyenne was used for preparing backups.

The basic configuration detail s of the workstations were as follows:

• 486DX4 100 MHz

• 16 MB RAM

• I GB hard disk

• I MB VGA card

• SMC Ultra 10 Mbit network interface card

• Mouse

Connected to one of these workstations was a HP4745A PageWriter II Cardiograph.

The configuration details of the RS-232 communications port can be found on page

167 of Appendix A.

3. Data Acquisition Module

The Data Acquisition Module can be divided into three major sections, namely Data

Communications (transmission), Decompression (decoding) and Calculation. This is

illustrated in Figure 8-1 below. During data communications, data acquired from the

HP4745A are buffered in main memory, where they await further processing

performed by the decoding and calculation steps. The end result is the decoded ECG

data set.

NOTE: Since the information contained in the HP Diagnostic Cardiology Digital

Transmission Protocol was made available to the researcher by the Hewlett-Packard

Company under a confidential disclosure agreement, a detailed discussion of the

program code needed to decode the digital ECG data set can be found in Appendix A.

118

© Central University of Technology, Free State

' ... Alapler 0 1 ecnmcal relerence or uma AcqUIslllon anu urapmcs !VlOQUleS

Digital Data Transmission
--> results in copy of

ECG data in RAM

HP4745A
electrocardiograph Decompression (decoding)

of digital ECG data in RAM

Calculation of lead data
(using smoothed values)

stored on disk

,-------!-------

Compression and storage ,
of ECG data is not performed,
by the DLL. Data are stored'
under control of Hearts 32 '

Compression of
calculated ECG data

t

~6·

Figure 8-1: Graphic overview o/the data acquisition process

3.1. Global Variables

Variable

Forml

BlockIn

BlockOut

CountIn

Ack

Table 8-1: Global variables used during data acquisition

Type

TForml

BUFFER

BUFFER

Integer

Integer

Short description

Object instantiated from the TForml class.
This represents the window which is the
actual user interface.

Temporary buffer used for reading blocks
of data from the HP4745A.

Temporary buffer used for creating
responses which are sent to the HP4745A.

Numeric value of the number of bytes in
the following data block.

Counter used to determine the value of the
next sequence indicator for the
Acknowledgement block. The value of the
counter continuously Increases. The
sequence indicator IS determined by
dividing the value of the counter modulo 2.

119

© Central University of Technology, Free State

I ecnmcal reference or uala AcqUlsIllon ana IJraphlCs Moaules

Table 8-1: Global variables IIsed dllrillg tla/(I (lcqllisilioll (Coll/illlled)

Variable Type

CountBlockReceived Boolean

Status FSM

Readlndex Integer

Quit Boolean

MemArea PChar

ByteCountMA Integer

Data Byte

ShiftCount Byte

Index Integer

OffSet Integer

DynamicArray I\DynArr

Short description

If a count block has been received, the
acknowledgement block does not contain
any sequence indicators (0 or I). Other
blocks are followed by an
acknowledgement plus an additional
sequence byte (0 or 1). This mechanism
attempts to prevent the loss of a count
block.

The Status variable indicates the status of
the Finite State Machine used to control the
download.

Specifies the position of the input buffer
where the next character is stored from the
COM port. Also used to determine whether
all the characters which are expected for a
given block type have been read.

The main data communications loop is
controlled by this variable. As soon as Quit
has been set to true, the loop terminates.

Pointer to character buffer where ECG data
will temporarily be stored. This buffer is
32 KB large.

Keeps track of the total number of bytes
stored in main memory. Indicates length of
data stream.

Byte value containing the data pointed to
by the pointer MemArea + Offset.

Keeps a tally of the number of bits
extracted per byte. As soon as a byte has
been scanned, the next byte has to be set up
for bit scanning.

Used to index the digital ECG data stream
when dereferencing sequential byte values.

Offset into the digital ECG data stream
(from the start of the Lead data).

Pointer to dynamically allocated two
dimensional array. Values for each of the
three leads in each lead group will be stored
here, one lead group at a time.

120

© Central University of Technology, Free State

Chapter 8 Technical reference of Data Acquisition and Graphics Modules

3.2. Data Communications

Data Communications group together the activities responsible for the actual

downloading of the digital data from the HP4745A ECG machine. The following

procedures and functions work together to thi s end:

3.2.1.Function ReadDecodeCalcStoreECG
This procedure is the only exported module contained in the DLL. Its only purpose is

to serve as an interface between the application program (such as Hearts 32) and the

procedure/function in the DLL that is responsible for data communications. If a DLL

is developed for another ECG machine, it should contain an exported procedure called

ReadDecodeCalcStoreECG.

A description of the parameters passed to the ReadDecodeCalcStoreECG function can

be found in Table B-6 on page 223 of Appendix B. The possible return values for the

ReadDecodeCalcStoreECG function are also documented in Appendix B.

When implementing a DelphiTM form as a DLL, care must be taken not to have any of

the forms automatically created. This means that all fonns in the DLL must be

removed from the application's fonn auto create li st. When a form needs to be

di splayed, the fonn 's ShowModal method must be used. Displaying forms in a DLL

using the Show method can cause problems, since the Show method is used to di splay

mode less forms.

In the ReadDecodeCalcStoreECG function of the HP4745A DLL, the parameter

values passed to ReadDecodeCalcStoreECG are assigned to global variables. This

eases access to these values by the different procedures and functions contained in the

DLL, since multiple parameters do not have to be passed to each and every

function/procedure .

121

© Central University of Technology, Free State

\.AIi:1Vltl 0 I ecnmcal rererence or lJata AcqUlsltlOn ana uraphlcs Modules

Code SlIippeIB-l: Oullille o/Ihe RetldDecodeCtllcSloreECG /III1Clioll

var
Formi : TForml ;

begi n
ReturnValue : = - 1 ;
Application.Handle : = hAppHandle ;
Formi : = TForml .Create(Application) ;
try

with Forml do
begin

ShowModal ;
end;

finally
Formi . Free

end ;
Result : = ReturnValue;

end ;

[n Code Snippet 8-1 above, the assignment of the parent application's handle to the

instance variable of the DLL is made. Manual form creation, invoked via the

ShowModal method, and destruction of the form are also illustrated. The value of the

global variable ReturnValue is assigned to the ReadDecodeCalcStoreStoreECG

function.l

3.2.2.Procedure GetFile
GetFile is responsible for the acquisition of the ECG data from the HP4745A. This

procedure contains the main program loop and invokes other functions as needed. In

order to speed up processing, a buffer is set up in main memory for storage of digital

ECG data. From the analysis of 1012 digital ECG files it was found that the average

size of these files is 9878 bytes. To be safe, however, a buffer of32 KB is reserved.

Since the HP Diagnostic Cardiology Digital Transmission Protocol was not

redeveloped in software, some way was needed to control the flow of execution. To

this end a primitive form of a finite state machine was used. The download process

can only be in one given state at any time. The following states were identified :

FSM~INITIAL, FSM~ATTENTION, FSM~LTNE~BID, FSM~SYS~READY,

FSM~IDJEST, FSM~RUN~TEST, FSM~ECGIN, FSM~HEADER, FSM~LEAD,

FSM~MESSAGE, FSM~QUIT.

1 Assign ing a value to the name of a function is the method lIsed by Object Pascal for returning a value from a
function . A new method is to assign the return value to the Result variable.

122

© Central University of Technology, Free State

L,nap,t:r <> I ecnOlcal rererence ot Uata AcqUlslllon ana Uraphlcs Modules

GetFile opens the COM port, and enters the main loop. During the main program

loop, GetFile attempts to read a block of data from the HP4745A. If a block has been

read, it is interpreted in order to determine what action should be taken. This action is

of course guided by the cUlTent state of the download process, that being one of the

states indicated above.

As soon as the digital ECG information has been transferred, the program loop is

terminated and the COM port closed. The buffer containing the digital ECG data is

NOT cleared, since it will be used during the decoding step to produce the decoded

data set.

A time-out feature was built into the main loop to ensure that the data acquisition

module can escape from situations where no data are received, or a communications

lock up occurs. This was managed by using the Windows® API function

GelTickCount2, recording the start and end times during different cycles of the loop.

A period of five seconds of inactivity terminates the loop and signals an elTor

condition, resulting in a return value of -1.

COlle Snippet 8-2: Pseudo code/or GetFile procedure

Setup buffer in memory
Open communications port
Record a start and end time
Repea t

If a low level data block has been read
Record new start time
Handle each type of data bloCK

Else
Record new end time
If (End time - Start time) > 5 seconds

Abort procedure
End if

End if
Until finished
Close communications port

3.2.3.Function eRe
The CRC function is used to calculate a Cyclic Redundancy Checksum for a block of

data. Since the digital ECG data are compressed, an error of even 1 bit can be

disastrous. For this reason, CRC checking is implemented. The CRC calculation

2 The Win32® API function GetTickCount ret rieves the number of milliseconds that have elapsed since
Windows® was started.

123

© Central University of Technology, Free State

Chapter IS I eChmcal rererence ot Uata AcquISition ana Uraphlcs MoaUles

routine implemented in the data acquisition module differs from that described in the

Hewlett Packard Diagnostic Cardiology Digital Transmission Protocol. It does,

however, produce CRCs which are identical to the CRCs produced by the method

described in the Hewlett Packard Diagnostic Cardiology Digital Transmission

Protocol. The latter method calculates CRCs on a bit-by-bit basis. The algorithm

implemented here performs CRC calculation on a byte basis, which speeds up the

calculation. The CRC calculation routine implemented for this research is strongly

based on the work of Campbell. (Campbell, 1987 : 539 - 542).

A 16-bit coefficient table was built using a program. The output of the program (i.e.

the coefficient table) was then imported into the Object Pascal unit.

Note that the initial value of the CRC has to be set to FFFFh In order to stay

compatible with the HP4745A CRC values.

An additional discussion on the subject of CRCs can be found in section 4.7.7 Cyclic

Redundancy Checking Algorithm on page 181 of Appendix A.

3. 2.4. Function ReadLLPBlock
The ReadLLPBlock function is responsible for reading characters from the ECG

machine and constructing a low level protocol block that the GetFile procedure can

use. ReadLLPBlock is aware of the length of each low level protocol block (in bytes),

based on the type of the block. It will gather the bytes needed per block, before

passing the block on. The use of the Process Messages method of the Application

object (ApplicationProcessMessages) ensures that Windows® is able to service other

events when a routine is busy in a tight loop, such as found in the ReadLLP Block

function 3

3 In Windows 9S® the effect of Application.ProcessMessages will be local to the running application. In 16-bit
versions of Windows® (such as Windows 3.1 ®), all the programs being multi-tasked suffered if one application
contained a processor-intensive loop which did not occasionally yield control to Windows 3.1 ® itself to allow
multi-tasking.

124

© Central University of Technology, Free State

Chapter ~ Technical reterence of Data Acquisition and Graphics Modules

3.2.5.Procedure WriteLLPBlock
The WrileLLPBlock procedure accepts a string parameter which has to be sent

(written) to the HP4745A. WrileLLPBlock builds the count block, sends it to the

HP4745A and handles the response. The next step is to construct the low level

protocol data block. This includes calculating the CRC for the low level protocol data

block. Note that the sequence of the two bytes making up the CRC value (a word) has

to be swapped for the HP4745A. On the HP4745A the Most Significant Byte (MSB)

is written first , followed by the Least Significant Byte (LSB).

3.2.6.Function CheckSum
The CheckSum function calculates a checksum value for the count block. Details of

this function is privileged and can be found in section 4.7.1 The Count Block on page

176 of Appendix A.

3.2.7.Function GetCount
The count block is basically just a text string, containing digits from 0 to 9, and letters

from A to F (valid tokens for a hexadecimal nwnber). No numeric value is

automatically associated with the string. A hex to decimal conversion has to be

performed before the value of the count block is obtained.

The C/C++ runtime libraries contain the scan/O family of functions which will,

amongst others, read a text string containing a valid hexadecimal number, and return

it as a numeric value. (Barkakati, 1989 : 459 - 462). The Object Pascal runtime

libraries do not supply such a function by default.

In order to avoid having to raise numbers to certain powers, the calculations were

performed and the values stored in an array4 (This approach worked here, since we

knew beforehand exactly how many digits can be present in the input string.) The

array is populated with I (16\ 16 (16 1
) , 256 (\62

) and 4096 (16\

4 The Object Pascal Run Time Library contains a procedure III/Power, that will rai se x to the power of y. In order
to avoid the overhead of repetiti vely calling fnrPower , the result of rai sing x to y can be calculated beforehand.
This can easily be done, since the number ofy's are small and known beforehand.

125

© Central University of Technology, Free State

Chapter 8 Technical reference of Data Acquisition and Graphics Modules

A small loop is used to convert the hexadecimal string to a numeric value. The

numeric value of each (hexadecimal) digit is determined by subtracting the ASCII

code of the digit from the ASCII code for o. If the digit is in the range A - F, the

ASCII code of the digit is subtracted from the ASCII code for A. lOis then added,

since Ah represents 10d. Once the numeric value of the digit has been established, the

digit is multiplied by the corresponding value in the array of numbers (I , 16, 256,

4096).

The sum of these values represents the converted numeric value, in decimal.

3.2.8.Function CheckCount
CheckCounl determines the validity of the count block by:

• Checking the value of the count block (valid values lie between 0 and 255,

inclusive).

• Calculating a check digit for the checksum, extracting the check digit from the

checksum and comparing the two check digits.

If the count block value is invalid, or the check digits do not match, CheckCount

returns false.

126
© Central University of Technology, Free State

Chapter !l Technical reterence of Data Acquisition and Graphics Modules

3.2.9.Procedure CommitDataToMemory
CommitDataToMemory copies the bytes just received from the HP4745A ECG

machine from the input buffer into the memory which has dynamically been allocated

for this purpose. At the end of a successful transmission procedure, this buffer will

contain a complete copy of a digital ECG, ready for further processing.

3.2.10.Procedure ComPort1TriggerAvaii
The ComPortiTriggerAvail function is an event handler invoked by the TComPort

VCL component whenever data have arrived at the COM port and are ready to be

dispatched. This function reads the characters from the COM port buffer and places

these characters into the buffer declared by the application. The

ComPortlTriggerAvaii function ensures that the buffer foil and buffer resume

properties of the TComPorl VCL component are set up correctly. This can be done by

either setting the values in the Object Inspector, or assigning the desired values to the

properties of the TComPorl object at runtime. In the case of the

ComPortlTriggerAvail function, the properties were set in the Object Inspector.

3.3. Decompression (Decoding)

The digital ECG data have to be decoded and manipulated before it can be used at all

by other applications. The decoding and calculation that have to be performed will

now, in part, be described. Please refer to section 5.16 Decompression Detail on page

209 of Appendix A for more information.

3.3. 1. Procedure Decode
Technical details of the Decode procedure is documented in section 5.16.1 on page

209 of Appendix A. Two problems encountered during the coding of the Decode

procedure deserve further discussion here.

127

© Central University of Technology, Free State

Lnapter ~ 1 ecnmcal rererence or uata AcqUlSltlOn anu vrapmcs lVlOQUleS

Consider the case where access to the two individual bytes forming a word is needed.
5

This can be facilitated through the use of a variant record. Object Pascal typically

requires a variable (tag field) used to specify which variation is used.

Swan describes a free union as a case variant record without a tag field. The case part

of the record declares an unidentified type, a nameless entity that occupies no space.

(Swan, 1991 : 130). In this way the different bytes that constitute a word can be

accessed, as well as the actual word value. This technique works well where the

individual bytes of a word value have to be manipulated to form the word value.

The boolean free union used in the Decode function has been declared as follows:

Code SlIippet 8-3: The Booleall Free UlIioll

Integers = record
CASE Boolean of

True : (sInteger Smalllnt) j

False : (uI nte ger Bytes) ;
end ,

The record type Byles has been declared as follows:

Code SlIippet 8-4: A Record with two Byte Fields

Bytes = record
lsb Byte ;
msb : Byte ;

end ;

The second problem that deserves attention is that of dynamic array allocation, since

such dynamic allocation lies at the heart of the Decode procedure. According to Swan

(Swan, 1991 : 208) a common complaint about the Pascal language is the inability to

dynamically resize an array during runtime. Index ranges must be constants, and

therefore array sizes are fixed when the program is compiled. This limitation is also

present in Object Pascal, the Pascal implementation used in Borland® DelphiTM 3.0.

5 Swan (Swan, 1991 : 875, 898 - 899) describes the use of the Hi function to return the MSB of a word, and the
use of the Lo function to return the LSB of a word . The result of Hi and Lo is always a byte in the range 0 to
255.

128

© Central University of Technology, Free State

Chapter IS I eChmcal reference ot Data AcqUlSltlOn ana uraphlcs MoaUles

What is basically needed in the Decode procedure is a two dimensional array with x

number of rows (where x can only be determined at runtime) and 3 columns.

(Remember that there are 3 leads which are simultaneously used (in some cases) for

calculating of actual lead data.)

Swan describes a very interesting technique (Swan, 1991 : 208 - 210) that can be used

to dynamically allocate a one dimensional array. The steps are surprisingly easy:

1. Declare the data type. Also declare an array of this data type, but be sure to declare

the indices as [0 .. 0]. (Although this appears to be a typographical error, it is not.)

Such a declaration results in an array with only one index entry, [0]. With range

checking off (default state of the compiler) it is possible to reference indices

outside of the declared boundaries. It is up to the programmer to ensure that the

variable referenced at the specified location exists.

2. Declare a pointer of the array type.

3. Use the GelMem procedure to allocate a specific number of bytes on the heap and

assign the address of the first byte to the pointer declared in the previous step.

(The SizeDffunction returns the number of bytes occupied by the data type.)

4. Deallocate the space on the heap by using the FreeMem procedure with the same

arguments as the GetMem procedure.

This idea is expanded somewhat in the Decode procedure. In order to create a two

dimensional array, the data type declared in step I is a one dimensional array with

three rows. Here follows a brief example of what is used in the Decode procedure:

1. Declare the new data types. Since a standard data type is used in Decode, no new

type declaration is needed. We will, however, declare types for the arrays so that

these types can later be used for pointer variable declarations. Note the

declaration of the array, which has indices that are both set to O.

129

© Central University of Technology, Free State

Chapter is 1 eChmcal reterence ot lJata AcqUisIllon ana Uraphlcs Moaules

Code Snippel 8-5: Type Dec/amlions/or Dynamic Arrays used in Decoding

t ype
DynRow ~ array[0 .. 2 of smallinti
DynArr = array[0 .. 0 of DynRow;

2. Declare a pointer of the array type.

Code Snippel 8-6: Poilller to Dynamic Army

var
DynamicArray : ADynArr i

3. Dynamically allocate memory using the GetMem procedure.

Code Snippel 8-7: Dynamic Memory Allocalion

GetMem(DynamicArray, SizeOf(DynRow) * SampleslnChanne l) ;

(Note that in the Decode procedure such a dynamic memory allocation is only

performed once per lead group. Each of the three leads in the same group has the

same number of samples.) The array can now be used simply by dereferencing the

pointer DynamicArray. An example of this could look as follows:

Code Snippel 8-8: Using Ille DYllamically Allocaled Army

DynamicAr r ay" (Row , Column 1 : = Value ;

4. Deallocating the array using the FreeMem procedure.

Code Snippel 8-9: Releasing Ille Dynamically Alloctlled Array

FreeMem(DynamicArray , SizeOf{ DynRow) * Samplesl nChannel) ;

3.3.2.Procedure BinDump
BinDump is used primarily for debugging purposes. The binary equivalent of each

byte is constructed by ANDing the value of the byte with the value 80h (lOOOOOOb)

and writing either 1 or 0 to a string, depending on the result. The value is shifted left

8 times in order to determine the values of the 8 bits contained in the byte.

130

© Central University of Technology, Free State

Chapter lS 1 ecnmcal rererence or Uata AcqUlsillon ana uraphlcs Modules

3.3.3.Function ScanBits
The compressed data found in the digital ECG data stream represent a variable length

stream of bits. This poses some difficulty, as the smallest unit easily dealt with is

normally one byte. ScanBits determines the value of the bit being dealt with and

returns the value as a byte so that it can easily be used by the rest of the program.

Examination is done by ANDing the value of each byte with the value 80h (lOOOOOOb)'

(This has the effect of only returning the value of the most significant bit.) After the

comparison, the value is shifted left once, effectively moving the next bit into bit 8

and inserting a 0 at the right end of the value. The function furthermore keeps count

of the number of bits examined and advances to the next byte in memory for every 8

bits used. This relieves higher level modules of keeping track of the bit stream.

ScanBits feeds Make Value with bits for decompression (decoding).

3.3.4.Function MakeValue
Make Value lies at the heart of the reconstruction of the compressed data. The

technical detail of the Make Value function is documented in section 5.16.2 on page

213 of Appendix A.

One of the obstacles which had to be overcome in the Make Value function was the

correct reconstruction of compressed data into two ' s complement form, since numeric

variables are stored in two 's complement form in the memory of the PC.

The Make Value function takes as parameters two byte values (containing the scanned

bits from the compressed data stream) as well as the bracket code preceding the bits.

Make Value returns a signed 16-bit integer value, which is the decoded value.

In order to better understand the techniques implemented in the Make Value function, a

brief discussion of the internal representation of numeric values is in order.

On the PC, a short integer (also known as a small integer or word) is made up of two

bytes. Each byte consists of 8 bits. This allows 16 bits of information to be stored.

131

© Central University of Technology, Free State

Chapter ~ 1 echmcal reterence ot Uata AcqulSltlOn and Graphics Modules

According to Morse (Morse, 1982 : 14), the 80x86 family of microprocessors stores

the least significant byte (LSB) first, and the most significant byte (MSB) second.

This is illustrated as follows:

Short Integer

I LSB I MSB I

As an example, consider the value 7F30h• This is stored as follows:

Short Integer
LSB MSB
30 7F

As mentioned, each byte consists of 8 bits. Bit numbering starts at 0 (the least

significant bit) from the right. This can graphically be represented as follows:

msb Isb

b7 b6 b5 b4 b3 b2 bl bO

Positive numbers and zero can easily be described using binary notation. Negative

numbers introduce more complexity: an additional mechanism is needed to indicate

the sign of the number. Using the leftmost (most significant bit for the sign is called

sign-magnitude representation (Morse, 1982 : 5). Special arithmetic rules are needed!

Consider the following example:

Subtract + I from 0 (expecting a result of -I).

0000 OOOOb 0
- 0000 000 I b + I

IIII 1IIIb -127
(Morse, 1982 : 5)

We find that with the sign-magnitude representation the answer is actually -127!

A signed-number system is needed that can perform the same binary arithmetic on

signed as well as unsigned numbers. In such a number-system IIII IIII b should

represent -I and not -127. Subtracting +1 from -1 should yield -2.

132

© Central University of Technology, Free State

L-nap,er 0 1 ecnmcal rererence or uata f\cqUlslllon ana urapmcs 1VI0auies

1111 1IIIb -I
- 0000 OOOlb +1

I1II 1II0b -2
(Morse, 1982 : 5)

This representation IS called two's complement representation. Tanenbaum

(Tanenbaum, 1984 : 445 - 446) suggests that a negative number can be expressed in

its two's complement form by following a two step process. All ones are replaced by

zeroes, and zeroes are replaced by ones. One is then added to the result. If any carry

bit is generated during the addition operation, the additional bit (left most carry bit) is

ignored.

Properties of the two's complement form

• Binary additions and subtractions will yield the correct two's complement result.

• The most significant bit of a positive number is O.

• The most significant bit of a negative number is I. (The msb serves as a sign bit.)

• The sign of a two 's complement nWllber can be changed by negating th" valut: of

each bit, and adding I.

• When an 8-bit two 's complement number is extended to 16 bits (or more) the bits

on the left side of the 8-bit number will have the same value as the original sign bit.

This is called sign extending.

(Morse, 1982 : 5 - 6).

3.3.5.Function ScanMem
ScanMem receives as input a character pointer and the number of characters to

process. It proceeds by copying the required number of characters from memory into

a string and converting this string into an integer value, which is returned.

3.4. Calculation

As soon as all three colUl11ns (leads) for each lead group have been decoded, the

calculations needed to produce the actual lead data are performed. A second two

133

© Central University of Technology, Free State

Lnapler 1\ j ecnmcal rererence or uata AcqUlsllIOn and liraphlcs Modules

dimensional dynamic array is declared for this purpose. The reason for this step is to

facilitate the calculation. While some leads are already correct and can directly be

written to file, others need to be calculated. In some cases only one of the three leads

is known and the other two leads need to be calculated.

The formulre for calculating the actual lead values are described in Table A-22:

Smoothing Formulre on page 202 of Appendix A. At the end of the calculation of the

actual lead values, the results are written to a disk file.

The structure of such a data file is important and deserves discussion. One of the aims

of this research is to provide a graphics tool that can re-create an ECG on screen or on

paper. Such a tool should provide the capability to draw the same leads of different

ECGs on a screen/page for recognition of trends by a cardiologist. To allow random

access to lead data in the file, the decoded data file was structured containing header

and lead portions (as illustrated by Table B-2: Structure of a Hearts 32 ECG data file

on page 219 of Appendix B).

Although this organisation seems to work well, there were some implementation

difficulties associated with the creation of such a data file. When declaring a file of

type Text in Object Pascal it is not possible to use the Seek procedure. The Seek

procedure is used to position the internal file pointer within a file. In this research, the

Seek procedure was used mainly for two reasons:

1. When the data file is created, the lead map needs to be written to the new data file

before any lead data can be written. Since the data contained in the lead map are

only calculated as the processing of the digital ECG data stream progresses, it is

impossible to write the correct values for the lead map with one pass to the new

data file. During calculation of leads, the lead map information is gathered and

stored in an array. At the end of the process, the internal file pointer is reset back

to the beginning of the file and the lead map is overwritten, this time with the

correct values. Note that the lead data stay intact.

134

© Central University of Technology, Free State

~napler 15 1 ecnmcal rererence 01 Uata AcqulSltlOn and Uraphlcs Modules

2. The graph unit has to gain direct access to user-specified leads. By reading the

initial lead map this is a trivial exercise. (Such direct access speeds up processing,

since it is not necessary to read all values even if they are not needed.) In this case

the Seek procedure is used to move the internal file pointer to the starting value of

the desired lead.

Swan (Swan, 1991 : 957) suggests that a file of Char must be declared to use Seek in

text files . The Read and Write procedures can only be used with files of type text. To

write to any other file (such as Char), the BlockRead and BlockWrite procedures must

be used. Please refer to Chapter 6 for a complete discussion on why an ASCII data

format was chosen.

The data elements stored in a decoded data set (Hearts 32 format) are documented in

Table B-3 (page 220) of Appendix B, with examples in Table B-4 (page 221) and

Table 8-5 (page 222).

The offset information in the lead map array can only be updated after the data have

actually been written to disk. The reason for this is (as has already been mentioned)

that the individual data values are not of the same length. The following method is

used to update the offset information:

Code SlIippet8-JO: Filial Update of Lelul Map brjOTIIllllioll

ASCIILeadMap(1 J . Offset : D MapSize + 3 ;
f or i : = 2 to Leads do
begin

ASCIILeadMap(i J . Of fset : B ASCI ILeadMap [~ - 1) .LeadLength +
ASCIILeadMap(i - 1 J . Offse t ;

end ;

The offset for the first lead can very easily be calculated: it directly follows the lead

map and is calculated by summation of the size of the number of leads field and the

size of the lead map. We do not need to add one to the sum, since all offsets are zero­

based. For subsequent leads, the offset is calculated as the sum of the lead length of

the previous lead and the offset of the previous lead.

13S

© Central University of Technology, Free State

Lnapler 1\ j ecnmcal rererence 01 Uata AcqUlSIt!On and vraphlcs Modules

4. Graphic Display Module

It has been found that the font size setting in Windows® 95 (small/large fonts) has a

profound effect on the way that the forms in a DelphiTM application are presented. It

seems that the font size setting tends to influence the size of the form when auto

scaling is enabled. Hearts 32 (and the Hearts 32 ECG Browser) was developed for

high resolution use; 1024 x 768 pixels, using large fonts.

The Hearts32 ECG Browser has been developed as DLL, in order to allow

enhancements to be made to the browser, but at the same time protecting the Hearts

32 database against such changes6 The second reason for this design was the fact that

the Multiple Document Interface architecture (section 4.1 on page 137) is best suited

to the browser (rather than the Single Document Interface (SDI) used for the Hearts

32 application).

Access to a Hearts 32 ECG data set is realised by Hearts 32 itself; the browser does

not directly interact with the Hearts 32 database. This is illustrated in Figure 8-2

below:

Hearts
IT Database

~ Q =
ISS

~

Decompression of
ECG data

I

Database access and decompression
performed by Hearts 32. Decompressed
ECG data files are then made available

to the graphic display module.

~ Graphic display Module
I

Figllre 8-1: Grapllic overview oflile Hearls 31 ECG Browser

6 This means that it \vill not be necessary to re-compile the complete Hearts 32 application, since Llpdatcs are
localised to the browser software only.

136

© Central University of Technology, Free State

cnapler (\ 1 ecnmcal relerence 01 Uala AcqUlslllon ana LrrapnlCs Moaules

The Hearts 32 ECG Browser comprises of four Object Pascal unit files:

Table 8-2: Objecl Ptlsctllllllils/oUiul illlhe Hearls 32 ECG Browser

Unit Short overview

EKGIOP Responsible for frame management.

Child Win Responsible for actual display of an ECG, together with tools such
as crosshairs, callipers, gridlines and zooming.

DrawLDIO Responsible for superimposing of different leads of the same ECG.

About Responsible for the HelplAbout dialogue box.

Although the ECG graphic display screen appears to be one graph, the graphic display

actually consists of 14 different TChart components, which, in turn, each contain one

TFastLineSeries component. The individual TCharl components are placed next to

each other, forming what appears to be one graph.

This configuration meant that items such as crosshairs, callipers, gridlines and

zooming had to be copied for 14 different charts.

4.1. The Multiple Document Interface
The browser must be capable of displaying n ECGs simultaneously, in order to allow

the cardiologist to compare different ECGs for the same patient. The MDT approach

delivers a solution that is already familiar to most users of word processing packages.

MDT allows more than one document to be opened simultaneously.

Cantu (Cantu, 1997 : 736) describes MDT applications as follows: "MDT applications

are made up of a number of forms that appear inside a single main form."

The different windows involved in an MDI application can be summarised as follows:

137

© Central University of Technology, Free State

Chapler IS 1 echmcal reterence ot Uata AcqulSltlOn and liraphlcs Modules

Table 8-3: MDt Window Types

Window type Description

Frame window The application's main window. It has a caption, menu bar, and
system menu. Minimize, Maximize and Close buttons appear in
its upper-right corner. The blank space inside the frame window
is known as its client area and is actually the client window.

Client window The manager for MDI applications. The client window handles
all MOl-specific commands and manages the child windows that
reside on its surface - including the drawing of MOl child
windows. The client window is created automatically by VCL
when a frame window is created.

Child window(s) MOl child windows are the actual documents - text files,
spreadsheets, bitmaps and other document types. Child windows,
like frame windows, have a caption, system menu, Minimize,
Maximize, and Close buttons, and possibly a menu. It's possible
to place a help button on a child window. A child window's
menu IS combined with the frame window's menu. Child
windows never move outside the client area.

(Pacheco & Teixeira, 1996 : 312 - 313).

The functions and procedures found in the EKG lOP unit work together to form the

frame window of the Hearts 32 ECG Browser. These include:

4.1. 1. Function DrawLeads
The DrawLeads function is the only exported function in the DRA WECG.DLL file.

It serves as the hook between Hearts 32 and the Hearts 32 ECG Browser. DrawLeads

is responsible for the assignment of the parameters passed from Hearts 32 to global

variables, and also for the instantiation of the main form of the browser. This can be

illustrated as follows:

Code SnippetS-II: Dynamic Creation oflhe Fmme Window

Ne wParmList : = ParmList ;
Applica t i on , In i tialize ;
Application . CreateForm (TMainForm, MainForm) ;
Application . Run i

The parameter list passed to the Hearts 32 ECG Browser is s ewha.W;.cmljl!.ica.t.eLl--.,

and deserves a short discussion. Put in English, the patient' s ~~r~'t9~~~1IiY
0,;:. THE

138

- 5 S E P ZOOl
TECHNIi' : : I
FREE STATE

© Central University of Technology, Free State

\..-napler " 1 ecnmcal reference or uaIa AcqUlslllon ana IJrapnlCs lYloaules

birth, together with a list of the ECG data file names (and the date and time of

recording of each ECG) need to be sent to the browser (from Hearts 32).

Since there is no way of determining the number of data file names before they are

passed as parameters, a different parameter passing technique is needed. Cantu

(Cantu, 1997 : 170) notes that "Unlike C, a Pascal function or procedure always has a

fixed number of parameters. However, there is a way to pass a varying number of

parameters to a routine using an open array. The basic definition of an open array

parameter is that of a typed open array. This means you indicate the type of the

parameter but do not know how many elements of that type the array is going to

have."

An open array parameter would have been perfect if an array with file names were to

be passed. Since other information is also needed, this method has been abandoned in

favour of passing one complex (record) variable. The structure of this variable IS

defined in a few steps as follows:

Code SlIippeIS-I2: Record lISedfor Parameler Passillg belweell Hearls 32 alld Ille Hearls 32 ECG
Browser

type
TAr20 = Array[0
TArBO : Array[0

TEDFArray = Record
FileName TAr8D ;
Date TAr20 ;
Time TAr20 ;

end ;

20 of Char ;
80 of Char;

EDF ~ Array 0 .. 0 1 of TEDFArray ;

TParmList = Record
PatientName TAr8D ;
DateOfBirth : TAr20 ;
Sex Char ;
FileCount Integer ;
ECGDataFiles : "EDF;

end ;

Types TAr80 and TAr20 were created as zero-based character arrays, so that

parameters of this type can be compatible with ASCIIZ strings. The use of the Object

Pascal type String causes problems when writing DLLs.7 The same approach for

7 Imponant note about DLL memory management: ShareMcm must be the first unit in your library's USES clause
AND your project's (select View-Project Source) USES clause if your DLL exports any procedures or function s
that pass strings as parameters or function results. This applies to all strings passed to and from your DLL;

139

© Central University of Technology, Free State

Chapter IS I echl1lcal reterence ot Uata AcquISItIon and vraphlcs Modules

dynamic array allocation as described in section 3.3.1 on page 127 has been used to

dynamically allocate the space needed for the ECG files.

4. 1. 2. Procedure TMainForm.FormCreate
Additional processing during the form creation includes enabling of hints during the

program execution, and also the updating of menu items (enabling/disabling items,

managing tick marks etc.).

4.1.3.Procedure TMainForm.ShowHint
ShowHint passes hint strings to the status bar at the bottom of the window. Note that

the Hint property of a form can contain both short and long hints. The different hints

are separated from each other by a pi pe (I) character.

4.1.4.Procedure TMainForm.CreateMDIChild
CreateMDIChild creates a new MDi child window in which a new document (ECG in

this case) will be managed.

4.1.5.Procedure TMainForm.FileCloseltemClick
The currently active MDi child window is closed using the Close method of the MDi

child window. A check is performed to determine whether MDi child windows are

present before Close is called. This is done by using the ActiveMDIChiid procedure.

If no MDi child windows are available, ActiveMDIChiid returns nil , otherwise the

active MDi window is returned.

4.1.6.Procedure TMainForm.FileExitltemClick
The frame window is closed by calling the Close method of the Application object.

even those thal are nested in records and classes. ShareMem is the interface unit to the DELPH IMM,DLL
shared memory manager, which must be deployed along with your DLL. To avoid usi ng DELPHIMM.DLL,
pass string information using PChar or ShonString parameters. (Pacheco & Teixeira, 1996: 676).

140

© Central University of Technology, Free State

L-napler 1\ j ecnmcal rererence or Uata AcqUISItIOn ana vraphlCs Moaules

4. 1. 7. Procedure TMainForm. WindowCascadeltemClick
MOl child windows are cascaded by calling the Cascade method of the frame form

(window).

4.1.8.Procedure TMainForm. WindowTileHltemClick
MOl child windows are horizontally tiled by setting the TileMode property of the

frame form (window) to tbHorizontal, and calling the Tile method of the frame form.

4.1.9.Procedure TMainForm. WindowArrangeltemClick
Minimised MOl child windows are arranged by calling the Arrange/cons method of

the frame form.

4.1.10.Procedure TMainForm. WindowMinimizeltemClick
All MOl child windows are minimised by looping through the list of MOl child

windows, and setting the WindowState property of each MOl child window to

wsMinimized. The number of MOl child windows can be determined by querying the

MD/ChildCount property of the frame form.

4. 1. 11.Procedure TMainForm.UpdateMenultems
Menu items as well as speed buttons are enabled or disabled, depending on the

availability of a MOl child window. It does not make sense, for example, to allow the

user to close a file if no file was opened to begin with! This can be illustrated as

follows:

Code SIIippet8-13: ElllIb/illgldislIb/illg lIletlll ilellls 1I1111 speed bUI/OIIS

FileCloseltem .Enabled : = MDIChildCount > 0 ;

4.1.12.Procedure TMainForm.FormDestroy
Care must be taken that, before the frame form is destroyed, the link to the ShowHint

procedure is disabled. If thi s is not done, the frame form will be destroyed, resulting

in a dangling pointer which will cause a program crash.

141

© Central University of Technology, Free State

Lnapler 1\ I ecnmcal rererence or uata AcqUlslllon anQ Lrrapmcs lVIOQUleS

4. 1. 13.Procedure TMainForm.sbZoomButtonClick
To enable the zoom feature, the AllowZoom property of each TChart object needs to

be set to True. sbZoomBultonClick makes use of the Run-Time Type Information

(RTTI) operator as to ensure a safe type cast. Cantu elaborates on the use of the as

cast as follows: "The difference between the traditional cast and the use of the as cast

is that the second one raises an exception if the type of the object is not compatible

with the type you are trying to cast to." (Cantu, 1997: 233).

4.1. 14.Procedure TMainForm.sbCalliperButtonClick
When the calliper tool has been enabled, the On Click event handler of the TChart

object points to the RSClick procedure. Disabling the calliper tool sets the OnClick

event handler to nil.

4. 1. 15.Procedure TMainForm.sbRefreshButtonClick
The ECG display is refreshed by calling the Repaint method for each TFastLineSeries

object.

4.1.16.Procedure TMainForm.sbCloseClick
Clicking on the Close speed button closes the frame form by calling the

FileExitItemClick procedure.

4.1. 17.Procedure TMainForm.sbGridButtonClick
The status of the Grid menu item is updated, depending on the status of the

GridButton. This is accomplished by setting the value of the Checked property of the

Grid menu item. The Draw method of each TChart object is then called.

4.1.1B.Procedure TMainForm.sbDrawSameLeadsClick
Before leads can be superimposed, a new MDI child form needs to be created. After

creation of this form, control is passed to the form.

142

© Central University of Technology, Free State

\' ... Ali1jJlt:r 0 1 tCflIW..;dl rtltftIlCt Of lJaIa ACqUlslllon anu urapmcs 1VloaUles

4.1.19.Procedure TMainForm.sbFullSizeButtonClick
Setting the MDT child window to its maximum size can be achieved by setting the

values of the top, left, height and width properties of the MDT child form.

4.1.20.Procedure TMainForm.Refresh1Click
Selecting the Refresh menu item will call the sbRefreshBullonClick procedure to

complete the refresh task.

4.1.21.Procedure TMainForm.Grid1Click
Selecting the Draw Grid menu item will call the sbGridButtonClick procedure to

complete the drawing of the grid.

4.1.22.Procedure TMainForm.Zoom1Click
Selecting the Zoom menu item will call the sbZoomButtonClick procedure to complete

selectionldeselection ofthe zoom tool.

4.1.23.Procedure TMainForm. Win do wTile Vltem Click
MDT child windows are vertically tiled by setting the TileMode property of the frame

form (window) to tbVertical, and calling the Tile method of the frame form.

4.1.24.Procedure TMainForm.sbPrintClick
The sbPrintClick procedure starts by forcing the page orientation to poLandscape.

The shape of the cursor is set to an hourglass (crHourGlass). Printer. BeginDoc

prepares the print job. The PrintPartial method of the TChart object is used to allow

individual placing of TChart objects on the printed page, at program-supplied co­

ordinates. Printer. EndDoc finalises printing. At the end of the print job, the printer

orientation as well as the cursor are restored to their old values.

4.1.25.Procedure TMainForm.StatusBarDblClick
Double clicking on the status bar will hide or display the toolbar, depending on the

current setting of the tool bar visibility.

143

© Central University of Technology, Free State

'-.-napIer II 1 ecnmCal relerence or uata AcqUlslUon anu vrapmcs lVlOQUleS

4.1.26.Procedure TMainForm.Open1Click
The OpenlClick procedure loads the ECG data sets as listed in the parameter list

(Code Snippet 8-12 on page 139), each into each its own MDI child window. During

loading of the data set, the name of each data set is displayed in the status bar at the

bottom of the screen. The caption of each MDI child window is set to the patient

name, age in years and sex, as well as the date and time on which the ECG was

recorded. The patient age is determined by subtracting the birth date from the ECG

recording date, and dividing the answer by 365.25 8 Only the integer portion of the

calculation is displayed.

4.1.27.Procedure TMainForm.sbOpenButtonClick
Selecting the Open menu item will call the sbOpenButtonClick procedure to complete

the loading of the ECG data sets.

4.1.28.Procedure TMainForm.Print1Click
Selecting the Print menu item will call the sbPrintClick procedure to complete the

printing of the active MDI child window.

4.1.29.Procedure TMainForm. Superimpose 1 Click
Selecting the Superimpose menu item will call the sbDrawSameLeadsClick procedure

to facilitate superimposing of leads for the same ECG.

4.1.30.Procedure TMainForm.Heip1Click
The HelplAbout dialogue box is displayed as soon as the AboutBox has been

instantiated.

4.2. Managing the contents of a child window

The procedures and functions contained in the Child Win Object Pascal unit concern

themselves with the management of the contents of the MDI child window. This

8 The HP4745A Cardiograph does not support dates past 31 December 1999. This means that the age calculation
will have to be revised , if the HP4745A Cardiograph is used past 31112/1999.

144

© Central University of Technology, Free State

\.AICtpu:;r 0 1 eC(J.JIu.:CtI l'elel'eJH . .:e ur uata AcqulSHlon anu uraplllcs JVI0QUIeS

includes items such as loading ECG data sets and displaying the ECG graphs, as well

as drawing crosshairs.

As mentioned previously, a total of 14 TChart objects are present in the unit. Due to

this fact, some functions had to duplicated. Since the contents of these functions stay

the same, save for a change in an array subscript, only one of these functions will be

listed and discussed.

4.2. 1. Procedure TMDIChild.FormC/ose
FormClose closes the MDi child window by setting the Action parameter of the

On Close event to caFree. The default closing behaviour for MDi child windows is to

minimise, rather than close. This is controlled by a parameter of the OnClose event

called Action. By default, Action has the value caMinimize. By setting Action to

caFree, the application is forced to destroy the window and free its resources on

closing.

4.2.2.Procedure TMDIChild.RSClick
RSC/ick implements the calliper functionality by recording the time and voltation on

an initial mouse click, waiting for a second mouse click, recording the time and

voltation and then calculating the difference between these values.

4.2.3.Procedure TMDIChild.Exit1Click
ExiliClick closes the MDi child window by calling its Close method.

4.2.4.Procedure TMDIChild.AfterDrawValues
AfterDrawValues is responsible for drawing the gridlines after the TChart object has

drawn itself.

4.2.5.Procedure TMDIChild.ScanFile
The ScanFile procedure is used to read items such as lists of numbers from an ASCII

data file . Each value is separated from the others by a space. ScanFile reads the

contents of the data file a character at a time, tenninating as soon as a delimiting

145

© Central University of Technology, Free State

Chapter II . rechnical reference of Data Acquisition and Graphics Modules

character (such as a space, comma or tab) has been read. Although character

operations sound painfully slow, the file I/O buffering techniques provided by the

operating system, as well as the increased access speeds of modern hard disks speed

up processing considerably.

4.2.6.Procedure TMDIChild.RSMouseMove
RSMouseMove is responsible for crosshair management. The DrawCross procedure

(which is local to RSMouseMove) performs the actual drawing of the crosshair. The

crosshair is managed by determining whether a crosshair was already drawn or not. If

this is true, the previously drawn crosshair is effectively erased by drawing it in its

previous position. This is achieved by setting the pen mode to prnXor. Drawing the

crosshair in a new position with a pen mode set to pmXor will display the crosshair in

a different colour.

The GetCursorValues method of the TChart object enables the determination of the

actual values under the mouse cursor (X, Y coordinates) at any given point. If the

result of the GetCursorValues was to be used directly, it would make no sense. The

numeric values read from the Hearts 32 ECG data set do not represent values in

millivolts or time directly. It is known that the total time per lead is 2.5 seconds. We

have roughly 630 data points per lead. 2.5 / 630 = 0.004 seconds per data point. This

means that for every X val ue, the associated elapsed time can be expressed as X

multiplied by 0.004.

An analysis of 740 calibration pulses showed that the average numeric representation

of I m V is 199.56 (with a CV% of 0.56%). In order to ease the calculation, this figure

has been rounded to 200. To determine the value of each Y in millivolts, the value of

Y has to be multiplied by 0.005. An example of the calibration pulse can be found in

Figure 3-20 on page 48 of Chapter 3 (Item F). Please refer to Table 3-9 on page 46 on

Chapter 3 as well.

The result of these calculations is displayed in the status bar at the bottom of the

window, as found in Figure 7-3 and Figure 7-4 on page 115 of Chapter 7.

146

© Central University of Technology, Free State

\""'1IajJlt:l 0 1 t::"nm"al rt::lt::rence or lJata f\cqUlslllon ana IJrapnlCs MOdules

4.2.7.Procedure TMDIChild.FastLineSeries10AfterDrawValues
The FastLineSeriesNAjlerDrawVa!ues9 functions are needed to facilitate correct

handling of the crosshairs found in each TChart object. These functions set a flag to

allow a new set of readings to be taken, as needed.

4.2.B.Procedure TMDIChild.FormCreate
The FormCreate procedure starts by reading the ECG data set from the ASCII file

supplied as a string parameter. The first step is to determine the size of the lead map,

dynamically allocate enough memory to store such a lead map, and to read the lead

map from the ECG data set. Subsequently, lead data are read by looking up the offset

of each lead in the lead map, moving to the correct offset in the data file and reading

the data. Data points are added directly to the correct TFastLineSeries object as they

are read.

The determination of the maximum and minimum values follows next. This ensures

that all graphs are scaled equally. The ASCII data file is now closed and memory

dynamically allocated for the lead map, is freed.

4.2.9.Function TMDIChild.FindSubscript
FindSubscript returns the subscript of the item in the MouseStuff array by searching

the entries in the MouseStuff array for the title of the chart.

4.2.10.Function TMDIChild.FindLeadOffset
FindLeadOffset allows access to the lead offset in the header data of the Hearts 32

ECG data set by searching the lead map for the supplied lead identification, and

returning the subscript where the ID is found.

4.3. Superimposing of selected ECG leads

The DrawLDJO Object Pascal unit declares a new form that is used to select and

di splay a selection of leads on the same graph. The selection process is facilitated

9 The range for N is between 1 and 14, inclusive.

147

© Central University of Technology, Free State

L-llapler 0 I ecnmcal rererence or Uata AcqUlslllon ana vrapnlcs Modules

through the use of a TListBox component. The TChart object contains 12

TFastLineSeries objects.10

The initial value of the Active properties of these TFastLineSeries objects are set to

False, effectively hiding the series. Each selected lead is copied from its

corresponding TSeries and TChart objects contained in the EKG 1 OP Object Pascal

unit. This saves time and effort to re-load the information from the ECG data set.

The series Title and Active properties are updated, and the series are displayed.

In order to ensure that the selected leads are drawn according to the same scale, the

LejiAxis.A utomaticMaximum and LejiAxis.A UlomaficMinimum properties of the

TChart object are set to False. The LejiAxis.Maximum and LejiAxis.Minimum

properties are set to the calculated maximum and minimum values.

The colours used are of type TColor, and include clRed, clGreen, clBlue, clBlack,

clTeal, clOlive, clFuchsia, clYellow, clNavy, clMaroon, clLime and clGray.

10 There are 12 leads in the ECG data set eligible for superimposing.

148

© Central University of Technology, Free State

Chapter ~ Conclusion

Chapter 9

Conclusion

1. Introduction

The hypothesis of this study as outlined in Chapter I can be summarised as follows:

To facilitate the digital availability of electrocardiogram tracings recorded with a

HP4745A Page Writer II Card iograph.

The milestones needed in order to reach this goal were li sted in the Research Method in

Chapter 2. Obta ining the technical documentation from the Hewlett-Packard Company

took a few months. I The Hewlell Packard Diagnostic Cardiology Digital Transmission

Protocol covered the information needed for digital transmiss ion. Nothing was handed to

the reader on a plate.

Parts of the document necessitated further research using other information technology

textbooks . The eRe ca lcu lation routine, as well as the modulo-16 calculation of

checksums were not clearly documented in the protoco l text. Another grey area (which

incidentally could not be so lved) is that of the position bits2 found in the digital ECG

data. Even without these position bits and their effect on the data, the resulting ECG data

appeared to be fine.

The transmission protocol di scussed the smoothing and compression methods used to

create the digital data set, but no hint was given as to how to decompress these data.

These procedures had to be devi sed from scratch. Since the compress ion and

decompression methods perform their tasks on the bit level , some reading had to be

performed in order to get acquainted with the internal representation of numbers in the

80x86 chips.

1 Negotiations for acquisi tion of the document started around 20 March 1996. The document was received on the
18th of JUlle 1996.

2 Discussed in section 5.14.2 Position Bits on page 198 in Appendix A.

149

© Central University of Technology, Free State

Chapter 9 Conclusion

2. Highlights
Some of the most important highlights experienced during the life of the research project

include:

2.1. First communications (HP4745A to HP4745A)
The very first attempt at communications was performed by connecting two HP4745As

to each other, and to transmit an ECG from one machine to the other) In the beginning

th is was rather difficult, since the menu structure and controls of the HP4745As were still

virgin territory. These tests were carried out using the original cables from Hewlett­

Packard.

2.2. Construction of the RS-232 communications cable
The original cables4 supplied with the HP4745A Page Writer II Cardiograph are intended

to either connect the HP4745A to a modem or to another HP4745A. On enquiry,

Hewlett-Packard in Cape Town, South Africa, confirmed that a cable to connect the

HP4745A to a PC would cost ",R 1,900.00.

The cable diagrams supplied in the transmission protocol document did not illuminate the

structure of the planned cable either. After careful examination of the two cables

mentioned in the previous paragraph, a wiring diagram for a s ing le cable was

constructed .

Great was the excitement when a fully functional cable, connecting the HP4745A to a

PC, was completed for around R 25.00.5 Even some so ldering sk ill s were acquired, and

the burnt fingers could not dampen the excitement.

3 The first successful transmission was performed on the 20th of June 1996.

4 Detail s of these cables can be found in the sect ion "Cable Conriguration" in Appendix A

5 This milestone was reached on the 22nd of July 1996.

150

© Central University of Technology, Free State

Chapter 9 Conc lusion

2.3. First digital capture of a conversation between two
HP4745As

At this point in time the text of the transmission protocol did not make much sense.6 It

was deemed best to try and determine the exact contents of the digital conversation

between the two HP4745As. To facilitate thi s step, a RS-232 communications monitor

was needed. The Computer Centre of the University of the Orange Free State had such a

device, and access to it could be arranged. The biggest problem was the fact that the

results of the probe could not be stored in a way which would facilitate later examination

and experimentation.

For this reason, an inexpensive PC-based RS-232 communications monitor was needed.

A search on the Internet yielded RS232 Version 1.01.7 RS232 VI.OI basically

eavesdrops on the conversation between two communicating devices. All that is needed

is the RS232 VI.O I software, and a simple RS-232 cable as speci fied in the

documentation .

First attempts at recording the digital conversation failed, since the structure of the

RS232 V 1.0 I cable interfered with the initial communications tests of the HP4745A. As

soon as thi s was identified and the problem corrected (by simply cutting through two

cables!), the recording was completed. 8

2.4. Initial attempts at analysis of the digital ECG data

Initially the hexadecimal dump of the RS232 VI.OI program was manually interpreted

and examined in an attempt to better understand the text of the communications protocol.

It soon became apparent that this would be a mammoth undertaking, something at which

a computer would excel.

The first attempts at programmatic analysis of the recorded digital conversation were

extremely cumbersome, since the data were not in native format. For a start each byte

was represented by its hexadecimal ASCII code' Another problem was that all the

6 The transmission protocol had, in fael. to be studied several times in detail before the different parts fe ll into
place.

7 By Michael Ring, Ring Development, 10750 J08th Ave. N., Maple Grove, Minnesota, 55469, USA.

8 The first recording of such a digital conversation was successfully performed on the 26th of July 1996.

151

© Central University of Technology, Free State

Chapter '} Conclusion

control characters used by the protocol to facilitate the transfer of information were still

present in the file.

These extraneous characters did , however, play an important part in better understanding

the text of the transmission protocol.

2.5. Manual decompression and calculation of ECG data
The transmission protocol described the transmission process in a fair amount of detail.

The decompression of the data was not mentioned at all. In the light of this it was

decided to start off with test runs at data decompression. There would be no point in

transmitting data that could not be decompressed and interpreted.

For lack of a complete understanding of the decompression process, an initial manual

decompression was performed9

These results were entered into an MS-Excel 5.0 spreadsheet and the resulting graph held

great promise. A close resemblance between the test ECG and the graph could easily be

seen.

2.6. Initial graphing with MS-Excel of the decoded data
The sheer volume of the data that had to be decoded, made it impossib le to attempt

such an operation by hand. The knowledge acquired during the manual decode step

was sufficient to write a Borland® C++ 3.1 program that could read a binary ECG file

(HP4745A format) and return a file with a set of numbers representing the data.

These data were entered into MS-Excel 5.0 for graphing. Some calculations still had

to be performed, and MS-Excel was used for this. 10 By manually comparing the MS­

Excel graphs with the test ECG, an error was discovered in the decoding process.

9 Started towards the end of July 1996, and ended on the 29th of August 1996. A meticulous task which wou ld
have driven anyone blind and insane, provided th at they were mad enough to stick to it!

10 The first correct set of graphs were produced on the 18th of September 1996.

152

© Central University of Technology, Free State

Chapter l} Conclusion

2.7. The first RS-232 communications program (BorlancfID
C++ 3.1)

Between the creation of the decoding program mentioned in the previous section and the

writing of the communications program, some important decisions had to be made about

the way in which the RS-232 communications were to be implemented. Enough

textbooks and experience were at hand for coding the RS-232 communications functions

from scratch.

This did not seem like a viable option, since the point of the exercise was not to write yet

another RS-232 communications library. A suitable RS-232 communications library

(completely written in ANSI C) was located. I I The immediate problem was solved.

Work on the RS-232 communications program lasted nearly three weeks. 12 Initial

communications attempts failed. After days of debugging, the reason for the failure was

attributed to the fact that the buffer of the communications port overflowed due to the

inability" of the RS-232 communications library to operate at such high baud rates (19,200

baud). The conclusion was made that the fact that the communications library was

written entirely in C slowed down the servicing of interrupts (due to high overheads

associated with parameter passing using the stack with function calis). Should the library

be rewritten in Assembler, higher throughput was to be expected.

Nevertheless, a satisfactory answer was obtained and the baud rate was simply lowered to

9600 baud, resulting in success.

2.8. Capturing data for statistical analysis

In order to determine the optimal storage method, some data had to be captured. This

activity took place in paraliel with the rest of the research. To realise this, a special

version of the communications program was prepared in Clipper 5.2. The CA Clipper

Tools library version 3.0 (by Computer Associates, the manufacturer of Clipper) was

used to implement the RS-232 communications routines.

11 Another product called RS232 , by Chris A. Karcher, 9537 Evanston Ave, N., Seattle, Washington,
98103-3131 , USA. © 1992.

12 Started on the 8th of November 1996, with the first successful run on the 1 s1 of December 1996.

153

© Central University of Technology, Free State

Chapter Y ConcluSion

The result of this was that the existing Hearls application could digitall y acquire ECG

Data. These data could not, however, be stored in the database. Instead the ECG ,

data were stored in files on the file server, awaiting database storage in the new

Hearls 32 database.

One thousand and twelve ECG data files were digitally captured between

20 December 1996 and 8 May 1997.

2.9. Development cross-roads
Although the C language seemed like a good choice for such low level work, the

character based interface did not appeal. The new trend was Windows® and Graphical

User Interfaces (GUl), and it did not make sense to develop a new product using an

outdated interface.

At that point in time, Borland had brought their new Rapid Application Development

(RAD) tool , DelphiTM, to the market. The choice was largely between Microsoft Visual

C (from previous experience not an attractive idea) and DelphiTM

Although the researcher was not versed in the Pascal language 13, a decision was made to

move to DelphiTM This meant not only that another computer language had to be learnt,

but also that a paradigm shift had to be made. Rather than traditional procedural program

development, object oriented, event driven programming was to be performed.

2.10. The first RS-232 communications program (DelphFM 1.0)
Once again, the biggest obstacle to overcome was the RS-232 communications

component. It was quickly di scovered that the low-level knowledge of serial

communications programming in DOS would not suffice in a multi-tasking environment

13 The development language used in Borland® Delphi™. Microsoft Visual C uses the C programming
language.

154

© Central University of Technology, Free State

Chapter '} Conclusion

such as Windows®. The Internet provided a so lution in the form of the MSComm VCL

component. 14

As a first program in DelphiTM 1.0, the communications program came into being,

downloading data in the Windows® environment at speeds of 19,200 baud15 This was

quite surprising, when the overheads of multi-tasking and messaging in Windows® are

considered. It was found that higher transmission rates do not dramatically reduce the

time needed for complete data transfer.

The most probable reason for this phenomenon is the fact that half-duplex

communications are used. Every packet of data that is sent to the PC must be confirmed.

If a large stream of data was continuously sent, an increased transmiss ion rate would

have had a greater influence on the transmiss ion time. In the realm of the research

problem, the largest packet is limited to 256 bytes by the transmission protoco l.

2.11. Windows® 95 and the 32-bit environment (DeJphjTM 2.0)

Windows® 95 had by then positioned itself in the market and Borland released

DelphiTM 2.0, a 32-bit version of their best se lling compiler. Since no shattering progress

had been made developing with the 16-bit version of DelphiTM (for thi s research), and

also because of the claimed benefits of the new compiler, it was decided to move to the

32-bit environment.

A brief spell with a beta version of Borland ' s C++ Builder led to the deci sion to stick

with Delphi™. The most important reasons for this included that the product was not

ready for release yet (no documentation was supplied), and also that it was extremely

slow in compiling, when compared with Delphi™. C++ Builder also needed roughly

10MB of di sk space for scratch files when writ ing a "Hello World" program.

While the bulk of the code for the communications program could be ported to

DelphiTM 2.0, the same o ld problem arose once more: The 16-bit vers ion of the RS-232

14 MSComm VI. I0 by Jeff Atwood. The MSComm VeL componenl duplicates the functionali ty of the
MSCOMM Visual Basic VBX component. All attempts to contact Je ff for acquiring of personal details in
order to pass credit for his work fail ed .

15 Work stancd on the 7th of December 1996, with the first successful run on the 29th of December 1996.

ISS

© Central University of Technology, Free State

Chapter l) Conclusion

communications component (MSComm) no longer functioned with DelphiTM 2.0. One of

the most important reasons for this was the fact (discovered after many hours of toil) that

Microsoft had, in their infinite wisdom, renamed and removed some of the API functions

found in the Windows® kernel. The search for a new RS-232 communications

component alas started anew.

This time the Internet did not deliver the goods. Countless searches resulted in fai lure or

unsati sfactory solutions. The answer came in the form of AsyncPro™, a professional

communications library for DOS®, Windows®, Windows® 95 and Windows® NT. A

trial edition of the software was found on the CD bundled together with the book

"DelphiTM 2 Developer' s Guide" by Pacheco & Teixeira. The license for the library cost

R 1,000.00.

The new communications component naturally did not use the same methods and

properties as the 16-bit component. This meant a re-write of the communications portion

of the program. 16

2.12. Following up on decoding and calculation

In the meanwhile, work on integrated decoding and calculation proceeded, USIng

BOrland® C++, since the researcher could work faster developing initial code in C.

Some technical problems were soon experienced, as the limitations of DOS® (most

notably the 640 KB barrier and the segmented memory architecture) were reached.

Large data sets such as those found in the ECG files could simply not be handled with

ease in DOS®. As an interim so lution, a statistical/mathematical package]7 was used

to temporary overcome some of these problems.

The answer to these architectural problems was, of course, to use DelphiTM 2.0 in the

32-bit environment, where each program theoretically has a 2GB memory space that it

can use. No more memory model nightmares !

16 Work on this fe-write started on the 25th of January 1997, and was successfully completed on the 1st of
February 1997.

17 C/Math Toolchest by Mix Software Inc ., 1132 Commerce Drive, Richardson, Texas, 75081 , USA. © 1991.

156

© Central University of Technology, Free State

Chapter 9 Conclusion

2.13. TeeChart and DelphjTM 3.0

As the research progressed, and more milestones were reached, the choice of a graphing

tool became inevitable. Drawing the graphs with MS Excel 5.0 no longer sufficed. An

integrated solution was needed.

An investigation into writing the routines needed from scratch, soon showed that this idea

was not viable. There is no point in re-inventing the wheel! A good "wheel" was found

in the form of TeeChart, a professional graphics library for Delphi™.18

The issue of money arose once again. The purchase price of TeeChart would mean an

additional expenditure of R 1,000.00. Roughly one month later, Borland released version

3 of DelphiTM, which promised even more improvements on version 2. Interestingly

enough, Borland chose to bundle the TeeChart software with DelphiTM version 3. The

choice was clear: purchase the upgrade to DelphiTM at a cost of RI,250.00, with

TeeChart bundled in the package.

TeeChart made it possible to reach yet another milestone, namely graphic re-creation of

digitally stored ECG data.19 TeeChart also permitted interesting options such as zoom

functions and the creation of callipers to be implemented with relative ease.

2.14. Choice of optimal storage method

Statistical analysis of the digitally acquired ECG data files yielded good information on

the composition of these files. Different options were considered, and a storage format

was proposed in Chapter 6.20 The researcher gained experience with the use of

statistical functions in MS-Excel 5.0 during this part of the research work.

18 TeeCharl V3.0, runtime version, © 1995 - 1997, David Berneda, TeeMach SL. Barcelona, Catalonia, SPAIN .

19 Research on the graphic display tool started on the 9th of June 1997, and continued through to the 13th of
October 1997.

20 Research on this topic started on the 13th of May 1997, and continued on and off until roughly the 27th of
September 1997.

157

© Central University of Technology, Free State

Chapter l} Conclusion

2.15. Interfacing with the Windows® Registry

With the Hearts 32 application on the one hand, and the data acquisition DLLs on the

other hand, some "glue" was needed to ensure a connection. The connection was

realised by utilising the Windows® Registry. Chapter 4 discusses the design issues

behind this decision. Appendix B contains more detailed programmatic information

on this topic. Creating an interface with the Windows® Registry represented another

step towards the final solution21

2.16. Developing a Dynamic Link Library

Chapter 4 discusses the rationale for implementing the data acquisition module as a

dynamic link library. Initial work on testing the descriptions for DLL writing, as found

in the literature, succeeded instantly. However, when trying to put thi s knowledge into

practice with a real life application, something was missing. Appendix B throws more

light on thi s matter. Suffice it to say that the problems with DLL implementation have

been sorted out and the conceptual model has been put into practice - yet another

milestone reached.22

2.17. The literature research on the electrical activity of the
heart

The researcher deemed it necessary to perform a literature research on the basic

anatomy and physiology of the heart, as well as the electrical activity of the heart in

order to place the ECG in context. This part of the research was extremely interesting

d . f' 23 an salts ymg.

2.18. The use of MS Word

During the course of the writing of this thesis, a lot was learnt about the functionality

of MS Word 24 The writing of a document as complex as a research report would be

21 Research work on the Registry started on the 151 of September 1997 and continued until the 3rd of December
1997.

22 Research on DLL creation started on the 18th of August 1997 and continued on and off until the 7th of
December 1997.

23 The writing of thi s chapter, together with the graphics work, lasted nearly 6 weeks.

24 Many of these ski lls were learnt by reading the help text and trying until the desired effect was ach ieved.

158

© Central University of Technology, Free State

Chapter ~ Conclusion

much more difficult without features such as styles, templates, captions, auto

numbering, cross referencing and spell checking found in MS Word.

3. Areas for future research

Future research areas include the following:

• Computer-aided interpretation of ECG data, companng newly acquired ECGs

with previous data. This can typically be performed using an expert system.

• Lead to lead, and ECG to ECG QTc comparison, as an indication of subtle

pathological changes in the patient's ECG.

• Annotation of the ECG stored in the Hearts 32 database, so that the cardiologist

can mark and store areas of interest on the ECG directly in the Hearts 32 database.

• A web-enabled version of the Hearts 32 database. This should make the data

more accessible to distant users.

4. Future of the system

4.1. Hardware
The HP4745A Page Writer II Cardiograph is rapidly agemg. [t was initially

introduced during 1987. One cannot help but wonder how long the Hewlett-Packard

Company will continue to provide service and support for these machines. The

Department of Cardiology, Universitas Hospital, Bloemfontein has access to the

professional services of a team of highly skilled bio-engineers, who can service the

HP4745A ECG machines. This of course, depends on the availability of spare

components, in case of component malfunction.

It is reasonable to foresee that these instruments will be in use for at least another two

years, during which time the use of the software system resulting from this research

can make a big impact on the work performed by the Department of Cardiology.

[t is important to note that the HP4745A does not support the year 2000, the reason

for this being that dates are only 6 digits long.

159

© Central University of Technology, Free State

Cnapter ':J Conclusion

4.2. Software

A vast array of software development tools is currently available on the market. The

new generation of software development tools aims at increasing programmer

productivity by reducing or eliminating as many of the mundane tasks as possible.

These Rapid Application Development tools enable the fast creation of a prototype

that can easily be turned into a fully functional system.

The time span between major releases of existing software development tools also

seems to shorten continuously.

These factors had a big influence on the choice of software development tool used for

development of the Hearts 32 application. The main considerations for the choice of

software development tool (application development environment) included:

• Does the manufacturer of the product have a history of developing quality

products?

• Does the manufacturer have a sound financial position? (Will the manufacturer be

around in years to come in order to support the product?)

• Does the manufacturer have a sound commitment to the product?

• Is this a brand new product, or something new based on tried and trusted

technology?

• How is the product received by the market?

It is believed that the choice of Borland® Delphi™ was solid and responsible.

Borland has been in the compiler-business in excess of I 0 years, producing top quality

professional compilers for Pascal, C, Basic, Prolog and Lisp. Borland was also

responsible for database products such as Paradox® and Reflex, and through

acquisitions, dBASE®.

Admittedly, Borland has experienced some financial difficulties before the release of

DelphiTM, but DeiphiTM (together with C++ Builder) has become Borland's flagship

product, so lving these financial problems.

160

© Central University of Technology, Free State

Chapter 9 Conclusion

DelphiTM uses the Object Pascal language. Borland has, as mentioned, been writing

Pascal compilers for roughly 10 years. DelphiTM was also written in BOrland® Pascal.

The resulting programs are true executable 32-bit Windows® programs. No pseudo­

code or run-time modules for program interpretation are needed.

Within a short time after the release of DelphiTM, a large part of advertisements for

programmer positions, required skills in Delphi™ The bewildering number of

newsgroups and Internet sites on Delphi™ also proves that the industry has embraced

Delphi™ completely.

One point which does raise a few questions is the following: Since Object Pascal is

deemed a high levellallguage, it should be portable. For the largest part, this is true.

However, the experience with the different RS-232 communications modules which

did not function correctly with different versions of the DelphiTM compiler (even

different 32-bit versions) was frustrating, to say the least. Suffice it to say that the

blame cannot completely be laid on DelphiTM or Object Pascal. As already

mentioned, Microsoft modified the API functions in the Windows® kernel.

TurboPower, the manufacturers of AsyncPro™, also reworked the code of their

product in order to make it compatible with DelphiTM 3.0.

Another point which deserves attention is that of the ZLIB 1.0.4 general purpose data

compression library which was used for the storage of ECG data in the database

(Chapter 6). The source code for this compression library was written in ANSI C, to

allow compilation on different platforms. For the PC, the code was compiled using

the Borland® C++ 5.0 compiler. An Object Pascal interface to these object files was
z­then developed by the authors of ZLIB. '

It is possible that the interface to the ZLIB compression library will not automatically

function with future releases of DelphiTM. (There always seem to be some or other

"minor" change between different releases of the compilers which normally has an

influence on topics such as mixed language programming.)

25 Jean-loup Ga il y & Mark Adler. ZLiB © 1995-l996.

161

© Central University of Technology, Free State

Chapter l) Conclusion

ZLIB was chosen for the following reasons:

• It is a general purpose compression library.

• It is available, for free.

• The source code is available and the standards on which it IS based are

documented well in request for comments (RFCs).

• It is available on different platforms.

In the light of these facts, it is sincerely believed that, should the ex isting ZLIB library

not function easily with future releases of DelphiTM, there will be some support to

overcome the problem.

The Paradox® RDBMS supports the year 2000. This means that the Hearts 32

application is in no immediate danger of the year 2000 problem.

The experience gained with RAD tools and visual development environments does

raise one important point: since a large portion of the program is hidden in the values

of the properties of the objects used, it is no longer possible to read the source code

li sting alone to understand the working of a particular piece of code. The programmer

must always refer to the visual components as well. This can be impractical at times,

and must be kept in mind when preparing printed copies of source code.

5. Extension of the system

The data acquisition module developed for the HP4745A PageWriter II Cardiograph can

be used as long as the HP4745A is in use (provided that the Hearts 32 application is

used).

The Hearts 32 app lication was developed in such a way that new data acqui sition

modules for other ECG machines can be created as dynamic link libraries. All that is

needed is that these data acquisition modules deliver their data sets in the format outlined

in Appendix B.

162

© Central University of Technology, Free State

Chapter ~ Conclusion

This safeguards Hearts 32 aga inst changes in ECG equ ipment, and also protects the

investment of the Department of Cardiology, Univers itas Hospital, Bloemfonte in , in the

Hearts 32 application.

163

© Central University of Technology, Free State

Chapter ';I Conclusion

The objectives as defined in Chapter 1 can be summarised as follows:

Objective Result

Data acquisition and decoding module for HP4745A Success.
Page Writer JI Cardiograph.

A method for database storage and retrieval of Success.
digitally captured ECG Data.

Develop specifications to allow other developers to Success.
create data acquisition modules for Hearts 32.

Develop a graphic browser for recreating of stored
ECGs.

Simultaneous views of different ECGs Success.

Superimposing of selected leads Success.

Printing of ECGs Success.

From the summary above it can be seen that the aims of the study has successfully been

reached.

6. Summary

Although many problems were encountered during the course of thi s study, and many

questions had to be answered through reading and own interpretation, the hypothesis

as outlined in Chapter 1 could be proved.

The hypothesis was proved in a test environment. This means that a limited version

of the new Hearts 32 database was developed to act as the host application and also to

illustrate the interface between the data acquisition and graphics modules. Conversion

of the contents of the current Hearts database has been programmed, and this work

will ease the migration of the Hearts database to the Hearts 32 database considerably.

164

© Central University of Technology, Free State

Appendix A HP Diagnostic Card iology Digital Transmission Protocol

Appendix A

HP Diagnostic Cardiology Digital Transmission
Protocol

Rev. 3.0, September 25, 1985.

WARNING: The information contained in this appendix contains
confidential information of a proprietary nature which
has been made available to the researcher by
Hewlett Packard under a confidential disclosure
agreement. No part of this appendix may be made
public or used without proper prior written approval
from the Hewlett Packard Company.

Pages 166 - 217 left blank intentionally.

165

© Central University of Technology, Free State

Appendix B Hearts 32 ECG Storage Format

Appendix B

Hearts 32 ECG Storage Format

1. Introduction

While it is recognised that different electrocardiographs store data in their individual

proprietary format, one of the goals of this research was to find a common storage

format that would enable the storage of ECG data in the HearlS 32 database.'

Should it be required that any electrocardiograph other than a HP4745A Page Writer II

Cardiograph be connected to the Hearls 32 database application, a Data Acquisition

Module must be developed for said electrocardiograph. The Data Acquisition Module

will be in the form of a Dynamic Link Library (DLL) (as discussed in Chapter 4,

section 3.1). In order to be compatible with the Hearls 32 database application, the

data files produced by such a DLL must conform to the format described in this

appendix.

The storage format described in this appendix is intended to allow other developers to

create ECG data sets that will be compatible with the Hearts 32 database?

2. Lead Identifiers
The 14 leads present in a Hearls 32 ECG data file are summarised in Table B-1

below:

TlIbie 8 - /: Lellds preselll ill 1I billllry ECG file

Number lD Lead description

I I J

2 2 II
, ,

III J J

4 4 aVR

I A device (hardware) independent storage format for digita lly acquired ECG data.

2 The storage format resulted from the research described in Chaplers 4, 6 and Appendix A.

218

© Central University of Technology, Free State

Appendix B Hearts 32 ECG Storage Format

Table B-1: Letllis present in a binary ECG file (continued)

Number ID Lead description

5 5 aVL

6 6 aVF

7 7 VI

8 8 V2

9 9 V3

10 10 V4

I I I I V5

12 12 V6

13 99 (Calibration Pulse)

14 24 Rllythm Strip (VIr)

3. File Structure
In order to allow random access to lead data, it was decided that the ECG data fil e will

consist of two parts, as described in Table 8-2 below:

Table B-2: StTltcttlre of a Hearts 32 ECG tlatafile

Item Description

Header Contains lead data characteristics. Items include number of leads in the

file , Lead ID, number of samples per lead and also the offset of the first

value of the lead in the data file.

Lead data Contains the actual lead data.

Table 8-3 describes each part as identified in Table 8-2 in more detail. Item I (Lead

count) will occur only once in the decoded file, at the very beginning. Item 2 will

occur once in the file. Note that item 2 consists of a set of items 2.1 to 2.6 inclusive,

where the number of repetitions is equal to the number of leads as indicated by item I

(Lead count). A total of 14 leads is present, as showed in Table 8-1. Item 2 is

followed by item 3, which occurs once in the file. As with item 2, item 3 consists of a

set of items 3.1 to 3.2 inclusive, where the number of repetitions is equal to the

number ofleads as indicated by item I (Lead count).

219

© Central University of Technology, Free State

AppendiX tl Hearts J2 C:CU Storage Format

Table B-3: Da1a eien/e1lls ill a lIea,'s 32 ECG "ala file

NWllber Item Data Type Length (bytes)

1 Lead count Integer
,
J

2 Lead map
information

2.1 Space 1

2.2 Lead ID Integer
,
J

2.3 Space I

2.4 Samples in lead Integer 5

2.5 Space I

2.6 Offset in file Long integer 7
,

Lead Data J

3.1 Space 1

3.2 Lead Data Integer value for N /A
the HP4745A.

(Could also be real
val ue for other
ECG machines.

Does not matter. 3)

In order to identify the different values in the file , they need to be separated from each

other, normally with a space (ASCII 32, indicated with the letter "b" in this appendix).

This is al so the case with the decoded data sets, as indicated in Table 8-3. Proper

placement of these spaces (please refer to items 2.1 and 3.1 in Table 8-3) ensures that

no unnecessary spaces are written at the end of the file. Should the first space have

been written directly following the lead count (item I) , as well as items 2.6 and 3.2, an

unnecessary space would be present at the end 0 f the fi Ie.

The width of items I to 2.6 inclusive has been fixed , to ease manipulation of the

header information. Since the header is relatively small (representing only 0.738% of

the average total file size\ the additional spaces do not incur too much of a storage

overhead.

3 Stored data are read as ASC II strings from the data file. Tests showed that using the StrTolnr and SrrToFloat
function s in Object Pascal yielded the same results for integer values.

4 Mean Header Size! Mean Tolal File Size' 100 ~ (255 ! 34552.65)' 100 ~ 0.738%. Please referlo Table 6-10:
Descriptive stati sti cs (ASC II Storage Format , Selective) in Chapter 6.

220

© Central University of Technology, Free State

AppendiX tl Hearts 32 ECG Storage Format

An example of such data can be seen in Table B-4 below. The example shows the

lead count (item I), header data (lead map items 2. 1 - 2.6) for leads I, II and V I r

Table B-5 shows the lead data (lead data items 3.1 & 3.2) with the first few data

points for lead I.

Table 8-4: Example offle(lIler (lea<l mop) <lata ill 0 Hearts 32 ECG <lata file

Lead Item I tern Description Data Type Actual Data Length
ID Number (bytes)

Header data

I Lead count Integer bl4 1
J

Lead- data
map

I 2.1 Padding Character b I

2.2 Lead ID Integer bbl 1
J

2.3 Padding Character b I

2.4 Samples in lead Integer bb633 5

2.5 Padding Character b I

2.6 Offset in file Long integer bbbb255 7

II 2.1 Padding Character b I

2.2 Lead ID Integer bb2 1
J

2.3 Padding Character b I

2.4 Samples in lead Integer bb633 5

2.5 Padding Character b I

2.6 Offset in file Long integer bbb23 13 7

VI, 2.1 Padding Character b 1

2.2 Lead ID Integer b24 1
J

2.3 Padding Character b I

2.4 Samples in lead Integer b2488 5

2.5 Padding Character b I

2.6 Offset in file Long integer bb27712 7

221

© Central University of Technology, Free State

AppendIx Ij Hearts 32 ECG Storage Format

Table B-5: £Wll1Iple o/lead data;1/ a Hearls 32 ECG dalajile

Lead Item Item Description Data Type Actual Data Length
ID Number (bytes)

Lead data

I 3. 1 Padding Character b 1

3.2 Lead data Integerlfloat5 -15 N/A

3.1 Padding Character b 1

3.2 Lead data Integerlfloat -4 N/A

3.1 Padding Character b 1

3.2 Lead data Integerlfloat 0 N/A

3.1 Padding Character b 1

3.2 Lead data Integerlfloat 3 N/A

3.1 Padding Character b 1

3.2 Lead data I ntegerlfloat 4 N/A

Since the different data values are not of the same length, some character is needed to

separate the values from one another. A space is written between adjacent values.

Note the technique of writing a space before writing the actual value. This

circumvents the problem of an urmecessary trailing space being written at the end of

the file. (This, of course, only works due to the structure of the lead map itself. If

there was no lead map, an unnecessary leading space would be present in the file.)

Items 2.1 to 2.6 are repeated for every lead (up to the number of leads specified in

Item 1). Items 3.1 and 3.2 are repeated for every value in each lead, up to the number

or samples per lead (Item 2.4).

4. DLL Specifics and Rules

It is suggested that a mnemonic name for the data acquisition be gIven, such as

HP4745A.DLL in the case of the HP4745A Page Writer II Cardiograph, for example.

The exported function contained in the DLL fil e must be declared as follows: 6

5 Data acquired from the HP4745A ar~ in integer format. Using the proposed storage format, it docs not matter
whether data are represented as integers or as real numbers. Because of this, no pre-allocated length is
associated with each data item.

222

© Central University of Technology, Free State

Appendix tl Hearts 32 ECG Storage Format

Co"e SlIippet 8-1: Object Pascal/tmctioll "eclaratioll

f unction ReadDecodeCalcStoreECG (hAppHandle : THandle i sDescription: PChar ; nComPort :
Integer ; nBaudRate : Integer ; sBinaryFile : PChar ; sASC I I Fi le : PChar ; va r s ECGTime :
TAr20 ; var sECGDa t e : TAr20) : Integer ; StdCall ;

The ReadDecodeCalcStoreECG function accepts eight parameters, and returns an

integer result. Successful downloading of the ECG data set from the cardiograph will

result in a return value ofO. Ifany problems were encountered, the return value of the

function is set to -I. A brief description of the parameters and their data types

follows:

Table 8-6: FUllctioll call parameters

No Name Object Generic Data type Comments
Pascal

Data Type

I hAppHandle THandle 32 bit signed integer Parent Application
Handle7

•

2 sDescription PChar ASCIIZ string Description of DLL.

3 nComPort Integer 32 bit signed integer RS-232 COM Port to
which ECG machine is
connected.

4 nBaudRate Integer 32 bit signed integer Baud rate at which ECG
machine communicates.

5 sBinaryFile PChar ASCIIZ string Name of disk file to
recei ve a copy of the
binary ECG data.

6 sASCIIFile PChar ASCIIZ string Name of temporary disk
file to receive decoded
ASCII ECG data.

7 sECGTime var TAr20 Zero-based array of Time ECG was taken.
20 characters

8 sECGDate var TAr20 Zero-based array of Date ECG was taken.
20 characters

...
The maID applicatIOn handle IS used to associate the data acqulSI!lon wah the maID

application (Hearts 32). This ensures that the windows belonging to the DLL are

closed together with the main application.

6 In other languages such as C. the corresponding data type must be used instead. The name of the functi on must,
however, be kept intact. Care must be taken with C++ compilers to avoid mangling or the function name.

7 In the HP4745A.DLL file. the application 's instance was assigned the value of the parent application handle as
fol lows: Application.Handle := hAppHandle.

223

© Central University of Technology, Free State

AppendIX I:l Hearts 32 ceG Storage Format

The values of the binary and ASCII file names are determined and supplied by

Hearts 32. The contents is made up of the path name of the Windows® 95 directory,

followed by TEMP. Appended to this is the eight digit computer number that

uniquely identifies each patient in Hearts 32. The file extension is .Enn for binary

files , and .Ann for ASCII files, where nn is the number of the ECG in the Hearts 32

database.8 An example of such a file name IS as follows:

C:\ WIN95\TEMP\123456789.EO I.

Items 7 and 8 in Table B-6 need additional attention. Note that these variable

parameters have assignments made by the data acquisition module. The format of the

time parameter is hh:mrn:ss. The format of the data parameter is yy-mm-dd, but

yyyy-mm-dd is also acceptable.

Code SlIippel B-2: C/C ++ /III1Clioll dec/aralioll

in t ReadDecodeCalcStoreECG (HINSTANC E hAppHandle , char * sDescription , int nComPort,
in t nBaudRate , char * sBinaryFile , char * sASCIIFile, char * sECGTirne , char * sECGDate
I ;

Depending on the coding style used, the function ReadDecodeCalcStoreECG could be

defined as follows:

Code SlIippel B-3: AI/emalive C/C++ /III1Clioll dec/aralioll

int ReadDecodeCalcStoreECG (HINSTANCE, char*, int, int , char * , char*, char*, char*) ;

8 The range of thi s number is I to 99.

224

© Central University of Technology, Free State

AppendIx \.- Commonly used abbreviations and terms

Appendix C

Commonly used abbreviations and terms
Table C·/: Commollly usel/ abbrev;(lfiolts and terms

AbbreviationlTerrn Description

API Application Program Interface.

BDE Borland Database Engine.

Cart A trolley with an electrocardiograph machine.

CVO/O Coefficient of variation.

DLL Dynamic Link Library.

ECG Electrocardiogram.

ECG machine Electrocardiograph.

ICU Intensive Care Unit.

LSB Least Significant Byte.

Isb least significant bit.

MSB Most Signifcant Byte.

msb most significant bit.

mV Millivolt.

OLE Object Linking and Embedding.

RS-232 Recommended Standard Number 232, Revision C from the
Engineering Department of the Electronic Industries
association.

RTL Run Time Library.

VCL Visual Component Library

QTc Corrected QT time.

225

© Central University of Technology, Free State

Bibliography

Books

Abel, P. 1991. IBM PC Assembly Language and Programming. Second Edition.

Englewood Cliffs, N.J. Prentice-Hall International.

Barkakati , N. 1989. The Waite Group 's Turbo C© Bible. First Edition.

Indianapolis, Indiana. Howard W. Sams & Company, A Division of

Macmillan Inc.

Brookes, C.H.P. , Grouse, P.J., Jeffery, D.R., Lawrence, M.J. 1982. Information

Systems Design. Sydney, Australia. Prentice-Hall of Australia Pty Ltd.

Campbell , 1. 1987. C Programmer 's Guide to Serial Communications. First Edition.

Carmel, Indiana. SAMS, A Division of Macmillan Computer Publishing.

Campbell, J. 1984. The RS-232 Solution: How To Use Your Serial Port. Second

Edition. Alameda, California. SYBEX.

Cantu, M. 1997. Mastering™ DelphiTM 3. Second Edition. Alameda, California.

SYBEX.

Cardenas, A.F. 1985. Data Base Management Systems. Second Edition. Newton,

Massachusetts. Allyn and Bacon, Inc.

Date, C.J. 1990. An Introduction to Database Systems. Fifth Edition. Reading,

Massachusetts. Addison-Wesley Publishing Company, Inc.

Dubin, D. 1989. Rapid Interpretation of EKG 's ... a programmed cOllrse. Fourth

Edition. Tampa, Florida. COVER Publishing Company.

Guyton, A.c. 1966. Texlbook of Medical Physiology. Third Edition, illustrated.

Philadelphia and London. W. B. Saunders Company.

Jensen, C. , Anderson, 1., Fung, J., Lynnworth, A. , Ostroff, M., Rudy, M. , Vivrette, R.

1996. Delphi in depth. Berkeley, California. Osborne McGraw-Hill.

© Central University of Technology, Free State

McFadden, F.R., Hoffer, J.A. 1991. Database Management. Third Edition.

Redwood City, California. The Benjamin/Cummings Publishing Company,

Inc.

Meyer, BJ., Meij, H.S. , Labuschagne, CJJ., Theron, J.J. , Grey, S.V., Stewart, R.I. ,

Pitout, M.J., Van Papendorp, D.H., Brown, J.M.M., Smit, Z.M. , Seegers, le.,

Meyer, A.C., Haag, M. 1988. Die Fisiologiese Basis van Geneeskunde.

Vierde hersiene uitgawe. Pretoria. HAUM Uitgewery.

Monk, T.S. 1992. Windows™ Programmer 's Guide to Serial Communications. First

Edition. Carmel, Indiana. ·Sams Publishing.

Morse, S.P. 1982. The 80868088 Primer. Second Edition. Hasbrouck Heights, NJ.

Hayden Book Company Inc.

Nelson, M. 1991. The data compression book. Redwood City, California. M & T

Publishing, Inc.

Pacheco, X., Teixeira, S. 1996. Delphi 2 Developer's Guide. Second Edition.

Indianapolis, Indiana. Sams Publishing.

Swan, T. 1991. Mastering Turbo Pascat® 6. Fourth Edition. Carmel, Indiana.

Hayden Books.

Tanenbaum, A. S. 1984. Structured Computer Organization. Second Edition.

Englewood Cliffs, N.J. Prentice-Hall , Inc.

ThuHott, P. , Brent, G. , Bagdazian, R. , Tendon, S. 1997. Delphi 3 SuperBible. Corte

Madera, California. Waite Group Press™, A Division ofSams Publishing.

Tompkins, W.J ., Webster, J.G., Eds. 1981. Design of Microcomputer-Based Medical

Instrumentation. Englewood Cliffs , NJ : Prentice-Hall.

Publications

Abenstein, J.P., Tompkins, W.J . 1982. A New Data-Reduction Algorithm for Rea/-

Time Electrocardiogram Analysis. IEEE Transactions on Biomedical

Engineering, vol. BME-29, pp.43-48.

II

© Central University of Technology, Free State

Axenborg, J.E. 1989. BIOLAB - a computerized on-line system for physiological

measurements in experimental animals. Computer Methods and Programs in

Biomedicine, vol. 28, pp. 75-85.

Berson, A.S., Wojick, J.M., Pipberger, H.Y. 1977. Precision Requirements for

Electrocardiographic Measurements Computed Automatically. IEEE

Transactions on Biomedical Engineering, vol. BME-24, no. 4, pp. 382-385.

Farrell, A.P. , Bruce, F. 1987. Data Acquisition and Analysis of Pulsatile Signals

Using a Personal Computer: An Application in Cardiovascular Physiology.

Computers in Biology and Medicine, vol. 17, no. 3, pp. 151-159.

Herbst, C.P., Diedericks, J., Uys, N.J., Brummer, J., Lotter, M.G. 1991. Use of a

Personal Computer for Fast Acquisilion of Cardiovascular Data Over an

Extended Period. Computers in Biology and Medicine, vol. 21 , no. 6,

pp. 407 - 415.

Jalaleddine, S.M.S., Hutchens, C.G. , Strattan, R.D. , Coberly, W.A. 1990.

Electrocardiogram Dala Compression Techniques - A Unified Approach.

IEEE Transactions on Biomedical Engineering, vol. 37, no. 4, pp. 329-340.

Jossinet, J. , Leftheriotis, G., Vernier, F., Saumet, J.L. 1990. A Computerized

Bioelectrical Cardiac Monitor. Computers in Biology and Medicine, vol. 20,

no. 4, pp. 253-260.

Kennedy, H.L., Ratcliff, J.W. 1987. AmbulatOlY electrocardiography and computer

technology - practical advantages. Americal Heart Journal , vol. 113, no. I ,

pp. 186-193.

Mustard, R.A. , Cosolo, A., Fisher, J. , Pike, T. , Schouten, B.D., Swanson, H.T. 1990.

PC-Based System for Collection and Analysis of Physiological Data.

Computers in Biology and Medicine, vol. 20, no. 2, pp. 65-74.

Perez, A. 1983. Byte-wise CRC Calculations. IEEE Micro, June, pp. 40-49.

III

© Central University of Technology, Free State

Piper, I. , Guha, A. , Tator, c.H., Gentles, W. 1987. A Microcomputer System for On­

Line Collection of Blood Flow and Related Physiological Data. Computers in

Biology and Medicine, vol. 17, no. 4, pp. 279-29 1.

Tai , S.c. 1991. SLOPE - a real-time electrocardiogram data compressor. Medical

& Biological Engineering & Computing, vol. 29, pp. 175-179.

Tai, S.C. 1992. ECG data compression by corner detection. Medical & Biological

Engineering & Computing, vo l. 30, pp. 584-590.

Tai, S.C. 1993. AZTDIS - a two-phase real-time electrocardiogram data compressor.

Journal of Biomedical Engineering, vol. 15, pp. 510-515 .

Van Vliet, B.N., West, N.H. , Road, J.D. 1987. Measurement of Signal Period on a

Personal Microcomputer and its Application to the Analysis of Cardiac

Interval and Blood Pressure. Computers in Biology and Medicine, vol. 17,

no. 3, pp. 143-150.

Proceedings

Brodie, D.A. , Mann, B. 1982. A low-cost data acquisition and display system for

physiological measures. Proceedings of the Physiological Society. Leeds

meeting. p. I.

Protocols

Hewlett-Packard Company. 1985. HP DIAGNOSTIC CARDIOLOGY DIGITAL

COMMUNICATIONS OVERVIEW for the 4750A Option A50 and A 60, and

4760A Cardiographs, and the 5600C electrocardiogram Management System.

McMinnville, Oregon. Rev. 3.0.

Hardware Manuals

Hewlett-Packard Company. 1983. Hewlell Packard HP4700A Cardiograph

Formalling Guide. Andover, Massachusetts. Part Number 04700-91997.

IV

© Central University of Technology, Free State

Hewlett-Packard Company. 1988. HP 4745A Page Writer II Cardiograph Operating

Guide. USA. Part Number 04745-91908.

Hewlett-Packard Company. 1989. Model 4745A14755A Cardiograph Service

Manual. USA. Part Number 04755-91909.

Software Manuals

Borland®. 1997. Object Pascal Language Guide. Borland International , Inc. Scotts

Valley, California.

Product Brochures

Cardio Control BV. [s.a.]. Cardio Perfect. PC Based electrocardiogram. Rijswijk,

The Netherlands.

Hewlett-Packard Company. 1995. HP M1730B TraceMaster electrocardiogram

System, United States of America.

Marquette electronics. 1992. MAC YU. Milwaukee, Wisconsin.

Request for Comments

Deutsch, L. P., Gaily, J-L. 1996a. ZLIB Compressed Data Format Specification

version 3.3. Network Working Group, Request for Comments: 1950.

ftp://ds.internic.net/rfc/rfcI950.txt.

Deutsch, L. P. 1996b. DEFLATE Compressed Data Format Specification version

1.3. Network Working Group, Request for Comments: 1951.

ftp: //ds.internic.net/rfc/rfcI951 .txt.

Deutsch, L. P. 1996c. GZIP File Format Specification version 4.3. Network

Working Group, Request

ftp ://ds.internic.netlrfclrfcI952.txt.

v

for Comments: 1952.

© Central University of Technology, Free State

